1 /* 2 * Copyright (C) 2010-2011 Neil Brown 3 * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/slab.h> 9 #include <linux/module.h> 10 11 #include "md.h" 12 #include "raid1.h" 13 #include "raid5.h" 14 #include "raid10.h" 15 #include "md-bitmap.h" 16 17 #include <linux/device-mapper.h> 18 19 #define DM_MSG_PREFIX "raid" 20 #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */ 21 22 /* 23 * Minimum sectors of free reshape space per raid device 24 */ 25 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096) 26 27 /* 28 * Minimum journal space 4 MiB in sectors. 29 */ 30 #define MIN_RAID456_JOURNAL_SPACE (4*2048) 31 32 static bool devices_handle_discard_safely = false; 33 34 /* 35 * The following flags are used by dm-raid.c to set up the array state. 36 * They must be cleared before md_run is called. 37 */ 38 #define FirstUse 10 /* rdev flag */ 39 40 struct raid_dev { 41 /* 42 * Two DM devices, one to hold metadata and one to hold the 43 * actual data/parity. The reason for this is to not confuse 44 * ti->len and give more flexibility in altering size and 45 * characteristics. 46 * 47 * While it is possible for this device to be associated 48 * with a different physical device than the data_dev, it 49 * is intended for it to be the same. 50 * |--------- Physical Device ---------| 51 * |- meta_dev -|------ data_dev ------| 52 */ 53 struct dm_dev *meta_dev; 54 struct dm_dev *data_dev; 55 struct md_rdev rdev; 56 }; 57 58 /* 59 * Bits for establishing rs->ctr_flags 60 * 61 * 1 = no flag value 62 * 2 = flag with value 63 */ 64 #define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */ 65 #define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */ 66 #define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */ 67 #define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */ 68 #define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */ 69 #define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */ 70 #define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */ 71 #define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */ 72 #define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */ 73 #define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */ 74 #define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */ 75 #define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */ 76 /* New for v1.9.0 */ 77 #define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */ 78 #define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */ 79 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */ 80 81 /* New for v1.10.0 */ 82 #define __CTR_FLAG_JOURNAL_DEV 15 /* 2 */ /* Only with raid4/5/6 (journal device)! */ 83 84 /* New for v1.11.1 */ 85 #define __CTR_FLAG_JOURNAL_MODE 16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */ 86 87 /* 88 * Flags for rs->ctr_flags field. 89 */ 90 #define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC) 91 #define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC) 92 #define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD) 93 #define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP) 94 #define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE) 95 #define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE) 96 #define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND) 97 #define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY) 98 #define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE) 99 #define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE) 100 #define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES) 101 #define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT) 102 #define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS) 103 #define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET) 104 #define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS) 105 #define CTR_FLAG_JOURNAL_DEV (1 << __CTR_FLAG_JOURNAL_DEV) 106 #define CTR_FLAG_JOURNAL_MODE (1 << __CTR_FLAG_JOURNAL_MODE) 107 108 /* 109 * Definitions of various constructor flags to 110 * be used in checks of valid / invalid flags 111 * per raid level. 112 */ 113 /* Define all any sync flags */ 114 #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC) 115 116 /* Define flags for options without argument (e.g. 'nosync') */ 117 #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \ 118 CTR_FLAG_RAID10_USE_NEAR_SETS) 119 120 /* Define flags for options with one argument (e.g. 'delta_disks +2') */ 121 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \ 122 CTR_FLAG_WRITE_MOSTLY | \ 123 CTR_FLAG_DAEMON_SLEEP | \ 124 CTR_FLAG_MIN_RECOVERY_RATE | \ 125 CTR_FLAG_MAX_RECOVERY_RATE | \ 126 CTR_FLAG_MAX_WRITE_BEHIND | \ 127 CTR_FLAG_STRIPE_CACHE | \ 128 CTR_FLAG_REGION_SIZE | \ 129 CTR_FLAG_RAID10_COPIES | \ 130 CTR_FLAG_RAID10_FORMAT | \ 131 CTR_FLAG_DELTA_DISKS | \ 132 CTR_FLAG_DATA_OFFSET | \ 133 CTR_FLAG_JOURNAL_DEV | \ 134 CTR_FLAG_JOURNAL_MODE) 135 136 /* Valid options definitions per raid level... */ 137 138 /* "raid0" does only accept data offset */ 139 #define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET) 140 141 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */ 142 #define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 143 CTR_FLAG_REBUILD | \ 144 CTR_FLAG_WRITE_MOSTLY | \ 145 CTR_FLAG_DAEMON_SLEEP | \ 146 CTR_FLAG_MIN_RECOVERY_RATE | \ 147 CTR_FLAG_MAX_RECOVERY_RATE | \ 148 CTR_FLAG_MAX_WRITE_BEHIND | \ 149 CTR_FLAG_REGION_SIZE | \ 150 CTR_FLAG_DELTA_DISKS | \ 151 CTR_FLAG_DATA_OFFSET) 152 153 /* "raid10" does not accept any raid1 or stripe cache options */ 154 #define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 155 CTR_FLAG_REBUILD | \ 156 CTR_FLAG_DAEMON_SLEEP | \ 157 CTR_FLAG_MIN_RECOVERY_RATE | \ 158 CTR_FLAG_MAX_RECOVERY_RATE | \ 159 CTR_FLAG_REGION_SIZE | \ 160 CTR_FLAG_RAID10_COPIES | \ 161 CTR_FLAG_RAID10_FORMAT | \ 162 CTR_FLAG_DELTA_DISKS | \ 163 CTR_FLAG_DATA_OFFSET | \ 164 CTR_FLAG_RAID10_USE_NEAR_SETS) 165 166 /* 167 * "raid4/5/6" do not accept any raid1 or raid10 specific options 168 * 169 * "raid6" does not accept "nosync", because it is not guaranteed 170 * that both parity and q-syndrome are being written properly with 171 * any writes 172 */ 173 #define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 174 CTR_FLAG_REBUILD | \ 175 CTR_FLAG_DAEMON_SLEEP | \ 176 CTR_FLAG_MIN_RECOVERY_RATE | \ 177 CTR_FLAG_MAX_RECOVERY_RATE | \ 178 CTR_FLAG_STRIPE_CACHE | \ 179 CTR_FLAG_REGION_SIZE | \ 180 CTR_FLAG_DELTA_DISKS | \ 181 CTR_FLAG_DATA_OFFSET | \ 182 CTR_FLAG_JOURNAL_DEV | \ 183 CTR_FLAG_JOURNAL_MODE) 184 185 #define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \ 186 CTR_FLAG_REBUILD | \ 187 CTR_FLAG_DAEMON_SLEEP | \ 188 CTR_FLAG_MIN_RECOVERY_RATE | \ 189 CTR_FLAG_MAX_RECOVERY_RATE | \ 190 CTR_FLAG_STRIPE_CACHE | \ 191 CTR_FLAG_REGION_SIZE | \ 192 CTR_FLAG_DELTA_DISKS | \ 193 CTR_FLAG_DATA_OFFSET | \ 194 CTR_FLAG_JOURNAL_DEV | \ 195 CTR_FLAG_JOURNAL_MODE) 196 /* ...valid options definitions per raid level */ 197 198 /* 199 * Flags for rs->runtime_flags field 200 * (RT_FLAG prefix meaning "runtime flag") 201 * 202 * These are all internal and used to define runtime state, 203 * e.g. to prevent another resume from preresume processing 204 * the raid set all over again. 205 */ 206 #define RT_FLAG_RS_PRERESUMED 0 207 #define RT_FLAG_RS_RESUMED 1 208 #define RT_FLAG_RS_BITMAP_LOADED 2 209 #define RT_FLAG_UPDATE_SBS 3 210 #define RT_FLAG_RESHAPE_RS 4 211 #define RT_FLAG_RS_SUSPENDED 5 212 #define RT_FLAG_RS_IN_SYNC 6 213 #define RT_FLAG_RS_RESYNCING 7 214 #define RT_FLAG_RS_GROW 8 215 216 /* Array elements of 64 bit needed for rebuild/failed disk bits */ 217 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8) 218 219 /* 220 * raid set level, layout and chunk sectors backup/restore 221 */ 222 struct rs_layout { 223 int new_level; 224 int new_layout; 225 int new_chunk_sectors; 226 }; 227 228 struct raid_set { 229 struct dm_target *ti; 230 231 uint32_t stripe_cache_entries; 232 unsigned long ctr_flags; 233 unsigned long runtime_flags; 234 235 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS]; 236 237 int raid_disks; 238 int delta_disks; 239 int data_offset; 240 int raid10_copies; 241 int requested_bitmap_chunk_sectors; 242 243 struct mddev md; 244 struct raid_type *raid_type; 245 246 sector_t array_sectors; 247 sector_t dev_sectors; 248 249 /* Optional raid4/5/6 journal device */ 250 struct journal_dev { 251 struct dm_dev *dev; 252 struct md_rdev rdev; 253 int mode; 254 } journal_dev; 255 256 struct raid_dev dev[]; 257 }; 258 259 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l) 260 { 261 struct mddev *mddev = &rs->md; 262 263 l->new_level = mddev->new_level; 264 l->new_layout = mddev->new_layout; 265 l->new_chunk_sectors = mddev->new_chunk_sectors; 266 } 267 268 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l) 269 { 270 struct mddev *mddev = &rs->md; 271 272 mddev->new_level = l->new_level; 273 mddev->new_layout = l->new_layout; 274 mddev->new_chunk_sectors = l->new_chunk_sectors; 275 } 276 277 /* raid10 algorithms (i.e. formats) */ 278 #define ALGORITHM_RAID10_DEFAULT 0 279 #define ALGORITHM_RAID10_NEAR 1 280 #define ALGORITHM_RAID10_OFFSET 2 281 #define ALGORITHM_RAID10_FAR 3 282 283 /* Supported raid types and properties. */ 284 static struct raid_type { 285 const char *name; /* RAID algorithm. */ 286 const char *descr; /* Descriptor text for logging. */ 287 const unsigned int parity_devs; /* # of parity devices. */ 288 const unsigned int minimal_devs;/* minimal # of devices in set. */ 289 const unsigned int level; /* RAID level. */ 290 const unsigned int algorithm; /* RAID algorithm. */ 291 } raid_types[] = { 292 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */}, 293 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */}, 294 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR}, 295 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET}, 296 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR}, 297 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT}, 298 {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */ 299 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N}, 300 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC}, 301 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC}, 302 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC}, 303 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC}, 304 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART}, 305 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART}, 306 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}, 307 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6}, 308 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6}, 309 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6}, 310 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6}, 311 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6} 312 }; 313 314 /* True, if @v is in inclusive range [@min, @max] */ 315 static bool __within_range(long v, long min, long max) 316 { 317 return v >= min && v <= max; 318 } 319 320 /* All table line arguments are defined here */ 321 static struct arg_name_flag { 322 const unsigned long flag; 323 const char *name; 324 } __arg_name_flags[] = { 325 { CTR_FLAG_SYNC, "sync"}, 326 { CTR_FLAG_NOSYNC, "nosync"}, 327 { CTR_FLAG_REBUILD, "rebuild"}, 328 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"}, 329 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"}, 330 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"}, 331 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"}, 332 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"}, 333 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"}, 334 { CTR_FLAG_REGION_SIZE, "region_size"}, 335 { CTR_FLAG_RAID10_COPIES, "raid10_copies"}, 336 { CTR_FLAG_RAID10_FORMAT, "raid10_format"}, 337 { CTR_FLAG_DATA_OFFSET, "data_offset"}, 338 { CTR_FLAG_DELTA_DISKS, "delta_disks"}, 339 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"}, 340 { CTR_FLAG_JOURNAL_DEV, "journal_dev" }, 341 { CTR_FLAG_JOURNAL_MODE, "journal_mode" }, 342 }; 343 344 /* Return argument name string for given @flag */ 345 static const char *dm_raid_arg_name_by_flag(const uint32_t flag) 346 { 347 if (hweight32(flag) == 1) { 348 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags); 349 350 while (anf-- > __arg_name_flags) 351 if (flag & anf->flag) 352 return anf->name; 353 354 } else 355 DMERR("%s called with more than one flag!", __func__); 356 357 return NULL; 358 } 359 360 /* Define correlation of raid456 journal cache modes and dm-raid target line parameters */ 361 static struct { 362 const int mode; 363 const char *param; 364 } _raid456_journal_mode[] = { 365 { R5C_JOURNAL_MODE_WRITE_THROUGH , "writethrough" }, 366 { R5C_JOURNAL_MODE_WRITE_BACK , "writeback" } 367 }; 368 369 /* Return MD raid4/5/6 journal mode for dm @journal_mode one */ 370 static int dm_raid_journal_mode_to_md(const char *mode) 371 { 372 int m = ARRAY_SIZE(_raid456_journal_mode); 373 374 while (m--) 375 if (!strcasecmp(mode, _raid456_journal_mode[m].param)) 376 return _raid456_journal_mode[m].mode; 377 378 return -EINVAL; 379 } 380 381 /* Return dm-raid raid4/5/6 journal mode string for @mode */ 382 static const char *md_journal_mode_to_dm_raid(const int mode) 383 { 384 int m = ARRAY_SIZE(_raid456_journal_mode); 385 386 while (m--) 387 if (mode == _raid456_journal_mode[m].mode) 388 return _raid456_journal_mode[m].param; 389 390 return "unknown"; 391 } 392 393 /* 394 * Bool helpers to test for various raid levels of a raid set. 395 * It's level as reported by the superblock rather than 396 * the requested raid_type passed to the constructor. 397 */ 398 /* Return true, if raid set in @rs is raid0 */ 399 static bool rs_is_raid0(struct raid_set *rs) 400 { 401 return !rs->md.level; 402 } 403 404 /* Return true, if raid set in @rs is raid1 */ 405 static bool rs_is_raid1(struct raid_set *rs) 406 { 407 return rs->md.level == 1; 408 } 409 410 /* Return true, if raid set in @rs is raid10 */ 411 static bool rs_is_raid10(struct raid_set *rs) 412 { 413 return rs->md.level == 10; 414 } 415 416 /* Return true, if raid set in @rs is level 6 */ 417 static bool rs_is_raid6(struct raid_set *rs) 418 { 419 return rs->md.level == 6; 420 } 421 422 /* Return true, if raid set in @rs is level 4, 5 or 6 */ 423 static bool rs_is_raid456(struct raid_set *rs) 424 { 425 return __within_range(rs->md.level, 4, 6); 426 } 427 428 /* Return true, if raid set in @rs is reshapable */ 429 static bool __is_raid10_far(int layout); 430 static bool rs_is_reshapable(struct raid_set *rs) 431 { 432 return rs_is_raid456(rs) || 433 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout)); 434 } 435 436 /* Return true, if raid set in @rs is recovering */ 437 static bool rs_is_recovering(struct raid_set *rs) 438 { 439 return rs->md.recovery_cp < rs->md.dev_sectors; 440 } 441 442 /* Return true, if raid set in @rs is reshaping */ 443 static bool rs_is_reshaping(struct raid_set *rs) 444 { 445 return rs->md.reshape_position != MaxSector; 446 } 447 448 /* 449 * bool helpers to test for various raid levels of a raid type @rt 450 */ 451 452 /* Return true, if raid type in @rt is raid0 */ 453 static bool rt_is_raid0(struct raid_type *rt) 454 { 455 return !rt->level; 456 } 457 458 /* Return true, if raid type in @rt is raid1 */ 459 static bool rt_is_raid1(struct raid_type *rt) 460 { 461 return rt->level == 1; 462 } 463 464 /* Return true, if raid type in @rt is raid10 */ 465 static bool rt_is_raid10(struct raid_type *rt) 466 { 467 return rt->level == 10; 468 } 469 470 /* Return true, if raid type in @rt is raid4/5 */ 471 static bool rt_is_raid45(struct raid_type *rt) 472 { 473 return __within_range(rt->level, 4, 5); 474 } 475 476 /* Return true, if raid type in @rt is raid6 */ 477 static bool rt_is_raid6(struct raid_type *rt) 478 { 479 return rt->level == 6; 480 } 481 482 /* Return true, if raid type in @rt is raid4/5/6 */ 483 static bool rt_is_raid456(struct raid_type *rt) 484 { 485 return __within_range(rt->level, 4, 6); 486 } 487 /* END: raid level bools */ 488 489 /* Return valid ctr flags for the raid level of @rs */ 490 static unsigned long __valid_flags(struct raid_set *rs) 491 { 492 if (rt_is_raid0(rs->raid_type)) 493 return RAID0_VALID_FLAGS; 494 else if (rt_is_raid1(rs->raid_type)) 495 return RAID1_VALID_FLAGS; 496 else if (rt_is_raid10(rs->raid_type)) 497 return RAID10_VALID_FLAGS; 498 else if (rt_is_raid45(rs->raid_type)) 499 return RAID45_VALID_FLAGS; 500 else if (rt_is_raid6(rs->raid_type)) 501 return RAID6_VALID_FLAGS; 502 503 return 0; 504 } 505 506 /* 507 * Check for valid flags set on @rs 508 * 509 * Has to be called after parsing of the ctr flags! 510 */ 511 static int rs_check_for_valid_flags(struct raid_set *rs) 512 { 513 if (rs->ctr_flags & ~__valid_flags(rs)) { 514 rs->ti->error = "Invalid flags combination"; 515 return -EINVAL; 516 } 517 518 return 0; 519 } 520 521 /* MD raid10 bit definitions and helpers */ 522 #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */ 523 #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */ 524 #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */ 525 #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */ 526 527 /* Return md raid10 near copies for @layout */ 528 static unsigned int __raid10_near_copies(int layout) 529 { 530 return layout & 0xFF; 531 } 532 533 /* Return md raid10 far copies for @layout */ 534 static unsigned int __raid10_far_copies(int layout) 535 { 536 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT); 537 } 538 539 /* Return true if md raid10 offset for @layout */ 540 static bool __is_raid10_offset(int layout) 541 { 542 return !!(layout & RAID10_OFFSET); 543 } 544 545 /* Return true if md raid10 near for @layout */ 546 static bool __is_raid10_near(int layout) 547 { 548 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1; 549 } 550 551 /* Return true if md raid10 far for @layout */ 552 static bool __is_raid10_far(int layout) 553 { 554 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1; 555 } 556 557 /* Return md raid10 layout string for @layout */ 558 static const char *raid10_md_layout_to_format(int layout) 559 { 560 /* 561 * Bit 16 stands for "offset" 562 * (i.e. adjacent stripes hold copies) 563 * 564 * Refer to MD's raid10.c for details 565 */ 566 if (__is_raid10_offset(layout)) 567 return "offset"; 568 569 if (__raid10_near_copies(layout) > 1) 570 return "near"; 571 572 if (__raid10_far_copies(layout) > 1) 573 return "far"; 574 575 return "unknown"; 576 } 577 578 /* Return md raid10 algorithm for @name */ 579 static int raid10_name_to_format(const char *name) 580 { 581 if (!strcasecmp(name, "near")) 582 return ALGORITHM_RAID10_NEAR; 583 else if (!strcasecmp(name, "offset")) 584 return ALGORITHM_RAID10_OFFSET; 585 else if (!strcasecmp(name, "far")) 586 return ALGORITHM_RAID10_FAR; 587 588 return -EINVAL; 589 } 590 591 /* Return md raid10 copies for @layout */ 592 static unsigned int raid10_md_layout_to_copies(int layout) 593 { 594 return max(__raid10_near_copies(layout), __raid10_far_copies(layout)); 595 } 596 597 /* Return md raid10 format id for @format string */ 598 static int raid10_format_to_md_layout(struct raid_set *rs, 599 unsigned int algorithm, 600 unsigned int copies) 601 { 602 unsigned int n = 1, f = 1, r = 0; 603 604 /* 605 * MD resilienece flaw: 606 * 607 * enabling use_far_sets for far/offset formats causes copies 608 * to be colocated on the same devs together with their origins! 609 * 610 * -> disable it for now in the definition above 611 */ 612 if (algorithm == ALGORITHM_RAID10_DEFAULT || 613 algorithm == ALGORITHM_RAID10_NEAR) 614 n = copies; 615 616 else if (algorithm == ALGORITHM_RAID10_OFFSET) { 617 f = copies; 618 r = RAID10_OFFSET; 619 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) 620 r |= RAID10_USE_FAR_SETS; 621 622 } else if (algorithm == ALGORITHM_RAID10_FAR) { 623 f = copies; 624 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) 625 r |= RAID10_USE_FAR_SETS; 626 627 } else 628 return -EINVAL; 629 630 return r | (f << RAID10_FAR_COPIES_SHIFT) | n; 631 } 632 /* END: MD raid10 bit definitions and helpers */ 633 634 /* Check for any of the raid10 algorithms */ 635 static bool __got_raid10(struct raid_type *rtp, const int layout) 636 { 637 if (rtp->level == 10) { 638 switch (rtp->algorithm) { 639 case ALGORITHM_RAID10_DEFAULT: 640 case ALGORITHM_RAID10_NEAR: 641 return __is_raid10_near(layout); 642 case ALGORITHM_RAID10_OFFSET: 643 return __is_raid10_offset(layout); 644 case ALGORITHM_RAID10_FAR: 645 return __is_raid10_far(layout); 646 default: 647 break; 648 } 649 } 650 651 return false; 652 } 653 654 /* Return raid_type for @name */ 655 static struct raid_type *get_raid_type(const char *name) 656 { 657 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); 658 659 while (rtp-- > raid_types) 660 if (!strcasecmp(rtp->name, name)) 661 return rtp; 662 663 return NULL; 664 } 665 666 /* Return raid_type for @name based derived from @level and @layout */ 667 static struct raid_type *get_raid_type_by_ll(const int level, const int layout) 668 { 669 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); 670 671 while (rtp-- > raid_types) { 672 /* RAID10 special checks based on @layout flags/properties */ 673 if (rtp->level == level && 674 (__got_raid10(rtp, layout) || rtp->algorithm == layout)) 675 return rtp; 676 } 677 678 return NULL; 679 } 680 681 /* Adjust rdev sectors */ 682 static void rs_set_rdev_sectors(struct raid_set *rs) 683 { 684 struct mddev *mddev = &rs->md; 685 struct md_rdev *rdev; 686 687 /* 688 * raid10 sets rdev->sector to the device size, which 689 * is unintended in case of out-of-place reshaping 690 */ 691 rdev_for_each(rdev, mddev) 692 if (!test_bit(Journal, &rdev->flags)) 693 rdev->sectors = mddev->dev_sectors; 694 } 695 696 /* 697 * Change bdev capacity of @rs in case of a disk add/remove reshape 698 */ 699 static void rs_set_capacity(struct raid_set *rs) 700 { 701 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table)); 702 703 set_capacity_and_notify(gendisk, rs->md.array_sectors); 704 } 705 706 /* 707 * Set the mddev properties in @rs to the current 708 * ones retrieved from the freshest superblock 709 */ 710 static void rs_set_cur(struct raid_set *rs) 711 { 712 struct mddev *mddev = &rs->md; 713 714 mddev->new_level = mddev->level; 715 mddev->new_layout = mddev->layout; 716 mddev->new_chunk_sectors = mddev->chunk_sectors; 717 } 718 719 /* 720 * Set the mddev properties in @rs to the new 721 * ones requested by the ctr 722 */ 723 static void rs_set_new(struct raid_set *rs) 724 { 725 struct mddev *mddev = &rs->md; 726 727 mddev->level = mddev->new_level; 728 mddev->layout = mddev->new_layout; 729 mddev->chunk_sectors = mddev->new_chunk_sectors; 730 mddev->raid_disks = rs->raid_disks; 731 mddev->delta_disks = 0; 732 } 733 734 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type, 735 unsigned int raid_devs) 736 { 737 unsigned int i; 738 struct raid_set *rs; 739 740 if (raid_devs <= raid_type->parity_devs) { 741 ti->error = "Insufficient number of devices"; 742 return ERR_PTR(-EINVAL); 743 } 744 745 rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL); 746 if (!rs) { 747 ti->error = "Cannot allocate raid context"; 748 return ERR_PTR(-ENOMEM); 749 } 750 751 mddev_init(&rs->md); 752 753 rs->raid_disks = raid_devs; 754 rs->delta_disks = 0; 755 756 rs->ti = ti; 757 rs->raid_type = raid_type; 758 rs->stripe_cache_entries = 256; 759 rs->md.raid_disks = raid_devs; 760 rs->md.level = raid_type->level; 761 rs->md.new_level = rs->md.level; 762 rs->md.layout = raid_type->algorithm; 763 rs->md.new_layout = rs->md.layout; 764 rs->md.delta_disks = 0; 765 rs->md.recovery_cp = MaxSector; 766 767 for (i = 0; i < raid_devs; i++) 768 md_rdev_init(&rs->dev[i].rdev); 769 770 /* 771 * Remaining items to be initialized by further RAID params: 772 * rs->md.persistent 773 * rs->md.external 774 * rs->md.chunk_sectors 775 * rs->md.new_chunk_sectors 776 * rs->md.dev_sectors 777 */ 778 779 return rs; 780 } 781 782 /* Free all @rs allocations */ 783 static void raid_set_free(struct raid_set *rs) 784 { 785 int i; 786 787 if (rs->journal_dev.dev) { 788 md_rdev_clear(&rs->journal_dev.rdev); 789 dm_put_device(rs->ti, rs->journal_dev.dev); 790 } 791 792 for (i = 0; i < rs->raid_disks; i++) { 793 if (rs->dev[i].meta_dev) 794 dm_put_device(rs->ti, rs->dev[i].meta_dev); 795 md_rdev_clear(&rs->dev[i].rdev); 796 if (rs->dev[i].data_dev) 797 dm_put_device(rs->ti, rs->dev[i].data_dev); 798 } 799 800 kfree(rs); 801 } 802 803 /* 804 * For every device we have two words 805 * <meta_dev>: meta device name or '-' if missing 806 * <data_dev>: data device name or '-' if missing 807 * 808 * The following are permitted: 809 * - - 810 * - <data_dev> 811 * <meta_dev> <data_dev> 812 * 813 * The following is not allowed: 814 * <meta_dev> - 815 * 816 * This code parses those words. If there is a failure, 817 * the caller must use raid_set_free() to unwind the operations. 818 */ 819 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as) 820 { 821 int i; 822 int rebuild = 0; 823 int metadata_available = 0; 824 int r = 0; 825 const char *arg; 826 827 /* Put off the number of raid devices argument to get to dev pairs */ 828 arg = dm_shift_arg(as); 829 if (!arg) 830 return -EINVAL; 831 832 for (i = 0; i < rs->raid_disks; i++) { 833 rs->dev[i].rdev.raid_disk = i; 834 835 rs->dev[i].meta_dev = NULL; 836 rs->dev[i].data_dev = NULL; 837 838 /* 839 * There are no offsets initially. 840 * Out of place reshape will set them accordingly. 841 */ 842 rs->dev[i].rdev.data_offset = 0; 843 rs->dev[i].rdev.new_data_offset = 0; 844 rs->dev[i].rdev.mddev = &rs->md; 845 846 arg = dm_shift_arg(as); 847 if (!arg) 848 return -EINVAL; 849 850 if (strcmp(arg, "-")) { 851 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 852 &rs->dev[i].meta_dev); 853 if (r) { 854 rs->ti->error = "RAID metadata device lookup failure"; 855 return r; 856 } 857 858 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL); 859 if (!rs->dev[i].rdev.sb_page) { 860 rs->ti->error = "Failed to allocate superblock page"; 861 return -ENOMEM; 862 } 863 } 864 865 arg = dm_shift_arg(as); 866 if (!arg) 867 return -EINVAL; 868 869 if (!strcmp(arg, "-")) { 870 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) && 871 (!rs->dev[i].rdev.recovery_offset)) { 872 rs->ti->error = "Drive designated for rebuild not specified"; 873 return -EINVAL; 874 } 875 876 if (rs->dev[i].meta_dev) { 877 rs->ti->error = "No data device supplied with metadata device"; 878 return -EINVAL; 879 } 880 881 continue; 882 } 883 884 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 885 &rs->dev[i].data_dev); 886 if (r) { 887 rs->ti->error = "RAID device lookup failure"; 888 return r; 889 } 890 891 if (rs->dev[i].meta_dev) { 892 metadata_available = 1; 893 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev; 894 } 895 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev; 896 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks); 897 if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) 898 rebuild++; 899 } 900 901 if (rs->journal_dev.dev) 902 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks); 903 904 if (metadata_available) { 905 rs->md.external = 0; 906 rs->md.persistent = 1; 907 rs->md.major_version = 2; 908 } else if (rebuild && !rs->md.recovery_cp) { 909 /* 910 * Without metadata, we will not be able to tell if the array 911 * is in-sync or not - we must assume it is not. Therefore, 912 * it is impossible to rebuild a drive. 913 * 914 * Even if there is metadata, the on-disk information may 915 * indicate that the array is not in-sync and it will then 916 * fail at that time. 917 * 918 * User could specify 'nosync' option if desperate. 919 */ 920 rs->ti->error = "Unable to rebuild drive while array is not in-sync"; 921 return -EINVAL; 922 } 923 924 return 0; 925 } 926 927 /* 928 * validate_region_size 929 * @rs 930 * @region_size: region size in sectors. If 0, pick a size (4MiB default). 931 * 932 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size'). 933 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap. 934 * 935 * Returns: 0 on success, -EINVAL on failure. 936 */ 937 static int validate_region_size(struct raid_set *rs, unsigned long region_size) 938 { 939 unsigned long min_region_size = rs->ti->len / (1 << 21); 940 941 if (rs_is_raid0(rs)) 942 return 0; 943 944 if (!region_size) { 945 /* 946 * Choose a reasonable default. All figures in sectors. 947 */ 948 if (min_region_size > (1 << 13)) { 949 /* If not a power of 2, make it the next power of 2 */ 950 region_size = roundup_pow_of_two(min_region_size); 951 DMINFO("Choosing default region size of %lu sectors", 952 region_size); 953 } else { 954 DMINFO("Choosing default region size of 4MiB"); 955 region_size = 1 << 13; /* sectors */ 956 } 957 } else { 958 /* 959 * Validate user-supplied value. 960 */ 961 if (region_size > rs->ti->len) { 962 rs->ti->error = "Supplied region size is too large"; 963 return -EINVAL; 964 } 965 966 if (region_size < min_region_size) { 967 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)", 968 region_size, min_region_size); 969 rs->ti->error = "Supplied region size is too small"; 970 return -EINVAL; 971 } 972 973 if (!is_power_of_2(region_size)) { 974 rs->ti->error = "Region size is not a power of 2"; 975 return -EINVAL; 976 } 977 978 if (region_size < rs->md.chunk_sectors) { 979 rs->ti->error = "Region size is smaller than the chunk size"; 980 return -EINVAL; 981 } 982 } 983 984 /* 985 * Convert sectors to bytes. 986 */ 987 rs->md.bitmap_info.chunksize = to_bytes(region_size); 988 989 return 0; 990 } 991 992 /* 993 * validate_raid_redundancy 994 * @rs 995 * 996 * Determine if there are enough devices in the array that haven't 997 * failed (or are being rebuilt) to form a usable array. 998 * 999 * Returns: 0 on success, -EINVAL on failure. 1000 */ 1001 static int validate_raid_redundancy(struct raid_set *rs) 1002 { 1003 unsigned int i, rebuild_cnt = 0; 1004 unsigned int rebuilds_per_group = 0, copies, raid_disks; 1005 unsigned int group_size, last_group_start; 1006 1007 for (i = 0; i < rs->raid_disks; i++) 1008 if (!test_bit(FirstUse, &rs->dev[i].rdev.flags) && 1009 ((!test_bit(In_sync, &rs->dev[i].rdev.flags) || 1010 !rs->dev[i].rdev.sb_page))) 1011 rebuild_cnt++; 1012 1013 switch (rs->md.level) { 1014 case 0: 1015 break; 1016 case 1: 1017 if (rebuild_cnt >= rs->md.raid_disks) 1018 goto too_many; 1019 break; 1020 case 4: 1021 case 5: 1022 case 6: 1023 if (rebuild_cnt > rs->raid_type->parity_devs) 1024 goto too_many; 1025 break; 1026 case 10: 1027 copies = raid10_md_layout_to_copies(rs->md.new_layout); 1028 if (copies < 2) { 1029 DMERR("Bogus raid10 data copies < 2!"); 1030 return -EINVAL; 1031 } 1032 1033 if (rebuild_cnt < copies) 1034 break; 1035 1036 /* 1037 * It is possible to have a higher rebuild count for RAID10, 1038 * as long as the failed devices occur in different mirror 1039 * groups (i.e. different stripes). 1040 * 1041 * When checking "near" format, make sure no adjacent devices 1042 * have failed beyond what can be handled. In addition to the 1043 * simple case where the number of devices is a multiple of the 1044 * number of copies, we must also handle cases where the number 1045 * of devices is not a multiple of the number of copies. 1046 * E.g. dev1 dev2 dev3 dev4 dev5 1047 * A A B B C 1048 * C D D E E 1049 */ 1050 raid_disks = min(rs->raid_disks, rs->md.raid_disks); 1051 if (__is_raid10_near(rs->md.new_layout)) { 1052 for (i = 0; i < raid_disks; i++) { 1053 if (!(i % copies)) 1054 rebuilds_per_group = 0; 1055 if ((!rs->dev[i].rdev.sb_page || 1056 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 1057 (++rebuilds_per_group >= copies)) 1058 goto too_many; 1059 } 1060 break; 1061 } 1062 1063 /* 1064 * When checking "far" and "offset" formats, we need to ensure 1065 * that the device that holds its copy is not also dead or 1066 * being rebuilt. (Note that "far" and "offset" formats only 1067 * support two copies right now. These formats also only ever 1068 * use the 'use_far_sets' variant.) 1069 * 1070 * This check is somewhat complicated by the need to account 1071 * for arrays that are not a multiple of (far) copies. This 1072 * results in the need to treat the last (potentially larger) 1073 * set differently. 1074 */ 1075 group_size = (raid_disks / copies); 1076 last_group_start = (raid_disks / group_size) - 1; 1077 last_group_start *= group_size; 1078 for (i = 0; i < raid_disks; i++) { 1079 if (!(i % copies) && !(i > last_group_start)) 1080 rebuilds_per_group = 0; 1081 if ((!rs->dev[i].rdev.sb_page || 1082 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 1083 (++rebuilds_per_group >= copies)) 1084 goto too_many; 1085 } 1086 break; 1087 default: 1088 if (rebuild_cnt) 1089 return -EINVAL; 1090 } 1091 1092 return 0; 1093 1094 too_many: 1095 return -EINVAL; 1096 } 1097 1098 /* 1099 * Possible arguments are... 1100 * <chunk_size> [optional_args] 1101 * 1102 * Argument definitions 1103 * <chunk_size> The number of sectors per disk that 1104 * will form the "stripe" 1105 * [[no]sync] Force or prevent recovery of the 1106 * entire array 1107 * [rebuild <idx>] Rebuild the drive indicated by the index 1108 * [daemon_sleep <ms>] Time between bitmap daemon work to 1109 * clear bits 1110 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization 1111 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization 1112 * [write_mostly <idx>] Indicate a write mostly drive via index 1113 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm) 1114 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs 1115 * [region_size <sectors>] Defines granularity of bitmap 1116 * [journal_dev <dev>] raid4/5/6 journaling deviice 1117 * (i.e. write hole closing log) 1118 * 1119 * RAID10-only options: 1120 * [raid10_copies <# copies>] Number of copies. (Default: 2) 1121 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near) 1122 */ 1123 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as, 1124 unsigned int num_raid_params) 1125 { 1126 int value, raid10_format = ALGORITHM_RAID10_DEFAULT; 1127 unsigned int raid10_copies = 2; 1128 unsigned int i, write_mostly = 0; 1129 unsigned int region_size = 0; 1130 sector_t max_io_len; 1131 const char *arg, *key; 1132 struct raid_dev *rd; 1133 struct raid_type *rt = rs->raid_type; 1134 1135 arg = dm_shift_arg(as); 1136 num_raid_params--; /* Account for chunk_size argument */ 1137 1138 if (kstrtoint(arg, 10, &value) < 0) { 1139 rs->ti->error = "Bad numerical argument given for chunk_size"; 1140 return -EINVAL; 1141 } 1142 1143 /* 1144 * First, parse the in-order required arguments 1145 * "chunk_size" is the only argument of this type. 1146 */ 1147 if (rt_is_raid1(rt)) { 1148 if (value) 1149 DMERR("Ignoring chunk size parameter for RAID 1"); 1150 value = 0; 1151 } else if (!is_power_of_2(value)) { 1152 rs->ti->error = "Chunk size must be a power of 2"; 1153 return -EINVAL; 1154 } else if (value < 8) { 1155 rs->ti->error = "Chunk size value is too small"; 1156 return -EINVAL; 1157 } 1158 1159 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value; 1160 1161 /* 1162 * We set each individual device as In_sync with a completed 1163 * 'recovery_offset'. If there has been a device failure or 1164 * replacement then one of the following cases applies: 1165 * 1166 * 1) User specifies 'rebuild'. 1167 * - Device is reset when param is read. 1168 * 2) A new device is supplied. 1169 * - No matching superblock found, resets device. 1170 * 3) Device failure was transient and returns on reload. 1171 * - Failure noticed, resets device for bitmap replay. 1172 * 4) Device hadn't completed recovery after previous failure. 1173 * - Superblock is read and overrides recovery_offset. 1174 * 1175 * What is found in the superblocks of the devices is always 1176 * authoritative, unless 'rebuild' or '[no]sync' was specified. 1177 */ 1178 for (i = 0; i < rs->raid_disks; i++) { 1179 set_bit(In_sync, &rs->dev[i].rdev.flags); 1180 rs->dev[i].rdev.recovery_offset = MaxSector; 1181 } 1182 1183 /* 1184 * Second, parse the unordered optional arguments 1185 */ 1186 for (i = 0; i < num_raid_params; i++) { 1187 key = dm_shift_arg(as); 1188 if (!key) { 1189 rs->ti->error = "Not enough raid parameters given"; 1190 return -EINVAL; 1191 } 1192 1193 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) { 1194 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 1195 rs->ti->error = "Only one 'nosync' argument allowed"; 1196 return -EINVAL; 1197 } 1198 continue; 1199 } 1200 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) { 1201 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) { 1202 rs->ti->error = "Only one 'sync' argument allowed"; 1203 return -EINVAL; 1204 } 1205 continue; 1206 } 1207 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) { 1208 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { 1209 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed"; 1210 return -EINVAL; 1211 } 1212 continue; 1213 } 1214 1215 arg = dm_shift_arg(as); 1216 i++; /* Account for the argument pairs */ 1217 if (!arg) { 1218 rs->ti->error = "Wrong number of raid parameters given"; 1219 return -EINVAL; 1220 } 1221 1222 /* 1223 * Parameters that take a string value are checked here. 1224 */ 1225 /* "raid10_format {near|offset|far} */ 1226 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) { 1227 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) { 1228 rs->ti->error = "Only one 'raid10_format' argument pair allowed"; 1229 return -EINVAL; 1230 } 1231 if (!rt_is_raid10(rt)) { 1232 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type"; 1233 return -EINVAL; 1234 } 1235 raid10_format = raid10_name_to_format(arg); 1236 if (raid10_format < 0) { 1237 rs->ti->error = "Invalid 'raid10_format' value given"; 1238 return raid10_format; 1239 } 1240 continue; 1241 } 1242 1243 /* "journal_dev <dev>" */ 1244 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) { 1245 int r; 1246 struct md_rdev *jdev; 1247 1248 if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 1249 rs->ti->error = "Only one raid4/5/6 set journaling device allowed"; 1250 return -EINVAL; 1251 } 1252 if (!rt_is_raid456(rt)) { 1253 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type"; 1254 return -EINVAL; 1255 } 1256 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 1257 &rs->journal_dev.dev); 1258 if (r) { 1259 rs->ti->error = "raid4/5/6 journal device lookup failure"; 1260 return r; 1261 } 1262 jdev = &rs->journal_dev.rdev; 1263 md_rdev_init(jdev); 1264 jdev->mddev = &rs->md; 1265 jdev->bdev = rs->journal_dev.dev->bdev; 1266 jdev->sectors = bdev_nr_sectors(jdev->bdev); 1267 if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) { 1268 rs->ti->error = "No space for raid4/5/6 journal"; 1269 return -ENOSPC; 1270 } 1271 rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 1272 set_bit(Journal, &jdev->flags); 1273 continue; 1274 } 1275 1276 /* "journal_mode <mode>" ("journal_dev" mandatory!) */ 1277 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) { 1278 int r; 1279 1280 if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 1281 rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'"; 1282 return -EINVAL; 1283 } 1284 if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) { 1285 rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed"; 1286 return -EINVAL; 1287 } 1288 r = dm_raid_journal_mode_to_md(arg); 1289 if (r < 0) { 1290 rs->ti->error = "Invalid 'journal_mode' argument"; 1291 return r; 1292 } 1293 rs->journal_dev.mode = r; 1294 continue; 1295 } 1296 1297 /* 1298 * Parameters with number values from here on. 1299 */ 1300 if (kstrtoint(arg, 10, &value) < 0) { 1301 rs->ti->error = "Bad numerical argument given in raid params"; 1302 return -EINVAL; 1303 } 1304 1305 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) { 1306 /* 1307 * "rebuild" is being passed in by userspace to provide 1308 * indexes of replaced devices and to set up additional 1309 * devices on raid level takeover. 1310 */ 1311 if (!__within_range(value, 0, rs->raid_disks - 1)) { 1312 rs->ti->error = "Invalid rebuild index given"; 1313 return -EINVAL; 1314 } 1315 1316 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) { 1317 rs->ti->error = "rebuild for this index already given"; 1318 return -EINVAL; 1319 } 1320 1321 rd = rs->dev + value; 1322 clear_bit(In_sync, &rd->rdev.flags); 1323 clear_bit(Faulty, &rd->rdev.flags); 1324 rd->rdev.recovery_offset = 0; 1325 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags); 1326 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) { 1327 if (!rt_is_raid1(rt)) { 1328 rs->ti->error = "write_mostly option is only valid for RAID1"; 1329 return -EINVAL; 1330 } 1331 1332 if (!__within_range(value, 0, rs->md.raid_disks - 1)) { 1333 rs->ti->error = "Invalid write_mostly index given"; 1334 return -EINVAL; 1335 } 1336 1337 write_mostly++; 1338 set_bit(WriteMostly, &rs->dev[value].rdev.flags); 1339 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags); 1340 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) { 1341 if (!rt_is_raid1(rt)) { 1342 rs->ti->error = "max_write_behind option is only valid for RAID1"; 1343 return -EINVAL; 1344 } 1345 1346 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) { 1347 rs->ti->error = "Only one max_write_behind argument pair allowed"; 1348 return -EINVAL; 1349 } 1350 1351 /* 1352 * In device-mapper, we specify things in sectors, but 1353 * MD records this value in kB 1354 */ 1355 if (value < 0 || value / 2 > COUNTER_MAX) { 1356 rs->ti->error = "Max write-behind limit out of range"; 1357 return -EINVAL; 1358 } 1359 1360 rs->md.bitmap_info.max_write_behind = value / 2; 1361 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) { 1362 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) { 1363 rs->ti->error = "Only one daemon_sleep argument pair allowed"; 1364 return -EINVAL; 1365 } 1366 if (value < 0) { 1367 rs->ti->error = "daemon sleep period out of range"; 1368 return -EINVAL; 1369 } 1370 rs->md.bitmap_info.daemon_sleep = value; 1371 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) { 1372 /* Userspace passes new data_offset after having extended the data image LV */ 1373 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { 1374 rs->ti->error = "Only one data_offset argument pair allowed"; 1375 return -EINVAL; 1376 } 1377 /* Ensure sensible data offset */ 1378 if (value < 0 || 1379 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) { 1380 rs->ti->error = "Bogus data_offset value"; 1381 return -EINVAL; 1382 } 1383 rs->data_offset = value; 1384 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) { 1385 /* Define the +/-# of disks to add to/remove from the given raid set */ 1386 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { 1387 rs->ti->error = "Only one delta_disks argument pair allowed"; 1388 return -EINVAL; 1389 } 1390 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */ 1391 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) { 1392 rs->ti->error = "Too many delta_disk requested"; 1393 return -EINVAL; 1394 } 1395 1396 rs->delta_disks = value; 1397 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) { 1398 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) { 1399 rs->ti->error = "Only one stripe_cache argument pair allowed"; 1400 return -EINVAL; 1401 } 1402 1403 if (!rt_is_raid456(rt)) { 1404 rs->ti->error = "Inappropriate argument: stripe_cache"; 1405 return -EINVAL; 1406 } 1407 1408 if (value < 0) { 1409 rs->ti->error = "Bogus stripe cache entries value"; 1410 return -EINVAL; 1411 } 1412 rs->stripe_cache_entries = value; 1413 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) { 1414 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) { 1415 rs->ti->error = "Only one min_recovery_rate argument pair allowed"; 1416 return -EINVAL; 1417 } 1418 1419 if (value < 0) { 1420 rs->ti->error = "min_recovery_rate out of range"; 1421 return -EINVAL; 1422 } 1423 rs->md.sync_speed_min = value; 1424 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) { 1425 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) { 1426 rs->ti->error = "Only one max_recovery_rate argument pair allowed"; 1427 return -EINVAL; 1428 } 1429 1430 if (value < 0) { 1431 rs->ti->error = "max_recovery_rate out of range"; 1432 return -EINVAL; 1433 } 1434 rs->md.sync_speed_max = value; 1435 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) { 1436 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) { 1437 rs->ti->error = "Only one region_size argument pair allowed"; 1438 return -EINVAL; 1439 } 1440 1441 region_size = value; 1442 rs->requested_bitmap_chunk_sectors = value; 1443 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) { 1444 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) { 1445 rs->ti->error = "Only one raid10_copies argument pair allowed"; 1446 return -EINVAL; 1447 } 1448 1449 if (!__within_range(value, 2, rs->md.raid_disks)) { 1450 rs->ti->error = "Bad value for 'raid10_copies'"; 1451 return -EINVAL; 1452 } 1453 1454 raid10_copies = value; 1455 } else { 1456 DMERR("Unable to parse RAID parameter: %s", key); 1457 rs->ti->error = "Unable to parse RAID parameter"; 1458 return -EINVAL; 1459 } 1460 } 1461 1462 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) && 1463 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 1464 rs->ti->error = "sync and nosync are mutually exclusive"; 1465 return -EINVAL; 1466 } 1467 1468 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && 1469 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) || 1470 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) { 1471 rs->ti->error = "sync/nosync and rebuild are mutually exclusive"; 1472 return -EINVAL; 1473 } 1474 1475 if (write_mostly >= rs->md.raid_disks) { 1476 rs->ti->error = "Can't set all raid1 devices to write_mostly"; 1477 return -EINVAL; 1478 } 1479 1480 if (rs->md.sync_speed_max && 1481 rs->md.sync_speed_min > rs->md.sync_speed_max) { 1482 rs->ti->error = "Bogus recovery rates"; 1483 return -EINVAL; 1484 } 1485 1486 if (validate_region_size(rs, region_size)) 1487 return -EINVAL; 1488 1489 if (rs->md.chunk_sectors) 1490 max_io_len = rs->md.chunk_sectors; 1491 else 1492 max_io_len = region_size; 1493 1494 if (dm_set_target_max_io_len(rs->ti, max_io_len)) 1495 return -EINVAL; 1496 1497 if (rt_is_raid10(rt)) { 1498 if (raid10_copies > rs->md.raid_disks) { 1499 rs->ti->error = "Not enough devices to satisfy specification"; 1500 return -EINVAL; 1501 } 1502 1503 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies); 1504 if (rs->md.new_layout < 0) { 1505 rs->ti->error = "Error getting raid10 format"; 1506 return rs->md.new_layout; 1507 } 1508 1509 rt = get_raid_type_by_ll(10, rs->md.new_layout); 1510 if (!rt) { 1511 rs->ti->error = "Failed to recognize new raid10 layout"; 1512 return -EINVAL; 1513 } 1514 1515 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT || 1516 rt->algorithm == ALGORITHM_RAID10_NEAR) && 1517 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { 1518 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible"; 1519 return -EINVAL; 1520 } 1521 } 1522 1523 rs->raid10_copies = raid10_copies; 1524 1525 /* Assume there are no metadata devices until the drives are parsed */ 1526 rs->md.persistent = 0; 1527 rs->md.external = 1; 1528 1529 /* Check, if any invalid ctr arguments have been passed in for the raid level */ 1530 return rs_check_for_valid_flags(rs); 1531 } 1532 1533 /* Set raid4/5/6 cache size */ 1534 static int rs_set_raid456_stripe_cache(struct raid_set *rs) 1535 { 1536 int r; 1537 struct r5conf *conf; 1538 struct mddev *mddev = &rs->md; 1539 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2; 1540 uint32_t nr_stripes = rs->stripe_cache_entries; 1541 1542 if (!rt_is_raid456(rs->raid_type)) { 1543 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size"; 1544 return -EINVAL; 1545 } 1546 1547 if (nr_stripes < min_stripes) { 1548 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size", 1549 nr_stripes, min_stripes); 1550 nr_stripes = min_stripes; 1551 } 1552 1553 conf = mddev->private; 1554 if (!conf) { 1555 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set"; 1556 return -EINVAL; 1557 } 1558 1559 /* Try setting number of stripes in raid456 stripe cache */ 1560 if (conf->min_nr_stripes != nr_stripes) { 1561 r = raid5_set_cache_size(mddev, nr_stripes); 1562 if (r) { 1563 rs->ti->error = "Failed to set raid4/5/6 stripe cache size"; 1564 return r; 1565 } 1566 1567 DMINFO("%u stripe cache entries", nr_stripes); 1568 } 1569 1570 return 0; 1571 } 1572 1573 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */ 1574 static unsigned int mddev_data_stripes(struct raid_set *rs) 1575 { 1576 return rs->md.raid_disks - rs->raid_type->parity_devs; 1577 } 1578 1579 /* Return # of data stripes of @rs (i.e. as of ctr) */ 1580 static unsigned int rs_data_stripes(struct raid_set *rs) 1581 { 1582 return rs->raid_disks - rs->raid_type->parity_devs; 1583 } 1584 1585 /* 1586 * Retrieve rdev->sectors from any valid raid device of @rs 1587 * to allow userpace to pass in arbitray "- -" device tupples. 1588 */ 1589 static sector_t __rdev_sectors(struct raid_set *rs) 1590 { 1591 int i; 1592 1593 for (i = 0; i < rs->raid_disks; i++) { 1594 struct md_rdev *rdev = &rs->dev[i].rdev; 1595 1596 if (!test_bit(Journal, &rdev->flags) && 1597 rdev->bdev && rdev->sectors) 1598 return rdev->sectors; 1599 } 1600 1601 return 0; 1602 } 1603 1604 /* Check that calculated dev_sectors fits all component devices. */ 1605 static int _check_data_dev_sectors(struct raid_set *rs) 1606 { 1607 sector_t ds = ~0; 1608 struct md_rdev *rdev; 1609 1610 rdev_for_each(rdev, &rs->md) 1611 if (!test_bit(Journal, &rdev->flags) && rdev->bdev) { 1612 ds = min(ds, bdev_nr_sectors(rdev->bdev)); 1613 if (ds < rs->md.dev_sectors) { 1614 rs->ti->error = "Component device(s) too small"; 1615 return -EINVAL; 1616 } 1617 } 1618 1619 return 0; 1620 } 1621 1622 /* Calculate the sectors per device and per array used for @rs */ 1623 static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev) 1624 { 1625 int delta_disks; 1626 unsigned int data_stripes; 1627 sector_t array_sectors = sectors, dev_sectors = sectors; 1628 struct mddev *mddev = &rs->md; 1629 1630 if (use_mddev) { 1631 delta_disks = mddev->delta_disks; 1632 data_stripes = mddev_data_stripes(rs); 1633 } else { 1634 delta_disks = rs->delta_disks; 1635 data_stripes = rs_data_stripes(rs); 1636 } 1637 1638 /* Special raid1 case w/o delta_disks support (yet) */ 1639 if (rt_is_raid1(rs->raid_type)) 1640 ; 1641 else if (rt_is_raid10(rs->raid_type)) { 1642 if (rs->raid10_copies < 2 || 1643 delta_disks < 0) { 1644 rs->ti->error = "Bogus raid10 data copies or delta disks"; 1645 return -EINVAL; 1646 } 1647 1648 dev_sectors *= rs->raid10_copies; 1649 if (sector_div(dev_sectors, data_stripes)) 1650 goto bad; 1651 1652 array_sectors = (data_stripes + delta_disks) * dev_sectors; 1653 if (sector_div(array_sectors, rs->raid10_copies)) 1654 goto bad; 1655 1656 } else if (sector_div(dev_sectors, data_stripes)) 1657 goto bad; 1658 1659 else 1660 /* Striped layouts */ 1661 array_sectors = (data_stripes + delta_disks) * dev_sectors; 1662 1663 mddev->array_sectors = array_sectors; 1664 mddev->dev_sectors = dev_sectors; 1665 rs_set_rdev_sectors(rs); 1666 1667 return _check_data_dev_sectors(rs); 1668 bad: 1669 rs->ti->error = "Target length not divisible by number of data devices"; 1670 return -EINVAL; 1671 } 1672 1673 /* Setup recovery on @rs */ 1674 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors) 1675 { 1676 /* raid0 does not recover */ 1677 if (rs_is_raid0(rs)) 1678 rs->md.recovery_cp = MaxSector; 1679 /* 1680 * A raid6 set has to be recovered either 1681 * completely or for the grown part to 1682 * ensure proper parity and Q-Syndrome 1683 */ 1684 else if (rs_is_raid6(rs)) 1685 rs->md.recovery_cp = dev_sectors; 1686 /* 1687 * Other raid set types may skip recovery 1688 * depending on the 'nosync' flag. 1689 */ 1690 else 1691 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags) 1692 ? MaxSector : dev_sectors; 1693 } 1694 1695 static void do_table_event(struct work_struct *ws) 1696 { 1697 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work); 1698 1699 smp_rmb(); /* Make sure we access most actual mddev properties */ 1700 if (!rs_is_reshaping(rs)) { 1701 if (rs_is_raid10(rs)) 1702 rs_set_rdev_sectors(rs); 1703 rs_set_capacity(rs); 1704 } 1705 dm_table_event(rs->ti->table); 1706 } 1707 1708 /* 1709 * Make sure a valid takover (level switch) is being requested on @rs 1710 * 1711 * Conversions of raid sets from one MD personality to another 1712 * have to conform to restrictions which are enforced here. 1713 */ 1714 static int rs_check_takeover(struct raid_set *rs) 1715 { 1716 struct mddev *mddev = &rs->md; 1717 unsigned int near_copies; 1718 1719 if (rs->md.degraded) { 1720 rs->ti->error = "Can't takeover degraded raid set"; 1721 return -EPERM; 1722 } 1723 1724 if (rs_is_reshaping(rs)) { 1725 rs->ti->error = "Can't takeover reshaping raid set"; 1726 return -EPERM; 1727 } 1728 1729 switch (mddev->level) { 1730 case 0: 1731 /* raid0 -> raid1/5 with one disk */ 1732 if ((mddev->new_level == 1 || mddev->new_level == 5) && 1733 mddev->raid_disks == 1) 1734 return 0; 1735 1736 /* raid0 -> raid10 */ 1737 if (mddev->new_level == 10 && 1738 !(rs->raid_disks % mddev->raid_disks)) 1739 return 0; 1740 1741 /* raid0 with multiple disks -> raid4/5/6 */ 1742 if (__within_range(mddev->new_level, 4, 6) && 1743 mddev->new_layout == ALGORITHM_PARITY_N && 1744 mddev->raid_disks > 1) 1745 return 0; 1746 1747 break; 1748 1749 case 10: 1750 /* Can't takeover raid10_offset! */ 1751 if (__is_raid10_offset(mddev->layout)) 1752 break; 1753 1754 near_copies = __raid10_near_copies(mddev->layout); 1755 1756 /* raid10* -> raid0 */ 1757 if (mddev->new_level == 0) { 1758 /* Can takeover raid10_near with raid disks divisable by data copies! */ 1759 if (near_copies > 1 && 1760 !(mddev->raid_disks % near_copies)) { 1761 mddev->raid_disks /= near_copies; 1762 mddev->delta_disks = mddev->raid_disks; 1763 return 0; 1764 } 1765 1766 /* Can takeover raid10_far */ 1767 if (near_copies == 1 && 1768 __raid10_far_copies(mddev->layout) > 1) 1769 return 0; 1770 1771 break; 1772 } 1773 1774 /* raid10_{near,far} -> raid1 */ 1775 if (mddev->new_level == 1 && 1776 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks) 1777 return 0; 1778 1779 /* raid10_{near,far} with 2 disks -> raid4/5 */ 1780 if (__within_range(mddev->new_level, 4, 5) && 1781 mddev->raid_disks == 2) 1782 return 0; 1783 break; 1784 1785 case 1: 1786 /* raid1 with 2 disks -> raid4/5 */ 1787 if (__within_range(mddev->new_level, 4, 5) && 1788 mddev->raid_disks == 2) { 1789 mddev->degraded = 1; 1790 return 0; 1791 } 1792 1793 /* raid1 -> raid0 */ 1794 if (mddev->new_level == 0 && 1795 mddev->raid_disks == 1) 1796 return 0; 1797 1798 /* raid1 -> raid10 */ 1799 if (mddev->new_level == 10) 1800 return 0; 1801 break; 1802 1803 case 4: 1804 /* raid4 -> raid0 */ 1805 if (mddev->new_level == 0) 1806 return 0; 1807 1808 /* raid4 -> raid1/5 with 2 disks */ 1809 if ((mddev->new_level == 1 || mddev->new_level == 5) && 1810 mddev->raid_disks == 2) 1811 return 0; 1812 1813 /* raid4 -> raid5/6 with parity N */ 1814 if (__within_range(mddev->new_level, 5, 6) && 1815 mddev->layout == ALGORITHM_PARITY_N) 1816 return 0; 1817 break; 1818 1819 case 5: 1820 /* raid5 with parity N -> raid0 */ 1821 if (mddev->new_level == 0 && 1822 mddev->layout == ALGORITHM_PARITY_N) 1823 return 0; 1824 1825 /* raid5 with parity N -> raid4 */ 1826 if (mddev->new_level == 4 && 1827 mddev->layout == ALGORITHM_PARITY_N) 1828 return 0; 1829 1830 /* raid5 with 2 disks -> raid1/4/10 */ 1831 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) && 1832 mddev->raid_disks == 2) 1833 return 0; 1834 1835 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */ 1836 if (mddev->new_level == 6 && 1837 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || 1838 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6))) 1839 return 0; 1840 break; 1841 1842 case 6: 1843 /* raid6 with parity N -> raid0 */ 1844 if (mddev->new_level == 0 && 1845 mddev->layout == ALGORITHM_PARITY_N) 1846 return 0; 1847 1848 /* raid6 with parity N -> raid4 */ 1849 if (mddev->new_level == 4 && 1850 mddev->layout == ALGORITHM_PARITY_N) 1851 return 0; 1852 1853 /* raid6_*_n with Q-Syndrome N -> raid5_* */ 1854 if (mddev->new_level == 5 && 1855 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || 1856 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC))) 1857 return 0; 1858 break; 1859 1860 default: 1861 break; 1862 } 1863 1864 rs->ti->error = "takeover not possible"; 1865 return -EINVAL; 1866 } 1867 1868 /* True if @rs requested to be taken over */ 1869 static bool rs_takeover_requested(struct raid_set *rs) 1870 { 1871 return rs->md.new_level != rs->md.level; 1872 } 1873 1874 /* True if layout is set to reshape. */ 1875 static bool rs_is_layout_change(struct raid_set *rs, bool use_mddev) 1876 { 1877 return (use_mddev ? rs->md.delta_disks : rs->delta_disks) || 1878 rs->md.new_layout != rs->md.layout || 1879 rs->md.new_chunk_sectors != rs->md.chunk_sectors; 1880 } 1881 1882 /* True if @rs is requested to reshape by ctr */ 1883 static bool rs_reshape_requested(struct raid_set *rs) 1884 { 1885 bool change; 1886 struct mddev *mddev = &rs->md; 1887 1888 if (rs_takeover_requested(rs)) 1889 return false; 1890 1891 if (rs_is_raid0(rs)) 1892 return false; 1893 1894 change = rs_is_layout_change(rs, false); 1895 1896 /* Historical case to support raid1 reshape without delta disks */ 1897 if (rs_is_raid1(rs)) { 1898 if (rs->delta_disks) 1899 return !!rs->delta_disks; 1900 1901 return !change && 1902 mddev->raid_disks != rs->raid_disks; 1903 } 1904 1905 if (rs_is_raid10(rs)) 1906 return change && 1907 !__is_raid10_far(mddev->new_layout) && 1908 rs->delta_disks >= 0; 1909 1910 return change; 1911 } 1912 1913 /* Features */ 1914 #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */ 1915 1916 /* State flags for sb->flags */ 1917 #define SB_FLAG_RESHAPE_ACTIVE 0x1 1918 #define SB_FLAG_RESHAPE_BACKWARDS 0x2 1919 1920 /* 1921 * This structure is never routinely used by userspace, unlike md superblocks. 1922 * Devices with this superblock should only ever be accessed via device-mapper. 1923 */ 1924 #define DM_RAID_MAGIC 0x64526D44 1925 struct dm_raid_superblock { 1926 __le32 magic; /* "DmRd" */ 1927 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */ 1928 1929 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */ 1930 __le32 array_position; /* The position of this drive in the raid set */ 1931 1932 __le64 events; /* Incremented by md when superblock updated */ 1933 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */ 1934 /* indicate failures (see extension below) */ 1935 1936 /* 1937 * This offset tracks the progress of the repair or replacement of 1938 * an individual drive. 1939 */ 1940 __le64 disk_recovery_offset; 1941 1942 /* 1943 * This offset tracks the progress of the initial raid set 1944 * synchronisation/parity calculation. 1945 */ 1946 __le64 array_resync_offset; 1947 1948 /* 1949 * raid characteristics 1950 */ 1951 __le32 level; 1952 __le32 layout; 1953 __le32 stripe_sectors; 1954 1955 /******************************************************************** 1956 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! 1957 * 1958 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist 1959 */ 1960 1961 __le32 flags; /* Flags defining array states for reshaping */ 1962 1963 /* 1964 * This offset tracks the progress of a raid 1965 * set reshape in order to be able to restart it 1966 */ 1967 __le64 reshape_position; 1968 1969 /* 1970 * These define the properties of the array in case of an interrupted reshape 1971 */ 1972 __le32 new_level; 1973 __le32 new_layout; 1974 __le32 new_stripe_sectors; 1975 __le32 delta_disks; 1976 1977 __le64 array_sectors; /* Array size in sectors */ 1978 1979 /* 1980 * Sector offsets to data on devices (reshaping). 1981 * Needed to support out of place reshaping, thus 1982 * not writing over any stripes whilst converting 1983 * them from old to new layout 1984 */ 1985 __le64 data_offset; 1986 __le64 new_data_offset; 1987 1988 __le64 sectors; /* Used device size in sectors */ 1989 1990 /* 1991 * Additonal Bit field of devices indicating failures to support 1992 * up to 256 devices with the 1.9.0 on-disk metadata format 1993 */ 1994 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1]; 1995 1996 __le32 incompat_features; /* Used to indicate any incompatible features */ 1997 1998 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */ 1999 } __packed; 2000 2001 /* 2002 * Check for reshape constraints on raid set @rs: 2003 * 2004 * - reshape function non-existent 2005 * - degraded set 2006 * - ongoing recovery 2007 * - ongoing reshape 2008 * 2009 * Returns 0 if none or -EPERM if given constraint 2010 * and error message reference in @errmsg 2011 */ 2012 static int rs_check_reshape(struct raid_set *rs) 2013 { 2014 struct mddev *mddev = &rs->md; 2015 2016 if (!mddev->pers || !mddev->pers->check_reshape) 2017 rs->ti->error = "Reshape not supported"; 2018 else if (mddev->degraded) 2019 rs->ti->error = "Can't reshape degraded raid set"; 2020 else if (rs_is_recovering(rs)) 2021 rs->ti->error = "Convert request on recovering raid set prohibited"; 2022 else if (rs_is_reshaping(rs)) 2023 rs->ti->error = "raid set already reshaping!"; 2024 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs))) 2025 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10"; 2026 else 2027 return 0; 2028 2029 return -EPERM; 2030 } 2031 2032 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload) 2033 { 2034 BUG_ON(!rdev->sb_page); 2035 2036 if (rdev->sb_loaded && !force_reload) 2037 return 0; 2038 2039 rdev->sb_loaded = 0; 2040 2041 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) { 2042 DMERR("Failed to read superblock of device at position %d", 2043 rdev->raid_disk); 2044 md_error(rdev->mddev, rdev); 2045 set_bit(Faulty, &rdev->flags); 2046 return -EIO; 2047 } 2048 2049 rdev->sb_loaded = 1; 2050 2051 return 0; 2052 } 2053 2054 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) 2055 { 2056 failed_devices[0] = le64_to_cpu(sb->failed_devices); 2057 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices)); 2058 2059 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { 2060 int i = ARRAY_SIZE(sb->extended_failed_devices); 2061 2062 while (i--) 2063 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]); 2064 } 2065 } 2066 2067 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) 2068 { 2069 int i = ARRAY_SIZE(sb->extended_failed_devices); 2070 2071 sb->failed_devices = cpu_to_le64(failed_devices[0]); 2072 while (i--) 2073 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]); 2074 } 2075 2076 /* 2077 * Synchronize the superblock members with the raid set properties 2078 * 2079 * All superblock data is little endian. 2080 */ 2081 static void super_sync(struct mddev *mddev, struct md_rdev *rdev) 2082 { 2083 bool update_failed_devices = false; 2084 unsigned int i; 2085 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 2086 struct dm_raid_superblock *sb; 2087 struct raid_set *rs = container_of(mddev, struct raid_set, md); 2088 2089 /* No metadata device, no superblock */ 2090 if (!rdev->meta_bdev) 2091 return; 2092 2093 BUG_ON(!rdev->sb_page); 2094 2095 sb = page_address(rdev->sb_page); 2096 2097 sb_retrieve_failed_devices(sb, failed_devices); 2098 2099 for (i = 0; i < rs->raid_disks; i++) 2100 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) { 2101 update_failed_devices = true; 2102 set_bit(i, (void *) failed_devices); 2103 } 2104 2105 if (update_failed_devices) 2106 sb_update_failed_devices(sb, failed_devices); 2107 2108 sb->magic = cpu_to_le32(DM_RAID_MAGIC); 2109 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); 2110 2111 sb->num_devices = cpu_to_le32(mddev->raid_disks); 2112 sb->array_position = cpu_to_le32(rdev->raid_disk); 2113 2114 sb->events = cpu_to_le64(mddev->events); 2115 2116 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset); 2117 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp); 2118 2119 sb->level = cpu_to_le32(mddev->level); 2120 sb->layout = cpu_to_le32(mddev->layout); 2121 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors); 2122 2123 /******************************************************************** 2124 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! 2125 * 2126 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist 2127 */ 2128 sb->new_level = cpu_to_le32(mddev->new_level); 2129 sb->new_layout = cpu_to_le32(mddev->new_layout); 2130 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors); 2131 2132 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2133 2134 smp_rmb(); /* Make sure we access most recent reshape position */ 2135 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2136 if (le64_to_cpu(sb->reshape_position) != MaxSector) { 2137 /* Flag ongoing reshape */ 2138 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE); 2139 2140 if (mddev->delta_disks < 0 || mddev->reshape_backwards) 2141 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS); 2142 } else { 2143 /* Clear reshape flags */ 2144 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS)); 2145 } 2146 2147 sb->array_sectors = cpu_to_le64(mddev->array_sectors); 2148 sb->data_offset = cpu_to_le64(rdev->data_offset); 2149 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset); 2150 sb->sectors = cpu_to_le64(rdev->sectors); 2151 sb->incompat_features = cpu_to_le32(0); 2152 2153 /* Zero out the rest of the payload after the size of the superblock */ 2154 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb)); 2155 } 2156 2157 /* 2158 * super_load 2159 * 2160 * This function creates a superblock if one is not found on the device 2161 * and will decide which superblock to use if there's a choice. 2162 * 2163 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise 2164 */ 2165 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev) 2166 { 2167 int r; 2168 struct dm_raid_superblock *sb; 2169 struct dm_raid_superblock *refsb; 2170 uint64_t events_sb, events_refsb; 2171 2172 r = read_disk_sb(rdev, rdev->sb_size, false); 2173 if (r) 2174 return r; 2175 2176 sb = page_address(rdev->sb_page); 2177 2178 /* 2179 * Two cases that we want to write new superblocks and rebuild: 2180 * 1) New device (no matching magic number) 2181 * 2) Device specified for rebuild (!In_sync w/ offset == 0) 2182 */ 2183 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) || 2184 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) { 2185 super_sync(rdev->mddev, rdev); 2186 2187 set_bit(FirstUse, &rdev->flags); 2188 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); 2189 2190 /* Force writing of superblocks to disk */ 2191 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags); 2192 2193 /* Any superblock is better than none, choose that if given */ 2194 return refdev ? 0 : 1; 2195 } 2196 2197 if (!refdev) 2198 return 1; 2199 2200 events_sb = le64_to_cpu(sb->events); 2201 2202 refsb = page_address(refdev->sb_page); 2203 events_refsb = le64_to_cpu(refsb->events); 2204 2205 return (events_sb > events_refsb) ? 1 : 0; 2206 } 2207 2208 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev) 2209 { 2210 int role; 2211 unsigned int d; 2212 struct mddev *mddev = &rs->md; 2213 uint64_t events_sb; 2214 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 2215 struct dm_raid_superblock *sb; 2216 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0; 2217 struct md_rdev *r; 2218 struct dm_raid_superblock *sb2; 2219 2220 sb = page_address(rdev->sb_page); 2221 events_sb = le64_to_cpu(sb->events); 2222 2223 /* 2224 * Initialise to 1 if this is a new superblock. 2225 */ 2226 mddev->events = events_sb ? : 1; 2227 2228 mddev->reshape_position = MaxSector; 2229 2230 mddev->raid_disks = le32_to_cpu(sb->num_devices); 2231 mddev->level = le32_to_cpu(sb->level); 2232 mddev->layout = le32_to_cpu(sb->layout); 2233 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors); 2234 2235 /* 2236 * Reshaping is supported, e.g. reshape_position is valid 2237 * in superblock and superblock content is authoritative. 2238 */ 2239 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { 2240 /* Superblock is authoritative wrt given raid set layout! */ 2241 mddev->new_level = le32_to_cpu(sb->new_level); 2242 mddev->new_layout = le32_to_cpu(sb->new_layout); 2243 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors); 2244 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 2245 mddev->array_sectors = le64_to_cpu(sb->array_sectors); 2246 2247 /* raid was reshaping and got interrupted */ 2248 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) { 2249 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { 2250 DMERR("Reshape requested but raid set is still reshaping"); 2251 return -EINVAL; 2252 } 2253 2254 if (mddev->delta_disks < 0 || 2255 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS))) 2256 mddev->reshape_backwards = 1; 2257 else 2258 mddev->reshape_backwards = 0; 2259 2260 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 2261 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout); 2262 } 2263 2264 } else { 2265 /* 2266 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata 2267 */ 2268 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout); 2269 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 2270 2271 if (rs_takeover_requested(rs)) { 2272 if (rt_cur && rt_new) 2273 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)", 2274 rt_cur->name, rt_new->name); 2275 else 2276 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)"); 2277 return -EINVAL; 2278 } else if (rs_reshape_requested(rs)) { 2279 DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)"); 2280 if (mddev->layout != mddev->new_layout) { 2281 if (rt_cur && rt_new) 2282 DMERR(" current layout %s vs new layout %s", 2283 rt_cur->name, rt_new->name); 2284 else 2285 DMERR(" current layout 0x%X vs new layout 0x%X", 2286 le32_to_cpu(sb->layout), mddev->new_layout); 2287 } 2288 if (mddev->chunk_sectors != mddev->new_chunk_sectors) 2289 DMERR(" current stripe sectors %u vs new stripe sectors %u", 2290 mddev->chunk_sectors, mddev->new_chunk_sectors); 2291 if (rs->delta_disks) 2292 DMERR(" current %u disks vs new %u disks", 2293 mddev->raid_disks, mddev->raid_disks + rs->delta_disks); 2294 if (rs_is_raid10(rs)) { 2295 DMERR(" Old layout: %s w/ %u copies", 2296 raid10_md_layout_to_format(mddev->layout), 2297 raid10_md_layout_to_copies(mddev->layout)); 2298 DMERR(" New layout: %s w/ %u copies", 2299 raid10_md_layout_to_format(mddev->new_layout), 2300 raid10_md_layout_to_copies(mddev->new_layout)); 2301 } 2302 return -EINVAL; 2303 } 2304 2305 DMINFO("Discovered old metadata format; upgrading to extended metadata format"); 2306 } 2307 2308 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) 2309 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset); 2310 2311 /* 2312 * During load, we set FirstUse if a new superblock was written. 2313 * There are two reasons we might not have a superblock: 2314 * 1) The raid set is brand new - in which case, all of the 2315 * devices must have their In_sync bit set. Also, 2316 * recovery_cp must be 0, unless forced. 2317 * 2) This is a new device being added to an old raid set 2318 * and the new device needs to be rebuilt - in which 2319 * case the In_sync bit will /not/ be set and 2320 * recovery_cp must be MaxSector. 2321 * 3) This is/are a new device(s) being added to an old 2322 * raid set during takeover to a higher raid level 2323 * to provide capacity for redundancy or during reshape 2324 * to add capacity to grow the raid set. 2325 */ 2326 d = 0; 2327 rdev_for_each(r, mddev) { 2328 if (test_bit(Journal, &rdev->flags)) 2329 continue; 2330 2331 if (test_bit(FirstUse, &r->flags)) 2332 new_devs++; 2333 2334 if (!test_bit(In_sync, &r->flags)) { 2335 DMINFO("Device %d specified for rebuild; clearing superblock", 2336 r->raid_disk); 2337 rebuilds++; 2338 2339 if (test_bit(FirstUse, &r->flags)) 2340 rebuild_and_new++; 2341 } 2342 2343 d++; 2344 } 2345 2346 if (new_devs == rs->raid_disks || !rebuilds) { 2347 /* Replace a broken device */ 2348 if (new_devs == rs->raid_disks) { 2349 DMINFO("Superblocks created for new raid set"); 2350 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2351 } else if (new_devs != rebuilds && 2352 new_devs != rs->delta_disks) { 2353 DMERR("New device injected into existing raid set without " 2354 "'delta_disks' or 'rebuild' parameter specified"); 2355 return -EINVAL; 2356 } 2357 } else if (new_devs && new_devs != rebuilds) { 2358 DMERR("%u 'rebuild' devices cannot be injected into" 2359 " a raid set with %u other first-time devices", 2360 rebuilds, new_devs); 2361 return -EINVAL; 2362 } else if (rebuilds) { 2363 if (rebuild_and_new && rebuilds != rebuild_and_new) { 2364 DMERR("new device%s provided without 'rebuild'", 2365 new_devs > 1 ? "s" : ""); 2366 return -EINVAL; 2367 } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) { 2368 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)", 2369 (unsigned long long) mddev->recovery_cp); 2370 return -EINVAL; 2371 } else if (rs_is_reshaping(rs)) { 2372 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)", 2373 (unsigned long long) mddev->reshape_position); 2374 return -EINVAL; 2375 } 2376 } 2377 2378 /* 2379 * Now we set the Faulty bit for those devices that are 2380 * recorded in the superblock as failed. 2381 */ 2382 sb_retrieve_failed_devices(sb, failed_devices); 2383 rdev_for_each(r, mddev) { 2384 if (test_bit(Journal, &rdev->flags) || 2385 !r->sb_page) 2386 continue; 2387 sb2 = page_address(r->sb_page); 2388 sb2->failed_devices = 0; 2389 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices)); 2390 2391 /* 2392 * Check for any device re-ordering. 2393 */ 2394 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) { 2395 role = le32_to_cpu(sb2->array_position); 2396 if (role < 0) 2397 continue; 2398 2399 if (role != r->raid_disk) { 2400 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) { 2401 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) || 2402 rs->raid_disks % rs->raid10_copies) { 2403 rs->ti->error = 2404 "Cannot change raid10 near set to odd # of devices!"; 2405 return -EINVAL; 2406 } 2407 2408 sb2->array_position = cpu_to_le32(r->raid_disk); 2409 2410 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) && 2411 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) && 2412 !rt_is_raid1(rs->raid_type)) { 2413 rs->ti->error = "Cannot change device positions in raid set"; 2414 return -EINVAL; 2415 } 2416 2417 DMINFO("raid device #%d now at position #%d", role, r->raid_disk); 2418 } 2419 2420 /* 2421 * Partial recovery is performed on 2422 * returning failed devices. 2423 */ 2424 if (test_bit(role, (void *) failed_devices)) 2425 set_bit(Faulty, &r->flags); 2426 } 2427 } 2428 2429 return 0; 2430 } 2431 2432 static int super_validate(struct raid_set *rs, struct md_rdev *rdev) 2433 { 2434 struct mddev *mddev = &rs->md; 2435 struct dm_raid_superblock *sb; 2436 2437 if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0) 2438 return 0; 2439 2440 sb = page_address(rdev->sb_page); 2441 2442 /* 2443 * If mddev->events is not set, we know we have not yet initialized 2444 * the array. 2445 */ 2446 if (!mddev->events && super_init_validation(rs, rdev)) 2447 return -EINVAL; 2448 2449 if (le32_to_cpu(sb->compat_features) && 2450 le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) { 2451 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags"; 2452 return -EINVAL; 2453 } 2454 2455 if (sb->incompat_features) { 2456 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet"; 2457 return -EINVAL; 2458 } 2459 2460 /* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */ 2461 mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096); 2462 mddev->bitmap_info.default_offset = mddev->bitmap_info.offset; 2463 2464 if (!test_and_clear_bit(FirstUse, &rdev->flags)) { 2465 /* 2466 * Retrieve rdev size stored in superblock to be prepared for shrink. 2467 * Check extended superblock members are present otherwise the size 2468 * will not be set! 2469 */ 2470 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) 2471 rdev->sectors = le64_to_cpu(sb->sectors); 2472 2473 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset); 2474 if (rdev->recovery_offset == MaxSector) 2475 set_bit(In_sync, &rdev->flags); 2476 /* 2477 * If no reshape in progress -> we're recovering single 2478 * disk(s) and have to set the device(s) to out-of-sync 2479 */ 2480 else if (!rs_is_reshaping(rs)) 2481 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */ 2482 } 2483 2484 /* 2485 * If a device comes back, set it as not In_sync and no longer faulty. 2486 */ 2487 if (test_and_clear_bit(Faulty, &rdev->flags)) { 2488 rdev->recovery_offset = 0; 2489 clear_bit(In_sync, &rdev->flags); 2490 rdev->saved_raid_disk = rdev->raid_disk; 2491 } 2492 2493 /* Reshape support -> restore repective data offsets */ 2494 rdev->data_offset = le64_to_cpu(sb->data_offset); 2495 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset); 2496 2497 return 0; 2498 } 2499 2500 /* 2501 * Analyse superblocks and select the freshest. 2502 */ 2503 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs) 2504 { 2505 int r; 2506 struct md_rdev *rdev, *freshest; 2507 struct mddev *mddev = &rs->md; 2508 2509 freshest = NULL; 2510 rdev_for_each(rdev, mddev) { 2511 if (test_bit(Journal, &rdev->flags)) 2512 continue; 2513 2514 if (!rdev->meta_bdev) 2515 continue; 2516 2517 /* Set superblock offset/size for metadata device. */ 2518 rdev->sb_start = 0; 2519 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev); 2520 if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) { 2521 DMERR("superblock size of a logical block is no longer valid"); 2522 return -EINVAL; 2523 } 2524 2525 /* 2526 * Skipping super_load due to CTR_FLAG_SYNC will cause 2527 * the array to undergo initialization again as 2528 * though it were new. This is the intended effect 2529 * of the "sync" directive. 2530 * 2531 * With reshaping capability added, we must ensure that 2532 * the "sync" directive is disallowed during the reshape. 2533 */ 2534 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 2535 continue; 2536 2537 r = super_load(rdev, freshest); 2538 2539 switch (r) { 2540 case 1: 2541 freshest = rdev; 2542 break; 2543 case 0: 2544 break; 2545 default: 2546 /* This is a failure to read the superblock from the metadata device. */ 2547 /* 2548 * We have to keep any raid0 data/metadata device pairs or 2549 * the MD raid0 personality will fail to start the array. 2550 */ 2551 if (rs_is_raid0(rs)) 2552 continue; 2553 2554 /* 2555 * We keep the dm_devs to be able to emit the device tuple 2556 * properly on the table line in raid_status() (rather than 2557 * mistakenly acting as if '- -' got passed into the constructor). 2558 * 2559 * The rdev has to stay on the same_set list to allow for 2560 * the attempt to restore faulty devices on second resume. 2561 */ 2562 rdev->raid_disk = rdev->saved_raid_disk = -1; 2563 break; 2564 } 2565 } 2566 2567 if (!freshest) 2568 return 0; 2569 2570 /* 2571 * Validation of the freshest device provides the source of 2572 * validation for the remaining devices. 2573 */ 2574 rs->ti->error = "Unable to assemble array: Invalid superblocks"; 2575 if (super_validate(rs, freshest)) 2576 return -EINVAL; 2577 2578 if (validate_raid_redundancy(rs)) { 2579 rs->ti->error = "Insufficient redundancy to activate array"; 2580 return -EINVAL; 2581 } 2582 2583 rdev_for_each(rdev, mddev) 2584 if (!test_bit(Journal, &rdev->flags) && 2585 rdev != freshest && 2586 super_validate(rs, rdev)) 2587 return -EINVAL; 2588 return 0; 2589 } 2590 2591 /* 2592 * Adjust data_offset and new_data_offset on all disk members of @rs 2593 * for out of place reshaping if requested by constructor 2594 * 2595 * We need free space at the beginning of each raid disk for forward 2596 * and at the end for backward reshapes which userspace has to provide 2597 * via remapping/reordering of space. 2598 */ 2599 static int rs_adjust_data_offsets(struct raid_set *rs) 2600 { 2601 sector_t data_offset = 0, new_data_offset = 0; 2602 struct md_rdev *rdev; 2603 2604 /* Constructor did not request data offset change */ 2605 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { 2606 if (!rs_is_reshapable(rs)) 2607 goto out; 2608 2609 return 0; 2610 } 2611 2612 /* HM FIXME: get In_Sync raid_dev? */ 2613 rdev = &rs->dev[0].rdev; 2614 2615 if (rs->delta_disks < 0) { 2616 /* 2617 * Removing disks (reshaping backwards): 2618 * 2619 * - before reshape: data is at offset 0 and free space 2620 * is at end of each component LV 2621 * 2622 * - after reshape: data is at offset rs->data_offset != 0 on each component LV 2623 */ 2624 data_offset = 0; 2625 new_data_offset = rs->data_offset; 2626 2627 } else if (rs->delta_disks > 0) { 2628 /* 2629 * Adding disks (reshaping forwards): 2630 * 2631 * - before reshape: data is at offset rs->data_offset != 0 and 2632 * free space is at begin of each component LV 2633 * 2634 * - after reshape: data is at offset 0 on each component LV 2635 */ 2636 data_offset = rs->data_offset; 2637 new_data_offset = 0; 2638 2639 } else { 2640 /* 2641 * User space passes in 0 for data offset after having removed reshape space 2642 * 2643 * - or - (data offset != 0) 2644 * 2645 * Changing RAID layout or chunk size -> toggle offsets 2646 * 2647 * - before reshape: data is at offset rs->data_offset 0 and 2648 * free space is at end of each component LV 2649 * -or- 2650 * data is at offset rs->data_offset != 0 and 2651 * free space is at begin of each component LV 2652 * 2653 * - after reshape: data is at offset 0 if it was at offset != 0 2654 * or at offset != 0 if it was at offset 0 2655 * on each component LV 2656 * 2657 */ 2658 data_offset = rs->data_offset ? rdev->data_offset : 0; 2659 new_data_offset = data_offset ? 0 : rs->data_offset; 2660 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2661 } 2662 2663 /* 2664 * Make sure we got a minimum amount of free sectors per device 2665 */ 2666 if (rs->data_offset && 2667 bdev_nr_sectors(rdev->bdev) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) { 2668 rs->ti->error = data_offset ? "No space for forward reshape" : 2669 "No space for backward reshape"; 2670 return -ENOSPC; 2671 } 2672 out: 2673 /* 2674 * Raise recovery_cp in case data_offset != 0 to 2675 * avoid false recovery positives in the constructor. 2676 */ 2677 if (rs->md.recovery_cp < rs->md.dev_sectors) 2678 rs->md.recovery_cp += rs->dev[0].rdev.data_offset; 2679 2680 /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */ 2681 rdev_for_each(rdev, &rs->md) { 2682 if (!test_bit(Journal, &rdev->flags)) { 2683 rdev->data_offset = data_offset; 2684 rdev->new_data_offset = new_data_offset; 2685 } 2686 } 2687 2688 return 0; 2689 } 2690 2691 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */ 2692 static void __reorder_raid_disk_indexes(struct raid_set *rs) 2693 { 2694 int i = 0; 2695 struct md_rdev *rdev; 2696 2697 rdev_for_each(rdev, &rs->md) { 2698 if (!test_bit(Journal, &rdev->flags)) { 2699 rdev->raid_disk = i++; 2700 rdev->saved_raid_disk = rdev->new_raid_disk = -1; 2701 } 2702 } 2703 } 2704 2705 /* 2706 * Setup @rs for takeover by a different raid level 2707 */ 2708 static int rs_setup_takeover(struct raid_set *rs) 2709 { 2710 struct mddev *mddev = &rs->md; 2711 struct md_rdev *rdev; 2712 unsigned int d = mddev->raid_disks = rs->raid_disks; 2713 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset; 2714 2715 if (rt_is_raid10(rs->raid_type)) { 2716 if (rs_is_raid0(rs)) { 2717 /* Userpace reordered disks -> adjust raid_disk indexes */ 2718 __reorder_raid_disk_indexes(rs); 2719 2720 /* raid0 -> raid10_far layout */ 2721 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR, 2722 rs->raid10_copies); 2723 } else if (rs_is_raid1(rs)) 2724 /* raid1 -> raid10_near layout */ 2725 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, 2726 rs->raid_disks); 2727 else 2728 return -EINVAL; 2729 2730 } 2731 2732 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2733 mddev->recovery_cp = MaxSector; 2734 2735 while (d--) { 2736 rdev = &rs->dev[d].rdev; 2737 2738 if (test_bit(d, (void *) rs->rebuild_disks)) { 2739 clear_bit(In_sync, &rdev->flags); 2740 clear_bit(Faulty, &rdev->flags); 2741 mddev->recovery_cp = rdev->recovery_offset = 0; 2742 /* Bitmap has to be created when we do an "up" takeover */ 2743 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2744 } 2745 2746 rdev->new_data_offset = new_data_offset; 2747 } 2748 2749 return 0; 2750 } 2751 2752 /* Prepare @rs for reshape */ 2753 static int rs_prepare_reshape(struct raid_set *rs) 2754 { 2755 bool reshape; 2756 struct mddev *mddev = &rs->md; 2757 2758 if (rs_is_raid10(rs)) { 2759 if (rs->raid_disks != mddev->raid_disks && 2760 __is_raid10_near(mddev->layout) && 2761 rs->raid10_copies && 2762 rs->raid10_copies != __raid10_near_copies(mddev->layout)) { 2763 /* 2764 * raid disk have to be multiple of data copies to allow this conversion, 2765 * 2766 * This is actually not a reshape it is a 2767 * rebuild of any additional mirrors per group 2768 */ 2769 if (rs->raid_disks % rs->raid10_copies) { 2770 rs->ti->error = "Can't reshape raid10 mirror groups"; 2771 return -EINVAL; 2772 } 2773 2774 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */ 2775 __reorder_raid_disk_indexes(rs); 2776 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, 2777 rs->raid10_copies); 2778 mddev->new_layout = mddev->layout; 2779 reshape = false; 2780 } else 2781 reshape = true; 2782 2783 } else if (rs_is_raid456(rs)) 2784 reshape = true; 2785 2786 else if (rs_is_raid1(rs)) { 2787 if (rs->delta_disks) { 2788 /* Process raid1 via delta_disks */ 2789 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks; 2790 reshape = true; 2791 } else { 2792 /* Process raid1 without delta_disks */ 2793 mddev->raid_disks = rs->raid_disks; 2794 reshape = false; 2795 } 2796 } else { 2797 rs->ti->error = "Called with bogus raid type"; 2798 return -EINVAL; 2799 } 2800 2801 if (reshape) { 2802 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags); 2803 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2804 } else if (mddev->raid_disks < rs->raid_disks) 2805 /* Create new superblocks and bitmaps, if any new disks */ 2806 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2807 2808 return 0; 2809 } 2810 2811 /* Get reshape sectors from data_offsets or raid set */ 2812 static sector_t _get_reshape_sectors(struct raid_set *rs) 2813 { 2814 struct md_rdev *rdev; 2815 sector_t reshape_sectors = 0; 2816 2817 rdev_for_each(rdev, &rs->md) 2818 if (!test_bit(Journal, &rdev->flags)) { 2819 reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ? 2820 rdev->data_offset - rdev->new_data_offset : 2821 rdev->new_data_offset - rdev->data_offset; 2822 break; 2823 } 2824 2825 return max(reshape_sectors, (sector_t) rs->data_offset); 2826 } 2827 2828 /* 2829 * Reshape: 2830 * - change raid layout 2831 * - change chunk size 2832 * - add disks 2833 * - remove disks 2834 */ 2835 static int rs_setup_reshape(struct raid_set *rs) 2836 { 2837 int r = 0; 2838 unsigned int cur_raid_devs, d; 2839 sector_t reshape_sectors = _get_reshape_sectors(rs); 2840 struct mddev *mddev = &rs->md; 2841 struct md_rdev *rdev; 2842 2843 mddev->delta_disks = rs->delta_disks; 2844 cur_raid_devs = mddev->raid_disks; 2845 2846 /* Ignore impossible layout change whilst adding/removing disks */ 2847 if (mddev->delta_disks && 2848 mddev->layout != mddev->new_layout) { 2849 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks); 2850 mddev->new_layout = mddev->layout; 2851 } 2852 2853 /* 2854 * Adjust array size: 2855 * 2856 * - in case of adding disk(s), array size has 2857 * to grow after the disk adding reshape, 2858 * which'll hapen in the event handler; 2859 * reshape will happen forward, so space has to 2860 * be available at the beginning of each disk 2861 * 2862 * - in case of removing disk(s), array size 2863 * has to shrink before starting the reshape, 2864 * which'll happen here; 2865 * reshape will happen backward, so space has to 2866 * be available at the end of each disk 2867 * 2868 * - data_offset and new_data_offset are 2869 * adjusted for aforementioned out of place 2870 * reshaping based on userspace passing in 2871 * the "data_offset <sectors>" key/value 2872 * pair via the constructor 2873 */ 2874 2875 /* Add disk(s) */ 2876 if (rs->delta_disks > 0) { 2877 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */ 2878 for (d = cur_raid_devs; d < rs->raid_disks; d++) { 2879 rdev = &rs->dev[d].rdev; 2880 clear_bit(In_sync, &rdev->flags); 2881 2882 /* 2883 * save_raid_disk needs to be -1, or recovery_offset will be set to 0 2884 * by md, which'll store that erroneously in the superblock on reshape 2885 */ 2886 rdev->saved_raid_disk = -1; 2887 rdev->raid_disk = d; 2888 2889 rdev->sectors = mddev->dev_sectors; 2890 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector; 2891 } 2892 2893 mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */ 2894 2895 /* Remove disk(s) */ 2896 } else if (rs->delta_disks < 0) { 2897 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true); 2898 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */ 2899 2900 /* Change layout and/or chunk size */ 2901 } else { 2902 /* 2903 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size: 2904 * 2905 * keeping number of disks and do layout change -> 2906 * 2907 * toggle reshape_backward depending on data_offset: 2908 * 2909 * - free space upfront -> reshape forward 2910 * 2911 * - free space at the end -> reshape backward 2912 * 2913 * 2914 * This utilizes free reshape space avoiding the need 2915 * for userspace to move (parts of) LV segments in 2916 * case of layout/chunksize change (for disk 2917 * adding/removing reshape space has to be at 2918 * the proper address (see above with delta_disks): 2919 * 2920 * add disk(s) -> begin 2921 * remove disk(s)-> end 2922 */ 2923 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1; 2924 } 2925 2926 /* 2927 * Adjust device size for forward reshape 2928 * because md_finish_reshape() reduces it. 2929 */ 2930 if (!mddev->reshape_backwards) 2931 rdev_for_each(rdev, &rs->md) 2932 if (!test_bit(Journal, &rdev->flags)) 2933 rdev->sectors += reshape_sectors; 2934 2935 return r; 2936 } 2937 2938 /* 2939 * If the md resync thread has updated superblock with max reshape position 2940 * at the end of a reshape but not (yet) reset the layout configuration 2941 * changes -> reset the latter. 2942 */ 2943 static void rs_reset_inconclusive_reshape(struct raid_set *rs) 2944 { 2945 if (!rs_is_reshaping(rs) && rs_is_layout_change(rs, true)) { 2946 rs_set_cur(rs); 2947 rs->md.delta_disks = 0; 2948 rs->md.reshape_backwards = 0; 2949 } 2950 } 2951 2952 /* 2953 * Enable/disable discard support on RAID set depending on 2954 * RAID level and discard properties of underlying RAID members. 2955 */ 2956 static void configure_discard_support(struct raid_set *rs) 2957 { 2958 int i; 2959 bool raid456; 2960 struct dm_target *ti = rs->ti; 2961 2962 /* 2963 * XXX: RAID level 4,5,6 require zeroing for safety. 2964 */ 2965 raid456 = rs_is_raid456(rs); 2966 2967 for (i = 0; i < rs->raid_disks; i++) { 2968 if (!rs->dev[i].rdev.bdev || 2969 !bdev_max_discard_sectors(rs->dev[i].rdev.bdev)) 2970 return; 2971 2972 if (raid456) { 2973 if (!devices_handle_discard_safely) { 2974 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty."); 2975 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override."); 2976 return; 2977 } 2978 } 2979 } 2980 2981 ti->num_discard_bios = 1; 2982 } 2983 2984 /* 2985 * Construct a RAID0/1/10/4/5/6 mapping: 2986 * Args: 2987 * <raid_type> <#raid_params> <raid_params>{0,} \ 2988 * <#raid_devs> [<meta_dev1> <dev1>]{1,} 2989 * 2990 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for 2991 * details on possible <raid_params>. 2992 * 2993 * Userspace is free to initialize the metadata devices, hence the superblocks to 2994 * enforce recreation based on the passed in table parameters. 2995 * 2996 */ 2997 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv) 2998 { 2999 int r; 3000 bool resize = false; 3001 struct raid_type *rt; 3002 unsigned int num_raid_params, num_raid_devs; 3003 sector_t sb_array_sectors, rdev_sectors, reshape_sectors; 3004 struct raid_set *rs = NULL; 3005 const char *arg; 3006 struct rs_layout rs_layout; 3007 struct dm_arg_set as = { argc, argv }, as_nrd; 3008 struct dm_arg _args[] = { 3009 { 0, as.argc, "Cannot understand number of raid parameters" }, 3010 { 1, 254, "Cannot understand number of raid devices parameters" } 3011 }; 3012 3013 arg = dm_shift_arg(&as); 3014 if (!arg) { 3015 ti->error = "No arguments"; 3016 return -EINVAL; 3017 } 3018 3019 rt = get_raid_type(arg); 3020 if (!rt) { 3021 ti->error = "Unrecognised raid_type"; 3022 return -EINVAL; 3023 } 3024 3025 /* Must have <#raid_params> */ 3026 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error)) 3027 return -EINVAL; 3028 3029 /* number of raid device tupples <meta_dev data_dev> */ 3030 as_nrd = as; 3031 dm_consume_args(&as_nrd, num_raid_params); 3032 _args[1].max = (as_nrd.argc - 1) / 2; 3033 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error)) 3034 return -EINVAL; 3035 3036 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) { 3037 ti->error = "Invalid number of supplied raid devices"; 3038 return -EINVAL; 3039 } 3040 3041 rs = raid_set_alloc(ti, rt, num_raid_devs); 3042 if (IS_ERR(rs)) 3043 return PTR_ERR(rs); 3044 3045 r = parse_raid_params(rs, &as, num_raid_params); 3046 if (r) 3047 goto bad; 3048 3049 r = parse_dev_params(rs, &as); 3050 if (r) 3051 goto bad; 3052 3053 rs->md.sync_super = super_sync; 3054 3055 /* 3056 * Calculate ctr requested array and device sizes to allow 3057 * for superblock analysis needing device sizes defined. 3058 * 3059 * Any existing superblock will overwrite the array and device sizes 3060 */ 3061 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false); 3062 if (r) 3063 goto bad; 3064 3065 /* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */ 3066 rs->array_sectors = rs->md.array_sectors; 3067 rs->dev_sectors = rs->md.dev_sectors; 3068 3069 /* 3070 * Backup any new raid set level, layout, ... 3071 * requested to be able to compare to superblock 3072 * members for conversion decisions. 3073 */ 3074 rs_config_backup(rs, &rs_layout); 3075 3076 r = analyse_superblocks(ti, rs); 3077 if (r) 3078 goto bad; 3079 3080 /* All in-core metadata now as of current superblocks after calling analyse_superblocks() */ 3081 sb_array_sectors = rs->md.array_sectors; 3082 rdev_sectors = __rdev_sectors(rs); 3083 if (!rdev_sectors) { 3084 ti->error = "Invalid rdev size"; 3085 r = -EINVAL; 3086 goto bad; 3087 } 3088 3089 3090 reshape_sectors = _get_reshape_sectors(rs); 3091 if (rs->dev_sectors != rdev_sectors) { 3092 resize = (rs->dev_sectors != rdev_sectors - reshape_sectors); 3093 if (rs->dev_sectors > rdev_sectors - reshape_sectors) 3094 set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3095 } 3096 3097 INIT_WORK(&rs->md.event_work, do_table_event); 3098 ti->private = rs; 3099 ti->num_flush_bios = 1; 3100 ti->needs_bio_set_dev = true; 3101 3102 /* Restore any requested new layout for conversion decision */ 3103 rs_config_restore(rs, &rs_layout); 3104 3105 /* 3106 * Now that we have any superblock metadata available, 3107 * check for new, recovering, reshaping, to be taken over, 3108 * to be reshaped or an existing, unchanged raid set to 3109 * run in sequence. 3110 */ 3111 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) { 3112 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */ 3113 if (rs_is_raid6(rs) && 3114 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 3115 ti->error = "'nosync' not allowed for new raid6 set"; 3116 r = -EINVAL; 3117 goto bad; 3118 } 3119 rs_setup_recovery(rs, 0); 3120 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3121 rs_set_new(rs); 3122 } else if (rs_is_recovering(rs)) { 3123 /* A recovering raid set may be resized */ 3124 goto size_check; 3125 } else if (rs_is_reshaping(rs)) { 3126 /* Have to reject size change request during reshape */ 3127 if (resize) { 3128 ti->error = "Can't resize a reshaping raid set"; 3129 r = -EPERM; 3130 goto bad; 3131 } 3132 /* skip setup rs */ 3133 } else if (rs_takeover_requested(rs)) { 3134 if (rs_is_reshaping(rs)) { 3135 ti->error = "Can't takeover a reshaping raid set"; 3136 r = -EPERM; 3137 goto bad; 3138 } 3139 3140 /* We can't takeover a journaled raid4/5/6 */ 3141 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 3142 ti->error = "Can't takeover a journaled raid4/5/6 set"; 3143 r = -EPERM; 3144 goto bad; 3145 } 3146 3147 /* 3148 * If a takeover is needed, userspace sets any additional 3149 * devices to rebuild and we can check for a valid request here. 3150 * 3151 * If acceptible, set the level to the new requested 3152 * one, prohibit requesting recovery, allow the raid 3153 * set to run and store superblocks during resume. 3154 */ 3155 r = rs_check_takeover(rs); 3156 if (r) 3157 goto bad; 3158 3159 r = rs_setup_takeover(rs); 3160 if (r) 3161 goto bad; 3162 3163 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3164 /* Takeover ain't recovery, so disable recovery */ 3165 rs_setup_recovery(rs, MaxSector); 3166 rs_set_new(rs); 3167 } else if (rs_reshape_requested(rs)) { 3168 /* Only request grow on raid set size extensions, not on reshapes. */ 3169 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3170 3171 /* 3172 * No need to check for 'ongoing' takeover here, because takeover 3173 * is an instant operation as oposed to an ongoing reshape. 3174 */ 3175 3176 /* We can't reshape a journaled raid4/5/6 */ 3177 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 3178 ti->error = "Can't reshape a journaled raid4/5/6 set"; 3179 r = -EPERM; 3180 goto bad; 3181 } 3182 3183 /* Out-of-place space has to be available to allow for a reshape unless raid1! */ 3184 if (reshape_sectors || rs_is_raid1(rs)) { 3185 /* 3186 * We can only prepare for a reshape here, because the 3187 * raid set needs to run to provide the repective reshape 3188 * check functions via its MD personality instance. 3189 * 3190 * So do the reshape check after md_run() succeeded. 3191 */ 3192 r = rs_prepare_reshape(rs); 3193 if (r) 3194 goto bad; 3195 3196 /* Reshaping ain't recovery, so disable recovery */ 3197 rs_setup_recovery(rs, MaxSector); 3198 } 3199 rs_set_cur(rs); 3200 } else { 3201 size_check: 3202 /* May not set recovery when a device rebuild is requested */ 3203 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) { 3204 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3205 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3206 rs_setup_recovery(rs, MaxSector); 3207 } else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) { 3208 /* 3209 * Set raid set to current size, i.e. size as of 3210 * superblocks to grow to larger size in preresume. 3211 */ 3212 r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false); 3213 if (r) 3214 goto bad; 3215 3216 rs_setup_recovery(rs, rs->md.recovery_cp < rs->md.dev_sectors ? rs->md.recovery_cp : rs->md.dev_sectors); 3217 } else { 3218 /* This is no size change or it is shrinking, update size and record in superblocks */ 3219 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false); 3220 if (r) 3221 goto bad; 3222 3223 if (sb_array_sectors > rs->array_sectors) 3224 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3225 } 3226 rs_set_cur(rs); 3227 } 3228 3229 /* If constructor requested it, change data and new_data offsets */ 3230 r = rs_adjust_data_offsets(rs); 3231 if (r) 3232 goto bad; 3233 3234 /* Catch any inconclusive reshape superblock content. */ 3235 rs_reset_inconclusive_reshape(rs); 3236 3237 /* Start raid set read-only and assumed clean to change in raid_resume() */ 3238 rs->md.ro = 1; 3239 rs->md.in_sync = 1; 3240 3241 /* Keep array frozen until resume. */ 3242 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery); 3243 3244 /* Has to be held on running the array */ 3245 mddev_lock_nointr(&rs->md); 3246 r = md_run(&rs->md); 3247 rs->md.in_sync = 0; /* Assume already marked dirty */ 3248 if (r) { 3249 ti->error = "Failed to run raid array"; 3250 mddev_unlock(&rs->md); 3251 goto bad; 3252 } 3253 3254 r = md_start(&rs->md); 3255 if (r) { 3256 ti->error = "Failed to start raid array"; 3257 mddev_unlock(&rs->md); 3258 goto bad_md_start; 3259 } 3260 3261 /* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */ 3262 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) { 3263 r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode); 3264 if (r) { 3265 ti->error = "Failed to set raid4/5/6 journal mode"; 3266 mddev_unlock(&rs->md); 3267 goto bad_journal_mode_set; 3268 } 3269 } 3270 3271 mddev_suspend(&rs->md); 3272 set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags); 3273 3274 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */ 3275 if (rs_is_raid456(rs)) { 3276 r = rs_set_raid456_stripe_cache(rs); 3277 if (r) 3278 goto bad_stripe_cache; 3279 } 3280 3281 /* Now do an early reshape check */ 3282 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { 3283 r = rs_check_reshape(rs); 3284 if (r) 3285 goto bad_check_reshape; 3286 3287 /* Restore new, ctr requested layout to perform check */ 3288 rs_config_restore(rs, &rs_layout); 3289 3290 if (rs->md.pers->start_reshape) { 3291 r = rs->md.pers->check_reshape(&rs->md); 3292 if (r) { 3293 ti->error = "Reshape check failed"; 3294 goto bad_check_reshape; 3295 } 3296 } 3297 } 3298 3299 /* Disable/enable discard support on raid set. */ 3300 configure_discard_support(rs); 3301 3302 mddev_unlock(&rs->md); 3303 return 0; 3304 3305 bad_md_start: 3306 bad_journal_mode_set: 3307 bad_stripe_cache: 3308 bad_check_reshape: 3309 md_stop(&rs->md); 3310 bad: 3311 raid_set_free(rs); 3312 3313 return r; 3314 } 3315 3316 static void raid_dtr(struct dm_target *ti) 3317 { 3318 struct raid_set *rs = ti->private; 3319 3320 md_stop(&rs->md); 3321 raid_set_free(rs); 3322 } 3323 3324 static int raid_map(struct dm_target *ti, struct bio *bio) 3325 { 3326 struct raid_set *rs = ti->private; 3327 struct mddev *mddev = &rs->md; 3328 3329 /* 3330 * If we're reshaping to add disk(s)), ti->len and 3331 * mddev->array_sectors will differ during the process 3332 * (ti->len > mddev->array_sectors), so we have to requeue 3333 * bios with addresses > mddev->array_sectors here or 3334 * there will occur accesses past EOD of the component 3335 * data images thus erroring the raid set. 3336 */ 3337 if (unlikely(bio_end_sector(bio) > mddev->array_sectors)) 3338 return DM_MAPIO_REQUEUE; 3339 3340 md_handle_request(mddev, bio); 3341 3342 return DM_MAPIO_SUBMITTED; 3343 } 3344 3345 /* Return sync state string for @state */ 3346 enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle }; 3347 static const char *sync_str(enum sync_state state) 3348 { 3349 /* Has to be in above sync_state order! */ 3350 static const char *sync_strs[] = { 3351 "frozen", 3352 "reshape", 3353 "resync", 3354 "check", 3355 "repair", 3356 "recover", 3357 "idle" 3358 }; 3359 3360 return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef"; 3361 }; 3362 3363 /* Return enum sync_state for @mddev derived from @recovery flags */ 3364 static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery) 3365 { 3366 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 3367 return st_frozen; 3368 3369 /* The MD sync thread can be done with io or be interrupted but still be running */ 3370 if (!test_bit(MD_RECOVERY_DONE, &recovery) && 3371 (test_bit(MD_RECOVERY_RUNNING, &recovery) || 3372 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) { 3373 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 3374 return st_reshape; 3375 3376 if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 3377 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 3378 return st_resync; 3379 if (test_bit(MD_RECOVERY_CHECK, &recovery)) 3380 return st_check; 3381 return st_repair; 3382 } 3383 3384 if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 3385 return st_recover; 3386 3387 if (mddev->reshape_position != MaxSector) 3388 return st_reshape; 3389 } 3390 3391 return st_idle; 3392 } 3393 3394 /* 3395 * Return status string for @rdev 3396 * 3397 * Status characters: 3398 * 3399 * 'D' = Dead/Failed raid set component or raid4/5/6 journal device 3400 * 'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device 3401 * 'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device 3402 * '-' = Non-existing device (i.e. uspace passed '- -' into the ctr) 3403 */ 3404 static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev) 3405 { 3406 if (!rdev->bdev) 3407 return "-"; 3408 else if (test_bit(Faulty, &rdev->flags)) 3409 return "D"; 3410 else if (test_bit(Journal, &rdev->flags)) 3411 return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a"; 3412 else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) || 3413 (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) && 3414 !test_bit(In_sync, &rdev->flags))) 3415 return "a"; 3416 else 3417 return "A"; 3418 } 3419 3420 /* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */ 3421 static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery, 3422 enum sync_state state, sector_t resync_max_sectors) 3423 { 3424 sector_t r; 3425 struct mddev *mddev = &rs->md; 3426 3427 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3428 clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3429 3430 if (rs_is_raid0(rs)) { 3431 r = resync_max_sectors; 3432 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3433 3434 } else { 3435 if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery)) 3436 r = mddev->recovery_cp; 3437 else 3438 r = mddev->curr_resync_completed; 3439 3440 if (state == st_idle && r >= resync_max_sectors) { 3441 /* 3442 * Sync complete. 3443 */ 3444 /* In case we have finished recovering, the array is in sync. */ 3445 if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 3446 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3447 3448 } else if (state == st_recover) 3449 /* 3450 * In case we are recovering, the array is not in sync 3451 * and health chars should show the recovering legs. 3452 * 3453 * Already retrieved recovery offset from curr_resync_completed above. 3454 */ 3455 ; 3456 3457 else if (state == st_resync || state == st_reshape) 3458 /* 3459 * If "resync/reshape" is occurring, the raid set 3460 * is or may be out of sync hence the health 3461 * characters shall be 'a'. 3462 */ 3463 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3464 3465 else if (state == st_check || state == st_repair) 3466 /* 3467 * If "check" or "repair" is occurring, the raid set has 3468 * undergone an initial sync and the health characters 3469 * should not be 'a' anymore. 3470 */ 3471 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3472 3473 else if (test_bit(MD_RECOVERY_NEEDED, &recovery)) 3474 /* 3475 * We are idle and recovery is needed, prevent 'A' chars race 3476 * caused by components still set to in-sync by constructor. 3477 */ 3478 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3479 3480 else { 3481 /* 3482 * We are idle and the raid set may be doing an initial 3483 * sync, or it may be rebuilding individual components. 3484 * If all the devices are In_sync, then it is the raid set 3485 * that is being initialized. 3486 */ 3487 struct md_rdev *rdev; 3488 3489 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3490 rdev_for_each(rdev, mddev) 3491 if (!test_bit(Journal, &rdev->flags) && 3492 !test_bit(In_sync, &rdev->flags)) { 3493 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3494 break; 3495 } 3496 } 3497 } 3498 3499 return min(r, resync_max_sectors); 3500 } 3501 3502 /* Helper to return @dev name or "-" if !@dev */ 3503 static const char *__get_dev_name(struct dm_dev *dev) 3504 { 3505 return dev ? dev->name : "-"; 3506 } 3507 3508 static void raid_status(struct dm_target *ti, status_type_t type, 3509 unsigned int status_flags, char *result, unsigned int maxlen) 3510 { 3511 struct raid_set *rs = ti->private; 3512 struct mddev *mddev = &rs->md; 3513 struct r5conf *conf = rs_is_raid456(rs) ? mddev->private : NULL; 3514 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0; 3515 unsigned long recovery; 3516 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */ 3517 unsigned int sz = 0; 3518 unsigned int rebuild_writemostly_count = 0; 3519 sector_t progress, resync_max_sectors, resync_mismatches; 3520 enum sync_state state; 3521 struct raid_type *rt; 3522 3523 switch (type) { 3524 case STATUSTYPE_INFO: 3525 /* *Should* always succeed */ 3526 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 3527 if (!rt) 3528 return; 3529 3530 DMEMIT("%s %d ", rt->name, mddev->raid_disks); 3531 3532 /* Access most recent mddev properties for status output */ 3533 smp_rmb(); 3534 /* Get sensible max sectors even if raid set not yet started */ 3535 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ? 3536 mddev->resync_max_sectors : mddev->dev_sectors; 3537 recovery = rs->md.recovery; 3538 state = decipher_sync_action(mddev, recovery); 3539 progress = rs_get_progress(rs, recovery, state, resync_max_sectors); 3540 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ? 3541 atomic64_read(&mddev->resync_mismatches) : 0; 3542 3543 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */ 3544 for (i = 0; i < rs->raid_disks; i++) 3545 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev)); 3546 3547 /* 3548 * In-sync/Reshape ratio: 3549 * The in-sync ratio shows the progress of: 3550 * - Initializing the raid set 3551 * - Rebuilding a subset of devices of the raid set 3552 * The user can distinguish between the two by referring 3553 * to the status characters. 3554 * 3555 * The reshape ratio shows the progress of 3556 * changing the raid layout or the number of 3557 * disks of a raid set 3558 */ 3559 DMEMIT(" %llu/%llu", (unsigned long long) progress, 3560 (unsigned long long) resync_max_sectors); 3561 3562 /* 3563 * v1.5.0+: 3564 * 3565 * Sync action: 3566 * See Documentation/admin-guide/device-mapper/dm-raid.rst for 3567 * information on each of these states. 3568 */ 3569 DMEMIT(" %s", sync_str(state)); 3570 3571 /* 3572 * v1.5.0+: 3573 * 3574 * resync_mismatches/mismatch_cnt 3575 * This field shows the number of discrepancies found when 3576 * performing a "check" of the raid set. 3577 */ 3578 DMEMIT(" %llu", (unsigned long long) resync_mismatches); 3579 3580 /* 3581 * v1.9.0+: 3582 * 3583 * data_offset (needed for out of space reshaping) 3584 * This field shows the data offset into the data 3585 * image LV where the first stripes data starts. 3586 * 3587 * We keep data_offset equal on all raid disks of the set, 3588 * so retrieving it from the first raid disk is sufficient. 3589 */ 3590 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset); 3591 3592 /* 3593 * v1.10.0+: 3594 */ 3595 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ? 3596 __raid_dev_status(rs, &rs->journal_dev.rdev) : "-"); 3597 break; 3598 3599 case STATUSTYPE_TABLE: 3600 /* Report the table line string you would use to construct this raid set */ 3601 3602 /* 3603 * Count any rebuild or writemostly argument pairs and subtract the 3604 * hweight count being added below of any rebuild and writemostly ctr flags. 3605 */ 3606 for (i = 0; i < rs->raid_disks; i++) { 3607 rebuild_writemostly_count += (test_bit(i, (void *) rs->rebuild_disks) ? 2 : 0) + 3608 (test_bit(WriteMostly, &rs->dev[i].rdev.flags) ? 2 : 0); 3609 } 3610 rebuild_writemostly_count -= (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) ? 2 : 0) + 3611 (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags) ? 2 : 0); 3612 /* Calculate raid parameter count based on ^ rebuild/writemostly argument counts and ctr flags set. */ 3613 raid_param_cnt += rebuild_writemostly_count + 3614 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) + 3615 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2; 3616 /* Emit table line */ 3617 /* This has to be in the documented order for userspace! */ 3618 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors); 3619 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 3620 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC)); 3621 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) 3622 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC)); 3623 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) 3624 for (i = 0; i < rs->raid_disks; i++) 3625 if (test_bit(i, (void *) rs->rebuild_disks)) 3626 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), i); 3627 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) 3628 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP), 3629 mddev->bitmap_info.daemon_sleep); 3630 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) 3631 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE), 3632 mddev->sync_speed_min); 3633 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) 3634 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE), 3635 mddev->sync_speed_max); 3636 if (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags)) 3637 for (i = 0; i < rs->raid_disks; i++) 3638 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags)) 3639 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY), 3640 rs->dev[i].rdev.raid_disk); 3641 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) 3642 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND), 3643 mddev->bitmap_info.max_write_behind); 3644 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) 3645 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE), 3646 max_nr_stripes); 3647 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) 3648 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE), 3649 (unsigned long long) to_sector(mddev->bitmap_info.chunksize)); 3650 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) 3651 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES), 3652 raid10_md_layout_to_copies(mddev->layout)); 3653 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) 3654 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT), 3655 raid10_md_layout_to_format(mddev->layout)); 3656 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) 3657 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS), 3658 max(rs->delta_disks, mddev->delta_disks)); 3659 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) 3660 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET), 3661 (unsigned long long) rs->data_offset); 3662 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) 3663 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV), 3664 __get_dev_name(rs->journal_dev.dev)); 3665 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) 3666 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE), 3667 md_journal_mode_to_dm_raid(rs->journal_dev.mode)); 3668 DMEMIT(" %d", rs->raid_disks); 3669 for (i = 0; i < rs->raid_disks; i++) 3670 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev), 3671 __get_dev_name(rs->dev[i].data_dev)); 3672 break; 3673 3674 case STATUSTYPE_IMA: 3675 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 3676 if (!rt) 3677 return; 3678 3679 DMEMIT_TARGET_NAME_VERSION(ti->type); 3680 DMEMIT(",raid_type=%s,raid_disks=%d", rt->name, mddev->raid_disks); 3681 3682 /* Access most recent mddev properties for status output */ 3683 smp_rmb(); 3684 recovery = rs->md.recovery; 3685 state = decipher_sync_action(mddev, recovery); 3686 DMEMIT(",raid_state=%s", sync_str(state)); 3687 3688 for (i = 0; i < rs->raid_disks; i++) { 3689 DMEMIT(",raid_device_%d_status=", i); 3690 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev)); 3691 } 3692 3693 if (rt_is_raid456(rt)) { 3694 DMEMIT(",journal_dev_mode="); 3695 switch (rs->journal_dev.mode) { 3696 case R5C_JOURNAL_MODE_WRITE_THROUGH: 3697 DMEMIT("%s", 3698 _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_THROUGH].param); 3699 break; 3700 case R5C_JOURNAL_MODE_WRITE_BACK: 3701 DMEMIT("%s", 3702 _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_BACK].param); 3703 break; 3704 default: 3705 DMEMIT("invalid"); 3706 break; 3707 } 3708 } 3709 DMEMIT(";"); 3710 break; 3711 } 3712 } 3713 3714 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv, 3715 char *result, unsigned maxlen) 3716 { 3717 struct raid_set *rs = ti->private; 3718 struct mddev *mddev = &rs->md; 3719 3720 if (!mddev->pers || !mddev->pers->sync_request) 3721 return -EINVAL; 3722 3723 if (!strcasecmp(argv[0], "frozen")) 3724 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3725 else 3726 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3727 3728 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) { 3729 if (mddev->sync_thread) { 3730 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3731 md_unregister_thread(&mddev->sync_thread); 3732 md_reap_sync_thread(mddev); 3733 } 3734 } else if (decipher_sync_action(mddev, mddev->recovery) != st_idle) 3735 return -EBUSY; 3736 else if (!strcasecmp(argv[0], "resync")) 3737 ; /* MD_RECOVERY_NEEDED set below */ 3738 else if (!strcasecmp(argv[0], "recover")) 3739 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3740 else { 3741 if (!strcasecmp(argv[0], "check")) { 3742 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3743 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3744 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3745 } else if (!strcasecmp(argv[0], "repair")) { 3746 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3747 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3748 } else 3749 return -EINVAL; 3750 } 3751 if (mddev->ro == 2) { 3752 /* A write to sync_action is enough to justify 3753 * canceling read-auto mode 3754 */ 3755 mddev->ro = 0; 3756 if (!mddev->suspended && mddev->sync_thread) 3757 md_wakeup_thread(mddev->sync_thread); 3758 } 3759 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3760 if (!mddev->suspended && mddev->thread) 3761 md_wakeup_thread(mddev->thread); 3762 3763 return 0; 3764 } 3765 3766 static int raid_iterate_devices(struct dm_target *ti, 3767 iterate_devices_callout_fn fn, void *data) 3768 { 3769 struct raid_set *rs = ti->private; 3770 unsigned int i; 3771 int r = 0; 3772 3773 for (i = 0; !r && i < rs->raid_disks; i++) { 3774 if (rs->dev[i].data_dev) { 3775 r = fn(ti, rs->dev[i].data_dev, 3776 0, /* No offset on data devs */ 3777 rs->md.dev_sectors, data); 3778 } 3779 } 3780 3781 return r; 3782 } 3783 3784 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits) 3785 { 3786 struct raid_set *rs = ti->private; 3787 unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors); 3788 3789 blk_limits_io_min(limits, chunk_size_bytes); 3790 blk_limits_io_opt(limits, chunk_size_bytes * mddev_data_stripes(rs)); 3791 } 3792 3793 static void raid_postsuspend(struct dm_target *ti) 3794 { 3795 struct raid_set *rs = ti->private; 3796 3797 if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) { 3798 /* Writes have to be stopped before suspending to avoid deadlocks. */ 3799 if (!test_bit(MD_RECOVERY_FROZEN, &rs->md.recovery)) 3800 md_stop_writes(&rs->md); 3801 3802 mddev_lock_nointr(&rs->md); 3803 mddev_suspend(&rs->md); 3804 mddev_unlock(&rs->md); 3805 } 3806 } 3807 3808 static void attempt_restore_of_faulty_devices(struct raid_set *rs) 3809 { 3810 int i; 3811 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS]; 3812 unsigned long flags; 3813 bool cleared = false; 3814 struct dm_raid_superblock *sb; 3815 struct mddev *mddev = &rs->md; 3816 struct md_rdev *r; 3817 3818 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */ 3819 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk) 3820 return; 3821 3822 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices)); 3823 3824 for (i = 0; i < rs->raid_disks; i++) { 3825 r = &rs->dev[i].rdev; 3826 /* HM FIXME: enhance journal device recovery processing */ 3827 if (test_bit(Journal, &r->flags)) 3828 continue; 3829 3830 if (test_bit(Faulty, &r->flags) && 3831 r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) { 3832 DMINFO("Faulty %s device #%d has readable super block." 3833 " Attempting to revive it.", 3834 rs->raid_type->name, i); 3835 3836 /* 3837 * Faulty bit may be set, but sometimes the array can 3838 * be suspended before the personalities can respond 3839 * by removing the device from the array (i.e. calling 3840 * 'hot_remove_disk'). If they haven't yet removed 3841 * the failed device, its 'raid_disk' number will be 3842 * '>= 0' - meaning we must call this function 3843 * ourselves. 3844 */ 3845 flags = r->flags; 3846 clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */ 3847 if (r->raid_disk >= 0) { 3848 if (mddev->pers->hot_remove_disk(mddev, r)) { 3849 /* Failed to revive this device, try next */ 3850 r->flags = flags; 3851 continue; 3852 } 3853 } else 3854 r->raid_disk = r->saved_raid_disk = i; 3855 3856 clear_bit(Faulty, &r->flags); 3857 clear_bit(WriteErrorSeen, &r->flags); 3858 3859 if (mddev->pers->hot_add_disk(mddev, r)) { 3860 /* Failed to revive this device, try next */ 3861 r->raid_disk = r->saved_raid_disk = -1; 3862 r->flags = flags; 3863 } else { 3864 clear_bit(In_sync, &r->flags); 3865 r->recovery_offset = 0; 3866 set_bit(i, (void *) cleared_failed_devices); 3867 cleared = true; 3868 } 3869 } 3870 } 3871 3872 /* If any failed devices could be cleared, update all sbs failed_devices bits */ 3873 if (cleared) { 3874 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 3875 3876 rdev_for_each(r, &rs->md) { 3877 if (test_bit(Journal, &r->flags)) 3878 continue; 3879 3880 sb = page_address(r->sb_page); 3881 sb_retrieve_failed_devices(sb, failed_devices); 3882 3883 for (i = 0; i < DISKS_ARRAY_ELEMS; i++) 3884 failed_devices[i] &= ~cleared_failed_devices[i]; 3885 3886 sb_update_failed_devices(sb, failed_devices); 3887 } 3888 } 3889 } 3890 3891 static int __load_dirty_region_bitmap(struct raid_set *rs) 3892 { 3893 int r = 0; 3894 3895 /* Try loading the bitmap unless "raid0", which does not have one */ 3896 if (!rs_is_raid0(rs) && 3897 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) { 3898 r = md_bitmap_load(&rs->md); 3899 if (r) 3900 DMERR("Failed to load bitmap"); 3901 } 3902 3903 return r; 3904 } 3905 3906 /* Enforce updating all superblocks */ 3907 static void rs_update_sbs(struct raid_set *rs) 3908 { 3909 struct mddev *mddev = &rs->md; 3910 int ro = mddev->ro; 3911 3912 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3913 mddev->ro = 0; 3914 md_update_sb(mddev, 1); 3915 mddev->ro = ro; 3916 } 3917 3918 /* 3919 * Reshape changes raid algorithm of @rs to new one within personality 3920 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes 3921 * disks from a raid set thus growing/shrinking it or resizes the set 3922 * 3923 * Call mddev_lock_nointr() before! 3924 */ 3925 static int rs_start_reshape(struct raid_set *rs) 3926 { 3927 int r; 3928 struct mddev *mddev = &rs->md; 3929 struct md_personality *pers = mddev->pers; 3930 3931 /* Don't allow the sync thread to work until the table gets reloaded. */ 3932 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 3933 3934 r = rs_setup_reshape(rs); 3935 if (r) 3936 return r; 3937 3938 /* 3939 * Check any reshape constraints enforced by the personalility 3940 * 3941 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional. 3942 */ 3943 r = pers->check_reshape(mddev); 3944 if (r) { 3945 rs->ti->error = "pers->check_reshape() failed"; 3946 return r; 3947 } 3948 3949 /* 3950 * Personality may not provide start reshape method in which 3951 * case check_reshape above has already covered everything 3952 */ 3953 if (pers->start_reshape) { 3954 r = pers->start_reshape(mddev); 3955 if (r) { 3956 rs->ti->error = "pers->start_reshape() failed"; 3957 return r; 3958 } 3959 } 3960 3961 /* 3962 * Now reshape got set up, update superblocks to 3963 * reflect the fact so that a table reload will 3964 * access proper superblock content in the ctr. 3965 */ 3966 rs_update_sbs(rs); 3967 3968 return 0; 3969 } 3970 3971 static int raid_preresume(struct dm_target *ti) 3972 { 3973 int r; 3974 struct raid_set *rs = ti->private; 3975 struct mddev *mddev = &rs->md; 3976 3977 /* This is a resume after a suspend of the set -> it's already started. */ 3978 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags)) 3979 return 0; 3980 3981 /* 3982 * The superblocks need to be updated on disk if the 3983 * array is new or new devices got added (thus zeroed 3984 * out by userspace) or __load_dirty_region_bitmap 3985 * will overwrite them in core with old data or fail. 3986 */ 3987 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags)) 3988 rs_update_sbs(rs); 3989 3990 /* Load the bitmap from disk unless raid0 */ 3991 r = __load_dirty_region_bitmap(rs); 3992 if (r) 3993 return r; 3994 3995 /* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */ 3996 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) { 3997 mddev->array_sectors = rs->array_sectors; 3998 mddev->dev_sectors = rs->dev_sectors; 3999 rs_set_rdev_sectors(rs); 4000 rs_set_capacity(rs); 4001 } 4002 4003 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */ 4004 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap && 4005 (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) || 4006 (rs->requested_bitmap_chunk_sectors && 4007 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) { 4008 int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize; 4009 4010 r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors, chunksize, 0); 4011 if (r) 4012 DMERR("Failed to resize bitmap"); 4013 } 4014 4015 /* Check for any resize/reshape on @rs and adjust/initiate */ 4016 /* Be prepared for mddev_resume() in raid_resume() */ 4017 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4018 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) { 4019 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4020 mddev->resync_min = mddev->recovery_cp; 4021 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) 4022 mddev->resync_max_sectors = mddev->dev_sectors; 4023 } 4024 4025 /* Check for any reshape request unless new raid set */ 4026 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { 4027 /* Initiate a reshape. */ 4028 rs_set_rdev_sectors(rs); 4029 mddev_lock_nointr(mddev); 4030 r = rs_start_reshape(rs); 4031 mddev_unlock(mddev); 4032 if (r) 4033 DMWARN("Failed to check/start reshape, continuing without change"); 4034 r = 0; 4035 } 4036 4037 return r; 4038 } 4039 4040 static void raid_resume(struct dm_target *ti) 4041 { 4042 struct raid_set *rs = ti->private; 4043 struct mddev *mddev = &rs->md; 4044 4045 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) { 4046 /* 4047 * A secondary resume while the device is active. 4048 * Take this opportunity to check whether any failed 4049 * devices are reachable again. 4050 */ 4051 attempt_restore_of_faulty_devices(rs); 4052 } 4053 4054 if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) { 4055 /* Only reduce raid set size before running a disk removing reshape. */ 4056 if (mddev->delta_disks < 0) 4057 rs_set_capacity(rs); 4058 4059 mddev_lock_nointr(mddev); 4060 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4061 mddev->ro = 0; 4062 mddev->in_sync = 0; 4063 mddev_resume(mddev); 4064 mddev_unlock(mddev); 4065 } 4066 } 4067 4068 static struct target_type raid_target = { 4069 .name = "raid", 4070 .version = {1, 15, 1}, 4071 .module = THIS_MODULE, 4072 .ctr = raid_ctr, 4073 .dtr = raid_dtr, 4074 .map = raid_map, 4075 .status = raid_status, 4076 .message = raid_message, 4077 .iterate_devices = raid_iterate_devices, 4078 .io_hints = raid_io_hints, 4079 .postsuspend = raid_postsuspend, 4080 .preresume = raid_preresume, 4081 .resume = raid_resume, 4082 }; 4083 4084 static int __init dm_raid_init(void) 4085 { 4086 DMINFO("Loading target version %u.%u.%u", 4087 raid_target.version[0], 4088 raid_target.version[1], 4089 raid_target.version[2]); 4090 return dm_register_target(&raid_target); 4091 } 4092 4093 static void __exit dm_raid_exit(void) 4094 { 4095 dm_unregister_target(&raid_target); 4096 } 4097 4098 module_init(dm_raid_init); 4099 module_exit(dm_raid_exit); 4100 4101 module_param(devices_handle_discard_safely, bool, 0644); 4102 MODULE_PARM_DESC(devices_handle_discard_safely, 4103 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 4104 4105 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target"); 4106 MODULE_ALIAS("dm-raid0"); 4107 MODULE_ALIAS("dm-raid1"); 4108 MODULE_ALIAS("dm-raid10"); 4109 MODULE_ALIAS("dm-raid4"); 4110 MODULE_ALIAS("dm-raid5"); 4111 MODULE_ALIAS("dm-raid6"); 4112 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>"); 4113 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>"); 4114 MODULE_LICENSE("GPL"); 4115