1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2010-2011 Neil Brown 4 * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/module.h> 11 12 #include "md.h" 13 #include "raid1.h" 14 #include "raid5.h" 15 #include "raid10.h" 16 #include "md-bitmap.h" 17 #include "dm-core.h" 18 19 #include <linux/device-mapper.h> 20 21 #define DM_MSG_PREFIX "raid" 22 #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */ 23 24 /* 25 * Minimum sectors of free reshape space per raid device 26 */ 27 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096) 28 29 /* 30 * Minimum journal space 4 MiB in sectors. 31 */ 32 #define MIN_RAID456_JOURNAL_SPACE (4*2048) 33 34 static bool devices_handle_discard_safely; 35 36 /* 37 * The following flags are used by dm-raid to set up the array state. 38 * They must be cleared before md_run is called. 39 */ 40 #define FirstUse 10 /* rdev flag */ 41 42 struct raid_dev { 43 /* 44 * Two DM devices, one to hold metadata and one to hold the 45 * actual data/parity. The reason for this is to not confuse 46 * ti->len and give more flexibility in altering size and 47 * characteristics. 48 * 49 * While it is possible for this device to be associated 50 * with a different physical device than the data_dev, it 51 * is intended for it to be the same. 52 * |--------- Physical Device ---------| 53 * |- meta_dev -|------ data_dev ------| 54 */ 55 struct dm_dev *meta_dev; 56 struct dm_dev *data_dev; 57 struct md_rdev rdev; 58 }; 59 60 /* 61 * Bits for establishing rs->ctr_flags 62 * 63 * 1 = no flag value 64 * 2 = flag with value 65 */ 66 #define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */ 67 #define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */ 68 #define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */ 69 #define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */ 70 #define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */ 71 #define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */ 72 #define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */ 73 #define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */ 74 #define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */ 75 #define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */ 76 #define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */ 77 #define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */ 78 /* New for v1.9.0 */ 79 #define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */ 80 #define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */ 81 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */ 82 83 /* New for v1.10.0 */ 84 #define __CTR_FLAG_JOURNAL_DEV 15 /* 2 */ /* Only with raid4/5/6 (journal device)! */ 85 86 /* New for v1.11.1 */ 87 #define __CTR_FLAG_JOURNAL_MODE 16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */ 88 89 /* 90 * Flags for rs->ctr_flags field. 91 */ 92 #define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC) 93 #define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC) 94 #define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD) 95 #define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP) 96 #define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE) 97 #define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE) 98 #define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND) 99 #define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY) 100 #define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE) 101 #define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE) 102 #define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES) 103 #define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT) 104 #define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS) 105 #define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET) 106 #define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS) 107 #define CTR_FLAG_JOURNAL_DEV (1 << __CTR_FLAG_JOURNAL_DEV) 108 #define CTR_FLAG_JOURNAL_MODE (1 << __CTR_FLAG_JOURNAL_MODE) 109 110 /* 111 * Definitions of various constructor flags to 112 * be used in checks of valid / invalid flags 113 * per raid level. 114 */ 115 /* Define all any sync flags */ 116 #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC) 117 118 /* Define flags for options without argument (e.g. 'nosync') */ 119 #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \ 120 CTR_FLAG_RAID10_USE_NEAR_SETS) 121 122 /* Define flags for options with one argument (e.g. 'delta_disks +2') */ 123 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \ 124 CTR_FLAG_WRITE_MOSTLY | \ 125 CTR_FLAG_DAEMON_SLEEP | \ 126 CTR_FLAG_MIN_RECOVERY_RATE | \ 127 CTR_FLAG_MAX_RECOVERY_RATE | \ 128 CTR_FLAG_MAX_WRITE_BEHIND | \ 129 CTR_FLAG_STRIPE_CACHE | \ 130 CTR_FLAG_REGION_SIZE | \ 131 CTR_FLAG_RAID10_COPIES | \ 132 CTR_FLAG_RAID10_FORMAT | \ 133 CTR_FLAG_DELTA_DISKS | \ 134 CTR_FLAG_DATA_OFFSET | \ 135 CTR_FLAG_JOURNAL_DEV | \ 136 CTR_FLAG_JOURNAL_MODE) 137 138 /* Valid options definitions per raid level... */ 139 140 /* "raid0" does only accept data offset */ 141 #define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET) 142 143 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */ 144 #define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 145 CTR_FLAG_REBUILD | \ 146 CTR_FLAG_WRITE_MOSTLY | \ 147 CTR_FLAG_DAEMON_SLEEP | \ 148 CTR_FLAG_MIN_RECOVERY_RATE | \ 149 CTR_FLAG_MAX_RECOVERY_RATE | \ 150 CTR_FLAG_MAX_WRITE_BEHIND | \ 151 CTR_FLAG_REGION_SIZE | \ 152 CTR_FLAG_DELTA_DISKS | \ 153 CTR_FLAG_DATA_OFFSET) 154 155 /* "raid10" does not accept any raid1 or stripe cache options */ 156 #define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 157 CTR_FLAG_REBUILD | \ 158 CTR_FLAG_DAEMON_SLEEP | \ 159 CTR_FLAG_MIN_RECOVERY_RATE | \ 160 CTR_FLAG_MAX_RECOVERY_RATE | \ 161 CTR_FLAG_REGION_SIZE | \ 162 CTR_FLAG_RAID10_COPIES | \ 163 CTR_FLAG_RAID10_FORMAT | \ 164 CTR_FLAG_DELTA_DISKS | \ 165 CTR_FLAG_DATA_OFFSET | \ 166 CTR_FLAG_RAID10_USE_NEAR_SETS) 167 168 /* 169 * "raid4/5/6" do not accept any raid1 or raid10 specific options 170 * 171 * "raid6" does not accept "nosync", because it is not guaranteed 172 * that both parity and q-syndrome are being written properly with 173 * any writes 174 */ 175 #define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 176 CTR_FLAG_REBUILD | \ 177 CTR_FLAG_DAEMON_SLEEP | \ 178 CTR_FLAG_MIN_RECOVERY_RATE | \ 179 CTR_FLAG_MAX_RECOVERY_RATE | \ 180 CTR_FLAG_STRIPE_CACHE | \ 181 CTR_FLAG_REGION_SIZE | \ 182 CTR_FLAG_DELTA_DISKS | \ 183 CTR_FLAG_DATA_OFFSET | \ 184 CTR_FLAG_JOURNAL_DEV | \ 185 CTR_FLAG_JOURNAL_MODE) 186 187 #define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \ 188 CTR_FLAG_REBUILD | \ 189 CTR_FLAG_DAEMON_SLEEP | \ 190 CTR_FLAG_MIN_RECOVERY_RATE | \ 191 CTR_FLAG_MAX_RECOVERY_RATE | \ 192 CTR_FLAG_STRIPE_CACHE | \ 193 CTR_FLAG_REGION_SIZE | \ 194 CTR_FLAG_DELTA_DISKS | \ 195 CTR_FLAG_DATA_OFFSET | \ 196 CTR_FLAG_JOURNAL_DEV | \ 197 CTR_FLAG_JOURNAL_MODE) 198 /* ...valid options definitions per raid level */ 199 200 /* 201 * Flags for rs->runtime_flags field 202 * (RT_FLAG prefix meaning "runtime flag") 203 * 204 * These are all internal and used to define runtime state, 205 * e.g. to prevent another resume from preresume processing 206 * the raid set all over again. 207 */ 208 #define RT_FLAG_RS_PRERESUMED 0 209 #define RT_FLAG_RS_RESUMED 1 210 #define RT_FLAG_RS_BITMAP_LOADED 2 211 #define RT_FLAG_UPDATE_SBS 3 212 #define RT_FLAG_RESHAPE_RS 4 213 #define RT_FLAG_RS_SUSPENDED 5 214 #define RT_FLAG_RS_IN_SYNC 6 215 #define RT_FLAG_RS_RESYNCING 7 216 #define RT_FLAG_RS_GROW 8 217 #define RT_FLAG_RS_FROZEN 9 218 219 /* Array elements of 64 bit needed for rebuild/failed disk bits */ 220 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8) 221 222 /* 223 * raid set level, layout and chunk sectors backup/restore 224 */ 225 struct rs_layout { 226 int new_level; 227 int new_layout; 228 int new_chunk_sectors; 229 }; 230 231 struct raid_set { 232 struct dm_target *ti; 233 234 uint32_t stripe_cache_entries; 235 unsigned long ctr_flags; 236 unsigned long runtime_flags; 237 238 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS]; 239 240 int raid_disks; 241 int delta_disks; 242 int data_offset; 243 int raid10_copies; 244 int requested_bitmap_chunk_sectors; 245 246 struct mddev md; 247 struct raid_type *raid_type; 248 249 sector_t array_sectors; 250 sector_t dev_sectors; 251 252 /* Optional raid4/5/6 journal device */ 253 struct journal_dev { 254 struct dm_dev *dev; 255 struct md_rdev rdev; 256 int mode; 257 } journal_dev; 258 259 struct raid_dev dev[] __counted_by(raid_disks); 260 }; 261 262 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l) 263 { 264 struct mddev *mddev = &rs->md; 265 266 l->new_level = mddev->new_level; 267 l->new_layout = mddev->new_layout; 268 l->new_chunk_sectors = mddev->new_chunk_sectors; 269 } 270 271 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l) 272 { 273 struct mddev *mddev = &rs->md; 274 275 mddev->new_level = l->new_level; 276 mddev->new_layout = l->new_layout; 277 mddev->new_chunk_sectors = l->new_chunk_sectors; 278 } 279 280 /* raid10 algorithms (i.e. formats) */ 281 #define ALGORITHM_RAID10_DEFAULT 0 282 #define ALGORITHM_RAID10_NEAR 1 283 #define ALGORITHM_RAID10_OFFSET 2 284 #define ALGORITHM_RAID10_FAR 3 285 286 /* Supported raid types and properties. */ 287 static struct raid_type { 288 const char *name; /* RAID algorithm. */ 289 const char *descr; /* Descriptor text for logging. */ 290 const unsigned int parity_devs; /* # of parity devices. */ 291 const unsigned int minimal_devs;/* minimal # of devices in set. */ 292 const unsigned int level; /* RAID level. */ 293 const unsigned int algorithm; /* RAID algorithm. */ 294 } raid_types[] = { 295 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */}, 296 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */}, 297 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR}, 298 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET}, 299 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR}, 300 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT}, 301 {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */ 302 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N}, 303 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC}, 304 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC}, 305 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC}, 306 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC}, 307 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART}, 308 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART}, 309 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}, 310 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6}, 311 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6}, 312 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6}, 313 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6}, 314 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6} 315 }; 316 317 /* True, if @v is in inclusive range [@min, @max] */ 318 static bool __within_range(long v, long min, long max) 319 { 320 return v >= min && v <= max; 321 } 322 323 /* All table line arguments are defined here */ 324 static struct arg_name_flag { 325 const unsigned long flag; 326 const char *name; 327 } __arg_name_flags[] = { 328 { CTR_FLAG_SYNC, "sync"}, 329 { CTR_FLAG_NOSYNC, "nosync"}, 330 { CTR_FLAG_REBUILD, "rebuild"}, 331 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"}, 332 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"}, 333 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"}, 334 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"}, 335 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"}, 336 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"}, 337 { CTR_FLAG_REGION_SIZE, "region_size"}, 338 { CTR_FLAG_RAID10_COPIES, "raid10_copies"}, 339 { CTR_FLAG_RAID10_FORMAT, "raid10_format"}, 340 { CTR_FLAG_DATA_OFFSET, "data_offset"}, 341 { CTR_FLAG_DELTA_DISKS, "delta_disks"}, 342 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"}, 343 { CTR_FLAG_JOURNAL_DEV, "journal_dev" }, 344 { CTR_FLAG_JOURNAL_MODE, "journal_mode" }, 345 }; 346 347 /* Return argument name string for given @flag */ 348 static const char *dm_raid_arg_name_by_flag(const uint32_t flag) 349 { 350 if (hweight32(flag) == 1) { 351 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags); 352 353 while (anf-- > __arg_name_flags) 354 if (flag & anf->flag) 355 return anf->name; 356 357 } else 358 DMERR("%s called with more than one flag!", __func__); 359 360 return NULL; 361 } 362 363 /* Define correlation of raid456 journal cache modes and dm-raid target line parameters */ 364 static struct { 365 const int mode; 366 const char *param; 367 } _raid456_journal_mode[] = { 368 { R5C_JOURNAL_MODE_WRITE_THROUGH, "writethrough" }, 369 { R5C_JOURNAL_MODE_WRITE_BACK, "writeback" } 370 }; 371 372 /* Return MD raid4/5/6 journal mode for dm @journal_mode one */ 373 static int dm_raid_journal_mode_to_md(const char *mode) 374 { 375 int m = ARRAY_SIZE(_raid456_journal_mode); 376 377 while (m--) 378 if (!strcasecmp(mode, _raid456_journal_mode[m].param)) 379 return _raid456_journal_mode[m].mode; 380 381 return -EINVAL; 382 } 383 384 /* Return dm-raid raid4/5/6 journal mode string for @mode */ 385 static const char *md_journal_mode_to_dm_raid(const int mode) 386 { 387 int m = ARRAY_SIZE(_raid456_journal_mode); 388 389 while (m--) 390 if (mode == _raid456_journal_mode[m].mode) 391 return _raid456_journal_mode[m].param; 392 393 return "unknown"; 394 } 395 396 /* 397 * Bool helpers to test for various raid levels of a raid set. 398 * It's level as reported by the superblock rather than 399 * the requested raid_type passed to the constructor. 400 */ 401 /* Return true, if raid set in @rs is raid0 */ 402 static bool rs_is_raid0(struct raid_set *rs) 403 { 404 return !rs->md.level; 405 } 406 407 /* Return true, if raid set in @rs is raid1 */ 408 static bool rs_is_raid1(struct raid_set *rs) 409 { 410 return rs->md.level == 1; 411 } 412 413 /* Return true, if raid set in @rs is raid10 */ 414 static bool rs_is_raid10(struct raid_set *rs) 415 { 416 return rs->md.level == 10; 417 } 418 419 /* Return true, if raid set in @rs is level 6 */ 420 static bool rs_is_raid6(struct raid_set *rs) 421 { 422 return rs->md.level == 6; 423 } 424 425 /* Return true, if raid set in @rs is level 4, 5 or 6 */ 426 static bool rs_is_raid456(struct raid_set *rs) 427 { 428 return __within_range(rs->md.level, 4, 6); 429 } 430 431 /* Return true, if raid set in @rs is reshapable */ 432 static bool __is_raid10_far(int layout); 433 static bool rs_is_reshapable(struct raid_set *rs) 434 { 435 return rs_is_raid456(rs) || 436 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout)); 437 } 438 439 /* Return true, if raid set in @rs is recovering */ 440 static bool rs_is_recovering(struct raid_set *rs) 441 { 442 return rs->md.recovery_cp < rs->md.dev_sectors; 443 } 444 445 /* Return true, if raid set in @rs is reshaping */ 446 static bool rs_is_reshaping(struct raid_set *rs) 447 { 448 return rs->md.reshape_position != MaxSector; 449 } 450 451 /* 452 * bool helpers to test for various raid levels of a raid type @rt 453 */ 454 455 /* Return true, if raid type in @rt is raid0 */ 456 static bool rt_is_raid0(struct raid_type *rt) 457 { 458 return !rt->level; 459 } 460 461 /* Return true, if raid type in @rt is raid1 */ 462 static bool rt_is_raid1(struct raid_type *rt) 463 { 464 return rt->level == 1; 465 } 466 467 /* Return true, if raid type in @rt is raid10 */ 468 static bool rt_is_raid10(struct raid_type *rt) 469 { 470 return rt->level == 10; 471 } 472 473 /* Return true, if raid type in @rt is raid4/5 */ 474 static bool rt_is_raid45(struct raid_type *rt) 475 { 476 return __within_range(rt->level, 4, 5); 477 } 478 479 /* Return true, if raid type in @rt is raid6 */ 480 static bool rt_is_raid6(struct raid_type *rt) 481 { 482 return rt->level == 6; 483 } 484 485 /* Return true, if raid type in @rt is raid4/5/6 */ 486 static bool rt_is_raid456(struct raid_type *rt) 487 { 488 return __within_range(rt->level, 4, 6); 489 } 490 /* END: raid level bools */ 491 492 /* Return valid ctr flags for the raid level of @rs */ 493 static unsigned long __valid_flags(struct raid_set *rs) 494 { 495 if (rt_is_raid0(rs->raid_type)) 496 return RAID0_VALID_FLAGS; 497 else if (rt_is_raid1(rs->raid_type)) 498 return RAID1_VALID_FLAGS; 499 else if (rt_is_raid10(rs->raid_type)) 500 return RAID10_VALID_FLAGS; 501 else if (rt_is_raid45(rs->raid_type)) 502 return RAID45_VALID_FLAGS; 503 else if (rt_is_raid6(rs->raid_type)) 504 return RAID6_VALID_FLAGS; 505 506 return 0; 507 } 508 509 /* 510 * Check for valid flags set on @rs 511 * 512 * Has to be called after parsing of the ctr flags! 513 */ 514 static int rs_check_for_valid_flags(struct raid_set *rs) 515 { 516 if (rs->ctr_flags & ~__valid_flags(rs)) { 517 rs->ti->error = "Invalid flags combination"; 518 return -EINVAL; 519 } 520 521 return 0; 522 } 523 524 /* MD raid10 bit definitions and helpers */ 525 #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */ 526 #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */ 527 #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */ 528 #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */ 529 530 /* Return md raid10 near copies for @layout */ 531 static unsigned int __raid10_near_copies(int layout) 532 { 533 return layout & 0xFF; 534 } 535 536 /* Return md raid10 far copies for @layout */ 537 static unsigned int __raid10_far_copies(int layout) 538 { 539 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT); 540 } 541 542 /* Return true if md raid10 offset for @layout */ 543 static bool __is_raid10_offset(int layout) 544 { 545 return !!(layout & RAID10_OFFSET); 546 } 547 548 /* Return true if md raid10 near for @layout */ 549 static bool __is_raid10_near(int layout) 550 { 551 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1; 552 } 553 554 /* Return true if md raid10 far for @layout */ 555 static bool __is_raid10_far(int layout) 556 { 557 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1; 558 } 559 560 /* Return md raid10 layout string for @layout */ 561 static const char *raid10_md_layout_to_format(int layout) 562 { 563 /* 564 * Bit 16 stands for "offset" 565 * (i.e. adjacent stripes hold copies) 566 * 567 * Refer to MD's raid10.c for details 568 */ 569 if (__is_raid10_offset(layout)) 570 return "offset"; 571 572 if (__raid10_near_copies(layout) > 1) 573 return "near"; 574 575 if (__raid10_far_copies(layout) > 1) 576 return "far"; 577 578 return "unknown"; 579 } 580 581 /* Return md raid10 algorithm for @name */ 582 static int raid10_name_to_format(const char *name) 583 { 584 if (!strcasecmp(name, "near")) 585 return ALGORITHM_RAID10_NEAR; 586 else if (!strcasecmp(name, "offset")) 587 return ALGORITHM_RAID10_OFFSET; 588 else if (!strcasecmp(name, "far")) 589 return ALGORITHM_RAID10_FAR; 590 591 return -EINVAL; 592 } 593 594 /* Return md raid10 copies for @layout */ 595 static unsigned int raid10_md_layout_to_copies(int layout) 596 { 597 return max(__raid10_near_copies(layout), __raid10_far_copies(layout)); 598 } 599 600 /* Return md raid10 format id for @format string */ 601 static int raid10_format_to_md_layout(struct raid_set *rs, 602 unsigned int algorithm, 603 unsigned int copies) 604 { 605 unsigned int n = 1, f = 1, r = 0; 606 607 /* 608 * MD resilienece flaw: 609 * 610 * enabling use_far_sets for far/offset formats causes copies 611 * to be colocated on the same devs together with their origins! 612 * 613 * -> disable it for now in the definition above 614 */ 615 if (algorithm == ALGORITHM_RAID10_DEFAULT || 616 algorithm == ALGORITHM_RAID10_NEAR) 617 n = copies; 618 619 else if (algorithm == ALGORITHM_RAID10_OFFSET) { 620 f = copies; 621 r = RAID10_OFFSET; 622 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) 623 r |= RAID10_USE_FAR_SETS; 624 625 } else if (algorithm == ALGORITHM_RAID10_FAR) { 626 f = copies; 627 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) 628 r |= RAID10_USE_FAR_SETS; 629 630 } else 631 return -EINVAL; 632 633 return r | (f << RAID10_FAR_COPIES_SHIFT) | n; 634 } 635 /* END: MD raid10 bit definitions and helpers */ 636 637 /* Check for any of the raid10 algorithms */ 638 static bool __got_raid10(struct raid_type *rtp, const int layout) 639 { 640 if (rtp->level == 10) { 641 switch (rtp->algorithm) { 642 case ALGORITHM_RAID10_DEFAULT: 643 case ALGORITHM_RAID10_NEAR: 644 return __is_raid10_near(layout); 645 case ALGORITHM_RAID10_OFFSET: 646 return __is_raid10_offset(layout); 647 case ALGORITHM_RAID10_FAR: 648 return __is_raid10_far(layout); 649 default: 650 break; 651 } 652 } 653 654 return false; 655 } 656 657 /* Return raid_type for @name */ 658 static struct raid_type *get_raid_type(const char *name) 659 { 660 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); 661 662 while (rtp-- > raid_types) 663 if (!strcasecmp(rtp->name, name)) 664 return rtp; 665 666 return NULL; 667 } 668 669 /* Return raid_type for @name based derived from @level and @layout */ 670 static struct raid_type *get_raid_type_by_ll(const int level, const int layout) 671 { 672 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); 673 674 while (rtp-- > raid_types) { 675 /* RAID10 special checks based on @layout flags/properties */ 676 if (rtp->level == level && 677 (__got_raid10(rtp, layout) || rtp->algorithm == layout)) 678 return rtp; 679 } 680 681 return NULL; 682 } 683 684 /* Adjust rdev sectors */ 685 static void rs_set_rdev_sectors(struct raid_set *rs) 686 { 687 struct mddev *mddev = &rs->md; 688 struct md_rdev *rdev; 689 690 /* 691 * raid10 sets rdev->sector to the device size, which 692 * is unintended in case of out-of-place reshaping 693 */ 694 rdev_for_each(rdev, mddev) 695 if (!test_bit(Journal, &rdev->flags)) 696 rdev->sectors = mddev->dev_sectors; 697 } 698 699 /* 700 * Change bdev capacity of @rs in case of a disk add/remove reshape 701 */ 702 static void rs_set_capacity(struct raid_set *rs) 703 { 704 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table)); 705 706 set_capacity_and_notify(gendisk, rs->md.array_sectors); 707 } 708 709 /* 710 * Set the mddev properties in @rs to the current 711 * ones retrieved from the freshest superblock 712 */ 713 static void rs_set_cur(struct raid_set *rs) 714 { 715 struct mddev *mddev = &rs->md; 716 717 mddev->new_level = mddev->level; 718 mddev->new_layout = mddev->layout; 719 mddev->new_chunk_sectors = mddev->chunk_sectors; 720 } 721 722 /* 723 * Set the mddev properties in @rs to the new 724 * ones requested by the ctr 725 */ 726 static void rs_set_new(struct raid_set *rs) 727 { 728 struct mddev *mddev = &rs->md; 729 730 mddev->level = mddev->new_level; 731 mddev->layout = mddev->new_layout; 732 mddev->chunk_sectors = mddev->new_chunk_sectors; 733 mddev->raid_disks = rs->raid_disks; 734 mddev->delta_disks = 0; 735 } 736 737 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type, 738 unsigned int raid_devs) 739 { 740 unsigned int i; 741 struct raid_set *rs; 742 743 if (raid_devs <= raid_type->parity_devs) { 744 ti->error = "Insufficient number of devices"; 745 return ERR_PTR(-EINVAL); 746 } 747 748 rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL); 749 if (!rs) { 750 ti->error = "Cannot allocate raid context"; 751 return ERR_PTR(-ENOMEM); 752 } 753 754 if (mddev_init(&rs->md)) { 755 kfree(rs); 756 ti->error = "Cannot initialize raid context"; 757 return ERR_PTR(-ENOMEM); 758 } 759 760 rs->raid_disks = raid_devs; 761 rs->delta_disks = 0; 762 763 rs->ti = ti; 764 rs->raid_type = raid_type; 765 rs->stripe_cache_entries = 256; 766 rs->md.raid_disks = raid_devs; 767 rs->md.level = raid_type->level; 768 rs->md.new_level = rs->md.level; 769 rs->md.layout = raid_type->algorithm; 770 rs->md.new_layout = rs->md.layout; 771 rs->md.delta_disks = 0; 772 rs->md.recovery_cp = MaxSector; 773 774 for (i = 0; i < raid_devs; i++) 775 md_rdev_init(&rs->dev[i].rdev); 776 777 /* 778 * Remaining items to be initialized by further RAID params: 779 * rs->md.persistent 780 * rs->md.external 781 * rs->md.chunk_sectors 782 * rs->md.new_chunk_sectors 783 * rs->md.dev_sectors 784 */ 785 786 return rs; 787 } 788 789 /* Free all @rs allocations */ 790 static void raid_set_free(struct raid_set *rs) 791 { 792 int i; 793 794 if (rs->journal_dev.dev) { 795 md_rdev_clear(&rs->journal_dev.rdev); 796 dm_put_device(rs->ti, rs->journal_dev.dev); 797 } 798 799 for (i = 0; i < rs->raid_disks; i++) { 800 if (rs->dev[i].meta_dev) 801 dm_put_device(rs->ti, rs->dev[i].meta_dev); 802 md_rdev_clear(&rs->dev[i].rdev); 803 if (rs->dev[i].data_dev) 804 dm_put_device(rs->ti, rs->dev[i].data_dev); 805 } 806 807 mddev_destroy(&rs->md); 808 kfree(rs); 809 } 810 811 /* 812 * For every device we have two words 813 * <meta_dev>: meta device name or '-' if missing 814 * <data_dev>: data device name or '-' if missing 815 * 816 * The following are permitted: 817 * - - 818 * - <data_dev> 819 * <meta_dev> <data_dev> 820 * 821 * The following is not allowed: 822 * <meta_dev> - 823 * 824 * This code parses those words. If there is a failure, 825 * the caller must use raid_set_free() to unwind the operations. 826 */ 827 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as) 828 { 829 int i; 830 int rebuild = 0; 831 int metadata_available = 0; 832 int r = 0; 833 const char *arg; 834 835 /* Put off the number of raid devices argument to get to dev pairs */ 836 arg = dm_shift_arg(as); 837 if (!arg) 838 return -EINVAL; 839 840 for (i = 0; i < rs->raid_disks; i++) { 841 rs->dev[i].rdev.raid_disk = i; 842 843 rs->dev[i].meta_dev = NULL; 844 rs->dev[i].data_dev = NULL; 845 846 /* 847 * There are no offsets initially. 848 * Out of place reshape will set them accordingly. 849 */ 850 rs->dev[i].rdev.data_offset = 0; 851 rs->dev[i].rdev.new_data_offset = 0; 852 rs->dev[i].rdev.mddev = &rs->md; 853 854 arg = dm_shift_arg(as); 855 if (!arg) 856 return -EINVAL; 857 858 if (strcmp(arg, "-")) { 859 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 860 &rs->dev[i].meta_dev); 861 if (r) { 862 rs->ti->error = "RAID metadata device lookup failure"; 863 return r; 864 } 865 866 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL); 867 if (!rs->dev[i].rdev.sb_page) { 868 rs->ti->error = "Failed to allocate superblock page"; 869 return -ENOMEM; 870 } 871 } 872 873 arg = dm_shift_arg(as); 874 if (!arg) 875 return -EINVAL; 876 877 if (!strcmp(arg, "-")) { 878 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) && 879 (!rs->dev[i].rdev.recovery_offset)) { 880 rs->ti->error = "Drive designated for rebuild not specified"; 881 return -EINVAL; 882 } 883 884 if (rs->dev[i].meta_dev) { 885 rs->ti->error = "No data device supplied with metadata device"; 886 return -EINVAL; 887 } 888 889 continue; 890 } 891 892 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 893 &rs->dev[i].data_dev); 894 if (r) { 895 rs->ti->error = "RAID device lookup failure"; 896 return r; 897 } 898 899 if (rs->dev[i].meta_dev) { 900 metadata_available = 1; 901 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev; 902 } 903 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev; 904 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks); 905 if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) 906 rebuild++; 907 } 908 909 if (rs->journal_dev.dev) 910 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks); 911 912 if (metadata_available) { 913 rs->md.external = 0; 914 rs->md.persistent = 1; 915 rs->md.major_version = 2; 916 } else if (rebuild && !rs->md.recovery_cp) { 917 /* 918 * Without metadata, we will not be able to tell if the array 919 * is in-sync or not - we must assume it is not. Therefore, 920 * it is impossible to rebuild a drive. 921 * 922 * Even if there is metadata, the on-disk information may 923 * indicate that the array is not in-sync and it will then 924 * fail at that time. 925 * 926 * User could specify 'nosync' option if desperate. 927 */ 928 rs->ti->error = "Unable to rebuild drive while array is not in-sync"; 929 return -EINVAL; 930 } 931 932 return 0; 933 } 934 935 /* 936 * validate_region_size 937 * @rs 938 * @region_size: region size in sectors. If 0, pick a size (4MiB default). 939 * 940 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size'). 941 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap. 942 * 943 * Returns: 0 on success, -EINVAL on failure. 944 */ 945 static int validate_region_size(struct raid_set *rs, unsigned long region_size) 946 { 947 unsigned long min_region_size = rs->ti->len / (1 << 21); 948 949 if (rs_is_raid0(rs)) 950 return 0; 951 952 if (!region_size) { 953 /* 954 * Choose a reasonable default. All figures in sectors. 955 */ 956 if (min_region_size > (1 << 13)) { 957 /* If not a power of 2, make it the next power of 2 */ 958 region_size = roundup_pow_of_two(min_region_size); 959 DMINFO("Choosing default region size of %lu sectors", 960 region_size); 961 } else { 962 DMINFO("Choosing default region size of 4MiB"); 963 region_size = 1 << 13; /* sectors */ 964 } 965 } else { 966 /* 967 * Validate user-supplied value. 968 */ 969 if (region_size > rs->ti->len) { 970 rs->ti->error = "Supplied region size is too large"; 971 return -EINVAL; 972 } 973 974 if (region_size < min_region_size) { 975 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)", 976 region_size, min_region_size); 977 rs->ti->error = "Supplied region size is too small"; 978 return -EINVAL; 979 } 980 981 if (!is_power_of_2(region_size)) { 982 rs->ti->error = "Region size is not a power of 2"; 983 return -EINVAL; 984 } 985 986 if (region_size < rs->md.chunk_sectors) { 987 rs->ti->error = "Region size is smaller than the chunk size"; 988 return -EINVAL; 989 } 990 } 991 992 /* 993 * Convert sectors to bytes. 994 */ 995 rs->md.bitmap_info.chunksize = to_bytes(region_size); 996 997 return 0; 998 } 999 1000 /* 1001 * validate_raid_redundancy 1002 * @rs 1003 * 1004 * Determine if there are enough devices in the array that haven't 1005 * failed (or are being rebuilt) to form a usable array. 1006 * 1007 * Returns: 0 on success, -EINVAL on failure. 1008 */ 1009 static int validate_raid_redundancy(struct raid_set *rs) 1010 { 1011 unsigned int i, rebuild_cnt = 0; 1012 unsigned int rebuilds_per_group = 0, copies, raid_disks; 1013 unsigned int group_size, last_group_start; 1014 1015 for (i = 0; i < rs->raid_disks; i++) 1016 if (!test_bit(FirstUse, &rs->dev[i].rdev.flags) && 1017 ((!test_bit(In_sync, &rs->dev[i].rdev.flags) || 1018 !rs->dev[i].rdev.sb_page))) 1019 rebuild_cnt++; 1020 1021 switch (rs->md.level) { 1022 case 0: 1023 break; 1024 case 1: 1025 if (rebuild_cnt >= rs->md.raid_disks) 1026 goto too_many; 1027 break; 1028 case 4: 1029 case 5: 1030 case 6: 1031 if (rebuild_cnt > rs->raid_type->parity_devs) 1032 goto too_many; 1033 break; 1034 case 10: 1035 copies = raid10_md_layout_to_copies(rs->md.new_layout); 1036 if (copies < 2) { 1037 DMERR("Bogus raid10 data copies < 2!"); 1038 return -EINVAL; 1039 } 1040 1041 if (rebuild_cnt < copies) 1042 break; 1043 1044 /* 1045 * It is possible to have a higher rebuild count for RAID10, 1046 * as long as the failed devices occur in different mirror 1047 * groups (i.e. different stripes). 1048 * 1049 * When checking "near" format, make sure no adjacent devices 1050 * have failed beyond what can be handled. In addition to the 1051 * simple case where the number of devices is a multiple of the 1052 * number of copies, we must also handle cases where the number 1053 * of devices is not a multiple of the number of copies. 1054 * E.g. dev1 dev2 dev3 dev4 dev5 1055 * A A B B C 1056 * C D D E E 1057 */ 1058 raid_disks = min(rs->raid_disks, rs->md.raid_disks); 1059 if (__is_raid10_near(rs->md.new_layout)) { 1060 for (i = 0; i < raid_disks; i++) { 1061 if (!(i % copies)) 1062 rebuilds_per_group = 0; 1063 if ((!rs->dev[i].rdev.sb_page || 1064 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 1065 (++rebuilds_per_group >= copies)) 1066 goto too_many; 1067 } 1068 break; 1069 } 1070 1071 /* 1072 * When checking "far" and "offset" formats, we need to ensure 1073 * that the device that holds its copy is not also dead or 1074 * being rebuilt. (Note that "far" and "offset" formats only 1075 * support two copies right now. These formats also only ever 1076 * use the 'use_far_sets' variant.) 1077 * 1078 * This check is somewhat complicated by the need to account 1079 * for arrays that are not a multiple of (far) copies. This 1080 * results in the need to treat the last (potentially larger) 1081 * set differently. 1082 */ 1083 group_size = (raid_disks / copies); 1084 last_group_start = (raid_disks / group_size) - 1; 1085 last_group_start *= group_size; 1086 for (i = 0; i < raid_disks; i++) { 1087 if (!(i % copies) && !(i > last_group_start)) 1088 rebuilds_per_group = 0; 1089 if ((!rs->dev[i].rdev.sb_page || 1090 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 1091 (++rebuilds_per_group >= copies)) 1092 goto too_many; 1093 } 1094 break; 1095 default: 1096 if (rebuild_cnt) 1097 return -EINVAL; 1098 } 1099 1100 return 0; 1101 1102 too_many: 1103 return -EINVAL; 1104 } 1105 1106 /* 1107 * Possible arguments are... 1108 * <chunk_size> [optional_args] 1109 * 1110 * Argument definitions 1111 * <chunk_size> The number of sectors per disk that 1112 * will form the "stripe" 1113 * [[no]sync] Force or prevent recovery of the 1114 * entire array 1115 * [rebuild <idx>] Rebuild the drive indicated by the index 1116 * [daemon_sleep <ms>] Time between bitmap daemon work to 1117 * clear bits 1118 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization 1119 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization 1120 * [write_mostly <idx>] Indicate a write mostly drive via index 1121 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm) 1122 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs 1123 * [region_size <sectors>] Defines granularity of bitmap 1124 * [journal_dev <dev>] raid4/5/6 journaling deviice 1125 * (i.e. write hole closing log) 1126 * 1127 * RAID10-only options: 1128 * [raid10_copies <# copies>] Number of copies. (Default: 2) 1129 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near) 1130 */ 1131 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as, 1132 unsigned int num_raid_params) 1133 { 1134 int value, raid10_format = ALGORITHM_RAID10_DEFAULT; 1135 unsigned int raid10_copies = 2; 1136 unsigned int i, write_mostly = 0; 1137 unsigned int region_size = 0; 1138 sector_t max_io_len; 1139 const char *arg, *key; 1140 struct raid_dev *rd; 1141 struct raid_type *rt = rs->raid_type; 1142 1143 arg = dm_shift_arg(as); 1144 num_raid_params--; /* Account for chunk_size argument */ 1145 1146 if (kstrtoint(arg, 10, &value) < 0) { 1147 rs->ti->error = "Bad numerical argument given for chunk_size"; 1148 return -EINVAL; 1149 } 1150 1151 /* 1152 * First, parse the in-order required arguments 1153 * "chunk_size" is the only argument of this type. 1154 */ 1155 if (rt_is_raid1(rt)) { 1156 if (value) 1157 DMERR("Ignoring chunk size parameter for RAID 1"); 1158 value = 0; 1159 } else if (!is_power_of_2(value)) { 1160 rs->ti->error = "Chunk size must be a power of 2"; 1161 return -EINVAL; 1162 } else if (value < 8) { 1163 rs->ti->error = "Chunk size value is too small"; 1164 return -EINVAL; 1165 } 1166 1167 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value; 1168 1169 /* 1170 * We set each individual device as In_sync with a completed 1171 * 'recovery_offset'. If there has been a device failure or 1172 * replacement then one of the following cases applies: 1173 * 1174 * 1) User specifies 'rebuild'. 1175 * - Device is reset when param is read. 1176 * 2) A new device is supplied. 1177 * - No matching superblock found, resets device. 1178 * 3) Device failure was transient and returns on reload. 1179 * - Failure noticed, resets device for bitmap replay. 1180 * 4) Device hadn't completed recovery after previous failure. 1181 * - Superblock is read and overrides recovery_offset. 1182 * 1183 * What is found in the superblocks of the devices is always 1184 * authoritative, unless 'rebuild' or '[no]sync' was specified. 1185 */ 1186 for (i = 0; i < rs->raid_disks; i++) { 1187 set_bit(In_sync, &rs->dev[i].rdev.flags); 1188 rs->dev[i].rdev.recovery_offset = MaxSector; 1189 } 1190 1191 /* 1192 * Second, parse the unordered optional arguments 1193 */ 1194 for (i = 0; i < num_raid_params; i++) { 1195 key = dm_shift_arg(as); 1196 if (!key) { 1197 rs->ti->error = "Not enough raid parameters given"; 1198 return -EINVAL; 1199 } 1200 1201 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) { 1202 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 1203 rs->ti->error = "Only one 'nosync' argument allowed"; 1204 return -EINVAL; 1205 } 1206 continue; 1207 } 1208 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) { 1209 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) { 1210 rs->ti->error = "Only one 'sync' argument allowed"; 1211 return -EINVAL; 1212 } 1213 continue; 1214 } 1215 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) { 1216 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { 1217 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed"; 1218 return -EINVAL; 1219 } 1220 continue; 1221 } 1222 1223 arg = dm_shift_arg(as); 1224 i++; /* Account for the argument pairs */ 1225 if (!arg) { 1226 rs->ti->error = "Wrong number of raid parameters given"; 1227 return -EINVAL; 1228 } 1229 1230 /* 1231 * Parameters that take a string value are checked here. 1232 */ 1233 /* "raid10_format {near|offset|far} */ 1234 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) { 1235 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) { 1236 rs->ti->error = "Only one 'raid10_format' argument pair allowed"; 1237 return -EINVAL; 1238 } 1239 if (!rt_is_raid10(rt)) { 1240 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type"; 1241 return -EINVAL; 1242 } 1243 raid10_format = raid10_name_to_format(arg); 1244 if (raid10_format < 0) { 1245 rs->ti->error = "Invalid 'raid10_format' value given"; 1246 return raid10_format; 1247 } 1248 continue; 1249 } 1250 1251 /* "journal_dev <dev>" */ 1252 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) { 1253 int r; 1254 struct md_rdev *jdev; 1255 1256 if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 1257 rs->ti->error = "Only one raid4/5/6 set journaling device allowed"; 1258 return -EINVAL; 1259 } 1260 if (!rt_is_raid456(rt)) { 1261 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type"; 1262 return -EINVAL; 1263 } 1264 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 1265 &rs->journal_dev.dev); 1266 if (r) { 1267 rs->ti->error = "raid4/5/6 journal device lookup failure"; 1268 return r; 1269 } 1270 jdev = &rs->journal_dev.rdev; 1271 md_rdev_init(jdev); 1272 jdev->mddev = &rs->md; 1273 jdev->bdev = rs->journal_dev.dev->bdev; 1274 jdev->sectors = bdev_nr_sectors(jdev->bdev); 1275 if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) { 1276 rs->ti->error = "No space for raid4/5/6 journal"; 1277 return -ENOSPC; 1278 } 1279 rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 1280 set_bit(Journal, &jdev->flags); 1281 continue; 1282 } 1283 1284 /* "journal_mode <mode>" ("journal_dev" mandatory!) */ 1285 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) { 1286 int r; 1287 1288 if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 1289 rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'"; 1290 return -EINVAL; 1291 } 1292 if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) { 1293 rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed"; 1294 return -EINVAL; 1295 } 1296 r = dm_raid_journal_mode_to_md(arg); 1297 if (r < 0) { 1298 rs->ti->error = "Invalid 'journal_mode' argument"; 1299 return r; 1300 } 1301 rs->journal_dev.mode = r; 1302 continue; 1303 } 1304 1305 /* 1306 * Parameters with number values from here on. 1307 */ 1308 if (kstrtoint(arg, 10, &value) < 0) { 1309 rs->ti->error = "Bad numerical argument given in raid params"; 1310 return -EINVAL; 1311 } 1312 1313 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) { 1314 /* 1315 * "rebuild" is being passed in by userspace to provide 1316 * indexes of replaced devices and to set up additional 1317 * devices on raid level takeover. 1318 */ 1319 if (!__within_range(value, 0, rs->raid_disks - 1)) { 1320 rs->ti->error = "Invalid rebuild index given"; 1321 return -EINVAL; 1322 } 1323 1324 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) { 1325 rs->ti->error = "rebuild for this index already given"; 1326 return -EINVAL; 1327 } 1328 1329 rd = rs->dev + value; 1330 clear_bit(In_sync, &rd->rdev.flags); 1331 clear_bit(Faulty, &rd->rdev.flags); 1332 rd->rdev.recovery_offset = 0; 1333 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags); 1334 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) { 1335 if (!rt_is_raid1(rt)) { 1336 rs->ti->error = "write_mostly option is only valid for RAID1"; 1337 return -EINVAL; 1338 } 1339 1340 if (!__within_range(value, 0, rs->md.raid_disks - 1)) { 1341 rs->ti->error = "Invalid write_mostly index given"; 1342 return -EINVAL; 1343 } 1344 1345 write_mostly++; 1346 set_bit(WriteMostly, &rs->dev[value].rdev.flags); 1347 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags); 1348 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) { 1349 if (!rt_is_raid1(rt)) { 1350 rs->ti->error = "max_write_behind option is only valid for RAID1"; 1351 return -EINVAL; 1352 } 1353 1354 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) { 1355 rs->ti->error = "Only one max_write_behind argument pair allowed"; 1356 return -EINVAL; 1357 } 1358 1359 if (value < 0) { 1360 rs->ti->error = "Max write-behind limit out of range"; 1361 return -EINVAL; 1362 } 1363 1364 rs->md.bitmap_info.max_write_behind = value / 2; 1365 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) { 1366 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) { 1367 rs->ti->error = "Only one daemon_sleep argument pair allowed"; 1368 return -EINVAL; 1369 } 1370 if (value < 0) { 1371 rs->ti->error = "daemon sleep period out of range"; 1372 return -EINVAL; 1373 } 1374 rs->md.bitmap_info.daemon_sleep = value; 1375 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) { 1376 /* Userspace passes new data_offset after having extended the data image LV */ 1377 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { 1378 rs->ti->error = "Only one data_offset argument pair allowed"; 1379 return -EINVAL; 1380 } 1381 /* Ensure sensible data offset */ 1382 if (value < 0 || 1383 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) { 1384 rs->ti->error = "Bogus data_offset value"; 1385 return -EINVAL; 1386 } 1387 rs->data_offset = value; 1388 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) { 1389 /* Define the +/-# of disks to add to/remove from the given raid set */ 1390 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { 1391 rs->ti->error = "Only one delta_disks argument pair allowed"; 1392 return -EINVAL; 1393 } 1394 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */ 1395 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) { 1396 rs->ti->error = "Too many delta_disk requested"; 1397 return -EINVAL; 1398 } 1399 1400 rs->delta_disks = value; 1401 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) { 1402 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) { 1403 rs->ti->error = "Only one stripe_cache argument pair allowed"; 1404 return -EINVAL; 1405 } 1406 1407 if (!rt_is_raid456(rt)) { 1408 rs->ti->error = "Inappropriate argument: stripe_cache"; 1409 return -EINVAL; 1410 } 1411 1412 if (value < 0) { 1413 rs->ti->error = "Bogus stripe cache entries value"; 1414 return -EINVAL; 1415 } 1416 rs->stripe_cache_entries = value; 1417 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) { 1418 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) { 1419 rs->ti->error = "Only one min_recovery_rate argument pair allowed"; 1420 return -EINVAL; 1421 } 1422 1423 if (value < 0) { 1424 rs->ti->error = "min_recovery_rate out of range"; 1425 return -EINVAL; 1426 } 1427 rs->md.sync_speed_min = value; 1428 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) { 1429 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) { 1430 rs->ti->error = "Only one max_recovery_rate argument pair allowed"; 1431 return -EINVAL; 1432 } 1433 1434 if (value < 0) { 1435 rs->ti->error = "max_recovery_rate out of range"; 1436 return -EINVAL; 1437 } 1438 rs->md.sync_speed_max = value; 1439 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) { 1440 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) { 1441 rs->ti->error = "Only one region_size argument pair allowed"; 1442 return -EINVAL; 1443 } 1444 1445 region_size = value; 1446 rs->requested_bitmap_chunk_sectors = value; 1447 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) { 1448 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) { 1449 rs->ti->error = "Only one raid10_copies argument pair allowed"; 1450 return -EINVAL; 1451 } 1452 1453 if (!__within_range(value, 2, rs->md.raid_disks)) { 1454 rs->ti->error = "Bad value for 'raid10_copies'"; 1455 return -EINVAL; 1456 } 1457 1458 raid10_copies = value; 1459 } else { 1460 DMERR("Unable to parse RAID parameter: %s", key); 1461 rs->ti->error = "Unable to parse RAID parameter"; 1462 return -EINVAL; 1463 } 1464 } 1465 1466 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) && 1467 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 1468 rs->ti->error = "sync and nosync are mutually exclusive"; 1469 return -EINVAL; 1470 } 1471 1472 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && 1473 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) || 1474 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) { 1475 rs->ti->error = "sync/nosync and rebuild are mutually exclusive"; 1476 return -EINVAL; 1477 } 1478 1479 if (write_mostly >= rs->md.raid_disks) { 1480 rs->ti->error = "Can't set all raid1 devices to write_mostly"; 1481 return -EINVAL; 1482 } 1483 1484 if (rs->md.sync_speed_max && 1485 rs->md.sync_speed_min > rs->md.sync_speed_max) { 1486 rs->ti->error = "Bogus recovery rates"; 1487 return -EINVAL; 1488 } 1489 1490 if (validate_region_size(rs, region_size)) 1491 return -EINVAL; 1492 1493 if (rs->md.chunk_sectors) 1494 max_io_len = rs->md.chunk_sectors; 1495 else 1496 max_io_len = region_size; 1497 1498 if (dm_set_target_max_io_len(rs->ti, max_io_len)) 1499 return -EINVAL; 1500 1501 if (rt_is_raid10(rt)) { 1502 if (raid10_copies > rs->md.raid_disks) { 1503 rs->ti->error = "Not enough devices to satisfy specification"; 1504 return -EINVAL; 1505 } 1506 1507 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies); 1508 if (rs->md.new_layout < 0) { 1509 rs->ti->error = "Error getting raid10 format"; 1510 return rs->md.new_layout; 1511 } 1512 1513 rt = get_raid_type_by_ll(10, rs->md.new_layout); 1514 if (!rt) { 1515 rs->ti->error = "Failed to recognize new raid10 layout"; 1516 return -EINVAL; 1517 } 1518 1519 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT || 1520 rt->algorithm == ALGORITHM_RAID10_NEAR) && 1521 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { 1522 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible"; 1523 return -EINVAL; 1524 } 1525 } 1526 1527 rs->raid10_copies = raid10_copies; 1528 1529 /* Assume there are no metadata devices until the drives are parsed */ 1530 rs->md.persistent = 0; 1531 rs->md.external = 1; 1532 1533 /* Check, if any invalid ctr arguments have been passed in for the raid level */ 1534 return rs_check_for_valid_flags(rs); 1535 } 1536 1537 /* Set raid4/5/6 cache size */ 1538 static int rs_set_raid456_stripe_cache(struct raid_set *rs) 1539 { 1540 int r; 1541 struct r5conf *conf; 1542 struct mddev *mddev = &rs->md; 1543 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2; 1544 uint32_t nr_stripes = rs->stripe_cache_entries; 1545 1546 if (!rt_is_raid456(rs->raid_type)) { 1547 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size"; 1548 return -EINVAL; 1549 } 1550 1551 if (nr_stripes < min_stripes) { 1552 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size", 1553 nr_stripes, min_stripes); 1554 nr_stripes = min_stripes; 1555 } 1556 1557 conf = mddev->private; 1558 if (!conf) { 1559 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set"; 1560 return -EINVAL; 1561 } 1562 1563 /* Try setting number of stripes in raid456 stripe cache */ 1564 if (conf->min_nr_stripes != nr_stripes) { 1565 r = raid5_set_cache_size(mddev, nr_stripes); 1566 if (r) { 1567 rs->ti->error = "Failed to set raid4/5/6 stripe cache size"; 1568 return r; 1569 } 1570 1571 DMINFO("%u stripe cache entries", nr_stripes); 1572 } 1573 1574 return 0; 1575 } 1576 1577 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */ 1578 static unsigned int mddev_data_stripes(struct raid_set *rs) 1579 { 1580 return rs->md.raid_disks - rs->raid_type->parity_devs; 1581 } 1582 1583 /* Return # of data stripes of @rs (i.e. as of ctr) */ 1584 static unsigned int rs_data_stripes(struct raid_set *rs) 1585 { 1586 return rs->raid_disks - rs->raid_type->parity_devs; 1587 } 1588 1589 /* 1590 * Retrieve rdev->sectors from any valid raid device of @rs 1591 * to allow userpace to pass in arbitray "- -" device tupples. 1592 */ 1593 static sector_t __rdev_sectors(struct raid_set *rs) 1594 { 1595 int i; 1596 1597 for (i = 0; i < rs->raid_disks; i++) { 1598 struct md_rdev *rdev = &rs->dev[i].rdev; 1599 1600 if (!test_bit(Journal, &rdev->flags) && 1601 rdev->bdev && rdev->sectors) 1602 return rdev->sectors; 1603 } 1604 1605 return 0; 1606 } 1607 1608 /* Check that calculated dev_sectors fits all component devices. */ 1609 static int _check_data_dev_sectors(struct raid_set *rs) 1610 { 1611 sector_t ds = ~0; 1612 struct md_rdev *rdev; 1613 1614 rdev_for_each(rdev, &rs->md) 1615 if (!test_bit(Journal, &rdev->flags) && rdev->bdev) { 1616 ds = min(ds, bdev_nr_sectors(rdev->bdev)); 1617 if (ds < rs->md.dev_sectors) { 1618 rs->ti->error = "Component device(s) too small"; 1619 return -EINVAL; 1620 } 1621 } 1622 1623 return 0; 1624 } 1625 1626 /* Get reshape sectors from data_offsets or raid set */ 1627 static sector_t _get_reshape_sectors(struct raid_set *rs) 1628 { 1629 struct md_rdev *rdev; 1630 sector_t reshape_sectors = 0; 1631 1632 rdev_for_each(rdev, &rs->md) 1633 if (!test_bit(Journal, &rdev->flags)) { 1634 reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ? 1635 rdev->data_offset - rdev->new_data_offset : 1636 rdev->new_data_offset - rdev->data_offset; 1637 break; 1638 } 1639 1640 return max(reshape_sectors, (sector_t) rs->data_offset); 1641 } 1642 1643 /* Calculate the sectors per device and per array used for @rs */ 1644 static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev) 1645 { 1646 int delta_disks; 1647 unsigned int data_stripes; 1648 sector_t array_sectors = sectors, dev_sectors = sectors; 1649 struct mddev *mddev = &rs->md; 1650 1651 if (use_mddev) { 1652 delta_disks = mddev->delta_disks; 1653 data_stripes = mddev_data_stripes(rs); 1654 } else { 1655 delta_disks = rs->delta_disks; 1656 data_stripes = rs_data_stripes(rs); 1657 } 1658 1659 /* Special raid1 case w/o delta_disks support (yet) */ 1660 if (rt_is_raid1(rs->raid_type)) 1661 ; 1662 else if (rt_is_raid10(rs->raid_type)) { 1663 if (rs->raid10_copies < 2 || 1664 delta_disks < 0) { 1665 rs->ti->error = "Bogus raid10 data copies or delta disks"; 1666 return -EINVAL; 1667 } 1668 1669 dev_sectors *= rs->raid10_copies; 1670 if (sector_div(dev_sectors, data_stripes)) 1671 goto bad; 1672 1673 array_sectors = (data_stripes + delta_disks) * (dev_sectors - _get_reshape_sectors(rs)); 1674 if (sector_div(array_sectors, rs->raid10_copies)) 1675 goto bad; 1676 1677 } else if (sector_div(dev_sectors, data_stripes)) 1678 goto bad; 1679 1680 else 1681 /* Striped layouts */ 1682 array_sectors = (data_stripes + delta_disks) * (dev_sectors - _get_reshape_sectors(rs)); 1683 1684 mddev->array_sectors = array_sectors; 1685 mddev->dev_sectors = dev_sectors; 1686 rs_set_rdev_sectors(rs); 1687 1688 return _check_data_dev_sectors(rs); 1689 bad: 1690 rs->ti->error = "Target length not divisible by number of data devices"; 1691 return -EINVAL; 1692 } 1693 1694 /* Setup recovery on @rs */ 1695 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors) 1696 { 1697 /* raid0 does not recover */ 1698 if (rs_is_raid0(rs)) 1699 rs->md.recovery_cp = MaxSector; 1700 /* 1701 * A raid6 set has to be recovered either 1702 * completely or for the grown part to 1703 * ensure proper parity and Q-Syndrome 1704 */ 1705 else if (rs_is_raid6(rs)) 1706 rs->md.recovery_cp = dev_sectors; 1707 /* 1708 * Other raid set types may skip recovery 1709 * depending on the 'nosync' flag. 1710 */ 1711 else 1712 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags) 1713 ? MaxSector : dev_sectors; 1714 } 1715 1716 static void do_table_event(struct work_struct *ws) 1717 { 1718 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work); 1719 1720 smp_rmb(); /* Make sure we access most actual mddev properties */ 1721 1722 /* Only grow size resulting from added stripe(s) after reshape ended. */ 1723 if (!rs_is_reshaping(rs) && 1724 rs->array_sectors > rs->md.array_sectors && 1725 !rs->md.delta_disks && 1726 rs->md.raid_disks == rs->raid_disks) { 1727 /* The raid10 personality doesn't provide proper device sizes -> correct. */ 1728 if (rs_is_raid10(rs)) 1729 rs_set_rdev_sectors(rs); 1730 1731 rs->md.array_sectors = rs->array_sectors; 1732 rs_set_capacity(rs); 1733 } 1734 1735 dm_table_event(rs->ti->table); 1736 } 1737 1738 /* 1739 * Make sure a valid takover (level switch) is being requested on @rs 1740 * 1741 * Conversions of raid sets from one MD personality to another 1742 * have to conform to restrictions which are enforced here. 1743 */ 1744 static int rs_check_takeover(struct raid_set *rs) 1745 { 1746 struct mddev *mddev = &rs->md; 1747 unsigned int near_copies; 1748 1749 if (rs->md.degraded) { 1750 rs->ti->error = "Can't takeover degraded raid set"; 1751 return -EPERM; 1752 } 1753 1754 if (rs_is_reshaping(rs)) { 1755 rs->ti->error = "Can't takeover reshaping raid set"; 1756 return -EPERM; 1757 } 1758 1759 switch (mddev->level) { 1760 case 0: 1761 /* raid0 -> raid1/5 with one disk */ 1762 if ((mddev->new_level == 1 || mddev->new_level == 5) && 1763 mddev->raid_disks == 1) 1764 return 0; 1765 1766 /* raid0 -> raid10 */ 1767 if (mddev->new_level == 10 && 1768 !(rs->raid_disks % mddev->raid_disks)) 1769 return 0; 1770 1771 /* raid0 with multiple disks -> raid4/5/6 */ 1772 if (__within_range(mddev->new_level, 4, 6) && 1773 mddev->new_layout == ALGORITHM_PARITY_N && 1774 mddev->raid_disks > 1) 1775 return 0; 1776 1777 break; 1778 1779 case 10: 1780 /* Can't takeover raid10_offset! */ 1781 if (__is_raid10_offset(mddev->layout)) 1782 break; 1783 1784 near_copies = __raid10_near_copies(mddev->layout); 1785 1786 /* raid10* -> raid0 */ 1787 if (mddev->new_level == 0) { 1788 /* Can takeover raid10_near with raid disks divisable by data copies! */ 1789 if (near_copies > 1 && 1790 !(mddev->raid_disks % near_copies)) { 1791 mddev->raid_disks /= near_copies; 1792 mddev->delta_disks = mddev->raid_disks; 1793 return 0; 1794 } 1795 1796 /* Can takeover raid10_far */ 1797 if (near_copies == 1 && 1798 __raid10_far_copies(mddev->layout) > 1) 1799 return 0; 1800 1801 break; 1802 } 1803 1804 /* raid10_{near,far} -> raid1 */ 1805 if (mddev->new_level == 1 && 1806 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks) 1807 return 0; 1808 1809 /* raid10_{near,far} with 2 disks -> raid4/5 */ 1810 if (__within_range(mddev->new_level, 4, 5) && 1811 mddev->raid_disks == 2) 1812 return 0; 1813 break; 1814 1815 case 1: 1816 /* raid1 with 2 disks -> raid4/5 */ 1817 if (__within_range(mddev->new_level, 4, 5) && 1818 mddev->raid_disks == 2) { 1819 mddev->degraded = 1; 1820 return 0; 1821 } 1822 1823 /* raid1 -> raid0 */ 1824 if (mddev->new_level == 0 && 1825 mddev->raid_disks == 1) 1826 return 0; 1827 1828 /* raid1 -> raid10 */ 1829 if (mddev->new_level == 10) 1830 return 0; 1831 break; 1832 1833 case 4: 1834 /* raid4 -> raid0 */ 1835 if (mddev->new_level == 0) 1836 return 0; 1837 1838 /* raid4 -> raid1/5 with 2 disks */ 1839 if ((mddev->new_level == 1 || mddev->new_level == 5) && 1840 mddev->raid_disks == 2) 1841 return 0; 1842 1843 /* raid4 -> raid5/6 with parity N */ 1844 if (__within_range(mddev->new_level, 5, 6) && 1845 mddev->layout == ALGORITHM_PARITY_N) 1846 return 0; 1847 break; 1848 1849 case 5: 1850 /* raid5 with parity N -> raid0 */ 1851 if (mddev->new_level == 0 && 1852 mddev->layout == ALGORITHM_PARITY_N) 1853 return 0; 1854 1855 /* raid5 with parity N -> raid4 */ 1856 if (mddev->new_level == 4 && 1857 mddev->layout == ALGORITHM_PARITY_N) 1858 return 0; 1859 1860 /* raid5 with 2 disks -> raid1/4/10 */ 1861 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) && 1862 mddev->raid_disks == 2) 1863 return 0; 1864 1865 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */ 1866 if (mddev->new_level == 6 && 1867 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || 1868 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6))) 1869 return 0; 1870 break; 1871 1872 case 6: 1873 /* raid6 with parity N -> raid0 */ 1874 if (mddev->new_level == 0 && 1875 mddev->layout == ALGORITHM_PARITY_N) 1876 return 0; 1877 1878 /* raid6 with parity N -> raid4 */ 1879 if (mddev->new_level == 4 && 1880 mddev->layout == ALGORITHM_PARITY_N) 1881 return 0; 1882 1883 /* raid6_*_n with Q-Syndrome N -> raid5_* */ 1884 if (mddev->new_level == 5 && 1885 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || 1886 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC))) 1887 return 0; 1888 break; 1889 1890 default: 1891 break; 1892 } 1893 1894 rs->ti->error = "takeover not possible"; 1895 return -EINVAL; 1896 } 1897 1898 /* True if @rs requested to be taken over */ 1899 static bool rs_takeover_requested(struct raid_set *rs) 1900 { 1901 return rs->md.new_level != rs->md.level; 1902 } 1903 1904 /* True if layout is set to reshape. */ 1905 static bool rs_is_layout_change(struct raid_set *rs, bool use_mddev) 1906 { 1907 return (use_mddev ? rs->md.delta_disks : rs->delta_disks) || 1908 rs->md.new_layout != rs->md.layout || 1909 rs->md.new_chunk_sectors != rs->md.chunk_sectors; 1910 } 1911 1912 /* True if @rs is requested to reshape by ctr */ 1913 static bool rs_reshape_requested(struct raid_set *rs) 1914 { 1915 bool change; 1916 struct mddev *mddev = &rs->md; 1917 1918 if (rs_takeover_requested(rs)) 1919 return false; 1920 1921 if (rs_is_raid0(rs)) 1922 return false; 1923 1924 change = rs_is_layout_change(rs, false); 1925 1926 /* Historical case to support raid1 reshape without delta disks */ 1927 if (rs_is_raid1(rs)) { 1928 if (rs->delta_disks) 1929 return !!rs->delta_disks; 1930 1931 return !change && 1932 mddev->raid_disks != rs->raid_disks; 1933 } 1934 1935 if (rs_is_raid10(rs)) 1936 return change && 1937 !__is_raid10_far(mddev->new_layout) && 1938 rs->delta_disks >= 0; 1939 1940 return change; 1941 } 1942 1943 /* Features */ 1944 #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */ 1945 1946 /* State flags for sb->flags */ 1947 #define SB_FLAG_RESHAPE_ACTIVE 0x1 1948 #define SB_FLAG_RESHAPE_BACKWARDS 0x2 1949 1950 /* 1951 * This structure is never routinely used by userspace, unlike md superblocks. 1952 * Devices with this superblock should only ever be accessed via device-mapper. 1953 */ 1954 #define DM_RAID_MAGIC 0x64526D44 1955 struct dm_raid_superblock { 1956 __le32 magic; /* "DmRd" */ 1957 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */ 1958 1959 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */ 1960 __le32 array_position; /* The position of this drive in the raid set */ 1961 1962 __le64 events; /* Incremented by md when superblock updated */ 1963 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */ 1964 /* indicate failures (see extension below) */ 1965 1966 /* 1967 * This offset tracks the progress of the repair or replacement of 1968 * an individual drive. 1969 */ 1970 __le64 disk_recovery_offset; 1971 1972 /* 1973 * This offset tracks the progress of the initial raid set 1974 * synchronisation/parity calculation. 1975 */ 1976 __le64 array_resync_offset; 1977 1978 /* 1979 * raid characteristics 1980 */ 1981 __le32 level; 1982 __le32 layout; 1983 __le32 stripe_sectors; 1984 1985 /******************************************************************** 1986 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! 1987 * 1988 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist 1989 */ 1990 1991 __le32 flags; /* Flags defining array states for reshaping */ 1992 1993 /* 1994 * This offset tracks the progress of a raid 1995 * set reshape in order to be able to restart it 1996 */ 1997 __le64 reshape_position; 1998 1999 /* 2000 * These define the properties of the array in case of an interrupted reshape 2001 */ 2002 __le32 new_level; 2003 __le32 new_layout; 2004 __le32 new_stripe_sectors; 2005 __le32 delta_disks; 2006 2007 __le64 array_sectors; /* Array size in sectors */ 2008 2009 /* 2010 * Sector offsets to data on devices (reshaping). 2011 * Needed to support out of place reshaping, thus 2012 * not writing over any stripes whilst converting 2013 * them from old to new layout 2014 */ 2015 __le64 data_offset; 2016 __le64 new_data_offset; 2017 2018 __le64 sectors; /* Used device size in sectors */ 2019 2020 /* 2021 * Additional Bit field of devices indicating failures to support 2022 * up to 256 devices with the 1.9.0 on-disk metadata format 2023 */ 2024 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1]; 2025 2026 __le32 incompat_features; /* Used to indicate any incompatible features */ 2027 2028 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */ 2029 } __packed; 2030 2031 /* 2032 * Check for reshape constraints on raid set @rs: 2033 * 2034 * - reshape function non-existent 2035 * - degraded set 2036 * - ongoing recovery 2037 * - ongoing reshape 2038 * 2039 * Returns 0 if none or -EPERM if given constraint 2040 * and error message reference in @errmsg 2041 */ 2042 static int rs_check_reshape(struct raid_set *rs) 2043 { 2044 struct mddev *mddev = &rs->md; 2045 2046 if (!mddev->pers || !mddev->pers->check_reshape) 2047 rs->ti->error = "Reshape not supported"; 2048 else if (mddev->degraded) 2049 rs->ti->error = "Can't reshape degraded raid set"; 2050 else if (rs_is_recovering(rs)) 2051 rs->ti->error = "Convert request on recovering raid set prohibited"; 2052 else if (rs_is_reshaping(rs)) 2053 rs->ti->error = "raid set already reshaping!"; 2054 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs))) 2055 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10"; 2056 else 2057 return 0; 2058 2059 return -EPERM; 2060 } 2061 2062 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload) 2063 { 2064 BUG_ON(!rdev->sb_page); 2065 2066 if (rdev->sb_loaded && !force_reload) 2067 return 0; 2068 2069 rdev->sb_loaded = 0; 2070 2071 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) { 2072 DMERR("Failed to read superblock of device at position %d", 2073 rdev->raid_disk); 2074 md_error(rdev->mddev, rdev); 2075 set_bit(Faulty, &rdev->flags); 2076 return -EIO; 2077 } 2078 2079 rdev->sb_loaded = 1; 2080 2081 return 0; 2082 } 2083 2084 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) 2085 { 2086 failed_devices[0] = le64_to_cpu(sb->failed_devices); 2087 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices)); 2088 2089 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { 2090 int i = ARRAY_SIZE(sb->extended_failed_devices); 2091 2092 while (i--) 2093 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]); 2094 } 2095 } 2096 2097 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) 2098 { 2099 int i = ARRAY_SIZE(sb->extended_failed_devices); 2100 2101 sb->failed_devices = cpu_to_le64(failed_devices[0]); 2102 while (i--) 2103 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]); 2104 } 2105 2106 /* 2107 * Synchronize the superblock members with the raid set properties 2108 * 2109 * All superblock data is little endian. 2110 */ 2111 static void super_sync(struct mddev *mddev, struct md_rdev *rdev) 2112 { 2113 bool update_failed_devices = false; 2114 unsigned int i; 2115 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 2116 struct dm_raid_superblock *sb; 2117 struct raid_set *rs = container_of(mddev, struct raid_set, md); 2118 2119 /* No metadata device, no superblock */ 2120 if (!rdev->meta_bdev) 2121 return; 2122 2123 BUG_ON(!rdev->sb_page); 2124 2125 sb = page_address(rdev->sb_page); 2126 2127 sb_retrieve_failed_devices(sb, failed_devices); 2128 2129 for (i = 0; i < rs->raid_disks; i++) 2130 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) { 2131 update_failed_devices = true; 2132 set_bit(i, (void *) failed_devices); 2133 } 2134 2135 if (update_failed_devices) 2136 sb_update_failed_devices(sb, failed_devices); 2137 2138 sb->magic = cpu_to_le32(DM_RAID_MAGIC); 2139 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); 2140 2141 sb->num_devices = cpu_to_le32(mddev->raid_disks); 2142 sb->array_position = cpu_to_le32(rdev->raid_disk); 2143 2144 sb->events = cpu_to_le64(mddev->events); 2145 2146 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset); 2147 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp); 2148 2149 sb->level = cpu_to_le32(mddev->level); 2150 sb->layout = cpu_to_le32(mddev->layout); 2151 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors); 2152 2153 /******************************************************************** 2154 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! 2155 * 2156 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist 2157 */ 2158 sb->new_level = cpu_to_le32(mddev->new_level); 2159 sb->new_layout = cpu_to_le32(mddev->new_layout); 2160 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors); 2161 2162 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2163 2164 smp_rmb(); /* Make sure we access most recent reshape position */ 2165 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2166 if (le64_to_cpu(sb->reshape_position) != MaxSector) { 2167 /* Flag ongoing reshape */ 2168 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE); 2169 2170 if (mddev->delta_disks < 0 || mddev->reshape_backwards) 2171 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS); 2172 } else { 2173 /* Clear reshape flags */ 2174 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS)); 2175 } 2176 2177 sb->array_sectors = cpu_to_le64(mddev->array_sectors); 2178 sb->data_offset = cpu_to_le64(rdev->data_offset); 2179 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset); 2180 sb->sectors = cpu_to_le64(rdev->sectors); 2181 sb->incompat_features = cpu_to_le32(0); 2182 2183 /* Zero out the rest of the payload after the size of the superblock */ 2184 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb)); 2185 } 2186 2187 /* 2188 * super_load 2189 * 2190 * This function creates a superblock if one is not found on the device 2191 * and will decide which superblock to use if there's a choice. 2192 * 2193 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise 2194 */ 2195 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev) 2196 { 2197 int r; 2198 struct dm_raid_superblock *sb; 2199 struct dm_raid_superblock *refsb; 2200 uint64_t events_sb, events_refsb; 2201 2202 r = read_disk_sb(rdev, rdev->sb_size, false); 2203 if (r) 2204 return r; 2205 2206 sb = page_address(rdev->sb_page); 2207 2208 /* 2209 * Two cases that we want to write new superblocks and rebuild: 2210 * 1) New device (no matching magic number) 2211 * 2) Device specified for rebuild (!In_sync w/ offset == 0) 2212 */ 2213 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) || 2214 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) { 2215 super_sync(rdev->mddev, rdev); 2216 2217 set_bit(FirstUse, &rdev->flags); 2218 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); 2219 2220 /* Force writing of superblocks to disk */ 2221 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags); 2222 2223 /* Any superblock is better than none, choose that if given */ 2224 return refdev ? 0 : 1; 2225 } 2226 2227 if (!refdev) 2228 return 1; 2229 2230 events_sb = le64_to_cpu(sb->events); 2231 2232 refsb = page_address(refdev->sb_page); 2233 events_refsb = le64_to_cpu(refsb->events); 2234 2235 return (events_sb > events_refsb) ? 1 : 0; 2236 } 2237 2238 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev) 2239 { 2240 int role; 2241 struct mddev *mddev = &rs->md; 2242 uint64_t events_sb; 2243 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 2244 struct dm_raid_superblock *sb; 2245 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0; 2246 struct md_rdev *r; 2247 struct dm_raid_superblock *sb2; 2248 2249 sb = page_address(rdev->sb_page); 2250 events_sb = le64_to_cpu(sb->events); 2251 2252 /* 2253 * Initialise to 1 if this is a new superblock. 2254 */ 2255 mddev->events = events_sb ? : 1; 2256 2257 mddev->reshape_position = MaxSector; 2258 2259 mddev->raid_disks = le32_to_cpu(sb->num_devices); 2260 mddev->level = le32_to_cpu(sb->level); 2261 mddev->layout = le32_to_cpu(sb->layout); 2262 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors); 2263 2264 /* 2265 * Reshaping is supported, e.g. reshape_position is valid 2266 * in superblock and superblock content is authoritative. 2267 */ 2268 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { 2269 /* Superblock is authoritative wrt given raid set layout! */ 2270 mddev->new_level = le32_to_cpu(sb->new_level); 2271 mddev->new_layout = le32_to_cpu(sb->new_layout); 2272 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors); 2273 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 2274 mddev->array_sectors = le64_to_cpu(sb->array_sectors); 2275 2276 /* raid was reshaping and got interrupted */ 2277 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) { 2278 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { 2279 DMERR("Reshape requested but raid set is still reshaping"); 2280 return -EINVAL; 2281 } 2282 2283 if (mddev->delta_disks < 0 || 2284 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS))) 2285 mddev->reshape_backwards = 1; 2286 else 2287 mddev->reshape_backwards = 0; 2288 2289 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 2290 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout); 2291 } 2292 2293 } else { 2294 /* 2295 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata 2296 */ 2297 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout); 2298 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 2299 2300 if (rs_takeover_requested(rs)) { 2301 if (rt_cur && rt_new) 2302 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)", 2303 rt_cur->name, rt_new->name); 2304 else 2305 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)"); 2306 return -EINVAL; 2307 } else if (rs_reshape_requested(rs)) { 2308 DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)"); 2309 if (mddev->layout != mddev->new_layout) { 2310 if (rt_cur && rt_new) 2311 DMERR(" current layout %s vs new layout %s", 2312 rt_cur->name, rt_new->name); 2313 else 2314 DMERR(" current layout 0x%X vs new layout 0x%X", 2315 le32_to_cpu(sb->layout), mddev->new_layout); 2316 } 2317 if (mddev->chunk_sectors != mddev->new_chunk_sectors) 2318 DMERR(" current stripe sectors %u vs new stripe sectors %u", 2319 mddev->chunk_sectors, mddev->new_chunk_sectors); 2320 if (rs->delta_disks) 2321 DMERR(" current %u disks vs new %u disks", 2322 mddev->raid_disks, mddev->raid_disks + rs->delta_disks); 2323 if (rs_is_raid10(rs)) { 2324 DMERR(" Old layout: %s w/ %u copies", 2325 raid10_md_layout_to_format(mddev->layout), 2326 raid10_md_layout_to_copies(mddev->layout)); 2327 DMERR(" New layout: %s w/ %u copies", 2328 raid10_md_layout_to_format(mddev->new_layout), 2329 raid10_md_layout_to_copies(mddev->new_layout)); 2330 } 2331 return -EINVAL; 2332 } 2333 2334 DMINFO("Discovered old metadata format; upgrading to extended metadata format"); 2335 } 2336 2337 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) 2338 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset); 2339 2340 /* 2341 * During load, we set FirstUse if a new superblock was written. 2342 * There are two reasons we might not have a superblock: 2343 * 1) The raid set is brand new - in which case, all of the 2344 * devices must have their In_sync bit set. Also, 2345 * recovery_cp must be 0, unless forced. 2346 * 2) This is a new device being added to an old raid set 2347 * and the new device needs to be rebuilt - in which 2348 * case the In_sync bit will /not/ be set and 2349 * recovery_cp must be MaxSector. 2350 * 3) This is/are a new device(s) being added to an old 2351 * raid set during takeover to a higher raid level 2352 * to provide capacity for redundancy or during reshape 2353 * to add capacity to grow the raid set. 2354 */ 2355 rdev_for_each(r, mddev) { 2356 if (test_bit(Journal, &rdev->flags)) 2357 continue; 2358 2359 if (test_bit(FirstUse, &r->flags)) 2360 new_devs++; 2361 2362 if (!test_bit(In_sync, &r->flags)) { 2363 DMINFO("Device %d specified for rebuild; clearing superblock", 2364 r->raid_disk); 2365 rebuilds++; 2366 2367 if (test_bit(FirstUse, &r->flags)) 2368 rebuild_and_new++; 2369 } 2370 } 2371 2372 if (new_devs == rs->raid_disks || !rebuilds) { 2373 /* Replace a broken device */ 2374 if (new_devs == rs->raid_disks) { 2375 DMINFO("Superblocks created for new raid set"); 2376 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2377 } else if (new_devs != rebuilds && 2378 new_devs != rs->delta_disks) { 2379 DMERR("New device injected into existing raid set without " 2380 "'delta_disks' or 'rebuild' parameter specified"); 2381 return -EINVAL; 2382 } 2383 } else if (new_devs && new_devs != rebuilds) { 2384 DMERR("%u 'rebuild' devices cannot be injected into" 2385 " a raid set with %u other first-time devices", 2386 rebuilds, new_devs); 2387 return -EINVAL; 2388 } else if (rebuilds) { 2389 if (rebuild_and_new && rebuilds != rebuild_and_new) { 2390 DMERR("new device%s provided without 'rebuild'", 2391 new_devs > 1 ? "s" : ""); 2392 return -EINVAL; 2393 } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) { 2394 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)", 2395 (unsigned long long) mddev->recovery_cp); 2396 return -EINVAL; 2397 } else if (rs_is_reshaping(rs)) { 2398 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)", 2399 (unsigned long long) mddev->reshape_position); 2400 return -EINVAL; 2401 } 2402 } 2403 2404 /* 2405 * Now we set the Faulty bit for those devices that are 2406 * recorded in the superblock as failed. 2407 */ 2408 sb_retrieve_failed_devices(sb, failed_devices); 2409 rdev_for_each(r, mddev) { 2410 if (test_bit(Journal, &rdev->flags) || 2411 !r->sb_page) 2412 continue; 2413 sb2 = page_address(r->sb_page); 2414 sb2->failed_devices = 0; 2415 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices)); 2416 2417 /* 2418 * Check for any device re-ordering. 2419 */ 2420 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) { 2421 role = le32_to_cpu(sb2->array_position); 2422 if (role < 0) 2423 continue; 2424 2425 if (role != r->raid_disk) { 2426 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) { 2427 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) || 2428 rs->raid_disks % rs->raid10_copies) { 2429 rs->ti->error = 2430 "Cannot change raid10 near set to odd # of devices!"; 2431 return -EINVAL; 2432 } 2433 2434 sb2->array_position = cpu_to_le32(r->raid_disk); 2435 2436 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) && 2437 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) && 2438 !rt_is_raid1(rs->raid_type)) { 2439 rs->ti->error = "Cannot change device positions in raid set"; 2440 return -EINVAL; 2441 } 2442 2443 DMINFO("raid device #%d now at position #%d", role, r->raid_disk); 2444 } 2445 2446 /* 2447 * Partial recovery is performed on 2448 * returning failed devices. 2449 */ 2450 if (test_bit(role, (void *) failed_devices)) 2451 set_bit(Faulty, &r->flags); 2452 } 2453 } 2454 2455 return 0; 2456 } 2457 2458 static int super_validate(struct raid_set *rs, struct md_rdev *rdev) 2459 { 2460 struct mddev *mddev = &rs->md; 2461 struct dm_raid_superblock *sb; 2462 2463 if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0) 2464 return 0; 2465 2466 sb = page_address(rdev->sb_page); 2467 2468 /* 2469 * If mddev->events is not set, we know we have not yet initialized 2470 * the array. 2471 */ 2472 if (!mddev->events && super_init_validation(rs, rdev)) 2473 return -EINVAL; 2474 2475 if (le32_to_cpu(sb->compat_features) && 2476 le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) { 2477 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags"; 2478 return -EINVAL; 2479 } 2480 2481 if (sb->incompat_features) { 2482 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet"; 2483 return -EINVAL; 2484 } 2485 2486 /* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */ 2487 mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096); 2488 mddev->bitmap_info.default_offset = mddev->bitmap_info.offset; 2489 2490 if (!test_and_clear_bit(FirstUse, &rdev->flags)) { 2491 /* 2492 * Retrieve rdev size stored in superblock to be prepared for shrink. 2493 * Check extended superblock members are present otherwise the size 2494 * will not be set! 2495 */ 2496 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) 2497 rdev->sectors = le64_to_cpu(sb->sectors); 2498 2499 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset); 2500 if (rdev->recovery_offset == MaxSector) 2501 set_bit(In_sync, &rdev->flags); 2502 /* 2503 * If no reshape in progress -> we're recovering single 2504 * disk(s) and have to set the device(s) to out-of-sync 2505 */ 2506 else if (!rs_is_reshaping(rs)) 2507 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */ 2508 } 2509 2510 /* 2511 * If a device comes back, set it as not In_sync and no longer faulty. 2512 */ 2513 if (test_and_clear_bit(Faulty, &rdev->flags)) { 2514 rdev->recovery_offset = 0; 2515 clear_bit(In_sync, &rdev->flags); 2516 rdev->saved_raid_disk = rdev->raid_disk; 2517 } 2518 2519 /* Reshape support -> restore respective data offsets */ 2520 rdev->data_offset = le64_to_cpu(sb->data_offset); 2521 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset); 2522 2523 return 0; 2524 } 2525 2526 /* 2527 * Analyse superblocks and select the freshest. 2528 */ 2529 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs) 2530 { 2531 int r; 2532 struct md_rdev *rdev, *freshest; 2533 struct mddev *mddev = &rs->md; 2534 2535 freshest = NULL; 2536 rdev_for_each(rdev, mddev) { 2537 if (test_bit(Journal, &rdev->flags)) 2538 continue; 2539 2540 if (!rdev->meta_bdev) 2541 continue; 2542 2543 /* Set superblock offset/size for metadata device. */ 2544 rdev->sb_start = 0; 2545 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev); 2546 if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) { 2547 DMERR("superblock size of a logical block is no longer valid"); 2548 return -EINVAL; 2549 } 2550 2551 /* 2552 * Skipping super_load due to CTR_FLAG_SYNC will cause 2553 * the array to undergo initialization again as 2554 * though it were new. This is the intended effect 2555 * of the "sync" directive. 2556 * 2557 * With reshaping capability added, we must ensure that 2558 * the "sync" directive is disallowed during the reshape. 2559 */ 2560 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 2561 continue; 2562 2563 r = super_load(rdev, freshest); 2564 2565 switch (r) { 2566 case 1: 2567 freshest = rdev; 2568 break; 2569 case 0: 2570 break; 2571 default: 2572 /* This is a failure to read the superblock from the metadata device. */ 2573 /* 2574 * We have to keep any raid0 data/metadata device pairs or 2575 * the MD raid0 personality will fail to start the array. 2576 */ 2577 if (rs_is_raid0(rs)) 2578 continue; 2579 2580 /* 2581 * We keep the dm_devs to be able to emit the device tuple 2582 * properly on the table line in raid_status() (rather than 2583 * mistakenly acting as if '- -' got passed into the constructor). 2584 * 2585 * The rdev has to stay on the same_set list to allow for 2586 * the attempt to restore faulty devices on second resume. 2587 */ 2588 rdev->raid_disk = rdev->saved_raid_disk = -1; 2589 break; 2590 } 2591 } 2592 2593 if (!freshest) 2594 return 0; 2595 2596 /* 2597 * Validation of the freshest device provides the source of 2598 * validation for the remaining devices. 2599 */ 2600 rs->ti->error = "Unable to assemble array: Invalid superblocks"; 2601 if (super_validate(rs, freshest)) 2602 return -EINVAL; 2603 2604 if (validate_raid_redundancy(rs)) { 2605 rs->ti->error = "Insufficient redundancy to activate array"; 2606 return -EINVAL; 2607 } 2608 2609 rdev_for_each(rdev, mddev) 2610 if (!test_bit(Journal, &rdev->flags) && 2611 rdev != freshest && 2612 super_validate(rs, rdev)) 2613 return -EINVAL; 2614 return 0; 2615 } 2616 2617 /* 2618 * Adjust data_offset and new_data_offset on all disk members of @rs 2619 * for out of place reshaping if requested by constructor 2620 * 2621 * We need free space at the beginning of each raid disk for forward 2622 * and at the end for backward reshapes which userspace has to provide 2623 * via remapping/reordering of space. 2624 */ 2625 static int rs_adjust_data_offsets(struct raid_set *rs) 2626 { 2627 sector_t data_offset = 0, new_data_offset = 0; 2628 struct md_rdev *rdev; 2629 2630 /* Constructor did not request data offset change */ 2631 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { 2632 if (!rs_is_reshapable(rs)) 2633 goto out; 2634 2635 return 0; 2636 } 2637 2638 /* HM FIXME: get In_Sync raid_dev? */ 2639 rdev = &rs->dev[0].rdev; 2640 2641 if (rs->delta_disks < 0) { 2642 /* 2643 * Removing disks (reshaping backwards): 2644 * 2645 * - before reshape: data is at offset 0 and free space 2646 * is at end of each component LV 2647 * 2648 * - after reshape: data is at offset rs->data_offset != 0 on each component LV 2649 */ 2650 data_offset = 0; 2651 new_data_offset = rs->data_offset; 2652 2653 } else if (rs->delta_disks > 0) { 2654 /* 2655 * Adding disks (reshaping forwards): 2656 * 2657 * - before reshape: data is at offset rs->data_offset != 0 and 2658 * free space is at begin of each component LV 2659 * 2660 * - after reshape: data is at offset 0 on each component LV 2661 */ 2662 data_offset = rs->data_offset; 2663 new_data_offset = 0; 2664 2665 } else { 2666 /* 2667 * User space passes in 0 for data offset after having removed reshape space 2668 * 2669 * - or - (data offset != 0) 2670 * 2671 * Changing RAID layout or chunk size -> toggle offsets 2672 * 2673 * - before reshape: data is at offset rs->data_offset 0 and 2674 * free space is at end of each component LV 2675 * -or- 2676 * data is at offset rs->data_offset != 0 and 2677 * free space is at begin of each component LV 2678 * 2679 * - after reshape: data is at offset 0 if it was at offset != 0 2680 * or at offset != 0 if it was at offset 0 2681 * on each component LV 2682 * 2683 */ 2684 data_offset = rs->data_offset ? rdev->data_offset : 0; 2685 new_data_offset = data_offset ? 0 : rs->data_offset; 2686 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2687 } 2688 2689 /* 2690 * Make sure we got a minimum amount of free sectors per device 2691 */ 2692 if (rs->data_offset && 2693 bdev_nr_sectors(rdev->bdev) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) { 2694 rs->ti->error = data_offset ? "No space for forward reshape" : 2695 "No space for backward reshape"; 2696 return -ENOSPC; 2697 } 2698 out: 2699 /* 2700 * Raise recovery_cp in case data_offset != 0 to 2701 * avoid false recovery positives in the constructor. 2702 */ 2703 if (rs->md.recovery_cp < rs->md.dev_sectors) 2704 rs->md.recovery_cp += rs->dev[0].rdev.data_offset; 2705 2706 /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */ 2707 rdev_for_each(rdev, &rs->md) { 2708 if (!test_bit(Journal, &rdev->flags)) { 2709 rdev->data_offset = data_offset; 2710 rdev->new_data_offset = new_data_offset; 2711 } 2712 } 2713 2714 return 0; 2715 } 2716 2717 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */ 2718 static void __reorder_raid_disk_indexes(struct raid_set *rs) 2719 { 2720 int i = 0; 2721 struct md_rdev *rdev; 2722 2723 rdev_for_each(rdev, &rs->md) { 2724 if (!test_bit(Journal, &rdev->flags)) { 2725 rdev->raid_disk = i++; 2726 rdev->saved_raid_disk = rdev->new_raid_disk = -1; 2727 } 2728 } 2729 } 2730 2731 /* 2732 * Setup @rs for takeover by a different raid level 2733 */ 2734 static int rs_setup_takeover(struct raid_set *rs) 2735 { 2736 struct mddev *mddev = &rs->md; 2737 struct md_rdev *rdev; 2738 unsigned int d = mddev->raid_disks = rs->raid_disks; 2739 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset; 2740 2741 if (rt_is_raid10(rs->raid_type)) { 2742 if (rs_is_raid0(rs)) { 2743 /* Userpace reordered disks -> adjust raid_disk indexes */ 2744 __reorder_raid_disk_indexes(rs); 2745 2746 /* raid0 -> raid10_far layout */ 2747 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR, 2748 rs->raid10_copies); 2749 } else if (rs_is_raid1(rs)) 2750 /* raid1 -> raid10_near layout */ 2751 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, 2752 rs->raid_disks); 2753 else 2754 return -EINVAL; 2755 2756 } 2757 2758 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2759 mddev->recovery_cp = MaxSector; 2760 2761 while (d--) { 2762 rdev = &rs->dev[d].rdev; 2763 2764 if (test_bit(d, (void *) rs->rebuild_disks)) { 2765 clear_bit(In_sync, &rdev->flags); 2766 clear_bit(Faulty, &rdev->flags); 2767 mddev->recovery_cp = rdev->recovery_offset = 0; 2768 /* Bitmap has to be created when we do an "up" takeover */ 2769 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2770 } 2771 2772 rdev->new_data_offset = new_data_offset; 2773 } 2774 2775 return 0; 2776 } 2777 2778 /* Prepare @rs for reshape */ 2779 static int rs_prepare_reshape(struct raid_set *rs) 2780 { 2781 bool reshape; 2782 struct mddev *mddev = &rs->md; 2783 2784 if (rs_is_raid10(rs)) { 2785 if (rs->raid_disks != mddev->raid_disks && 2786 __is_raid10_near(mddev->layout) && 2787 rs->raid10_copies && 2788 rs->raid10_copies != __raid10_near_copies(mddev->layout)) { 2789 /* 2790 * raid disk have to be multiple of data copies to allow this conversion, 2791 * 2792 * This is actually not a reshape it is a 2793 * rebuild of any additional mirrors per group 2794 */ 2795 if (rs->raid_disks % rs->raid10_copies) { 2796 rs->ti->error = "Can't reshape raid10 mirror groups"; 2797 return -EINVAL; 2798 } 2799 2800 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */ 2801 __reorder_raid_disk_indexes(rs); 2802 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, 2803 rs->raid10_copies); 2804 mddev->new_layout = mddev->layout; 2805 reshape = false; 2806 } else 2807 reshape = true; 2808 2809 } else if (rs_is_raid456(rs)) 2810 reshape = true; 2811 2812 else if (rs_is_raid1(rs)) { 2813 if (rs->delta_disks) { 2814 /* Process raid1 via delta_disks */ 2815 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks; 2816 reshape = true; 2817 } else { 2818 /* Process raid1 without delta_disks */ 2819 mddev->raid_disks = rs->raid_disks; 2820 reshape = false; 2821 } 2822 } else { 2823 rs->ti->error = "Called with bogus raid type"; 2824 return -EINVAL; 2825 } 2826 2827 if (reshape) { 2828 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags); 2829 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2830 } else if (mddev->raid_disks < rs->raid_disks) 2831 /* Create new superblocks and bitmaps, if any new disks */ 2832 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2833 2834 return 0; 2835 } 2836 2837 /* 2838 * Reshape: 2839 * - change raid layout 2840 * - change chunk size 2841 * - add disks 2842 * - remove disks 2843 */ 2844 static int rs_setup_reshape(struct raid_set *rs) 2845 { 2846 int r = 0; 2847 unsigned int cur_raid_devs, d; 2848 sector_t reshape_sectors = _get_reshape_sectors(rs); 2849 struct mddev *mddev = &rs->md; 2850 struct md_rdev *rdev; 2851 2852 mddev->delta_disks = rs->delta_disks; 2853 cur_raid_devs = mddev->raid_disks; 2854 2855 /* Ignore impossible layout change whilst adding/removing disks */ 2856 if (mddev->delta_disks && 2857 mddev->layout != mddev->new_layout) { 2858 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks); 2859 mddev->new_layout = mddev->layout; 2860 } 2861 2862 /* 2863 * Adjust array size: 2864 * 2865 * - in case of adding disk(s), array size has 2866 * to grow after the disk adding reshape, 2867 * which'll happen in the event handler; 2868 * reshape will happen forward, so space has to 2869 * be available at the beginning of each disk 2870 * 2871 * - in case of removing disk(s), array size 2872 * has to shrink before starting the reshape, 2873 * which'll happen here; 2874 * reshape will happen backward, so space has to 2875 * be available at the end of each disk 2876 * 2877 * - data_offset and new_data_offset are 2878 * adjusted for aforementioned out of place 2879 * reshaping based on userspace passing in 2880 * the "data_offset <sectors>" key/value 2881 * pair via the constructor 2882 */ 2883 2884 /* Add disk(s) */ 2885 if (rs->delta_disks > 0) { 2886 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */ 2887 for (d = cur_raid_devs; d < rs->raid_disks; d++) { 2888 rdev = &rs->dev[d].rdev; 2889 clear_bit(In_sync, &rdev->flags); 2890 2891 /* 2892 * save_raid_disk needs to be -1, or recovery_offset will be set to 0 2893 * by md, which'll store that erroneously in the superblock on reshape 2894 */ 2895 rdev->saved_raid_disk = -1; 2896 rdev->raid_disk = d; 2897 2898 rdev->sectors = mddev->dev_sectors; 2899 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector; 2900 } 2901 2902 mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */ 2903 2904 /* Remove disk(s) */ 2905 } else if (rs->delta_disks < 0) { 2906 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true); 2907 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */ 2908 2909 /* Change layout and/or chunk size */ 2910 } else { 2911 /* 2912 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size: 2913 * 2914 * keeping number of disks and do layout change -> 2915 * 2916 * toggle reshape_backward depending on data_offset: 2917 * 2918 * - free space upfront -> reshape forward 2919 * 2920 * - free space at the end -> reshape backward 2921 * 2922 * 2923 * This utilizes free reshape space avoiding the need 2924 * for userspace to move (parts of) LV segments in 2925 * case of layout/chunksize change (for disk 2926 * adding/removing reshape space has to be at 2927 * the proper address (see above with delta_disks): 2928 * 2929 * add disk(s) -> begin 2930 * remove disk(s)-> end 2931 */ 2932 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1; 2933 } 2934 2935 /* 2936 * Adjust device size for forward reshape 2937 * because md_finish_reshape() reduces it. 2938 */ 2939 if (!mddev->reshape_backwards) 2940 rdev_for_each(rdev, &rs->md) 2941 if (!test_bit(Journal, &rdev->flags)) 2942 rdev->sectors += reshape_sectors; 2943 2944 return r; 2945 } 2946 2947 /* 2948 * If the md resync thread has updated superblock with max reshape position 2949 * at the end of a reshape but not (yet) reset the layout configuration 2950 * changes -> reset the latter. 2951 */ 2952 static void rs_reset_inconclusive_reshape(struct raid_set *rs) 2953 { 2954 if (!rs_is_reshaping(rs) && rs_is_layout_change(rs, true)) { 2955 rs_set_cur(rs); 2956 rs->md.delta_disks = 0; 2957 rs->md.reshape_backwards = 0; 2958 } 2959 } 2960 2961 /* 2962 * Enable/disable discard support on RAID set depending on 2963 * RAID level and discard properties of underlying RAID members. 2964 */ 2965 static void configure_discard_support(struct raid_set *rs) 2966 { 2967 int i; 2968 bool raid456; 2969 struct dm_target *ti = rs->ti; 2970 2971 /* 2972 * XXX: RAID level 4,5,6 require zeroing for safety. 2973 */ 2974 raid456 = rs_is_raid456(rs); 2975 2976 for (i = 0; i < rs->raid_disks; i++) { 2977 if (!rs->dev[i].rdev.bdev || 2978 !bdev_max_discard_sectors(rs->dev[i].rdev.bdev)) 2979 return; 2980 2981 if (raid456) { 2982 if (!devices_handle_discard_safely) { 2983 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty."); 2984 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override."); 2985 return; 2986 } 2987 } 2988 } 2989 2990 ti->num_discard_bios = 1; 2991 } 2992 2993 /* 2994 * Construct a RAID0/1/10/4/5/6 mapping: 2995 * Args: 2996 * <raid_type> <#raid_params> <raid_params>{0,} \ 2997 * <#raid_devs> [<meta_dev1> <dev1>]{1,} 2998 * 2999 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for 3000 * details on possible <raid_params>. 3001 * 3002 * Userspace is free to initialize the metadata devices, hence the superblocks to 3003 * enforce recreation based on the passed in table parameters. 3004 * 3005 */ 3006 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv) 3007 { 3008 int r; 3009 bool resize = false; 3010 struct raid_type *rt; 3011 unsigned int num_raid_params, num_raid_devs; 3012 sector_t sb_array_sectors, rdev_sectors, reshape_sectors; 3013 struct raid_set *rs = NULL; 3014 const char *arg; 3015 struct rs_layout rs_layout; 3016 struct dm_arg_set as = { argc, argv }, as_nrd; 3017 struct dm_arg _args[] = { 3018 { 0, as.argc, "Cannot understand number of raid parameters" }, 3019 { 1, 254, "Cannot understand number of raid devices parameters" } 3020 }; 3021 3022 arg = dm_shift_arg(&as); 3023 if (!arg) { 3024 ti->error = "No arguments"; 3025 return -EINVAL; 3026 } 3027 3028 rt = get_raid_type(arg); 3029 if (!rt) { 3030 ti->error = "Unrecognised raid_type"; 3031 return -EINVAL; 3032 } 3033 3034 /* Must have <#raid_params> */ 3035 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error)) 3036 return -EINVAL; 3037 3038 /* number of raid device tupples <meta_dev data_dev> */ 3039 as_nrd = as; 3040 dm_consume_args(&as_nrd, num_raid_params); 3041 _args[1].max = (as_nrd.argc - 1) / 2; 3042 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error)) 3043 return -EINVAL; 3044 3045 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) { 3046 ti->error = "Invalid number of supplied raid devices"; 3047 return -EINVAL; 3048 } 3049 3050 rs = raid_set_alloc(ti, rt, num_raid_devs); 3051 if (IS_ERR(rs)) 3052 return PTR_ERR(rs); 3053 3054 r = parse_raid_params(rs, &as, num_raid_params); 3055 if (r) 3056 goto bad; 3057 3058 r = parse_dev_params(rs, &as); 3059 if (r) 3060 goto bad; 3061 3062 rs->md.sync_super = super_sync; 3063 3064 /* 3065 * Calculate ctr requested array and device sizes to allow 3066 * for superblock analysis needing device sizes defined. 3067 * 3068 * Any existing superblock will overwrite the array and device sizes 3069 */ 3070 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false); 3071 if (r) 3072 goto bad; 3073 3074 /* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */ 3075 rs->array_sectors = rs->md.array_sectors; 3076 rs->dev_sectors = rs->md.dev_sectors; 3077 3078 /* 3079 * Backup any new raid set level, layout, ... 3080 * requested to be able to compare to superblock 3081 * members for conversion decisions. 3082 */ 3083 rs_config_backup(rs, &rs_layout); 3084 3085 r = analyse_superblocks(ti, rs); 3086 if (r) 3087 goto bad; 3088 3089 /* All in-core metadata now as of current superblocks after calling analyse_superblocks() */ 3090 sb_array_sectors = rs->md.array_sectors; 3091 rdev_sectors = __rdev_sectors(rs); 3092 if (!rdev_sectors) { 3093 ti->error = "Invalid rdev size"; 3094 r = -EINVAL; 3095 goto bad; 3096 } 3097 3098 3099 reshape_sectors = _get_reshape_sectors(rs); 3100 if (rs->dev_sectors != rdev_sectors) { 3101 resize = (rs->dev_sectors != rdev_sectors - reshape_sectors); 3102 if (rs->dev_sectors > rdev_sectors - reshape_sectors) 3103 set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3104 } 3105 3106 INIT_WORK(&rs->md.event_work, do_table_event); 3107 ti->private = rs; 3108 ti->num_flush_bios = 1; 3109 ti->needs_bio_set_dev = true; 3110 3111 /* Restore any requested new layout for conversion decision */ 3112 rs_config_restore(rs, &rs_layout); 3113 3114 /* 3115 * Now that we have any superblock metadata available, 3116 * check for new, recovering, reshaping, to be taken over, 3117 * to be reshaped or an existing, unchanged raid set to 3118 * run in sequence. 3119 */ 3120 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) { 3121 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */ 3122 if (rs_is_raid6(rs) && 3123 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 3124 ti->error = "'nosync' not allowed for new raid6 set"; 3125 r = -EINVAL; 3126 goto bad; 3127 } 3128 rs_setup_recovery(rs, 0); 3129 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3130 rs_set_new(rs); 3131 } else if (rs_is_recovering(rs)) { 3132 /* A recovering raid set may be resized */ 3133 goto size_check; 3134 } else if (rs_is_reshaping(rs)) { 3135 /* Have to reject size change request during reshape */ 3136 if (resize) { 3137 ti->error = "Can't resize a reshaping raid set"; 3138 r = -EPERM; 3139 goto bad; 3140 } 3141 /* skip setup rs */ 3142 } else if (rs_takeover_requested(rs)) { 3143 if (rs_is_reshaping(rs)) { 3144 ti->error = "Can't takeover a reshaping raid set"; 3145 r = -EPERM; 3146 goto bad; 3147 } 3148 3149 /* We can't takeover a journaled raid4/5/6 */ 3150 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 3151 ti->error = "Can't takeover a journaled raid4/5/6 set"; 3152 r = -EPERM; 3153 goto bad; 3154 } 3155 3156 /* 3157 * If a takeover is needed, userspace sets any additional 3158 * devices to rebuild and we can check for a valid request here. 3159 * 3160 * If acceptable, set the level to the new requested 3161 * one, prohibit requesting recovery, allow the raid 3162 * set to run and store superblocks during resume. 3163 */ 3164 r = rs_check_takeover(rs); 3165 if (r) 3166 goto bad; 3167 3168 r = rs_setup_takeover(rs); 3169 if (r) 3170 goto bad; 3171 3172 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3173 /* Takeover ain't recovery, so disable recovery */ 3174 rs_setup_recovery(rs, MaxSector); 3175 rs_set_new(rs); 3176 } else if (rs_reshape_requested(rs)) { 3177 /* Only request grow on raid set size extensions, not on reshapes. */ 3178 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3179 3180 /* 3181 * No need to check for 'ongoing' takeover here, because takeover 3182 * is an instant operation as oposed to an ongoing reshape. 3183 */ 3184 3185 /* We can't reshape a journaled raid4/5/6 */ 3186 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 3187 ti->error = "Can't reshape a journaled raid4/5/6 set"; 3188 r = -EPERM; 3189 goto bad; 3190 } 3191 3192 /* Out-of-place space has to be available to allow for a reshape unless raid1! */ 3193 if (reshape_sectors || rs_is_raid1(rs)) { 3194 /* 3195 * We can only prepare for a reshape here, because the 3196 * raid set needs to run to provide the respective reshape 3197 * check functions via its MD personality instance. 3198 * 3199 * So do the reshape check after md_run() succeeded. 3200 */ 3201 r = rs_prepare_reshape(rs); 3202 if (r) 3203 goto bad; 3204 3205 /* Reshaping ain't recovery, so disable recovery */ 3206 rs_setup_recovery(rs, MaxSector); 3207 } 3208 rs_set_cur(rs); 3209 } else { 3210 size_check: 3211 /* May not set recovery when a device rebuild is requested */ 3212 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) { 3213 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3214 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3215 rs_setup_recovery(rs, MaxSector); 3216 } else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) { 3217 /* 3218 * Set raid set to current size, i.e. size as of 3219 * superblocks to grow to larger size in preresume. 3220 */ 3221 r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false); 3222 if (r) 3223 goto bad; 3224 3225 rs_setup_recovery(rs, rs->md.recovery_cp < rs->md.dev_sectors ? rs->md.recovery_cp : rs->md.dev_sectors); 3226 } else { 3227 /* This is no size change or it is shrinking, update size and record in superblocks */ 3228 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false); 3229 if (r) 3230 goto bad; 3231 3232 if (sb_array_sectors > rs->array_sectors) 3233 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3234 } 3235 rs_set_cur(rs); 3236 } 3237 3238 /* If constructor requested it, change data and new_data offsets */ 3239 r = rs_adjust_data_offsets(rs); 3240 if (r) 3241 goto bad; 3242 3243 /* Catch any inconclusive reshape superblock content. */ 3244 rs_reset_inconclusive_reshape(rs); 3245 3246 /* Start raid set read-only and assumed clean to change in raid_resume() */ 3247 rs->md.ro = 1; 3248 rs->md.in_sync = 1; 3249 3250 /* Has to be held on running the array */ 3251 mddev_suspend_and_lock_nointr(&rs->md); 3252 3253 /* Keep array frozen until resume. */ 3254 md_frozen_sync_thread(&rs->md); 3255 3256 r = md_run(&rs->md); 3257 rs->md.in_sync = 0; /* Assume already marked dirty */ 3258 if (r) { 3259 ti->error = "Failed to run raid array"; 3260 mddev_unlock(&rs->md); 3261 goto bad; 3262 } 3263 3264 r = md_start(&rs->md); 3265 if (r) { 3266 ti->error = "Failed to start raid array"; 3267 goto bad_unlock; 3268 } 3269 3270 /* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */ 3271 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) { 3272 r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode); 3273 if (r) { 3274 ti->error = "Failed to set raid4/5/6 journal mode"; 3275 goto bad_unlock; 3276 } 3277 } 3278 3279 set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags); 3280 3281 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */ 3282 if (rs_is_raid456(rs)) { 3283 r = rs_set_raid456_stripe_cache(rs); 3284 if (r) 3285 goto bad_unlock; 3286 } 3287 3288 /* Now do an early reshape check */ 3289 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { 3290 r = rs_check_reshape(rs); 3291 if (r) 3292 goto bad_unlock; 3293 3294 /* Restore new, ctr requested layout to perform check */ 3295 rs_config_restore(rs, &rs_layout); 3296 3297 if (rs->md.pers->start_reshape) { 3298 r = rs->md.pers->check_reshape(&rs->md); 3299 if (r) { 3300 ti->error = "Reshape check failed"; 3301 goto bad_unlock; 3302 } 3303 } 3304 } 3305 3306 /* Disable/enable discard support on raid set. */ 3307 configure_discard_support(rs); 3308 rs->md.dm_gendisk = ti->table->md->disk; 3309 3310 mddev_unlock(&rs->md); 3311 return 0; 3312 3313 bad_unlock: 3314 md_stop(&rs->md); 3315 mddev_unlock(&rs->md); 3316 bad: 3317 raid_set_free(rs); 3318 3319 return r; 3320 } 3321 3322 static void raid_dtr(struct dm_target *ti) 3323 { 3324 struct raid_set *rs = ti->private; 3325 3326 mddev_lock_nointr(&rs->md); 3327 md_stop(&rs->md); 3328 rs->md.dm_gendisk = NULL; 3329 mddev_unlock(&rs->md); 3330 3331 if (work_pending(&rs->md.event_work)) 3332 flush_work(&rs->md.event_work); 3333 raid_set_free(rs); 3334 } 3335 3336 static int raid_map(struct dm_target *ti, struct bio *bio) 3337 { 3338 struct raid_set *rs = ti->private; 3339 struct mddev *mddev = &rs->md; 3340 3341 /* 3342 * If we're reshaping to add disk(s), ti->len and 3343 * mddev->array_sectors will differ during the process 3344 * (ti->len > mddev->array_sectors), so we have to requeue 3345 * bios with addresses > mddev->array_sectors here or 3346 * there will occur accesses past EOD of the component 3347 * data images thus erroring the raid set. 3348 */ 3349 if (unlikely(bio_has_data(bio) && bio_end_sector(bio) > mddev->array_sectors)) 3350 return DM_MAPIO_REQUEUE; 3351 3352 if (unlikely(!md_handle_request(mddev, bio))) 3353 return DM_MAPIO_REQUEUE; 3354 3355 return DM_MAPIO_SUBMITTED; 3356 } 3357 3358 /* Return sync state string for @state */ 3359 enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle }; 3360 static const char *sync_str(enum sync_state state) 3361 { 3362 /* Has to be in above sync_state order! */ 3363 static const char *sync_strs[] = { 3364 "frozen", 3365 "reshape", 3366 "resync", 3367 "check", 3368 "repair", 3369 "recover", 3370 "idle" 3371 }; 3372 3373 return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef"; 3374 }; 3375 3376 /* Return enum sync_state for @mddev derived from @recovery flags */ 3377 static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery) 3378 { 3379 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 3380 return st_frozen; 3381 3382 /* The MD sync thread can be done with io or be interrupted but still be running */ 3383 if (!test_bit(MD_RECOVERY_DONE, &recovery) && 3384 (test_bit(MD_RECOVERY_RUNNING, &recovery) || 3385 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) { 3386 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 3387 return st_reshape; 3388 3389 if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 3390 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 3391 return st_resync; 3392 if (test_bit(MD_RECOVERY_CHECK, &recovery)) 3393 return st_check; 3394 return st_repair; 3395 } 3396 3397 if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 3398 return st_recover; 3399 3400 if (mddev->reshape_position != MaxSector) 3401 return st_reshape; 3402 } 3403 3404 return st_idle; 3405 } 3406 3407 /* 3408 * Return status string for @rdev 3409 * 3410 * Status characters: 3411 * 3412 * 'D' = Dead/Failed raid set component or raid4/5/6 journal device 3413 * 'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device 3414 * 'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device 3415 * '-' = Non-existing device (i.e. uspace passed '- -' into the ctr) 3416 */ 3417 static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev) 3418 { 3419 if (!rdev->bdev) 3420 return "-"; 3421 else if (test_bit(Faulty, &rdev->flags)) 3422 return "D"; 3423 else if (test_bit(Journal, &rdev->flags)) 3424 return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a"; 3425 else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) || 3426 (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) && 3427 !test_bit(In_sync, &rdev->flags))) 3428 return "a"; 3429 else 3430 return "A"; 3431 } 3432 3433 /* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */ 3434 static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery, 3435 enum sync_state state, sector_t resync_max_sectors) 3436 { 3437 sector_t r; 3438 struct mddev *mddev = &rs->md; 3439 3440 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3441 clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3442 3443 if (rs_is_raid0(rs)) { 3444 r = resync_max_sectors; 3445 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3446 3447 } else { 3448 if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery)) 3449 r = mddev->recovery_cp; 3450 else 3451 r = mddev->curr_resync_completed; 3452 3453 if (state == st_idle && r >= resync_max_sectors) { 3454 /* 3455 * Sync complete. 3456 */ 3457 /* In case we have finished recovering, the array is in sync. */ 3458 if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 3459 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3460 3461 } else if (state == st_recover) 3462 /* 3463 * In case we are recovering, the array is not in sync 3464 * and health chars should show the recovering legs. 3465 * 3466 * Already retrieved recovery offset from curr_resync_completed above. 3467 */ 3468 ; 3469 3470 else if (state == st_resync || state == st_reshape) 3471 /* 3472 * If "resync/reshape" is occurring, the raid set 3473 * is or may be out of sync hence the health 3474 * characters shall be 'a'. 3475 */ 3476 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3477 3478 else if (state == st_check || state == st_repair) 3479 /* 3480 * If "check" or "repair" is occurring, the raid set has 3481 * undergone an initial sync and the health characters 3482 * should not be 'a' anymore. 3483 */ 3484 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3485 3486 else if (test_bit(MD_RECOVERY_NEEDED, &recovery)) 3487 /* 3488 * We are idle and recovery is needed, prevent 'A' chars race 3489 * caused by components still set to in-sync by constructor. 3490 */ 3491 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3492 3493 else { 3494 /* 3495 * We are idle and the raid set may be doing an initial 3496 * sync, or it may be rebuilding individual components. 3497 * If all the devices are In_sync, then it is the raid set 3498 * that is being initialized. 3499 */ 3500 struct md_rdev *rdev; 3501 3502 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3503 rdev_for_each(rdev, mddev) 3504 if (!test_bit(Journal, &rdev->flags) && 3505 !test_bit(In_sync, &rdev->flags)) { 3506 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3507 break; 3508 } 3509 } 3510 } 3511 3512 return min(r, resync_max_sectors); 3513 } 3514 3515 /* Helper to return @dev name or "-" if !@dev */ 3516 static const char *__get_dev_name(struct dm_dev *dev) 3517 { 3518 return dev ? dev->name : "-"; 3519 } 3520 3521 static void raid_status(struct dm_target *ti, status_type_t type, 3522 unsigned int status_flags, char *result, unsigned int maxlen) 3523 { 3524 struct raid_set *rs = ti->private; 3525 struct mddev *mddev = &rs->md; 3526 struct r5conf *conf = rs_is_raid456(rs) ? mddev->private : NULL; 3527 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0; 3528 unsigned long recovery; 3529 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */ 3530 unsigned int sz = 0; 3531 unsigned int rebuild_writemostly_count = 0; 3532 sector_t progress, resync_max_sectors, resync_mismatches; 3533 enum sync_state state; 3534 struct raid_type *rt; 3535 3536 switch (type) { 3537 case STATUSTYPE_INFO: 3538 /* *Should* always succeed */ 3539 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 3540 if (!rt) 3541 return; 3542 3543 DMEMIT("%s %d ", rt->name, mddev->raid_disks); 3544 3545 /* Access most recent mddev properties for status output */ 3546 smp_rmb(); 3547 /* Get sensible max sectors even if raid set not yet started */ 3548 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ? 3549 mddev->resync_max_sectors : mddev->dev_sectors; 3550 recovery = rs->md.recovery; 3551 state = decipher_sync_action(mddev, recovery); 3552 progress = rs_get_progress(rs, recovery, state, resync_max_sectors); 3553 resync_mismatches = mddev->last_sync_action == ACTION_CHECK ? 3554 atomic64_read(&mddev->resync_mismatches) : 0; 3555 3556 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */ 3557 for (i = 0; i < rs->raid_disks; i++) 3558 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev)); 3559 3560 /* 3561 * In-sync/Reshape ratio: 3562 * The in-sync ratio shows the progress of: 3563 * - Initializing the raid set 3564 * - Rebuilding a subset of devices of the raid set 3565 * The user can distinguish between the two by referring 3566 * to the status characters. 3567 * 3568 * The reshape ratio shows the progress of 3569 * changing the raid layout or the number of 3570 * disks of a raid set 3571 */ 3572 DMEMIT(" %llu/%llu", (unsigned long long) progress, 3573 (unsigned long long) resync_max_sectors); 3574 3575 /* 3576 * v1.5.0+: 3577 * 3578 * Sync action: 3579 * See Documentation/admin-guide/device-mapper/dm-raid.rst for 3580 * information on each of these states. 3581 */ 3582 DMEMIT(" %s", sync_str(state)); 3583 3584 /* 3585 * v1.5.0+: 3586 * 3587 * resync_mismatches/mismatch_cnt 3588 * This field shows the number of discrepancies found when 3589 * performing a "check" of the raid set. 3590 */ 3591 DMEMIT(" %llu", (unsigned long long) resync_mismatches); 3592 3593 /* 3594 * v1.9.0+: 3595 * 3596 * data_offset (needed for out of space reshaping) 3597 * This field shows the data offset into the data 3598 * image LV where the first stripes data starts. 3599 * 3600 * We keep data_offset equal on all raid disks of the set, 3601 * so retrieving it from the first raid disk is sufficient. 3602 */ 3603 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset); 3604 3605 /* 3606 * v1.10.0+: 3607 */ 3608 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ? 3609 __raid_dev_status(rs, &rs->journal_dev.rdev) : "-"); 3610 break; 3611 3612 case STATUSTYPE_TABLE: 3613 /* Report the table line string you would use to construct this raid set */ 3614 3615 /* 3616 * Count any rebuild or writemostly argument pairs and subtract the 3617 * hweight count being added below of any rebuild and writemostly ctr flags. 3618 */ 3619 for (i = 0; i < rs->raid_disks; i++) { 3620 rebuild_writemostly_count += (test_bit(i, (void *) rs->rebuild_disks) ? 2 : 0) + 3621 (test_bit(WriteMostly, &rs->dev[i].rdev.flags) ? 2 : 0); 3622 } 3623 rebuild_writemostly_count -= (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) ? 2 : 0) + 3624 (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags) ? 2 : 0); 3625 /* Calculate raid parameter count based on ^ rebuild/writemostly argument counts and ctr flags set. */ 3626 raid_param_cnt += rebuild_writemostly_count + 3627 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) + 3628 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2; 3629 /* Emit table line */ 3630 /* This has to be in the documented order for userspace! */ 3631 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors); 3632 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 3633 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC)); 3634 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) 3635 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC)); 3636 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) 3637 for (i = 0; i < rs->raid_disks; i++) 3638 if (test_bit(i, (void *) rs->rebuild_disks)) 3639 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), i); 3640 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) 3641 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP), 3642 mddev->bitmap_info.daemon_sleep); 3643 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) 3644 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE), 3645 mddev->sync_speed_min); 3646 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) 3647 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE), 3648 mddev->sync_speed_max); 3649 if (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags)) 3650 for (i = 0; i < rs->raid_disks; i++) 3651 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags)) 3652 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY), 3653 rs->dev[i].rdev.raid_disk); 3654 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) 3655 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND), 3656 mddev->bitmap_info.max_write_behind); 3657 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) 3658 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE), 3659 max_nr_stripes); 3660 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) 3661 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE), 3662 (unsigned long long) to_sector(mddev->bitmap_info.chunksize)); 3663 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) 3664 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES), 3665 raid10_md_layout_to_copies(mddev->layout)); 3666 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) 3667 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT), 3668 raid10_md_layout_to_format(mddev->layout)); 3669 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) 3670 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS), 3671 max(rs->delta_disks, mddev->delta_disks)); 3672 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) 3673 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET), 3674 (unsigned long long) rs->data_offset); 3675 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) 3676 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV), 3677 __get_dev_name(rs->journal_dev.dev)); 3678 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) 3679 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE), 3680 md_journal_mode_to_dm_raid(rs->journal_dev.mode)); 3681 DMEMIT(" %d", rs->raid_disks); 3682 for (i = 0; i < rs->raid_disks; i++) 3683 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev), 3684 __get_dev_name(rs->dev[i].data_dev)); 3685 break; 3686 3687 case STATUSTYPE_IMA: 3688 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 3689 if (!rt) 3690 return; 3691 3692 DMEMIT_TARGET_NAME_VERSION(ti->type); 3693 DMEMIT(",raid_type=%s,raid_disks=%d", rt->name, mddev->raid_disks); 3694 3695 /* Access most recent mddev properties for status output */ 3696 smp_rmb(); 3697 recovery = rs->md.recovery; 3698 state = decipher_sync_action(mddev, recovery); 3699 DMEMIT(",raid_state=%s", sync_str(state)); 3700 3701 for (i = 0; i < rs->raid_disks; i++) { 3702 DMEMIT(",raid_device_%d_status=", i); 3703 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev)); 3704 } 3705 3706 if (rt_is_raid456(rt)) { 3707 DMEMIT(",journal_dev_mode="); 3708 switch (rs->journal_dev.mode) { 3709 case R5C_JOURNAL_MODE_WRITE_THROUGH: 3710 DMEMIT("%s", 3711 _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_THROUGH].param); 3712 break; 3713 case R5C_JOURNAL_MODE_WRITE_BACK: 3714 DMEMIT("%s", 3715 _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_BACK].param); 3716 break; 3717 default: 3718 DMEMIT("invalid"); 3719 break; 3720 } 3721 } 3722 DMEMIT(";"); 3723 break; 3724 } 3725 } 3726 3727 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv, 3728 char *result, unsigned int maxlen) 3729 { 3730 struct raid_set *rs = ti->private; 3731 struct mddev *mddev = &rs->md; 3732 int ret = 0; 3733 3734 if (!mddev->pers || !mddev->pers->sync_request) 3735 return -EINVAL; 3736 3737 if (test_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags) || 3738 test_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags)) 3739 return -EBUSY; 3740 3741 if (!strcasecmp(argv[0], "frozen")) { 3742 ret = mddev_lock(mddev); 3743 if (ret) 3744 return ret; 3745 3746 md_frozen_sync_thread(mddev); 3747 mddev_unlock(mddev); 3748 } else if (!strcasecmp(argv[0], "idle")) { 3749 ret = mddev_lock(mddev); 3750 if (ret) 3751 return ret; 3752 3753 md_idle_sync_thread(mddev); 3754 mddev_unlock(mddev); 3755 } 3756 3757 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3758 if (decipher_sync_action(mddev, mddev->recovery) != st_idle) 3759 return -EBUSY; 3760 else if (!strcasecmp(argv[0], "resync")) 3761 ; /* MD_RECOVERY_NEEDED set below */ 3762 else if (!strcasecmp(argv[0], "recover")) 3763 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3764 else { 3765 if (!strcasecmp(argv[0], "check")) { 3766 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3767 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3768 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3769 } else if (!strcasecmp(argv[0], "repair")) { 3770 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3771 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3772 } else 3773 return -EINVAL; 3774 } 3775 if (mddev->ro == 2) { 3776 /* A write to sync_action is enough to justify 3777 * canceling read-auto mode 3778 */ 3779 mddev->ro = 0; 3780 if (!mddev->suspended) 3781 md_wakeup_thread(mddev->sync_thread); 3782 } 3783 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3784 if (!mddev->suspended) 3785 md_wakeup_thread(mddev->thread); 3786 3787 return 0; 3788 } 3789 3790 static int raid_iterate_devices(struct dm_target *ti, 3791 iterate_devices_callout_fn fn, void *data) 3792 { 3793 struct raid_set *rs = ti->private; 3794 unsigned int i; 3795 int r = 0; 3796 3797 for (i = 0; !r && i < rs->raid_disks; i++) { 3798 if (rs->dev[i].data_dev) { 3799 r = fn(ti, rs->dev[i].data_dev, 3800 0, /* No offset on data devs */ 3801 rs->md.dev_sectors, data); 3802 } 3803 } 3804 3805 return r; 3806 } 3807 3808 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits) 3809 { 3810 struct raid_set *rs = ti->private; 3811 unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors); 3812 3813 limits->io_min = chunk_size_bytes; 3814 limits->io_opt = chunk_size_bytes * mddev_data_stripes(rs); 3815 } 3816 3817 static void raid_presuspend(struct dm_target *ti) 3818 { 3819 struct raid_set *rs = ti->private; 3820 struct mddev *mddev = &rs->md; 3821 3822 /* 3823 * From now on, disallow raid_message() to change sync_thread until 3824 * resume, raid_postsuspend() is too late. 3825 */ 3826 set_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags); 3827 3828 if (!reshape_interrupted(mddev)) 3829 return; 3830 3831 /* 3832 * For raid456, if reshape is interrupted, IO across reshape position 3833 * will never make progress, while caller will wait for IO to be done. 3834 * Inform raid456 to handle those IO to prevent deadlock. 3835 */ 3836 if (mddev->pers && mddev->pers->prepare_suspend) 3837 mddev->pers->prepare_suspend(mddev); 3838 } 3839 3840 static void raid_presuspend_undo(struct dm_target *ti) 3841 { 3842 struct raid_set *rs = ti->private; 3843 3844 clear_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags); 3845 } 3846 3847 static void raid_postsuspend(struct dm_target *ti) 3848 { 3849 struct raid_set *rs = ti->private; 3850 3851 if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) { 3852 /* 3853 * sync_thread must be stopped during suspend, and writes have 3854 * to be stopped before suspending to avoid deadlocks. 3855 */ 3856 md_stop_writes(&rs->md); 3857 mddev_suspend(&rs->md, false); 3858 } 3859 } 3860 3861 static void attempt_restore_of_faulty_devices(struct raid_set *rs) 3862 { 3863 int i; 3864 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS]; 3865 unsigned long flags; 3866 bool cleared = false; 3867 struct dm_raid_superblock *sb; 3868 struct mddev *mddev = &rs->md; 3869 struct md_rdev *r; 3870 3871 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */ 3872 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk) 3873 return; 3874 3875 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices)); 3876 3877 for (i = 0; i < rs->raid_disks; i++) { 3878 r = &rs->dev[i].rdev; 3879 /* HM FIXME: enhance journal device recovery processing */ 3880 if (test_bit(Journal, &r->flags)) 3881 continue; 3882 3883 if (test_bit(Faulty, &r->flags) && 3884 r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) { 3885 DMINFO("Faulty %s device #%d has readable super block." 3886 " Attempting to revive it.", 3887 rs->raid_type->name, i); 3888 3889 /* 3890 * Faulty bit may be set, but sometimes the array can 3891 * be suspended before the personalities can respond 3892 * by removing the device from the array (i.e. calling 3893 * 'hot_remove_disk'). If they haven't yet removed 3894 * the failed device, its 'raid_disk' number will be 3895 * '>= 0' - meaning we must call this function 3896 * ourselves. 3897 */ 3898 flags = r->flags; 3899 clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */ 3900 if (r->raid_disk >= 0) { 3901 if (mddev->pers->hot_remove_disk(mddev, r)) { 3902 /* Failed to revive this device, try next */ 3903 r->flags = flags; 3904 continue; 3905 } 3906 } else 3907 r->raid_disk = r->saved_raid_disk = i; 3908 3909 clear_bit(Faulty, &r->flags); 3910 clear_bit(WriteErrorSeen, &r->flags); 3911 3912 if (mddev->pers->hot_add_disk(mddev, r)) { 3913 /* Failed to revive this device, try next */ 3914 r->raid_disk = r->saved_raid_disk = -1; 3915 r->flags = flags; 3916 } else { 3917 clear_bit(In_sync, &r->flags); 3918 r->recovery_offset = 0; 3919 set_bit(i, (void *) cleared_failed_devices); 3920 cleared = true; 3921 } 3922 } 3923 } 3924 3925 /* If any failed devices could be cleared, update all sbs failed_devices bits */ 3926 if (cleared) { 3927 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 3928 3929 rdev_for_each(r, &rs->md) { 3930 if (test_bit(Journal, &r->flags)) 3931 continue; 3932 3933 sb = page_address(r->sb_page); 3934 sb_retrieve_failed_devices(sb, failed_devices); 3935 3936 for (i = 0; i < DISKS_ARRAY_ELEMS; i++) 3937 failed_devices[i] &= ~cleared_failed_devices[i]; 3938 3939 sb_update_failed_devices(sb, failed_devices); 3940 } 3941 } 3942 } 3943 3944 static int __load_dirty_region_bitmap(struct raid_set *rs) 3945 { 3946 int r = 0; 3947 3948 /* Try loading the bitmap unless "raid0", which does not have one */ 3949 if (!rs_is_raid0(rs) && 3950 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) { 3951 struct mddev *mddev = &rs->md; 3952 3953 r = mddev->bitmap_ops->load(mddev); 3954 if (r) 3955 DMERR("Failed to load bitmap"); 3956 } 3957 3958 return r; 3959 } 3960 3961 /* Enforce updating all superblocks */ 3962 static void rs_update_sbs(struct raid_set *rs) 3963 { 3964 struct mddev *mddev = &rs->md; 3965 int ro = mddev->ro; 3966 3967 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3968 mddev->ro = 0; 3969 md_update_sb(mddev, 1); 3970 mddev->ro = ro; 3971 } 3972 3973 /* 3974 * Reshape changes raid algorithm of @rs to new one within personality 3975 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes 3976 * disks from a raid set thus growing/shrinking it or resizes the set 3977 * 3978 * Call mddev_lock_nointr() before! 3979 */ 3980 static int rs_start_reshape(struct raid_set *rs) 3981 { 3982 int r; 3983 struct mddev *mddev = &rs->md; 3984 struct md_personality *pers = mddev->pers; 3985 3986 /* Don't allow the sync thread to work until the table gets reloaded. */ 3987 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 3988 3989 r = rs_setup_reshape(rs); 3990 if (r) 3991 return r; 3992 3993 /* 3994 * Check any reshape constraints enforced by the personalility 3995 * 3996 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional. 3997 */ 3998 r = pers->check_reshape(mddev); 3999 if (r) { 4000 rs->ti->error = "pers->check_reshape() failed"; 4001 return r; 4002 } 4003 4004 /* 4005 * Personality may not provide start reshape method in which 4006 * case check_reshape above has already covered everything 4007 */ 4008 if (pers->start_reshape) { 4009 r = pers->start_reshape(mddev); 4010 if (r) { 4011 rs->ti->error = "pers->start_reshape() failed"; 4012 return r; 4013 } 4014 } 4015 4016 /* 4017 * Now reshape got set up, update superblocks to 4018 * reflect the fact so that a table reload will 4019 * access proper superblock content in the ctr. 4020 */ 4021 rs_update_sbs(rs); 4022 4023 return 0; 4024 } 4025 4026 static int raid_preresume(struct dm_target *ti) 4027 { 4028 int r; 4029 struct raid_set *rs = ti->private; 4030 struct mddev *mddev = &rs->md; 4031 4032 /* This is a resume after a suspend of the set -> it's already started. */ 4033 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags)) 4034 return 0; 4035 4036 /* If different and no explicit grow request, expose MD array size as of superblock. */ 4037 if (!test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) && 4038 rs->array_sectors != mddev->array_sectors) 4039 rs_set_capacity(rs); 4040 4041 /* 4042 * The superblocks need to be updated on disk if the 4043 * array is new or new devices got added (thus zeroed 4044 * out by userspace) or __load_dirty_region_bitmap 4045 * will overwrite them in core with old data or fail. 4046 */ 4047 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags)) 4048 rs_update_sbs(rs); 4049 4050 /* Load the bitmap from disk unless raid0 */ 4051 r = __load_dirty_region_bitmap(rs); 4052 if (r) 4053 return r; 4054 4055 /* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */ 4056 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) { 4057 mddev->array_sectors = rs->array_sectors; 4058 mddev->dev_sectors = rs->dev_sectors; 4059 rs_set_rdev_sectors(rs); 4060 rs_set_capacity(rs); 4061 } 4062 4063 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */ 4064 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap && 4065 (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) || 4066 (rs->requested_bitmap_chunk_sectors && 4067 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) { 4068 int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize; 4069 4070 r = mddev->bitmap_ops->resize(mddev, mddev->dev_sectors, 4071 chunksize, false); 4072 if (r) 4073 DMERR("Failed to resize bitmap"); 4074 } 4075 4076 /* Check for any resize/reshape on @rs and adjust/initiate */ 4077 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) { 4078 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4079 mddev->resync_min = mddev->recovery_cp; 4080 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) 4081 mddev->resync_max_sectors = mddev->dev_sectors; 4082 } 4083 4084 /* Check for any reshape request unless new raid set */ 4085 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { 4086 /* Initiate a reshape. */ 4087 rs_set_rdev_sectors(rs); 4088 mddev_lock_nointr(mddev); 4089 r = rs_start_reshape(rs); 4090 mddev_unlock(mddev); 4091 if (r) 4092 DMWARN("Failed to check/start reshape, continuing without change"); 4093 r = 0; 4094 } 4095 4096 return r; 4097 } 4098 4099 static void raid_resume(struct dm_target *ti) 4100 { 4101 struct raid_set *rs = ti->private; 4102 struct mddev *mddev = &rs->md; 4103 4104 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) { 4105 /* 4106 * A secondary resume while the device is active. 4107 * Take this opportunity to check whether any failed 4108 * devices are reachable again. 4109 */ 4110 mddev_lock_nointr(mddev); 4111 attempt_restore_of_faulty_devices(rs); 4112 mddev_unlock(mddev); 4113 } 4114 4115 if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) { 4116 /* Only reduce raid set size before running a disk removing reshape. */ 4117 if (mddev->delta_disks < 0) 4118 rs_set_capacity(rs); 4119 4120 mddev_lock_nointr(mddev); 4121 WARN_ON_ONCE(!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)); 4122 WARN_ON_ONCE(rcu_dereference_protected(mddev->sync_thread, 4123 lockdep_is_held(&mddev->reconfig_mutex))); 4124 clear_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags); 4125 mddev->ro = 0; 4126 mddev->in_sync = 0; 4127 md_unfrozen_sync_thread(mddev); 4128 mddev_unlock_and_resume(mddev); 4129 } 4130 } 4131 4132 static struct target_type raid_target = { 4133 .name = "raid", 4134 .version = {1, 15, 1}, 4135 .module = THIS_MODULE, 4136 .ctr = raid_ctr, 4137 .dtr = raid_dtr, 4138 .map = raid_map, 4139 .status = raid_status, 4140 .message = raid_message, 4141 .iterate_devices = raid_iterate_devices, 4142 .io_hints = raid_io_hints, 4143 .presuspend = raid_presuspend, 4144 .presuspend_undo = raid_presuspend_undo, 4145 .postsuspend = raid_postsuspend, 4146 .preresume = raid_preresume, 4147 .resume = raid_resume, 4148 }; 4149 module_dm(raid); 4150 4151 module_param(devices_handle_discard_safely, bool, 0644); 4152 MODULE_PARM_DESC(devices_handle_discard_safely, 4153 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 4154 4155 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target"); 4156 MODULE_ALIAS("dm-raid0"); 4157 MODULE_ALIAS("dm-raid1"); 4158 MODULE_ALIAS("dm-raid10"); 4159 MODULE_ALIAS("dm-raid4"); 4160 MODULE_ALIAS("dm-raid5"); 4161 MODULE_ALIAS("dm-raid6"); 4162 MODULE_AUTHOR("Neil Brown <dm-devel@lists.linux.dev>"); 4163 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@lists.linux.dev>"); 4164 MODULE_LICENSE("GPL"); 4165