xref: /linux/drivers/md/dm-raid.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2011 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/module.h>
10 
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "bitmap.h"
15 
16 #include <linux/device-mapper.h>
17 
18 #define DM_MSG_PREFIX "raid"
19 
20 /*
21  * The following flags are used by dm-raid.c to set up the array state.
22  * They must be cleared before md_run is called.
23  */
24 #define FirstUse 10             /* rdev flag */
25 
26 struct raid_dev {
27 	/*
28 	 * Two DM devices, one to hold metadata and one to hold the
29 	 * actual data/parity.  The reason for this is to not confuse
30 	 * ti->len and give more flexibility in altering size and
31 	 * characteristics.
32 	 *
33 	 * While it is possible for this device to be associated
34 	 * with a different physical device than the data_dev, it
35 	 * is intended for it to be the same.
36 	 *    |--------- Physical Device ---------|
37 	 *    |- meta_dev -|------ data_dev ------|
38 	 */
39 	struct dm_dev *meta_dev;
40 	struct dm_dev *data_dev;
41 	struct md_rdev rdev;
42 };
43 
44 /*
45  * Flags for rs->print_flags field.
46  */
47 #define DMPF_SYNC              0x1
48 #define DMPF_NOSYNC            0x2
49 #define DMPF_REBUILD           0x4
50 #define DMPF_DAEMON_SLEEP      0x8
51 #define DMPF_MIN_RECOVERY_RATE 0x10
52 #define DMPF_MAX_RECOVERY_RATE 0x20
53 #define DMPF_MAX_WRITE_BEHIND  0x40
54 #define DMPF_STRIPE_CACHE      0x80
55 #define DMPF_REGION_SIZE       0X100
56 struct raid_set {
57 	struct dm_target *ti;
58 
59 	uint64_t print_flags;
60 
61 	struct mddev md;
62 	struct raid_type *raid_type;
63 	struct dm_target_callbacks callbacks;
64 
65 	struct raid_dev dev[0];
66 };
67 
68 /* Supported raid types and properties. */
69 static struct raid_type {
70 	const char *name;		/* RAID algorithm. */
71 	const char *descr;		/* Descriptor text for logging. */
72 	const unsigned parity_devs;	/* # of parity devices. */
73 	const unsigned minimal_devs;	/* minimal # of devices in set. */
74 	const unsigned level;		/* RAID level. */
75 	const unsigned algorithm;	/* RAID algorithm. */
76 } raid_types[] = {
77 	{"raid1",    "RAID1 (mirroring)",               0, 2, 1, 0 /* NONE */},
78 	{"raid4",    "RAID4 (dedicated parity disk)",	1, 2, 5, ALGORITHM_PARITY_0},
79 	{"raid5_la", "RAID5 (left asymmetric)",		1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
80 	{"raid5_ra", "RAID5 (right asymmetric)",	1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
81 	{"raid5_ls", "RAID5 (left symmetric)",		1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
82 	{"raid5_rs", "RAID5 (right symmetric)",		1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
83 	{"raid6_zr", "RAID6 (zero restart)",		2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
84 	{"raid6_nr", "RAID6 (N restart)",		2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
85 	{"raid6_nc", "RAID6 (N continue)",		2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
86 };
87 
88 static struct raid_type *get_raid_type(char *name)
89 {
90 	int i;
91 
92 	for (i = 0; i < ARRAY_SIZE(raid_types); i++)
93 		if (!strcmp(raid_types[i].name, name))
94 			return &raid_types[i];
95 
96 	return NULL;
97 }
98 
99 static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
100 {
101 	unsigned i;
102 	struct raid_set *rs;
103 	sector_t sectors_per_dev;
104 
105 	if (raid_devs <= raid_type->parity_devs) {
106 		ti->error = "Insufficient number of devices";
107 		return ERR_PTR(-EINVAL);
108 	}
109 
110 	sectors_per_dev = ti->len;
111 	if ((raid_type->level > 1) &&
112 	    sector_div(sectors_per_dev, (raid_devs - raid_type->parity_devs))) {
113 		ti->error = "Target length not divisible by number of data devices";
114 		return ERR_PTR(-EINVAL);
115 	}
116 
117 	rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
118 	if (!rs) {
119 		ti->error = "Cannot allocate raid context";
120 		return ERR_PTR(-ENOMEM);
121 	}
122 
123 	mddev_init(&rs->md);
124 
125 	rs->ti = ti;
126 	rs->raid_type = raid_type;
127 	rs->md.raid_disks = raid_devs;
128 	rs->md.level = raid_type->level;
129 	rs->md.new_level = rs->md.level;
130 	rs->md.dev_sectors = sectors_per_dev;
131 	rs->md.layout = raid_type->algorithm;
132 	rs->md.new_layout = rs->md.layout;
133 	rs->md.delta_disks = 0;
134 	rs->md.recovery_cp = 0;
135 
136 	for (i = 0; i < raid_devs; i++)
137 		md_rdev_init(&rs->dev[i].rdev);
138 
139 	/*
140 	 * Remaining items to be initialized by further RAID params:
141 	 *  rs->md.persistent
142 	 *  rs->md.external
143 	 *  rs->md.chunk_sectors
144 	 *  rs->md.new_chunk_sectors
145 	 */
146 
147 	return rs;
148 }
149 
150 static void context_free(struct raid_set *rs)
151 {
152 	int i;
153 
154 	for (i = 0; i < rs->md.raid_disks; i++) {
155 		if (rs->dev[i].meta_dev)
156 			dm_put_device(rs->ti, rs->dev[i].meta_dev);
157 		if (rs->dev[i].rdev.sb_page)
158 			put_page(rs->dev[i].rdev.sb_page);
159 		rs->dev[i].rdev.sb_page = NULL;
160 		rs->dev[i].rdev.sb_loaded = 0;
161 		if (rs->dev[i].data_dev)
162 			dm_put_device(rs->ti, rs->dev[i].data_dev);
163 	}
164 
165 	kfree(rs);
166 }
167 
168 /*
169  * For every device we have two words
170  *  <meta_dev>: meta device name or '-' if missing
171  *  <data_dev>: data device name or '-' if missing
172  *
173  * The following are permitted:
174  *    - -
175  *    - <data_dev>
176  *    <meta_dev> <data_dev>
177  *
178  * The following is not allowed:
179  *    <meta_dev> -
180  *
181  * This code parses those words.  If there is a failure,
182  * the caller must use context_free to unwind the operations.
183  */
184 static int dev_parms(struct raid_set *rs, char **argv)
185 {
186 	int i;
187 	int rebuild = 0;
188 	int metadata_available = 0;
189 	int ret = 0;
190 
191 	for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
192 		rs->dev[i].rdev.raid_disk = i;
193 
194 		rs->dev[i].meta_dev = NULL;
195 		rs->dev[i].data_dev = NULL;
196 
197 		/*
198 		 * There are no offsets, since there is a separate device
199 		 * for data and metadata.
200 		 */
201 		rs->dev[i].rdev.data_offset = 0;
202 		rs->dev[i].rdev.mddev = &rs->md;
203 
204 		if (strcmp(argv[0], "-")) {
205 			ret = dm_get_device(rs->ti, argv[0],
206 					    dm_table_get_mode(rs->ti->table),
207 					    &rs->dev[i].meta_dev);
208 			rs->ti->error = "RAID metadata device lookup failure";
209 			if (ret)
210 				return ret;
211 
212 			rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
213 			if (!rs->dev[i].rdev.sb_page)
214 				return -ENOMEM;
215 		}
216 
217 		if (!strcmp(argv[1], "-")) {
218 			if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
219 			    (!rs->dev[i].rdev.recovery_offset)) {
220 				rs->ti->error = "Drive designated for rebuild not specified";
221 				return -EINVAL;
222 			}
223 
224 			rs->ti->error = "No data device supplied with metadata device";
225 			if (rs->dev[i].meta_dev)
226 				return -EINVAL;
227 
228 			continue;
229 		}
230 
231 		ret = dm_get_device(rs->ti, argv[1],
232 				    dm_table_get_mode(rs->ti->table),
233 				    &rs->dev[i].data_dev);
234 		if (ret) {
235 			rs->ti->error = "RAID device lookup failure";
236 			return ret;
237 		}
238 
239 		if (rs->dev[i].meta_dev) {
240 			metadata_available = 1;
241 			rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
242 		}
243 		rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
244 		list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
245 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
246 			rebuild++;
247 	}
248 
249 	if (metadata_available) {
250 		rs->md.external = 0;
251 		rs->md.persistent = 1;
252 		rs->md.major_version = 2;
253 	} else if (rebuild && !rs->md.recovery_cp) {
254 		/*
255 		 * Without metadata, we will not be able to tell if the array
256 		 * is in-sync or not - we must assume it is not.  Therefore,
257 		 * it is impossible to rebuild a drive.
258 		 *
259 		 * Even if there is metadata, the on-disk information may
260 		 * indicate that the array is not in-sync and it will then
261 		 * fail at that time.
262 		 *
263 		 * User could specify 'nosync' option if desperate.
264 		 */
265 		DMERR("Unable to rebuild drive while array is not in-sync");
266 		rs->ti->error = "RAID device lookup failure";
267 		return -EINVAL;
268 	}
269 
270 	return 0;
271 }
272 
273 /*
274  * validate_region_size
275  * @rs
276  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
277  *
278  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
279  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
280  *
281  * Returns: 0 on success, -EINVAL on failure.
282  */
283 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
284 {
285 	unsigned long min_region_size = rs->ti->len / (1 << 21);
286 
287 	if (!region_size) {
288 		/*
289 		 * Choose a reasonable default.  All figures in sectors.
290 		 */
291 		if (min_region_size > (1 << 13)) {
292 			DMINFO("Choosing default region size of %lu sectors",
293 			       region_size);
294 			region_size = min_region_size;
295 		} else {
296 			DMINFO("Choosing default region size of 4MiB");
297 			region_size = 1 << 13; /* sectors */
298 		}
299 	} else {
300 		/*
301 		 * Validate user-supplied value.
302 		 */
303 		if (region_size > rs->ti->len) {
304 			rs->ti->error = "Supplied region size is too large";
305 			return -EINVAL;
306 		}
307 
308 		if (region_size < min_region_size) {
309 			DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
310 			      region_size, min_region_size);
311 			rs->ti->error = "Supplied region size is too small";
312 			return -EINVAL;
313 		}
314 
315 		if (!is_power_of_2(region_size)) {
316 			rs->ti->error = "Region size is not a power of 2";
317 			return -EINVAL;
318 		}
319 
320 		if (region_size < rs->md.chunk_sectors) {
321 			rs->ti->error = "Region size is smaller than the chunk size";
322 			return -EINVAL;
323 		}
324 	}
325 
326 	/*
327 	 * Convert sectors to bytes.
328 	 */
329 	rs->md.bitmap_info.chunksize = (region_size << 9);
330 
331 	return 0;
332 }
333 
334 /*
335  * Possible arguments are...
336  *	<chunk_size> [optional_args]
337  *
338  * Argument definitions
339  *    <chunk_size>			The number of sectors per disk that
340  *                                      will form the "stripe"
341  *    [[no]sync]			Force or prevent recovery of the
342  *                                      entire array
343  *    [rebuild <idx>]			Rebuild the drive indicated by the index
344  *    [daemon_sleep <ms>]		Time between bitmap daemon work to
345  *                                      clear bits
346  *    [min_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
347  *    [max_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
348  *    [write_mostly <idx>]		Indicate a write mostly drive via index
349  *    [max_write_behind <sectors>]	See '-write-behind=' (man mdadm)
350  *    [stripe_cache <sectors>]		Stripe cache size for higher RAIDs
351  *    [region_size <sectors>]           Defines granularity of bitmap
352  */
353 static int parse_raid_params(struct raid_set *rs, char **argv,
354 			     unsigned num_raid_params)
355 {
356 	unsigned i, rebuild_cnt = 0;
357 	unsigned long value, region_size = 0;
358 	char *key;
359 
360 	/*
361 	 * First, parse the in-order required arguments
362 	 * "chunk_size" is the only argument of this type.
363 	 */
364 	if ((strict_strtoul(argv[0], 10, &value) < 0)) {
365 		rs->ti->error = "Bad chunk size";
366 		return -EINVAL;
367 	} else if (rs->raid_type->level == 1) {
368 		if (value)
369 			DMERR("Ignoring chunk size parameter for RAID 1");
370 		value = 0;
371 	} else if (!is_power_of_2(value)) {
372 		rs->ti->error = "Chunk size must be a power of 2";
373 		return -EINVAL;
374 	} else if (value < 8) {
375 		rs->ti->error = "Chunk size value is too small";
376 		return -EINVAL;
377 	}
378 
379 	rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
380 	argv++;
381 	num_raid_params--;
382 
383 	/*
384 	 * We set each individual device as In_sync with a completed
385 	 * 'recovery_offset'.  If there has been a device failure or
386 	 * replacement then one of the following cases applies:
387 	 *
388 	 *   1) User specifies 'rebuild'.
389 	 *      - Device is reset when param is read.
390 	 *   2) A new device is supplied.
391 	 *      - No matching superblock found, resets device.
392 	 *   3) Device failure was transient and returns on reload.
393 	 *      - Failure noticed, resets device for bitmap replay.
394 	 *   4) Device hadn't completed recovery after previous failure.
395 	 *      - Superblock is read and overrides recovery_offset.
396 	 *
397 	 * What is found in the superblocks of the devices is always
398 	 * authoritative, unless 'rebuild' or '[no]sync' was specified.
399 	 */
400 	for (i = 0; i < rs->md.raid_disks; i++) {
401 		set_bit(In_sync, &rs->dev[i].rdev.flags);
402 		rs->dev[i].rdev.recovery_offset = MaxSector;
403 	}
404 
405 	/*
406 	 * Second, parse the unordered optional arguments
407 	 */
408 	for (i = 0; i < num_raid_params; i++) {
409 		if (!strcasecmp(argv[i], "nosync")) {
410 			rs->md.recovery_cp = MaxSector;
411 			rs->print_flags |= DMPF_NOSYNC;
412 			continue;
413 		}
414 		if (!strcasecmp(argv[i], "sync")) {
415 			rs->md.recovery_cp = 0;
416 			rs->print_flags |= DMPF_SYNC;
417 			continue;
418 		}
419 
420 		/* The rest of the optional arguments come in key/value pairs */
421 		if ((i + 1) >= num_raid_params) {
422 			rs->ti->error = "Wrong number of raid parameters given";
423 			return -EINVAL;
424 		}
425 
426 		key = argv[i++];
427 		if (strict_strtoul(argv[i], 10, &value) < 0) {
428 			rs->ti->error = "Bad numerical argument given in raid params";
429 			return -EINVAL;
430 		}
431 
432 		if (!strcasecmp(key, "rebuild")) {
433 			rebuild_cnt++;
434 			if (((rs->raid_type->level != 1) &&
435 			     (rebuild_cnt > rs->raid_type->parity_devs)) ||
436 			    ((rs->raid_type->level == 1) &&
437 			     (rebuild_cnt > (rs->md.raid_disks - 1)))) {
438 				rs->ti->error = "Too many rebuild devices specified for given RAID type";
439 				return -EINVAL;
440 			}
441 			if (value > rs->md.raid_disks) {
442 				rs->ti->error = "Invalid rebuild index given";
443 				return -EINVAL;
444 			}
445 			clear_bit(In_sync, &rs->dev[value].rdev.flags);
446 			rs->dev[value].rdev.recovery_offset = 0;
447 			rs->print_flags |= DMPF_REBUILD;
448 		} else if (!strcasecmp(key, "write_mostly")) {
449 			if (rs->raid_type->level != 1) {
450 				rs->ti->error = "write_mostly option is only valid for RAID1";
451 				return -EINVAL;
452 			}
453 			if (value >= rs->md.raid_disks) {
454 				rs->ti->error = "Invalid write_mostly drive index given";
455 				return -EINVAL;
456 			}
457 			set_bit(WriteMostly, &rs->dev[value].rdev.flags);
458 		} else if (!strcasecmp(key, "max_write_behind")) {
459 			if (rs->raid_type->level != 1) {
460 				rs->ti->error = "max_write_behind option is only valid for RAID1";
461 				return -EINVAL;
462 			}
463 			rs->print_flags |= DMPF_MAX_WRITE_BEHIND;
464 
465 			/*
466 			 * In device-mapper, we specify things in sectors, but
467 			 * MD records this value in kB
468 			 */
469 			value /= 2;
470 			if (value > COUNTER_MAX) {
471 				rs->ti->error = "Max write-behind limit out of range";
472 				return -EINVAL;
473 			}
474 			rs->md.bitmap_info.max_write_behind = value;
475 		} else if (!strcasecmp(key, "daemon_sleep")) {
476 			rs->print_flags |= DMPF_DAEMON_SLEEP;
477 			if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
478 				rs->ti->error = "daemon sleep period out of range";
479 				return -EINVAL;
480 			}
481 			rs->md.bitmap_info.daemon_sleep = value;
482 		} else if (!strcasecmp(key, "stripe_cache")) {
483 			rs->print_flags |= DMPF_STRIPE_CACHE;
484 
485 			/*
486 			 * In device-mapper, we specify things in sectors, but
487 			 * MD records this value in kB
488 			 */
489 			value /= 2;
490 
491 			if (rs->raid_type->level < 5) {
492 				rs->ti->error = "Inappropriate argument: stripe_cache";
493 				return -EINVAL;
494 			}
495 			if (raid5_set_cache_size(&rs->md, (int)value)) {
496 				rs->ti->error = "Bad stripe_cache size";
497 				return -EINVAL;
498 			}
499 		} else if (!strcasecmp(key, "min_recovery_rate")) {
500 			rs->print_flags |= DMPF_MIN_RECOVERY_RATE;
501 			if (value > INT_MAX) {
502 				rs->ti->error = "min_recovery_rate out of range";
503 				return -EINVAL;
504 			}
505 			rs->md.sync_speed_min = (int)value;
506 		} else if (!strcasecmp(key, "max_recovery_rate")) {
507 			rs->print_flags |= DMPF_MAX_RECOVERY_RATE;
508 			if (value > INT_MAX) {
509 				rs->ti->error = "max_recovery_rate out of range";
510 				return -EINVAL;
511 			}
512 			rs->md.sync_speed_max = (int)value;
513 		} else if (!strcasecmp(key, "region_size")) {
514 			rs->print_flags |= DMPF_REGION_SIZE;
515 			region_size = value;
516 		} else {
517 			DMERR("Unable to parse RAID parameter: %s", key);
518 			rs->ti->error = "Unable to parse RAID parameters";
519 			return -EINVAL;
520 		}
521 	}
522 
523 	if (validate_region_size(rs, region_size))
524 		return -EINVAL;
525 
526 	if (rs->md.chunk_sectors)
527 		rs->ti->split_io = rs->md.chunk_sectors;
528 	else
529 		rs->ti->split_io = region_size;
530 
531 	if (rs->md.chunk_sectors)
532 		rs->ti->split_io = rs->md.chunk_sectors;
533 	else
534 		rs->ti->split_io = region_size;
535 
536 	/* Assume there are no metadata devices until the drives are parsed */
537 	rs->md.persistent = 0;
538 	rs->md.external = 1;
539 
540 	return 0;
541 }
542 
543 static void do_table_event(struct work_struct *ws)
544 {
545 	struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
546 
547 	dm_table_event(rs->ti->table);
548 }
549 
550 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
551 {
552 	struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
553 
554 	if (rs->raid_type->level == 1)
555 		return md_raid1_congested(&rs->md, bits);
556 
557 	return md_raid5_congested(&rs->md, bits);
558 }
559 
560 /*
561  * This structure is never routinely used by userspace, unlike md superblocks.
562  * Devices with this superblock should only ever be accessed via device-mapper.
563  */
564 #define DM_RAID_MAGIC 0x64526D44
565 struct dm_raid_superblock {
566 	__le32 magic;		/* "DmRd" */
567 	__le32 features;	/* Used to indicate possible future changes */
568 
569 	__le32 num_devices;	/* Number of devices in this array. (Max 64) */
570 	__le32 array_position;	/* The position of this drive in the array */
571 
572 	__le64 events;		/* Incremented by md when superblock updated */
573 	__le64 failed_devices;	/* Bit field of devices to indicate failures */
574 
575 	/*
576 	 * This offset tracks the progress of the repair or replacement of
577 	 * an individual drive.
578 	 */
579 	__le64 disk_recovery_offset;
580 
581 	/*
582 	 * This offset tracks the progress of the initial array
583 	 * synchronisation/parity calculation.
584 	 */
585 	__le64 array_resync_offset;
586 
587 	/*
588 	 * RAID characteristics
589 	 */
590 	__le32 level;
591 	__le32 layout;
592 	__le32 stripe_sectors;
593 
594 	__u8 pad[452];		/* Round struct to 512 bytes. */
595 				/* Always set to 0 when writing. */
596 } __packed;
597 
598 static int read_disk_sb(struct md_rdev *rdev, int size)
599 {
600 	BUG_ON(!rdev->sb_page);
601 
602 	if (rdev->sb_loaded)
603 		return 0;
604 
605 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
606 		DMERR("Failed to read device superblock");
607 		return -EINVAL;
608 	}
609 
610 	rdev->sb_loaded = 1;
611 
612 	return 0;
613 }
614 
615 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
616 {
617 	struct md_rdev *r, *t;
618 	uint64_t failed_devices;
619 	struct dm_raid_superblock *sb;
620 
621 	sb = page_address(rdev->sb_page);
622 	failed_devices = le64_to_cpu(sb->failed_devices);
623 
624 	rdev_for_each(r, t, mddev)
625 		if ((r->raid_disk >= 0) && test_bit(Faulty, &r->flags))
626 			failed_devices |= (1ULL << r->raid_disk);
627 
628 	memset(sb, 0, sizeof(*sb));
629 
630 	sb->magic = cpu_to_le32(DM_RAID_MAGIC);
631 	sb->features = cpu_to_le32(0);	/* No features yet */
632 
633 	sb->num_devices = cpu_to_le32(mddev->raid_disks);
634 	sb->array_position = cpu_to_le32(rdev->raid_disk);
635 
636 	sb->events = cpu_to_le64(mddev->events);
637 	sb->failed_devices = cpu_to_le64(failed_devices);
638 
639 	sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
640 	sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
641 
642 	sb->level = cpu_to_le32(mddev->level);
643 	sb->layout = cpu_to_le32(mddev->layout);
644 	sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
645 }
646 
647 /*
648  * super_load
649  *
650  * This function creates a superblock if one is not found on the device
651  * and will decide which superblock to use if there's a choice.
652  *
653  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
654  */
655 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
656 {
657 	int ret;
658 	struct dm_raid_superblock *sb;
659 	struct dm_raid_superblock *refsb;
660 	uint64_t events_sb, events_refsb;
661 
662 	rdev->sb_start = 0;
663 	rdev->sb_size = sizeof(*sb);
664 
665 	ret = read_disk_sb(rdev, rdev->sb_size);
666 	if (ret)
667 		return ret;
668 
669 	sb = page_address(rdev->sb_page);
670 	if (sb->magic != cpu_to_le32(DM_RAID_MAGIC)) {
671 		super_sync(rdev->mddev, rdev);
672 
673 		set_bit(FirstUse, &rdev->flags);
674 
675 		/* Force writing of superblocks to disk */
676 		set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
677 
678 		/* Any superblock is better than none, choose that if given */
679 		return refdev ? 0 : 1;
680 	}
681 
682 	if (!refdev)
683 		return 1;
684 
685 	events_sb = le64_to_cpu(sb->events);
686 
687 	refsb = page_address(refdev->sb_page);
688 	events_refsb = le64_to_cpu(refsb->events);
689 
690 	return (events_sb > events_refsb) ? 1 : 0;
691 }
692 
693 static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev)
694 {
695 	int role;
696 	struct raid_set *rs = container_of(mddev, struct raid_set, md);
697 	uint64_t events_sb;
698 	uint64_t failed_devices;
699 	struct dm_raid_superblock *sb;
700 	uint32_t new_devs = 0;
701 	uint32_t rebuilds = 0;
702 	struct md_rdev *r, *t;
703 	struct dm_raid_superblock *sb2;
704 
705 	sb = page_address(rdev->sb_page);
706 	events_sb = le64_to_cpu(sb->events);
707 	failed_devices = le64_to_cpu(sb->failed_devices);
708 
709 	/*
710 	 * Initialise to 1 if this is a new superblock.
711 	 */
712 	mddev->events = events_sb ? : 1;
713 
714 	/*
715 	 * Reshaping is not currently allowed
716 	 */
717 	if ((le32_to_cpu(sb->level) != mddev->level) ||
718 	    (le32_to_cpu(sb->layout) != mddev->layout) ||
719 	    (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors)) {
720 		DMERR("Reshaping arrays not yet supported.");
721 		return -EINVAL;
722 	}
723 
724 	/* We can only change the number of devices in RAID1 right now */
725 	if ((rs->raid_type->level != 1) &&
726 	    (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
727 		DMERR("Reshaping arrays not yet supported.");
728 		return -EINVAL;
729 	}
730 
731 	if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)))
732 		mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
733 
734 	/*
735 	 * During load, we set FirstUse if a new superblock was written.
736 	 * There are two reasons we might not have a superblock:
737 	 * 1) The array is brand new - in which case, all of the
738 	 *    devices must have their In_sync bit set.  Also,
739 	 *    recovery_cp must be 0, unless forced.
740 	 * 2) This is a new device being added to an old array
741 	 *    and the new device needs to be rebuilt - in which
742 	 *    case the In_sync bit will /not/ be set and
743 	 *    recovery_cp must be MaxSector.
744 	 */
745 	rdev_for_each(r, t, mddev) {
746 		if (!test_bit(In_sync, &r->flags)) {
747 			if (!test_bit(FirstUse, &r->flags))
748 				DMERR("Superblock area of "
749 				      "rebuild device %d should have been "
750 				      "cleared.", r->raid_disk);
751 			set_bit(FirstUse, &r->flags);
752 			rebuilds++;
753 		} else if (test_bit(FirstUse, &r->flags))
754 			new_devs++;
755 	}
756 
757 	if (!rebuilds) {
758 		if (new_devs == mddev->raid_disks) {
759 			DMINFO("Superblocks created for new array");
760 			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
761 		} else if (new_devs) {
762 			DMERR("New device injected "
763 			      "into existing array without 'rebuild' "
764 			      "parameter specified");
765 			return -EINVAL;
766 		}
767 	} else if (new_devs) {
768 		DMERR("'rebuild' devices cannot be "
769 		      "injected into an array with other first-time devices");
770 		return -EINVAL;
771 	} else if (mddev->recovery_cp != MaxSector) {
772 		DMERR("'rebuild' specified while array is not in-sync");
773 		return -EINVAL;
774 	}
775 
776 	/*
777 	 * Now we set the Faulty bit for those devices that are
778 	 * recorded in the superblock as failed.
779 	 */
780 	rdev_for_each(r, t, mddev) {
781 		if (!r->sb_page)
782 			continue;
783 		sb2 = page_address(r->sb_page);
784 		sb2->failed_devices = 0;
785 
786 		/*
787 		 * Check for any device re-ordering.
788 		 */
789 		if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
790 			role = le32_to_cpu(sb2->array_position);
791 			if (role != r->raid_disk) {
792 				if (rs->raid_type->level != 1) {
793 					rs->ti->error = "Cannot change device "
794 						"positions in RAID array";
795 					return -EINVAL;
796 				}
797 				DMINFO("RAID1 device #%d now at position #%d",
798 				       role, r->raid_disk);
799 			}
800 
801 			/*
802 			 * Partial recovery is performed on
803 			 * returning failed devices.
804 			 */
805 			if (failed_devices & (1 << role))
806 				set_bit(Faulty, &r->flags);
807 		}
808 	}
809 
810 	return 0;
811 }
812 
813 static int super_validate(struct mddev *mddev, struct md_rdev *rdev)
814 {
815 	struct dm_raid_superblock *sb = page_address(rdev->sb_page);
816 
817 	/*
818 	 * If mddev->events is not set, we know we have not yet initialized
819 	 * the array.
820 	 */
821 	if (!mddev->events && super_init_validation(mddev, rdev))
822 		return -EINVAL;
823 
824 	mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */
825 	rdev->mddev->bitmap_info.default_offset = 4096 >> 9;
826 	if (!test_bit(FirstUse, &rdev->flags)) {
827 		rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
828 		if (rdev->recovery_offset != MaxSector)
829 			clear_bit(In_sync, &rdev->flags);
830 	}
831 
832 	/*
833 	 * If a device comes back, set it as not In_sync and no longer faulty.
834 	 */
835 	if (test_bit(Faulty, &rdev->flags)) {
836 		clear_bit(Faulty, &rdev->flags);
837 		clear_bit(In_sync, &rdev->flags);
838 		rdev->saved_raid_disk = rdev->raid_disk;
839 		rdev->recovery_offset = 0;
840 	}
841 
842 	clear_bit(FirstUse, &rdev->flags);
843 
844 	return 0;
845 }
846 
847 /*
848  * Analyse superblocks and select the freshest.
849  */
850 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
851 {
852 	int ret;
853 	struct md_rdev *rdev, *freshest, *tmp;
854 	struct mddev *mddev = &rs->md;
855 
856 	freshest = NULL;
857 	rdev_for_each(rdev, tmp, mddev) {
858 		if (!rdev->meta_bdev)
859 			continue;
860 
861 		ret = super_load(rdev, freshest);
862 
863 		switch (ret) {
864 		case 1:
865 			freshest = rdev;
866 			break;
867 		case 0:
868 			break;
869 		default:
870 			ti->error = "Failed to load superblock";
871 			return ret;
872 		}
873 	}
874 
875 	if (!freshest)
876 		return 0;
877 
878 	/*
879 	 * Validation of the freshest device provides the source of
880 	 * validation for the remaining devices.
881 	 */
882 	ti->error = "Unable to assemble array: Invalid superblocks";
883 	if (super_validate(mddev, freshest))
884 		return -EINVAL;
885 
886 	rdev_for_each(rdev, tmp, mddev)
887 		if ((rdev != freshest) && super_validate(mddev, rdev))
888 			return -EINVAL;
889 
890 	return 0;
891 }
892 
893 /*
894  * Construct a RAID4/5/6 mapping:
895  * Args:
896  *	<raid_type> <#raid_params> <raid_params>		\
897  *	<#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
898  *
899  * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
900  * details on possible <raid_params>.
901  */
902 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
903 {
904 	int ret;
905 	struct raid_type *rt;
906 	unsigned long num_raid_params, num_raid_devs;
907 	struct raid_set *rs = NULL;
908 
909 	/* Must have at least <raid_type> <#raid_params> */
910 	if (argc < 2) {
911 		ti->error = "Too few arguments";
912 		return -EINVAL;
913 	}
914 
915 	/* raid type */
916 	rt = get_raid_type(argv[0]);
917 	if (!rt) {
918 		ti->error = "Unrecognised raid_type";
919 		return -EINVAL;
920 	}
921 	argc--;
922 	argv++;
923 
924 	/* number of RAID parameters */
925 	if (strict_strtoul(argv[0], 10, &num_raid_params) < 0) {
926 		ti->error = "Cannot understand number of RAID parameters";
927 		return -EINVAL;
928 	}
929 	argc--;
930 	argv++;
931 
932 	/* Skip over RAID params for now and find out # of devices */
933 	if (num_raid_params + 1 > argc) {
934 		ti->error = "Arguments do not agree with counts given";
935 		return -EINVAL;
936 	}
937 
938 	if ((strict_strtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
939 	    (num_raid_devs >= INT_MAX)) {
940 		ti->error = "Cannot understand number of raid devices";
941 		return -EINVAL;
942 	}
943 
944 	rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
945 	if (IS_ERR(rs))
946 		return PTR_ERR(rs);
947 
948 	ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
949 	if (ret)
950 		goto bad;
951 
952 	ret = -EINVAL;
953 
954 	argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
955 	argv += num_raid_params + 1;
956 
957 	if (argc != (num_raid_devs * 2)) {
958 		ti->error = "Supplied RAID devices does not match the count given";
959 		goto bad;
960 	}
961 
962 	ret = dev_parms(rs, argv);
963 	if (ret)
964 		goto bad;
965 
966 	rs->md.sync_super = super_sync;
967 	ret = analyse_superblocks(ti, rs);
968 	if (ret)
969 		goto bad;
970 
971 	INIT_WORK(&rs->md.event_work, do_table_event);
972 	ti->private = rs;
973 
974 	mutex_lock(&rs->md.reconfig_mutex);
975 	ret = md_run(&rs->md);
976 	rs->md.in_sync = 0; /* Assume already marked dirty */
977 	mutex_unlock(&rs->md.reconfig_mutex);
978 
979 	if (ret) {
980 		ti->error = "Fail to run raid array";
981 		goto bad;
982 	}
983 
984 	rs->callbacks.congested_fn = raid_is_congested;
985 	dm_table_add_target_callbacks(ti->table, &rs->callbacks);
986 
987 	mddev_suspend(&rs->md);
988 	return 0;
989 
990 bad:
991 	context_free(rs);
992 
993 	return ret;
994 }
995 
996 static void raid_dtr(struct dm_target *ti)
997 {
998 	struct raid_set *rs = ti->private;
999 
1000 	list_del_init(&rs->callbacks.list);
1001 	md_stop(&rs->md);
1002 	context_free(rs);
1003 }
1004 
1005 static int raid_map(struct dm_target *ti, struct bio *bio, union map_info *map_context)
1006 {
1007 	struct raid_set *rs = ti->private;
1008 	struct mddev *mddev = &rs->md;
1009 
1010 	mddev->pers->make_request(mddev, bio);
1011 
1012 	return DM_MAPIO_SUBMITTED;
1013 }
1014 
1015 static int raid_status(struct dm_target *ti, status_type_t type,
1016 		       char *result, unsigned maxlen)
1017 {
1018 	struct raid_set *rs = ti->private;
1019 	unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
1020 	unsigned sz = 0;
1021 	int i, array_in_sync = 0;
1022 	sector_t sync;
1023 
1024 	switch (type) {
1025 	case STATUSTYPE_INFO:
1026 		DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
1027 
1028 		if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
1029 			sync = rs->md.curr_resync_completed;
1030 		else
1031 			sync = rs->md.recovery_cp;
1032 
1033 		if (sync >= rs->md.resync_max_sectors) {
1034 			array_in_sync = 1;
1035 			sync = rs->md.resync_max_sectors;
1036 		} else {
1037 			/*
1038 			 * The array may be doing an initial sync, or it may
1039 			 * be rebuilding individual components.  If all the
1040 			 * devices are In_sync, then it is the array that is
1041 			 * being initialized.
1042 			 */
1043 			for (i = 0; i < rs->md.raid_disks; i++)
1044 				if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
1045 					array_in_sync = 1;
1046 		}
1047 		/*
1048 		 * Status characters:
1049 		 *  'D' = Dead/Failed device
1050 		 *  'a' = Alive but not in-sync
1051 		 *  'A' = Alive and in-sync
1052 		 */
1053 		for (i = 0; i < rs->md.raid_disks; i++) {
1054 			if (test_bit(Faulty, &rs->dev[i].rdev.flags))
1055 				DMEMIT("D");
1056 			else if (!array_in_sync ||
1057 				 !test_bit(In_sync, &rs->dev[i].rdev.flags))
1058 				DMEMIT("a");
1059 			else
1060 				DMEMIT("A");
1061 		}
1062 
1063 		/*
1064 		 * In-sync ratio:
1065 		 *  The in-sync ratio shows the progress of:
1066 		 *   - Initializing the array
1067 		 *   - Rebuilding a subset of devices of the array
1068 		 *  The user can distinguish between the two by referring
1069 		 *  to the status characters.
1070 		 */
1071 		DMEMIT(" %llu/%llu",
1072 		       (unsigned long long) sync,
1073 		       (unsigned long long) rs->md.resync_max_sectors);
1074 
1075 		break;
1076 	case STATUSTYPE_TABLE:
1077 		/* The string you would use to construct this array */
1078 		for (i = 0; i < rs->md.raid_disks; i++) {
1079 			if ((rs->print_flags & DMPF_REBUILD) &&
1080 			    rs->dev[i].data_dev &&
1081 			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
1082 				raid_param_cnt += 2; /* for rebuilds */
1083 			if (rs->dev[i].data_dev &&
1084 			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1085 				raid_param_cnt += 2;
1086 		}
1087 
1088 		raid_param_cnt += (hweight64(rs->print_flags & ~DMPF_REBUILD) * 2);
1089 		if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))
1090 			raid_param_cnt--;
1091 
1092 		DMEMIT("%s %u %u", rs->raid_type->name,
1093 		       raid_param_cnt, rs->md.chunk_sectors);
1094 
1095 		if ((rs->print_flags & DMPF_SYNC) &&
1096 		    (rs->md.recovery_cp == MaxSector))
1097 			DMEMIT(" sync");
1098 		if (rs->print_flags & DMPF_NOSYNC)
1099 			DMEMIT(" nosync");
1100 
1101 		for (i = 0; i < rs->md.raid_disks; i++)
1102 			if ((rs->print_flags & DMPF_REBUILD) &&
1103 			    rs->dev[i].data_dev &&
1104 			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
1105 				DMEMIT(" rebuild %u", i);
1106 
1107 		if (rs->print_flags & DMPF_DAEMON_SLEEP)
1108 			DMEMIT(" daemon_sleep %lu",
1109 			       rs->md.bitmap_info.daemon_sleep);
1110 
1111 		if (rs->print_flags & DMPF_MIN_RECOVERY_RATE)
1112 			DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
1113 
1114 		if (rs->print_flags & DMPF_MAX_RECOVERY_RATE)
1115 			DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
1116 
1117 		for (i = 0; i < rs->md.raid_disks; i++)
1118 			if (rs->dev[i].data_dev &&
1119 			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1120 				DMEMIT(" write_mostly %u", i);
1121 
1122 		if (rs->print_flags & DMPF_MAX_WRITE_BEHIND)
1123 			DMEMIT(" max_write_behind %lu",
1124 			       rs->md.bitmap_info.max_write_behind);
1125 
1126 		if (rs->print_flags & DMPF_STRIPE_CACHE) {
1127 			struct r5conf *conf = rs->md.private;
1128 
1129 			/* convert from kiB to sectors */
1130 			DMEMIT(" stripe_cache %d",
1131 			       conf ? conf->max_nr_stripes * 2 : 0);
1132 		}
1133 
1134 		if (rs->print_flags & DMPF_REGION_SIZE)
1135 			DMEMIT(" region_size %lu",
1136 			       rs->md.bitmap_info.chunksize >> 9);
1137 
1138 		DMEMIT(" %d", rs->md.raid_disks);
1139 		for (i = 0; i < rs->md.raid_disks; i++) {
1140 			if (rs->dev[i].meta_dev)
1141 				DMEMIT(" %s", rs->dev[i].meta_dev->name);
1142 			else
1143 				DMEMIT(" -");
1144 
1145 			if (rs->dev[i].data_dev)
1146 				DMEMIT(" %s", rs->dev[i].data_dev->name);
1147 			else
1148 				DMEMIT(" -");
1149 		}
1150 	}
1151 
1152 	return 0;
1153 }
1154 
1155 static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data)
1156 {
1157 	struct raid_set *rs = ti->private;
1158 	unsigned i;
1159 	int ret = 0;
1160 
1161 	for (i = 0; !ret && i < rs->md.raid_disks; i++)
1162 		if (rs->dev[i].data_dev)
1163 			ret = fn(ti,
1164 				 rs->dev[i].data_dev,
1165 				 0, /* No offset on data devs */
1166 				 rs->md.dev_sectors,
1167 				 data);
1168 
1169 	return ret;
1170 }
1171 
1172 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
1173 {
1174 	struct raid_set *rs = ti->private;
1175 	unsigned chunk_size = rs->md.chunk_sectors << 9;
1176 	struct r5conf *conf = rs->md.private;
1177 
1178 	blk_limits_io_min(limits, chunk_size);
1179 	blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
1180 }
1181 
1182 static void raid_presuspend(struct dm_target *ti)
1183 {
1184 	struct raid_set *rs = ti->private;
1185 
1186 	md_stop_writes(&rs->md);
1187 }
1188 
1189 static void raid_postsuspend(struct dm_target *ti)
1190 {
1191 	struct raid_set *rs = ti->private;
1192 
1193 	mddev_suspend(&rs->md);
1194 }
1195 
1196 static void raid_resume(struct dm_target *ti)
1197 {
1198 	struct raid_set *rs = ti->private;
1199 
1200 	bitmap_load(&rs->md);
1201 	mddev_resume(&rs->md);
1202 }
1203 
1204 static struct target_type raid_target = {
1205 	.name = "raid",
1206 	.version = {1, 1, 0},
1207 	.module = THIS_MODULE,
1208 	.ctr = raid_ctr,
1209 	.dtr = raid_dtr,
1210 	.map = raid_map,
1211 	.status = raid_status,
1212 	.iterate_devices = raid_iterate_devices,
1213 	.io_hints = raid_io_hints,
1214 	.presuspend = raid_presuspend,
1215 	.postsuspend = raid_postsuspend,
1216 	.resume = raid_resume,
1217 };
1218 
1219 static int __init dm_raid_init(void)
1220 {
1221 	return dm_register_target(&raid_target);
1222 }
1223 
1224 static void __exit dm_raid_exit(void)
1225 {
1226 	dm_unregister_target(&raid_target);
1227 }
1228 
1229 module_init(dm_raid_init);
1230 module_exit(dm_raid_exit);
1231 
1232 MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
1233 MODULE_ALIAS("dm-raid4");
1234 MODULE_ALIAS("dm-raid5");
1235 MODULE_ALIAS("dm-raid6");
1236 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
1237 MODULE_LICENSE("GPL");
1238