1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2010-2011 Neil Brown 4 * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/module.h> 11 12 #include "md.h" 13 #include "raid1.h" 14 #include "raid5.h" 15 #include "raid10.h" 16 #include "md-bitmap.h" 17 18 #include <linux/device-mapper.h> 19 20 #define DM_MSG_PREFIX "raid" 21 #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */ 22 23 /* 24 * Minimum sectors of free reshape space per raid device 25 */ 26 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096) 27 28 /* 29 * Minimum journal space 4 MiB in sectors. 30 */ 31 #define MIN_RAID456_JOURNAL_SPACE (4*2048) 32 33 static bool devices_handle_discard_safely; 34 35 /* 36 * The following flags are used by dm-raid to set up the array state. 37 * They must be cleared before md_run is called. 38 */ 39 #define FirstUse 10 /* rdev flag */ 40 41 struct raid_dev { 42 /* 43 * Two DM devices, one to hold metadata and one to hold the 44 * actual data/parity. The reason for this is to not confuse 45 * ti->len and give more flexibility in altering size and 46 * characteristics. 47 * 48 * While it is possible for this device to be associated 49 * with a different physical device than the data_dev, it 50 * is intended for it to be the same. 51 * |--------- Physical Device ---------| 52 * |- meta_dev -|------ data_dev ------| 53 */ 54 struct dm_dev *meta_dev; 55 struct dm_dev *data_dev; 56 struct md_rdev rdev; 57 }; 58 59 /* 60 * Bits for establishing rs->ctr_flags 61 * 62 * 1 = no flag value 63 * 2 = flag with value 64 */ 65 #define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */ 66 #define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */ 67 #define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */ 68 #define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */ 69 #define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */ 70 #define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */ 71 #define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */ 72 #define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */ 73 #define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */ 74 #define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */ 75 #define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */ 76 #define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */ 77 /* New for v1.9.0 */ 78 #define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */ 79 #define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */ 80 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */ 81 82 /* New for v1.10.0 */ 83 #define __CTR_FLAG_JOURNAL_DEV 15 /* 2 */ /* Only with raid4/5/6 (journal device)! */ 84 85 /* New for v1.11.1 */ 86 #define __CTR_FLAG_JOURNAL_MODE 16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */ 87 88 /* 89 * Flags for rs->ctr_flags field. 90 */ 91 #define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC) 92 #define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC) 93 #define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD) 94 #define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP) 95 #define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE) 96 #define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE) 97 #define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND) 98 #define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY) 99 #define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE) 100 #define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE) 101 #define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES) 102 #define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT) 103 #define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS) 104 #define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET) 105 #define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS) 106 #define CTR_FLAG_JOURNAL_DEV (1 << __CTR_FLAG_JOURNAL_DEV) 107 #define CTR_FLAG_JOURNAL_MODE (1 << __CTR_FLAG_JOURNAL_MODE) 108 109 /* 110 * Definitions of various constructor flags to 111 * be used in checks of valid / invalid flags 112 * per raid level. 113 */ 114 /* Define all any sync flags */ 115 #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC) 116 117 /* Define flags for options without argument (e.g. 'nosync') */ 118 #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \ 119 CTR_FLAG_RAID10_USE_NEAR_SETS) 120 121 /* Define flags for options with one argument (e.g. 'delta_disks +2') */ 122 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \ 123 CTR_FLAG_WRITE_MOSTLY | \ 124 CTR_FLAG_DAEMON_SLEEP | \ 125 CTR_FLAG_MIN_RECOVERY_RATE | \ 126 CTR_FLAG_MAX_RECOVERY_RATE | \ 127 CTR_FLAG_MAX_WRITE_BEHIND | \ 128 CTR_FLAG_STRIPE_CACHE | \ 129 CTR_FLAG_REGION_SIZE | \ 130 CTR_FLAG_RAID10_COPIES | \ 131 CTR_FLAG_RAID10_FORMAT | \ 132 CTR_FLAG_DELTA_DISKS | \ 133 CTR_FLAG_DATA_OFFSET | \ 134 CTR_FLAG_JOURNAL_DEV | \ 135 CTR_FLAG_JOURNAL_MODE) 136 137 /* Valid options definitions per raid level... */ 138 139 /* "raid0" does only accept data offset */ 140 #define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET) 141 142 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */ 143 #define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 144 CTR_FLAG_REBUILD | \ 145 CTR_FLAG_WRITE_MOSTLY | \ 146 CTR_FLAG_DAEMON_SLEEP | \ 147 CTR_FLAG_MIN_RECOVERY_RATE | \ 148 CTR_FLAG_MAX_RECOVERY_RATE | \ 149 CTR_FLAG_MAX_WRITE_BEHIND | \ 150 CTR_FLAG_REGION_SIZE | \ 151 CTR_FLAG_DELTA_DISKS | \ 152 CTR_FLAG_DATA_OFFSET) 153 154 /* "raid10" does not accept any raid1 or stripe cache options */ 155 #define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 156 CTR_FLAG_REBUILD | \ 157 CTR_FLAG_DAEMON_SLEEP | \ 158 CTR_FLAG_MIN_RECOVERY_RATE | \ 159 CTR_FLAG_MAX_RECOVERY_RATE | \ 160 CTR_FLAG_REGION_SIZE | \ 161 CTR_FLAG_RAID10_COPIES | \ 162 CTR_FLAG_RAID10_FORMAT | \ 163 CTR_FLAG_DELTA_DISKS | \ 164 CTR_FLAG_DATA_OFFSET | \ 165 CTR_FLAG_RAID10_USE_NEAR_SETS) 166 167 /* 168 * "raid4/5/6" do not accept any raid1 or raid10 specific options 169 * 170 * "raid6" does not accept "nosync", because it is not guaranteed 171 * that both parity and q-syndrome are being written properly with 172 * any writes 173 */ 174 #define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 175 CTR_FLAG_REBUILD | \ 176 CTR_FLAG_DAEMON_SLEEP | \ 177 CTR_FLAG_MIN_RECOVERY_RATE | \ 178 CTR_FLAG_MAX_RECOVERY_RATE | \ 179 CTR_FLAG_STRIPE_CACHE | \ 180 CTR_FLAG_REGION_SIZE | \ 181 CTR_FLAG_DELTA_DISKS | \ 182 CTR_FLAG_DATA_OFFSET | \ 183 CTR_FLAG_JOURNAL_DEV | \ 184 CTR_FLAG_JOURNAL_MODE) 185 186 #define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \ 187 CTR_FLAG_REBUILD | \ 188 CTR_FLAG_DAEMON_SLEEP | \ 189 CTR_FLAG_MIN_RECOVERY_RATE | \ 190 CTR_FLAG_MAX_RECOVERY_RATE | \ 191 CTR_FLAG_STRIPE_CACHE | \ 192 CTR_FLAG_REGION_SIZE | \ 193 CTR_FLAG_DELTA_DISKS | \ 194 CTR_FLAG_DATA_OFFSET | \ 195 CTR_FLAG_JOURNAL_DEV | \ 196 CTR_FLAG_JOURNAL_MODE) 197 /* ...valid options definitions per raid level */ 198 199 /* 200 * Flags for rs->runtime_flags field 201 * (RT_FLAG prefix meaning "runtime flag") 202 * 203 * These are all internal and used to define runtime state, 204 * e.g. to prevent another resume from preresume processing 205 * the raid set all over again. 206 */ 207 #define RT_FLAG_RS_PRERESUMED 0 208 #define RT_FLAG_RS_RESUMED 1 209 #define RT_FLAG_RS_BITMAP_LOADED 2 210 #define RT_FLAG_UPDATE_SBS 3 211 #define RT_FLAG_RESHAPE_RS 4 212 #define RT_FLAG_RS_SUSPENDED 5 213 #define RT_FLAG_RS_IN_SYNC 6 214 #define RT_FLAG_RS_RESYNCING 7 215 #define RT_FLAG_RS_GROW 8 216 #define RT_FLAG_RS_FROZEN 9 217 218 /* Array elements of 64 bit needed for rebuild/failed disk bits */ 219 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8) 220 221 /* 222 * raid set level, layout and chunk sectors backup/restore 223 */ 224 struct rs_layout { 225 int new_level; 226 int new_layout; 227 int new_chunk_sectors; 228 }; 229 230 struct raid_set { 231 struct dm_target *ti; 232 233 uint32_t stripe_cache_entries; 234 unsigned long ctr_flags; 235 unsigned long runtime_flags; 236 237 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS]; 238 239 int raid_disks; 240 int delta_disks; 241 int data_offset; 242 int raid10_copies; 243 int requested_bitmap_chunk_sectors; 244 245 struct mddev md; 246 struct raid_type *raid_type; 247 248 sector_t array_sectors; 249 sector_t dev_sectors; 250 251 /* Optional raid4/5/6 journal device */ 252 struct journal_dev { 253 struct dm_dev *dev; 254 struct md_rdev rdev; 255 int mode; 256 } journal_dev; 257 258 struct raid_dev dev[] __counted_by(raid_disks); 259 }; 260 261 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l) 262 { 263 struct mddev *mddev = &rs->md; 264 265 l->new_level = mddev->new_level; 266 l->new_layout = mddev->new_layout; 267 l->new_chunk_sectors = mddev->new_chunk_sectors; 268 } 269 270 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l) 271 { 272 struct mddev *mddev = &rs->md; 273 274 mddev->new_level = l->new_level; 275 mddev->new_layout = l->new_layout; 276 mddev->new_chunk_sectors = l->new_chunk_sectors; 277 } 278 279 /* raid10 algorithms (i.e. formats) */ 280 #define ALGORITHM_RAID10_DEFAULT 0 281 #define ALGORITHM_RAID10_NEAR 1 282 #define ALGORITHM_RAID10_OFFSET 2 283 #define ALGORITHM_RAID10_FAR 3 284 285 /* Supported raid types and properties. */ 286 static struct raid_type { 287 const char *name; /* RAID algorithm. */ 288 const char *descr; /* Descriptor text for logging. */ 289 const unsigned int parity_devs; /* # of parity devices. */ 290 const unsigned int minimal_devs;/* minimal # of devices in set. */ 291 const unsigned int level; /* RAID level. */ 292 const unsigned int algorithm; /* RAID algorithm. */ 293 } raid_types[] = { 294 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */}, 295 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */}, 296 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR}, 297 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET}, 298 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR}, 299 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT}, 300 {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */ 301 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N}, 302 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC}, 303 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC}, 304 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC}, 305 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC}, 306 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART}, 307 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART}, 308 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}, 309 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6}, 310 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6}, 311 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6}, 312 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6}, 313 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6} 314 }; 315 316 /* True, if @v is in inclusive range [@min, @max] */ 317 static bool __within_range(long v, long min, long max) 318 { 319 return v >= min && v <= max; 320 } 321 322 /* All table line arguments are defined here */ 323 static struct arg_name_flag { 324 const unsigned long flag; 325 const char *name; 326 } __arg_name_flags[] = { 327 { CTR_FLAG_SYNC, "sync"}, 328 { CTR_FLAG_NOSYNC, "nosync"}, 329 { CTR_FLAG_REBUILD, "rebuild"}, 330 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"}, 331 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"}, 332 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"}, 333 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"}, 334 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"}, 335 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"}, 336 { CTR_FLAG_REGION_SIZE, "region_size"}, 337 { CTR_FLAG_RAID10_COPIES, "raid10_copies"}, 338 { CTR_FLAG_RAID10_FORMAT, "raid10_format"}, 339 { CTR_FLAG_DATA_OFFSET, "data_offset"}, 340 { CTR_FLAG_DELTA_DISKS, "delta_disks"}, 341 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"}, 342 { CTR_FLAG_JOURNAL_DEV, "journal_dev" }, 343 { CTR_FLAG_JOURNAL_MODE, "journal_mode" }, 344 }; 345 346 /* Return argument name string for given @flag */ 347 static const char *dm_raid_arg_name_by_flag(const uint32_t flag) 348 { 349 if (hweight32(flag) == 1) { 350 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags); 351 352 while (anf-- > __arg_name_flags) 353 if (flag & anf->flag) 354 return anf->name; 355 356 } else 357 DMERR("%s called with more than one flag!", __func__); 358 359 return NULL; 360 } 361 362 /* Define correlation of raid456 journal cache modes and dm-raid target line parameters */ 363 static struct { 364 const int mode; 365 const char *param; 366 } _raid456_journal_mode[] = { 367 { R5C_JOURNAL_MODE_WRITE_THROUGH, "writethrough" }, 368 { R5C_JOURNAL_MODE_WRITE_BACK, "writeback" } 369 }; 370 371 /* Return MD raid4/5/6 journal mode for dm @journal_mode one */ 372 static int dm_raid_journal_mode_to_md(const char *mode) 373 { 374 int m = ARRAY_SIZE(_raid456_journal_mode); 375 376 while (m--) 377 if (!strcasecmp(mode, _raid456_journal_mode[m].param)) 378 return _raid456_journal_mode[m].mode; 379 380 return -EINVAL; 381 } 382 383 /* Return dm-raid raid4/5/6 journal mode string for @mode */ 384 static const char *md_journal_mode_to_dm_raid(const int mode) 385 { 386 int m = ARRAY_SIZE(_raid456_journal_mode); 387 388 while (m--) 389 if (mode == _raid456_journal_mode[m].mode) 390 return _raid456_journal_mode[m].param; 391 392 return "unknown"; 393 } 394 395 /* 396 * Bool helpers to test for various raid levels of a raid set. 397 * It's level as reported by the superblock rather than 398 * the requested raid_type passed to the constructor. 399 */ 400 /* Return true, if raid set in @rs is raid0 */ 401 static bool rs_is_raid0(struct raid_set *rs) 402 { 403 return !rs->md.level; 404 } 405 406 /* Return true, if raid set in @rs is raid1 */ 407 static bool rs_is_raid1(struct raid_set *rs) 408 { 409 return rs->md.level == 1; 410 } 411 412 /* Return true, if raid set in @rs is raid10 */ 413 static bool rs_is_raid10(struct raid_set *rs) 414 { 415 return rs->md.level == 10; 416 } 417 418 /* Return true, if raid set in @rs is level 6 */ 419 static bool rs_is_raid6(struct raid_set *rs) 420 { 421 return rs->md.level == 6; 422 } 423 424 /* Return true, if raid set in @rs is level 4, 5 or 6 */ 425 static bool rs_is_raid456(struct raid_set *rs) 426 { 427 return __within_range(rs->md.level, 4, 6); 428 } 429 430 /* Return true, if raid set in @rs is reshapable */ 431 static bool __is_raid10_far(int layout); 432 static bool rs_is_reshapable(struct raid_set *rs) 433 { 434 return rs_is_raid456(rs) || 435 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout)); 436 } 437 438 /* Return true, if raid set in @rs is recovering */ 439 static bool rs_is_recovering(struct raid_set *rs) 440 { 441 return rs->md.resync_offset < rs->md.dev_sectors; 442 } 443 444 /* Return true, if raid set in @rs is reshaping */ 445 static bool rs_is_reshaping(struct raid_set *rs) 446 { 447 return rs->md.reshape_position != MaxSector; 448 } 449 450 /* 451 * bool helpers to test for various raid levels of a raid type @rt 452 */ 453 454 /* Return true, if raid type in @rt is raid0 */ 455 static bool rt_is_raid0(struct raid_type *rt) 456 { 457 return !rt->level; 458 } 459 460 /* Return true, if raid type in @rt is raid1 */ 461 static bool rt_is_raid1(struct raid_type *rt) 462 { 463 return rt->level == 1; 464 } 465 466 /* Return true, if raid type in @rt is raid10 */ 467 static bool rt_is_raid10(struct raid_type *rt) 468 { 469 return rt->level == 10; 470 } 471 472 /* Return true, if raid type in @rt is raid4/5 */ 473 static bool rt_is_raid45(struct raid_type *rt) 474 { 475 return __within_range(rt->level, 4, 5); 476 } 477 478 /* Return true, if raid type in @rt is raid6 */ 479 static bool rt_is_raid6(struct raid_type *rt) 480 { 481 return rt->level == 6; 482 } 483 484 /* Return true, if raid type in @rt is raid4/5/6 */ 485 static bool rt_is_raid456(struct raid_type *rt) 486 { 487 return __within_range(rt->level, 4, 6); 488 } 489 /* END: raid level bools */ 490 491 /* Return valid ctr flags for the raid level of @rs */ 492 static unsigned long __valid_flags(struct raid_set *rs) 493 { 494 if (rt_is_raid0(rs->raid_type)) 495 return RAID0_VALID_FLAGS; 496 else if (rt_is_raid1(rs->raid_type)) 497 return RAID1_VALID_FLAGS; 498 else if (rt_is_raid10(rs->raid_type)) 499 return RAID10_VALID_FLAGS; 500 else if (rt_is_raid45(rs->raid_type)) 501 return RAID45_VALID_FLAGS; 502 else if (rt_is_raid6(rs->raid_type)) 503 return RAID6_VALID_FLAGS; 504 505 return 0; 506 } 507 508 /* 509 * Check for valid flags set on @rs 510 * 511 * Has to be called after parsing of the ctr flags! 512 */ 513 static int rs_check_for_valid_flags(struct raid_set *rs) 514 { 515 if (rs->ctr_flags & ~__valid_flags(rs)) { 516 rs->ti->error = "Invalid flags combination"; 517 return -EINVAL; 518 } 519 520 return 0; 521 } 522 523 /* MD raid10 bit definitions and helpers */ 524 #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */ 525 #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */ 526 #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */ 527 #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */ 528 529 /* Return md raid10 near copies for @layout */ 530 static unsigned int __raid10_near_copies(int layout) 531 { 532 return layout & 0xFF; 533 } 534 535 /* Return md raid10 far copies for @layout */ 536 static unsigned int __raid10_far_copies(int layout) 537 { 538 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT); 539 } 540 541 /* Return true if md raid10 offset for @layout */ 542 static bool __is_raid10_offset(int layout) 543 { 544 return !!(layout & RAID10_OFFSET); 545 } 546 547 /* Return true if md raid10 near for @layout */ 548 static bool __is_raid10_near(int layout) 549 { 550 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1; 551 } 552 553 /* Return true if md raid10 far for @layout */ 554 static bool __is_raid10_far(int layout) 555 { 556 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1; 557 } 558 559 /* Return md raid10 layout string for @layout */ 560 static const char *raid10_md_layout_to_format(int layout) 561 { 562 /* 563 * Bit 16 stands for "offset" 564 * (i.e. adjacent stripes hold copies) 565 * 566 * Refer to MD's raid10.c for details 567 */ 568 if (__is_raid10_offset(layout)) 569 return "offset"; 570 571 if (__raid10_near_copies(layout) > 1) 572 return "near"; 573 574 if (__raid10_far_copies(layout) > 1) 575 return "far"; 576 577 return "unknown"; 578 } 579 580 /* Return md raid10 algorithm for @name */ 581 static int raid10_name_to_format(const char *name) 582 { 583 if (!strcasecmp(name, "near")) 584 return ALGORITHM_RAID10_NEAR; 585 else if (!strcasecmp(name, "offset")) 586 return ALGORITHM_RAID10_OFFSET; 587 else if (!strcasecmp(name, "far")) 588 return ALGORITHM_RAID10_FAR; 589 590 return -EINVAL; 591 } 592 593 /* Return md raid10 copies for @layout */ 594 static unsigned int raid10_md_layout_to_copies(int layout) 595 { 596 return max(__raid10_near_copies(layout), __raid10_far_copies(layout)); 597 } 598 599 /* Return md raid10 format id for @format string */ 600 static int raid10_format_to_md_layout(struct raid_set *rs, 601 unsigned int algorithm, 602 unsigned int copies) 603 { 604 unsigned int n = 1, f = 1, r = 0; 605 606 /* 607 * MD resilienece flaw: 608 * 609 * enabling use_far_sets for far/offset formats causes copies 610 * to be colocated on the same devs together with their origins! 611 * 612 * -> disable it for now in the definition above 613 */ 614 if (algorithm == ALGORITHM_RAID10_DEFAULT || 615 algorithm == ALGORITHM_RAID10_NEAR) 616 n = copies; 617 618 else if (algorithm == ALGORITHM_RAID10_OFFSET) { 619 f = copies; 620 r = RAID10_OFFSET; 621 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) 622 r |= RAID10_USE_FAR_SETS; 623 624 } else if (algorithm == ALGORITHM_RAID10_FAR) { 625 f = copies; 626 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) 627 r |= RAID10_USE_FAR_SETS; 628 629 } else 630 return -EINVAL; 631 632 return r | (f << RAID10_FAR_COPIES_SHIFT) | n; 633 } 634 /* END: MD raid10 bit definitions and helpers */ 635 636 /* Check for any of the raid10 algorithms */ 637 static bool __got_raid10(struct raid_type *rtp, const int layout) 638 { 639 if (rtp->level == 10) { 640 switch (rtp->algorithm) { 641 case ALGORITHM_RAID10_DEFAULT: 642 case ALGORITHM_RAID10_NEAR: 643 return __is_raid10_near(layout); 644 case ALGORITHM_RAID10_OFFSET: 645 return __is_raid10_offset(layout); 646 case ALGORITHM_RAID10_FAR: 647 return __is_raid10_far(layout); 648 default: 649 break; 650 } 651 } 652 653 return false; 654 } 655 656 /* Return raid_type for @name */ 657 static struct raid_type *get_raid_type(const char *name) 658 { 659 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); 660 661 while (rtp-- > raid_types) 662 if (!strcasecmp(rtp->name, name)) 663 return rtp; 664 665 return NULL; 666 } 667 668 /* Return raid_type for @name based derived from @level and @layout */ 669 static struct raid_type *get_raid_type_by_ll(const int level, const int layout) 670 { 671 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); 672 673 while (rtp-- > raid_types) { 674 /* RAID10 special checks based on @layout flags/properties */ 675 if (rtp->level == level && 676 (__got_raid10(rtp, layout) || rtp->algorithm == layout)) 677 return rtp; 678 } 679 680 return NULL; 681 } 682 683 /* Adjust rdev sectors */ 684 static void rs_set_rdev_sectors(struct raid_set *rs) 685 { 686 struct mddev *mddev = &rs->md; 687 struct md_rdev *rdev; 688 689 /* 690 * raid10 sets rdev->sector to the device size, which 691 * is unintended in case of out-of-place reshaping 692 */ 693 rdev_for_each(rdev, mddev) 694 if (!test_bit(Journal, &rdev->flags)) 695 rdev->sectors = mddev->dev_sectors; 696 } 697 698 /* 699 * Change bdev capacity of @rs in case of a disk add/remove reshape 700 */ 701 static void rs_set_capacity(struct raid_set *rs) 702 { 703 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table)); 704 705 set_capacity_and_notify(gendisk, rs->md.array_sectors); 706 } 707 708 /* 709 * Set the mddev properties in @rs to the current 710 * ones retrieved from the freshest superblock 711 */ 712 static void rs_set_cur(struct raid_set *rs) 713 { 714 struct mddev *mddev = &rs->md; 715 716 mddev->new_level = mddev->level; 717 mddev->new_layout = mddev->layout; 718 mddev->new_chunk_sectors = mddev->chunk_sectors; 719 } 720 721 /* 722 * Set the mddev properties in @rs to the new 723 * ones requested by the ctr 724 */ 725 static void rs_set_new(struct raid_set *rs) 726 { 727 struct mddev *mddev = &rs->md; 728 729 mddev->level = mddev->new_level; 730 mddev->layout = mddev->new_layout; 731 mddev->chunk_sectors = mddev->new_chunk_sectors; 732 mddev->raid_disks = rs->raid_disks; 733 mddev->delta_disks = 0; 734 } 735 736 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type, 737 unsigned int raid_devs) 738 { 739 unsigned int i; 740 struct raid_set *rs; 741 742 if (raid_devs <= raid_type->parity_devs) { 743 ti->error = "Insufficient number of devices"; 744 return ERR_PTR(-EINVAL); 745 } 746 747 rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL); 748 if (!rs) { 749 ti->error = "Cannot allocate raid context"; 750 return ERR_PTR(-ENOMEM); 751 } 752 753 if (mddev_init(&rs->md)) { 754 kfree(rs); 755 ti->error = "Cannot initialize raid context"; 756 return ERR_PTR(-ENOMEM); 757 } 758 759 rs->raid_disks = raid_devs; 760 rs->delta_disks = 0; 761 762 rs->ti = ti; 763 rs->raid_type = raid_type; 764 rs->stripe_cache_entries = 256; 765 rs->md.raid_disks = raid_devs; 766 rs->md.level = raid_type->level; 767 rs->md.new_level = rs->md.level; 768 rs->md.layout = raid_type->algorithm; 769 rs->md.new_layout = rs->md.layout; 770 rs->md.delta_disks = 0; 771 rs->md.resync_offset = MaxSector; 772 773 for (i = 0; i < raid_devs; i++) 774 md_rdev_init(&rs->dev[i].rdev); 775 776 /* 777 * Remaining items to be initialized by further RAID params: 778 * rs->md.persistent 779 * rs->md.external 780 * rs->md.chunk_sectors 781 * rs->md.new_chunk_sectors 782 * rs->md.dev_sectors 783 */ 784 785 return rs; 786 } 787 788 /* Free all @rs allocations */ 789 static void raid_set_free(struct raid_set *rs) 790 { 791 int i; 792 793 if (rs->journal_dev.dev) { 794 md_rdev_clear(&rs->journal_dev.rdev); 795 dm_put_device(rs->ti, rs->journal_dev.dev); 796 } 797 798 for (i = 0; i < rs->raid_disks; i++) { 799 if (rs->dev[i].meta_dev) 800 dm_put_device(rs->ti, rs->dev[i].meta_dev); 801 md_rdev_clear(&rs->dev[i].rdev); 802 if (rs->dev[i].data_dev) 803 dm_put_device(rs->ti, rs->dev[i].data_dev); 804 } 805 806 mddev_destroy(&rs->md); 807 kfree(rs); 808 } 809 810 /* 811 * For every device we have two words 812 * <meta_dev>: meta device name or '-' if missing 813 * <data_dev>: data device name or '-' if missing 814 * 815 * The following are permitted: 816 * - - 817 * - <data_dev> 818 * <meta_dev> <data_dev> 819 * 820 * The following is not allowed: 821 * <meta_dev> - 822 * 823 * This code parses those words. If there is a failure, 824 * the caller must use raid_set_free() to unwind the operations. 825 */ 826 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as) 827 { 828 int i; 829 int rebuild = 0; 830 int metadata_available = 0; 831 int r = 0; 832 const char *arg; 833 834 /* Put off the number of raid devices argument to get to dev pairs */ 835 arg = dm_shift_arg(as); 836 if (!arg) 837 return -EINVAL; 838 839 for (i = 0; i < rs->raid_disks; i++) { 840 rs->dev[i].rdev.raid_disk = i; 841 842 rs->dev[i].meta_dev = NULL; 843 rs->dev[i].data_dev = NULL; 844 845 /* 846 * There are no offsets initially. 847 * Out of place reshape will set them accordingly. 848 */ 849 rs->dev[i].rdev.data_offset = 0; 850 rs->dev[i].rdev.new_data_offset = 0; 851 rs->dev[i].rdev.mddev = &rs->md; 852 853 arg = dm_shift_arg(as); 854 if (!arg) 855 return -EINVAL; 856 857 if (strcmp(arg, "-")) { 858 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 859 &rs->dev[i].meta_dev); 860 if (r) { 861 rs->ti->error = "RAID metadata device lookup failure"; 862 return r; 863 } 864 865 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL); 866 if (!rs->dev[i].rdev.sb_page) { 867 rs->ti->error = "Failed to allocate superblock page"; 868 return -ENOMEM; 869 } 870 } 871 872 arg = dm_shift_arg(as); 873 if (!arg) 874 return -EINVAL; 875 876 if (!strcmp(arg, "-")) { 877 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) && 878 (!rs->dev[i].rdev.recovery_offset)) { 879 rs->ti->error = "Drive designated for rebuild not specified"; 880 return -EINVAL; 881 } 882 883 if (rs->dev[i].meta_dev) { 884 rs->ti->error = "No data device supplied with metadata device"; 885 return -EINVAL; 886 } 887 888 continue; 889 } 890 891 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 892 &rs->dev[i].data_dev); 893 if (r) { 894 rs->ti->error = "RAID device lookup failure"; 895 return r; 896 } 897 898 if (rs->dev[i].meta_dev) { 899 metadata_available = 1; 900 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev; 901 } 902 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev; 903 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks); 904 if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) 905 rebuild++; 906 } 907 908 if (rs->journal_dev.dev) 909 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks); 910 911 if (metadata_available) { 912 rs->md.external = 0; 913 rs->md.persistent = 1; 914 rs->md.major_version = 2; 915 } else if (rebuild && !rs->md.resync_offset) { 916 /* 917 * Without metadata, we will not be able to tell if the array 918 * is in-sync or not - we must assume it is not. Therefore, 919 * it is impossible to rebuild a drive. 920 * 921 * Even if there is metadata, the on-disk information may 922 * indicate that the array is not in-sync and it will then 923 * fail at that time. 924 * 925 * User could specify 'nosync' option if desperate. 926 */ 927 rs->ti->error = "Unable to rebuild drive while array is not in-sync"; 928 return -EINVAL; 929 } 930 931 return 0; 932 } 933 934 /* 935 * validate_region_size 936 * @rs 937 * @region_size: region size in sectors. If 0, pick a size (4MiB default). 938 * 939 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size'). 940 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap. 941 * 942 * Returns: 0 on success, -EINVAL on failure. 943 */ 944 static int validate_region_size(struct raid_set *rs, unsigned long region_size) 945 { 946 unsigned long min_region_size = rs->ti->len / (1 << 21); 947 948 if (rs_is_raid0(rs)) 949 return 0; 950 951 if (!region_size) { 952 /* 953 * Choose a reasonable default. All figures in sectors. 954 */ 955 if (min_region_size > (1 << 13)) { 956 /* If not a power of 2, make it the next power of 2 */ 957 region_size = roundup_pow_of_two(min_region_size); 958 DMINFO("Choosing default region size of %lu sectors", 959 region_size); 960 } else { 961 DMINFO("Choosing default region size of 4MiB"); 962 region_size = 1 << 13; /* sectors */ 963 } 964 } else { 965 /* 966 * Validate user-supplied value. 967 */ 968 if (region_size > rs->ti->len) { 969 rs->ti->error = "Supplied region size is too large"; 970 return -EINVAL; 971 } 972 973 if (region_size < min_region_size) { 974 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)", 975 region_size, min_region_size); 976 rs->ti->error = "Supplied region size is too small"; 977 return -EINVAL; 978 } 979 980 if (!is_power_of_2(region_size)) { 981 rs->ti->error = "Region size is not a power of 2"; 982 return -EINVAL; 983 } 984 985 if (region_size < rs->md.chunk_sectors) { 986 rs->ti->error = "Region size is smaller than the chunk size"; 987 return -EINVAL; 988 } 989 } 990 991 /* 992 * Convert sectors to bytes. 993 */ 994 rs->md.bitmap_info.chunksize = to_bytes(region_size); 995 996 return 0; 997 } 998 999 /* 1000 * validate_raid_redundancy 1001 * @rs 1002 * 1003 * Determine if there are enough devices in the array that haven't 1004 * failed (or are being rebuilt) to form a usable array. 1005 * 1006 * Returns: 0 on success, -EINVAL on failure. 1007 */ 1008 static int validate_raid_redundancy(struct raid_set *rs) 1009 { 1010 unsigned int i, rebuild_cnt = 0; 1011 unsigned int rebuilds_per_group = 0, copies, raid_disks; 1012 unsigned int group_size, last_group_start; 1013 1014 for (i = 0; i < rs->raid_disks; i++) 1015 if (!test_bit(FirstUse, &rs->dev[i].rdev.flags) && 1016 ((!test_bit(In_sync, &rs->dev[i].rdev.flags) || 1017 !rs->dev[i].rdev.sb_page))) 1018 rebuild_cnt++; 1019 1020 switch (rs->md.level) { 1021 case 0: 1022 break; 1023 case 1: 1024 if (rebuild_cnt >= rs->md.raid_disks) 1025 goto too_many; 1026 break; 1027 case 4: 1028 case 5: 1029 case 6: 1030 if (rebuild_cnt > rs->raid_type->parity_devs) 1031 goto too_many; 1032 break; 1033 case 10: 1034 copies = raid10_md_layout_to_copies(rs->md.new_layout); 1035 if (copies < 2) { 1036 DMERR("Bogus raid10 data copies < 2!"); 1037 return -EINVAL; 1038 } 1039 1040 if (rebuild_cnt < copies) 1041 break; 1042 1043 /* 1044 * It is possible to have a higher rebuild count for RAID10, 1045 * as long as the failed devices occur in different mirror 1046 * groups (i.e. different stripes). 1047 * 1048 * When checking "near" format, make sure no adjacent devices 1049 * have failed beyond what can be handled. In addition to the 1050 * simple case where the number of devices is a multiple of the 1051 * number of copies, we must also handle cases where the number 1052 * of devices is not a multiple of the number of copies. 1053 * E.g. dev1 dev2 dev3 dev4 dev5 1054 * A A B B C 1055 * C D D E E 1056 */ 1057 raid_disks = min(rs->raid_disks, rs->md.raid_disks); 1058 if (__is_raid10_near(rs->md.new_layout)) { 1059 for (i = 0; i < raid_disks; i++) { 1060 if (!(i % copies)) 1061 rebuilds_per_group = 0; 1062 if ((!rs->dev[i].rdev.sb_page || 1063 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 1064 (++rebuilds_per_group >= copies)) 1065 goto too_many; 1066 } 1067 break; 1068 } 1069 1070 /* 1071 * When checking "far" and "offset" formats, we need to ensure 1072 * that the device that holds its copy is not also dead or 1073 * being rebuilt. (Note that "far" and "offset" formats only 1074 * support two copies right now. These formats also only ever 1075 * use the 'use_far_sets' variant.) 1076 * 1077 * This check is somewhat complicated by the need to account 1078 * for arrays that are not a multiple of (far) copies. This 1079 * results in the need to treat the last (potentially larger) 1080 * set differently. 1081 */ 1082 group_size = (raid_disks / copies); 1083 last_group_start = (raid_disks / group_size) - 1; 1084 last_group_start *= group_size; 1085 for (i = 0; i < raid_disks; i++) { 1086 if (!(i % copies) && !(i > last_group_start)) 1087 rebuilds_per_group = 0; 1088 if ((!rs->dev[i].rdev.sb_page || 1089 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 1090 (++rebuilds_per_group >= copies)) 1091 goto too_many; 1092 } 1093 break; 1094 default: 1095 if (rebuild_cnt) 1096 return -EINVAL; 1097 } 1098 1099 return 0; 1100 1101 too_many: 1102 return -EINVAL; 1103 } 1104 1105 /* 1106 * Possible arguments are... 1107 * <chunk_size> [optional_args] 1108 * 1109 * Argument definitions 1110 * <chunk_size> The number of sectors per disk that 1111 * will form the "stripe" 1112 * [[no]sync] Force or prevent recovery of the 1113 * entire array 1114 * [rebuild <idx>] Rebuild the drive indicated by the index 1115 * [daemon_sleep <ms>] Time between bitmap daemon work to 1116 * clear bits 1117 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization 1118 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization 1119 * [write_mostly <idx>] Indicate a write mostly drive via index 1120 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm) 1121 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs 1122 * [region_size <sectors>] Defines granularity of bitmap 1123 * [journal_dev <dev>] raid4/5/6 journaling deviice 1124 * (i.e. write hole closing log) 1125 * 1126 * RAID10-only options: 1127 * [raid10_copies <# copies>] Number of copies. (Default: 2) 1128 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near) 1129 */ 1130 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as, 1131 unsigned int num_raid_params) 1132 { 1133 int value, raid10_format = ALGORITHM_RAID10_DEFAULT; 1134 unsigned int raid10_copies = 2; 1135 unsigned int i, write_mostly = 0; 1136 unsigned int region_size = 0; 1137 sector_t max_io_len; 1138 const char *arg, *key; 1139 struct raid_dev *rd; 1140 struct raid_type *rt = rs->raid_type; 1141 1142 arg = dm_shift_arg(as); 1143 num_raid_params--; /* Account for chunk_size argument */ 1144 1145 if (kstrtoint(arg, 10, &value) < 0) { 1146 rs->ti->error = "Bad numerical argument given for chunk_size"; 1147 return -EINVAL; 1148 } 1149 1150 /* 1151 * First, parse the in-order required arguments 1152 * "chunk_size" is the only argument of this type. 1153 */ 1154 if (rt_is_raid1(rt)) { 1155 if (value) 1156 DMERR("Ignoring chunk size parameter for RAID 1"); 1157 value = 0; 1158 } else if (!is_power_of_2(value)) { 1159 rs->ti->error = "Chunk size must be a power of 2"; 1160 return -EINVAL; 1161 } else if (value < 8) { 1162 rs->ti->error = "Chunk size value is too small"; 1163 return -EINVAL; 1164 } 1165 1166 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value; 1167 1168 /* 1169 * We set each individual device as In_sync with a completed 1170 * 'recovery_offset'. If there has been a device failure or 1171 * replacement then one of the following cases applies: 1172 * 1173 * 1) User specifies 'rebuild'. 1174 * - Device is reset when param is read. 1175 * 2) A new device is supplied. 1176 * - No matching superblock found, resets device. 1177 * 3) Device failure was transient and returns on reload. 1178 * - Failure noticed, resets device for bitmap replay. 1179 * 4) Device hadn't completed recovery after previous failure. 1180 * - Superblock is read and overrides recovery_offset. 1181 * 1182 * What is found in the superblocks of the devices is always 1183 * authoritative, unless 'rebuild' or '[no]sync' was specified. 1184 */ 1185 for (i = 0; i < rs->raid_disks; i++) { 1186 set_bit(In_sync, &rs->dev[i].rdev.flags); 1187 rs->dev[i].rdev.recovery_offset = MaxSector; 1188 } 1189 1190 /* 1191 * Second, parse the unordered optional arguments 1192 */ 1193 for (i = 0; i < num_raid_params; i++) { 1194 key = dm_shift_arg(as); 1195 if (!key) { 1196 rs->ti->error = "Not enough raid parameters given"; 1197 return -EINVAL; 1198 } 1199 1200 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) { 1201 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 1202 rs->ti->error = "Only one 'nosync' argument allowed"; 1203 return -EINVAL; 1204 } 1205 continue; 1206 } 1207 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) { 1208 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) { 1209 rs->ti->error = "Only one 'sync' argument allowed"; 1210 return -EINVAL; 1211 } 1212 continue; 1213 } 1214 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) { 1215 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { 1216 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed"; 1217 return -EINVAL; 1218 } 1219 continue; 1220 } 1221 1222 arg = dm_shift_arg(as); 1223 i++; /* Account for the argument pairs */ 1224 if (!arg) { 1225 rs->ti->error = "Wrong number of raid parameters given"; 1226 return -EINVAL; 1227 } 1228 1229 /* 1230 * Parameters that take a string value are checked here. 1231 */ 1232 /* "raid10_format {near|offset|far} */ 1233 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) { 1234 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) { 1235 rs->ti->error = "Only one 'raid10_format' argument pair allowed"; 1236 return -EINVAL; 1237 } 1238 if (!rt_is_raid10(rt)) { 1239 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type"; 1240 return -EINVAL; 1241 } 1242 raid10_format = raid10_name_to_format(arg); 1243 if (raid10_format < 0) { 1244 rs->ti->error = "Invalid 'raid10_format' value given"; 1245 return raid10_format; 1246 } 1247 continue; 1248 } 1249 1250 /* "journal_dev <dev>" */ 1251 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) { 1252 int r; 1253 struct md_rdev *jdev; 1254 1255 if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 1256 rs->ti->error = "Only one raid4/5/6 set journaling device allowed"; 1257 return -EINVAL; 1258 } 1259 if (!rt_is_raid456(rt)) { 1260 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type"; 1261 return -EINVAL; 1262 } 1263 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 1264 &rs->journal_dev.dev); 1265 if (r) { 1266 rs->ti->error = "raid4/5/6 journal device lookup failure"; 1267 return r; 1268 } 1269 jdev = &rs->journal_dev.rdev; 1270 md_rdev_init(jdev); 1271 jdev->mddev = &rs->md; 1272 jdev->bdev = rs->journal_dev.dev->bdev; 1273 jdev->sectors = bdev_nr_sectors(jdev->bdev); 1274 if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) { 1275 rs->ti->error = "No space for raid4/5/6 journal"; 1276 return -ENOSPC; 1277 } 1278 rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 1279 set_bit(Journal, &jdev->flags); 1280 continue; 1281 } 1282 1283 /* "journal_mode <mode>" ("journal_dev" mandatory!) */ 1284 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) { 1285 int r; 1286 1287 if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 1288 rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'"; 1289 return -EINVAL; 1290 } 1291 if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) { 1292 rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed"; 1293 return -EINVAL; 1294 } 1295 r = dm_raid_journal_mode_to_md(arg); 1296 if (r < 0) { 1297 rs->ti->error = "Invalid 'journal_mode' argument"; 1298 return r; 1299 } 1300 rs->journal_dev.mode = r; 1301 continue; 1302 } 1303 1304 /* 1305 * Parameters with number values from here on. 1306 */ 1307 if (kstrtoint(arg, 10, &value) < 0) { 1308 rs->ti->error = "Bad numerical argument given in raid params"; 1309 return -EINVAL; 1310 } 1311 1312 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) { 1313 /* 1314 * "rebuild" is being passed in by userspace to provide 1315 * indexes of replaced devices and to set up additional 1316 * devices on raid level takeover. 1317 */ 1318 if (!__within_range(value, 0, rs->raid_disks - 1)) { 1319 rs->ti->error = "Invalid rebuild index given"; 1320 return -EINVAL; 1321 } 1322 1323 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) { 1324 rs->ti->error = "rebuild for this index already given"; 1325 return -EINVAL; 1326 } 1327 1328 rd = rs->dev + value; 1329 clear_bit(In_sync, &rd->rdev.flags); 1330 clear_bit(Faulty, &rd->rdev.flags); 1331 rd->rdev.recovery_offset = 0; 1332 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags); 1333 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) { 1334 if (!rt_is_raid1(rt)) { 1335 rs->ti->error = "write_mostly option is only valid for RAID1"; 1336 return -EINVAL; 1337 } 1338 1339 if (!__within_range(value, 0, rs->md.raid_disks - 1)) { 1340 rs->ti->error = "Invalid write_mostly index given"; 1341 return -EINVAL; 1342 } 1343 1344 write_mostly++; 1345 set_bit(WriteMostly, &rs->dev[value].rdev.flags); 1346 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags); 1347 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) { 1348 if (!rt_is_raid1(rt)) { 1349 rs->ti->error = "max_write_behind option is only valid for RAID1"; 1350 return -EINVAL; 1351 } 1352 1353 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) { 1354 rs->ti->error = "Only one max_write_behind argument pair allowed"; 1355 return -EINVAL; 1356 } 1357 1358 if (value < 0) { 1359 rs->ti->error = "Max write-behind limit out of range"; 1360 return -EINVAL; 1361 } 1362 1363 rs->md.bitmap_info.max_write_behind = value / 2; 1364 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) { 1365 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) { 1366 rs->ti->error = "Only one daemon_sleep argument pair allowed"; 1367 return -EINVAL; 1368 } 1369 if (value < 0) { 1370 rs->ti->error = "daemon sleep period out of range"; 1371 return -EINVAL; 1372 } 1373 rs->md.bitmap_info.daemon_sleep = value; 1374 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) { 1375 /* Userspace passes new data_offset after having extended the data image LV */ 1376 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { 1377 rs->ti->error = "Only one data_offset argument pair allowed"; 1378 return -EINVAL; 1379 } 1380 /* Ensure sensible data offset */ 1381 if (value < 0 || 1382 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) { 1383 rs->ti->error = "Bogus data_offset value"; 1384 return -EINVAL; 1385 } 1386 rs->data_offset = value; 1387 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) { 1388 /* Define the +/-# of disks to add to/remove from the given raid set */ 1389 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { 1390 rs->ti->error = "Only one delta_disks argument pair allowed"; 1391 return -EINVAL; 1392 } 1393 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */ 1394 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) { 1395 rs->ti->error = "Too many delta_disk requested"; 1396 return -EINVAL; 1397 } 1398 1399 rs->delta_disks = value; 1400 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) { 1401 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) { 1402 rs->ti->error = "Only one stripe_cache argument pair allowed"; 1403 return -EINVAL; 1404 } 1405 1406 if (!rt_is_raid456(rt)) { 1407 rs->ti->error = "Inappropriate argument: stripe_cache"; 1408 return -EINVAL; 1409 } 1410 1411 if (value < 0) { 1412 rs->ti->error = "Bogus stripe cache entries value"; 1413 return -EINVAL; 1414 } 1415 rs->stripe_cache_entries = value; 1416 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) { 1417 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) { 1418 rs->ti->error = "Only one min_recovery_rate argument pair allowed"; 1419 return -EINVAL; 1420 } 1421 1422 if (value < 0) { 1423 rs->ti->error = "min_recovery_rate out of range"; 1424 return -EINVAL; 1425 } 1426 rs->md.sync_speed_min = value; 1427 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) { 1428 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) { 1429 rs->ti->error = "Only one max_recovery_rate argument pair allowed"; 1430 return -EINVAL; 1431 } 1432 1433 if (value < 0) { 1434 rs->ti->error = "max_recovery_rate out of range"; 1435 return -EINVAL; 1436 } 1437 rs->md.sync_speed_max = value; 1438 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) { 1439 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) { 1440 rs->ti->error = "Only one region_size argument pair allowed"; 1441 return -EINVAL; 1442 } 1443 1444 region_size = value; 1445 rs->requested_bitmap_chunk_sectors = value; 1446 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) { 1447 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) { 1448 rs->ti->error = "Only one raid10_copies argument pair allowed"; 1449 return -EINVAL; 1450 } 1451 1452 if (!__within_range(value, 2, rs->md.raid_disks)) { 1453 rs->ti->error = "Bad value for 'raid10_copies'"; 1454 return -EINVAL; 1455 } 1456 1457 raid10_copies = value; 1458 } else { 1459 DMERR("Unable to parse RAID parameter: %s", key); 1460 rs->ti->error = "Unable to parse RAID parameter"; 1461 return -EINVAL; 1462 } 1463 } 1464 1465 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) && 1466 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 1467 rs->ti->error = "sync and nosync are mutually exclusive"; 1468 return -EINVAL; 1469 } 1470 1471 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && 1472 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) || 1473 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) { 1474 rs->ti->error = "sync/nosync and rebuild are mutually exclusive"; 1475 return -EINVAL; 1476 } 1477 1478 if (write_mostly >= rs->md.raid_disks) { 1479 rs->ti->error = "Can't set all raid1 devices to write_mostly"; 1480 return -EINVAL; 1481 } 1482 1483 if (rs->md.sync_speed_max && 1484 rs->md.sync_speed_min > rs->md.sync_speed_max) { 1485 rs->ti->error = "Bogus recovery rates"; 1486 return -EINVAL; 1487 } 1488 1489 if (validate_region_size(rs, region_size)) 1490 return -EINVAL; 1491 1492 if (rs->md.chunk_sectors) 1493 max_io_len = rs->md.chunk_sectors; 1494 else 1495 max_io_len = region_size; 1496 1497 if (dm_set_target_max_io_len(rs->ti, max_io_len)) 1498 return -EINVAL; 1499 1500 if (rt_is_raid10(rt)) { 1501 if (raid10_copies > rs->md.raid_disks) { 1502 rs->ti->error = "Not enough devices to satisfy specification"; 1503 return -EINVAL; 1504 } 1505 1506 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies); 1507 if (rs->md.new_layout < 0) { 1508 rs->ti->error = "Error getting raid10 format"; 1509 return rs->md.new_layout; 1510 } 1511 1512 rt = get_raid_type_by_ll(10, rs->md.new_layout); 1513 if (!rt) { 1514 rs->ti->error = "Failed to recognize new raid10 layout"; 1515 return -EINVAL; 1516 } 1517 1518 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT || 1519 rt->algorithm == ALGORITHM_RAID10_NEAR) && 1520 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { 1521 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible"; 1522 return -EINVAL; 1523 } 1524 } 1525 1526 rs->raid10_copies = raid10_copies; 1527 1528 /* Assume there are no metadata devices until the drives are parsed */ 1529 rs->md.persistent = 0; 1530 rs->md.external = 1; 1531 1532 /* Check, if any invalid ctr arguments have been passed in for the raid level */ 1533 return rs_check_for_valid_flags(rs); 1534 } 1535 1536 /* Set raid4/5/6 cache size */ 1537 static int rs_set_raid456_stripe_cache(struct raid_set *rs) 1538 { 1539 int r; 1540 struct r5conf *conf; 1541 struct mddev *mddev = &rs->md; 1542 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2; 1543 uint32_t nr_stripes = rs->stripe_cache_entries; 1544 1545 if (!rt_is_raid456(rs->raid_type)) { 1546 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size"; 1547 return -EINVAL; 1548 } 1549 1550 if (nr_stripes < min_stripes) { 1551 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size", 1552 nr_stripes, min_stripes); 1553 nr_stripes = min_stripes; 1554 } 1555 1556 conf = mddev->private; 1557 if (!conf) { 1558 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set"; 1559 return -EINVAL; 1560 } 1561 1562 /* Try setting number of stripes in raid456 stripe cache */ 1563 if (conf->min_nr_stripes != nr_stripes) { 1564 r = raid5_set_cache_size(mddev, nr_stripes); 1565 if (r) { 1566 rs->ti->error = "Failed to set raid4/5/6 stripe cache size"; 1567 return r; 1568 } 1569 1570 DMINFO("%u stripe cache entries", nr_stripes); 1571 } 1572 1573 return 0; 1574 } 1575 1576 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */ 1577 static unsigned int mddev_data_stripes(struct raid_set *rs) 1578 { 1579 return rs->md.raid_disks - rs->raid_type->parity_devs; 1580 } 1581 1582 /* Return # of data stripes of @rs (i.e. as of ctr) */ 1583 static unsigned int rs_data_stripes(struct raid_set *rs) 1584 { 1585 return rs->raid_disks - rs->raid_type->parity_devs; 1586 } 1587 1588 /* 1589 * Retrieve rdev->sectors from any valid raid device of @rs 1590 * to allow userpace to pass in arbitray "- -" device tupples. 1591 */ 1592 static sector_t __rdev_sectors(struct raid_set *rs) 1593 { 1594 int i; 1595 1596 for (i = 0; i < rs->raid_disks; i++) { 1597 struct md_rdev *rdev = &rs->dev[i].rdev; 1598 1599 if (!test_bit(Journal, &rdev->flags) && 1600 rdev->bdev && rdev->sectors) 1601 return rdev->sectors; 1602 } 1603 1604 return 0; 1605 } 1606 1607 /* Check that calculated dev_sectors fits all component devices. */ 1608 static int _check_data_dev_sectors(struct raid_set *rs) 1609 { 1610 sector_t ds = ~0; 1611 struct md_rdev *rdev; 1612 1613 rdev_for_each(rdev, &rs->md) 1614 if (!test_bit(Journal, &rdev->flags) && rdev->bdev) { 1615 ds = min(ds, bdev_nr_sectors(rdev->bdev)); 1616 if (ds < rs->md.dev_sectors) { 1617 rs->ti->error = "Component device(s) too small"; 1618 return -EINVAL; 1619 } 1620 } 1621 1622 return 0; 1623 } 1624 1625 /* Get reshape sectors from data_offsets or raid set */ 1626 static sector_t _get_reshape_sectors(struct raid_set *rs) 1627 { 1628 struct md_rdev *rdev; 1629 sector_t reshape_sectors = 0; 1630 1631 rdev_for_each(rdev, &rs->md) 1632 if (!test_bit(Journal, &rdev->flags)) { 1633 reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ? 1634 rdev->data_offset - rdev->new_data_offset : 1635 rdev->new_data_offset - rdev->data_offset; 1636 break; 1637 } 1638 1639 return max(reshape_sectors, (sector_t) rs->data_offset); 1640 } 1641 1642 /* Calculate the sectors per device and per array used for @rs */ 1643 static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev) 1644 { 1645 int delta_disks; 1646 unsigned int data_stripes; 1647 sector_t array_sectors = sectors, dev_sectors = sectors; 1648 struct mddev *mddev = &rs->md; 1649 1650 if (use_mddev) { 1651 delta_disks = mddev->delta_disks; 1652 data_stripes = mddev_data_stripes(rs); 1653 } else { 1654 delta_disks = rs->delta_disks; 1655 data_stripes = rs_data_stripes(rs); 1656 } 1657 1658 /* Special raid1 case w/o delta_disks support (yet) */ 1659 if (rt_is_raid1(rs->raid_type)) 1660 ; 1661 else if (rt_is_raid10(rs->raid_type)) { 1662 if (rs->raid10_copies < 2 || 1663 delta_disks < 0) { 1664 rs->ti->error = "Bogus raid10 data copies or delta disks"; 1665 return -EINVAL; 1666 } 1667 1668 dev_sectors *= rs->raid10_copies; 1669 if (sector_div(dev_sectors, data_stripes)) 1670 goto bad; 1671 1672 array_sectors = (data_stripes + delta_disks) * (dev_sectors - _get_reshape_sectors(rs)); 1673 if (sector_div(array_sectors, rs->raid10_copies)) 1674 goto bad; 1675 1676 } else if (sector_div(dev_sectors, data_stripes)) 1677 goto bad; 1678 1679 else 1680 /* Striped layouts */ 1681 array_sectors = (data_stripes + delta_disks) * (dev_sectors - _get_reshape_sectors(rs)); 1682 1683 mddev->array_sectors = array_sectors; 1684 mddev->dev_sectors = dev_sectors; 1685 rs_set_rdev_sectors(rs); 1686 1687 return _check_data_dev_sectors(rs); 1688 bad: 1689 rs->ti->error = "Target length not divisible by number of data devices"; 1690 return -EINVAL; 1691 } 1692 1693 /* Setup recovery on @rs */ 1694 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors) 1695 { 1696 /* raid0 does not recover */ 1697 if (rs_is_raid0(rs)) 1698 rs->md.resync_offset = MaxSector; 1699 /* 1700 * A raid6 set has to be recovered either 1701 * completely or for the grown part to 1702 * ensure proper parity and Q-Syndrome 1703 */ 1704 else if (rs_is_raid6(rs)) 1705 rs->md.resync_offset = dev_sectors; 1706 /* 1707 * Other raid set types may skip recovery 1708 * depending on the 'nosync' flag. 1709 */ 1710 else 1711 rs->md.resync_offset = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags) 1712 ? MaxSector : dev_sectors; 1713 } 1714 1715 static void do_table_event(struct work_struct *ws) 1716 { 1717 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work); 1718 1719 smp_rmb(); /* Make sure we access most actual mddev properties */ 1720 1721 /* Only grow size resulting from added stripe(s) after reshape ended. */ 1722 if (!rs_is_reshaping(rs) && 1723 rs->array_sectors > rs->md.array_sectors && 1724 !rs->md.delta_disks && 1725 rs->md.raid_disks == rs->raid_disks) { 1726 /* The raid10 personality doesn't provide proper device sizes -> correct. */ 1727 if (rs_is_raid10(rs)) 1728 rs_set_rdev_sectors(rs); 1729 1730 rs->md.array_sectors = rs->array_sectors; 1731 rs_set_capacity(rs); 1732 } 1733 1734 dm_table_event(rs->ti->table); 1735 } 1736 1737 /* 1738 * Make sure a valid takover (level switch) is being requested on @rs 1739 * 1740 * Conversions of raid sets from one MD personality to another 1741 * have to conform to restrictions which are enforced here. 1742 */ 1743 static int rs_check_takeover(struct raid_set *rs) 1744 { 1745 struct mddev *mddev = &rs->md; 1746 unsigned int near_copies; 1747 1748 if (rs->md.degraded) { 1749 rs->ti->error = "Can't takeover degraded raid set"; 1750 return -EPERM; 1751 } 1752 1753 if (rs_is_reshaping(rs)) { 1754 rs->ti->error = "Can't takeover reshaping raid set"; 1755 return -EPERM; 1756 } 1757 1758 switch (mddev->level) { 1759 case 0: 1760 /* raid0 -> raid1/5 with one disk */ 1761 if ((mddev->new_level == 1 || mddev->new_level == 5) && 1762 mddev->raid_disks == 1) 1763 return 0; 1764 1765 /* raid0 -> raid10 */ 1766 if (mddev->new_level == 10 && 1767 !(rs->raid_disks % mddev->raid_disks)) 1768 return 0; 1769 1770 /* raid0 with multiple disks -> raid4/5/6 */ 1771 if (__within_range(mddev->new_level, 4, 6) && 1772 mddev->new_layout == ALGORITHM_PARITY_N && 1773 mddev->raid_disks > 1) 1774 return 0; 1775 1776 break; 1777 1778 case 10: 1779 /* Can't takeover raid10_offset! */ 1780 if (__is_raid10_offset(mddev->layout)) 1781 break; 1782 1783 near_copies = __raid10_near_copies(mddev->layout); 1784 1785 /* raid10* -> raid0 */ 1786 if (mddev->new_level == 0) { 1787 /* Can takeover raid10_near with raid disks divisable by data copies! */ 1788 if (near_copies > 1 && 1789 !(mddev->raid_disks % near_copies)) { 1790 mddev->raid_disks /= near_copies; 1791 mddev->delta_disks = mddev->raid_disks; 1792 return 0; 1793 } 1794 1795 /* Can takeover raid10_far */ 1796 if (near_copies == 1 && 1797 __raid10_far_copies(mddev->layout) > 1) 1798 return 0; 1799 1800 break; 1801 } 1802 1803 /* raid10_{near,far} -> raid1 */ 1804 if (mddev->new_level == 1 && 1805 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks) 1806 return 0; 1807 1808 /* raid10_{near,far} with 2 disks -> raid4/5 */ 1809 if (__within_range(mddev->new_level, 4, 5) && 1810 mddev->raid_disks == 2) 1811 return 0; 1812 break; 1813 1814 case 1: 1815 /* raid1 with 2 disks -> raid4/5 */ 1816 if (__within_range(mddev->new_level, 4, 5) && 1817 mddev->raid_disks == 2) { 1818 mddev->degraded = 1; 1819 return 0; 1820 } 1821 1822 /* raid1 -> raid0 */ 1823 if (mddev->new_level == 0 && 1824 mddev->raid_disks == 1) 1825 return 0; 1826 1827 /* raid1 -> raid10 */ 1828 if (mddev->new_level == 10) 1829 return 0; 1830 break; 1831 1832 case 4: 1833 /* raid4 -> raid0 */ 1834 if (mddev->new_level == 0) 1835 return 0; 1836 1837 /* raid4 -> raid1/5 with 2 disks */ 1838 if ((mddev->new_level == 1 || mddev->new_level == 5) && 1839 mddev->raid_disks == 2) 1840 return 0; 1841 1842 /* raid4 -> raid5/6 with parity N */ 1843 if (__within_range(mddev->new_level, 5, 6) && 1844 mddev->layout == ALGORITHM_PARITY_N) 1845 return 0; 1846 break; 1847 1848 case 5: 1849 /* raid5 with parity N -> raid0 */ 1850 if (mddev->new_level == 0 && 1851 mddev->layout == ALGORITHM_PARITY_N) 1852 return 0; 1853 1854 /* raid5 with parity N -> raid4 */ 1855 if (mddev->new_level == 4 && 1856 mddev->layout == ALGORITHM_PARITY_N) 1857 return 0; 1858 1859 /* raid5 with 2 disks -> raid1/4/10 */ 1860 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) && 1861 mddev->raid_disks == 2) 1862 return 0; 1863 1864 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */ 1865 if (mddev->new_level == 6 && 1866 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || 1867 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6))) 1868 return 0; 1869 break; 1870 1871 case 6: 1872 /* raid6 with parity N -> raid0 */ 1873 if (mddev->new_level == 0 && 1874 mddev->layout == ALGORITHM_PARITY_N) 1875 return 0; 1876 1877 /* raid6 with parity N -> raid4 */ 1878 if (mddev->new_level == 4 && 1879 mddev->layout == ALGORITHM_PARITY_N) 1880 return 0; 1881 1882 /* raid6_*_n with Q-Syndrome N -> raid5_* */ 1883 if (mddev->new_level == 5 && 1884 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || 1885 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC))) 1886 return 0; 1887 break; 1888 1889 default: 1890 break; 1891 } 1892 1893 rs->ti->error = "takeover not possible"; 1894 return -EINVAL; 1895 } 1896 1897 /* True if @rs requested to be taken over */ 1898 static bool rs_takeover_requested(struct raid_set *rs) 1899 { 1900 return rs->md.new_level != rs->md.level; 1901 } 1902 1903 /* True if layout is set to reshape. */ 1904 static bool rs_is_layout_change(struct raid_set *rs, bool use_mddev) 1905 { 1906 return (use_mddev ? rs->md.delta_disks : rs->delta_disks) || 1907 rs->md.new_layout != rs->md.layout || 1908 rs->md.new_chunk_sectors != rs->md.chunk_sectors; 1909 } 1910 1911 /* True if @rs is requested to reshape by ctr */ 1912 static bool rs_reshape_requested(struct raid_set *rs) 1913 { 1914 bool change; 1915 struct mddev *mddev = &rs->md; 1916 1917 if (rs_takeover_requested(rs)) 1918 return false; 1919 1920 if (rs_is_raid0(rs)) 1921 return false; 1922 1923 change = rs_is_layout_change(rs, false); 1924 1925 /* Historical case to support raid1 reshape without delta disks */ 1926 if (rs_is_raid1(rs)) { 1927 if (rs->delta_disks) 1928 return !!rs->delta_disks; 1929 1930 return !change && 1931 mddev->raid_disks != rs->raid_disks; 1932 } 1933 1934 if (rs_is_raid10(rs)) 1935 return change && 1936 !__is_raid10_far(mddev->new_layout) && 1937 rs->delta_disks >= 0; 1938 1939 return change; 1940 } 1941 1942 /* Features */ 1943 #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */ 1944 1945 /* State flags for sb->flags */ 1946 #define SB_FLAG_RESHAPE_ACTIVE 0x1 1947 #define SB_FLAG_RESHAPE_BACKWARDS 0x2 1948 1949 /* 1950 * This structure is never routinely used by userspace, unlike md superblocks. 1951 * Devices with this superblock should only ever be accessed via device-mapper. 1952 */ 1953 #define DM_RAID_MAGIC 0x64526D44 1954 struct dm_raid_superblock { 1955 __le32 magic; /* "DmRd" */ 1956 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */ 1957 1958 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */ 1959 __le32 array_position; /* The position of this drive in the raid set */ 1960 1961 __le64 events; /* Incremented by md when superblock updated */ 1962 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */ 1963 /* indicate failures (see extension below) */ 1964 1965 /* 1966 * This offset tracks the progress of the repair or replacement of 1967 * an individual drive. 1968 */ 1969 __le64 disk_recovery_offset; 1970 1971 /* 1972 * This offset tracks the progress of the initial raid set 1973 * synchronisation/parity calculation. 1974 */ 1975 __le64 array_resync_offset; 1976 1977 /* 1978 * raid characteristics 1979 */ 1980 __le32 level; 1981 __le32 layout; 1982 __le32 stripe_sectors; 1983 1984 /******************************************************************** 1985 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! 1986 * 1987 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist 1988 */ 1989 1990 __le32 flags; /* Flags defining array states for reshaping */ 1991 1992 /* 1993 * This offset tracks the progress of a raid 1994 * set reshape in order to be able to restart it 1995 */ 1996 __le64 reshape_position; 1997 1998 /* 1999 * These define the properties of the array in case of an interrupted reshape 2000 */ 2001 __le32 new_level; 2002 __le32 new_layout; 2003 __le32 new_stripe_sectors; 2004 __le32 delta_disks; 2005 2006 __le64 array_sectors; /* Array size in sectors */ 2007 2008 /* 2009 * Sector offsets to data on devices (reshaping). 2010 * Needed to support out of place reshaping, thus 2011 * not writing over any stripes whilst converting 2012 * them from old to new layout 2013 */ 2014 __le64 data_offset; 2015 __le64 new_data_offset; 2016 2017 __le64 sectors; /* Used device size in sectors */ 2018 2019 /* 2020 * Additional Bit field of devices indicating failures to support 2021 * up to 256 devices with the 1.9.0 on-disk metadata format 2022 */ 2023 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1]; 2024 2025 __le32 incompat_features; /* Used to indicate any incompatible features */ 2026 2027 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */ 2028 } __packed; 2029 2030 /* 2031 * Check for reshape constraints on raid set @rs: 2032 * 2033 * - reshape function non-existent 2034 * - degraded set 2035 * - ongoing recovery 2036 * - ongoing reshape 2037 * 2038 * Returns 0 if none or -EPERM if given constraint 2039 * and error message reference in @errmsg 2040 */ 2041 static int rs_check_reshape(struct raid_set *rs) 2042 { 2043 struct mddev *mddev = &rs->md; 2044 2045 if (!mddev->pers || !mddev->pers->check_reshape) 2046 rs->ti->error = "Reshape not supported"; 2047 else if (mddev->degraded) 2048 rs->ti->error = "Can't reshape degraded raid set"; 2049 else if (rs_is_recovering(rs)) 2050 rs->ti->error = "Convert request on recovering raid set prohibited"; 2051 else if (rs_is_reshaping(rs)) 2052 rs->ti->error = "raid set already reshaping!"; 2053 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs))) 2054 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10"; 2055 else 2056 return 0; 2057 2058 return -EPERM; 2059 } 2060 2061 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload) 2062 { 2063 BUG_ON(!rdev->sb_page); 2064 2065 if (rdev->sb_loaded && !force_reload) 2066 return 0; 2067 2068 rdev->sb_loaded = 0; 2069 2070 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) { 2071 DMERR("Failed to read superblock of device at position %d", 2072 rdev->raid_disk); 2073 md_error(rdev->mddev, rdev); 2074 set_bit(Faulty, &rdev->flags); 2075 return -EIO; 2076 } 2077 2078 rdev->sb_loaded = 1; 2079 2080 return 0; 2081 } 2082 2083 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) 2084 { 2085 failed_devices[0] = le64_to_cpu(sb->failed_devices); 2086 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices)); 2087 2088 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { 2089 int i = ARRAY_SIZE(sb->extended_failed_devices); 2090 2091 while (i--) 2092 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]); 2093 } 2094 } 2095 2096 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) 2097 { 2098 int i = ARRAY_SIZE(sb->extended_failed_devices); 2099 2100 sb->failed_devices = cpu_to_le64(failed_devices[0]); 2101 while (i--) 2102 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]); 2103 } 2104 2105 /* 2106 * Synchronize the superblock members with the raid set properties 2107 * 2108 * All superblock data is little endian. 2109 */ 2110 static void super_sync(struct mddev *mddev, struct md_rdev *rdev) 2111 { 2112 bool update_failed_devices = false; 2113 unsigned int i; 2114 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 2115 struct dm_raid_superblock *sb; 2116 struct raid_set *rs = container_of(mddev, struct raid_set, md); 2117 2118 /* No metadata device, no superblock */ 2119 if (!rdev->meta_bdev) 2120 return; 2121 2122 BUG_ON(!rdev->sb_page); 2123 2124 sb = page_address(rdev->sb_page); 2125 2126 sb_retrieve_failed_devices(sb, failed_devices); 2127 2128 for (i = 0; i < rs->raid_disks; i++) 2129 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) { 2130 update_failed_devices = true; 2131 set_bit(i, (void *) failed_devices); 2132 } 2133 2134 if (update_failed_devices) 2135 sb_update_failed_devices(sb, failed_devices); 2136 2137 sb->magic = cpu_to_le32(DM_RAID_MAGIC); 2138 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); 2139 2140 sb->num_devices = cpu_to_le32(mddev->raid_disks); 2141 sb->array_position = cpu_to_le32(rdev->raid_disk); 2142 2143 sb->events = cpu_to_le64(mddev->events); 2144 2145 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset); 2146 sb->array_resync_offset = cpu_to_le64(mddev->resync_offset); 2147 2148 sb->level = cpu_to_le32(mddev->level); 2149 sb->layout = cpu_to_le32(mddev->layout); 2150 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors); 2151 2152 /******************************************************************** 2153 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! 2154 * 2155 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist 2156 */ 2157 sb->new_level = cpu_to_le32(mddev->new_level); 2158 sb->new_layout = cpu_to_le32(mddev->new_layout); 2159 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors); 2160 2161 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2162 2163 smp_rmb(); /* Make sure we access most recent reshape position */ 2164 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2165 if (le64_to_cpu(sb->reshape_position) != MaxSector) { 2166 /* Flag ongoing reshape */ 2167 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE); 2168 2169 if (mddev->delta_disks < 0 || mddev->reshape_backwards) 2170 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS); 2171 } else { 2172 /* Clear reshape flags */ 2173 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS)); 2174 } 2175 2176 sb->array_sectors = cpu_to_le64(mddev->array_sectors); 2177 sb->data_offset = cpu_to_le64(rdev->data_offset); 2178 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset); 2179 sb->sectors = cpu_to_le64(rdev->sectors); 2180 sb->incompat_features = cpu_to_le32(0); 2181 2182 /* Zero out the rest of the payload after the size of the superblock */ 2183 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb)); 2184 } 2185 2186 /* 2187 * super_load 2188 * 2189 * This function creates a superblock if one is not found on the device 2190 * and will decide which superblock to use if there's a choice. 2191 * 2192 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise 2193 */ 2194 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev) 2195 { 2196 int r; 2197 struct dm_raid_superblock *sb; 2198 struct dm_raid_superblock *refsb; 2199 uint64_t events_sb, events_refsb; 2200 2201 r = read_disk_sb(rdev, rdev->sb_size, false); 2202 if (r) 2203 return r; 2204 2205 sb = page_address(rdev->sb_page); 2206 2207 /* 2208 * Two cases that we want to write new superblocks and rebuild: 2209 * 1) New device (no matching magic number) 2210 * 2) Device specified for rebuild (!In_sync w/ offset == 0) 2211 */ 2212 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) || 2213 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) { 2214 super_sync(rdev->mddev, rdev); 2215 2216 set_bit(FirstUse, &rdev->flags); 2217 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); 2218 2219 /* Force writing of superblocks to disk */ 2220 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags); 2221 2222 /* Any superblock is better than none, choose that if given */ 2223 return refdev ? 0 : 1; 2224 } 2225 2226 if (!refdev) 2227 return 1; 2228 2229 events_sb = le64_to_cpu(sb->events); 2230 2231 refsb = page_address(refdev->sb_page); 2232 events_refsb = le64_to_cpu(refsb->events); 2233 2234 return (events_sb > events_refsb) ? 1 : 0; 2235 } 2236 2237 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev) 2238 { 2239 int role; 2240 struct mddev *mddev = &rs->md; 2241 uint64_t events_sb; 2242 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 2243 struct dm_raid_superblock *sb; 2244 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0; 2245 struct md_rdev *r; 2246 struct dm_raid_superblock *sb2; 2247 2248 sb = page_address(rdev->sb_page); 2249 events_sb = le64_to_cpu(sb->events); 2250 2251 /* 2252 * Initialise to 1 if this is a new superblock. 2253 */ 2254 mddev->events = events_sb ? : 1; 2255 2256 mddev->reshape_position = MaxSector; 2257 2258 mddev->raid_disks = le32_to_cpu(sb->num_devices); 2259 mddev->level = le32_to_cpu(sb->level); 2260 mddev->layout = le32_to_cpu(sb->layout); 2261 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors); 2262 2263 /* 2264 * Reshaping is supported, e.g. reshape_position is valid 2265 * in superblock and superblock content is authoritative. 2266 */ 2267 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { 2268 /* Superblock is authoritative wrt given raid set layout! */ 2269 mddev->new_level = le32_to_cpu(sb->new_level); 2270 mddev->new_layout = le32_to_cpu(sb->new_layout); 2271 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors); 2272 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 2273 mddev->array_sectors = le64_to_cpu(sb->array_sectors); 2274 2275 /* raid was reshaping and got interrupted */ 2276 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) { 2277 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { 2278 DMERR("Reshape requested but raid set is still reshaping"); 2279 return -EINVAL; 2280 } 2281 2282 if (mddev->delta_disks < 0 || 2283 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS))) 2284 mddev->reshape_backwards = 1; 2285 else 2286 mddev->reshape_backwards = 0; 2287 2288 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 2289 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout); 2290 if (!rs->raid_type) 2291 return -EINVAL; 2292 } 2293 2294 } else { 2295 /* 2296 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata 2297 */ 2298 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout); 2299 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 2300 2301 if (rs_takeover_requested(rs)) { 2302 if (rt_cur && rt_new) 2303 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)", 2304 rt_cur->name, rt_new->name); 2305 else 2306 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)"); 2307 return -EINVAL; 2308 } else if (rs_reshape_requested(rs)) { 2309 DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)"); 2310 if (mddev->layout != mddev->new_layout) { 2311 if (rt_cur && rt_new) 2312 DMERR(" current layout %s vs new layout %s", 2313 rt_cur->name, rt_new->name); 2314 else 2315 DMERR(" current layout 0x%X vs new layout 0x%X", 2316 le32_to_cpu(sb->layout), mddev->new_layout); 2317 } 2318 if (mddev->chunk_sectors != mddev->new_chunk_sectors) 2319 DMERR(" current stripe sectors %u vs new stripe sectors %u", 2320 mddev->chunk_sectors, mddev->new_chunk_sectors); 2321 if (rs->delta_disks) 2322 DMERR(" current %u disks vs new %u disks", 2323 mddev->raid_disks, mddev->raid_disks + rs->delta_disks); 2324 if (rs_is_raid10(rs)) { 2325 DMERR(" Old layout: %s w/ %u copies", 2326 raid10_md_layout_to_format(mddev->layout), 2327 raid10_md_layout_to_copies(mddev->layout)); 2328 DMERR(" New layout: %s w/ %u copies", 2329 raid10_md_layout_to_format(mddev->new_layout), 2330 raid10_md_layout_to_copies(mddev->new_layout)); 2331 } 2332 return -EINVAL; 2333 } 2334 2335 DMINFO("Discovered old metadata format; upgrading to extended metadata format"); 2336 } 2337 2338 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) 2339 mddev->resync_offset = le64_to_cpu(sb->array_resync_offset); 2340 2341 /* 2342 * During load, we set FirstUse if a new superblock was written. 2343 * There are two reasons we might not have a superblock: 2344 * 1) The raid set is brand new - in which case, all of the 2345 * devices must have their In_sync bit set. Also, 2346 * resync_offset must be 0, unless forced. 2347 * 2) This is a new device being added to an old raid set 2348 * and the new device needs to be rebuilt - in which 2349 * case the In_sync bit will /not/ be set and 2350 * resync_offset must be MaxSector. 2351 * 3) This is/are a new device(s) being added to an old 2352 * raid set during takeover to a higher raid level 2353 * to provide capacity for redundancy or during reshape 2354 * to add capacity to grow the raid set. 2355 */ 2356 rdev_for_each(r, mddev) { 2357 if (test_bit(Journal, &rdev->flags)) 2358 continue; 2359 2360 if (test_bit(FirstUse, &r->flags)) 2361 new_devs++; 2362 2363 if (!test_bit(In_sync, &r->flags)) { 2364 DMINFO("Device %d specified for rebuild; clearing superblock", 2365 r->raid_disk); 2366 rebuilds++; 2367 2368 if (test_bit(FirstUse, &r->flags)) 2369 rebuild_and_new++; 2370 } 2371 } 2372 2373 if (new_devs == rs->raid_disks || !rebuilds) { 2374 /* Replace a broken device */ 2375 if (new_devs == rs->raid_disks) { 2376 DMINFO("Superblocks created for new raid set"); 2377 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2378 } else if (new_devs != rebuilds && 2379 new_devs != rs->delta_disks) { 2380 DMERR("New device injected into existing raid set without " 2381 "'delta_disks' or 'rebuild' parameter specified"); 2382 return -EINVAL; 2383 } 2384 } else if (new_devs && new_devs != rebuilds) { 2385 DMERR("%u 'rebuild' devices cannot be injected into" 2386 " a raid set with %u other first-time devices", 2387 rebuilds, new_devs); 2388 return -EINVAL; 2389 } else if (rebuilds) { 2390 if (rebuild_and_new && rebuilds != rebuild_and_new) { 2391 DMERR("new device%s provided without 'rebuild'", 2392 new_devs > 1 ? "s" : ""); 2393 return -EINVAL; 2394 } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) { 2395 DMERR("'rebuild' specified while raid set is not in-sync (resync_offset=%llu)", 2396 (unsigned long long) mddev->resync_offset); 2397 return -EINVAL; 2398 } else if (rs_is_reshaping(rs)) { 2399 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)", 2400 (unsigned long long) mddev->reshape_position); 2401 return -EINVAL; 2402 } 2403 } 2404 2405 /* 2406 * Now we set the Faulty bit for those devices that are 2407 * recorded in the superblock as failed. 2408 */ 2409 sb_retrieve_failed_devices(sb, failed_devices); 2410 rdev_for_each(r, mddev) { 2411 if (test_bit(Journal, &r->flags) || 2412 !r->sb_page) 2413 continue; 2414 sb2 = page_address(r->sb_page); 2415 sb2->failed_devices = 0; 2416 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices)); 2417 2418 /* 2419 * Check for any device re-ordering. 2420 */ 2421 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) { 2422 role = le32_to_cpu(sb2->array_position); 2423 if (role < 0) 2424 continue; 2425 2426 if (role != r->raid_disk) { 2427 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) { 2428 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) || 2429 rs->raid_disks % rs->raid10_copies) { 2430 rs->ti->error = 2431 "Cannot change raid10 near set to odd # of devices!"; 2432 return -EINVAL; 2433 } 2434 2435 sb2->array_position = cpu_to_le32(r->raid_disk); 2436 2437 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) && 2438 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) && 2439 !rt_is_raid1(rs->raid_type)) { 2440 rs->ti->error = "Cannot change device positions in raid set"; 2441 return -EINVAL; 2442 } 2443 2444 DMINFO("raid device #%d now at position #%d", role, r->raid_disk); 2445 } 2446 2447 /* 2448 * Partial recovery is performed on 2449 * returning failed devices. 2450 */ 2451 if (test_bit(role, (void *) failed_devices)) 2452 set_bit(Faulty, &r->flags); 2453 } 2454 } 2455 2456 return 0; 2457 } 2458 2459 static int super_validate(struct raid_set *rs, struct md_rdev *rdev) 2460 { 2461 struct mddev *mddev = &rs->md; 2462 struct dm_raid_superblock *sb; 2463 2464 if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0) 2465 return 0; 2466 2467 sb = page_address(rdev->sb_page); 2468 2469 /* 2470 * If mddev->events is not set, we know we have not yet initialized 2471 * the array. 2472 */ 2473 if (!mddev->events && super_init_validation(rs, rdev)) 2474 return -EINVAL; 2475 2476 if (le32_to_cpu(sb->compat_features) && 2477 le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) { 2478 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags"; 2479 return -EINVAL; 2480 } 2481 2482 if (sb->incompat_features) { 2483 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet"; 2484 return -EINVAL; 2485 } 2486 2487 /* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */ 2488 mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096); 2489 mddev->bitmap_info.default_offset = mddev->bitmap_info.offset; 2490 2491 if (!test_and_clear_bit(FirstUse, &rdev->flags)) { 2492 /* 2493 * Retrieve rdev size stored in superblock to be prepared for shrink. 2494 * Check extended superblock members are present otherwise the size 2495 * will not be set! 2496 */ 2497 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) 2498 rdev->sectors = le64_to_cpu(sb->sectors); 2499 2500 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset); 2501 if (rdev->recovery_offset == MaxSector) 2502 set_bit(In_sync, &rdev->flags); 2503 /* 2504 * If no reshape in progress -> we're recovering single 2505 * disk(s) and have to set the device(s) to out-of-sync 2506 */ 2507 else if (!rs_is_reshaping(rs)) 2508 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */ 2509 } 2510 2511 /* 2512 * If a device comes back, set it as not In_sync and no longer faulty. 2513 */ 2514 if (test_and_clear_bit(Faulty, &rdev->flags)) { 2515 rdev->recovery_offset = 0; 2516 clear_bit(In_sync, &rdev->flags); 2517 rdev->saved_raid_disk = rdev->raid_disk; 2518 } 2519 2520 /* Reshape support -> restore respective data offsets */ 2521 rdev->data_offset = le64_to_cpu(sb->data_offset); 2522 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset); 2523 2524 return 0; 2525 } 2526 2527 /* 2528 * Analyse superblocks and select the freshest. 2529 */ 2530 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs) 2531 { 2532 int r; 2533 struct md_rdev *rdev, *freshest; 2534 struct mddev *mddev = &rs->md; 2535 2536 /* Respect resynchronization requested with "sync" argument. */ 2537 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 2538 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2539 2540 freshest = NULL; 2541 rdev_for_each(rdev, mddev) { 2542 if (test_bit(Journal, &rdev->flags)) 2543 continue; 2544 2545 if (!rdev->meta_bdev) 2546 continue; 2547 2548 /* Set superblock offset/size for metadata device. */ 2549 rdev->sb_start = 0; 2550 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev); 2551 if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) { 2552 DMERR("superblock size of a logical block is no longer valid"); 2553 return -EINVAL; 2554 } 2555 2556 /* 2557 * Skipping super_load due to CTR_FLAG_SYNC will cause 2558 * the array to undergo initialization again as 2559 * though it were new. This is the intended effect 2560 * of the "sync" directive. 2561 * 2562 * With reshaping capability added, we must ensure that 2563 * the "sync" directive is disallowed during the reshape. 2564 */ 2565 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 2566 continue; 2567 2568 r = super_load(rdev, freshest); 2569 2570 switch (r) { 2571 case 1: 2572 freshest = rdev; 2573 break; 2574 case 0: 2575 break; 2576 default: 2577 /* This is a failure to read the superblock from the metadata device. */ 2578 /* 2579 * We have to keep any raid0 data/metadata device pairs or 2580 * the MD raid0 personality will fail to start the array. 2581 */ 2582 if (rs_is_raid0(rs)) 2583 continue; 2584 2585 /* 2586 * We keep the dm_devs to be able to emit the device tuple 2587 * properly on the table line in raid_status() (rather than 2588 * mistakenly acting as if '- -' got passed into the constructor). 2589 * 2590 * The rdev has to stay on the same_set list to allow for 2591 * the attempt to restore faulty devices on second resume. 2592 */ 2593 rdev->raid_disk = rdev->saved_raid_disk = -1; 2594 break; 2595 } 2596 } 2597 2598 if (!freshest) 2599 return 0; 2600 2601 /* 2602 * Validation of the freshest device provides the source of 2603 * validation for the remaining devices. 2604 */ 2605 rs->ti->error = "Unable to assemble array: Invalid superblocks"; 2606 if (super_validate(rs, freshest)) 2607 return -EINVAL; 2608 2609 if (validate_raid_redundancy(rs)) { 2610 rs->ti->error = "Insufficient redundancy to activate array"; 2611 return -EINVAL; 2612 } 2613 2614 rdev_for_each(rdev, mddev) 2615 if (!test_bit(Journal, &rdev->flags) && 2616 rdev != freshest && 2617 super_validate(rs, rdev)) 2618 return -EINVAL; 2619 return 0; 2620 } 2621 2622 /* 2623 * Adjust data_offset and new_data_offset on all disk members of @rs 2624 * for out of place reshaping if requested by constructor 2625 * 2626 * We need free space at the beginning of each raid disk for forward 2627 * and at the end for backward reshapes which userspace has to provide 2628 * via remapping/reordering of space. 2629 */ 2630 static int rs_adjust_data_offsets(struct raid_set *rs) 2631 { 2632 sector_t data_offset = 0, new_data_offset = 0; 2633 struct md_rdev *rdev; 2634 2635 /* Constructor did not request data offset change */ 2636 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { 2637 if (!rs_is_reshapable(rs)) 2638 goto out; 2639 2640 return 0; 2641 } 2642 2643 /* HM FIXME: get In_Sync raid_dev? */ 2644 rdev = &rs->dev[0].rdev; 2645 2646 if (rs->delta_disks < 0) { 2647 /* 2648 * Removing disks (reshaping backwards): 2649 * 2650 * - before reshape: data is at offset 0 and free space 2651 * is at end of each component LV 2652 * 2653 * - after reshape: data is at offset rs->data_offset != 0 on each component LV 2654 */ 2655 data_offset = 0; 2656 new_data_offset = rs->data_offset; 2657 2658 } else if (rs->delta_disks > 0) { 2659 /* 2660 * Adding disks (reshaping forwards): 2661 * 2662 * - before reshape: data is at offset rs->data_offset != 0 and 2663 * free space is at begin of each component LV 2664 * 2665 * - after reshape: data is at offset 0 on each component LV 2666 */ 2667 data_offset = rs->data_offset; 2668 new_data_offset = 0; 2669 2670 } else { 2671 /* 2672 * User space passes in 0 for data offset after having removed reshape space 2673 * 2674 * - or - (data offset != 0) 2675 * 2676 * Changing RAID layout or chunk size -> toggle offsets 2677 * 2678 * - before reshape: data is at offset rs->data_offset 0 and 2679 * free space is at end of each component LV 2680 * -or- 2681 * data is at offset rs->data_offset != 0 and 2682 * free space is at begin of each component LV 2683 * 2684 * - after reshape: data is at offset 0 if it was at offset != 0 2685 * or at offset != 0 if it was at offset 0 2686 * on each component LV 2687 * 2688 */ 2689 data_offset = rs->data_offset ? rdev->data_offset : 0; 2690 new_data_offset = data_offset ? 0 : rs->data_offset; 2691 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2692 } 2693 2694 /* 2695 * Make sure we got a minimum amount of free sectors per device 2696 */ 2697 if (rs->data_offset && 2698 bdev_nr_sectors(rdev->bdev) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) { 2699 rs->ti->error = data_offset ? "No space for forward reshape" : 2700 "No space for backward reshape"; 2701 return -ENOSPC; 2702 } 2703 out: 2704 /* 2705 * Raise resync_offset in case data_offset != 0 to 2706 * avoid false recovery positives in the constructor. 2707 */ 2708 if (rs->md.resync_offset < rs->md.dev_sectors) 2709 rs->md.resync_offset += rs->dev[0].rdev.data_offset; 2710 2711 /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */ 2712 rdev_for_each(rdev, &rs->md) { 2713 if (!test_bit(Journal, &rdev->flags)) { 2714 rdev->data_offset = data_offset; 2715 rdev->new_data_offset = new_data_offset; 2716 } 2717 } 2718 2719 return 0; 2720 } 2721 2722 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */ 2723 static void __reorder_raid_disk_indexes(struct raid_set *rs) 2724 { 2725 int i = 0; 2726 struct md_rdev *rdev; 2727 2728 rdev_for_each(rdev, &rs->md) { 2729 if (!test_bit(Journal, &rdev->flags)) { 2730 rdev->raid_disk = i++; 2731 rdev->saved_raid_disk = rdev->new_raid_disk = -1; 2732 } 2733 } 2734 } 2735 2736 /* 2737 * Setup @rs for takeover by a different raid level 2738 */ 2739 static int rs_setup_takeover(struct raid_set *rs) 2740 { 2741 struct mddev *mddev = &rs->md; 2742 struct md_rdev *rdev; 2743 unsigned int d = mddev->raid_disks = rs->raid_disks; 2744 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset; 2745 2746 if (rt_is_raid10(rs->raid_type)) { 2747 if (rs_is_raid0(rs)) { 2748 /* Userpace reordered disks -> adjust raid_disk indexes */ 2749 __reorder_raid_disk_indexes(rs); 2750 2751 /* raid0 -> raid10_far layout */ 2752 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR, 2753 rs->raid10_copies); 2754 } else if (rs_is_raid1(rs)) 2755 /* raid1 -> raid10_near layout */ 2756 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, 2757 rs->raid_disks); 2758 else 2759 return -EINVAL; 2760 2761 } 2762 2763 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2764 mddev->resync_offset = MaxSector; 2765 2766 while (d--) { 2767 rdev = &rs->dev[d].rdev; 2768 2769 if (test_bit(d, (void *) rs->rebuild_disks)) { 2770 clear_bit(In_sync, &rdev->flags); 2771 clear_bit(Faulty, &rdev->flags); 2772 mddev->resync_offset = rdev->recovery_offset = 0; 2773 /* Bitmap has to be created when we do an "up" takeover */ 2774 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2775 } 2776 2777 rdev->new_data_offset = new_data_offset; 2778 } 2779 2780 return 0; 2781 } 2782 2783 /* Prepare @rs for reshape */ 2784 static int rs_prepare_reshape(struct raid_set *rs) 2785 { 2786 bool reshape; 2787 struct mddev *mddev = &rs->md; 2788 2789 if (rs_is_raid10(rs)) { 2790 if (rs->raid_disks != mddev->raid_disks && 2791 __is_raid10_near(mddev->layout) && 2792 rs->raid10_copies && 2793 rs->raid10_copies != __raid10_near_copies(mddev->layout)) { 2794 /* 2795 * raid disk have to be multiple of data copies to allow this conversion, 2796 * 2797 * This is actually not a reshape it is a 2798 * rebuild of any additional mirrors per group 2799 */ 2800 if (rs->raid_disks % rs->raid10_copies) { 2801 rs->ti->error = "Can't reshape raid10 mirror groups"; 2802 return -EINVAL; 2803 } 2804 2805 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */ 2806 __reorder_raid_disk_indexes(rs); 2807 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, 2808 rs->raid10_copies); 2809 mddev->new_layout = mddev->layout; 2810 reshape = false; 2811 } else 2812 reshape = true; 2813 2814 } else if (rs_is_raid456(rs)) 2815 reshape = true; 2816 2817 else if (rs_is_raid1(rs)) { 2818 if (rs->delta_disks) { 2819 /* Process raid1 via delta_disks */ 2820 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks; 2821 reshape = true; 2822 } else { 2823 /* Process raid1 without delta_disks */ 2824 mddev->raid_disks = rs->raid_disks; 2825 reshape = false; 2826 } 2827 } else { 2828 rs->ti->error = "Called with bogus raid type"; 2829 return -EINVAL; 2830 } 2831 2832 if (reshape) { 2833 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags); 2834 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2835 } else if (mddev->raid_disks < rs->raid_disks) 2836 /* Create new superblocks and bitmaps, if any new disks */ 2837 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2838 2839 return 0; 2840 } 2841 2842 /* 2843 * Reshape: 2844 * - change raid layout 2845 * - change chunk size 2846 * - add disks 2847 * - remove disks 2848 */ 2849 static int rs_setup_reshape(struct raid_set *rs) 2850 { 2851 int r = 0; 2852 unsigned int cur_raid_devs, d; 2853 sector_t reshape_sectors = _get_reshape_sectors(rs); 2854 struct mddev *mddev = &rs->md; 2855 struct md_rdev *rdev; 2856 2857 mddev->delta_disks = rs->delta_disks; 2858 cur_raid_devs = mddev->raid_disks; 2859 2860 /* Ignore impossible layout change whilst adding/removing disks */ 2861 if (mddev->delta_disks && 2862 mddev->layout != mddev->new_layout) { 2863 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks); 2864 mddev->new_layout = mddev->layout; 2865 } 2866 2867 /* 2868 * Adjust array size: 2869 * 2870 * - in case of adding disk(s), array size has 2871 * to grow after the disk adding reshape, 2872 * which'll happen in the event handler; 2873 * reshape will happen forward, so space has to 2874 * be available at the beginning of each disk 2875 * 2876 * - in case of removing disk(s), array size 2877 * has to shrink before starting the reshape, 2878 * which'll happen here; 2879 * reshape will happen backward, so space has to 2880 * be available at the end of each disk 2881 * 2882 * - data_offset and new_data_offset are 2883 * adjusted for aforementioned out of place 2884 * reshaping based on userspace passing in 2885 * the "data_offset <sectors>" key/value 2886 * pair via the constructor 2887 */ 2888 2889 /* Add disk(s) */ 2890 if (rs->delta_disks > 0) { 2891 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */ 2892 for (d = cur_raid_devs; d < rs->raid_disks; d++) { 2893 rdev = &rs->dev[d].rdev; 2894 clear_bit(In_sync, &rdev->flags); 2895 2896 /* 2897 * save_raid_disk needs to be -1, or recovery_offset will be set to 0 2898 * by md, which'll store that erroneously in the superblock on reshape 2899 */ 2900 rdev->saved_raid_disk = -1; 2901 rdev->raid_disk = d; 2902 2903 rdev->sectors = mddev->dev_sectors; 2904 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector; 2905 } 2906 2907 mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */ 2908 2909 /* Remove disk(s) */ 2910 } else if (rs->delta_disks < 0) { 2911 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true); 2912 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */ 2913 2914 /* Change layout and/or chunk size */ 2915 } else { 2916 /* 2917 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size: 2918 * 2919 * keeping number of disks and do layout change -> 2920 * 2921 * toggle reshape_backward depending on data_offset: 2922 * 2923 * - free space upfront -> reshape forward 2924 * 2925 * - free space at the end -> reshape backward 2926 * 2927 * 2928 * This utilizes free reshape space avoiding the need 2929 * for userspace to move (parts of) LV segments in 2930 * case of layout/chunksize change (for disk 2931 * adding/removing reshape space has to be at 2932 * the proper address (see above with delta_disks): 2933 * 2934 * add disk(s) -> begin 2935 * remove disk(s)-> end 2936 */ 2937 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1; 2938 } 2939 2940 /* 2941 * Adjust device size for forward reshape 2942 * because md_finish_reshape() reduces it. 2943 */ 2944 if (!mddev->reshape_backwards) 2945 rdev_for_each(rdev, &rs->md) 2946 if (!test_bit(Journal, &rdev->flags)) 2947 rdev->sectors += reshape_sectors; 2948 2949 return r; 2950 } 2951 2952 /* 2953 * If the md resync thread has updated superblock with max reshape position 2954 * at the end of a reshape but not (yet) reset the layout configuration 2955 * changes -> reset the latter. 2956 */ 2957 static void rs_reset_inconclusive_reshape(struct raid_set *rs) 2958 { 2959 if (!rs_is_reshaping(rs) && rs_is_layout_change(rs, true)) { 2960 rs_set_cur(rs); 2961 rs->md.delta_disks = 0; 2962 rs->md.reshape_backwards = 0; 2963 } 2964 } 2965 2966 /* 2967 * Enable/disable discard support on RAID set depending on 2968 * RAID level and discard properties of underlying RAID members. 2969 */ 2970 static void configure_discard_support(struct raid_set *rs) 2971 { 2972 int i; 2973 bool raid456; 2974 struct dm_target *ti = rs->ti; 2975 2976 /* 2977 * XXX: RAID level 4,5,6 require zeroing for safety. 2978 */ 2979 raid456 = rs_is_raid456(rs); 2980 2981 for (i = 0; i < rs->raid_disks; i++) { 2982 if (!rs->dev[i].rdev.bdev || 2983 !bdev_max_discard_sectors(rs->dev[i].rdev.bdev)) 2984 return; 2985 2986 if (raid456) { 2987 if (!devices_handle_discard_safely) { 2988 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty."); 2989 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override."); 2990 return; 2991 } 2992 } 2993 } 2994 2995 ti->num_discard_bios = 1; 2996 } 2997 2998 /* 2999 * Construct a RAID0/1/10/4/5/6 mapping: 3000 * Args: 3001 * <raid_type> <#raid_params> <raid_params>{0,} \ 3002 * <#raid_devs> [<meta_dev1> <dev1>]{1,} 3003 * 3004 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for 3005 * details on possible <raid_params>. 3006 * 3007 * Userspace is free to initialize the metadata devices, hence the superblocks to 3008 * enforce recreation based on the passed in table parameters. 3009 * 3010 */ 3011 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv) 3012 { 3013 int r; 3014 bool resize = false; 3015 struct raid_type *rt; 3016 unsigned int num_raid_params, num_raid_devs; 3017 sector_t sb_array_sectors, rdev_sectors, reshape_sectors; 3018 struct raid_set *rs = NULL; 3019 const char *arg; 3020 struct rs_layout rs_layout; 3021 struct dm_arg_set as = { argc, argv }, as_nrd; 3022 struct dm_arg _args[] = { 3023 { 0, as.argc, "Cannot understand number of raid parameters" }, 3024 { 1, 254, "Cannot understand number of raid devices parameters" } 3025 }; 3026 3027 arg = dm_shift_arg(&as); 3028 if (!arg) { 3029 ti->error = "No arguments"; 3030 return -EINVAL; 3031 } 3032 3033 rt = get_raid_type(arg); 3034 if (!rt) { 3035 ti->error = "Unrecognised raid_type"; 3036 return -EINVAL; 3037 } 3038 3039 /* Must have <#raid_params> */ 3040 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error)) 3041 return -EINVAL; 3042 3043 /* number of raid device tupples <meta_dev data_dev> */ 3044 as_nrd = as; 3045 dm_consume_args(&as_nrd, num_raid_params); 3046 _args[1].max = (as_nrd.argc - 1) / 2; 3047 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error)) 3048 return -EINVAL; 3049 3050 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) { 3051 ti->error = "Invalid number of supplied raid devices"; 3052 return -EINVAL; 3053 } 3054 3055 rs = raid_set_alloc(ti, rt, num_raid_devs); 3056 if (IS_ERR(rs)) 3057 return PTR_ERR(rs); 3058 3059 r = parse_raid_params(rs, &as, num_raid_params); 3060 if (r) 3061 goto bad; 3062 3063 r = parse_dev_params(rs, &as); 3064 if (r) 3065 goto bad; 3066 3067 rs->md.sync_super = super_sync; 3068 3069 /* 3070 * Calculate ctr requested array and device sizes to allow 3071 * for superblock analysis needing device sizes defined. 3072 * 3073 * Any existing superblock will overwrite the array and device sizes 3074 */ 3075 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false); 3076 if (r) 3077 goto bad; 3078 3079 /* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */ 3080 rs->array_sectors = rs->md.array_sectors; 3081 rs->dev_sectors = rs->md.dev_sectors; 3082 3083 /* 3084 * Backup any new raid set level, layout, ... 3085 * requested to be able to compare to superblock 3086 * members for conversion decisions. 3087 */ 3088 rs_config_backup(rs, &rs_layout); 3089 3090 r = analyse_superblocks(ti, rs); 3091 if (r) 3092 goto bad; 3093 3094 /* All in-core metadata now as of current superblocks after calling analyse_superblocks() */ 3095 sb_array_sectors = rs->md.array_sectors; 3096 rdev_sectors = __rdev_sectors(rs); 3097 if (!rdev_sectors) { 3098 ti->error = "Invalid rdev size"; 3099 r = -EINVAL; 3100 goto bad; 3101 } 3102 3103 3104 reshape_sectors = _get_reshape_sectors(rs); 3105 if (rs->dev_sectors != rdev_sectors) { 3106 resize = (rs->dev_sectors != rdev_sectors - reshape_sectors); 3107 if (rs->dev_sectors > rdev_sectors - reshape_sectors) 3108 set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3109 } 3110 3111 INIT_WORK(&rs->md.event_work, do_table_event); 3112 ti->private = rs; 3113 ti->num_flush_bios = 1; 3114 ti->needs_bio_set_dev = true; 3115 3116 /* Restore any requested new layout for conversion decision */ 3117 rs_config_restore(rs, &rs_layout); 3118 3119 /* 3120 * Now that we have any superblock metadata available, 3121 * check for new, recovering, reshaping, to be taken over, 3122 * to be reshaped or an existing, unchanged raid set to 3123 * run in sequence. 3124 */ 3125 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) { 3126 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */ 3127 if (rs_is_raid6(rs) && 3128 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 3129 ti->error = "'nosync' not allowed for new raid6 set"; 3130 r = -EINVAL; 3131 goto bad; 3132 } 3133 rs_setup_recovery(rs, 0); 3134 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3135 rs_set_new(rs); 3136 } else if (rs_is_recovering(rs)) { 3137 /* A recovering raid set may be resized */ 3138 goto size_check; 3139 } else if (rs_is_reshaping(rs)) { 3140 /* Have to reject size change request during reshape */ 3141 if (resize) { 3142 ti->error = "Can't resize a reshaping raid set"; 3143 r = -EPERM; 3144 goto bad; 3145 } 3146 /* skip setup rs */ 3147 } else if (rs_takeover_requested(rs)) { 3148 if (rs_is_reshaping(rs)) { 3149 ti->error = "Can't takeover a reshaping raid set"; 3150 r = -EPERM; 3151 goto bad; 3152 } 3153 3154 /* We can't takeover a journaled raid4/5/6 */ 3155 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 3156 ti->error = "Can't takeover a journaled raid4/5/6 set"; 3157 r = -EPERM; 3158 goto bad; 3159 } 3160 3161 /* 3162 * If a takeover is needed, userspace sets any additional 3163 * devices to rebuild and we can check for a valid request here. 3164 * 3165 * If acceptable, set the level to the new requested 3166 * one, prohibit requesting recovery, allow the raid 3167 * set to run and store superblocks during resume. 3168 */ 3169 r = rs_check_takeover(rs); 3170 if (r) 3171 goto bad; 3172 3173 r = rs_setup_takeover(rs); 3174 if (r) 3175 goto bad; 3176 3177 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3178 /* Takeover ain't recovery, so disable recovery */ 3179 rs_setup_recovery(rs, MaxSector); 3180 rs_set_new(rs); 3181 } else if (rs_reshape_requested(rs)) { 3182 /* Only request grow on raid set size extensions, not on reshapes. */ 3183 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3184 3185 /* 3186 * No need to check for 'ongoing' takeover here, because takeover 3187 * is an instant operation as oposed to an ongoing reshape. 3188 */ 3189 3190 /* We can't reshape a journaled raid4/5/6 */ 3191 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 3192 ti->error = "Can't reshape a journaled raid4/5/6 set"; 3193 r = -EPERM; 3194 goto bad; 3195 } 3196 3197 /* Out-of-place space has to be available to allow for a reshape unless raid1! */ 3198 if (reshape_sectors || rs_is_raid1(rs)) { 3199 /* 3200 * We can only prepare for a reshape here, because the 3201 * raid set needs to run to provide the respective reshape 3202 * check functions via its MD personality instance. 3203 * 3204 * So do the reshape check after md_run() succeeded. 3205 */ 3206 r = rs_prepare_reshape(rs); 3207 if (r) 3208 goto bad; 3209 3210 /* Reshaping ain't recovery, so disable recovery */ 3211 rs_setup_recovery(rs, MaxSector); 3212 } 3213 rs_set_cur(rs); 3214 } else { 3215 size_check: 3216 /* May not set recovery when a device rebuild is requested */ 3217 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) { 3218 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3219 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3220 rs_setup_recovery(rs, MaxSector); 3221 } else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) { 3222 /* 3223 * Set raid set to current size, i.e. size as of 3224 * superblocks to grow to larger size in preresume. 3225 */ 3226 r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false); 3227 if (r) 3228 goto bad; 3229 3230 rs_setup_recovery(rs, rs->md.resync_offset < rs->md.dev_sectors ? rs->md.resync_offset : rs->md.dev_sectors); 3231 } else { 3232 /* This is no size change or it is shrinking, update size and record in superblocks */ 3233 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false); 3234 if (r) 3235 goto bad; 3236 3237 if (sb_array_sectors > rs->array_sectors) 3238 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3239 } 3240 rs_set_cur(rs); 3241 } 3242 3243 /* If constructor requested it, change data and new_data offsets */ 3244 r = rs_adjust_data_offsets(rs); 3245 if (r) 3246 goto bad; 3247 3248 /* Catch any inconclusive reshape superblock content. */ 3249 rs_reset_inconclusive_reshape(rs); 3250 3251 /* Start raid set read-only and assumed clean to change in raid_resume() */ 3252 rs->md.ro = MD_RDONLY; 3253 rs->md.in_sync = 1; 3254 3255 /* Has to be held on running the array */ 3256 mddev_suspend_and_lock_nointr(&rs->md); 3257 3258 /* Keep array frozen until resume. */ 3259 md_frozen_sync_thread(&rs->md); 3260 3261 r = md_run(&rs->md); 3262 rs->md.in_sync = 0; /* Assume already marked dirty */ 3263 if (r) { 3264 ti->error = "Failed to run raid array"; 3265 mddev_unlock(&rs->md); 3266 goto bad; 3267 } 3268 3269 r = md_start(&rs->md); 3270 if (r) { 3271 ti->error = "Failed to start raid array"; 3272 goto bad_unlock; 3273 } 3274 3275 /* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */ 3276 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) { 3277 r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode); 3278 if (r) { 3279 ti->error = "Failed to set raid4/5/6 journal mode"; 3280 goto bad_unlock; 3281 } 3282 } 3283 3284 set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags); 3285 3286 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */ 3287 if (rs_is_raid456(rs)) { 3288 r = rs_set_raid456_stripe_cache(rs); 3289 if (r) 3290 goto bad_unlock; 3291 } 3292 3293 /* Now do an early reshape check */ 3294 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { 3295 r = rs_check_reshape(rs); 3296 if (r) 3297 goto bad_unlock; 3298 3299 /* Restore new, ctr requested layout to perform check */ 3300 rs_config_restore(rs, &rs_layout); 3301 3302 if (rs->md.pers->start_reshape) { 3303 r = rs->md.pers->check_reshape(&rs->md); 3304 if (r) { 3305 ti->error = "Reshape check failed"; 3306 goto bad_unlock; 3307 } 3308 } 3309 } 3310 3311 /* Disable/enable discard support on raid set. */ 3312 configure_discard_support(rs); 3313 rs->md.dm_gendisk = dm_disk(dm_table_get_md(ti->table)); 3314 3315 mddev_unlock(&rs->md); 3316 return 0; 3317 3318 bad_unlock: 3319 md_stop(&rs->md); 3320 mddev_unlock(&rs->md); 3321 bad: 3322 raid_set_free(rs); 3323 3324 return r; 3325 } 3326 3327 static void raid_dtr(struct dm_target *ti) 3328 { 3329 struct raid_set *rs = ti->private; 3330 3331 mddev_lock_nointr(&rs->md); 3332 md_stop(&rs->md); 3333 rs->md.dm_gendisk = NULL; 3334 mddev_unlock(&rs->md); 3335 3336 if (work_pending(&rs->md.event_work)) 3337 flush_work(&rs->md.event_work); 3338 raid_set_free(rs); 3339 } 3340 3341 static int raid_map(struct dm_target *ti, struct bio *bio) 3342 { 3343 struct raid_set *rs = ti->private; 3344 struct mddev *mddev = &rs->md; 3345 3346 /* 3347 * If we're reshaping to add disk(s), ti->len and 3348 * mddev->array_sectors will differ during the process 3349 * (ti->len > mddev->array_sectors), so we have to requeue 3350 * bios with addresses > mddev->array_sectors here or 3351 * there will occur accesses past EOD of the component 3352 * data images thus erroring the raid set. 3353 */ 3354 if (unlikely(bio_has_data(bio) && bio_end_sector(bio) > mddev->array_sectors)) 3355 return DM_MAPIO_REQUEUE; 3356 3357 if (unlikely(!md_handle_request(mddev, bio))) 3358 return DM_MAPIO_REQUEUE; 3359 3360 return DM_MAPIO_SUBMITTED; 3361 } 3362 3363 /* Return sync state string for @state */ 3364 enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle }; 3365 static const char *sync_str(enum sync_state state) 3366 { 3367 /* Has to be in above sync_state order! */ 3368 static const char *sync_strs[] = { 3369 "frozen", 3370 "reshape", 3371 "resync", 3372 "check", 3373 "repair", 3374 "recover", 3375 "idle" 3376 }; 3377 3378 return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef"; 3379 }; 3380 3381 /* Return enum sync_state for @mddev derived from @recovery flags */ 3382 static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery) 3383 { 3384 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 3385 return st_frozen; 3386 3387 /* The MD sync thread can be done with io or be interrupted but still be running */ 3388 if (!test_bit(MD_RECOVERY_DONE, &recovery) && 3389 (test_bit(MD_RECOVERY_RUNNING, &recovery) || 3390 (md_is_rdwr(mddev) && test_bit(MD_RECOVERY_NEEDED, &recovery)))) { 3391 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 3392 return st_reshape; 3393 3394 if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 3395 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 3396 return st_resync; 3397 if (test_bit(MD_RECOVERY_CHECK, &recovery)) 3398 return st_check; 3399 return st_repair; 3400 } 3401 3402 if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 3403 return st_recover; 3404 3405 if (mddev->reshape_position != MaxSector) 3406 return st_reshape; 3407 } 3408 3409 return st_idle; 3410 } 3411 3412 /* 3413 * Return status string for @rdev 3414 * 3415 * Status characters: 3416 * 3417 * 'D' = Dead/Failed raid set component or raid4/5/6 journal device 3418 * 'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device 3419 * 'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device 3420 * '-' = Non-existing device (i.e. uspace passed '- -' into the ctr) 3421 */ 3422 static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev) 3423 { 3424 if (!rdev->bdev) 3425 return "-"; 3426 else if (test_bit(Faulty, &rdev->flags)) 3427 return "D"; 3428 else if (test_bit(Journal, &rdev->flags)) 3429 return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a"; 3430 else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) || 3431 (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) && 3432 !test_bit(In_sync, &rdev->flags))) 3433 return "a"; 3434 else 3435 return "A"; 3436 } 3437 3438 /* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */ 3439 static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery, 3440 enum sync_state state, sector_t resync_max_sectors) 3441 { 3442 sector_t r; 3443 struct mddev *mddev = &rs->md; 3444 3445 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3446 clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3447 3448 if (rs_is_raid0(rs)) { 3449 r = resync_max_sectors; 3450 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3451 3452 } else { 3453 if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery)) 3454 r = mddev->resync_offset; 3455 else 3456 r = mddev->curr_resync_completed; 3457 3458 if (state == st_idle && r >= resync_max_sectors) { 3459 /* 3460 * Sync complete. 3461 */ 3462 /* In case we have finished recovering, the array is in sync. */ 3463 if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 3464 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3465 3466 } else if (state == st_recover) 3467 /* 3468 * In case we are recovering, the array is not in sync 3469 * and health chars should show the recovering legs. 3470 * 3471 * Already retrieved recovery offset from curr_resync_completed above. 3472 */ 3473 ; 3474 3475 else if (state == st_resync || state == st_reshape) 3476 /* 3477 * If "resync/reshape" is occurring, the raid set 3478 * is or may be out of sync hence the health 3479 * characters shall be 'a'. 3480 */ 3481 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3482 3483 else if (state == st_check || state == st_repair) 3484 /* 3485 * If "check" or "repair" is occurring, the raid set has 3486 * undergone an initial sync and the health characters 3487 * should not be 'a' anymore. 3488 */ 3489 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3490 3491 else if (test_bit(MD_RECOVERY_NEEDED, &recovery)) 3492 /* 3493 * We are idle and recovery is needed, prevent 'A' chars race 3494 * caused by components still set to in-sync by constructor. 3495 */ 3496 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3497 3498 else { 3499 /* 3500 * We are idle and the raid set may be doing an initial 3501 * sync, or it may be rebuilding individual components. 3502 * If all the devices are In_sync, then it is the raid set 3503 * that is being initialized. 3504 */ 3505 struct md_rdev *rdev; 3506 3507 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3508 rdev_for_each(rdev, mddev) 3509 if (!test_bit(Journal, &rdev->flags) && 3510 !test_bit(In_sync, &rdev->flags)) { 3511 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3512 break; 3513 } 3514 } 3515 } 3516 3517 return min(r, resync_max_sectors); 3518 } 3519 3520 /* Helper to return @dev name or "-" if !@dev */ 3521 static const char *__get_dev_name(struct dm_dev *dev) 3522 { 3523 return dev ? dev->name : "-"; 3524 } 3525 3526 static void raid_status(struct dm_target *ti, status_type_t type, 3527 unsigned int status_flags, char *result, unsigned int maxlen) 3528 { 3529 struct raid_set *rs = ti->private; 3530 struct mddev *mddev = &rs->md; 3531 struct r5conf *conf = rs_is_raid456(rs) ? mddev->private : NULL; 3532 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0; 3533 unsigned long recovery; 3534 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */ 3535 unsigned int sz = 0; 3536 unsigned int rebuild_writemostly_count = 0; 3537 sector_t progress, resync_max_sectors, resync_mismatches; 3538 enum sync_state state; 3539 struct raid_type *rt; 3540 3541 switch (type) { 3542 case STATUSTYPE_INFO: 3543 /* *Should* always succeed */ 3544 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 3545 if (!rt) 3546 return; 3547 3548 DMEMIT("%s %d ", rt->name, mddev->raid_disks); 3549 3550 /* Access most recent mddev properties for status output */ 3551 smp_rmb(); 3552 /* Get sensible max sectors even if raid set not yet started */ 3553 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ? 3554 mddev->resync_max_sectors : mddev->dev_sectors; 3555 recovery = rs->md.recovery; 3556 state = decipher_sync_action(mddev, recovery); 3557 progress = rs_get_progress(rs, recovery, state, resync_max_sectors); 3558 resync_mismatches = mddev->last_sync_action == ACTION_CHECK ? 3559 atomic64_read(&mddev->resync_mismatches) : 0; 3560 3561 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */ 3562 for (i = 0; i < rs->raid_disks; i++) 3563 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev)); 3564 3565 /* 3566 * In-sync/Reshape ratio: 3567 * The in-sync ratio shows the progress of: 3568 * - Initializing the raid set 3569 * - Rebuilding a subset of devices of the raid set 3570 * The user can distinguish between the two by referring 3571 * to the status characters. 3572 * 3573 * The reshape ratio shows the progress of 3574 * changing the raid layout or the number of 3575 * disks of a raid set 3576 */ 3577 DMEMIT(" %llu/%llu", (unsigned long long) progress, 3578 (unsigned long long) resync_max_sectors); 3579 3580 /* 3581 * v1.5.0+: 3582 * 3583 * Sync action: 3584 * See Documentation/admin-guide/device-mapper/dm-raid.rst for 3585 * information on each of these states. 3586 */ 3587 DMEMIT(" %s", sync_str(state)); 3588 3589 /* 3590 * v1.5.0+: 3591 * 3592 * resync_mismatches/mismatch_cnt 3593 * This field shows the number of discrepancies found when 3594 * performing a "check" of the raid set. 3595 */ 3596 DMEMIT(" %llu", (unsigned long long) resync_mismatches); 3597 3598 /* 3599 * v1.9.0+: 3600 * 3601 * data_offset (needed for out of space reshaping) 3602 * This field shows the data offset into the data 3603 * image LV where the first stripes data starts. 3604 * 3605 * We keep data_offset equal on all raid disks of the set, 3606 * so retrieving it from the first raid disk is sufficient. 3607 */ 3608 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset); 3609 3610 /* 3611 * v1.10.0+: 3612 */ 3613 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ? 3614 __raid_dev_status(rs, &rs->journal_dev.rdev) : "-"); 3615 break; 3616 3617 case STATUSTYPE_TABLE: 3618 /* Report the table line string you would use to construct this raid set */ 3619 3620 /* 3621 * Count any rebuild or writemostly argument pairs and subtract the 3622 * hweight count being added below of any rebuild and writemostly ctr flags. 3623 */ 3624 for (i = 0; i < rs->raid_disks; i++) { 3625 rebuild_writemostly_count += (test_bit(i, (void *) rs->rebuild_disks) ? 2 : 0) + 3626 (test_bit(WriteMostly, &rs->dev[i].rdev.flags) ? 2 : 0); 3627 } 3628 rebuild_writemostly_count -= (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) ? 2 : 0) + 3629 (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags) ? 2 : 0); 3630 /* Calculate raid parameter count based on ^ rebuild/writemostly argument counts and ctr flags set. */ 3631 raid_param_cnt += rebuild_writemostly_count + 3632 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) + 3633 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2; 3634 /* Emit table line */ 3635 /* This has to be in the documented order for userspace! */ 3636 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors); 3637 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 3638 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC)); 3639 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) 3640 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC)); 3641 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) 3642 for (i = 0; i < rs->raid_disks; i++) 3643 if (test_bit(i, (void *) rs->rebuild_disks)) 3644 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), i); 3645 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) 3646 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP), 3647 mddev->bitmap_info.daemon_sleep); 3648 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) 3649 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE), 3650 mddev->sync_speed_min); 3651 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) 3652 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE), 3653 mddev->sync_speed_max); 3654 if (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags)) 3655 for (i = 0; i < rs->raid_disks; i++) 3656 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags)) 3657 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY), 3658 rs->dev[i].rdev.raid_disk); 3659 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) 3660 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND), 3661 mddev->bitmap_info.max_write_behind); 3662 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) 3663 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE), 3664 max_nr_stripes); 3665 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) 3666 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE), 3667 (unsigned long long) to_sector(mddev->bitmap_info.chunksize)); 3668 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) 3669 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES), 3670 raid10_md_layout_to_copies(mddev->layout)); 3671 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) 3672 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT), 3673 raid10_md_layout_to_format(mddev->layout)); 3674 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) 3675 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS), 3676 max(rs->delta_disks, mddev->delta_disks)); 3677 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) 3678 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET), 3679 (unsigned long long) rs->data_offset); 3680 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) 3681 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV), 3682 __get_dev_name(rs->journal_dev.dev)); 3683 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) 3684 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE), 3685 md_journal_mode_to_dm_raid(rs->journal_dev.mode)); 3686 DMEMIT(" %d", rs->raid_disks); 3687 for (i = 0; i < rs->raid_disks; i++) 3688 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev), 3689 __get_dev_name(rs->dev[i].data_dev)); 3690 break; 3691 3692 case STATUSTYPE_IMA: 3693 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 3694 if (!rt) 3695 return; 3696 3697 DMEMIT_TARGET_NAME_VERSION(ti->type); 3698 DMEMIT(",raid_type=%s,raid_disks=%d", rt->name, mddev->raid_disks); 3699 3700 /* Access most recent mddev properties for status output */ 3701 smp_rmb(); 3702 recovery = rs->md.recovery; 3703 state = decipher_sync_action(mddev, recovery); 3704 DMEMIT(",raid_state=%s", sync_str(state)); 3705 3706 for (i = 0; i < rs->raid_disks; i++) { 3707 DMEMIT(",raid_device_%d_status=", i); 3708 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev)); 3709 } 3710 3711 if (rt_is_raid456(rt)) { 3712 DMEMIT(",journal_dev_mode="); 3713 switch (rs->journal_dev.mode) { 3714 case R5C_JOURNAL_MODE_WRITE_THROUGH: 3715 DMEMIT("%s", 3716 _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_THROUGH].param); 3717 break; 3718 case R5C_JOURNAL_MODE_WRITE_BACK: 3719 DMEMIT("%s", 3720 _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_BACK].param); 3721 break; 3722 default: 3723 DMEMIT("invalid"); 3724 break; 3725 } 3726 } 3727 DMEMIT(";"); 3728 break; 3729 } 3730 } 3731 3732 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv, 3733 char *result, unsigned int maxlen) 3734 { 3735 struct raid_set *rs = ti->private; 3736 struct mddev *mddev = &rs->md; 3737 int ret = 0; 3738 3739 if (!mddev->pers || !mddev->pers->sync_request) 3740 return -EINVAL; 3741 3742 if (test_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags) || 3743 test_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags)) 3744 return -EBUSY; 3745 3746 if (!strcasecmp(argv[0], "frozen")) { 3747 ret = mddev_lock(mddev); 3748 if (ret) 3749 return ret; 3750 3751 md_frozen_sync_thread(mddev); 3752 mddev_unlock(mddev); 3753 } else if (!strcasecmp(argv[0], "idle")) { 3754 ret = mddev_lock(mddev); 3755 if (ret) 3756 return ret; 3757 3758 md_idle_sync_thread(mddev); 3759 mddev_unlock(mddev); 3760 } 3761 3762 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3763 if (decipher_sync_action(mddev, mddev->recovery) != st_idle) 3764 return -EBUSY; 3765 else if (!strcasecmp(argv[0], "resync")) 3766 ; /* MD_RECOVERY_NEEDED set below */ 3767 else if (!strcasecmp(argv[0], "recover")) 3768 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3769 else { 3770 if (!strcasecmp(argv[0], "check")) { 3771 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3772 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3773 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3774 } else if (!strcasecmp(argv[0], "repair")) { 3775 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3776 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3777 } else 3778 return -EINVAL; 3779 } 3780 if (mddev->ro == MD_AUTO_READ) { 3781 /* A write to sync_action is enough to justify 3782 * canceling read-auto mode 3783 */ 3784 mddev->ro = MD_RDWR; 3785 if (!mddev->suspended) 3786 md_wakeup_thread(mddev->sync_thread); 3787 } 3788 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3789 if (!mddev->suspended) 3790 md_wakeup_thread(mddev->thread); 3791 3792 return 0; 3793 } 3794 3795 static int raid_iterate_devices(struct dm_target *ti, 3796 iterate_devices_callout_fn fn, void *data) 3797 { 3798 struct raid_set *rs = ti->private; 3799 unsigned int i; 3800 int r = 0; 3801 3802 for (i = 0; !r && i < rs->raid_disks; i++) { 3803 if (rs->dev[i].data_dev) { 3804 r = fn(ti, rs->dev[i].data_dev, 3805 0, /* No offset on data devs */ 3806 rs->md.dev_sectors, data); 3807 } 3808 } 3809 3810 return r; 3811 } 3812 3813 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits) 3814 { 3815 struct raid_set *rs = ti->private; 3816 unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors); 3817 3818 if (chunk_size_bytes) { 3819 limits->io_min = chunk_size_bytes; 3820 limits->io_opt = chunk_size_bytes * mddev_data_stripes(rs); 3821 } 3822 } 3823 3824 static void raid_presuspend(struct dm_target *ti) 3825 { 3826 struct raid_set *rs = ti->private; 3827 struct mddev *mddev = &rs->md; 3828 3829 /* 3830 * From now on, disallow raid_message() to change sync_thread until 3831 * resume, raid_postsuspend() is too late. 3832 */ 3833 set_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags); 3834 3835 if (!reshape_interrupted(mddev)) 3836 return; 3837 3838 /* 3839 * For raid456, if reshape is interrupted, IO across reshape position 3840 * will never make progress, while caller will wait for IO to be done. 3841 * Inform raid456 to handle those IO to prevent deadlock. 3842 */ 3843 if (mddev->pers && mddev->pers->prepare_suspend) 3844 mddev->pers->prepare_suspend(mddev); 3845 } 3846 3847 static void raid_presuspend_undo(struct dm_target *ti) 3848 { 3849 struct raid_set *rs = ti->private; 3850 3851 clear_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags); 3852 } 3853 3854 static void raid_postsuspend(struct dm_target *ti) 3855 { 3856 struct raid_set *rs = ti->private; 3857 3858 if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) { 3859 /* 3860 * sync_thread must be stopped during suspend, and writes have 3861 * to be stopped before suspending to avoid deadlocks. 3862 */ 3863 md_stop_writes(&rs->md); 3864 mddev_suspend(&rs->md, false); 3865 rs->md.ro = MD_RDONLY; 3866 } 3867 } 3868 3869 static void attempt_restore_of_faulty_devices(struct raid_set *rs) 3870 { 3871 int i; 3872 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS]; 3873 unsigned long flags; 3874 bool cleared = false; 3875 struct dm_raid_superblock *sb; 3876 struct mddev *mddev = &rs->md; 3877 struct md_rdev *r; 3878 3879 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */ 3880 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk) 3881 return; 3882 3883 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices)); 3884 3885 for (i = 0; i < rs->raid_disks; i++) { 3886 r = &rs->dev[i].rdev; 3887 /* HM FIXME: enhance journal device recovery processing */ 3888 if (test_bit(Journal, &r->flags)) 3889 continue; 3890 3891 if (test_bit(Faulty, &r->flags) && 3892 r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) { 3893 DMINFO("Faulty %s device #%d has readable super block." 3894 " Attempting to revive it.", 3895 rs->raid_type->name, i); 3896 3897 /* 3898 * Faulty bit may be set, but sometimes the array can 3899 * be suspended before the personalities can respond 3900 * by removing the device from the array (i.e. calling 3901 * 'hot_remove_disk'). If they haven't yet removed 3902 * the failed device, its 'raid_disk' number will be 3903 * '>= 0' - meaning we must call this function 3904 * ourselves. 3905 */ 3906 flags = r->flags; 3907 clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */ 3908 if (r->raid_disk >= 0) { 3909 if (mddev->pers->hot_remove_disk(mddev, r)) { 3910 /* Failed to revive this device, try next */ 3911 r->flags = flags; 3912 continue; 3913 } 3914 } else 3915 r->raid_disk = r->saved_raid_disk = i; 3916 3917 clear_bit(Faulty, &r->flags); 3918 clear_bit(WriteErrorSeen, &r->flags); 3919 3920 if (mddev->pers->hot_add_disk(mddev, r)) { 3921 /* Failed to revive this device, try next */ 3922 r->raid_disk = r->saved_raid_disk = -1; 3923 r->flags = flags; 3924 } else { 3925 clear_bit(In_sync, &r->flags); 3926 r->recovery_offset = 0; 3927 set_bit(i, (void *) cleared_failed_devices); 3928 cleared = true; 3929 } 3930 } 3931 } 3932 3933 /* If any failed devices could be cleared, update all sbs failed_devices bits */ 3934 if (cleared) { 3935 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 3936 3937 rdev_for_each(r, &rs->md) { 3938 if (test_bit(Journal, &r->flags)) 3939 continue; 3940 3941 sb = page_address(r->sb_page); 3942 sb_retrieve_failed_devices(sb, failed_devices); 3943 3944 for (i = 0; i < DISKS_ARRAY_ELEMS; i++) 3945 failed_devices[i] &= ~cleared_failed_devices[i]; 3946 3947 sb_update_failed_devices(sb, failed_devices); 3948 } 3949 } 3950 } 3951 3952 static int __load_dirty_region_bitmap(struct raid_set *rs) 3953 { 3954 int r = 0; 3955 3956 /* Try loading the bitmap unless "raid0", which does not have one */ 3957 if (!rs_is_raid0(rs) && 3958 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) { 3959 struct mddev *mddev = &rs->md; 3960 3961 if (md_bitmap_enabled(mddev, false)) { 3962 r = mddev->bitmap_ops->load(mddev); 3963 if (r) 3964 DMERR("Failed to load bitmap"); 3965 } 3966 } 3967 3968 return r; 3969 } 3970 3971 /* Enforce updating all superblocks */ 3972 static void rs_update_sbs(struct raid_set *rs) 3973 { 3974 struct mddev *mddev = &rs->md; 3975 int ro = mddev->ro; 3976 3977 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3978 mddev->ro = MD_RDWR; 3979 md_update_sb(mddev, 1); 3980 mddev->ro = ro; 3981 } 3982 3983 /* 3984 * Reshape changes raid algorithm of @rs to new one within personality 3985 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes 3986 * disks from a raid set thus growing/shrinking it or resizes the set 3987 * 3988 * Call mddev_lock_nointr() before! 3989 */ 3990 static int rs_start_reshape(struct raid_set *rs) 3991 { 3992 int r; 3993 struct mddev *mddev = &rs->md; 3994 struct md_personality *pers = mddev->pers; 3995 3996 /* Don't allow the sync thread to work until the table gets reloaded. */ 3997 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 3998 3999 r = rs_setup_reshape(rs); 4000 if (r) 4001 return r; 4002 4003 /* 4004 * Check any reshape constraints enforced by the personalility 4005 * 4006 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional. 4007 */ 4008 r = pers->check_reshape(mddev); 4009 if (r) { 4010 rs->ti->error = "pers->check_reshape() failed"; 4011 return r; 4012 } 4013 4014 /* 4015 * Personality may not provide start reshape method in which 4016 * case check_reshape above has already covered everything 4017 */ 4018 if (pers->start_reshape) { 4019 r = pers->start_reshape(mddev); 4020 if (r) { 4021 rs->ti->error = "pers->start_reshape() failed"; 4022 return r; 4023 } 4024 } 4025 4026 /* 4027 * Now reshape got set up, update superblocks to 4028 * reflect the fact so that a table reload will 4029 * access proper superblock content in the ctr. 4030 */ 4031 rs_update_sbs(rs); 4032 4033 return 0; 4034 } 4035 4036 static int raid_preresume(struct dm_target *ti) 4037 { 4038 int r; 4039 struct raid_set *rs = ti->private; 4040 struct mddev *mddev = &rs->md; 4041 4042 /* This is a resume after a suspend of the set -> it's already started. */ 4043 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags)) 4044 return 0; 4045 4046 /* If different and no explicit grow request, expose MD array size as of superblock. */ 4047 if (!test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) && 4048 rs->array_sectors != mddev->array_sectors) 4049 rs_set_capacity(rs); 4050 4051 /* 4052 * The superblocks need to be updated on disk if the 4053 * array is new or new devices got added (thus zeroed 4054 * out by userspace) or __load_dirty_region_bitmap 4055 * will overwrite them in core with old data or fail. 4056 */ 4057 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags)) 4058 rs_update_sbs(rs); 4059 4060 /* Load the bitmap from disk unless raid0 */ 4061 r = __load_dirty_region_bitmap(rs); 4062 if (r) 4063 return r; 4064 4065 /* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */ 4066 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) { 4067 mddev->array_sectors = rs->array_sectors; 4068 mddev->dev_sectors = rs->dev_sectors; 4069 rs_set_rdev_sectors(rs); 4070 rs_set_capacity(rs); 4071 } 4072 4073 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */ 4074 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap && 4075 (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) || 4076 (rs->requested_bitmap_chunk_sectors && 4077 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) { 4078 int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize; 4079 4080 if (md_bitmap_enabled(mddev, false)) { 4081 r = mddev->bitmap_ops->resize(mddev, mddev->dev_sectors, 4082 chunksize); 4083 if (r) 4084 DMERR("Failed to resize bitmap"); 4085 } 4086 } 4087 4088 /* Check for any resize/reshape on @rs and adjust/initiate */ 4089 if (mddev->resync_offset && mddev->resync_offset < MaxSector) { 4090 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4091 mddev->resync_min = mddev->resync_offset; 4092 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) 4093 mddev->resync_max_sectors = mddev->dev_sectors; 4094 } 4095 4096 /* Check for any reshape request unless new raid set */ 4097 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { 4098 /* Initiate a reshape. */ 4099 rs_set_rdev_sectors(rs); 4100 mddev_lock_nointr(mddev); 4101 r = rs_start_reshape(rs); 4102 mddev_unlock(mddev); 4103 if (r) 4104 DMWARN("Failed to check/start reshape, continuing without change"); 4105 r = 0; 4106 } 4107 4108 return r; 4109 } 4110 4111 static void raid_resume(struct dm_target *ti) 4112 { 4113 struct raid_set *rs = ti->private; 4114 struct mddev *mddev = &rs->md; 4115 4116 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) { 4117 /* 4118 * A secondary resume while the device is active. 4119 * Take this opportunity to check whether any failed 4120 * devices are reachable again. 4121 */ 4122 mddev_lock_nointr(mddev); 4123 attempt_restore_of_faulty_devices(rs); 4124 mddev_unlock(mddev); 4125 } 4126 4127 if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) { 4128 /* Only reduce raid set size before running a disk removing reshape. */ 4129 if (mddev->delta_disks < 0) 4130 rs_set_capacity(rs); 4131 4132 mddev_lock_nointr(mddev); 4133 WARN_ON_ONCE(!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)); 4134 WARN_ON_ONCE(rcu_dereference_protected(mddev->sync_thread, 4135 lockdep_is_held(&mddev->reconfig_mutex))); 4136 clear_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags); 4137 mddev->ro = MD_RDWR; 4138 mddev->in_sync = 0; 4139 md_unfrozen_sync_thread(mddev); 4140 mddev_unlock_and_resume(mddev); 4141 } 4142 } 4143 4144 static struct target_type raid_target = { 4145 .name = "raid", 4146 .version = {1, 15, 1}, 4147 .module = THIS_MODULE, 4148 .ctr = raid_ctr, 4149 .dtr = raid_dtr, 4150 .map = raid_map, 4151 .status = raid_status, 4152 .message = raid_message, 4153 .iterate_devices = raid_iterate_devices, 4154 .io_hints = raid_io_hints, 4155 .presuspend = raid_presuspend, 4156 .presuspend_undo = raid_presuspend_undo, 4157 .postsuspend = raid_postsuspend, 4158 .preresume = raid_preresume, 4159 .resume = raid_resume, 4160 }; 4161 module_dm(raid); 4162 4163 module_param(devices_handle_discard_safely, bool, 0644); 4164 MODULE_PARM_DESC(devices_handle_discard_safely, 4165 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 4166 4167 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target"); 4168 MODULE_ALIAS("dm-raid0"); 4169 MODULE_ALIAS("dm-raid1"); 4170 MODULE_ALIAS("dm-raid10"); 4171 MODULE_ALIAS("dm-raid4"); 4172 MODULE_ALIAS("dm-raid5"); 4173 MODULE_ALIAS("dm-raid6"); 4174 MODULE_AUTHOR("Neil Brown <dm-devel@lists.linux.dev>"); 4175 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@lists.linux.dev>"); 4176 MODULE_LICENSE("GPL"); 4177