1 /* 2 * Copyright (C) 2010-2011 Neil Brown 3 * Copyright (C) 2010-2011 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/slab.h> 9 #include <linux/module.h> 10 11 #include "md.h" 12 #include "raid1.h" 13 #include "raid5.h" 14 #include "bitmap.h" 15 16 #include <linux/device-mapper.h> 17 18 #define DM_MSG_PREFIX "raid" 19 20 /* 21 * The following flags are used by dm-raid.c to set up the array state. 22 * They must be cleared before md_run is called. 23 */ 24 #define FirstUse 10 /* rdev flag */ 25 26 struct raid_dev { 27 /* 28 * Two DM devices, one to hold metadata and one to hold the 29 * actual data/parity. The reason for this is to not confuse 30 * ti->len and give more flexibility in altering size and 31 * characteristics. 32 * 33 * While it is possible for this device to be associated 34 * with a different physical device than the data_dev, it 35 * is intended for it to be the same. 36 * |--------- Physical Device ---------| 37 * |- meta_dev -|------ data_dev ------| 38 */ 39 struct dm_dev *meta_dev; 40 struct dm_dev *data_dev; 41 struct md_rdev rdev; 42 }; 43 44 /* 45 * Flags for rs->print_flags field. 46 */ 47 #define DMPF_SYNC 0x1 48 #define DMPF_NOSYNC 0x2 49 #define DMPF_REBUILD 0x4 50 #define DMPF_DAEMON_SLEEP 0x8 51 #define DMPF_MIN_RECOVERY_RATE 0x10 52 #define DMPF_MAX_RECOVERY_RATE 0x20 53 #define DMPF_MAX_WRITE_BEHIND 0x40 54 #define DMPF_STRIPE_CACHE 0x80 55 #define DMPF_REGION_SIZE 0X100 56 struct raid_set { 57 struct dm_target *ti; 58 59 uint64_t print_flags; 60 61 struct mddev md; 62 struct raid_type *raid_type; 63 struct dm_target_callbacks callbacks; 64 65 struct raid_dev dev[0]; 66 }; 67 68 /* Supported raid types and properties. */ 69 static struct raid_type { 70 const char *name; /* RAID algorithm. */ 71 const char *descr; /* Descriptor text for logging. */ 72 const unsigned parity_devs; /* # of parity devices. */ 73 const unsigned minimal_devs; /* minimal # of devices in set. */ 74 const unsigned level; /* RAID level. */ 75 const unsigned algorithm; /* RAID algorithm. */ 76 } raid_types[] = { 77 {"raid1", "RAID1 (mirroring)", 0, 2, 1, 0 /* NONE */}, 78 {"raid4", "RAID4 (dedicated parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, 79 {"raid5_la", "RAID5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC}, 80 {"raid5_ra", "RAID5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC}, 81 {"raid5_ls", "RAID5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC}, 82 {"raid5_rs", "RAID5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC}, 83 {"raid6_zr", "RAID6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART}, 84 {"raid6_nr", "RAID6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART}, 85 {"raid6_nc", "RAID6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE} 86 }; 87 88 static struct raid_type *get_raid_type(char *name) 89 { 90 int i; 91 92 for (i = 0; i < ARRAY_SIZE(raid_types); i++) 93 if (!strcmp(raid_types[i].name, name)) 94 return &raid_types[i]; 95 96 return NULL; 97 } 98 99 static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs) 100 { 101 unsigned i; 102 struct raid_set *rs; 103 sector_t sectors_per_dev; 104 105 if (raid_devs <= raid_type->parity_devs) { 106 ti->error = "Insufficient number of devices"; 107 return ERR_PTR(-EINVAL); 108 } 109 110 sectors_per_dev = ti->len; 111 if ((raid_type->level > 1) && 112 sector_div(sectors_per_dev, (raid_devs - raid_type->parity_devs))) { 113 ti->error = "Target length not divisible by number of data devices"; 114 return ERR_PTR(-EINVAL); 115 } 116 117 rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL); 118 if (!rs) { 119 ti->error = "Cannot allocate raid context"; 120 return ERR_PTR(-ENOMEM); 121 } 122 123 mddev_init(&rs->md); 124 125 rs->ti = ti; 126 rs->raid_type = raid_type; 127 rs->md.raid_disks = raid_devs; 128 rs->md.level = raid_type->level; 129 rs->md.new_level = rs->md.level; 130 rs->md.dev_sectors = sectors_per_dev; 131 rs->md.layout = raid_type->algorithm; 132 rs->md.new_layout = rs->md.layout; 133 rs->md.delta_disks = 0; 134 rs->md.recovery_cp = 0; 135 136 for (i = 0; i < raid_devs; i++) 137 md_rdev_init(&rs->dev[i].rdev); 138 139 /* 140 * Remaining items to be initialized by further RAID params: 141 * rs->md.persistent 142 * rs->md.external 143 * rs->md.chunk_sectors 144 * rs->md.new_chunk_sectors 145 */ 146 147 return rs; 148 } 149 150 static void context_free(struct raid_set *rs) 151 { 152 int i; 153 154 for (i = 0; i < rs->md.raid_disks; i++) { 155 if (rs->dev[i].meta_dev) 156 dm_put_device(rs->ti, rs->dev[i].meta_dev); 157 if (rs->dev[i].rdev.sb_page) 158 put_page(rs->dev[i].rdev.sb_page); 159 rs->dev[i].rdev.sb_page = NULL; 160 rs->dev[i].rdev.sb_loaded = 0; 161 if (rs->dev[i].data_dev) 162 dm_put_device(rs->ti, rs->dev[i].data_dev); 163 } 164 165 kfree(rs); 166 } 167 168 /* 169 * For every device we have two words 170 * <meta_dev>: meta device name or '-' if missing 171 * <data_dev>: data device name or '-' if missing 172 * 173 * The following are permitted: 174 * - - 175 * - <data_dev> 176 * <meta_dev> <data_dev> 177 * 178 * The following is not allowed: 179 * <meta_dev> - 180 * 181 * This code parses those words. If there is a failure, 182 * the caller must use context_free to unwind the operations. 183 */ 184 static int dev_parms(struct raid_set *rs, char **argv) 185 { 186 int i; 187 int rebuild = 0; 188 int metadata_available = 0; 189 int ret = 0; 190 191 for (i = 0; i < rs->md.raid_disks; i++, argv += 2) { 192 rs->dev[i].rdev.raid_disk = i; 193 194 rs->dev[i].meta_dev = NULL; 195 rs->dev[i].data_dev = NULL; 196 197 /* 198 * There are no offsets, since there is a separate device 199 * for data and metadata. 200 */ 201 rs->dev[i].rdev.data_offset = 0; 202 rs->dev[i].rdev.mddev = &rs->md; 203 204 if (strcmp(argv[0], "-")) { 205 ret = dm_get_device(rs->ti, argv[0], 206 dm_table_get_mode(rs->ti->table), 207 &rs->dev[i].meta_dev); 208 rs->ti->error = "RAID metadata device lookup failure"; 209 if (ret) 210 return ret; 211 212 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL); 213 if (!rs->dev[i].rdev.sb_page) 214 return -ENOMEM; 215 } 216 217 if (!strcmp(argv[1], "-")) { 218 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) && 219 (!rs->dev[i].rdev.recovery_offset)) { 220 rs->ti->error = "Drive designated for rebuild not specified"; 221 return -EINVAL; 222 } 223 224 rs->ti->error = "No data device supplied with metadata device"; 225 if (rs->dev[i].meta_dev) 226 return -EINVAL; 227 228 continue; 229 } 230 231 ret = dm_get_device(rs->ti, argv[1], 232 dm_table_get_mode(rs->ti->table), 233 &rs->dev[i].data_dev); 234 if (ret) { 235 rs->ti->error = "RAID device lookup failure"; 236 return ret; 237 } 238 239 if (rs->dev[i].meta_dev) { 240 metadata_available = 1; 241 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev; 242 } 243 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev; 244 list_add(&rs->dev[i].rdev.same_set, &rs->md.disks); 245 if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) 246 rebuild++; 247 } 248 249 if (metadata_available) { 250 rs->md.external = 0; 251 rs->md.persistent = 1; 252 rs->md.major_version = 2; 253 } else if (rebuild && !rs->md.recovery_cp) { 254 /* 255 * Without metadata, we will not be able to tell if the array 256 * is in-sync or not - we must assume it is not. Therefore, 257 * it is impossible to rebuild a drive. 258 * 259 * Even if there is metadata, the on-disk information may 260 * indicate that the array is not in-sync and it will then 261 * fail at that time. 262 * 263 * User could specify 'nosync' option if desperate. 264 */ 265 DMERR("Unable to rebuild drive while array is not in-sync"); 266 rs->ti->error = "RAID device lookup failure"; 267 return -EINVAL; 268 } 269 270 return 0; 271 } 272 273 /* 274 * validate_region_size 275 * @rs 276 * @region_size: region size in sectors. If 0, pick a size (4MiB default). 277 * 278 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size'). 279 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap. 280 * 281 * Returns: 0 on success, -EINVAL on failure. 282 */ 283 static int validate_region_size(struct raid_set *rs, unsigned long region_size) 284 { 285 unsigned long min_region_size = rs->ti->len / (1 << 21); 286 287 if (!region_size) { 288 /* 289 * Choose a reasonable default. All figures in sectors. 290 */ 291 if (min_region_size > (1 << 13)) { 292 DMINFO("Choosing default region size of %lu sectors", 293 region_size); 294 region_size = min_region_size; 295 } else { 296 DMINFO("Choosing default region size of 4MiB"); 297 region_size = 1 << 13; /* sectors */ 298 } 299 } else { 300 /* 301 * Validate user-supplied value. 302 */ 303 if (region_size > rs->ti->len) { 304 rs->ti->error = "Supplied region size is too large"; 305 return -EINVAL; 306 } 307 308 if (region_size < min_region_size) { 309 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)", 310 region_size, min_region_size); 311 rs->ti->error = "Supplied region size is too small"; 312 return -EINVAL; 313 } 314 315 if (!is_power_of_2(region_size)) { 316 rs->ti->error = "Region size is not a power of 2"; 317 return -EINVAL; 318 } 319 320 if (region_size < rs->md.chunk_sectors) { 321 rs->ti->error = "Region size is smaller than the chunk size"; 322 return -EINVAL; 323 } 324 } 325 326 /* 327 * Convert sectors to bytes. 328 */ 329 rs->md.bitmap_info.chunksize = (region_size << 9); 330 331 return 0; 332 } 333 334 /* 335 * Possible arguments are... 336 * <chunk_size> [optional_args] 337 * 338 * Argument definitions 339 * <chunk_size> The number of sectors per disk that 340 * will form the "stripe" 341 * [[no]sync] Force or prevent recovery of the 342 * entire array 343 * [rebuild <idx>] Rebuild the drive indicated by the index 344 * [daemon_sleep <ms>] Time between bitmap daemon work to 345 * clear bits 346 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization 347 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization 348 * [write_mostly <idx>] Indicate a write mostly drive via index 349 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm) 350 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs 351 * [region_size <sectors>] Defines granularity of bitmap 352 */ 353 static int parse_raid_params(struct raid_set *rs, char **argv, 354 unsigned num_raid_params) 355 { 356 unsigned i, rebuild_cnt = 0; 357 unsigned long value, region_size = 0; 358 char *key; 359 360 /* 361 * First, parse the in-order required arguments 362 * "chunk_size" is the only argument of this type. 363 */ 364 if ((strict_strtoul(argv[0], 10, &value) < 0)) { 365 rs->ti->error = "Bad chunk size"; 366 return -EINVAL; 367 } else if (rs->raid_type->level == 1) { 368 if (value) 369 DMERR("Ignoring chunk size parameter for RAID 1"); 370 value = 0; 371 } else if (!is_power_of_2(value)) { 372 rs->ti->error = "Chunk size must be a power of 2"; 373 return -EINVAL; 374 } else if (value < 8) { 375 rs->ti->error = "Chunk size value is too small"; 376 return -EINVAL; 377 } 378 379 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value; 380 argv++; 381 num_raid_params--; 382 383 /* 384 * We set each individual device as In_sync with a completed 385 * 'recovery_offset'. If there has been a device failure or 386 * replacement then one of the following cases applies: 387 * 388 * 1) User specifies 'rebuild'. 389 * - Device is reset when param is read. 390 * 2) A new device is supplied. 391 * - No matching superblock found, resets device. 392 * 3) Device failure was transient and returns on reload. 393 * - Failure noticed, resets device for bitmap replay. 394 * 4) Device hadn't completed recovery after previous failure. 395 * - Superblock is read and overrides recovery_offset. 396 * 397 * What is found in the superblocks of the devices is always 398 * authoritative, unless 'rebuild' or '[no]sync' was specified. 399 */ 400 for (i = 0; i < rs->md.raid_disks; i++) { 401 set_bit(In_sync, &rs->dev[i].rdev.flags); 402 rs->dev[i].rdev.recovery_offset = MaxSector; 403 } 404 405 /* 406 * Second, parse the unordered optional arguments 407 */ 408 for (i = 0; i < num_raid_params; i++) { 409 if (!strcasecmp(argv[i], "nosync")) { 410 rs->md.recovery_cp = MaxSector; 411 rs->print_flags |= DMPF_NOSYNC; 412 continue; 413 } 414 if (!strcasecmp(argv[i], "sync")) { 415 rs->md.recovery_cp = 0; 416 rs->print_flags |= DMPF_SYNC; 417 continue; 418 } 419 420 /* The rest of the optional arguments come in key/value pairs */ 421 if ((i + 1) >= num_raid_params) { 422 rs->ti->error = "Wrong number of raid parameters given"; 423 return -EINVAL; 424 } 425 426 key = argv[i++]; 427 if (strict_strtoul(argv[i], 10, &value) < 0) { 428 rs->ti->error = "Bad numerical argument given in raid params"; 429 return -EINVAL; 430 } 431 432 if (!strcasecmp(key, "rebuild")) { 433 rebuild_cnt++; 434 if (((rs->raid_type->level != 1) && 435 (rebuild_cnt > rs->raid_type->parity_devs)) || 436 ((rs->raid_type->level == 1) && 437 (rebuild_cnt > (rs->md.raid_disks - 1)))) { 438 rs->ti->error = "Too many rebuild devices specified for given RAID type"; 439 return -EINVAL; 440 } 441 if (value > rs->md.raid_disks) { 442 rs->ti->error = "Invalid rebuild index given"; 443 return -EINVAL; 444 } 445 clear_bit(In_sync, &rs->dev[value].rdev.flags); 446 rs->dev[value].rdev.recovery_offset = 0; 447 rs->print_flags |= DMPF_REBUILD; 448 } else if (!strcasecmp(key, "write_mostly")) { 449 if (rs->raid_type->level != 1) { 450 rs->ti->error = "write_mostly option is only valid for RAID1"; 451 return -EINVAL; 452 } 453 if (value >= rs->md.raid_disks) { 454 rs->ti->error = "Invalid write_mostly drive index given"; 455 return -EINVAL; 456 } 457 set_bit(WriteMostly, &rs->dev[value].rdev.flags); 458 } else if (!strcasecmp(key, "max_write_behind")) { 459 if (rs->raid_type->level != 1) { 460 rs->ti->error = "max_write_behind option is only valid for RAID1"; 461 return -EINVAL; 462 } 463 rs->print_flags |= DMPF_MAX_WRITE_BEHIND; 464 465 /* 466 * In device-mapper, we specify things in sectors, but 467 * MD records this value in kB 468 */ 469 value /= 2; 470 if (value > COUNTER_MAX) { 471 rs->ti->error = "Max write-behind limit out of range"; 472 return -EINVAL; 473 } 474 rs->md.bitmap_info.max_write_behind = value; 475 } else if (!strcasecmp(key, "daemon_sleep")) { 476 rs->print_flags |= DMPF_DAEMON_SLEEP; 477 if (!value || (value > MAX_SCHEDULE_TIMEOUT)) { 478 rs->ti->error = "daemon sleep period out of range"; 479 return -EINVAL; 480 } 481 rs->md.bitmap_info.daemon_sleep = value; 482 } else if (!strcasecmp(key, "stripe_cache")) { 483 rs->print_flags |= DMPF_STRIPE_CACHE; 484 485 /* 486 * In device-mapper, we specify things in sectors, but 487 * MD records this value in kB 488 */ 489 value /= 2; 490 491 if (rs->raid_type->level < 5) { 492 rs->ti->error = "Inappropriate argument: stripe_cache"; 493 return -EINVAL; 494 } 495 if (raid5_set_cache_size(&rs->md, (int)value)) { 496 rs->ti->error = "Bad stripe_cache size"; 497 return -EINVAL; 498 } 499 } else if (!strcasecmp(key, "min_recovery_rate")) { 500 rs->print_flags |= DMPF_MIN_RECOVERY_RATE; 501 if (value > INT_MAX) { 502 rs->ti->error = "min_recovery_rate out of range"; 503 return -EINVAL; 504 } 505 rs->md.sync_speed_min = (int)value; 506 } else if (!strcasecmp(key, "max_recovery_rate")) { 507 rs->print_flags |= DMPF_MAX_RECOVERY_RATE; 508 if (value > INT_MAX) { 509 rs->ti->error = "max_recovery_rate out of range"; 510 return -EINVAL; 511 } 512 rs->md.sync_speed_max = (int)value; 513 } else if (!strcasecmp(key, "region_size")) { 514 rs->print_flags |= DMPF_REGION_SIZE; 515 region_size = value; 516 } else { 517 DMERR("Unable to parse RAID parameter: %s", key); 518 rs->ti->error = "Unable to parse RAID parameters"; 519 return -EINVAL; 520 } 521 } 522 523 if (validate_region_size(rs, region_size)) 524 return -EINVAL; 525 526 if (rs->md.chunk_sectors) 527 rs->ti->split_io = rs->md.chunk_sectors; 528 else 529 rs->ti->split_io = region_size; 530 531 if (rs->md.chunk_sectors) 532 rs->ti->split_io = rs->md.chunk_sectors; 533 else 534 rs->ti->split_io = region_size; 535 536 /* Assume there are no metadata devices until the drives are parsed */ 537 rs->md.persistent = 0; 538 rs->md.external = 1; 539 540 return 0; 541 } 542 543 static void do_table_event(struct work_struct *ws) 544 { 545 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work); 546 547 dm_table_event(rs->ti->table); 548 } 549 550 static int raid_is_congested(struct dm_target_callbacks *cb, int bits) 551 { 552 struct raid_set *rs = container_of(cb, struct raid_set, callbacks); 553 554 if (rs->raid_type->level == 1) 555 return md_raid1_congested(&rs->md, bits); 556 557 return md_raid5_congested(&rs->md, bits); 558 } 559 560 /* 561 * This structure is never routinely used by userspace, unlike md superblocks. 562 * Devices with this superblock should only ever be accessed via device-mapper. 563 */ 564 #define DM_RAID_MAGIC 0x64526D44 565 struct dm_raid_superblock { 566 __le32 magic; /* "DmRd" */ 567 __le32 features; /* Used to indicate possible future changes */ 568 569 __le32 num_devices; /* Number of devices in this array. (Max 64) */ 570 __le32 array_position; /* The position of this drive in the array */ 571 572 __le64 events; /* Incremented by md when superblock updated */ 573 __le64 failed_devices; /* Bit field of devices to indicate failures */ 574 575 /* 576 * This offset tracks the progress of the repair or replacement of 577 * an individual drive. 578 */ 579 __le64 disk_recovery_offset; 580 581 /* 582 * This offset tracks the progress of the initial array 583 * synchronisation/parity calculation. 584 */ 585 __le64 array_resync_offset; 586 587 /* 588 * RAID characteristics 589 */ 590 __le32 level; 591 __le32 layout; 592 __le32 stripe_sectors; 593 594 __u8 pad[452]; /* Round struct to 512 bytes. */ 595 /* Always set to 0 when writing. */ 596 } __packed; 597 598 static int read_disk_sb(struct md_rdev *rdev, int size) 599 { 600 BUG_ON(!rdev->sb_page); 601 602 if (rdev->sb_loaded) 603 return 0; 604 605 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) { 606 DMERR("Failed to read device superblock"); 607 return -EINVAL; 608 } 609 610 rdev->sb_loaded = 1; 611 612 return 0; 613 } 614 615 static void super_sync(struct mddev *mddev, struct md_rdev *rdev) 616 { 617 struct md_rdev *r, *t; 618 uint64_t failed_devices; 619 struct dm_raid_superblock *sb; 620 621 sb = page_address(rdev->sb_page); 622 failed_devices = le64_to_cpu(sb->failed_devices); 623 624 rdev_for_each(r, t, mddev) 625 if ((r->raid_disk >= 0) && test_bit(Faulty, &r->flags)) 626 failed_devices |= (1ULL << r->raid_disk); 627 628 memset(sb, 0, sizeof(*sb)); 629 630 sb->magic = cpu_to_le32(DM_RAID_MAGIC); 631 sb->features = cpu_to_le32(0); /* No features yet */ 632 633 sb->num_devices = cpu_to_le32(mddev->raid_disks); 634 sb->array_position = cpu_to_le32(rdev->raid_disk); 635 636 sb->events = cpu_to_le64(mddev->events); 637 sb->failed_devices = cpu_to_le64(failed_devices); 638 639 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset); 640 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp); 641 642 sb->level = cpu_to_le32(mddev->level); 643 sb->layout = cpu_to_le32(mddev->layout); 644 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors); 645 } 646 647 /* 648 * super_load 649 * 650 * This function creates a superblock if one is not found on the device 651 * and will decide which superblock to use if there's a choice. 652 * 653 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise 654 */ 655 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev) 656 { 657 int ret; 658 struct dm_raid_superblock *sb; 659 struct dm_raid_superblock *refsb; 660 uint64_t events_sb, events_refsb; 661 662 rdev->sb_start = 0; 663 rdev->sb_size = sizeof(*sb); 664 665 ret = read_disk_sb(rdev, rdev->sb_size); 666 if (ret) 667 return ret; 668 669 sb = page_address(rdev->sb_page); 670 if (sb->magic != cpu_to_le32(DM_RAID_MAGIC)) { 671 super_sync(rdev->mddev, rdev); 672 673 set_bit(FirstUse, &rdev->flags); 674 675 /* Force writing of superblocks to disk */ 676 set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags); 677 678 /* Any superblock is better than none, choose that if given */ 679 return refdev ? 0 : 1; 680 } 681 682 if (!refdev) 683 return 1; 684 685 events_sb = le64_to_cpu(sb->events); 686 687 refsb = page_address(refdev->sb_page); 688 events_refsb = le64_to_cpu(refsb->events); 689 690 return (events_sb > events_refsb) ? 1 : 0; 691 } 692 693 static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev) 694 { 695 int role; 696 struct raid_set *rs = container_of(mddev, struct raid_set, md); 697 uint64_t events_sb; 698 uint64_t failed_devices; 699 struct dm_raid_superblock *sb; 700 uint32_t new_devs = 0; 701 uint32_t rebuilds = 0; 702 struct md_rdev *r, *t; 703 struct dm_raid_superblock *sb2; 704 705 sb = page_address(rdev->sb_page); 706 events_sb = le64_to_cpu(sb->events); 707 failed_devices = le64_to_cpu(sb->failed_devices); 708 709 /* 710 * Initialise to 1 if this is a new superblock. 711 */ 712 mddev->events = events_sb ? : 1; 713 714 /* 715 * Reshaping is not currently allowed 716 */ 717 if ((le32_to_cpu(sb->level) != mddev->level) || 718 (le32_to_cpu(sb->layout) != mddev->layout) || 719 (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors)) { 720 DMERR("Reshaping arrays not yet supported."); 721 return -EINVAL; 722 } 723 724 /* We can only change the number of devices in RAID1 right now */ 725 if ((rs->raid_type->level != 1) && 726 (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) { 727 DMERR("Reshaping arrays not yet supported."); 728 return -EINVAL; 729 } 730 731 if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))) 732 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset); 733 734 /* 735 * During load, we set FirstUse if a new superblock was written. 736 * There are two reasons we might not have a superblock: 737 * 1) The array is brand new - in which case, all of the 738 * devices must have their In_sync bit set. Also, 739 * recovery_cp must be 0, unless forced. 740 * 2) This is a new device being added to an old array 741 * and the new device needs to be rebuilt - in which 742 * case the In_sync bit will /not/ be set and 743 * recovery_cp must be MaxSector. 744 */ 745 rdev_for_each(r, t, mddev) { 746 if (!test_bit(In_sync, &r->flags)) { 747 if (!test_bit(FirstUse, &r->flags)) 748 DMERR("Superblock area of " 749 "rebuild device %d should have been " 750 "cleared.", r->raid_disk); 751 set_bit(FirstUse, &r->flags); 752 rebuilds++; 753 } else if (test_bit(FirstUse, &r->flags)) 754 new_devs++; 755 } 756 757 if (!rebuilds) { 758 if (new_devs == mddev->raid_disks) { 759 DMINFO("Superblocks created for new array"); 760 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 761 } else if (new_devs) { 762 DMERR("New device injected " 763 "into existing array without 'rebuild' " 764 "parameter specified"); 765 return -EINVAL; 766 } 767 } else if (new_devs) { 768 DMERR("'rebuild' devices cannot be " 769 "injected into an array with other first-time devices"); 770 return -EINVAL; 771 } else if (mddev->recovery_cp != MaxSector) { 772 DMERR("'rebuild' specified while array is not in-sync"); 773 return -EINVAL; 774 } 775 776 /* 777 * Now we set the Faulty bit for those devices that are 778 * recorded in the superblock as failed. 779 */ 780 rdev_for_each(r, t, mddev) { 781 if (!r->sb_page) 782 continue; 783 sb2 = page_address(r->sb_page); 784 sb2->failed_devices = 0; 785 786 /* 787 * Check for any device re-ordering. 788 */ 789 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) { 790 role = le32_to_cpu(sb2->array_position); 791 if (role != r->raid_disk) { 792 if (rs->raid_type->level != 1) { 793 rs->ti->error = "Cannot change device " 794 "positions in RAID array"; 795 return -EINVAL; 796 } 797 DMINFO("RAID1 device #%d now at position #%d", 798 role, r->raid_disk); 799 } 800 801 /* 802 * Partial recovery is performed on 803 * returning failed devices. 804 */ 805 if (failed_devices & (1 << role)) 806 set_bit(Faulty, &r->flags); 807 } 808 } 809 810 return 0; 811 } 812 813 static int super_validate(struct mddev *mddev, struct md_rdev *rdev) 814 { 815 struct dm_raid_superblock *sb = page_address(rdev->sb_page); 816 817 /* 818 * If mddev->events is not set, we know we have not yet initialized 819 * the array. 820 */ 821 if (!mddev->events && super_init_validation(mddev, rdev)) 822 return -EINVAL; 823 824 mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */ 825 rdev->mddev->bitmap_info.default_offset = 4096 >> 9; 826 if (!test_bit(FirstUse, &rdev->flags)) { 827 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset); 828 if (rdev->recovery_offset != MaxSector) 829 clear_bit(In_sync, &rdev->flags); 830 } 831 832 /* 833 * If a device comes back, set it as not In_sync and no longer faulty. 834 */ 835 if (test_bit(Faulty, &rdev->flags)) { 836 clear_bit(Faulty, &rdev->flags); 837 clear_bit(In_sync, &rdev->flags); 838 rdev->saved_raid_disk = rdev->raid_disk; 839 rdev->recovery_offset = 0; 840 } 841 842 clear_bit(FirstUse, &rdev->flags); 843 844 return 0; 845 } 846 847 /* 848 * Analyse superblocks and select the freshest. 849 */ 850 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs) 851 { 852 int ret; 853 struct md_rdev *rdev, *freshest, *tmp; 854 struct mddev *mddev = &rs->md; 855 856 freshest = NULL; 857 rdev_for_each(rdev, tmp, mddev) { 858 if (!rdev->meta_bdev) 859 continue; 860 861 ret = super_load(rdev, freshest); 862 863 switch (ret) { 864 case 1: 865 freshest = rdev; 866 break; 867 case 0: 868 break; 869 default: 870 ti->error = "Failed to load superblock"; 871 return ret; 872 } 873 } 874 875 if (!freshest) 876 return 0; 877 878 /* 879 * Validation of the freshest device provides the source of 880 * validation for the remaining devices. 881 */ 882 ti->error = "Unable to assemble array: Invalid superblocks"; 883 if (super_validate(mddev, freshest)) 884 return -EINVAL; 885 886 rdev_for_each(rdev, tmp, mddev) 887 if ((rdev != freshest) && super_validate(mddev, rdev)) 888 return -EINVAL; 889 890 return 0; 891 } 892 893 /* 894 * Construct a RAID4/5/6 mapping: 895 * Args: 896 * <raid_type> <#raid_params> <raid_params> \ 897 * <#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> } 898 * 899 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for 900 * details on possible <raid_params>. 901 */ 902 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv) 903 { 904 int ret; 905 struct raid_type *rt; 906 unsigned long num_raid_params, num_raid_devs; 907 struct raid_set *rs = NULL; 908 909 /* Must have at least <raid_type> <#raid_params> */ 910 if (argc < 2) { 911 ti->error = "Too few arguments"; 912 return -EINVAL; 913 } 914 915 /* raid type */ 916 rt = get_raid_type(argv[0]); 917 if (!rt) { 918 ti->error = "Unrecognised raid_type"; 919 return -EINVAL; 920 } 921 argc--; 922 argv++; 923 924 /* number of RAID parameters */ 925 if (strict_strtoul(argv[0], 10, &num_raid_params) < 0) { 926 ti->error = "Cannot understand number of RAID parameters"; 927 return -EINVAL; 928 } 929 argc--; 930 argv++; 931 932 /* Skip over RAID params for now and find out # of devices */ 933 if (num_raid_params + 1 > argc) { 934 ti->error = "Arguments do not agree with counts given"; 935 return -EINVAL; 936 } 937 938 if ((strict_strtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) || 939 (num_raid_devs >= INT_MAX)) { 940 ti->error = "Cannot understand number of raid devices"; 941 return -EINVAL; 942 } 943 944 rs = context_alloc(ti, rt, (unsigned)num_raid_devs); 945 if (IS_ERR(rs)) 946 return PTR_ERR(rs); 947 948 ret = parse_raid_params(rs, argv, (unsigned)num_raid_params); 949 if (ret) 950 goto bad; 951 952 ret = -EINVAL; 953 954 argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */ 955 argv += num_raid_params + 1; 956 957 if (argc != (num_raid_devs * 2)) { 958 ti->error = "Supplied RAID devices does not match the count given"; 959 goto bad; 960 } 961 962 ret = dev_parms(rs, argv); 963 if (ret) 964 goto bad; 965 966 rs->md.sync_super = super_sync; 967 ret = analyse_superblocks(ti, rs); 968 if (ret) 969 goto bad; 970 971 INIT_WORK(&rs->md.event_work, do_table_event); 972 ti->private = rs; 973 974 mutex_lock(&rs->md.reconfig_mutex); 975 ret = md_run(&rs->md); 976 rs->md.in_sync = 0; /* Assume already marked dirty */ 977 mutex_unlock(&rs->md.reconfig_mutex); 978 979 if (ret) { 980 ti->error = "Fail to run raid array"; 981 goto bad; 982 } 983 984 rs->callbacks.congested_fn = raid_is_congested; 985 dm_table_add_target_callbacks(ti->table, &rs->callbacks); 986 987 mddev_suspend(&rs->md); 988 return 0; 989 990 bad: 991 context_free(rs); 992 993 return ret; 994 } 995 996 static void raid_dtr(struct dm_target *ti) 997 { 998 struct raid_set *rs = ti->private; 999 1000 list_del_init(&rs->callbacks.list); 1001 md_stop(&rs->md); 1002 context_free(rs); 1003 } 1004 1005 static int raid_map(struct dm_target *ti, struct bio *bio, union map_info *map_context) 1006 { 1007 struct raid_set *rs = ti->private; 1008 struct mddev *mddev = &rs->md; 1009 1010 mddev->pers->make_request(mddev, bio); 1011 1012 return DM_MAPIO_SUBMITTED; 1013 } 1014 1015 static int raid_status(struct dm_target *ti, status_type_t type, 1016 char *result, unsigned maxlen) 1017 { 1018 struct raid_set *rs = ti->private; 1019 unsigned raid_param_cnt = 1; /* at least 1 for chunksize */ 1020 unsigned sz = 0; 1021 int i, array_in_sync = 0; 1022 sector_t sync; 1023 1024 switch (type) { 1025 case STATUSTYPE_INFO: 1026 DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks); 1027 1028 if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery)) 1029 sync = rs->md.curr_resync_completed; 1030 else 1031 sync = rs->md.recovery_cp; 1032 1033 if (sync >= rs->md.resync_max_sectors) { 1034 array_in_sync = 1; 1035 sync = rs->md.resync_max_sectors; 1036 } else { 1037 /* 1038 * The array may be doing an initial sync, or it may 1039 * be rebuilding individual components. If all the 1040 * devices are In_sync, then it is the array that is 1041 * being initialized. 1042 */ 1043 for (i = 0; i < rs->md.raid_disks; i++) 1044 if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) 1045 array_in_sync = 1; 1046 } 1047 /* 1048 * Status characters: 1049 * 'D' = Dead/Failed device 1050 * 'a' = Alive but not in-sync 1051 * 'A' = Alive and in-sync 1052 */ 1053 for (i = 0; i < rs->md.raid_disks; i++) { 1054 if (test_bit(Faulty, &rs->dev[i].rdev.flags)) 1055 DMEMIT("D"); 1056 else if (!array_in_sync || 1057 !test_bit(In_sync, &rs->dev[i].rdev.flags)) 1058 DMEMIT("a"); 1059 else 1060 DMEMIT("A"); 1061 } 1062 1063 /* 1064 * In-sync ratio: 1065 * The in-sync ratio shows the progress of: 1066 * - Initializing the array 1067 * - Rebuilding a subset of devices of the array 1068 * The user can distinguish between the two by referring 1069 * to the status characters. 1070 */ 1071 DMEMIT(" %llu/%llu", 1072 (unsigned long long) sync, 1073 (unsigned long long) rs->md.resync_max_sectors); 1074 1075 break; 1076 case STATUSTYPE_TABLE: 1077 /* The string you would use to construct this array */ 1078 for (i = 0; i < rs->md.raid_disks; i++) { 1079 if ((rs->print_flags & DMPF_REBUILD) && 1080 rs->dev[i].data_dev && 1081 !test_bit(In_sync, &rs->dev[i].rdev.flags)) 1082 raid_param_cnt += 2; /* for rebuilds */ 1083 if (rs->dev[i].data_dev && 1084 test_bit(WriteMostly, &rs->dev[i].rdev.flags)) 1085 raid_param_cnt += 2; 1086 } 1087 1088 raid_param_cnt += (hweight64(rs->print_flags & ~DMPF_REBUILD) * 2); 1089 if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)) 1090 raid_param_cnt--; 1091 1092 DMEMIT("%s %u %u", rs->raid_type->name, 1093 raid_param_cnt, rs->md.chunk_sectors); 1094 1095 if ((rs->print_flags & DMPF_SYNC) && 1096 (rs->md.recovery_cp == MaxSector)) 1097 DMEMIT(" sync"); 1098 if (rs->print_flags & DMPF_NOSYNC) 1099 DMEMIT(" nosync"); 1100 1101 for (i = 0; i < rs->md.raid_disks; i++) 1102 if ((rs->print_flags & DMPF_REBUILD) && 1103 rs->dev[i].data_dev && 1104 !test_bit(In_sync, &rs->dev[i].rdev.flags)) 1105 DMEMIT(" rebuild %u", i); 1106 1107 if (rs->print_flags & DMPF_DAEMON_SLEEP) 1108 DMEMIT(" daemon_sleep %lu", 1109 rs->md.bitmap_info.daemon_sleep); 1110 1111 if (rs->print_flags & DMPF_MIN_RECOVERY_RATE) 1112 DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min); 1113 1114 if (rs->print_flags & DMPF_MAX_RECOVERY_RATE) 1115 DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max); 1116 1117 for (i = 0; i < rs->md.raid_disks; i++) 1118 if (rs->dev[i].data_dev && 1119 test_bit(WriteMostly, &rs->dev[i].rdev.flags)) 1120 DMEMIT(" write_mostly %u", i); 1121 1122 if (rs->print_flags & DMPF_MAX_WRITE_BEHIND) 1123 DMEMIT(" max_write_behind %lu", 1124 rs->md.bitmap_info.max_write_behind); 1125 1126 if (rs->print_flags & DMPF_STRIPE_CACHE) { 1127 struct r5conf *conf = rs->md.private; 1128 1129 /* convert from kiB to sectors */ 1130 DMEMIT(" stripe_cache %d", 1131 conf ? conf->max_nr_stripes * 2 : 0); 1132 } 1133 1134 if (rs->print_flags & DMPF_REGION_SIZE) 1135 DMEMIT(" region_size %lu", 1136 rs->md.bitmap_info.chunksize >> 9); 1137 1138 DMEMIT(" %d", rs->md.raid_disks); 1139 for (i = 0; i < rs->md.raid_disks; i++) { 1140 if (rs->dev[i].meta_dev) 1141 DMEMIT(" %s", rs->dev[i].meta_dev->name); 1142 else 1143 DMEMIT(" -"); 1144 1145 if (rs->dev[i].data_dev) 1146 DMEMIT(" %s", rs->dev[i].data_dev->name); 1147 else 1148 DMEMIT(" -"); 1149 } 1150 } 1151 1152 return 0; 1153 } 1154 1155 static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data) 1156 { 1157 struct raid_set *rs = ti->private; 1158 unsigned i; 1159 int ret = 0; 1160 1161 for (i = 0; !ret && i < rs->md.raid_disks; i++) 1162 if (rs->dev[i].data_dev) 1163 ret = fn(ti, 1164 rs->dev[i].data_dev, 1165 0, /* No offset on data devs */ 1166 rs->md.dev_sectors, 1167 data); 1168 1169 return ret; 1170 } 1171 1172 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits) 1173 { 1174 struct raid_set *rs = ti->private; 1175 unsigned chunk_size = rs->md.chunk_sectors << 9; 1176 struct r5conf *conf = rs->md.private; 1177 1178 blk_limits_io_min(limits, chunk_size); 1179 blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded)); 1180 } 1181 1182 static void raid_presuspend(struct dm_target *ti) 1183 { 1184 struct raid_set *rs = ti->private; 1185 1186 md_stop_writes(&rs->md); 1187 } 1188 1189 static void raid_postsuspend(struct dm_target *ti) 1190 { 1191 struct raid_set *rs = ti->private; 1192 1193 mddev_suspend(&rs->md); 1194 } 1195 1196 static void raid_resume(struct dm_target *ti) 1197 { 1198 struct raid_set *rs = ti->private; 1199 1200 bitmap_load(&rs->md); 1201 mddev_resume(&rs->md); 1202 } 1203 1204 static struct target_type raid_target = { 1205 .name = "raid", 1206 .version = {1, 1, 0}, 1207 .module = THIS_MODULE, 1208 .ctr = raid_ctr, 1209 .dtr = raid_dtr, 1210 .map = raid_map, 1211 .status = raid_status, 1212 .iterate_devices = raid_iterate_devices, 1213 .io_hints = raid_io_hints, 1214 .presuspend = raid_presuspend, 1215 .postsuspend = raid_postsuspend, 1216 .resume = raid_resume, 1217 }; 1218 1219 static int __init dm_raid_init(void) 1220 { 1221 return dm_register_target(&raid_target); 1222 } 1223 1224 static void __exit dm_raid_exit(void) 1225 { 1226 dm_unregister_target(&raid_target); 1227 } 1228 1229 module_init(dm_raid_init); 1230 module_exit(dm_raid_exit); 1231 1232 MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target"); 1233 MODULE_ALIAS("dm-raid4"); 1234 MODULE_ALIAS("dm-raid5"); 1235 MODULE_ALIAS("dm-raid6"); 1236 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>"); 1237 MODULE_LICENSE("GPL"); 1238