1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2010-2011 Neil Brown 4 * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/module.h> 11 12 #include "md.h" 13 #include "raid1.h" 14 #include "raid5.h" 15 #include "raid10.h" 16 #include "md-bitmap.h" 17 18 #include <linux/device-mapper.h> 19 20 #define DM_MSG_PREFIX "raid" 21 #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */ 22 23 /* 24 * Minimum sectors of free reshape space per raid device 25 */ 26 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096) 27 28 /* 29 * Minimum journal space 4 MiB in sectors. 30 */ 31 #define MIN_RAID456_JOURNAL_SPACE (4*2048) 32 33 static bool devices_handle_discard_safely; 34 35 /* 36 * The following flags are used by dm-raid to set up the array state. 37 * They must be cleared before md_run is called. 38 */ 39 #define FirstUse 10 /* rdev flag */ 40 41 struct raid_dev { 42 /* 43 * Two DM devices, one to hold metadata and one to hold the 44 * actual data/parity. The reason for this is to not confuse 45 * ti->len and give more flexibility in altering size and 46 * characteristics. 47 * 48 * While it is possible for this device to be associated 49 * with a different physical device than the data_dev, it 50 * is intended for it to be the same. 51 * |--------- Physical Device ---------| 52 * |- meta_dev -|------ data_dev ------| 53 */ 54 struct dm_dev *meta_dev; 55 struct dm_dev *data_dev; 56 struct md_rdev rdev; 57 }; 58 59 /* 60 * Bits for establishing rs->ctr_flags 61 * 62 * 1 = no flag value 63 * 2 = flag with value 64 */ 65 #define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */ 66 #define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */ 67 #define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */ 68 #define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */ 69 #define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */ 70 #define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */ 71 #define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */ 72 #define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */ 73 #define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */ 74 #define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */ 75 #define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */ 76 #define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */ 77 /* New for v1.9.0 */ 78 #define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */ 79 #define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */ 80 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */ 81 82 /* New for v1.10.0 */ 83 #define __CTR_FLAG_JOURNAL_DEV 15 /* 2 */ /* Only with raid4/5/6 (journal device)! */ 84 85 /* New for v1.11.1 */ 86 #define __CTR_FLAG_JOURNAL_MODE 16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */ 87 88 /* 89 * Flags for rs->ctr_flags field. 90 */ 91 #define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC) 92 #define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC) 93 #define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD) 94 #define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP) 95 #define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE) 96 #define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE) 97 #define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND) 98 #define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY) 99 #define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE) 100 #define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE) 101 #define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES) 102 #define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT) 103 #define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS) 104 #define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET) 105 #define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS) 106 #define CTR_FLAG_JOURNAL_DEV (1 << __CTR_FLAG_JOURNAL_DEV) 107 #define CTR_FLAG_JOURNAL_MODE (1 << __CTR_FLAG_JOURNAL_MODE) 108 109 /* 110 * Definitions of various constructor flags to 111 * be used in checks of valid / invalid flags 112 * per raid level. 113 */ 114 /* Define all any sync flags */ 115 #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC) 116 117 /* Define flags for options without argument (e.g. 'nosync') */ 118 #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \ 119 CTR_FLAG_RAID10_USE_NEAR_SETS) 120 121 /* Define flags for options with one argument (e.g. 'delta_disks +2') */ 122 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \ 123 CTR_FLAG_WRITE_MOSTLY | \ 124 CTR_FLAG_DAEMON_SLEEP | \ 125 CTR_FLAG_MIN_RECOVERY_RATE | \ 126 CTR_FLAG_MAX_RECOVERY_RATE | \ 127 CTR_FLAG_MAX_WRITE_BEHIND | \ 128 CTR_FLAG_STRIPE_CACHE | \ 129 CTR_FLAG_REGION_SIZE | \ 130 CTR_FLAG_RAID10_COPIES | \ 131 CTR_FLAG_RAID10_FORMAT | \ 132 CTR_FLAG_DELTA_DISKS | \ 133 CTR_FLAG_DATA_OFFSET | \ 134 CTR_FLAG_JOURNAL_DEV | \ 135 CTR_FLAG_JOURNAL_MODE) 136 137 /* Valid options definitions per raid level... */ 138 139 /* "raid0" does only accept data offset */ 140 #define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET) 141 142 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */ 143 #define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 144 CTR_FLAG_REBUILD | \ 145 CTR_FLAG_WRITE_MOSTLY | \ 146 CTR_FLAG_DAEMON_SLEEP | \ 147 CTR_FLAG_MIN_RECOVERY_RATE | \ 148 CTR_FLAG_MAX_RECOVERY_RATE | \ 149 CTR_FLAG_MAX_WRITE_BEHIND | \ 150 CTR_FLAG_REGION_SIZE | \ 151 CTR_FLAG_DELTA_DISKS | \ 152 CTR_FLAG_DATA_OFFSET) 153 154 /* "raid10" does not accept any raid1 or stripe cache options */ 155 #define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 156 CTR_FLAG_REBUILD | \ 157 CTR_FLAG_DAEMON_SLEEP | \ 158 CTR_FLAG_MIN_RECOVERY_RATE | \ 159 CTR_FLAG_MAX_RECOVERY_RATE | \ 160 CTR_FLAG_REGION_SIZE | \ 161 CTR_FLAG_RAID10_COPIES | \ 162 CTR_FLAG_RAID10_FORMAT | \ 163 CTR_FLAG_DELTA_DISKS | \ 164 CTR_FLAG_DATA_OFFSET | \ 165 CTR_FLAG_RAID10_USE_NEAR_SETS) 166 167 /* 168 * "raid4/5/6" do not accept any raid1 or raid10 specific options 169 * 170 * "raid6" does not accept "nosync", because it is not guaranteed 171 * that both parity and q-syndrome are being written properly with 172 * any writes 173 */ 174 #define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 175 CTR_FLAG_REBUILD | \ 176 CTR_FLAG_DAEMON_SLEEP | \ 177 CTR_FLAG_MIN_RECOVERY_RATE | \ 178 CTR_FLAG_MAX_RECOVERY_RATE | \ 179 CTR_FLAG_STRIPE_CACHE | \ 180 CTR_FLAG_REGION_SIZE | \ 181 CTR_FLAG_DELTA_DISKS | \ 182 CTR_FLAG_DATA_OFFSET | \ 183 CTR_FLAG_JOURNAL_DEV | \ 184 CTR_FLAG_JOURNAL_MODE) 185 186 #define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \ 187 CTR_FLAG_REBUILD | \ 188 CTR_FLAG_DAEMON_SLEEP | \ 189 CTR_FLAG_MIN_RECOVERY_RATE | \ 190 CTR_FLAG_MAX_RECOVERY_RATE | \ 191 CTR_FLAG_STRIPE_CACHE | \ 192 CTR_FLAG_REGION_SIZE | \ 193 CTR_FLAG_DELTA_DISKS | \ 194 CTR_FLAG_DATA_OFFSET | \ 195 CTR_FLAG_JOURNAL_DEV | \ 196 CTR_FLAG_JOURNAL_MODE) 197 /* ...valid options definitions per raid level */ 198 199 /* 200 * Flags for rs->runtime_flags field 201 * (RT_FLAG prefix meaning "runtime flag") 202 * 203 * These are all internal and used to define runtime state, 204 * e.g. to prevent another resume from preresume processing 205 * the raid set all over again. 206 */ 207 #define RT_FLAG_RS_PRERESUMED 0 208 #define RT_FLAG_RS_RESUMED 1 209 #define RT_FLAG_RS_BITMAP_LOADED 2 210 #define RT_FLAG_UPDATE_SBS 3 211 #define RT_FLAG_RESHAPE_RS 4 212 #define RT_FLAG_RS_SUSPENDED 5 213 #define RT_FLAG_RS_IN_SYNC 6 214 #define RT_FLAG_RS_RESYNCING 7 215 #define RT_FLAG_RS_GROW 8 216 #define RT_FLAG_RS_FROZEN 9 217 218 /* Array elements of 64 bit needed for rebuild/failed disk bits */ 219 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8) 220 221 /* 222 * raid set level, layout and chunk sectors backup/restore 223 */ 224 struct rs_layout { 225 int new_level; 226 int new_layout; 227 int new_chunk_sectors; 228 }; 229 230 struct raid_set { 231 struct dm_target *ti; 232 233 uint32_t stripe_cache_entries; 234 unsigned long ctr_flags; 235 unsigned long runtime_flags; 236 237 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS]; 238 239 int raid_disks; 240 int delta_disks; 241 int data_offset; 242 int raid10_copies; 243 int requested_bitmap_chunk_sectors; 244 245 struct mddev md; 246 struct raid_type *raid_type; 247 248 sector_t array_sectors; 249 sector_t dev_sectors; 250 251 /* Optional raid4/5/6 journal device */ 252 struct journal_dev { 253 struct dm_dev *dev; 254 struct md_rdev rdev; 255 int mode; 256 } journal_dev; 257 258 struct raid_dev dev[] __counted_by(raid_disks); 259 }; 260 261 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l) 262 { 263 struct mddev *mddev = &rs->md; 264 265 l->new_level = mddev->new_level; 266 l->new_layout = mddev->new_layout; 267 l->new_chunk_sectors = mddev->new_chunk_sectors; 268 } 269 270 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l) 271 { 272 struct mddev *mddev = &rs->md; 273 274 mddev->new_level = l->new_level; 275 mddev->new_layout = l->new_layout; 276 mddev->new_chunk_sectors = l->new_chunk_sectors; 277 } 278 279 /* raid10 algorithms (i.e. formats) */ 280 #define ALGORITHM_RAID10_DEFAULT 0 281 #define ALGORITHM_RAID10_NEAR 1 282 #define ALGORITHM_RAID10_OFFSET 2 283 #define ALGORITHM_RAID10_FAR 3 284 285 /* Supported raid types and properties. */ 286 static struct raid_type { 287 const char *name; /* RAID algorithm. */ 288 const char *descr; /* Descriptor text for logging. */ 289 const unsigned int parity_devs; /* # of parity devices. */ 290 const unsigned int minimal_devs;/* minimal # of devices in set. */ 291 const unsigned int level; /* RAID level. */ 292 const unsigned int algorithm; /* RAID algorithm. */ 293 } raid_types[] = { 294 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */}, 295 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */}, 296 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR}, 297 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET}, 298 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR}, 299 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT}, 300 {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */ 301 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N}, 302 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC}, 303 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC}, 304 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC}, 305 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC}, 306 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART}, 307 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART}, 308 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}, 309 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6}, 310 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6}, 311 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6}, 312 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6}, 313 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6} 314 }; 315 316 /* True, if @v is in inclusive range [@min, @max] */ 317 static bool __within_range(long v, long min, long max) 318 { 319 return v >= min && v <= max; 320 } 321 322 /* All table line arguments are defined here */ 323 static struct arg_name_flag { 324 const unsigned long flag; 325 const char *name; 326 } __arg_name_flags[] = { 327 { CTR_FLAG_SYNC, "sync"}, 328 { CTR_FLAG_NOSYNC, "nosync"}, 329 { CTR_FLAG_REBUILD, "rebuild"}, 330 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"}, 331 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"}, 332 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"}, 333 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"}, 334 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"}, 335 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"}, 336 { CTR_FLAG_REGION_SIZE, "region_size"}, 337 { CTR_FLAG_RAID10_COPIES, "raid10_copies"}, 338 { CTR_FLAG_RAID10_FORMAT, "raid10_format"}, 339 { CTR_FLAG_DATA_OFFSET, "data_offset"}, 340 { CTR_FLAG_DELTA_DISKS, "delta_disks"}, 341 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"}, 342 { CTR_FLAG_JOURNAL_DEV, "journal_dev" }, 343 { CTR_FLAG_JOURNAL_MODE, "journal_mode" }, 344 }; 345 346 /* Return argument name string for given @flag */ 347 static const char *dm_raid_arg_name_by_flag(const uint32_t flag) 348 { 349 if (hweight32(flag) == 1) { 350 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags); 351 352 while (anf-- > __arg_name_flags) 353 if (flag & anf->flag) 354 return anf->name; 355 356 } else 357 DMERR("%s called with more than one flag!", __func__); 358 359 return NULL; 360 } 361 362 /* Define correlation of raid456 journal cache modes and dm-raid target line parameters */ 363 static struct { 364 const int mode; 365 const char *param; 366 } _raid456_journal_mode[] = { 367 { R5C_JOURNAL_MODE_WRITE_THROUGH, "writethrough" }, 368 { R5C_JOURNAL_MODE_WRITE_BACK, "writeback" } 369 }; 370 371 /* Return MD raid4/5/6 journal mode for dm @journal_mode one */ 372 static int dm_raid_journal_mode_to_md(const char *mode) 373 { 374 int m = ARRAY_SIZE(_raid456_journal_mode); 375 376 while (m--) 377 if (!strcasecmp(mode, _raid456_journal_mode[m].param)) 378 return _raid456_journal_mode[m].mode; 379 380 return -EINVAL; 381 } 382 383 /* Return dm-raid raid4/5/6 journal mode string for @mode */ 384 static const char *md_journal_mode_to_dm_raid(const int mode) 385 { 386 int m = ARRAY_SIZE(_raid456_journal_mode); 387 388 while (m--) 389 if (mode == _raid456_journal_mode[m].mode) 390 return _raid456_journal_mode[m].param; 391 392 return "unknown"; 393 } 394 395 /* 396 * Bool helpers to test for various raid levels of a raid set. 397 * It's level as reported by the superblock rather than 398 * the requested raid_type passed to the constructor. 399 */ 400 /* Return true, if raid set in @rs is raid0 */ 401 static bool rs_is_raid0(struct raid_set *rs) 402 { 403 return !rs->md.level; 404 } 405 406 /* Return true, if raid set in @rs is raid1 */ 407 static bool rs_is_raid1(struct raid_set *rs) 408 { 409 return rs->md.level == 1; 410 } 411 412 /* Return true, if raid set in @rs is raid10 */ 413 static bool rs_is_raid10(struct raid_set *rs) 414 { 415 return rs->md.level == 10; 416 } 417 418 /* Return true, if raid set in @rs is level 6 */ 419 static bool rs_is_raid6(struct raid_set *rs) 420 { 421 return rs->md.level == 6; 422 } 423 424 /* Return true, if raid set in @rs is level 4, 5 or 6 */ 425 static bool rs_is_raid456(struct raid_set *rs) 426 { 427 return __within_range(rs->md.level, 4, 6); 428 } 429 430 /* Return true, if raid set in @rs is reshapable */ 431 static bool __is_raid10_far(int layout); 432 static bool rs_is_reshapable(struct raid_set *rs) 433 { 434 return rs_is_raid456(rs) || 435 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout)); 436 } 437 438 /* Return true, if raid set in @rs is recovering */ 439 static bool rs_is_recovering(struct raid_set *rs) 440 { 441 return rs->md.recovery_cp < rs->md.dev_sectors; 442 } 443 444 /* Return true, if raid set in @rs is reshaping */ 445 static bool rs_is_reshaping(struct raid_set *rs) 446 { 447 return rs->md.reshape_position != MaxSector; 448 } 449 450 /* 451 * bool helpers to test for various raid levels of a raid type @rt 452 */ 453 454 /* Return true, if raid type in @rt is raid0 */ 455 static bool rt_is_raid0(struct raid_type *rt) 456 { 457 return !rt->level; 458 } 459 460 /* Return true, if raid type in @rt is raid1 */ 461 static bool rt_is_raid1(struct raid_type *rt) 462 { 463 return rt->level == 1; 464 } 465 466 /* Return true, if raid type in @rt is raid10 */ 467 static bool rt_is_raid10(struct raid_type *rt) 468 { 469 return rt->level == 10; 470 } 471 472 /* Return true, if raid type in @rt is raid4/5 */ 473 static bool rt_is_raid45(struct raid_type *rt) 474 { 475 return __within_range(rt->level, 4, 5); 476 } 477 478 /* Return true, if raid type in @rt is raid6 */ 479 static bool rt_is_raid6(struct raid_type *rt) 480 { 481 return rt->level == 6; 482 } 483 484 /* Return true, if raid type in @rt is raid4/5/6 */ 485 static bool rt_is_raid456(struct raid_type *rt) 486 { 487 return __within_range(rt->level, 4, 6); 488 } 489 /* END: raid level bools */ 490 491 /* Return valid ctr flags for the raid level of @rs */ 492 static unsigned long __valid_flags(struct raid_set *rs) 493 { 494 if (rt_is_raid0(rs->raid_type)) 495 return RAID0_VALID_FLAGS; 496 else if (rt_is_raid1(rs->raid_type)) 497 return RAID1_VALID_FLAGS; 498 else if (rt_is_raid10(rs->raid_type)) 499 return RAID10_VALID_FLAGS; 500 else if (rt_is_raid45(rs->raid_type)) 501 return RAID45_VALID_FLAGS; 502 else if (rt_is_raid6(rs->raid_type)) 503 return RAID6_VALID_FLAGS; 504 505 return 0; 506 } 507 508 /* 509 * Check for valid flags set on @rs 510 * 511 * Has to be called after parsing of the ctr flags! 512 */ 513 static int rs_check_for_valid_flags(struct raid_set *rs) 514 { 515 if (rs->ctr_flags & ~__valid_flags(rs)) { 516 rs->ti->error = "Invalid flags combination"; 517 return -EINVAL; 518 } 519 520 return 0; 521 } 522 523 /* MD raid10 bit definitions and helpers */ 524 #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */ 525 #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */ 526 #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */ 527 #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */ 528 529 /* Return md raid10 near copies for @layout */ 530 static unsigned int __raid10_near_copies(int layout) 531 { 532 return layout & 0xFF; 533 } 534 535 /* Return md raid10 far copies for @layout */ 536 static unsigned int __raid10_far_copies(int layout) 537 { 538 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT); 539 } 540 541 /* Return true if md raid10 offset for @layout */ 542 static bool __is_raid10_offset(int layout) 543 { 544 return !!(layout & RAID10_OFFSET); 545 } 546 547 /* Return true if md raid10 near for @layout */ 548 static bool __is_raid10_near(int layout) 549 { 550 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1; 551 } 552 553 /* Return true if md raid10 far for @layout */ 554 static bool __is_raid10_far(int layout) 555 { 556 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1; 557 } 558 559 /* Return md raid10 layout string for @layout */ 560 static const char *raid10_md_layout_to_format(int layout) 561 { 562 /* 563 * Bit 16 stands for "offset" 564 * (i.e. adjacent stripes hold copies) 565 * 566 * Refer to MD's raid10.c for details 567 */ 568 if (__is_raid10_offset(layout)) 569 return "offset"; 570 571 if (__raid10_near_copies(layout) > 1) 572 return "near"; 573 574 if (__raid10_far_copies(layout) > 1) 575 return "far"; 576 577 return "unknown"; 578 } 579 580 /* Return md raid10 algorithm for @name */ 581 static int raid10_name_to_format(const char *name) 582 { 583 if (!strcasecmp(name, "near")) 584 return ALGORITHM_RAID10_NEAR; 585 else if (!strcasecmp(name, "offset")) 586 return ALGORITHM_RAID10_OFFSET; 587 else if (!strcasecmp(name, "far")) 588 return ALGORITHM_RAID10_FAR; 589 590 return -EINVAL; 591 } 592 593 /* Return md raid10 copies for @layout */ 594 static unsigned int raid10_md_layout_to_copies(int layout) 595 { 596 return max(__raid10_near_copies(layout), __raid10_far_copies(layout)); 597 } 598 599 /* Return md raid10 format id for @format string */ 600 static int raid10_format_to_md_layout(struct raid_set *rs, 601 unsigned int algorithm, 602 unsigned int copies) 603 { 604 unsigned int n = 1, f = 1, r = 0; 605 606 /* 607 * MD resilienece flaw: 608 * 609 * enabling use_far_sets for far/offset formats causes copies 610 * to be colocated on the same devs together with their origins! 611 * 612 * -> disable it for now in the definition above 613 */ 614 if (algorithm == ALGORITHM_RAID10_DEFAULT || 615 algorithm == ALGORITHM_RAID10_NEAR) 616 n = copies; 617 618 else if (algorithm == ALGORITHM_RAID10_OFFSET) { 619 f = copies; 620 r = RAID10_OFFSET; 621 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) 622 r |= RAID10_USE_FAR_SETS; 623 624 } else if (algorithm == ALGORITHM_RAID10_FAR) { 625 f = copies; 626 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) 627 r |= RAID10_USE_FAR_SETS; 628 629 } else 630 return -EINVAL; 631 632 return r | (f << RAID10_FAR_COPIES_SHIFT) | n; 633 } 634 /* END: MD raid10 bit definitions and helpers */ 635 636 /* Check for any of the raid10 algorithms */ 637 static bool __got_raid10(struct raid_type *rtp, const int layout) 638 { 639 if (rtp->level == 10) { 640 switch (rtp->algorithm) { 641 case ALGORITHM_RAID10_DEFAULT: 642 case ALGORITHM_RAID10_NEAR: 643 return __is_raid10_near(layout); 644 case ALGORITHM_RAID10_OFFSET: 645 return __is_raid10_offset(layout); 646 case ALGORITHM_RAID10_FAR: 647 return __is_raid10_far(layout); 648 default: 649 break; 650 } 651 } 652 653 return false; 654 } 655 656 /* Return raid_type for @name */ 657 static struct raid_type *get_raid_type(const char *name) 658 { 659 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); 660 661 while (rtp-- > raid_types) 662 if (!strcasecmp(rtp->name, name)) 663 return rtp; 664 665 return NULL; 666 } 667 668 /* Return raid_type for @name based derived from @level and @layout */ 669 static struct raid_type *get_raid_type_by_ll(const int level, const int layout) 670 { 671 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); 672 673 while (rtp-- > raid_types) { 674 /* RAID10 special checks based on @layout flags/properties */ 675 if (rtp->level == level && 676 (__got_raid10(rtp, layout) || rtp->algorithm == layout)) 677 return rtp; 678 } 679 680 return NULL; 681 } 682 683 /* Adjust rdev sectors */ 684 static void rs_set_rdev_sectors(struct raid_set *rs) 685 { 686 struct mddev *mddev = &rs->md; 687 struct md_rdev *rdev; 688 689 /* 690 * raid10 sets rdev->sector to the device size, which 691 * is unintended in case of out-of-place reshaping 692 */ 693 rdev_for_each(rdev, mddev) 694 if (!test_bit(Journal, &rdev->flags)) 695 rdev->sectors = mddev->dev_sectors; 696 } 697 698 /* 699 * Change bdev capacity of @rs in case of a disk add/remove reshape 700 */ 701 static void rs_set_capacity(struct raid_set *rs) 702 { 703 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table)); 704 705 set_capacity_and_notify(gendisk, rs->md.array_sectors); 706 } 707 708 /* 709 * Set the mddev properties in @rs to the current 710 * ones retrieved from the freshest superblock 711 */ 712 static void rs_set_cur(struct raid_set *rs) 713 { 714 struct mddev *mddev = &rs->md; 715 716 mddev->new_level = mddev->level; 717 mddev->new_layout = mddev->layout; 718 mddev->new_chunk_sectors = mddev->chunk_sectors; 719 } 720 721 /* 722 * Set the mddev properties in @rs to the new 723 * ones requested by the ctr 724 */ 725 static void rs_set_new(struct raid_set *rs) 726 { 727 struct mddev *mddev = &rs->md; 728 729 mddev->level = mddev->new_level; 730 mddev->layout = mddev->new_layout; 731 mddev->chunk_sectors = mddev->new_chunk_sectors; 732 mddev->raid_disks = rs->raid_disks; 733 mddev->delta_disks = 0; 734 } 735 736 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type, 737 unsigned int raid_devs) 738 { 739 unsigned int i; 740 struct raid_set *rs; 741 742 if (raid_devs <= raid_type->parity_devs) { 743 ti->error = "Insufficient number of devices"; 744 return ERR_PTR(-EINVAL); 745 } 746 747 rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL); 748 if (!rs) { 749 ti->error = "Cannot allocate raid context"; 750 return ERR_PTR(-ENOMEM); 751 } 752 753 if (mddev_init(&rs->md)) { 754 kfree(rs); 755 ti->error = "Cannot initialize raid context"; 756 return ERR_PTR(-ENOMEM); 757 } 758 759 rs->raid_disks = raid_devs; 760 rs->delta_disks = 0; 761 762 rs->ti = ti; 763 rs->raid_type = raid_type; 764 rs->stripe_cache_entries = 256; 765 rs->md.raid_disks = raid_devs; 766 rs->md.level = raid_type->level; 767 rs->md.new_level = rs->md.level; 768 rs->md.layout = raid_type->algorithm; 769 rs->md.new_layout = rs->md.layout; 770 rs->md.delta_disks = 0; 771 rs->md.recovery_cp = MaxSector; 772 773 for (i = 0; i < raid_devs; i++) 774 md_rdev_init(&rs->dev[i].rdev); 775 776 /* 777 * Remaining items to be initialized by further RAID params: 778 * rs->md.persistent 779 * rs->md.external 780 * rs->md.chunk_sectors 781 * rs->md.new_chunk_sectors 782 * rs->md.dev_sectors 783 */ 784 785 return rs; 786 } 787 788 /* Free all @rs allocations */ 789 static void raid_set_free(struct raid_set *rs) 790 { 791 int i; 792 793 if (rs->journal_dev.dev) { 794 md_rdev_clear(&rs->journal_dev.rdev); 795 dm_put_device(rs->ti, rs->journal_dev.dev); 796 } 797 798 for (i = 0; i < rs->raid_disks; i++) { 799 if (rs->dev[i].meta_dev) 800 dm_put_device(rs->ti, rs->dev[i].meta_dev); 801 md_rdev_clear(&rs->dev[i].rdev); 802 if (rs->dev[i].data_dev) 803 dm_put_device(rs->ti, rs->dev[i].data_dev); 804 } 805 806 mddev_destroy(&rs->md); 807 kfree(rs); 808 } 809 810 /* 811 * For every device we have two words 812 * <meta_dev>: meta device name or '-' if missing 813 * <data_dev>: data device name or '-' if missing 814 * 815 * The following are permitted: 816 * - - 817 * - <data_dev> 818 * <meta_dev> <data_dev> 819 * 820 * The following is not allowed: 821 * <meta_dev> - 822 * 823 * This code parses those words. If there is a failure, 824 * the caller must use raid_set_free() to unwind the operations. 825 */ 826 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as) 827 { 828 int i; 829 int rebuild = 0; 830 int metadata_available = 0; 831 int r = 0; 832 const char *arg; 833 834 /* Put off the number of raid devices argument to get to dev pairs */ 835 arg = dm_shift_arg(as); 836 if (!arg) 837 return -EINVAL; 838 839 for (i = 0; i < rs->raid_disks; i++) { 840 rs->dev[i].rdev.raid_disk = i; 841 842 rs->dev[i].meta_dev = NULL; 843 rs->dev[i].data_dev = NULL; 844 845 /* 846 * There are no offsets initially. 847 * Out of place reshape will set them accordingly. 848 */ 849 rs->dev[i].rdev.data_offset = 0; 850 rs->dev[i].rdev.new_data_offset = 0; 851 rs->dev[i].rdev.mddev = &rs->md; 852 853 arg = dm_shift_arg(as); 854 if (!arg) 855 return -EINVAL; 856 857 if (strcmp(arg, "-")) { 858 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 859 &rs->dev[i].meta_dev); 860 if (r) { 861 rs->ti->error = "RAID metadata device lookup failure"; 862 return r; 863 } 864 865 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL); 866 if (!rs->dev[i].rdev.sb_page) { 867 rs->ti->error = "Failed to allocate superblock page"; 868 return -ENOMEM; 869 } 870 } 871 872 arg = dm_shift_arg(as); 873 if (!arg) 874 return -EINVAL; 875 876 if (!strcmp(arg, "-")) { 877 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) && 878 (!rs->dev[i].rdev.recovery_offset)) { 879 rs->ti->error = "Drive designated for rebuild not specified"; 880 return -EINVAL; 881 } 882 883 if (rs->dev[i].meta_dev) { 884 rs->ti->error = "No data device supplied with metadata device"; 885 return -EINVAL; 886 } 887 888 continue; 889 } 890 891 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 892 &rs->dev[i].data_dev); 893 if (r) { 894 rs->ti->error = "RAID device lookup failure"; 895 return r; 896 } 897 898 if (rs->dev[i].meta_dev) { 899 metadata_available = 1; 900 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev; 901 } 902 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev; 903 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks); 904 if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) 905 rebuild++; 906 } 907 908 if (rs->journal_dev.dev) 909 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks); 910 911 if (metadata_available) { 912 rs->md.external = 0; 913 rs->md.persistent = 1; 914 rs->md.major_version = 2; 915 } else if (rebuild && !rs->md.recovery_cp) { 916 /* 917 * Without metadata, we will not be able to tell if the array 918 * is in-sync or not - we must assume it is not. Therefore, 919 * it is impossible to rebuild a drive. 920 * 921 * Even if there is metadata, the on-disk information may 922 * indicate that the array is not in-sync and it will then 923 * fail at that time. 924 * 925 * User could specify 'nosync' option if desperate. 926 */ 927 rs->ti->error = "Unable to rebuild drive while array is not in-sync"; 928 return -EINVAL; 929 } 930 931 return 0; 932 } 933 934 /* 935 * validate_region_size 936 * @rs 937 * @region_size: region size in sectors. If 0, pick a size (4MiB default). 938 * 939 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size'). 940 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap. 941 * 942 * Returns: 0 on success, -EINVAL on failure. 943 */ 944 static int validate_region_size(struct raid_set *rs, unsigned long region_size) 945 { 946 unsigned long min_region_size = rs->ti->len / (1 << 21); 947 948 if (rs_is_raid0(rs)) 949 return 0; 950 951 if (!region_size) { 952 /* 953 * Choose a reasonable default. All figures in sectors. 954 */ 955 if (min_region_size > (1 << 13)) { 956 /* If not a power of 2, make it the next power of 2 */ 957 region_size = roundup_pow_of_two(min_region_size); 958 DMINFO("Choosing default region size of %lu sectors", 959 region_size); 960 } else { 961 DMINFO("Choosing default region size of 4MiB"); 962 region_size = 1 << 13; /* sectors */ 963 } 964 } else { 965 /* 966 * Validate user-supplied value. 967 */ 968 if (region_size > rs->ti->len) { 969 rs->ti->error = "Supplied region size is too large"; 970 return -EINVAL; 971 } 972 973 if (region_size < min_region_size) { 974 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)", 975 region_size, min_region_size); 976 rs->ti->error = "Supplied region size is too small"; 977 return -EINVAL; 978 } 979 980 if (!is_power_of_2(region_size)) { 981 rs->ti->error = "Region size is not a power of 2"; 982 return -EINVAL; 983 } 984 985 if (region_size < rs->md.chunk_sectors) { 986 rs->ti->error = "Region size is smaller than the chunk size"; 987 return -EINVAL; 988 } 989 } 990 991 /* 992 * Convert sectors to bytes. 993 */ 994 rs->md.bitmap_info.chunksize = to_bytes(region_size); 995 996 return 0; 997 } 998 999 /* 1000 * validate_raid_redundancy 1001 * @rs 1002 * 1003 * Determine if there are enough devices in the array that haven't 1004 * failed (or are being rebuilt) to form a usable array. 1005 * 1006 * Returns: 0 on success, -EINVAL on failure. 1007 */ 1008 static int validate_raid_redundancy(struct raid_set *rs) 1009 { 1010 unsigned int i, rebuild_cnt = 0; 1011 unsigned int rebuilds_per_group = 0, copies, raid_disks; 1012 unsigned int group_size, last_group_start; 1013 1014 for (i = 0; i < rs->raid_disks; i++) 1015 if (!test_bit(FirstUse, &rs->dev[i].rdev.flags) && 1016 ((!test_bit(In_sync, &rs->dev[i].rdev.flags) || 1017 !rs->dev[i].rdev.sb_page))) 1018 rebuild_cnt++; 1019 1020 switch (rs->md.level) { 1021 case 0: 1022 break; 1023 case 1: 1024 if (rebuild_cnt >= rs->md.raid_disks) 1025 goto too_many; 1026 break; 1027 case 4: 1028 case 5: 1029 case 6: 1030 if (rebuild_cnt > rs->raid_type->parity_devs) 1031 goto too_many; 1032 break; 1033 case 10: 1034 copies = raid10_md_layout_to_copies(rs->md.new_layout); 1035 if (copies < 2) { 1036 DMERR("Bogus raid10 data copies < 2!"); 1037 return -EINVAL; 1038 } 1039 1040 if (rebuild_cnt < copies) 1041 break; 1042 1043 /* 1044 * It is possible to have a higher rebuild count for RAID10, 1045 * as long as the failed devices occur in different mirror 1046 * groups (i.e. different stripes). 1047 * 1048 * When checking "near" format, make sure no adjacent devices 1049 * have failed beyond what can be handled. In addition to the 1050 * simple case where the number of devices is a multiple of the 1051 * number of copies, we must also handle cases where the number 1052 * of devices is not a multiple of the number of copies. 1053 * E.g. dev1 dev2 dev3 dev4 dev5 1054 * A A B B C 1055 * C D D E E 1056 */ 1057 raid_disks = min(rs->raid_disks, rs->md.raid_disks); 1058 if (__is_raid10_near(rs->md.new_layout)) { 1059 for (i = 0; i < raid_disks; i++) { 1060 if (!(i % copies)) 1061 rebuilds_per_group = 0; 1062 if ((!rs->dev[i].rdev.sb_page || 1063 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 1064 (++rebuilds_per_group >= copies)) 1065 goto too_many; 1066 } 1067 break; 1068 } 1069 1070 /* 1071 * When checking "far" and "offset" formats, we need to ensure 1072 * that the device that holds its copy is not also dead or 1073 * being rebuilt. (Note that "far" and "offset" formats only 1074 * support two copies right now. These formats also only ever 1075 * use the 'use_far_sets' variant.) 1076 * 1077 * This check is somewhat complicated by the need to account 1078 * for arrays that are not a multiple of (far) copies. This 1079 * results in the need to treat the last (potentially larger) 1080 * set differently. 1081 */ 1082 group_size = (raid_disks / copies); 1083 last_group_start = (raid_disks / group_size) - 1; 1084 last_group_start *= group_size; 1085 for (i = 0; i < raid_disks; i++) { 1086 if (!(i % copies) && !(i > last_group_start)) 1087 rebuilds_per_group = 0; 1088 if ((!rs->dev[i].rdev.sb_page || 1089 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 1090 (++rebuilds_per_group >= copies)) 1091 goto too_many; 1092 } 1093 break; 1094 default: 1095 if (rebuild_cnt) 1096 return -EINVAL; 1097 } 1098 1099 return 0; 1100 1101 too_many: 1102 return -EINVAL; 1103 } 1104 1105 /* 1106 * Possible arguments are... 1107 * <chunk_size> [optional_args] 1108 * 1109 * Argument definitions 1110 * <chunk_size> The number of sectors per disk that 1111 * will form the "stripe" 1112 * [[no]sync] Force or prevent recovery of the 1113 * entire array 1114 * [rebuild <idx>] Rebuild the drive indicated by the index 1115 * [daemon_sleep <ms>] Time between bitmap daemon work to 1116 * clear bits 1117 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization 1118 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization 1119 * [write_mostly <idx>] Indicate a write mostly drive via index 1120 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm) 1121 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs 1122 * [region_size <sectors>] Defines granularity of bitmap 1123 * [journal_dev <dev>] raid4/5/6 journaling deviice 1124 * (i.e. write hole closing log) 1125 * 1126 * RAID10-only options: 1127 * [raid10_copies <# copies>] Number of copies. (Default: 2) 1128 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near) 1129 */ 1130 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as, 1131 unsigned int num_raid_params) 1132 { 1133 int value, raid10_format = ALGORITHM_RAID10_DEFAULT; 1134 unsigned int raid10_copies = 2; 1135 unsigned int i, write_mostly = 0; 1136 unsigned int region_size = 0; 1137 sector_t max_io_len; 1138 const char *arg, *key; 1139 struct raid_dev *rd; 1140 struct raid_type *rt = rs->raid_type; 1141 1142 arg = dm_shift_arg(as); 1143 num_raid_params--; /* Account for chunk_size argument */ 1144 1145 if (kstrtoint(arg, 10, &value) < 0) { 1146 rs->ti->error = "Bad numerical argument given for chunk_size"; 1147 return -EINVAL; 1148 } 1149 1150 /* 1151 * First, parse the in-order required arguments 1152 * "chunk_size" is the only argument of this type. 1153 */ 1154 if (rt_is_raid1(rt)) { 1155 if (value) 1156 DMERR("Ignoring chunk size parameter for RAID 1"); 1157 value = 0; 1158 } else if (!is_power_of_2(value)) { 1159 rs->ti->error = "Chunk size must be a power of 2"; 1160 return -EINVAL; 1161 } else if (value < 8) { 1162 rs->ti->error = "Chunk size value is too small"; 1163 return -EINVAL; 1164 } 1165 1166 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value; 1167 1168 /* 1169 * We set each individual device as In_sync with a completed 1170 * 'recovery_offset'. If there has been a device failure or 1171 * replacement then one of the following cases applies: 1172 * 1173 * 1) User specifies 'rebuild'. 1174 * - Device is reset when param is read. 1175 * 2) A new device is supplied. 1176 * - No matching superblock found, resets device. 1177 * 3) Device failure was transient and returns on reload. 1178 * - Failure noticed, resets device for bitmap replay. 1179 * 4) Device hadn't completed recovery after previous failure. 1180 * - Superblock is read and overrides recovery_offset. 1181 * 1182 * What is found in the superblocks of the devices is always 1183 * authoritative, unless 'rebuild' or '[no]sync' was specified. 1184 */ 1185 for (i = 0; i < rs->raid_disks; i++) { 1186 set_bit(In_sync, &rs->dev[i].rdev.flags); 1187 rs->dev[i].rdev.recovery_offset = MaxSector; 1188 } 1189 1190 /* 1191 * Second, parse the unordered optional arguments 1192 */ 1193 for (i = 0; i < num_raid_params; i++) { 1194 key = dm_shift_arg(as); 1195 if (!key) { 1196 rs->ti->error = "Not enough raid parameters given"; 1197 return -EINVAL; 1198 } 1199 1200 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) { 1201 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 1202 rs->ti->error = "Only one 'nosync' argument allowed"; 1203 return -EINVAL; 1204 } 1205 continue; 1206 } 1207 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) { 1208 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) { 1209 rs->ti->error = "Only one 'sync' argument allowed"; 1210 return -EINVAL; 1211 } 1212 continue; 1213 } 1214 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) { 1215 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { 1216 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed"; 1217 return -EINVAL; 1218 } 1219 continue; 1220 } 1221 1222 arg = dm_shift_arg(as); 1223 i++; /* Account for the argument pairs */ 1224 if (!arg) { 1225 rs->ti->error = "Wrong number of raid parameters given"; 1226 return -EINVAL; 1227 } 1228 1229 /* 1230 * Parameters that take a string value are checked here. 1231 */ 1232 /* "raid10_format {near|offset|far} */ 1233 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) { 1234 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) { 1235 rs->ti->error = "Only one 'raid10_format' argument pair allowed"; 1236 return -EINVAL; 1237 } 1238 if (!rt_is_raid10(rt)) { 1239 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type"; 1240 return -EINVAL; 1241 } 1242 raid10_format = raid10_name_to_format(arg); 1243 if (raid10_format < 0) { 1244 rs->ti->error = "Invalid 'raid10_format' value given"; 1245 return raid10_format; 1246 } 1247 continue; 1248 } 1249 1250 /* "journal_dev <dev>" */ 1251 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) { 1252 int r; 1253 struct md_rdev *jdev; 1254 1255 if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 1256 rs->ti->error = "Only one raid4/5/6 set journaling device allowed"; 1257 return -EINVAL; 1258 } 1259 if (!rt_is_raid456(rt)) { 1260 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type"; 1261 return -EINVAL; 1262 } 1263 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 1264 &rs->journal_dev.dev); 1265 if (r) { 1266 rs->ti->error = "raid4/5/6 journal device lookup failure"; 1267 return r; 1268 } 1269 jdev = &rs->journal_dev.rdev; 1270 md_rdev_init(jdev); 1271 jdev->mddev = &rs->md; 1272 jdev->bdev = rs->journal_dev.dev->bdev; 1273 jdev->sectors = bdev_nr_sectors(jdev->bdev); 1274 if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) { 1275 rs->ti->error = "No space for raid4/5/6 journal"; 1276 return -ENOSPC; 1277 } 1278 rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 1279 set_bit(Journal, &jdev->flags); 1280 continue; 1281 } 1282 1283 /* "journal_mode <mode>" ("journal_dev" mandatory!) */ 1284 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) { 1285 int r; 1286 1287 if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 1288 rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'"; 1289 return -EINVAL; 1290 } 1291 if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) { 1292 rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed"; 1293 return -EINVAL; 1294 } 1295 r = dm_raid_journal_mode_to_md(arg); 1296 if (r < 0) { 1297 rs->ti->error = "Invalid 'journal_mode' argument"; 1298 return r; 1299 } 1300 rs->journal_dev.mode = r; 1301 continue; 1302 } 1303 1304 /* 1305 * Parameters with number values from here on. 1306 */ 1307 if (kstrtoint(arg, 10, &value) < 0) { 1308 rs->ti->error = "Bad numerical argument given in raid params"; 1309 return -EINVAL; 1310 } 1311 1312 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) { 1313 /* 1314 * "rebuild" is being passed in by userspace to provide 1315 * indexes of replaced devices and to set up additional 1316 * devices on raid level takeover. 1317 */ 1318 if (!__within_range(value, 0, rs->raid_disks - 1)) { 1319 rs->ti->error = "Invalid rebuild index given"; 1320 return -EINVAL; 1321 } 1322 1323 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) { 1324 rs->ti->error = "rebuild for this index already given"; 1325 return -EINVAL; 1326 } 1327 1328 rd = rs->dev + value; 1329 clear_bit(In_sync, &rd->rdev.flags); 1330 clear_bit(Faulty, &rd->rdev.flags); 1331 rd->rdev.recovery_offset = 0; 1332 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags); 1333 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) { 1334 if (!rt_is_raid1(rt)) { 1335 rs->ti->error = "write_mostly option is only valid for RAID1"; 1336 return -EINVAL; 1337 } 1338 1339 if (!__within_range(value, 0, rs->md.raid_disks - 1)) { 1340 rs->ti->error = "Invalid write_mostly index given"; 1341 return -EINVAL; 1342 } 1343 1344 write_mostly++; 1345 set_bit(WriteMostly, &rs->dev[value].rdev.flags); 1346 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags); 1347 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) { 1348 if (!rt_is_raid1(rt)) { 1349 rs->ti->error = "max_write_behind option is only valid for RAID1"; 1350 return -EINVAL; 1351 } 1352 1353 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) { 1354 rs->ti->error = "Only one max_write_behind argument pair allowed"; 1355 return -EINVAL; 1356 } 1357 1358 /* 1359 * In device-mapper, we specify things in sectors, but 1360 * MD records this value in kB 1361 */ 1362 if (value < 0 || value / 2 > COUNTER_MAX) { 1363 rs->ti->error = "Max write-behind limit out of range"; 1364 return -EINVAL; 1365 } 1366 1367 rs->md.bitmap_info.max_write_behind = value / 2; 1368 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) { 1369 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) { 1370 rs->ti->error = "Only one daemon_sleep argument pair allowed"; 1371 return -EINVAL; 1372 } 1373 if (value < 0) { 1374 rs->ti->error = "daemon sleep period out of range"; 1375 return -EINVAL; 1376 } 1377 rs->md.bitmap_info.daemon_sleep = value; 1378 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) { 1379 /* Userspace passes new data_offset after having extended the data image LV */ 1380 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { 1381 rs->ti->error = "Only one data_offset argument pair allowed"; 1382 return -EINVAL; 1383 } 1384 /* Ensure sensible data offset */ 1385 if (value < 0 || 1386 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) { 1387 rs->ti->error = "Bogus data_offset value"; 1388 return -EINVAL; 1389 } 1390 rs->data_offset = value; 1391 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) { 1392 /* Define the +/-# of disks to add to/remove from the given raid set */ 1393 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { 1394 rs->ti->error = "Only one delta_disks argument pair allowed"; 1395 return -EINVAL; 1396 } 1397 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */ 1398 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) { 1399 rs->ti->error = "Too many delta_disk requested"; 1400 return -EINVAL; 1401 } 1402 1403 rs->delta_disks = value; 1404 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) { 1405 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) { 1406 rs->ti->error = "Only one stripe_cache argument pair allowed"; 1407 return -EINVAL; 1408 } 1409 1410 if (!rt_is_raid456(rt)) { 1411 rs->ti->error = "Inappropriate argument: stripe_cache"; 1412 return -EINVAL; 1413 } 1414 1415 if (value < 0) { 1416 rs->ti->error = "Bogus stripe cache entries value"; 1417 return -EINVAL; 1418 } 1419 rs->stripe_cache_entries = value; 1420 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) { 1421 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) { 1422 rs->ti->error = "Only one min_recovery_rate argument pair allowed"; 1423 return -EINVAL; 1424 } 1425 1426 if (value < 0) { 1427 rs->ti->error = "min_recovery_rate out of range"; 1428 return -EINVAL; 1429 } 1430 rs->md.sync_speed_min = value; 1431 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) { 1432 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) { 1433 rs->ti->error = "Only one max_recovery_rate argument pair allowed"; 1434 return -EINVAL; 1435 } 1436 1437 if (value < 0) { 1438 rs->ti->error = "max_recovery_rate out of range"; 1439 return -EINVAL; 1440 } 1441 rs->md.sync_speed_max = value; 1442 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) { 1443 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) { 1444 rs->ti->error = "Only one region_size argument pair allowed"; 1445 return -EINVAL; 1446 } 1447 1448 region_size = value; 1449 rs->requested_bitmap_chunk_sectors = value; 1450 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) { 1451 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) { 1452 rs->ti->error = "Only one raid10_copies argument pair allowed"; 1453 return -EINVAL; 1454 } 1455 1456 if (!__within_range(value, 2, rs->md.raid_disks)) { 1457 rs->ti->error = "Bad value for 'raid10_copies'"; 1458 return -EINVAL; 1459 } 1460 1461 raid10_copies = value; 1462 } else { 1463 DMERR("Unable to parse RAID parameter: %s", key); 1464 rs->ti->error = "Unable to parse RAID parameter"; 1465 return -EINVAL; 1466 } 1467 } 1468 1469 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) && 1470 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 1471 rs->ti->error = "sync and nosync are mutually exclusive"; 1472 return -EINVAL; 1473 } 1474 1475 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && 1476 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) || 1477 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) { 1478 rs->ti->error = "sync/nosync and rebuild are mutually exclusive"; 1479 return -EINVAL; 1480 } 1481 1482 if (write_mostly >= rs->md.raid_disks) { 1483 rs->ti->error = "Can't set all raid1 devices to write_mostly"; 1484 return -EINVAL; 1485 } 1486 1487 if (rs->md.sync_speed_max && 1488 rs->md.sync_speed_min > rs->md.sync_speed_max) { 1489 rs->ti->error = "Bogus recovery rates"; 1490 return -EINVAL; 1491 } 1492 1493 if (validate_region_size(rs, region_size)) 1494 return -EINVAL; 1495 1496 if (rs->md.chunk_sectors) 1497 max_io_len = rs->md.chunk_sectors; 1498 else 1499 max_io_len = region_size; 1500 1501 if (dm_set_target_max_io_len(rs->ti, max_io_len)) 1502 return -EINVAL; 1503 1504 if (rt_is_raid10(rt)) { 1505 if (raid10_copies > rs->md.raid_disks) { 1506 rs->ti->error = "Not enough devices to satisfy specification"; 1507 return -EINVAL; 1508 } 1509 1510 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies); 1511 if (rs->md.new_layout < 0) { 1512 rs->ti->error = "Error getting raid10 format"; 1513 return rs->md.new_layout; 1514 } 1515 1516 rt = get_raid_type_by_ll(10, rs->md.new_layout); 1517 if (!rt) { 1518 rs->ti->error = "Failed to recognize new raid10 layout"; 1519 return -EINVAL; 1520 } 1521 1522 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT || 1523 rt->algorithm == ALGORITHM_RAID10_NEAR) && 1524 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { 1525 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible"; 1526 return -EINVAL; 1527 } 1528 } 1529 1530 rs->raid10_copies = raid10_copies; 1531 1532 /* Assume there are no metadata devices until the drives are parsed */ 1533 rs->md.persistent = 0; 1534 rs->md.external = 1; 1535 1536 /* Check, if any invalid ctr arguments have been passed in for the raid level */ 1537 return rs_check_for_valid_flags(rs); 1538 } 1539 1540 /* Set raid4/5/6 cache size */ 1541 static int rs_set_raid456_stripe_cache(struct raid_set *rs) 1542 { 1543 int r; 1544 struct r5conf *conf; 1545 struct mddev *mddev = &rs->md; 1546 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2; 1547 uint32_t nr_stripes = rs->stripe_cache_entries; 1548 1549 if (!rt_is_raid456(rs->raid_type)) { 1550 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size"; 1551 return -EINVAL; 1552 } 1553 1554 if (nr_stripes < min_stripes) { 1555 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size", 1556 nr_stripes, min_stripes); 1557 nr_stripes = min_stripes; 1558 } 1559 1560 conf = mddev->private; 1561 if (!conf) { 1562 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set"; 1563 return -EINVAL; 1564 } 1565 1566 /* Try setting number of stripes in raid456 stripe cache */ 1567 if (conf->min_nr_stripes != nr_stripes) { 1568 r = raid5_set_cache_size(mddev, nr_stripes); 1569 if (r) { 1570 rs->ti->error = "Failed to set raid4/5/6 stripe cache size"; 1571 return r; 1572 } 1573 1574 DMINFO("%u stripe cache entries", nr_stripes); 1575 } 1576 1577 return 0; 1578 } 1579 1580 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */ 1581 static unsigned int mddev_data_stripes(struct raid_set *rs) 1582 { 1583 return rs->md.raid_disks - rs->raid_type->parity_devs; 1584 } 1585 1586 /* Return # of data stripes of @rs (i.e. as of ctr) */ 1587 static unsigned int rs_data_stripes(struct raid_set *rs) 1588 { 1589 return rs->raid_disks - rs->raid_type->parity_devs; 1590 } 1591 1592 /* 1593 * Retrieve rdev->sectors from any valid raid device of @rs 1594 * to allow userpace to pass in arbitray "- -" device tupples. 1595 */ 1596 static sector_t __rdev_sectors(struct raid_set *rs) 1597 { 1598 int i; 1599 1600 for (i = 0; i < rs->raid_disks; i++) { 1601 struct md_rdev *rdev = &rs->dev[i].rdev; 1602 1603 if (!test_bit(Journal, &rdev->flags) && 1604 rdev->bdev && rdev->sectors) 1605 return rdev->sectors; 1606 } 1607 1608 return 0; 1609 } 1610 1611 /* Check that calculated dev_sectors fits all component devices. */ 1612 static int _check_data_dev_sectors(struct raid_set *rs) 1613 { 1614 sector_t ds = ~0; 1615 struct md_rdev *rdev; 1616 1617 rdev_for_each(rdev, &rs->md) 1618 if (!test_bit(Journal, &rdev->flags) && rdev->bdev) { 1619 ds = min(ds, bdev_nr_sectors(rdev->bdev)); 1620 if (ds < rs->md.dev_sectors) { 1621 rs->ti->error = "Component device(s) too small"; 1622 return -EINVAL; 1623 } 1624 } 1625 1626 return 0; 1627 } 1628 1629 /* Calculate the sectors per device and per array used for @rs */ 1630 static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev) 1631 { 1632 int delta_disks; 1633 unsigned int data_stripes; 1634 sector_t array_sectors = sectors, dev_sectors = sectors; 1635 struct mddev *mddev = &rs->md; 1636 1637 if (use_mddev) { 1638 delta_disks = mddev->delta_disks; 1639 data_stripes = mddev_data_stripes(rs); 1640 } else { 1641 delta_disks = rs->delta_disks; 1642 data_stripes = rs_data_stripes(rs); 1643 } 1644 1645 /* Special raid1 case w/o delta_disks support (yet) */ 1646 if (rt_is_raid1(rs->raid_type)) 1647 ; 1648 else if (rt_is_raid10(rs->raid_type)) { 1649 if (rs->raid10_copies < 2 || 1650 delta_disks < 0) { 1651 rs->ti->error = "Bogus raid10 data copies or delta disks"; 1652 return -EINVAL; 1653 } 1654 1655 dev_sectors *= rs->raid10_copies; 1656 if (sector_div(dev_sectors, data_stripes)) 1657 goto bad; 1658 1659 array_sectors = (data_stripes + delta_disks) * dev_sectors; 1660 if (sector_div(array_sectors, rs->raid10_copies)) 1661 goto bad; 1662 1663 } else if (sector_div(dev_sectors, data_stripes)) 1664 goto bad; 1665 1666 else 1667 /* Striped layouts */ 1668 array_sectors = (data_stripes + delta_disks) * dev_sectors; 1669 1670 mddev->array_sectors = array_sectors; 1671 mddev->dev_sectors = dev_sectors; 1672 rs_set_rdev_sectors(rs); 1673 1674 return _check_data_dev_sectors(rs); 1675 bad: 1676 rs->ti->error = "Target length not divisible by number of data devices"; 1677 return -EINVAL; 1678 } 1679 1680 /* Setup recovery on @rs */ 1681 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors) 1682 { 1683 /* raid0 does not recover */ 1684 if (rs_is_raid0(rs)) 1685 rs->md.recovery_cp = MaxSector; 1686 /* 1687 * A raid6 set has to be recovered either 1688 * completely or for the grown part to 1689 * ensure proper parity and Q-Syndrome 1690 */ 1691 else if (rs_is_raid6(rs)) 1692 rs->md.recovery_cp = dev_sectors; 1693 /* 1694 * Other raid set types may skip recovery 1695 * depending on the 'nosync' flag. 1696 */ 1697 else 1698 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags) 1699 ? MaxSector : dev_sectors; 1700 } 1701 1702 static void do_table_event(struct work_struct *ws) 1703 { 1704 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work); 1705 1706 smp_rmb(); /* Make sure we access most actual mddev properties */ 1707 if (!rs_is_reshaping(rs)) { 1708 if (rs_is_raid10(rs)) 1709 rs_set_rdev_sectors(rs); 1710 rs_set_capacity(rs); 1711 } 1712 dm_table_event(rs->ti->table); 1713 } 1714 1715 /* 1716 * Make sure a valid takover (level switch) is being requested on @rs 1717 * 1718 * Conversions of raid sets from one MD personality to another 1719 * have to conform to restrictions which are enforced here. 1720 */ 1721 static int rs_check_takeover(struct raid_set *rs) 1722 { 1723 struct mddev *mddev = &rs->md; 1724 unsigned int near_copies; 1725 1726 if (rs->md.degraded) { 1727 rs->ti->error = "Can't takeover degraded raid set"; 1728 return -EPERM; 1729 } 1730 1731 if (rs_is_reshaping(rs)) { 1732 rs->ti->error = "Can't takeover reshaping raid set"; 1733 return -EPERM; 1734 } 1735 1736 switch (mddev->level) { 1737 case 0: 1738 /* raid0 -> raid1/5 with one disk */ 1739 if ((mddev->new_level == 1 || mddev->new_level == 5) && 1740 mddev->raid_disks == 1) 1741 return 0; 1742 1743 /* raid0 -> raid10 */ 1744 if (mddev->new_level == 10 && 1745 !(rs->raid_disks % mddev->raid_disks)) 1746 return 0; 1747 1748 /* raid0 with multiple disks -> raid4/5/6 */ 1749 if (__within_range(mddev->new_level, 4, 6) && 1750 mddev->new_layout == ALGORITHM_PARITY_N && 1751 mddev->raid_disks > 1) 1752 return 0; 1753 1754 break; 1755 1756 case 10: 1757 /* Can't takeover raid10_offset! */ 1758 if (__is_raid10_offset(mddev->layout)) 1759 break; 1760 1761 near_copies = __raid10_near_copies(mddev->layout); 1762 1763 /* raid10* -> raid0 */ 1764 if (mddev->new_level == 0) { 1765 /* Can takeover raid10_near with raid disks divisable by data copies! */ 1766 if (near_copies > 1 && 1767 !(mddev->raid_disks % near_copies)) { 1768 mddev->raid_disks /= near_copies; 1769 mddev->delta_disks = mddev->raid_disks; 1770 return 0; 1771 } 1772 1773 /* Can takeover raid10_far */ 1774 if (near_copies == 1 && 1775 __raid10_far_copies(mddev->layout) > 1) 1776 return 0; 1777 1778 break; 1779 } 1780 1781 /* raid10_{near,far} -> raid1 */ 1782 if (mddev->new_level == 1 && 1783 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks) 1784 return 0; 1785 1786 /* raid10_{near,far} with 2 disks -> raid4/5 */ 1787 if (__within_range(mddev->new_level, 4, 5) && 1788 mddev->raid_disks == 2) 1789 return 0; 1790 break; 1791 1792 case 1: 1793 /* raid1 with 2 disks -> raid4/5 */ 1794 if (__within_range(mddev->new_level, 4, 5) && 1795 mddev->raid_disks == 2) { 1796 mddev->degraded = 1; 1797 return 0; 1798 } 1799 1800 /* raid1 -> raid0 */ 1801 if (mddev->new_level == 0 && 1802 mddev->raid_disks == 1) 1803 return 0; 1804 1805 /* raid1 -> raid10 */ 1806 if (mddev->new_level == 10) 1807 return 0; 1808 break; 1809 1810 case 4: 1811 /* raid4 -> raid0 */ 1812 if (mddev->new_level == 0) 1813 return 0; 1814 1815 /* raid4 -> raid1/5 with 2 disks */ 1816 if ((mddev->new_level == 1 || mddev->new_level == 5) && 1817 mddev->raid_disks == 2) 1818 return 0; 1819 1820 /* raid4 -> raid5/6 with parity N */ 1821 if (__within_range(mddev->new_level, 5, 6) && 1822 mddev->layout == ALGORITHM_PARITY_N) 1823 return 0; 1824 break; 1825 1826 case 5: 1827 /* raid5 with parity N -> raid0 */ 1828 if (mddev->new_level == 0 && 1829 mddev->layout == ALGORITHM_PARITY_N) 1830 return 0; 1831 1832 /* raid5 with parity N -> raid4 */ 1833 if (mddev->new_level == 4 && 1834 mddev->layout == ALGORITHM_PARITY_N) 1835 return 0; 1836 1837 /* raid5 with 2 disks -> raid1/4/10 */ 1838 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) && 1839 mddev->raid_disks == 2) 1840 return 0; 1841 1842 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */ 1843 if (mddev->new_level == 6 && 1844 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || 1845 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6))) 1846 return 0; 1847 break; 1848 1849 case 6: 1850 /* raid6 with parity N -> raid0 */ 1851 if (mddev->new_level == 0 && 1852 mddev->layout == ALGORITHM_PARITY_N) 1853 return 0; 1854 1855 /* raid6 with parity N -> raid4 */ 1856 if (mddev->new_level == 4 && 1857 mddev->layout == ALGORITHM_PARITY_N) 1858 return 0; 1859 1860 /* raid6_*_n with Q-Syndrome N -> raid5_* */ 1861 if (mddev->new_level == 5 && 1862 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || 1863 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC))) 1864 return 0; 1865 break; 1866 1867 default: 1868 break; 1869 } 1870 1871 rs->ti->error = "takeover not possible"; 1872 return -EINVAL; 1873 } 1874 1875 /* True if @rs requested to be taken over */ 1876 static bool rs_takeover_requested(struct raid_set *rs) 1877 { 1878 return rs->md.new_level != rs->md.level; 1879 } 1880 1881 /* True if layout is set to reshape. */ 1882 static bool rs_is_layout_change(struct raid_set *rs, bool use_mddev) 1883 { 1884 return (use_mddev ? rs->md.delta_disks : rs->delta_disks) || 1885 rs->md.new_layout != rs->md.layout || 1886 rs->md.new_chunk_sectors != rs->md.chunk_sectors; 1887 } 1888 1889 /* True if @rs is requested to reshape by ctr */ 1890 static bool rs_reshape_requested(struct raid_set *rs) 1891 { 1892 bool change; 1893 struct mddev *mddev = &rs->md; 1894 1895 if (rs_takeover_requested(rs)) 1896 return false; 1897 1898 if (rs_is_raid0(rs)) 1899 return false; 1900 1901 change = rs_is_layout_change(rs, false); 1902 1903 /* Historical case to support raid1 reshape without delta disks */ 1904 if (rs_is_raid1(rs)) { 1905 if (rs->delta_disks) 1906 return !!rs->delta_disks; 1907 1908 return !change && 1909 mddev->raid_disks != rs->raid_disks; 1910 } 1911 1912 if (rs_is_raid10(rs)) 1913 return change && 1914 !__is_raid10_far(mddev->new_layout) && 1915 rs->delta_disks >= 0; 1916 1917 return change; 1918 } 1919 1920 /* Features */ 1921 #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */ 1922 1923 /* State flags for sb->flags */ 1924 #define SB_FLAG_RESHAPE_ACTIVE 0x1 1925 #define SB_FLAG_RESHAPE_BACKWARDS 0x2 1926 1927 /* 1928 * This structure is never routinely used by userspace, unlike md superblocks. 1929 * Devices with this superblock should only ever be accessed via device-mapper. 1930 */ 1931 #define DM_RAID_MAGIC 0x64526D44 1932 struct dm_raid_superblock { 1933 __le32 magic; /* "DmRd" */ 1934 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */ 1935 1936 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */ 1937 __le32 array_position; /* The position of this drive in the raid set */ 1938 1939 __le64 events; /* Incremented by md when superblock updated */ 1940 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */ 1941 /* indicate failures (see extension below) */ 1942 1943 /* 1944 * This offset tracks the progress of the repair or replacement of 1945 * an individual drive. 1946 */ 1947 __le64 disk_recovery_offset; 1948 1949 /* 1950 * This offset tracks the progress of the initial raid set 1951 * synchronisation/parity calculation. 1952 */ 1953 __le64 array_resync_offset; 1954 1955 /* 1956 * raid characteristics 1957 */ 1958 __le32 level; 1959 __le32 layout; 1960 __le32 stripe_sectors; 1961 1962 /******************************************************************** 1963 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! 1964 * 1965 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist 1966 */ 1967 1968 __le32 flags; /* Flags defining array states for reshaping */ 1969 1970 /* 1971 * This offset tracks the progress of a raid 1972 * set reshape in order to be able to restart it 1973 */ 1974 __le64 reshape_position; 1975 1976 /* 1977 * These define the properties of the array in case of an interrupted reshape 1978 */ 1979 __le32 new_level; 1980 __le32 new_layout; 1981 __le32 new_stripe_sectors; 1982 __le32 delta_disks; 1983 1984 __le64 array_sectors; /* Array size in sectors */ 1985 1986 /* 1987 * Sector offsets to data on devices (reshaping). 1988 * Needed to support out of place reshaping, thus 1989 * not writing over any stripes whilst converting 1990 * them from old to new layout 1991 */ 1992 __le64 data_offset; 1993 __le64 new_data_offset; 1994 1995 __le64 sectors; /* Used device size in sectors */ 1996 1997 /* 1998 * Additional Bit field of devices indicating failures to support 1999 * up to 256 devices with the 1.9.0 on-disk metadata format 2000 */ 2001 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1]; 2002 2003 __le32 incompat_features; /* Used to indicate any incompatible features */ 2004 2005 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */ 2006 } __packed; 2007 2008 /* 2009 * Check for reshape constraints on raid set @rs: 2010 * 2011 * - reshape function non-existent 2012 * - degraded set 2013 * - ongoing recovery 2014 * - ongoing reshape 2015 * 2016 * Returns 0 if none or -EPERM if given constraint 2017 * and error message reference in @errmsg 2018 */ 2019 static int rs_check_reshape(struct raid_set *rs) 2020 { 2021 struct mddev *mddev = &rs->md; 2022 2023 if (!mddev->pers || !mddev->pers->check_reshape) 2024 rs->ti->error = "Reshape not supported"; 2025 else if (mddev->degraded) 2026 rs->ti->error = "Can't reshape degraded raid set"; 2027 else if (rs_is_recovering(rs)) 2028 rs->ti->error = "Convert request on recovering raid set prohibited"; 2029 else if (rs_is_reshaping(rs)) 2030 rs->ti->error = "raid set already reshaping!"; 2031 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs))) 2032 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10"; 2033 else 2034 return 0; 2035 2036 return -EPERM; 2037 } 2038 2039 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload) 2040 { 2041 BUG_ON(!rdev->sb_page); 2042 2043 if (rdev->sb_loaded && !force_reload) 2044 return 0; 2045 2046 rdev->sb_loaded = 0; 2047 2048 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) { 2049 DMERR("Failed to read superblock of device at position %d", 2050 rdev->raid_disk); 2051 md_error(rdev->mddev, rdev); 2052 set_bit(Faulty, &rdev->flags); 2053 return -EIO; 2054 } 2055 2056 rdev->sb_loaded = 1; 2057 2058 return 0; 2059 } 2060 2061 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) 2062 { 2063 failed_devices[0] = le64_to_cpu(sb->failed_devices); 2064 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices)); 2065 2066 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { 2067 int i = ARRAY_SIZE(sb->extended_failed_devices); 2068 2069 while (i--) 2070 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]); 2071 } 2072 } 2073 2074 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) 2075 { 2076 int i = ARRAY_SIZE(sb->extended_failed_devices); 2077 2078 sb->failed_devices = cpu_to_le64(failed_devices[0]); 2079 while (i--) 2080 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]); 2081 } 2082 2083 /* 2084 * Synchronize the superblock members with the raid set properties 2085 * 2086 * All superblock data is little endian. 2087 */ 2088 static void super_sync(struct mddev *mddev, struct md_rdev *rdev) 2089 { 2090 bool update_failed_devices = false; 2091 unsigned int i; 2092 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 2093 struct dm_raid_superblock *sb; 2094 struct raid_set *rs = container_of(mddev, struct raid_set, md); 2095 2096 /* No metadata device, no superblock */ 2097 if (!rdev->meta_bdev) 2098 return; 2099 2100 BUG_ON(!rdev->sb_page); 2101 2102 sb = page_address(rdev->sb_page); 2103 2104 sb_retrieve_failed_devices(sb, failed_devices); 2105 2106 for (i = 0; i < rs->raid_disks; i++) 2107 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) { 2108 update_failed_devices = true; 2109 set_bit(i, (void *) failed_devices); 2110 } 2111 2112 if (update_failed_devices) 2113 sb_update_failed_devices(sb, failed_devices); 2114 2115 sb->magic = cpu_to_le32(DM_RAID_MAGIC); 2116 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); 2117 2118 sb->num_devices = cpu_to_le32(mddev->raid_disks); 2119 sb->array_position = cpu_to_le32(rdev->raid_disk); 2120 2121 sb->events = cpu_to_le64(mddev->events); 2122 2123 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset); 2124 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp); 2125 2126 sb->level = cpu_to_le32(mddev->level); 2127 sb->layout = cpu_to_le32(mddev->layout); 2128 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors); 2129 2130 /******************************************************************** 2131 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! 2132 * 2133 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist 2134 */ 2135 sb->new_level = cpu_to_le32(mddev->new_level); 2136 sb->new_layout = cpu_to_le32(mddev->new_layout); 2137 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors); 2138 2139 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2140 2141 smp_rmb(); /* Make sure we access most recent reshape position */ 2142 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2143 if (le64_to_cpu(sb->reshape_position) != MaxSector) { 2144 /* Flag ongoing reshape */ 2145 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE); 2146 2147 if (mddev->delta_disks < 0 || mddev->reshape_backwards) 2148 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS); 2149 } else { 2150 /* Clear reshape flags */ 2151 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS)); 2152 } 2153 2154 sb->array_sectors = cpu_to_le64(mddev->array_sectors); 2155 sb->data_offset = cpu_to_le64(rdev->data_offset); 2156 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset); 2157 sb->sectors = cpu_to_le64(rdev->sectors); 2158 sb->incompat_features = cpu_to_le32(0); 2159 2160 /* Zero out the rest of the payload after the size of the superblock */ 2161 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb)); 2162 } 2163 2164 /* 2165 * super_load 2166 * 2167 * This function creates a superblock if one is not found on the device 2168 * and will decide which superblock to use if there's a choice. 2169 * 2170 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise 2171 */ 2172 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev) 2173 { 2174 int r; 2175 struct dm_raid_superblock *sb; 2176 struct dm_raid_superblock *refsb; 2177 uint64_t events_sb, events_refsb; 2178 2179 r = read_disk_sb(rdev, rdev->sb_size, false); 2180 if (r) 2181 return r; 2182 2183 sb = page_address(rdev->sb_page); 2184 2185 /* 2186 * Two cases that we want to write new superblocks and rebuild: 2187 * 1) New device (no matching magic number) 2188 * 2) Device specified for rebuild (!In_sync w/ offset == 0) 2189 */ 2190 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) || 2191 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) { 2192 super_sync(rdev->mddev, rdev); 2193 2194 set_bit(FirstUse, &rdev->flags); 2195 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); 2196 2197 /* Force writing of superblocks to disk */ 2198 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags); 2199 2200 /* Any superblock is better than none, choose that if given */ 2201 return refdev ? 0 : 1; 2202 } 2203 2204 if (!refdev) 2205 return 1; 2206 2207 events_sb = le64_to_cpu(sb->events); 2208 2209 refsb = page_address(refdev->sb_page); 2210 events_refsb = le64_to_cpu(refsb->events); 2211 2212 return (events_sb > events_refsb) ? 1 : 0; 2213 } 2214 2215 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev) 2216 { 2217 int role; 2218 struct mddev *mddev = &rs->md; 2219 uint64_t events_sb; 2220 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 2221 struct dm_raid_superblock *sb; 2222 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0; 2223 struct md_rdev *r; 2224 struct dm_raid_superblock *sb2; 2225 2226 sb = page_address(rdev->sb_page); 2227 events_sb = le64_to_cpu(sb->events); 2228 2229 /* 2230 * Initialise to 1 if this is a new superblock. 2231 */ 2232 mddev->events = events_sb ? : 1; 2233 2234 mddev->reshape_position = MaxSector; 2235 2236 mddev->raid_disks = le32_to_cpu(sb->num_devices); 2237 mddev->level = le32_to_cpu(sb->level); 2238 mddev->layout = le32_to_cpu(sb->layout); 2239 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors); 2240 2241 /* 2242 * Reshaping is supported, e.g. reshape_position is valid 2243 * in superblock and superblock content is authoritative. 2244 */ 2245 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { 2246 /* Superblock is authoritative wrt given raid set layout! */ 2247 mddev->new_level = le32_to_cpu(sb->new_level); 2248 mddev->new_layout = le32_to_cpu(sb->new_layout); 2249 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors); 2250 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 2251 mddev->array_sectors = le64_to_cpu(sb->array_sectors); 2252 2253 /* raid was reshaping and got interrupted */ 2254 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) { 2255 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { 2256 DMERR("Reshape requested but raid set is still reshaping"); 2257 return -EINVAL; 2258 } 2259 2260 if (mddev->delta_disks < 0 || 2261 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS))) 2262 mddev->reshape_backwards = 1; 2263 else 2264 mddev->reshape_backwards = 0; 2265 2266 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 2267 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout); 2268 } 2269 2270 } else { 2271 /* 2272 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata 2273 */ 2274 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout); 2275 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 2276 2277 if (rs_takeover_requested(rs)) { 2278 if (rt_cur && rt_new) 2279 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)", 2280 rt_cur->name, rt_new->name); 2281 else 2282 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)"); 2283 return -EINVAL; 2284 } else if (rs_reshape_requested(rs)) { 2285 DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)"); 2286 if (mddev->layout != mddev->new_layout) { 2287 if (rt_cur && rt_new) 2288 DMERR(" current layout %s vs new layout %s", 2289 rt_cur->name, rt_new->name); 2290 else 2291 DMERR(" current layout 0x%X vs new layout 0x%X", 2292 le32_to_cpu(sb->layout), mddev->new_layout); 2293 } 2294 if (mddev->chunk_sectors != mddev->new_chunk_sectors) 2295 DMERR(" current stripe sectors %u vs new stripe sectors %u", 2296 mddev->chunk_sectors, mddev->new_chunk_sectors); 2297 if (rs->delta_disks) 2298 DMERR(" current %u disks vs new %u disks", 2299 mddev->raid_disks, mddev->raid_disks + rs->delta_disks); 2300 if (rs_is_raid10(rs)) { 2301 DMERR(" Old layout: %s w/ %u copies", 2302 raid10_md_layout_to_format(mddev->layout), 2303 raid10_md_layout_to_copies(mddev->layout)); 2304 DMERR(" New layout: %s w/ %u copies", 2305 raid10_md_layout_to_format(mddev->new_layout), 2306 raid10_md_layout_to_copies(mddev->new_layout)); 2307 } 2308 return -EINVAL; 2309 } 2310 2311 DMINFO("Discovered old metadata format; upgrading to extended metadata format"); 2312 } 2313 2314 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) 2315 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset); 2316 2317 /* 2318 * During load, we set FirstUse if a new superblock was written. 2319 * There are two reasons we might not have a superblock: 2320 * 1) The raid set is brand new - in which case, all of the 2321 * devices must have their In_sync bit set. Also, 2322 * recovery_cp must be 0, unless forced. 2323 * 2) This is a new device being added to an old raid set 2324 * and the new device needs to be rebuilt - in which 2325 * case the In_sync bit will /not/ be set and 2326 * recovery_cp must be MaxSector. 2327 * 3) This is/are a new device(s) being added to an old 2328 * raid set during takeover to a higher raid level 2329 * to provide capacity for redundancy or during reshape 2330 * to add capacity to grow the raid set. 2331 */ 2332 rdev_for_each(r, mddev) { 2333 if (test_bit(Journal, &rdev->flags)) 2334 continue; 2335 2336 if (test_bit(FirstUse, &r->flags)) 2337 new_devs++; 2338 2339 if (!test_bit(In_sync, &r->flags)) { 2340 DMINFO("Device %d specified for rebuild; clearing superblock", 2341 r->raid_disk); 2342 rebuilds++; 2343 2344 if (test_bit(FirstUse, &r->flags)) 2345 rebuild_and_new++; 2346 } 2347 } 2348 2349 if (new_devs == rs->raid_disks || !rebuilds) { 2350 /* Replace a broken device */ 2351 if (new_devs == rs->raid_disks) { 2352 DMINFO("Superblocks created for new raid set"); 2353 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2354 } else if (new_devs != rebuilds && 2355 new_devs != rs->delta_disks) { 2356 DMERR("New device injected into existing raid set without " 2357 "'delta_disks' or 'rebuild' parameter specified"); 2358 return -EINVAL; 2359 } 2360 } else if (new_devs && new_devs != rebuilds) { 2361 DMERR("%u 'rebuild' devices cannot be injected into" 2362 " a raid set with %u other first-time devices", 2363 rebuilds, new_devs); 2364 return -EINVAL; 2365 } else if (rebuilds) { 2366 if (rebuild_and_new && rebuilds != rebuild_and_new) { 2367 DMERR("new device%s provided without 'rebuild'", 2368 new_devs > 1 ? "s" : ""); 2369 return -EINVAL; 2370 } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) { 2371 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)", 2372 (unsigned long long) mddev->recovery_cp); 2373 return -EINVAL; 2374 } else if (rs_is_reshaping(rs)) { 2375 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)", 2376 (unsigned long long) mddev->reshape_position); 2377 return -EINVAL; 2378 } 2379 } 2380 2381 /* 2382 * Now we set the Faulty bit for those devices that are 2383 * recorded in the superblock as failed. 2384 */ 2385 sb_retrieve_failed_devices(sb, failed_devices); 2386 rdev_for_each(r, mddev) { 2387 if (test_bit(Journal, &rdev->flags) || 2388 !r->sb_page) 2389 continue; 2390 sb2 = page_address(r->sb_page); 2391 sb2->failed_devices = 0; 2392 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices)); 2393 2394 /* 2395 * Check for any device re-ordering. 2396 */ 2397 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) { 2398 role = le32_to_cpu(sb2->array_position); 2399 if (role < 0) 2400 continue; 2401 2402 if (role != r->raid_disk) { 2403 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) { 2404 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) || 2405 rs->raid_disks % rs->raid10_copies) { 2406 rs->ti->error = 2407 "Cannot change raid10 near set to odd # of devices!"; 2408 return -EINVAL; 2409 } 2410 2411 sb2->array_position = cpu_to_le32(r->raid_disk); 2412 2413 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) && 2414 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) && 2415 !rt_is_raid1(rs->raid_type)) { 2416 rs->ti->error = "Cannot change device positions in raid set"; 2417 return -EINVAL; 2418 } 2419 2420 DMINFO("raid device #%d now at position #%d", role, r->raid_disk); 2421 } 2422 2423 /* 2424 * Partial recovery is performed on 2425 * returning failed devices. 2426 */ 2427 if (test_bit(role, (void *) failed_devices)) 2428 set_bit(Faulty, &r->flags); 2429 } 2430 } 2431 2432 return 0; 2433 } 2434 2435 static int super_validate(struct raid_set *rs, struct md_rdev *rdev) 2436 { 2437 struct mddev *mddev = &rs->md; 2438 struct dm_raid_superblock *sb; 2439 2440 if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0) 2441 return 0; 2442 2443 sb = page_address(rdev->sb_page); 2444 2445 /* 2446 * If mddev->events is not set, we know we have not yet initialized 2447 * the array. 2448 */ 2449 if (!mddev->events && super_init_validation(rs, rdev)) 2450 return -EINVAL; 2451 2452 if (le32_to_cpu(sb->compat_features) && 2453 le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) { 2454 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags"; 2455 return -EINVAL; 2456 } 2457 2458 if (sb->incompat_features) { 2459 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet"; 2460 return -EINVAL; 2461 } 2462 2463 /* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */ 2464 mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096); 2465 mddev->bitmap_info.default_offset = mddev->bitmap_info.offset; 2466 2467 if (!test_and_clear_bit(FirstUse, &rdev->flags)) { 2468 /* 2469 * Retrieve rdev size stored in superblock to be prepared for shrink. 2470 * Check extended superblock members are present otherwise the size 2471 * will not be set! 2472 */ 2473 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) 2474 rdev->sectors = le64_to_cpu(sb->sectors); 2475 2476 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset); 2477 if (rdev->recovery_offset == MaxSector) 2478 set_bit(In_sync, &rdev->flags); 2479 /* 2480 * If no reshape in progress -> we're recovering single 2481 * disk(s) and have to set the device(s) to out-of-sync 2482 */ 2483 else if (!rs_is_reshaping(rs)) 2484 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */ 2485 } 2486 2487 /* 2488 * If a device comes back, set it as not In_sync and no longer faulty. 2489 */ 2490 if (test_and_clear_bit(Faulty, &rdev->flags)) { 2491 rdev->recovery_offset = 0; 2492 clear_bit(In_sync, &rdev->flags); 2493 rdev->saved_raid_disk = rdev->raid_disk; 2494 } 2495 2496 /* Reshape support -> restore repective data offsets */ 2497 rdev->data_offset = le64_to_cpu(sb->data_offset); 2498 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset); 2499 2500 return 0; 2501 } 2502 2503 /* 2504 * Analyse superblocks and select the freshest. 2505 */ 2506 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs) 2507 { 2508 int r; 2509 struct md_rdev *rdev, *freshest; 2510 struct mddev *mddev = &rs->md; 2511 2512 freshest = NULL; 2513 rdev_for_each(rdev, mddev) { 2514 if (test_bit(Journal, &rdev->flags)) 2515 continue; 2516 2517 if (!rdev->meta_bdev) 2518 continue; 2519 2520 /* Set superblock offset/size for metadata device. */ 2521 rdev->sb_start = 0; 2522 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev); 2523 if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) { 2524 DMERR("superblock size of a logical block is no longer valid"); 2525 return -EINVAL; 2526 } 2527 2528 /* 2529 * Skipping super_load due to CTR_FLAG_SYNC will cause 2530 * the array to undergo initialization again as 2531 * though it were new. This is the intended effect 2532 * of the "sync" directive. 2533 * 2534 * With reshaping capability added, we must ensure that 2535 * the "sync" directive is disallowed during the reshape. 2536 */ 2537 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 2538 continue; 2539 2540 r = super_load(rdev, freshest); 2541 2542 switch (r) { 2543 case 1: 2544 freshest = rdev; 2545 break; 2546 case 0: 2547 break; 2548 default: 2549 /* This is a failure to read the superblock from the metadata device. */ 2550 /* 2551 * We have to keep any raid0 data/metadata device pairs or 2552 * the MD raid0 personality will fail to start the array. 2553 */ 2554 if (rs_is_raid0(rs)) 2555 continue; 2556 2557 /* 2558 * We keep the dm_devs to be able to emit the device tuple 2559 * properly on the table line in raid_status() (rather than 2560 * mistakenly acting as if '- -' got passed into the constructor). 2561 * 2562 * The rdev has to stay on the same_set list to allow for 2563 * the attempt to restore faulty devices on second resume. 2564 */ 2565 rdev->raid_disk = rdev->saved_raid_disk = -1; 2566 break; 2567 } 2568 } 2569 2570 if (!freshest) 2571 return 0; 2572 2573 /* 2574 * Validation of the freshest device provides the source of 2575 * validation for the remaining devices. 2576 */ 2577 rs->ti->error = "Unable to assemble array: Invalid superblocks"; 2578 if (super_validate(rs, freshest)) 2579 return -EINVAL; 2580 2581 if (validate_raid_redundancy(rs)) { 2582 rs->ti->error = "Insufficient redundancy to activate array"; 2583 return -EINVAL; 2584 } 2585 2586 rdev_for_each(rdev, mddev) 2587 if (!test_bit(Journal, &rdev->flags) && 2588 rdev != freshest && 2589 super_validate(rs, rdev)) 2590 return -EINVAL; 2591 return 0; 2592 } 2593 2594 /* 2595 * Adjust data_offset and new_data_offset on all disk members of @rs 2596 * for out of place reshaping if requested by constructor 2597 * 2598 * We need free space at the beginning of each raid disk for forward 2599 * and at the end for backward reshapes which userspace has to provide 2600 * via remapping/reordering of space. 2601 */ 2602 static int rs_adjust_data_offsets(struct raid_set *rs) 2603 { 2604 sector_t data_offset = 0, new_data_offset = 0; 2605 struct md_rdev *rdev; 2606 2607 /* Constructor did not request data offset change */ 2608 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { 2609 if (!rs_is_reshapable(rs)) 2610 goto out; 2611 2612 return 0; 2613 } 2614 2615 /* HM FIXME: get In_Sync raid_dev? */ 2616 rdev = &rs->dev[0].rdev; 2617 2618 if (rs->delta_disks < 0) { 2619 /* 2620 * Removing disks (reshaping backwards): 2621 * 2622 * - before reshape: data is at offset 0 and free space 2623 * is at end of each component LV 2624 * 2625 * - after reshape: data is at offset rs->data_offset != 0 on each component LV 2626 */ 2627 data_offset = 0; 2628 new_data_offset = rs->data_offset; 2629 2630 } else if (rs->delta_disks > 0) { 2631 /* 2632 * Adding disks (reshaping forwards): 2633 * 2634 * - before reshape: data is at offset rs->data_offset != 0 and 2635 * free space is at begin of each component LV 2636 * 2637 * - after reshape: data is at offset 0 on each component LV 2638 */ 2639 data_offset = rs->data_offset; 2640 new_data_offset = 0; 2641 2642 } else { 2643 /* 2644 * User space passes in 0 for data offset after having removed reshape space 2645 * 2646 * - or - (data offset != 0) 2647 * 2648 * Changing RAID layout or chunk size -> toggle offsets 2649 * 2650 * - before reshape: data is at offset rs->data_offset 0 and 2651 * free space is at end of each component LV 2652 * -or- 2653 * data is at offset rs->data_offset != 0 and 2654 * free space is at begin of each component LV 2655 * 2656 * - after reshape: data is at offset 0 if it was at offset != 0 2657 * or at offset != 0 if it was at offset 0 2658 * on each component LV 2659 * 2660 */ 2661 data_offset = rs->data_offset ? rdev->data_offset : 0; 2662 new_data_offset = data_offset ? 0 : rs->data_offset; 2663 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2664 } 2665 2666 /* 2667 * Make sure we got a minimum amount of free sectors per device 2668 */ 2669 if (rs->data_offset && 2670 bdev_nr_sectors(rdev->bdev) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) { 2671 rs->ti->error = data_offset ? "No space for forward reshape" : 2672 "No space for backward reshape"; 2673 return -ENOSPC; 2674 } 2675 out: 2676 /* 2677 * Raise recovery_cp in case data_offset != 0 to 2678 * avoid false recovery positives in the constructor. 2679 */ 2680 if (rs->md.recovery_cp < rs->md.dev_sectors) 2681 rs->md.recovery_cp += rs->dev[0].rdev.data_offset; 2682 2683 /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */ 2684 rdev_for_each(rdev, &rs->md) { 2685 if (!test_bit(Journal, &rdev->flags)) { 2686 rdev->data_offset = data_offset; 2687 rdev->new_data_offset = new_data_offset; 2688 } 2689 } 2690 2691 return 0; 2692 } 2693 2694 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */ 2695 static void __reorder_raid_disk_indexes(struct raid_set *rs) 2696 { 2697 int i = 0; 2698 struct md_rdev *rdev; 2699 2700 rdev_for_each(rdev, &rs->md) { 2701 if (!test_bit(Journal, &rdev->flags)) { 2702 rdev->raid_disk = i++; 2703 rdev->saved_raid_disk = rdev->new_raid_disk = -1; 2704 } 2705 } 2706 } 2707 2708 /* 2709 * Setup @rs for takeover by a different raid level 2710 */ 2711 static int rs_setup_takeover(struct raid_set *rs) 2712 { 2713 struct mddev *mddev = &rs->md; 2714 struct md_rdev *rdev; 2715 unsigned int d = mddev->raid_disks = rs->raid_disks; 2716 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset; 2717 2718 if (rt_is_raid10(rs->raid_type)) { 2719 if (rs_is_raid0(rs)) { 2720 /* Userpace reordered disks -> adjust raid_disk indexes */ 2721 __reorder_raid_disk_indexes(rs); 2722 2723 /* raid0 -> raid10_far layout */ 2724 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR, 2725 rs->raid10_copies); 2726 } else if (rs_is_raid1(rs)) 2727 /* raid1 -> raid10_near layout */ 2728 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, 2729 rs->raid_disks); 2730 else 2731 return -EINVAL; 2732 2733 } 2734 2735 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2736 mddev->recovery_cp = MaxSector; 2737 2738 while (d--) { 2739 rdev = &rs->dev[d].rdev; 2740 2741 if (test_bit(d, (void *) rs->rebuild_disks)) { 2742 clear_bit(In_sync, &rdev->flags); 2743 clear_bit(Faulty, &rdev->flags); 2744 mddev->recovery_cp = rdev->recovery_offset = 0; 2745 /* Bitmap has to be created when we do an "up" takeover */ 2746 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2747 } 2748 2749 rdev->new_data_offset = new_data_offset; 2750 } 2751 2752 return 0; 2753 } 2754 2755 /* Prepare @rs for reshape */ 2756 static int rs_prepare_reshape(struct raid_set *rs) 2757 { 2758 bool reshape; 2759 struct mddev *mddev = &rs->md; 2760 2761 if (rs_is_raid10(rs)) { 2762 if (rs->raid_disks != mddev->raid_disks && 2763 __is_raid10_near(mddev->layout) && 2764 rs->raid10_copies && 2765 rs->raid10_copies != __raid10_near_copies(mddev->layout)) { 2766 /* 2767 * raid disk have to be multiple of data copies to allow this conversion, 2768 * 2769 * This is actually not a reshape it is a 2770 * rebuild of any additional mirrors per group 2771 */ 2772 if (rs->raid_disks % rs->raid10_copies) { 2773 rs->ti->error = "Can't reshape raid10 mirror groups"; 2774 return -EINVAL; 2775 } 2776 2777 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */ 2778 __reorder_raid_disk_indexes(rs); 2779 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, 2780 rs->raid10_copies); 2781 mddev->new_layout = mddev->layout; 2782 reshape = false; 2783 } else 2784 reshape = true; 2785 2786 } else if (rs_is_raid456(rs)) 2787 reshape = true; 2788 2789 else if (rs_is_raid1(rs)) { 2790 if (rs->delta_disks) { 2791 /* Process raid1 via delta_disks */ 2792 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks; 2793 reshape = true; 2794 } else { 2795 /* Process raid1 without delta_disks */ 2796 mddev->raid_disks = rs->raid_disks; 2797 reshape = false; 2798 } 2799 } else { 2800 rs->ti->error = "Called with bogus raid type"; 2801 return -EINVAL; 2802 } 2803 2804 if (reshape) { 2805 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags); 2806 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2807 } else if (mddev->raid_disks < rs->raid_disks) 2808 /* Create new superblocks and bitmaps, if any new disks */ 2809 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2810 2811 return 0; 2812 } 2813 2814 /* Get reshape sectors from data_offsets or raid set */ 2815 static sector_t _get_reshape_sectors(struct raid_set *rs) 2816 { 2817 struct md_rdev *rdev; 2818 sector_t reshape_sectors = 0; 2819 2820 rdev_for_each(rdev, &rs->md) 2821 if (!test_bit(Journal, &rdev->flags)) { 2822 reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ? 2823 rdev->data_offset - rdev->new_data_offset : 2824 rdev->new_data_offset - rdev->data_offset; 2825 break; 2826 } 2827 2828 return max(reshape_sectors, (sector_t) rs->data_offset); 2829 } 2830 2831 /* 2832 * Reshape: 2833 * - change raid layout 2834 * - change chunk size 2835 * - add disks 2836 * - remove disks 2837 */ 2838 static int rs_setup_reshape(struct raid_set *rs) 2839 { 2840 int r = 0; 2841 unsigned int cur_raid_devs, d; 2842 sector_t reshape_sectors = _get_reshape_sectors(rs); 2843 struct mddev *mddev = &rs->md; 2844 struct md_rdev *rdev; 2845 2846 mddev->delta_disks = rs->delta_disks; 2847 cur_raid_devs = mddev->raid_disks; 2848 2849 /* Ignore impossible layout change whilst adding/removing disks */ 2850 if (mddev->delta_disks && 2851 mddev->layout != mddev->new_layout) { 2852 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks); 2853 mddev->new_layout = mddev->layout; 2854 } 2855 2856 /* 2857 * Adjust array size: 2858 * 2859 * - in case of adding disk(s), array size has 2860 * to grow after the disk adding reshape, 2861 * which'll happen in the event handler; 2862 * reshape will happen forward, so space has to 2863 * be available at the beginning of each disk 2864 * 2865 * - in case of removing disk(s), array size 2866 * has to shrink before starting the reshape, 2867 * which'll happen here; 2868 * reshape will happen backward, so space has to 2869 * be available at the end of each disk 2870 * 2871 * - data_offset and new_data_offset are 2872 * adjusted for aforementioned out of place 2873 * reshaping based on userspace passing in 2874 * the "data_offset <sectors>" key/value 2875 * pair via the constructor 2876 */ 2877 2878 /* Add disk(s) */ 2879 if (rs->delta_disks > 0) { 2880 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */ 2881 for (d = cur_raid_devs; d < rs->raid_disks; d++) { 2882 rdev = &rs->dev[d].rdev; 2883 clear_bit(In_sync, &rdev->flags); 2884 2885 /* 2886 * save_raid_disk needs to be -1, or recovery_offset will be set to 0 2887 * by md, which'll store that erroneously in the superblock on reshape 2888 */ 2889 rdev->saved_raid_disk = -1; 2890 rdev->raid_disk = d; 2891 2892 rdev->sectors = mddev->dev_sectors; 2893 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector; 2894 } 2895 2896 mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */ 2897 2898 /* Remove disk(s) */ 2899 } else if (rs->delta_disks < 0) { 2900 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true); 2901 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */ 2902 2903 /* Change layout and/or chunk size */ 2904 } else { 2905 /* 2906 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size: 2907 * 2908 * keeping number of disks and do layout change -> 2909 * 2910 * toggle reshape_backward depending on data_offset: 2911 * 2912 * - free space upfront -> reshape forward 2913 * 2914 * - free space at the end -> reshape backward 2915 * 2916 * 2917 * This utilizes free reshape space avoiding the need 2918 * for userspace to move (parts of) LV segments in 2919 * case of layout/chunksize change (for disk 2920 * adding/removing reshape space has to be at 2921 * the proper address (see above with delta_disks): 2922 * 2923 * add disk(s) -> begin 2924 * remove disk(s)-> end 2925 */ 2926 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1; 2927 } 2928 2929 /* 2930 * Adjust device size for forward reshape 2931 * because md_finish_reshape() reduces it. 2932 */ 2933 if (!mddev->reshape_backwards) 2934 rdev_for_each(rdev, &rs->md) 2935 if (!test_bit(Journal, &rdev->flags)) 2936 rdev->sectors += reshape_sectors; 2937 2938 return r; 2939 } 2940 2941 /* 2942 * If the md resync thread has updated superblock with max reshape position 2943 * at the end of a reshape but not (yet) reset the layout configuration 2944 * changes -> reset the latter. 2945 */ 2946 static void rs_reset_inconclusive_reshape(struct raid_set *rs) 2947 { 2948 if (!rs_is_reshaping(rs) && rs_is_layout_change(rs, true)) { 2949 rs_set_cur(rs); 2950 rs->md.delta_disks = 0; 2951 rs->md.reshape_backwards = 0; 2952 } 2953 } 2954 2955 /* 2956 * Enable/disable discard support on RAID set depending on 2957 * RAID level and discard properties of underlying RAID members. 2958 */ 2959 static void configure_discard_support(struct raid_set *rs) 2960 { 2961 int i; 2962 bool raid456; 2963 struct dm_target *ti = rs->ti; 2964 2965 /* 2966 * XXX: RAID level 4,5,6 require zeroing for safety. 2967 */ 2968 raid456 = rs_is_raid456(rs); 2969 2970 for (i = 0; i < rs->raid_disks; i++) { 2971 if (!rs->dev[i].rdev.bdev || 2972 !bdev_max_discard_sectors(rs->dev[i].rdev.bdev)) 2973 return; 2974 2975 if (raid456) { 2976 if (!devices_handle_discard_safely) { 2977 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty."); 2978 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override."); 2979 return; 2980 } 2981 } 2982 } 2983 2984 ti->num_discard_bios = 1; 2985 } 2986 2987 /* 2988 * Construct a RAID0/1/10/4/5/6 mapping: 2989 * Args: 2990 * <raid_type> <#raid_params> <raid_params>{0,} \ 2991 * <#raid_devs> [<meta_dev1> <dev1>]{1,} 2992 * 2993 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for 2994 * details on possible <raid_params>. 2995 * 2996 * Userspace is free to initialize the metadata devices, hence the superblocks to 2997 * enforce recreation based on the passed in table parameters. 2998 * 2999 */ 3000 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv) 3001 { 3002 int r; 3003 bool resize = false; 3004 struct raid_type *rt; 3005 unsigned int num_raid_params, num_raid_devs; 3006 sector_t sb_array_sectors, rdev_sectors, reshape_sectors; 3007 struct raid_set *rs = NULL; 3008 const char *arg; 3009 struct rs_layout rs_layout; 3010 struct dm_arg_set as = { argc, argv }, as_nrd; 3011 struct dm_arg _args[] = { 3012 { 0, as.argc, "Cannot understand number of raid parameters" }, 3013 { 1, 254, "Cannot understand number of raid devices parameters" } 3014 }; 3015 3016 arg = dm_shift_arg(&as); 3017 if (!arg) { 3018 ti->error = "No arguments"; 3019 return -EINVAL; 3020 } 3021 3022 rt = get_raid_type(arg); 3023 if (!rt) { 3024 ti->error = "Unrecognised raid_type"; 3025 return -EINVAL; 3026 } 3027 3028 /* Must have <#raid_params> */ 3029 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error)) 3030 return -EINVAL; 3031 3032 /* number of raid device tupples <meta_dev data_dev> */ 3033 as_nrd = as; 3034 dm_consume_args(&as_nrd, num_raid_params); 3035 _args[1].max = (as_nrd.argc - 1) / 2; 3036 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error)) 3037 return -EINVAL; 3038 3039 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) { 3040 ti->error = "Invalid number of supplied raid devices"; 3041 return -EINVAL; 3042 } 3043 3044 rs = raid_set_alloc(ti, rt, num_raid_devs); 3045 if (IS_ERR(rs)) 3046 return PTR_ERR(rs); 3047 3048 r = parse_raid_params(rs, &as, num_raid_params); 3049 if (r) 3050 goto bad; 3051 3052 r = parse_dev_params(rs, &as); 3053 if (r) 3054 goto bad; 3055 3056 rs->md.sync_super = super_sync; 3057 3058 /* 3059 * Calculate ctr requested array and device sizes to allow 3060 * for superblock analysis needing device sizes defined. 3061 * 3062 * Any existing superblock will overwrite the array and device sizes 3063 */ 3064 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false); 3065 if (r) 3066 goto bad; 3067 3068 /* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */ 3069 rs->array_sectors = rs->md.array_sectors; 3070 rs->dev_sectors = rs->md.dev_sectors; 3071 3072 /* 3073 * Backup any new raid set level, layout, ... 3074 * requested to be able to compare to superblock 3075 * members for conversion decisions. 3076 */ 3077 rs_config_backup(rs, &rs_layout); 3078 3079 r = analyse_superblocks(ti, rs); 3080 if (r) 3081 goto bad; 3082 3083 /* All in-core metadata now as of current superblocks after calling analyse_superblocks() */ 3084 sb_array_sectors = rs->md.array_sectors; 3085 rdev_sectors = __rdev_sectors(rs); 3086 if (!rdev_sectors) { 3087 ti->error = "Invalid rdev size"; 3088 r = -EINVAL; 3089 goto bad; 3090 } 3091 3092 3093 reshape_sectors = _get_reshape_sectors(rs); 3094 if (rs->dev_sectors != rdev_sectors) { 3095 resize = (rs->dev_sectors != rdev_sectors - reshape_sectors); 3096 if (rs->dev_sectors > rdev_sectors - reshape_sectors) 3097 set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3098 } 3099 3100 INIT_WORK(&rs->md.event_work, do_table_event); 3101 ti->private = rs; 3102 ti->num_flush_bios = 1; 3103 ti->needs_bio_set_dev = true; 3104 3105 /* Restore any requested new layout for conversion decision */ 3106 rs_config_restore(rs, &rs_layout); 3107 3108 /* 3109 * Now that we have any superblock metadata available, 3110 * check for new, recovering, reshaping, to be taken over, 3111 * to be reshaped or an existing, unchanged raid set to 3112 * run in sequence. 3113 */ 3114 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) { 3115 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */ 3116 if (rs_is_raid6(rs) && 3117 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 3118 ti->error = "'nosync' not allowed for new raid6 set"; 3119 r = -EINVAL; 3120 goto bad; 3121 } 3122 rs_setup_recovery(rs, 0); 3123 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3124 rs_set_new(rs); 3125 } else if (rs_is_recovering(rs)) { 3126 /* A recovering raid set may be resized */ 3127 goto size_check; 3128 } else if (rs_is_reshaping(rs)) { 3129 /* Have to reject size change request during reshape */ 3130 if (resize) { 3131 ti->error = "Can't resize a reshaping raid set"; 3132 r = -EPERM; 3133 goto bad; 3134 } 3135 /* skip setup rs */ 3136 } else if (rs_takeover_requested(rs)) { 3137 if (rs_is_reshaping(rs)) { 3138 ti->error = "Can't takeover a reshaping raid set"; 3139 r = -EPERM; 3140 goto bad; 3141 } 3142 3143 /* We can't takeover a journaled raid4/5/6 */ 3144 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 3145 ti->error = "Can't takeover a journaled raid4/5/6 set"; 3146 r = -EPERM; 3147 goto bad; 3148 } 3149 3150 /* 3151 * If a takeover is needed, userspace sets any additional 3152 * devices to rebuild and we can check for a valid request here. 3153 * 3154 * If acceptable, set the level to the new requested 3155 * one, prohibit requesting recovery, allow the raid 3156 * set to run and store superblocks during resume. 3157 */ 3158 r = rs_check_takeover(rs); 3159 if (r) 3160 goto bad; 3161 3162 r = rs_setup_takeover(rs); 3163 if (r) 3164 goto bad; 3165 3166 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3167 /* Takeover ain't recovery, so disable recovery */ 3168 rs_setup_recovery(rs, MaxSector); 3169 rs_set_new(rs); 3170 } else if (rs_reshape_requested(rs)) { 3171 /* Only request grow on raid set size extensions, not on reshapes. */ 3172 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3173 3174 /* 3175 * No need to check for 'ongoing' takeover here, because takeover 3176 * is an instant operation as oposed to an ongoing reshape. 3177 */ 3178 3179 /* We can't reshape a journaled raid4/5/6 */ 3180 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 3181 ti->error = "Can't reshape a journaled raid4/5/6 set"; 3182 r = -EPERM; 3183 goto bad; 3184 } 3185 3186 /* Out-of-place space has to be available to allow for a reshape unless raid1! */ 3187 if (reshape_sectors || rs_is_raid1(rs)) { 3188 /* 3189 * We can only prepare for a reshape here, because the 3190 * raid set needs to run to provide the repective reshape 3191 * check functions via its MD personality instance. 3192 * 3193 * So do the reshape check after md_run() succeeded. 3194 */ 3195 r = rs_prepare_reshape(rs); 3196 if (r) 3197 goto bad; 3198 3199 /* Reshaping ain't recovery, so disable recovery */ 3200 rs_setup_recovery(rs, MaxSector); 3201 } 3202 rs_set_cur(rs); 3203 } else { 3204 size_check: 3205 /* May not set recovery when a device rebuild is requested */ 3206 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) { 3207 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3208 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3209 rs_setup_recovery(rs, MaxSector); 3210 } else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) { 3211 /* 3212 * Set raid set to current size, i.e. size as of 3213 * superblocks to grow to larger size in preresume. 3214 */ 3215 r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false); 3216 if (r) 3217 goto bad; 3218 3219 rs_setup_recovery(rs, rs->md.recovery_cp < rs->md.dev_sectors ? rs->md.recovery_cp : rs->md.dev_sectors); 3220 } else { 3221 /* This is no size change or it is shrinking, update size and record in superblocks */ 3222 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false); 3223 if (r) 3224 goto bad; 3225 3226 if (sb_array_sectors > rs->array_sectors) 3227 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3228 } 3229 rs_set_cur(rs); 3230 } 3231 3232 /* If constructor requested it, change data and new_data offsets */ 3233 r = rs_adjust_data_offsets(rs); 3234 if (r) 3235 goto bad; 3236 3237 /* Catch any inconclusive reshape superblock content. */ 3238 rs_reset_inconclusive_reshape(rs); 3239 3240 /* Start raid set read-only and assumed clean to change in raid_resume() */ 3241 rs->md.ro = 1; 3242 rs->md.in_sync = 1; 3243 3244 /* Has to be held on running the array */ 3245 mddev_suspend_and_lock_nointr(&rs->md); 3246 3247 /* Keep array frozen until resume. */ 3248 md_frozen_sync_thread(&rs->md); 3249 3250 r = md_run(&rs->md); 3251 rs->md.in_sync = 0; /* Assume already marked dirty */ 3252 if (r) { 3253 ti->error = "Failed to run raid array"; 3254 mddev_unlock(&rs->md); 3255 goto bad; 3256 } 3257 3258 r = md_start(&rs->md); 3259 if (r) { 3260 ti->error = "Failed to start raid array"; 3261 goto bad_unlock; 3262 } 3263 3264 /* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */ 3265 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) { 3266 r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode); 3267 if (r) { 3268 ti->error = "Failed to set raid4/5/6 journal mode"; 3269 goto bad_unlock; 3270 } 3271 } 3272 3273 set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags); 3274 3275 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */ 3276 if (rs_is_raid456(rs)) { 3277 r = rs_set_raid456_stripe_cache(rs); 3278 if (r) 3279 goto bad_unlock; 3280 } 3281 3282 /* Now do an early reshape check */ 3283 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { 3284 r = rs_check_reshape(rs); 3285 if (r) 3286 goto bad_unlock; 3287 3288 /* Restore new, ctr requested layout to perform check */ 3289 rs_config_restore(rs, &rs_layout); 3290 3291 if (rs->md.pers->start_reshape) { 3292 r = rs->md.pers->check_reshape(&rs->md); 3293 if (r) { 3294 ti->error = "Reshape check failed"; 3295 goto bad_unlock; 3296 } 3297 } 3298 } 3299 3300 /* Disable/enable discard support on raid set. */ 3301 configure_discard_support(rs); 3302 3303 mddev_unlock(&rs->md); 3304 return 0; 3305 3306 bad_unlock: 3307 md_stop(&rs->md); 3308 mddev_unlock(&rs->md); 3309 bad: 3310 raid_set_free(rs); 3311 3312 return r; 3313 } 3314 3315 static void raid_dtr(struct dm_target *ti) 3316 { 3317 struct raid_set *rs = ti->private; 3318 3319 mddev_lock_nointr(&rs->md); 3320 md_stop(&rs->md); 3321 mddev_unlock(&rs->md); 3322 3323 if (work_pending(&rs->md.event_work)) 3324 flush_work(&rs->md.event_work); 3325 raid_set_free(rs); 3326 } 3327 3328 static int raid_map(struct dm_target *ti, struct bio *bio) 3329 { 3330 struct raid_set *rs = ti->private; 3331 struct mddev *mddev = &rs->md; 3332 3333 /* 3334 * If we're reshaping to add disk(s), ti->len and 3335 * mddev->array_sectors will differ during the process 3336 * (ti->len > mddev->array_sectors), so we have to requeue 3337 * bios with addresses > mddev->array_sectors here or 3338 * there will occur accesses past EOD of the component 3339 * data images thus erroring the raid set. 3340 */ 3341 if (unlikely(bio_has_data(bio) && bio_end_sector(bio) > mddev->array_sectors)) 3342 return DM_MAPIO_REQUEUE; 3343 3344 if (unlikely(!md_handle_request(mddev, bio))) 3345 return DM_MAPIO_REQUEUE; 3346 3347 return DM_MAPIO_SUBMITTED; 3348 } 3349 3350 /* Return sync state string for @state */ 3351 enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle }; 3352 static const char *sync_str(enum sync_state state) 3353 { 3354 /* Has to be in above sync_state order! */ 3355 static const char *sync_strs[] = { 3356 "frozen", 3357 "reshape", 3358 "resync", 3359 "check", 3360 "repair", 3361 "recover", 3362 "idle" 3363 }; 3364 3365 return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef"; 3366 }; 3367 3368 /* Return enum sync_state for @mddev derived from @recovery flags */ 3369 static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery) 3370 { 3371 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 3372 return st_frozen; 3373 3374 /* The MD sync thread can be done with io or be interrupted but still be running */ 3375 if (!test_bit(MD_RECOVERY_DONE, &recovery) && 3376 (test_bit(MD_RECOVERY_RUNNING, &recovery) || 3377 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) { 3378 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 3379 return st_reshape; 3380 3381 if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 3382 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 3383 return st_resync; 3384 if (test_bit(MD_RECOVERY_CHECK, &recovery)) 3385 return st_check; 3386 return st_repair; 3387 } 3388 3389 if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 3390 return st_recover; 3391 3392 if (mddev->reshape_position != MaxSector) 3393 return st_reshape; 3394 } 3395 3396 return st_idle; 3397 } 3398 3399 /* 3400 * Return status string for @rdev 3401 * 3402 * Status characters: 3403 * 3404 * 'D' = Dead/Failed raid set component or raid4/5/6 journal device 3405 * 'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device 3406 * 'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device 3407 * '-' = Non-existing device (i.e. uspace passed '- -' into the ctr) 3408 */ 3409 static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev) 3410 { 3411 if (!rdev->bdev) 3412 return "-"; 3413 else if (test_bit(Faulty, &rdev->flags)) 3414 return "D"; 3415 else if (test_bit(Journal, &rdev->flags)) 3416 return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a"; 3417 else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) || 3418 (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) && 3419 !test_bit(In_sync, &rdev->flags))) 3420 return "a"; 3421 else 3422 return "A"; 3423 } 3424 3425 /* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */ 3426 static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery, 3427 enum sync_state state, sector_t resync_max_sectors) 3428 { 3429 sector_t r; 3430 struct mddev *mddev = &rs->md; 3431 3432 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3433 clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3434 3435 if (rs_is_raid0(rs)) { 3436 r = resync_max_sectors; 3437 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3438 3439 } else { 3440 if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery)) 3441 r = mddev->recovery_cp; 3442 else 3443 r = mddev->curr_resync_completed; 3444 3445 if (state == st_idle && r >= resync_max_sectors) { 3446 /* 3447 * Sync complete. 3448 */ 3449 /* In case we have finished recovering, the array is in sync. */ 3450 if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 3451 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3452 3453 } else if (state == st_recover) 3454 /* 3455 * In case we are recovering, the array is not in sync 3456 * and health chars should show the recovering legs. 3457 * 3458 * Already retrieved recovery offset from curr_resync_completed above. 3459 */ 3460 ; 3461 3462 else if (state == st_resync || state == st_reshape) 3463 /* 3464 * If "resync/reshape" is occurring, the raid set 3465 * is or may be out of sync hence the health 3466 * characters shall be 'a'. 3467 */ 3468 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3469 3470 else if (state == st_check || state == st_repair) 3471 /* 3472 * If "check" or "repair" is occurring, the raid set has 3473 * undergone an initial sync and the health characters 3474 * should not be 'a' anymore. 3475 */ 3476 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3477 3478 else if (test_bit(MD_RECOVERY_NEEDED, &recovery)) 3479 /* 3480 * We are idle and recovery is needed, prevent 'A' chars race 3481 * caused by components still set to in-sync by constructor. 3482 */ 3483 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3484 3485 else { 3486 /* 3487 * We are idle and the raid set may be doing an initial 3488 * sync, or it may be rebuilding individual components. 3489 * If all the devices are In_sync, then it is the raid set 3490 * that is being initialized. 3491 */ 3492 struct md_rdev *rdev; 3493 3494 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3495 rdev_for_each(rdev, mddev) 3496 if (!test_bit(Journal, &rdev->flags) && 3497 !test_bit(In_sync, &rdev->flags)) { 3498 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3499 break; 3500 } 3501 } 3502 } 3503 3504 return min(r, resync_max_sectors); 3505 } 3506 3507 /* Helper to return @dev name or "-" if !@dev */ 3508 static const char *__get_dev_name(struct dm_dev *dev) 3509 { 3510 return dev ? dev->name : "-"; 3511 } 3512 3513 static void raid_status(struct dm_target *ti, status_type_t type, 3514 unsigned int status_flags, char *result, unsigned int maxlen) 3515 { 3516 struct raid_set *rs = ti->private; 3517 struct mddev *mddev = &rs->md; 3518 struct r5conf *conf = rs_is_raid456(rs) ? mddev->private : NULL; 3519 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0; 3520 unsigned long recovery; 3521 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */ 3522 unsigned int sz = 0; 3523 unsigned int rebuild_writemostly_count = 0; 3524 sector_t progress, resync_max_sectors, resync_mismatches; 3525 enum sync_state state; 3526 struct raid_type *rt; 3527 3528 switch (type) { 3529 case STATUSTYPE_INFO: 3530 /* *Should* always succeed */ 3531 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 3532 if (!rt) 3533 return; 3534 3535 DMEMIT("%s %d ", rt->name, mddev->raid_disks); 3536 3537 /* Access most recent mddev properties for status output */ 3538 smp_rmb(); 3539 /* Get sensible max sectors even if raid set not yet started */ 3540 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ? 3541 mddev->resync_max_sectors : mddev->dev_sectors; 3542 recovery = rs->md.recovery; 3543 state = decipher_sync_action(mddev, recovery); 3544 progress = rs_get_progress(rs, recovery, state, resync_max_sectors); 3545 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ? 3546 atomic64_read(&mddev->resync_mismatches) : 0; 3547 3548 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */ 3549 for (i = 0; i < rs->raid_disks; i++) 3550 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev)); 3551 3552 /* 3553 * In-sync/Reshape ratio: 3554 * The in-sync ratio shows the progress of: 3555 * - Initializing the raid set 3556 * - Rebuilding a subset of devices of the raid set 3557 * The user can distinguish between the two by referring 3558 * to the status characters. 3559 * 3560 * The reshape ratio shows the progress of 3561 * changing the raid layout or the number of 3562 * disks of a raid set 3563 */ 3564 DMEMIT(" %llu/%llu", (unsigned long long) progress, 3565 (unsigned long long) resync_max_sectors); 3566 3567 /* 3568 * v1.5.0+: 3569 * 3570 * Sync action: 3571 * See Documentation/admin-guide/device-mapper/dm-raid.rst for 3572 * information on each of these states. 3573 */ 3574 DMEMIT(" %s", sync_str(state)); 3575 3576 /* 3577 * v1.5.0+: 3578 * 3579 * resync_mismatches/mismatch_cnt 3580 * This field shows the number of discrepancies found when 3581 * performing a "check" of the raid set. 3582 */ 3583 DMEMIT(" %llu", (unsigned long long) resync_mismatches); 3584 3585 /* 3586 * v1.9.0+: 3587 * 3588 * data_offset (needed for out of space reshaping) 3589 * This field shows the data offset into the data 3590 * image LV where the first stripes data starts. 3591 * 3592 * We keep data_offset equal on all raid disks of the set, 3593 * so retrieving it from the first raid disk is sufficient. 3594 */ 3595 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset); 3596 3597 /* 3598 * v1.10.0+: 3599 */ 3600 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ? 3601 __raid_dev_status(rs, &rs->journal_dev.rdev) : "-"); 3602 break; 3603 3604 case STATUSTYPE_TABLE: 3605 /* Report the table line string you would use to construct this raid set */ 3606 3607 /* 3608 * Count any rebuild or writemostly argument pairs and subtract the 3609 * hweight count being added below of any rebuild and writemostly ctr flags. 3610 */ 3611 for (i = 0; i < rs->raid_disks; i++) { 3612 rebuild_writemostly_count += (test_bit(i, (void *) rs->rebuild_disks) ? 2 : 0) + 3613 (test_bit(WriteMostly, &rs->dev[i].rdev.flags) ? 2 : 0); 3614 } 3615 rebuild_writemostly_count -= (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) ? 2 : 0) + 3616 (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags) ? 2 : 0); 3617 /* Calculate raid parameter count based on ^ rebuild/writemostly argument counts and ctr flags set. */ 3618 raid_param_cnt += rebuild_writemostly_count + 3619 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) + 3620 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2; 3621 /* Emit table line */ 3622 /* This has to be in the documented order for userspace! */ 3623 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors); 3624 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 3625 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC)); 3626 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) 3627 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC)); 3628 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) 3629 for (i = 0; i < rs->raid_disks; i++) 3630 if (test_bit(i, (void *) rs->rebuild_disks)) 3631 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), i); 3632 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) 3633 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP), 3634 mddev->bitmap_info.daemon_sleep); 3635 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) 3636 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE), 3637 mddev->sync_speed_min); 3638 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) 3639 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE), 3640 mddev->sync_speed_max); 3641 if (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags)) 3642 for (i = 0; i < rs->raid_disks; i++) 3643 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags)) 3644 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY), 3645 rs->dev[i].rdev.raid_disk); 3646 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) 3647 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND), 3648 mddev->bitmap_info.max_write_behind); 3649 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) 3650 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE), 3651 max_nr_stripes); 3652 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) 3653 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE), 3654 (unsigned long long) to_sector(mddev->bitmap_info.chunksize)); 3655 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) 3656 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES), 3657 raid10_md_layout_to_copies(mddev->layout)); 3658 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) 3659 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT), 3660 raid10_md_layout_to_format(mddev->layout)); 3661 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) 3662 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS), 3663 max(rs->delta_disks, mddev->delta_disks)); 3664 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) 3665 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET), 3666 (unsigned long long) rs->data_offset); 3667 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) 3668 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV), 3669 __get_dev_name(rs->journal_dev.dev)); 3670 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) 3671 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE), 3672 md_journal_mode_to_dm_raid(rs->journal_dev.mode)); 3673 DMEMIT(" %d", rs->raid_disks); 3674 for (i = 0; i < rs->raid_disks; i++) 3675 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev), 3676 __get_dev_name(rs->dev[i].data_dev)); 3677 break; 3678 3679 case STATUSTYPE_IMA: 3680 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 3681 if (!rt) 3682 return; 3683 3684 DMEMIT_TARGET_NAME_VERSION(ti->type); 3685 DMEMIT(",raid_type=%s,raid_disks=%d", rt->name, mddev->raid_disks); 3686 3687 /* Access most recent mddev properties for status output */ 3688 smp_rmb(); 3689 recovery = rs->md.recovery; 3690 state = decipher_sync_action(mddev, recovery); 3691 DMEMIT(",raid_state=%s", sync_str(state)); 3692 3693 for (i = 0; i < rs->raid_disks; i++) { 3694 DMEMIT(",raid_device_%d_status=", i); 3695 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev)); 3696 } 3697 3698 if (rt_is_raid456(rt)) { 3699 DMEMIT(",journal_dev_mode="); 3700 switch (rs->journal_dev.mode) { 3701 case R5C_JOURNAL_MODE_WRITE_THROUGH: 3702 DMEMIT("%s", 3703 _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_THROUGH].param); 3704 break; 3705 case R5C_JOURNAL_MODE_WRITE_BACK: 3706 DMEMIT("%s", 3707 _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_BACK].param); 3708 break; 3709 default: 3710 DMEMIT("invalid"); 3711 break; 3712 } 3713 } 3714 DMEMIT(";"); 3715 break; 3716 } 3717 } 3718 3719 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv, 3720 char *result, unsigned int maxlen) 3721 { 3722 struct raid_set *rs = ti->private; 3723 struct mddev *mddev = &rs->md; 3724 int ret = 0; 3725 3726 if (!mddev->pers || !mddev->pers->sync_request) 3727 return -EINVAL; 3728 3729 if (test_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags) || 3730 test_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags)) 3731 return -EBUSY; 3732 3733 if (!strcasecmp(argv[0], "frozen")) { 3734 ret = mddev_lock(mddev); 3735 if (ret) 3736 return ret; 3737 3738 md_frozen_sync_thread(mddev); 3739 mddev_unlock(mddev); 3740 } else if (!strcasecmp(argv[0], "idle")) { 3741 ret = mddev_lock(mddev); 3742 if (ret) 3743 return ret; 3744 3745 md_idle_sync_thread(mddev); 3746 mddev_unlock(mddev); 3747 } 3748 3749 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3750 if (decipher_sync_action(mddev, mddev->recovery) != st_idle) 3751 return -EBUSY; 3752 else if (!strcasecmp(argv[0], "resync")) 3753 ; /* MD_RECOVERY_NEEDED set below */ 3754 else if (!strcasecmp(argv[0], "recover")) 3755 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3756 else { 3757 if (!strcasecmp(argv[0], "check")) { 3758 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3759 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3760 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3761 } else if (!strcasecmp(argv[0], "repair")) { 3762 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3763 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3764 } else 3765 return -EINVAL; 3766 } 3767 if (mddev->ro == 2) { 3768 /* A write to sync_action is enough to justify 3769 * canceling read-auto mode 3770 */ 3771 mddev->ro = 0; 3772 if (!mddev->suspended) 3773 md_wakeup_thread(mddev->sync_thread); 3774 } 3775 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3776 if (!mddev->suspended) 3777 md_wakeup_thread(mddev->thread); 3778 3779 return 0; 3780 } 3781 3782 static int raid_iterate_devices(struct dm_target *ti, 3783 iterate_devices_callout_fn fn, void *data) 3784 { 3785 struct raid_set *rs = ti->private; 3786 unsigned int i; 3787 int r = 0; 3788 3789 for (i = 0; !r && i < rs->raid_disks; i++) { 3790 if (rs->dev[i].data_dev) { 3791 r = fn(ti, rs->dev[i].data_dev, 3792 0, /* No offset on data devs */ 3793 rs->md.dev_sectors, data); 3794 } 3795 } 3796 3797 return r; 3798 } 3799 3800 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits) 3801 { 3802 struct raid_set *rs = ti->private; 3803 unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors); 3804 3805 blk_limits_io_min(limits, chunk_size_bytes); 3806 blk_limits_io_opt(limits, chunk_size_bytes * mddev_data_stripes(rs)); 3807 } 3808 3809 static void raid_presuspend(struct dm_target *ti) 3810 { 3811 struct raid_set *rs = ti->private; 3812 struct mddev *mddev = &rs->md; 3813 3814 /* 3815 * From now on, disallow raid_message() to change sync_thread until 3816 * resume, raid_postsuspend() is too late. 3817 */ 3818 set_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags); 3819 3820 if (!reshape_interrupted(mddev)) 3821 return; 3822 3823 /* 3824 * For raid456, if reshape is interrupted, IO across reshape position 3825 * will never make progress, while caller will wait for IO to be done. 3826 * Inform raid456 to handle those IO to prevent deadlock. 3827 */ 3828 if (mddev->pers && mddev->pers->prepare_suspend) 3829 mddev->pers->prepare_suspend(mddev); 3830 } 3831 3832 static void raid_presuspend_undo(struct dm_target *ti) 3833 { 3834 struct raid_set *rs = ti->private; 3835 3836 clear_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags); 3837 } 3838 3839 static void raid_postsuspend(struct dm_target *ti) 3840 { 3841 struct raid_set *rs = ti->private; 3842 3843 if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) { 3844 /* 3845 * sync_thread must be stopped during suspend, and writes have 3846 * to be stopped before suspending to avoid deadlocks. 3847 */ 3848 md_stop_writes(&rs->md); 3849 mddev_suspend(&rs->md, false); 3850 } 3851 } 3852 3853 static void attempt_restore_of_faulty_devices(struct raid_set *rs) 3854 { 3855 int i; 3856 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS]; 3857 unsigned long flags; 3858 bool cleared = false; 3859 struct dm_raid_superblock *sb; 3860 struct mddev *mddev = &rs->md; 3861 struct md_rdev *r; 3862 3863 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */ 3864 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk) 3865 return; 3866 3867 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices)); 3868 3869 for (i = 0; i < rs->raid_disks; i++) { 3870 r = &rs->dev[i].rdev; 3871 /* HM FIXME: enhance journal device recovery processing */ 3872 if (test_bit(Journal, &r->flags)) 3873 continue; 3874 3875 if (test_bit(Faulty, &r->flags) && 3876 r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) { 3877 DMINFO("Faulty %s device #%d has readable super block." 3878 " Attempting to revive it.", 3879 rs->raid_type->name, i); 3880 3881 /* 3882 * Faulty bit may be set, but sometimes the array can 3883 * be suspended before the personalities can respond 3884 * by removing the device from the array (i.e. calling 3885 * 'hot_remove_disk'). If they haven't yet removed 3886 * the failed device, its 'raid_disk' number will be 3887 * '>= 0' - meaning we must call this function 3888 * ourselves. 3889 */ 3890 flags = r->flags; 3891 clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */ 3892 if (r->raid_disk >= 0) { 3893 if (mddev->pers->hot_remove_disk(mddev, r)) { 3894 /* Failed to revive this device, try next */ 3895 r->flags = flags; 3896 continue; 3897 } 3898 } else 3899 r->raid_disk = r->saved_raid_disk = i; 3900 3901 clear_bit(Faulty, &r->flags); 3902 clear_bit(WriteErrorSeen, &r->flags); 3903 3904 if (mddev->pers->hot_add_disk(mddev, r)) { 3905 /* Failed to revive this device, try next */ 3906 r->raid_disk = r->saved_raid_disk = -1; 3907 r->flags = flags; 3908 } else { 3909 clear_bit(In_sync, &r->flags); 3910 r->recovery_offset = 0; 3911 set_bit(i, (void *) cleared_failed_devices); 3912 cleared = true; 3913 } 3914 } 3915 } 3916 3917 /* If any failed devices could be cleared, update all sbs failed_devices bits */ 3918 if (cleared) { 3919 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 3920 3921 rdev_for_each(r, &rs->md) { 3922 if (test_bit(Journal, &r->flags)) 3923 continue; 3924 3925 sb = page_address(r->sb_page); 3926 sb_retrieve_failed_devices(sb, failed_devices); 3927 3928 for (i = 0; i < DISKS_ARRAY_ELEMS; i++) 3929 failed_devices[i] &= ~cleared_failed_devices[i]; 3930 3931 sb_update_failed_devices(sb, failed_devices); 3932 } 3933 } 3934 } 3935 3936 static int __load_dirty_region_bitmap(struct raid_set *rs) 3937 { 3938 int r = 0; 3939 3940 /* Try loading the bitmap unless "raid0", which does not have one */ 3941 if (!rs_is_raid0(rs) && 3942 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) { 3943 r = md_bitmap_load(&rs->md); 3944 if (r) 3945 DMERR("Failed to load bitmap"); 3946 } 3947 3948 return r; 3949 } 3950 3951 /* Enforce updating all superblocks */ 3952 static void rs_update_sbs(struct raid_set *rs) 3953 { 3954 struct mddev *mddev = &rs->md; 3955 int ro = mddev->ro; 3956 3957 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3958 mddev->ro = 0; 3959 md_update_sb(mddev, 1); 3960 mddev->ro = ro; 3961 } 3962 3963 /* 3964 * Reshape changes raid algorithm of @rs to new one within personality 3965 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes 3966 * disks from a raid set thus growing/shrinking it or resizes the set 3967 * 3968 * Call mddev_lock_nointr() before! 3969 */ 3970 static int rs_start_reshape(struct raid_set *rs) 3971 { 3972 int r; 3973 struct mddev *mddev = &rs->md; 3974 struct md_personality *pers = mddev->pers; 3975 3976 /* Don't allow the sync thread to work until the table gets reloaded. */ 3977 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 3978 3979 r = rs_setup_reshape(rs); 3980 if (r) 3981 return r; 3982 3983 /* 3984 * Check any reshape constraints enforced by the personalility 3985 * 3986 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional. 3987 */ 3988 r = pers->check_reshape(mddev); 3989 if (r) { 3990 rs->ti->error = "pers->check_reshape() failed"; 3991 return r; 3992 } 3993 3994 /* 3995 * Personality may not provide start reshape method in which 3996 * case check_reshape above has already covered everything 3997 */ 3998 if (pers->start_reshape) { 3999 r = pers->start_reshape(mddev); 4000 if (r) { 4001 rs->ti->error = "pers->start_reshape() failed"; 4002 return r; 4003 } 4004 } 4005 4006 /* 4007 * Now reshape got set up, update superblocks to 4008 * reflect the fact so that a table reload will 4009 * access proper superblock content in the ctr. 4010 */ 4011 rs_update_sbs(rs); 4012 4013 return 0; 4014 } 4015 4016 static int raid_preresume(struct dm_target *ti) 4017 { 4018 int r; 4019 struct raid_set *rs = ti->private; 4020 struct mddev *mddev = &rs->md; 4021 4022 /* This is a resume after a suspend of the set -> it's already started. */ 4023 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags)) 4024 return 0; 4025 4026 /* 4027 * The superblocks need to be updated on disk if the 4028 * array is new or new devices got added (thus zeroed 4029 * out by userspace) or __load_dirty_region_bitmap 4030 * will overwrite them in core with old data or fail. 4031 */ 4032 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags)) 4033 rs_update_sbs(rs); 4034 4035 /* Load the bitmap from disk unless raid0 */ 4036 r = __load_dirty_region_bitmap(rs); 4037 if (r) 4038 return r; 4039 4040 /* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */ 4041 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) { 4042 mddev->array_sectors = rs->array_sectors; 4043 mddev->dev_sectors = rs->dev_sectors; 4044 rs_set_rdev_sectors(rs); 4045 rs_set_capacity(rs); 4046 } 4047 4048 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */ 4049 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap && 4050 (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) || 4051 (rs->requested_bitmap_chunk_sectors && 4052 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) { 4053 int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize; 4054 4055 r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors, chunksize, 0); 4056 if (r) 4057 DMERR("Failed to resize bitmap"); 4058 } 4059 4060 /* Check for any resize/reshape on @rs and adjust/initiate */ 4061 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) { 4062 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4063 mddev->resync_min = mddev->recovery_cp; 4064 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) 4065 mddev->resync_max_sectors = mddev->dev_sectors; 4066 } 4067 4068 /* Check for any reshape request unless new raid set */ 4069 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { 4070 /* Initiate a reshape. */ 4071 rs_set_rdev_sectors(rs); 4072 mddev_lock_nointr(mddev); 4073 r = rs_start_reshape(rs); 4074 mddev_unlock(mddev); 4075 if (r) 4076 DMWARN("Failed to check/start reshape, continuing without change"); 4077 r = 0; 4078 } 4079 4080 return r; 4081 } 4082 4083 static void raid_resume(struct dm_target *ti) 4084 { 4085 struct raid_set *rs = ti->private; 4086 struct mddev *mddev = &rs->md; 4087 4088 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) { 4089 /* 4090 * A secondary resume while the device is active. 4091 * Take this opportunity to check whether any failed 4092 * devices are reachable again. 4093 */ 4094 mddev_lock_nointr(mddev); 4095 attempt_restore_of_faulty_devices(rs); 4096 mddev_unlock(mddev); 4097 } 4098 4099 if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) { 4100 /* Only reduce raid set size before running a disk removing reshape. */ 4101 if (mddev->delta_disks < 0) 4102 rs_set_capacity(rs); 4103 4104 WARN_ON_ONCE(!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)); 4105 WARN_ON_ONCE(test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)); 4106 clear_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags); 4107 mddev_lock_nointr(mddev); 4108 mddev->ro = 0; 4109 mddev->in_sync = 0; 4110 md_unfrozen_sync_thread(mddev); 4111 mddev_unlock_and_resume(mddev); 4112 } 4113 } 4114 4115 static struct target_type raid_target = { 4116 .name = "raid", 4117 .version = {1, 15, 1}, 4118 .module = THIS_MODULE, 4119 .ctr = raid_ctr, 4120 .dtr = raid_dtr, 4121 .map = raid_map, 4122 .status = raid_status, 4123 .message = raid_message, 4124 .iterate_devices = raid_iterate_devices, 4125 .io_hints = raid_io_hints, 4126 .presuspend = raid_presuspend, 4127 .presuspend_undo = raid_presuspend_undo, 4128 .postsuspend = raid_postsuspend, 4129 .preresume = raid_preresume, 4130 .resume = raid_resume, 4131 }; 4132 module_dm(raid); 4133 4134 module_param(devices_handle_discard_safely, bool, 0644); 4135 MODULE_PARM_DESC(devices_handle_discard_safely, 4136 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 4137 4138 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target"); 4139 MODULE_ALIAS("dm-raid0"); 4140 MODULE_ALIAS("dm-raid1"); 4141 MODULE_ALIAS("dm-raid10"); 4142 MODULE_ALIAS("dm-raid4"); 4143 MODULE_ALIAS("dm-raid5"); 4144 MODULE_ALIAS("dm-raid6"); 4145 MODULE_AUTHOR("Neil Brown <dm-devel@lists.linux.dev>"); 4146 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@lists.linux.dev>"); 4147 MODULE_LICENSE("GPL"); 4148