1 /* 2 * Copyright (C) 2010-2011 Neil Brown 3 * Copyright (C) 2010-2017 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/slab.h> 9 #include <linux/module.h> 10 11 #include "md.h" 12 #include "raid1.h" 13 #include "raid5.h" 14 #include "raid10.h" 15 #include "md-bitmap.h" 16 17 #include <linux/device-mapper.h> 18 19 #define DM_MSG_PREFIX "raid" 20 #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */ 21 22 /* 23 * Minimum sectors of free reshape space per raid device 24 */ 25 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096) 26 27 /* 28 * Minimum journal space 4 MiB in sectors. 29 */ 30 #define MIN_RAID456_JOURNAL_SPACE (4*2048) 31 32 /* Global list of all raid sets */ 33 static LIST_HEAD(raid_sets); 34 35 static bool devices_handle_discard_safely = false; 36 37 /* 38 * The following flags are used by dm-raid.c to set up the array state. 39 * They must be cleared before md_run is called. 40 */ 41 #define FirstUse 10 /* rdev flag */ 42 43 struct raid_dev { 44 /* 45 * Two DM devices, one to hold metadata and one to hold the 46 * actual data/parity. The reason for this is to not confuse 47 * ti->len and give more flexibility in altering size and 48 * characteristics. 49 * 50 * While it is possible for this device to be associated 51 * with a different physical device than the data_dev, it 52 * is intended for it to be the same. 53 * |--------- Physical Device ---------| 54 * |- meta_dev -|------ data_dev ------| 55 */ 56 struct dm_dev *meta_dev; 57 struct dm_dev *data_dev; 58 struct md_rdev rdev; 59 }; 60 61 /* 62 * Bits for establishing rs->ctr_flags 63 * 64 * 1 = no flag value 65 * 2 = flag with value 66 */ 67 #define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */ 68 #define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */ 69 #define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */ 70 #define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */ 71 #define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */ 72 #define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */ 73 #define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */ 74 #define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */ 75 #define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */ 76 #define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */ 77 #define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */ 78 #define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */ 79 /* New for v1.9.0 */ 80 #define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */ 81 #define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */ 82 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */ 83 84 /* New for v1.10.0 */ 85 #define __CTR_FLAG_JOURNAL_DEV 15 /* 2 */ /* Only with raid4/5/6 (journal device)! */ 86 87 /* New for v1.11.1 */ 88 #define __CTR_FLAG_JOURNAL_MODE 16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */ 89 90 /* 91 * Flags for rs->ctr_flags field. 92 */ 93 #define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC) 94 #define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC) 95 #define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD) 96 #define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP) 97 #define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE) 98 #define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE) 99 #define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND) 100 #define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY) 101 #define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE) 102 #define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE) 103 #define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES) 104 #define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT) 105 #define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS) 106 #define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET) 107 #define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS) 108 #define CTR_FLAG_JOURNAL_DEV (1 << __CTR_FLAG_JOURNAL_DEV) 109 #define CTR_FLAG_JOURNAL_MODE (1 << __CTR_FLAG_JOURNAL_MODE) 110 111 /* 112 * Definitions of various constructor flags to 113 * be used in checks of valid / invalid flags 114 * per raid level. 115 */ 116 /* Define all any sync flags */ 117 #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC) 118 119 /* Define flags for options without argument (e.g. 'nosync') */ 120 #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \ 121 CTR_FLAG_RAID10_USE_NEAR_SETS) 122 123 /* Define flags for options with one argument (e.g. 'delta_disks +2') */ 124 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \ 125 CTR_FLAG_WRITE_MOSTLY | \ 126 CTR_FLAG_DAEMON_SLEEP | \ 127 CTR_FLAG_MIN_RECOVERY_RATE | \ 128 CTR_FLAG_MAX_RECOVERY_RATE | \ 129 CTR_FLAG_MAX_WRITE_BEHIND | \ 130 CTR_FLAG_STRIPE_CACHE | \ 131 CTR_FLAG_REGION_SIZE | \ 132 CTR_FLAG_RAID10_COPIES | \ 133 CTR_FLAG_RAID10_FORMAT | \ 134 CTR_FLAG_DELTA_DISKS | \ 135 CTR_FLAG_DATA_OFFSET) 136 137 /* Valid options definitions per raid level... */ 138 139 /* "raid0" does only accept data offset */ 140 #define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET) 141 142 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */ 143 #define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 144 CTR_FLAG_REBUILD | \ 145 CTR_FLAG_WRITE_MOSTLY | \ 146 CTR_FLAG_DAEMON_SLEEP | \ 147 CTR_FLAG_MIN_RECOVERY_RATE | \ 148 CTR_FLAG_MAX_RECOVERY_RATE | \ 149 CTR_FLAG_MAX_WRITE_BEHIND | \ 150 CTR_FLAG_REGION_SIZE | \ 151 CTR_FLAG_DELTA_DISKS | \ 152 CTR_FLAG_DATA_OFFSET) 153 154 /* "raid10" does not accept any raid1 or stripe cache options */ 155 #define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 156 CTR_FLAG_REBUILD | \ 157 CTR_FLAG_DAEMON_SLEEP | \ 158 CTR_FLAG_MIN_RECOVERY_RATE | \ 159 CTR_FLAG_MAX_RECOVERY_RATE | \ 160 CTR_FLAG_REGION_SIZE | \ 161 CTR_FLAG_RAID10_COPIES | \ 162 CTR_FLAG_RAID10_FORMAT | \ 163 CTR_FLAG_DELTA_DISKS | \ 164 CTR_FLAG_DATA_OFFSET | \ 165 CTR_FLAG_RAID10_USE_NEAR_SETS) 166 167 /* 168 * "raid4/5/6" do not accept any raid1 or raid10 specific options 169 * 170 * "raid6" does not accept "nosync", because it is not guaranteed 171 * that both parity and q-syndrome are being written properly with 172 * any writes 173 */ 174 #define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 175 CTR_FLAG_REBUILD | \ 176 CTR_FLAG_DAEMON_SLEEP | \ 177 CTR_FLAG_MIN_RECOVERY_RATE | \ 178 CTR_FLAG_MAX_RECOVERY_RATE | \ 179 CTR_FLAG_STRIPE_CACHE | \ 180 CTR_FLAG_REGION_SIZE | \ 181 CTR_FLAG_DELTA_DISKS | \ 182 CTR_FLAG_DATA_OFFSET | \ 183 CTR_FLAG_JOURNAL_DEV | \ 184 CTR_FLAG_JOURNAL_MODE) 185 186 #define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \ 187 CTR_FLAG_REBUILD | \ 188 CTR_FLAG_DAEMON_SLEEP | \ 189 CTR_FLAG_MIN_RECOVERY_RATE | \ 190 CTR_FLAG_MAX_RECOVERY_RATE | \ 191 CTR_FLAG_STRIPE_CACHE | \ 192 CTR_FLAG_REGION_SIZE | \ 193 CTR_FLAG_DELTA_DISKS | \ 194 CTR_FLAG_DATA_OFFSET | \ 195 CTR_FLAG_JOURNAL_DEV | \ 196 CTR_FLAG_JOURNAL_MODE) 197 /* ...valid options definitions per raid level */ 198 199 /* 200 * Flags for rs->runtime_flags field 201 * (RT_FLAG prefix meaning "runtime flag") 202 * 203 * These are all internal and used to define runtime state, 204 * e.g. to prevent another resume from preresume processing 205 * the raid set all over again. 206 */ 207 #define RT_FLAG_RS_PRERESUMED 0 208 #define RT_FLAG_RS_RESUMED 1 209 #define RT_FLAG_RS_BITMAP_LOADED 2 210 #define RT_FLAG_UPDATE_SBS 3 211 #define RT_FLAG_RESHAPE_RS 4 212 #define RT_FLAG_RS_SUSPENDED 5 213 #define RT_FLAG_RS_IN_SYNC 6 214 #define RT_FLAG_RS_RESYNCING 7 215 216 /* Array elements of 64 bit needed for rebuild/failed disk bits */ 217 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8) 218 219 /* 220 * raid set level, layout and chunk sectors backup/restore 221 */ 222 struct rs_layout { 223 int new_level; 224 int new_layout; 225 int new_chunk_sectors; 226 }; 227 228 struct raid_set { 229 struct dm_target *ti; 230 struct list_head list; 231 232 uint32_t stripe_cache_entries; 233 unsigned long ctr_flags; 234 unsigned long runtime_flags; 235 236 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS]; 237 238 int raid_disks; 239 int delta_disks; 240 int data_offset; 241 int raid10_copies; 242 int requested_bitmap_chunk_sectors; 243 244 struct mddev md; 245 struct raid_type *raid_type; 246 struct dm_target_callbacks callbacks; 247 248 /* Optional raid4/5/6 journal device */ 249 struct journal_dev { 250 struct dm_dev *dev; 251 struct md_rdev rdev; 252 int mode; 253 } journal_dev; 254 255 struct raid_dev dev[0]; 256 }; 257 258 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l) 259 { 260 struct mddev *mddev = &rs->md; 261 262 l->new_level = mddev->new_level; 263 l->new_layout = mddev->new_layout; 264 l->new_chunk_sectors = mddev->new_chunk_sectors; 265 } 266 267 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l) 268 { 269 struct mddev *mddev = &rs->md; 270 271 mddev->new_level = l->new_level; 272 mddev->new_layout = l->new_layout; 273 mddev->new_chunk_sectors = l->new_chunk_sectors; 274 } 275 276 /* Find any raid_set in active slot for @rs on global list */ 277 static struct raid_set *rs_find_active(struct raid_set *rs) 278 { 279 struct raid_set *r; 280 struct mapped_device *md = dm_table_get_md(rs->ti->table); 281 282 list_for_each_entry(r, &raid_sets, list) 283 if (r != rs && dm_table_get_md(r->ti->table) == md) 284 return r; 285 286 return NULL; 287 } 288 289 /* raid10 algorithms (i.e. formats) */ 290 #define ALGORITHM_RAID10_DEFAULT 0 291 #define ALGORITHM_RAID10_NEAR 1 292 #define ALGORITHM_RAID10_OFFSET 2 293 #define ALGORITHM_RAID10_FAR 3 294 295 /* Supported raid types and properties. */ 296 static struct raid_type { 297 const char *name; /* RAID algorithm. */ 298 const char *descr; /* Descriptor text for logging. */ 299 const unsigned int parity_devs; /* # of parity devices. */ 300 const unsigned int minimal_devs;/* minimal # of devices in set. */ 301 const unsigned int level; /* RAID level. */ 302 const unsigned int algorithm; /* RAID algorithm. */ 303 } raid_types[] = { 304 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */}, 305 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */}, 306 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR}, 307 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET}, 308 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR}, 309 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT}, 310 {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */ 311 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N}, 312 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC}, 313 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC}, 314 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC}, 315 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC}, 316 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART}, 317 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART}, 318 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}, 319 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6}, 320 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6}, 321 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6}, 322 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6}, 323 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6} 324 }; 325 326 /* True, if @v is in inclusive range [@min, @max] */ 327 static bool __within_range(long v, long min, long max) 328 { 329 return v >= min && v <= max; 330 } 331 332 /* All table line arguments are defined here */ 333 static struct arg_name_flag { 334 const unsigned long flag; 335 const char *name; 336 } __arg_name_flags[] = { 337 { CTR_FLAG_SYNC, "sync"}, 338 { CTR_FLAG_NOSYNC, "nosync"}, 339 { CTR_FLAG_REBUILD, "rebuild"}, 340 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"}, 341 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"}, 342 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"}, 343 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"}, 344 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"}, 345 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"}, 346 { CTR_FLAG_REGION_SIZE, "region_size"}, 347 { CTR_FLAG_RAID10_COPIES, "raid10_copies"}, 348 { CTR_FLAG_RAID10_FORMAT, "raid10_format"}, 349 { CTR_FLAG_DATA_OFFSET, "data_offset"}, 350 { CTR_FLAG_DELTA_DISKS, "delta_disks"}, 351 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"}, 352 { CTR_FLAG_JOURNAL_DEV, "journal_dev" }, 353 { CTR_FLAG_JOURNAL_MODE, "journal_mode" }, 354 }; 355 356 /* Return argument name string for given @flag */ 357 static const char *dm_raid_arg_name_by_flag(const uint32_t flag) 358 { 359 if (hweight32(flag) == 1) { 360 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags); 361 362 while (anf-- > __arg_name_flags) 363 if (flag & anf->flag) 364 return anf->name; 365 366 } else 367 DMERR("%s called with more than one flag!", __func__); 368 369 return NULL; 370 } 371 372 /* Define correlation of raid456 journal cache modes and dm-raid target line parameters */ 373 static struct { 374 const int mode; 375 const char *param; 376 } _raid456_journal_mode[] = { 377 { R5C_JOURNAL_MODE_WRITE_THROUGH , "writethrough" }, 378 { R5C_JOURNAL_MODE_WRITE_BACK , "writeback" } 379 }; 380 381 /* Return MD raid4/5/6 journal mode for dm @journal_mode one */ 382 static int dm_raid_journal_mode_to_md(const char *mode) 383 { 384 int m = ARRAY_SIZE(_raid456_journal_mode); 385 386 while (m--) 387 if (!strcasecmp(mode, _raid456_journal_mode[m].param)) 388 return _raid456_journal_mode[m].mode; 389 390 return -EINVAL; 391 } 392 393 /* Return dm-raid raid4/5/6 journal mode string for @mode */ 394 static const char *md_journal_mode_to_dm_raid(const int mode) 395 { 396 int m = ARRAY_SIZE(_raid456_journal_mode); 397 398 while (m--) 399 if (mode == _raid456_journal_mode[m].mode) 400 return _raid456_journal_mode[m].param; 401 402 return "unknown"; 403 } 404 405 /* 406 * Bool helpers to test for various raid levels of a raid set. 407 * It's level as reported by the superblock rather than 408 * the requested raid_type passed to the constructor. 409 */ 410 /* Return true, if raid set in @rs is raid0 */ 411 static bool rs_is_raid0(struct raid_set *rs) 412 { 413 return !rs->md.level; 414 } 415 416 /* Return true, if raid set in @rs is raid1 */ 417 static bool rs_is_raid1(struct raid_set *rs) 418 { 419 return rs->md.level == 1; 420 } 421 422 /* Return true, if raid set in @rs is raid10 */ 423 static bool rs_is_raid10(struct raid_set *rs) 424 { 425 return rs->md.level == 10; 426 } 427 428 /* Return true, if raid set in @rs is level 6 */ 429 static bool rs_is_raid6(struct raid_set *rs) 430 { 431 return rs->md.level == 6; 432 } 433 434 /* Return true, if raid set in @rs is level 4, 5 or 6 */ 435 static bool rs_is_raid456(struct raid_set *rs) 436 { 437 return __within_range(rs->md.level, 4, 6); 438 } 439 440 /* Return true, if raid set in @rs is reshapable */ 441 static bool __is_raid10_far(int layout); 442 static bool rs_is_reshapable(struct raid_set *rs) 443 { 444 return rs_is_raid456(rs) || 445 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout)); 446 } 447 448 /* Return true, if raid set in @rs is recovering */ 449 static bool rs_is_recovering(struct raid_set *rs) 450 { 451 return rs->md.recovery_cp < rs->md.dev_sectors; 452 } 453 454 /* Return true, if raid set in @rs is reshaping */ 455 static bool rs_is_reshaping(struct raid_set *rs) 456 { 457 return rs->md.reshape_position != MaxSector; 458 } 459 460 /* 461 * bool helpers to test for various raid levels of a raid type @rt 462 */ 463 464 /* Return true, if raid type in @rt is raid0 */ 465 static bool rt_is_raid0(struct raid_type *rt) 466 { 467 return !rt->level; 468 } 469 470 /* Return true, if raid type in @rt is raid1 */ 471 static bool rt_is_raid1(struct raid_type *rt) 472 { 473 return rt->level == 1; 474 } 475 476 /* Return true, if raid type in @rt is raid10 */ 477 static bool rt_is_raid10(struct raid_type *rt) 478 { 479 return rt->level == 10; 480 } 481 482 /* Return true, if raid type in @rt is raid4/5 */ 483 static bool rt_is_raid45(struct raid_type *rt) 484 { 485 return __within_range(rt->level, 4, 5); 486 } 487 488 /* Return true, if raid type in @rt is raid6 */ 489 static bool rt_is_raid6(struct raid_type *rt) 490 { 491 return rt->level == 6; 492 } 493 494 /* Return true, if raid type in @rt is raid4/5/6 */ 495 static bool rt_is_raid456(struct raid_type *rt) 496 { 497 return __within_range(rt->level, 4, 6); 498 } 499 /* END: raid level bools */ 500 501 /* Return valid ctr flags for the raid level of @rs */ 502 static unsigned long __valid_flags(struct raid_set *rs) 503 { 504 if (rt_is_raid0(rs->raid_type)) 505 return RAID0_VALID_FLAGS; 506 else if (rt_is_raid1(rs->raid_type)) 507 return RAID1_VALID_FLAGS; 508 else if (rt_is_raid10(rs->raid_type)) 509 return RAID10_VALID_FLAGS; 510 else if (rt_is_raid45(rs->raid_type)) 511 return RAID45_VALID_FLAGS; 512 else if (rt_is_raid6(rs->raid_type)) 513 return RAID6_VALID_FLAGS; 514 515 return 0; 516 } 517 518 /* 519 * Check for valid flags set on @rs 520 * 521 * Has to be called after parsing of the ctr flags! 522 */ 523 static int rs_check_for_valid_flags(struct raid_set *rs) 524 { 525 if (rs->ctr_flags & ~__valid_flags(rs)) { 526 rs->ti->error = "Invalid flags combination"; 527 return -EINVAL; 528 } 529 530 return 0; 531 } 532 533 /* MD raid10 bit definitions and helpers */ 534 #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */ 535 #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */ 536 #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */ 537 #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */ 538 539 /* Return md raid10 near copies for @layout */ 540 static unsigned int __raid10_near_copies(int layout) 541 { 542 return layout & 0xFF; 543 } 544 545 /* Return md raid10 far copies for @layout */ 546 static unsigned int __raid10_far_copies(int layout) 547 { 548 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT); 549 } 550 551 /* Return true if md raid10 offset for @layout */ 552 static bool __is_raid10_offset(int layout) 553 { 554 return !!(layout & RAID10_OFFSET); 555 } 556 557 /* Return true if md raid10 near for @layout */ 558 static bool __is_raid10_near(int layout) 559 { 560 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1; 561 } 562 563 /* Return true if md raid10 far for @layout */ 564 static bool __is_raid10_far(int layout) 565 { 566 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1; 567 } 568 569 /* Return md raid10 layout string for @layout */ 570 static const char *raid10_md_layout_to_format(int layout) 571 { 572 /* 573 * Bit 16 stands for "offset" 574 * (i.e. adjacent stripes hold copies) 575 * 576 * Refer to MD's raid10.c for details 577 */ 578 if (__is_raid10_offset(layout)) 579 return "offset"; 580 581 if (__raid10_near_copies(layout) > 1) 582 return "near"; 583 584 if (__raid10_far_copies(layout) > 1) 585 return "far"; 586 587 return "unknown"; 588 } 589 590 /* Return md raid10 algorithm for @name */ 591 static const int raid10_name_to_format(const char *name) 592 { 593 if (!strcasecmp(name, "near")) 594 return ALGORITHM_RAID10_NEAR; 595 else if (!strcasecmp(name, "offset")) 596 return ALGORITHM_RAID10_OFFSET; 597 else if (!strcasecmp(name, "far")) 598 return ALGORITHM_RAID10_FAR; 599 600 return -EINVAL; 601 } 602 603 /* Return md raid10 copies for @layout */ 604 static unsigned int raid10_md_layout_to_copies(int layout) 605 { 606 return max(__raid10_near_copies(layout), __raid10_far_copies(layout)); 607 } 608 609 /* Return md raid10 format id for @format string */ 610 static int raid10_format_to_md_layout(struct raid_set *rs, 611 unsigned int algorithm, 612 unsigned int copies) 613 { 614 unsigned int n = 1, f = 1, r = 0; 615 616 /* 617 * MD resilienece flaw: 618 * 619 * enabling use_far_sets for far/offset formats causes copies 620 * to be colocated on the same devs together with their origins! 621 * 622 * -> disable it for now in the definition above 623 */ 624 if (algorithm == ALGORITHM_RAID10_DEFAULT || 625 algorithm == ALGORITHM_RAID10_NEAR) 626 n = copies; 627 628 else if (algorithm == ALGORITHM_RAID10_OFFSET) { 629 f = copies; 630 r = RAID10_OFFSET; 631 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) 632 r |= RAID10_USE_FAR_SETS; 633 634 } else if (algorithm == ALGORITHM_RAID10_FAR) { 635 f = copies; 636 r = !RAID10_OFFSET; 637 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) 638 r |= RAID10_USE_FAR_SETS; 639 640 } else 641 return -EINVAL; 642 643 return r | (f << RAID10_FAR_COPIES_SHIFT) | n; 644 } 645 /* END: MD raid10 bit definitions and helpers */ 646 647 /* Check for any of the raid10 algorithms */ 648 static bool __got_raid10(struct raid_type *rtp, const int layout) 649 { 650 if (rtp->level == 10) { 651 switch (rtp->algorithm) { 652 case ALGORITHM_RAID10_DEFAULT: 653 case ALGORITHM_RAID10_NEAR: 654 return __is_raid10_near(layout); 655 case ALGORITHM_RAID10_OFFSET: 656 return __is_raid10_offset(layout); 657 case ALGORITHM_RAID10_FAR: 658 return __is_raid10_far(layout); 659 default: 660 break; 661 } 662 } 663 664 return false; 665 } 666 667 /* Return raid_type for @name */ 668 static struct raid_type *get_raid_type(const char *name) 669 { 670 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); 671 672 while (rtp-- > raid_types) 673 if (!strcasecmp(rtp->name, name)) 674 return rtp; 675 676 return NULL; 677 } 678 679 /* Return raid_type for @name based derived from @level and @layout */ 680 static struct raid_type *get_raid_type_by_ll(const int level, const int layout) 681 { 682 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); 683 684 while (rtp-- > raid_types) { 685 /* RAID10 special checks based on @layout flags/properties */ 686 if (rtp->level == level && 687 (__got_raid10(rtp, layout) || rtp->algorithm == layout)) 688 return rtp; 689 } 690 691 return NULL; 692 } 693 694 /* Adjust rdev sectors */ 695 static void rs_set_rdev_sectors(struct raid_set *rs) 696 { 697 struct mddev *mddev = &rs->md; 698 struct md_rdev *rdev; 699 700 /* 701 * raid10 sets rdev->sector to the device size, which 702 * is unintended in case of out-of-place reshaping 703 */ 704 rdev_for_each(rdev, mddev) 705 if (!test_bit(Journal, &rdev->flags)) 706 rdev->sectors = mddev->dev_sectors; 707 } 708 709 /* 710 * Change bdev capacity of @rs in case of a disk add/remove reshape 711 */ 712 static void rs_set_capacity(struct raid_set *rs) 713 { 714 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table)); 715 716 set_capacity(gendisk, rs->md.array_sectors); 717 revalidate_disk(gendisk); 718 } 719 720 /* 721 * Set the mddev properties in @rs to the current 722 * ones retrieved from the freshest superblock 723 */ 724 static void rs_set_cur(struct raid_set *rs) 725 { 726 struct mddev *mddev = &rs->md; 727 728 mddev->new_level = mddev->level; 729 mddev->new_layout = mddev->layout; 730 mddev->new_chunk_sectors = mddev->chunk_sectors; 731 } 732 733 /* 734 * Set the mddev properties in @rs to the new 735 * ones requested by the ctr 736 */ 737 static void rs_set_new(struct raid_set *rs) 738 { 739 struct mddev *mddev = &rs->md; 740 741 mddev->level = mddev->new_level; 742 mddev->layout = mddev->new_layout; 743 mddev->chunk_sectors = mddev->new_chunk_sectors; 744 mddev->raid_disks = rs->raid_disks; 745 mddev->delta_disks = 0; 746 } 747 748 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type, 749 unsigned int raid_devs) 750 { 751 unsigned int i; 752 struct raid_set *rs; 753 754 if (raid_devs <= raid_type->parity_devs) { 755 ti->error = "Insufficient number of devices"; 756 return ERR_PTR(-EINVAL); 757 } 758 759 rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL); 760 if (!rs) { 761 ti->error = "Cannot allocate raid context"; 762 return ERR_PTR(-ENOMEM); 763 } 764 765 mddev_init(&rs->md); 766 767 INIT_LIST_HEAD(&rs->list); 768 rs->raid_disks = raid_devs; 769 rs->delta_disks = 0; 770 771 rs->ti = ti; 772 rs->raid_type = raid_type; 773 rs->stripe_cache_entries = 256; 774 rs->md.raid_disks = raid_devs; 775 rs->md.level = raid_type->level; 776 rs->md.new_level = rs->md.level; 777 rs->md.layout = raid_type->algorithm; 778 rs->md.new_layout = rs->md.layout; 779 rs->md.delta_disks = 0; 780 rs->md.recovery_cp = MaxSector; 781 782 for (i = 0; i < raid_devs; i++) 783 md_rdev_init(&rs->dev[i].rdev); 784 785 /* Add @rs to global list. */ 786 list_add(&rs->list, &raid_sets); 787 788 /* 789 * Remaining items to be initialized by further RAID params: 790 * rs->md.persistent 791 * rs->md.external 792 * rs->md.chunk_sectors 793 * rs->md.new_chunk_sectors 794 * rs->md.dev_sectors 795 */ 796 797 return rs; 798 } 799 800 /* Free all @rs allocations and remove it from global list. */ 801 static void raid_set_free(struct raid_set *rs) 802 { 803 int i; 804 805 if (rs->journal_dev.dev) { 806 md_rdev_clear(&rs->journal_dev.rdev); 807 dm_put_device(rs->ti, rs->journal_dev.dev); 808 } 809 810 for (i = 0; i < rs->raid_disks; i++) { 811 if (rs->dev[i].meta_dev) 812 dm_put_device(rs->ti, rs->dev[i].meta_dev); 813 md_rdev_clear(&rs->dev[i].rdev); 814 if (rs->dev[i].data_dev) 815 dm_put_device(rs->ti, rs->dev[i].data_dev); 816 } 817 818 list_del(&rs->list); 819 820 kfree(rs); 821 } 822 823 /* 824 * For every device we have two words 825 * <meta_dev>: meta device name or '-' if missing 826 * <data_dev>: data device name or '-' if missing 827 * 828 * The following are permitted: 829 * - - 830 * - <data_dev> 831 * <meta_dev> <data_dev> 832 * 833 * The following is not allowed: 834 * <meta_dev> - 835 * 836 * This code parses those words. If there is a failure, 837 * the caller must use raid_set_free() to unwind the operations. 838 */ 839 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as) 840 { 841 int i; 842 int rebuild = 0; 843 int metadata_available = 0; 844 int r = 0; 845 const char *arg; 846 847 /* Put off the number of raid devices argument to get to dev pairs */ 848 arg = dm_shift_arg(as); 849 if (!arg) 850 return -EINVAL; 851 852 for (i = 0; i < rs->raid_disks; i++) { 853 rs->dev[i].rdev.raid_disk = i; 854 855 rs->dev[i].meta_dev = NULL; 856 rs->dev[i].data_dev = NULL; 857 858 /* 859 * There are no offsets initially. 860 * Out of place reshape will set them accordingly. 861 */ 862 rs->dev[i].rdev.data_offset = 0; 863 rs->dev[i].rdev.new_data_offset = 0; 864 rs->dev[i].rdev.mddev = &rs->md; 865 866 arg = dm_shift_arg(as); 867 if (!arg) 868 return -EINVAL; 869 870 if (strcmp(arg, "-")) { 871 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 872 &rs->dev[i].meta_dev); 873 if (r) { 874 rs->ti->error = "RAID metadata device lookup failure"; 875 return r; 876 } 877 878 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL); 879 if (!rs->dev[i].rdev.sb_page) { 880 rs->ti->error = "Failed to allocate superblock page"; 881 return -ENOMEM; 882 } 883 } 884 885 arg = dm_shift_arg(as); 886 if (!arg) 887 return -EINVAL; 888 889 if (!strcmp(arg, "-")) { 890 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) && 891 (!rs->dev[i].rdev.recovery_offset)) { 892 rs->ti->error = "Drive designated for rebuild not specified"; 893 return -EINVAL; 894 } 895 896 if (rs->dev[i].meta_dev) { 897 rs->ti->error = "No data device supplied with metadata device"; 898 return -EINVAL; 899 } 900 901 continue; 902 } 903 904 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 905 &rs->dev[i].data_dev); 906 if (r) { 907 rs->ti->error = "RAID device lookup failure"; 908 return r; 909 } 910 911 if (rs->dev[i].meta_dev) { 912 metadata_available = 1; 913 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev; 914 } 915 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev; 916 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks); 917 if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) 918 rebuild++; 919 } 920 921 if (rs->journal_dev.dev) 922 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks); 923 924 if (metadata_available) { 925 rs->md.external = 0; 926 rs->md.persistent = 1; 927 rs->md.major_version = 2; 928 } else if (rebuild && !rs->md.recovery_cp) { 929 /* 930 * Without metadata, we will not be able to tell if the array 931 * is in-sync or not - we must assume it is not. Therefore, 932 * it is impossible to rebuild a drive. 933 * 934 * Even if there is metadata, the on-disk information may 935 * indicate that the array is not in-sync and it will then 936 * fail at that time. 937 * 938 * User could specify 'nosync' option if desperate. 939 */ 940 rs->ti->error = "Unable to rebuild drive while array is not in-sync"; 941 return -EINVAL; 942 } 943 944 return 0; 945 } 946 947 /* 948 * validate_region_size 949 * @rs 950 * @region_size: region size in sectors. If 0, pick a size (4MiB default). 951 * 952 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size'). 953 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap. 954 * 955 * Returns: 0 on success, -EINVAL on failure. 956 */ 957 static int validate_region_size(struct raid_set *rs, unsigned long region_size) 958 { 959 unsigned long min_region_size = rs->ti->len / (1 << 21); 960 961 if (rs_is_raid0(rs)) 962 return 0; 963 964 if (!region_size) { 965 /* 966 * Choose a reasonable default. All figures in sectors. 967 */ 968 if (min_region_size > (1 << 13)) { 969 /* If not a power of 2, make it the next power of 2 */ 970 region_size = roundup_pow_of_two(min_region_size); 971 DMINFO("Choosing default region size of %lu sectors", 972 region_size); 973 } else { 974 DMINFO("Choosing default region size of 4MiB"); 975 region_size = 1 << 13; /* sectors */ 976 } 977 } else { 978 /* 979 * Validate user-supplied value. 980 */ 981 if (region_size > rs->ti->len) { 982 rs->ti->error = "Supplied region size is too large"; 983 return -EINVAL; 984 } 985 986 if (region_size < min_region_size) { 987 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)", 988 region_size, min_region_size); 989 rs->ti->error = "Supplied region size is too small"; 990 return -EINVAL; 991 } 992 993 if (!is_power_of_2(region_size)) { 994 rs->ti->error = "Region size is not a power of 2"; 995 return -EINVAL; 996 } 997 998 if (region_size < rs->md.chunk_sectors) { 999 rs->ti->error = "Region size is smaller than the chunk size"; 1000 return -EINVAL; 1001 } 1002 } 1003 1004 /* 1005 * Convert sectors to bytes. 1006 */ 1007 rs->md.bitmap_info.chunksize = to_bytes(region_size); 1008 1009 return 0; 1010 } 1011 1012 /* 1013 * validate_raid_redundancy 1014 * @rs 1015 * 1016 * Determine if there are enough devices in the array that haven't 1017 * failed (or are being rebuilt) to form a usable array. 1018 * 1019 * Returns: 0 on success, -EINVAL on failure. 1020 */ 1021 static int validate_raid_redundancy(struct raid_set *rs) 1022 { 1023 unsigned int i, rebuild_cnt = 0; 1024 unsigned int rebuilds_per_group = 0, copies; 1025 unsigned int group_size, last_group_start; 1026 1027 for (i = 0; i < rs->md.raid_disks; i++) 1028 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) || 1029 !rs->dev[i].rdev.sb_page) 1030 rebuild_cnt++; 1031 1032 switch (rs->md.level) { 1033 case 0: 1034 break; 1035 case 1: 1036 if (rebuild_cnt >= rs->md.raid_disks) 1037 goto too_many; 1038 break; 1039 case 4: 1040 case 5: 1041 case 6: 1042 if (rebuild_cnt > rs->raid_type->parity_devs) 1043 goto too_many; 1044 break; 1045 case 10: 1046 copies = raid10_md_layout_to_copies(rs->md.new_layout); 1047 if (copies < 2) { 1048 DMERR("Bogus raid10 data copies < 2!"); 1049 return -EINVAL; 1050 } 1051 1052 if (rebuild_cnt < copies) 1053 break; 1054 1055 /* 1056 * It is possible to have a higher rebuild count for RAID10, 1057 * as long as the failed devices occur in different mirror 1058 * groups (i.e. different stripes). 1059 * 1060 * When checking "near" format, make sure no adjacent devices 1061 * have failed beyond what can be handled. In addition to the 1062 * simple case where the number of devices is a multiple of the 1063 * number of copies, we must also handle cases where the number 1064 * of devices is not a multiple of the number of copies. 1065 * E.g. dev1 dev2 dev3 dev4 dev5 1066 * A A B B C 1067 * C D D E E 1068 */ 1069 if (__is_raid10_near(rs->md.new_layout)) { 1070 for (i = 0; i < rs->md.raid_disks; i++) { 1071 if (!(i % copies)) 1072 rebuilds_per_group = 0; 1073 if ((!rs->dev[i].rdev.sb_page || 1074 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 1075 (++rebuilds_per_group >= copies)) 1076 goto too_many; 1077 } 1078 break; 1079 } 1080 1081 /* 1082 * When checking "far" and "offset" formats, we need to ensure 1083 * that the device that holds its copy is not also dead or 1084 * being rebuilt. (Note that "far" and "offset" formats only 1085 * support two copies right now. These formats also only ever 1086 * use the 'use_far_sets' variant.) 1087 * 1088 * This check is somewhat complicated by the need to account 1089 * for arrays that are not a multiple of (far) copies. This 1090 * results in the need to treat the last (potentially larger) 1091 * set differently. 1092 */ 1093 group_size = (rs->md.raid_disks / copies); 1094 last_group_start = (rs->md.raid_disks / group_size) - 1; 1095 last_group_start *= group_size; 1096 for (i = 0; i < rs->md.raid_disks; i++) { 1097 if (!(i % copies) && !(i > last_group_start)) 1098 rebuilds_per_group = 0; 1099 if ((!rs->dev[i].rdev.sb_page || 1100 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 1101 (++rebuilds_per_group >= copies)) 1102 goto too_many; 1103 } 1104 break; 1105 default: 1106 if (rebuild_cnt) 1107 return -EINVAL; 1108 } 1109 1110 return 0; 1111 1112 too_many: 1113 return -EINVAL; 1114 } 1115 1116 /* 1117 * Possible arguments are... 1118 * <chunk_size> [optional_args] 1119 * 1120 * Argument definitions 1121 * <chunk_size> The number of sectors per disk that 1122 * will form the "stripe" 1123 * [[no]sync] Force or prevent recovery of the 1124 * entire array 1125 * [rebuild <idx>] Rebuild the drive indicated by the index 1126 * [daemon_sleep <ms>] Time between bitmap daemon work to 1127 * clear bits 1128 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization 1129 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization 1130 * [write_mostly <idx>] Indicate a write mostly drive via index 1131 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm) 1132 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs 1133 * [region_size <sectors>] Defines granularity of bitmap 1134 * [journal_dev <dev>] raid4/5/6 journaling deviice 1135 * (i.e. write hole closing log) 1136 * 1137 * RAID10-only options: 1138 * [raid10_copies <# copies>] Number of copies. (Default: 2) 1139 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near) 1140 */ 1141 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as, 1142 unsigned int num_raid_params) 1143 { 1144 int value, raid10_format = ALGORITHM_RAID10_DEFAULT; 1145 unsigned int raid10_copies = 2; 1146 unsigned int i, write_mostly = 0; 1147 unsigned int region_size = 0; 1148 sector_t max_io_len; 1149 const char *arg, *key; 1150 struct raid_dev *rd; 1151 struct raid_type *rt = rs->raid_type; 1152 1153 arg = dm_shift_arg(as); 1154 num_raid_params--; /* Account for chunk_size argument */ 1155 1156 if (kstrtoint(arg, 10, &value) < 0) { 1157 rs->ti->error = "Bad numerical argument given for chunk_size"; 1158 return -EINVAL; 1159 } 1160 1161 /* 1162 * First, parse the in-order required arguments 1163 * "chunk_size" is the only argument of this type. 1164 */ 1165 if (rt_is_raid1(rt)) { 1166 if (value) 1167 DMERR("Ignoring chunk size parameter for RAID 1"); 1168 value = 0; 1169 } else if (!is_power_of_2(value)) { 1170 rs->ti->error = "Chunk size must be a power of 2"; 1171 return -EINVAL; 1172 } else if (value < 8) { 1173 rs->ti->error = "Chunk size value is too small"; 1174 return -EINVAL; 1175 } 1176 1177 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value; 1178 1179 /* 1180 * We set each individual device as In_sync with a completed 1181 * 'recovery_offset'. If there has been a device failure or 1182 * replacement then one of the following cases applies: 1183 * 1184 * 1) User specifies 'rebuild'. 1185 * - Device is reset when param is read. 1186 * 2) A new device is supplied. 1187 * - No matching superblock found, resets device. 1188 * 3) Device failure was transient and returns on reload. 1189 * - Failure noticed, resets device for bitmap replay. 1190 * 4) Device hadn't completed recovery after previous failure. 1191 * - Superblock is read and overrides recovery_offset. 1192 * 1193 * What is found in the superblocks of the devices is always 1194 * authoritative, unless 'rebuild' or '[no]sync' was specified. 1195 */ 1196 for (i = 0; i < rs->raid_disks; i++) { 1197 set_bit(In_sync, &rs->dev[i].rdev.flags); 1198 rs->dev[i].rdev.recovery_offset = MaxSector; 1199 } 1200 1201 /* 1202 * Second, parse the unordered optional arguments 1203 */ 1204 for (i = 0; i < num_raid_params; i++) { 1205 key = dm_shift_arg(as); 1206 if (!key) { 1207 rs->ti->error = "Not enough raid parameters given"; 1208 return -EINVAL; 1209 } 1210 1211 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) { 1212 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 1213 rs->ti->error = "Only one 'nosync' argument allowed"; 1214 return -EINVAL; 1215 } 1216 continue; 1217 } 1218 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) { 1219 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) { 1220 rs->ti->error = "Only one 'sync' argument allowed"; 1221 return -EINVAL; 1222 } 1223 continue; 1224 } 1225 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) { 1226 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { 1227 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed"; 1228 return -EINVAL; 1229 } 1230 continue; 1231 } 1232 1233 arg = dm_shift_arg(as); 1234 i++; /* Account for the argument pairs */ 1235 if (!arg) { 1236 rs->ti->error = "Wrong number of raid parameters given"; 1237 return -EINVAL; 1238 } 1239 1240 /* 1241 * Parameters that take a string value are checked here. 1242 */ 1243 /* "raid10_format {near|offset|far} */ 1244 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) { 1245 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) { 1246 rs->ti->error = "Only one 'raid10_format' argument pair allowed"; 1247 return -EINVAL; 1248 } 1249 if (!rt_is_raid10(rt)) { 1250 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type"; 1251 return -EINVAL; 1252 } 1253 raid10_format = raid10_name_to_format(arg); 1254 if (raid10_format < 0) { 1255 rs->ti->error = "Invalid 'raid10_format' value given"; 1256 return raid10_format; 1257 } 1258 continue; 1259 } 1260 1261 /* "journal_dev <dev>" */ 1262 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) { 1263 int r; 1264 struct md_rdev *jdev; 1265 1266 if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 1267 rs->ti->error = "Only one raid4/5/6 set journaling device allowed"; 1268 return -EINVAL; 1269 } 1270 if (!rt_is_raid456(rt)) { 1271 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type"; 1272 return -EINVAL; 1273 } 1274 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 1275 &rs->journal_dev.dev); 1276 if (r) { 1277 rs->ti->error = "raid4/5/6 journal device lookup failure"; 1278 return r; 1279 } 1280 jdev = &rs->journal_dev.rdev; 1281 md_rdev_init(jdev); 1282 jdev->mddev = &rs->md; 1283 jdev->bdev = rs->journal_dev.dev->bdev; 1284 jdev->sectors = to_sector(i_size_read(jdev->bdev->bd_inode)); 1285 if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) { 1286 rs->ti->error = "No space for raid4/5/6 journal"; 1287 return -ENOSPC; 1288 } 1289 rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 1290 set_bit(Journal, &jdev->flags); 1291 continue; 1292 } 1293 1294 /* "journal_mode <mode>" ("journal_dev" mandatory!) */ 1295 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) { 1296 int r; 1297 1298 if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 1299 rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'"; 1300 return -EINVAL; 1301 } 1302 if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) { 1303 rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed"; 1304 return -EINVAL; 1305 } 1306 r = dm_raid_journal_mode_to_md(arg); 1307 if (r < 0) { 1308 rs->ti->error = "Invalid 'journal_mode' argument"; 1309 return r; 1310 } 1311 rs->journal_dev.mode = r; 1312 continue; 1313 } 1314 1315 /* 1316 * Parameters with number values from here on. 1317 */ 1318 if (kstrtoint(arg, 10, &value) < 0) { 1319 rs->ti->error = "Bad numerical argument given in raid params"; 1320 return -EINVAL; 1321 } 1322 1323 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) { 1324 /* 1325 * "rebuild" is being passed in by userspace to provide 1326 * indexes of replaced devices and to set up additional 1327 * devices on raid level takeover. 1328 */ 1329 if (!__within_range(value, 0, rs->raid_disks - 1)) { 1330 rs->ti->error = "Invalid rebuild index given"; 1331 return -EINVAL; 1332 } 1333 1334 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) { 1335 rs->ti->error = "rebuild for this index already given"; 1336 return -EINVAL; 1337 } 1338 1339 rd = rs->dev + value; 1340 clear_bit(In_sync, &rd->rdev.flags); 1341 clear_bit(Faulty, &rd->rdev.flags); 1342 rd->rdev.recovery_offset = 0; 1343 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags); 1344 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) { 1345 if (!rt_is_raid1(rt)) { 1346 rs->ti->error = "write_mostly option is only valid for RAID1"; 1347 return -EINVAL; 1348 } 1349 1350 if (!__within_range(value, 0, rs->md.raid_disks - 1)) { 1351 rs->ti->error = "Invalid write_mostly index given"; 1352 return -EINVAL; 1353 } 1354 1355 write_mostly++; 1356 set_bit(WriteMostly, &rs->dev[value].rdev.flags); 1357 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags); 1358 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) { 1359 if (!rt_is_raid1(rt)) { 1360 rs->ti->error = "max_write_behind option is only valid for RAID1"; 1361 return -EINVAL; 1362 } 1363 1364 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) { 1365 rs->ti->error = "Only one max_write_behind argument pair allowed"; 1366 return -EINVAL; 1367 } 1368 1369 /* 1370 * In device-mapper, we specify things in sectors, but 1371 * MD records this value in kB 1372 */ 1373 if (value < 0 || value / 2 > COUNTER_MAX) { 1374 rs->ti->error = "Max write-behind limit out of range"; 1375 return -EINVAL; 1376 } 1377 1378 rs->md.bitmap_info.max_write_behind = value / 2; 1379 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) { 1380 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) { 1381 rs->ti->error = "Only one daemon_sleep argument pair allowed"; 1382 return -EINVAL; 1383 } 1384 if (value < 0) { 1385 rs->ti->error = "daemon sleep period out of range"; 1386 return -EINVAL; 1387 } 1388 rs->md.bitmap_info.daemon_sleep = value; 1389 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) { 1390 /* Userspace passes new data_offset after having extended the the data image LV */ 1391 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { 1392 rs->ti->error = "Only one data_offset argument pair allowed"; 1393 return -EINVAL; 1394 } 1395 /* Ensure sensible data offset */ 1396 if (value < 0 || 1397 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) { 1398 rs->ti->error = "Bogus data_offset value"; 1399 return -EINVAL; 1400 } 1401 rs->data_offset = value; 1402 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) { 1403 /* Define the +/-# of disks to add to/remove from the given raid set */ 1404 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { 1405 rs->ti->error = "Only one delta_disks argument pair allowed"; 1406 return -EINVAL; 1407 } 1408 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */ 1409 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) { 1410 rs->ti->error = "Too many delta_disk requested"; 1411 return -EINVAL; 1412 } 1413 1414 rs->delta_disks = value; 1415 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) { 1416 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) { 1417 rs->ti->error = "Only one stripe_cache argument pair allowed"; 1418 return -EINVAL; 1419 } 1420 1421 if (!rt_is_raid456(rt)) { 1422 rs->ti->error = "Inappropriate argument: stripe_cache"; 1423 return -EINVAL; 1424 } 1425 1426 if (value < 0) { 1427 rs->ti->error = "Bogus stripe cache entries value"; 1428 return -EINVAL; 1429 } 1430 rs->stripe_cache_entries = value; 1431 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) { 1432 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) { 1433 rs->ti->error = "Only one min_recovery_rate argument pair allowed"; 1434 return -EINVAL; 1435 } 1436 1437 if (value < 0) { 1438 rs->ti->error = "min_recovery_rate out of range"; 1439 return -EINVAL; 1440 } 1441 rs->md.sync_speed_min = value; 1442 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) { 1443 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) { 1444 rs->ti->error = "Only one max_recovery_rate argument pair allowed"; 1445 return -EINVAL; 1446 } 1447 1448 if (value < 0) { 1449 rs->ti->error = "max_recovery_rate out of range"; 1450 return -EINVAL; 1451 } 1452 rs->md.sync_speed_max = value; 1453 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) { 1454 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) { 1455 rs->ti->error = "Only one region_size argument pair allowed"; 1456 return -EINVAL; 1457 } 1458 1459 region_size = value; 1460 rs->requested_bitmap_chunk_sectors = value; 1461 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) { 1462 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) { 1463 rs->ti->error = "Only one raid10_copies argument pair allowed"; 1464 return -EINVAL; 1465 } 1466 1467 if (!__within_range(value, 2, rs->md.raid_disks)) { 1468 rs->ti->error = "Bad value for 'raid10_copies'"; 1469 return -EINVAL; 1470 } 1471 1472 raid10_copies = value; 1473 } else { 1474 DMERR("Unable to parse RAID parameter: %s", key); 1475 rs->ti->error = "Unable to parse RAID parameter"; 1476 return -EINVAL; 1477 } 1478 } 1479 1480 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) && 1481 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 1482 rs->ti->error = "sync and nosync are mutually exclusive"; 1483 return -EINVAL; 1484 } 1485 1486 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && 1487 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) || 1488 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) { 1489 rs->ti->error = "sync/nosync and rebuild are mutually exclusive"; 1490 return -EINVAL; 1491 } 1492 1493 if (write_mostly >= rs->md.raid_disks) { 1494 rs->ti->error = "Can't set all raid1 devices to write_mostly"; 1495 return -EINVAL; 1496 } 1497 1498 if (rs->md.sync_speed_max && 1499 rs->md.sync_speed_min > rs->md.sync_speed_max) { 1500 rs->ti->error = "Bogus recovery rates"; 1501 return -EINVAL; 1502 } 1503 1504 if (validate_region_size(rs, region_size)) 1505 return -EINVAL; 1506 1507 if (rs->md.chunk_sectors) 1508 max_io_len = rs->md.chunk_sectors; 1509 else 1510 max_io_len = region_size; 1511 1512 if (dm_set_target_max_io_len(rs->ti, max_io_len)) 1513 return -EINVAL; 1514 1515 if (rt_is_raid10(rt)) { 1516 if (raid10_copies > rs->md.raid_disks) { 1517 rs->ti->error = "Not enough devices to satisfy specification"; 1518 return -EINVAL; 1519 } 1520 1521 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies); 1522 if (rs->md.new_layout < 0) { 1523 rs->ti->error = "Error getting raid10 format"; 1524 return rs->md.new_layout; 1525 } 1526 1527 rt = get_raid_type_by_ll(10, rs->md.new_layout); 1528 if (!rt) { 1529 rs->ti->error = "Failed to recognize new raid10 layout"; 1530 return -EINVAL; 1531 } 1532 1533 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT || 1534 rt->algorithm == ALGORITHM_RAID10_NEAR) && 1535 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { 1536 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible"; 1537 return -EINVAL; 1538 } 1539 } 1540 1541 rs->raid10_copies = raid10_copies; 1542 1543 /* Assume there are no metadata devices until the drives are parsed */ 1544 rs->md.persistent = 0; 1545 rs->md.external = 1; 1546 1547 /* Check, if any invalid ctr arguments have been passed in for the raid level */ 1548 return rs_check_for_valid_flags(rs); 1549 } 1550 1551 /* Set raid4/5/6 cache size */ 1552 static int rs_set_raid456_stripe_cache(struct raid_set *rs) 1553 { 1554 int r; 1555 struct r5conf *conf; 1556 struct mddev *mddev = &rs->md; 1557 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2; 1558 uint32_t nr_stripes = rs->stripe_cache_entries; 1559 1560 if (!rt_is_raid456(rs->raid_type)) { 1561 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size"; 1562 return -EINVAL; 1563 } 1564 1565 if (nr_stripes < min_stripes) { 1566 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size", 1567 nr_stripes, min_stripes); 1568 nr_stripes = min_stripes; 1569 } 1570 1571 conf = mddev->private; 1572 if (!conf) { 1573 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set"; 1574 return -EINVAL; 1575 } 1576 1577 /* Try setting number of stripes in raid456 stripe cache */ 1578 if (conf->min_nr_stripes != nr_stripes) { 1579 r = raid5_set_cache_size(mddev, nr_stripes); 1580 if (r) { 1581 rs->ti->error = "Failed to set raid4/5/6 stripe cache size"; 1582 return r; 1583 } 1584 1585 DMINFO("%u stripe cache entries", nr_stripes); 1586 } 1587 1588 return 0; 1589 } 1590 1591 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */ 1592 static unsigned int mddev_data_stripes(struct raid_set *rs) 1593 { 1594 return rs->md.raid_disks - rs->raid_type->parity_devs; 1595 } 1596 1597 /* Return # of data stripes of @rs (i.e. as of ctr) */ 1598 static unsigned int rs_data_stripes(struct raid_set *rs) 1599 { 1600 return rs->raid_disks - rs->raid_type->parity_devs; 1601 } 1602 1603 /* 1604 * Retrieve rdev->sectors from any valid raid device of @rs 1605 * to allow userpace to pass in arbitray "- -" device tupples. 1606 */ 1607 static sector_t __rdev_sectors(struct raid_set *rs) 1608 { 1609 int i; 1610 1611 for (i = 0; i < rs->md.raid_disks; i++) { 1612 struct md_rdev *rdev = &rs->dev[i].rdev; 1613 1614 if (!test_bit(Journal, &rdev->flags) && 1615 rdev->bdev && rdev->sectors) 1616 return rdev->sectors; 1617 } 1618 1619 return 0; 1620 } 1621 1622 /* Check that calculated dev_sectors fits all component devices. */ 1623 static int _check_data_dev_sectors(struct raid_set *rs) 1624 { 1625 sector_t ds = ~0; 1626 struct md_rdev *rdev; 1627 1628 rdev_for_each(rdev, &rs->md) 1629 if (!test_bit(Journal, &rdev->flags) && rdev->bdev) { 1630 ds = min(ds, to_sector(i_size_read(rdev->bdev->bd_inode))); 1631 if (ds < rs->md.dev_sectors) { 1632 rs->ti->error = "Component device(s) too small"; 1633 return -EINVAL; 1634 } 1635 } 1636 1637 return 0; 1638 } 1639 1640 /* Calculate the sectors per device and per array used for @rs */ 1641 static int rs_set_dev_and_array_sectors(struct raid_set *rs, bool use_mddev) 1642 { 1643 int delta_disks; 1644 unsigned int data_stripes; 1645 struct mddev *mddev = &rs->md; 1646 struct md_rdev *rdev; 1647 sector_t array_sectors = rs->ti->len, dev_sectors = rs->ti->len; 1648 1649 if (use_mddev) { 1650 delta_disks = mddev->delta_disks; 1651 data_stripes = mddev_data_stripes(rs); 1652 } else { 1653 delta_disks = rs->delta_disks; 1654 data_stripes = rs_data_stripes(rs); 1655 } 1656 1657 /* Special raid1 case w/o delta_disks support (yet) */ 1658 if (rt_is_raid1(rs->raid_type)) 1659 ; 1660 else if (rt_is_raid10(rs->raid_type)) { 1661 if (rs->raid10_copies < 2 || 1662 delta_disks < 0) { 1663 rs->ti->error = "Bogus raid10 data copies or delta disks"; 1664 return -EINVAL; 1665 } 1666 1667 dev_sectors *= rs->raid10_copies; 1668 if (sector_div(dev_sectors, data_stripes)) 1669 goto bad; 1670 1671 array_sectors = (data_stripes + delta_disks) * dev_sectors; 1672 if (sector_div(array_sectors, rs->raid10_copies)) 1673 goto bad; 1674 1675 } else if (sector_div(dev_sectors, data_stripes)) 1676 goto bad; 1677 1678 else 1679 /* Striped layouts */ 1680 array_sectors = (data_stripes + delta_disks) * dev_sectors; 1681 1682 rdev_for_each(rdev, mddev) 1683 if (!test_bit(Journal, &rdev->flags)) 1684 rdev->sectors = dev_sectors; 1685 1686 mddev->array_sectors = array_sectors; 1687 mddev->dev_sectors = dev_sectors; 1688 1689 return _check_data_dev_sectors(rs); 1690 bad: 1691 rs->ti->error = "Target length not divisible by number of data devices"; 1692 return -EINVAL; 1693 } 1694 1695 /* Setup recovery on @rs */ 1696 static void __rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors) 1697 { 1698 /* raid0 does not recover */ 1699 if (rs_is_raid0(rs)) 1700 rs->md.recovery_cp = MaxSector; 1701 /* 1702 * A raid6 set has to be recovered either 1703 * completely or for the grown part to 1704 * ensure proper parity and Q-Syndrome 1705 */ 1706 else if (rs_is_raid6(rs)) 1707 rs->md.recovery_cp = dev_sectors; 1708 /* 1709 * Other raid set types may skip recovery 1710 * depending on the 'nosync' flag. 1711 */ 1712 else 1713 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags) 1714 ? MaxSector : dev_sectors; 1715 } 1716 1717 /* Setup recovery on @rs based on raid type, device size and 'nosync' flag */ 1718 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors) 1719 { 1720 if (!dev_sectors) 1721 /* New raid set or 'sync' flag provided */ 1722 __rs_setup_recovery(rs, 0); 1723 else if (dev_sectors == MaxSector) 1724 /* Prevent recovery */ 1725 __rs_setup_recovery(rs, MaxSector); 1726 else if (__rdev_sectors(rs) < dev_sectors) 1727 /* Grown raid set */ 1728 __rs_setup_recovery(rs, __rdev_sectors(rs)); 1729 else 1730 __rs_setup_recovery(rs, MaxSector); 1731 } 1732 1733 static void do_table_event(struct work_struct *ws) 1734 { 1735 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work); 1736 1737 smp_rmb(); /* Make sure we access most actual mddev properties */ 1738 if (!rs_is_reshaping(rs)) { 1739 if (rs_is_raid10(rs)) 1740 rs_set_rdev_sectors(rs); 1741 rs_set_capacity(rs); 1742 } 1743 dm_table_event(rs->ti->table); 1744 } 1745 1746 static int raid_is_congested(struct dm_target_callbacks *cb, int bits) 1747 { 1748 struct raid_set *rs = container_of(cb, struct raid_set, callbacks); 1749 1750 return mddev_congested(&rs->md, bits); 1751 } 1752 1753 /* 1754 * Make sure a valid takover (level switch) is being requested on @rs 1755 * 1756 * Conversions of raid sets from one MD personality to another 1757 * have to conform to restrictions which are enforced here. 1758 */ 1759 static int rs_check_takeover(struct raid_set *rs) 1760 { 1761 struct mddev *mddev = &rs->md; 1762 unsigned int near_copies; 1763 1764 if (rs->md.degraded) { 1765 rs->ti->error = "Can't takeover degraded raid set"; 1766 return -EPERM; 1767 } 1768 1769 if (rs_is_reshaping(rs)) { 1770 rs->ti->error = "Can't takeover reshaping raid set"; 1771 return -EPERM; 1772 } 1773 1774 switch (mddev->level) { 1775 case 0: 1776 /* raid0 -> raid1/5 with one disk */ 1777 if ((mddev->new_level == 1 || mddev->new_level == 5) && 1778 mddev->raid_disks == 1) 1779 return 0; 1780 1781 /* raid0 -> raid10 */ 1782 if (mddev->new_level == 10 && 1783 !(rs->raid_disks % mddev->raid_disks)) 1784 return 0; 1785 1786 /* raid0 with multiple disks -> raid4/5/6 */ 1787 if (__within_range(mddev->new_level, 4, 6) && 1788 mddev->new_layout == ALGORITHM_PARITY_N && 1789 mddev->raid_disks > 1) 1790 return 0; 1791 1792 break; 1793 1794 case 10: 1795 /* Can't takeover raid10_offset! */ 1796 if (__is_raid10_offset(mddev->layout)) 1797 break; 1798 1799 near_copies = __raid10_near_copies(mddev->layout); 1800 1801 /* raid10* -> raid0 */ 1802 if (mddev->new_level == 0) { 1803 /* Can takeover raid10_near with raid disks divisable by data copies! */ 1804 if (near_copies > 1 && 1805 !(mddev->raid_disks % near_copies)) { 1806 mddev->raid_disks /= near_copies; 1807 mddev->delta_disks = mddev->raid_disks; 1808 return 0; 1809 } 1810 1811 /* Can takeover raid10_far */ 1812 if (near_copies == 1 && 1813 __raid10_far_copies(mddev->layout) > 1) 1814 return 0; 1815 1816 break; 1817 } 1818 1819 /* raid10_{near,far} -> raid1 */ 1820 if (mddev->new_level == 1 && 1821 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks) 1822 return 0; 1823 1824 /* raid10_{near,far} with 2 disks -> raid4/5 */ 1825 if (__within_range(mddev->new_level, 4, 5) && 1826 mddev->raid_disks == 2) 1827 return 0; 1828 break; 1829 1830 case 1: 1831 /* raid1 with 2 disks -> raid4/5 */ 1832 if (__within_range(mddev->new_level, 4, 5) && 1833 mddev->raid_disks == 2) { 1834 mddev->degraded = 1; 1835 return 0; 1836 } 1837 1838 /* raid1 -> raid0 */ 1839 if (mddev->new_level == 0 && 1840 mddev->raid_disks == 1) 1841 return 0; 1842 1843 /* raid1 -> raid10 */ 1844 if (mddev->new_level == 10) 1845 return 0; 1846 break; 1847 1848 case 4: 1849 /* raid4 -> raid0 */ 1850 if (mddev->new_level == 0) 1851 return 0; 1852 1853 /* raid4 -> raid1/5 with 2 disks */ 1854 if ((mddev->new_level == 1 || mddev->new_level == 5) && 1855 mddev->raid_disks == 2) 1856 return 0; 1857 1858 /* raid4 -> raid5/6 with parity N */ 1859 if (__within_range(mddev->new_level, 5, 6) && 1860 mddev->layout == ALGORITHM_PARITY_N) 1861 return 0; 1862 break; 1863 1864 case 5: 1865 /* raid5 with parity N -> raid0 */ 1866 if (mddev->new_level == 0 && 1867 mddev->layout == ALGORITHM_PARITY_N) 1868 return 0; 1869 1870 /* raid5 with parity N -> raid4 */ 1871 if (mddev->new_level == 4 && 1872 mddev->layout == ALGORITHM_PARITY_N) 1873 return 0; 1874 1875 /* raid5 with 2 disks -> raid1/4/10 */ 1876 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) && 1877 mddev->raid_disks == 2) 1878 return 0; 1879 1880 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */ 1881 if (mddev->new_level == 6 && 1882 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || 1883 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6))) 1884 return 0; 1885 break; 1886 1887 case 6: 1888 /* raid6 with parity N -> raid0 */ 1889 if (mddev->new_level == 0 && 1890 mddev->layout == ALGORITHM_PARITY_N) 1891 return 0; 1892 1893 /* raid6 with parity N -> raid4 */ 1894 if (mddev->new_level == 4 && 1895 mddev->layout == ALGORITHM_PARITY_N) 1896 return 0; 1897 1898 /* raid6_*_n with Q-Syndrome N -> raid5_* */ 1899 if (mddev->new_level == 5 && 1900 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || 1901 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC))) 1902 return 0; 1903 1904 default: 1905 break; 1906 } 1907 1908 rs->ti->error = "takeover not possible"; 1909 return -EINVAL; 1910 } 1911 1912 /* True if @rs requested to be taken over */ 1913 static bool rs_takeover_requested(struct raid_set *rs) 1914 { 1915 return rs->md.new_level != rs->md.level; 1916 } 1917 1918 /* True if @rs is requested to reshape by ctr */ 1919 static bool rs_reshape_requested(struct raid_set *rs) 1920 { 1921 bool change; 1922 struct mddev *mddev = &rs->md; 1923 1924 if (rs_takeover_requested(rs)) 1925 return false; 1926 1927 if (rs_is_raid0(rs)) 1928 return false; 1929 1930 change = mddev->new_layout != mddev->layout || 1931 mddev->new_chunk_sectors != mddev->chunk_sectors || 1932 rs->delta_disks; 1933 1934 /* Historical case to support raid1 reshape without delta disks */ 1935 if (rs_is_raid1(rs)) { 1936 if (rs->delta_disks) 1937 return !!rs->delta_disks; 1938 1939 return !change && 1940 mddev->raid_disks != rs->raid_disks; 1941 } 1942 1943 if (rs_is_raid10(rs)) 1944 return change && 1945 !__is_raid10_far(mddev->new_layout) && 1946 rs->delta_disks >= 0; 1947 1948 return change; 1949 } 1950 1951 /* Features */ 1952 #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */ 1953 1954 /* State flags for sb->flags */ 1955 #define SB_FLAG_RESHAPE_ACTIVE 0x1 1956 #define SB_FLAG_RESHAPE_BACKWARDS 0x2 1957 1958 /* 1959 * This structure is never routinely used by userspace, unlike md superblocks. 1960 * Devices with this superblock should only ever be accessed via device-mapper. 1961 */ 1962 #define DM_RAID_MAGIC 0x64526D44 1963 struct dm_raid_superblock { 1964 __le32 magic; /* "DmRd" */ 1965 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */ 1966 1967 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */ 1968 __le32 array_position; /* The position of this drive in the raid set */ 1969 1970 __le64 events; /* Incremented by md when superblock updated */ 1971 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */ 1972 /* indicate failures (see extension below) */ 1973 1974 /* 1975 * This offset tracks the progress of the repair or replacement of 1976 * an individual drive. 1977 */ 1978 __le64 disk_recovery_offset; 1979 1980 /* 1981 * This offset tracks the progress of the initial raid set 1982 * synchronisation/parity calculation. 1983 */ 1984 __le64 array_resync_offset; 1985 1986 /* 1987 * raid characteristics 1988 */ 1989 __le32 level; 1990 __le32 layout; 1991 __le32 stripe_sectors; 1992 1993 /******************************************************************** 1994 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! 1995 * 1996 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist 1997 */ 1998 1999 __le32 flags; /* Flags defining array states for reshaping */ 2000 2001 /* 2002 * This offset tracks the progress of a raid 2003 * set reshape in order to be able to restart it 2004 */ 2005 __le64 reshape_position; 2006 2007 /* 2008 * These define the properties of the array in case of an interrupted reshape 2009 */ 2010 __le32 new_level; 2011 __le32 new_layout; 2012 __le32 new_stripe_sectors; 2013 __le32 delta_disks; 2014 2015 __le64 array_sectors; /* Array size in sectors */ 2016 2017 /* 2018 * Sector offsets to data on devices (reshaping). 2019 * Needed to support out of place reshaping, thus 2020 * not writing over any stripes whilst converting 2021 * them from old to new layout 2022 */ 2023 __le64 data_offset; 2024 __le64 new_data_offset; 2025 2026 __le64 sectors; /* Used device size in sectors */ 2027 2028 /* 2029 * Additonal Bit field of devices indicating failures to support 2030 * up to 256 devices with the 1.9.0 on-disk metadata format 2031 */ 2032 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1]; 2033 2034 __le32 incompat_features; /* Used to indicate any incompatible features */ 2035 2036 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */ 2037 } __packed; 2038 2039 /* 2040 * Check for reshape constraints on raid set @rs: 2041 * 2042 * - reshape function non-existent 2043 * - degraded set 2044 * - ongoing recovery 2045 * - ongoing reshape 2046 * 2047 * Returns 0 if none or -EPERM if given constraint 2048 * and error message reference in @errmsg 2049 */ 2050 static int rs_check_reshape(struct raid_set *rs) 2051 { 2052 struct mddev *mddev = &rs->md; 2053 2054 if (!mddev->pers || !mddev->pers->check_reshape) 2055 rs->ti->error = "Reshape not supported"; 2056 else if (mddev->degraded) 2057 rs->ti->error = "Can't reshape degraded raid set"; 2058 else if (rs_is_recovering(rs)) 2059 rs->ti->error = "Convert request on recovering raid set prohibited"; 2060 else if (rs_is_reshaping(rs)) 2061 rs->ti->error = "raid set already reshaping!"; 2062 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs))) 2063 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10"; 2064 else 2065 return 0; 2066 2067 return -EPERM; 2068 } 2069 2070 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload) 2071 { 2072 BUG_ON(!rdev->sb_page); 2073 2074 if (rdev->sb_loaded && !force_reload) 2075 return 0; 2076 2077 rdev->sb_loaded = 0; 2078 2079 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) { 2080 DMERR("Failed to read superblock of device at position %d", 2081 rdev->raid_disk); 2082 md_error(rdev->mddev, rdev); 2083 set_bit(Faulty, &rdev->flags); 2084 return -EIO; 2085 } 2086 2087 rdev->sb_loaded = 1; 2088 2089 return 0; 2090 } 2091 2092 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) 2093 { 2094 failed_devices[0] = le64_to_cpu(sb->failed_devices); 2095 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices)); 2096 2097 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { 2098 int i = ARRAY_SIZE(sb->extended_failed_devices); 2099 2100 while (i--) 2101 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]); 2102 } 2103 } 2104 2105 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) 2106 { 2107 int i = ARRAY_SIZE(sb->extended_failed_devices); 2108 2109 sb->failed_devices = cpu_to_le64(failed_devices[0]); 2110 while (i--) 2111 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]); 2112 } 2113 2114 /* 2115 * Synchronize the superblock members with the raid set properties 2116 * 2117 * All superblock data is little endian. 2118 */ 2119 static void super_sync(struct mddev *mddev, struct md_rdev *rdev) 2120 { 2121 bool update_failed_devices = false; 2122 unsigned int i; 2123 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 2124 struct dm_raid_superblock *sb; 2125 struct raid_set *rs = container_of(mddev, struct raid_set, md); 2126 2127 /* No metadata device, no superblock */ 2128 if (!rdev->meta_bdev) 2129 return; 2130 2131 BUG_ON(!rdev->sb_page); 2132 2133 sb = page_address(rdev->sb_page); 2134 2135 sb_retrieve_failed_devices(sb, failed_devices); 2136 2137 for (i = 0; i < rs->raid_disks; i++) 2138 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) { 2139 update_failed_devices = true; 2140 set_bit(i, (void *) failed_devices); 2141 } 2142 2143 if (update_failed_devices) 2144 sb_update_failed_devices(sb, failed_devices); 2145 2146 sb->magic = cpu_to_le32(DM_RAID_MAGIC); 2147 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); 2148 2149 sb->num_devices = cpu_to_le32(mddev->raid_disks); 2150 sb->array_position = cpu_to_le32(rdev->raid_disk); 2151 2152 sb->events = cpu_to_le64(mddev->events); 2153 2154 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset); 2155 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp); 2156 2157 sb->level = cpu_to_le32(mddev->level); 2158 sb->layout = cpu_to_le32(mddev->layout); 2159 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors); 2160 2161 /******************************************************************** 2162 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! 2163 * 2164 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist 2165 */ 2166 sb->new_level = cpu_to_le32(mddev->new_level); 2167 sb->new_layout = cpu_to_le32(mddev->new_layout); 2168 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors); 2169 2170 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2171 2172 smp_rmb(); /* Make sure we access most recent reshape position */ 2173 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2174 if (le64_to_cpu(sb->reshape_position) != MaxSector) { 2175 /* Flag ongoing reshape */ 2176 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE); 2177 2178 if (mddev->delta_disks < 0 || mddev->reshape_backwards) 2179 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS); 2180 } else { 2181 /* Clear reshape flags */ 2182 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS)); 2183 } 2184 2185 sb->array_sectors = cpu_to_le64(mddev->array_sectors); 2186 sb->data_offset = cpu_to_le64(rdev->data_offset); 2187 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset); 2188 sb->sectors = cpu_to_le64(rdev->sectors); 2189 sb->incompat_features = cpu_to_le32(0); 2190 2191 /* Zero out the rest of the payload after the size of the superblock */ 2192 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb)); 2193 } 2194 2195 /* 2196 * super_load 2197 * 2198 * This function creates a superblock if one is not found on the device 2199 * and will decide which superblock to use if there's a choice. 2200 * 2201 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise 2202 */ 2203 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev) 2204 { 2205 int r; 2206 struct dm_raid_superblock *sb; 2207 struct dm_raid_superblock *refsb; 2208 uint64_t events_sb, events_refsb; 2209 2210 r = read_disk_sb(rdev, rdev->sb_size, false); 2211 if (r) 2212 return r; 2213 2214 sb = page_address(rdev->sb_page); 2215 2216 /* 2217 * Two cases that we want to write new superblocks and rebuild: 2218 * 1) New device (no matching magic number) 2219 * 2) Device specified for rebuild (!In_sync w/ offset == 0) 2220 */ 2221 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) || 2222 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) { 2223 super_sync(rdev->mddev, rdev); 2224 2225 set_bit(FirstUse, &rdev->flags); 2226 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); 2227 2228 /* Force writing of superblocks to disk */ 2229 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags); 2230 2231 /* Any superblock is better than none, choose that if given */ 2232 return refdev ? 0 : 1; 2233 } 2234 2235 if (!refdev) 2236 return 1; 2237 2238 events_sb = le64_to_cpu(sb->events); 2239 2240 refsb = page_address(refdev->sb_page); 2241 events_refsb = le64_to_cpu(refsb->events); 2242 2243 return (events_sb > events_refsb) ? 1 : 0; 2244 } 2245 2246 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev) 2247 { 2248 int role; 2249 unsigned int d; 2250 struct mddev *mddev = &rs->md; 2251 uint64_t events_sb; 2252 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 2253 struct dm_raid_superblock *sb; 2254 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0; 2255 struct md_rdev *r; 2256 struct dm_raid_superblock *sb2; 2257 2258 sb = page_address(rdev->sb_page); 2259 events_sb = le64_to_cpu(sb->events); 2260 2261 /* 2262 * Initialise to 1 if this is a new superblock. 2263 */ 2264 mddev->events = events_sb ? : 1; 2265 2266 mddev->reshape_position = MaxSector; 2267 2268 mddev->raid_disks = le32_to_cpu(sb->num_devices); 2269 mddev->level = le32_to_cpu(sb->level); 2270 mddev->layout = le32_to_cpu(sb->layout); 2271 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors); 2272 2273 /* 2274 * Reshaping is supported, e.g. reshape_position is valid 2275 * in superblock and superblock content is authoritative. 2276 */ 2277 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { 2278 /* Superblock is authoritative wrt given raid set layout! */ 2279 mddev->new_level = le32_to_cpu(sb->new_level); 2280 mddev->new_layout = le32_to_cpu(sb->new_layout); 2281 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors); 2282 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 2283 mddev->array_sectors = le64_to_cpu(sb->array_sectors); 2284 2285 /* raid was reshaping and got interrupted */ 2286 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) { 2287 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { 2288 DMERR("Reshape requested but raid set is still reshaping"); 2289 return -EINVAL; 2290 } 2291 2292 if (mddev->delta_disks < 0 || 2293 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS))) 2294 mddev->reshape_backwards = 1; 2295 else 2296 mddev->reshape_backwards = 0; 2297 2298 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 2299 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout); 2300 } 2301 2302 } else { 2303 /* 2304 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata 2305 */ 2306 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout); 2307 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 2308 2309 if (rs_takeover_requested(rs)) { 2310 if (rt_cur && rt_new) 2311 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)", 2312 rt_cur->name, rt_new->name); 2313 else 2314 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)"); 2315 return -EINVAL; 2316 } else if (rs_reshape_requested(rs)) { 2317 DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)"); 2318 if (mddev->layout != mddev->new_layout) { 2319 if (rt_cur && rt_new) 2320 DMERR(" current layout %s vs new layout %s", 2321 rt_cur->name, rt_new->name); 2322 else 2323 DMERR(" current layout 0x%X vs new layout 0x%X", 2324 le32_to_cpu(sb->layout), mddev->new_layout); 2325 } 2326 if (mddev->chunk_sectors != mddev->new_chunk_sectors) 2327 DMERR(" current stripe sectors %u vs new stripe sectors %u", 2328 mddev->chunk_sectors, mddev->new_chunk_sectors); 2329 if (rs->delta_disks) 2330 DMERR(" current %u disks vs new %u disks", 2331 mddev->raid_disks, mddev->raid_disks + rs->delta_disks); 2332 if (rs_is_raid10(rs)) { 2333 DMERR(" Old layout: %s w/ %u copies", 2334 raid10_md_layout_to_format(mddev->layout), 2335 raid10_md_layout_to_copies(mddev->layout)); 2336 DMERR(" New layout: %s w/ %u copies", 2337 raid10_md_layout_to_format(mddev->new_layout), 2338 raid10_md_layout_to_copies(mddev->new_layout)); 2339 } 2340 return -EINVAL; 2341 } 2342 2343 DMINFO("Discovered old metadata format; upgrading to extended metadata format"); 2344 } 2345 2346 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) 2347 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset); 2348 2349 /* 2350 * During load, we set FirstUse if a new superblock was written. 2351 * There are two reasons we might not have a superblock: 2352 * 1) The raid set is brand new - in which case, all of the 2353 * devices must have their In_sync bit set. Also, 2354 * recovery_cp must be 0, unless forced. 2355 * 2) This is a new device being added to an old raid set 2356 * and the new device needs to be rebuilt - in which 2357 * case the In_sync bit will /not/ be set and 2358 * recovery_cp must be MaxSector. 2359 * 3) This is/are a new device(s) being added to an old 2360 * raid set during takeover to a higher raid level 2361 * to provide capacity for redundancy or during reshape 2362 * to add capacity to grow the raid set. 2363 */ 2364 d = 0; 2365 rdev_for_each(r, mddev) { 2366 if (test_bit(Journal, &rdev->flags)) 2367 continue; 2368 2369 if (test_bit(FirstUse, &r->flags)) 2370 new_devs++; 2371 2372 if (!test_bit(In_sync, &r->flags)) { 2373 DMINFO("Device %d specified for rebuild; clearing superblock", 2374 r->raid_disk); 2375 rebuilds++; 2376 2377 if (test_bit(FirstUse, &r->flags)) 2378 rebuild_and_new++; 2379 } 2380 2381 d++; 2382 } 2383 2384 if (new_devs == rs->raid_disks || !rebuilds) { 2385 /* Replace a broken device */ 2386 if (new_devs == 1 && !rs->delta_disks) 2387 ; 2388 if (new_devs == rs->raid_disks) { 2389 DMINFO("Superblocks created for new raid set"); 2390 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2391 } else if (new_devs != rebuilds && 2392 new_devs != rs->delta_disks) { 2393 DMERR("New device injected into existing raid set without " 2394 "'delta_disks' or 'rebuild' parameter specified"); 2395 return -EINVAL; 2396 } 2397 } else if (new_devs && new_devs != rebuilds) { 2398 DMERR("%u 'rebuild' devices cannot be injected into" 2399 " a raid set with %u other first-time devices", 2400 rebuilds, new_devs); 2401 return -EINVAL; 2402 } else if (rebuilds) { 2403 if (rebuild_and_new && rebuilds != rebuild_and_new) { 2404 DMERR("new device%s provided without 'rebuild'", 2405 new_devs > 1 ? "s" : ""); 2406 return -EINVAL; 2407 } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) { 2408 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)", 2409 (unsigned long long) mddev->recovery_cp); 2410 return -EINVAL; 2411 } else if (rs_is_reshaping(rs)) { 2412 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)", 2413 (unsigned long long) mddev->reshape_position); 2414 return -EINVAL; 2415 } 2416 } 2417 2418 /* 2419 * Now we set the Faulty bit for those devices that are 2420 * recorded in the superblock as failed. 2421 */ 2422 sb_retrieve_failed_devices(sb, failed_devices); 2423 rdev_for_each(r, mddev) { 2424 if (test_bit(Journal, &rdev->flags) || 2425 !r->sb_page) 2426 continue; 2427 sb2 = page_address(r->sb_page); 2428 sb2->failed_devices = 0; 2429 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices)); 2430 2431 /* 2432 * Check for any device re-ordering. 2433 */ 2434 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) { 2435 role = le32_to_cpu(sb2->array_position); 2436 if (role < 0) 2437 continue; 2438 2439 if (role != r->raid_disk) { 2440 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) { 2441 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) || 2442 rs->raid_disks % rs->raid10_copies) { 2443 rs->ti->error = 2444 "Cannot change raid10 near set to odd # of devices!"; 2445 return -EINVAL; 2446 } 2447 2448 sb2->array_position = cpu_to_le32(r->raid_disk); 2449 2450 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) && 2451 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) && 2452 !rt_is_raid1(rs->raid_type)) { 2453 rs->ti->error = "Cannot change device positions in raid set"; 2454 return -EINVAL; 2455 } 2456 2457 DMINFO("raid device #%d now at position #%d", role, r->raid_disk); 2458 } 2459 2460 /* 2461 * Partial recovery is performed on 2462 * returning failed devices. 2463 */ 2464 if (test_bit(role, (void *) failed_devices)) 2465 set_bit(Faulty, &r->flags); 2466 } 2467 } 2468 2469 return 0; 2470 } 2471 2472 static int super_validate(struct raid_set *rs, struct md_rdev *rdev) 2473 { 2474 struct mddev *mddev = &rs->md; 2475 struct dm_raid_superblock *sb; 2476 2477 if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0) 2478 return 0; 2479 2480 sb = page_address(rdev->sb_page); 2481 2482 /* 2483 * If mddev->events is not set, we know we have not yet initialized 2484 * the array. 2485 */ 2486 if (!mddev->events && super_init_validation(rs, rdev)) 2487 return -EINVAL; 2488 2489 if (le32_to_cpu(sb->compat_features) && 2490 le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) { 2491 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags"; 2492 return -EINVAL; 2493 } 2494 2495 if (sb->incompat_features) { 2496 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet"; 2497 return -EINVAL; 2498 } 2499 2500 /* Enable bitmap creation for RAID levels != 0 */ 2501 mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096); 2502 mddev->bitmap_info.default_offset = mddev->bitmap_info.offset; 2503 2504 if (!test_and_clear_bit(FirstUse, &rdev->flags)) { 2505 /* 2506 * Retrieve rdev size stored in superblock to be prepared for shrink. 2507 * Check extended superblock members are present otherwise the size 2508 * will not be set! 2509 */ 2510 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) 2511 rdev->sectors = le64_to_cpu(sb->sectors); 2512 2513 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset); 2514 if (rdev->recovery_offset == MaxSector) 2515 set_bit(In_sync, &rdev->flags); 2516 /* 2517 * If no reshape in progress -> we're recovering single 2518 * disk(s) and have to set the device(s) to out-of-sync 2519 */ 2520 else if (!rs_is_reshaping(rs)) 2521 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */ 2522 } 2523 2524 /* 2525 * If a device comes back, set it as not In_sync and no longer faulty. 2526 */ 2527 if (test_and_clear_bit(Faulty, &rdev->flags)) { 2528 rdev->recovery_offset = 0; 2529 clear_bit(In_sync, &rdev->flags); 2530 rdev->saved_raid_disk = rdev->raid_disk; 2531 } 2532 2533 /* Reshape support -> restore repective data offsets */ 2534 rdev->data_offset = le64_to_cpu(sb->data_offset); 2535 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset); 2536 2537 return 0; 2538 } 2539 2540 /* 2541 * Analyse superblocks and select the freshest. 2542 */ 2543 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs) 2544 { 2545 int r; 2546 struct md_rdev *rdev, *freshest; 2547 struct mddev *mddev = &rs->md; 2548 2549 freshest = NULL; 2550 rdev_for_each(rdev, mddev) { 2551 if (test_bit(Journal, &rdev->flags)) 2552 continue; 2553 2554 if (!rdev->meta_bdev) 2555 continue; 2556 2557 /* Set superblock offset/size for metadata device. */ 2558 rdev->sb_start = 0; 2559 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev); 2560 if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) { 2561 DMERR("superblock size of a logical block is no longer valid"); 2562 return -EINVAL; 2563 } 2564 2565 /* 2566 * Skipping super_load due to CTR_FLAG_SYNC will cause 2567 * the array to undergo initialization again as 2568 * though it were new. This is the intended effect 2569 * of the "sync" directive. 2570 * 2571 * With reshaping capability added, we must ensure that 2572 * that the "sync" directive is disallowed during the reshape. 2573 */ 2574 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 2575 continue; 2576 2577 r = super_load(rdev, freshest); 2578 2579 switch (r) { 2580 case 1: 2581 freshest = rdev; 2582 break; 2583 case 0: 2584 break; 2585 default: 2586 /* This is a failure to read the superblock from the metadata device. */ 2587 /* 2588 * We have to keep any raid0 data/metadata device pairs or 2589 * the MD raid0 personality will fail to start the array. 2590 */ 2591 if (rs_is_raid0(rs)) 2592 continue; 2593 2594 /* 2595 * We keep the dm_devs to be able to emit the device tuple 2596 * properly on the table line in raid_status() (rather than 2597 * mistakenly acting as if '- -' got passed into the constructor). 2598 * 2599 * The rdev has to stay on the same_set list to allow for 2600 * the attempt to restore faulty devices on second resume. 2601 */ 2602 rdev->raid_disk = rdev->saved_raid_disk = -1; 2603 break; 2604 } 2605 } 2606 2607 if (!freshest) 2608 return 0; 2609 2610 /* 2611 * Validation of the freshest device provides the source of 2612 * validation for the remaining devices. 2613 */ 2614 rs->ti->error = "Unable to assemble array: Invalid superblocks"; 2615 if (super_validate(rs, freshest)) 2616 return -EINVAL; 2617 2618 if (validate_raid_redundancy(rs)) { 2619 rs->ti->error = "Insufficient redundancy to activate array"; 2620 return -EINVAL; 2621 } 2622 2623 rdev_for_each(rdev, mddev) 2624 if (!test_bit(Journal, &rdev->flags) && 2625 rdev != freshest && 2626 super_validate(rs, rdev)) 2627 return -EINVAL; 2628 return 0; 2629 } 2630 2631 /* 2632 * Adjust data_offset and new_data_offset on all disk members of @rs 2633 * for out of place reshaping if requested by contructor 2634 * 2635 * We need free space at the beginning of each raid disk for forward 2636 * and at the end for backward reshapes which userspace has to provide 2637 * via remapping/reordering of space. 2638 */ 2639 static int rs_adjust_data_offsets(struct raid_set *rs) 2640 { 2641 sector_t data_offset = 0, new_data_offset = 0; 2642 struct md_rdev *rdev; 2643 2644 /* Constructor did not request data offset change */ 2645 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { 2646 if (!rs_is_reshapable(rs)) 2647 goto out; 2648 2649 return 0; 2650 } 2651 2652 /* HM FIXME: get InSync raid_dev? */ 2653 rdev = &rs->dev[0].rdev; 2654 2655 if (rs->delta_disks < 0) { 2656 /* 2657 * Removing disks (reshaping backwards): 2658 * 2659 * - before reshape: data is at offset 0 and free space 2660 * is at end of each component LV 2661 * 2662 * - after reshape: data is at offset rs->data_offset != 0 on each component LV 2663 */ 2664 data_offset = 0; 2665 new_data_offset = rs->data_offset; 2666 2667 } else if (rs->delta_disks > 0) { 2668 /* 2669 * Adding disks (reshaping forwards): 2670 * 2671 * - before reshape: data is at offset rs->data_offset != 0 and 2672 * free space is at begin of each component LV 2673 * 2674 * - after reshape: data is at offset 0 on each component LV 2675 */ 2676 data_offset = rs->data_offset; 2677 new_data_offset = 0; 2678 2679 } else { 2680 /* 2681 * User space passes in 0 for data offset after having removed reshape space 2682 * 2683 * - or - (data offset != 0) 2684 * 2685 * Changing RAID layout or chunk size -> toggle offsets 2686 * 2687 * - before reshape: data is at offset rs->data_offset 0 and 2688 * free space is at end of each component LV 2689 * -or- 2690 * data is at offset rs->data_offset != 0 and 2691 * free space is at begin of each component LV 2692 * 2693 * - after reshape: data is at offset 0 if it was at offset != 0 2694 * or at offset != 0 if it was at offset 0 2695 * on each component LV 2696 * 2697 */ 2698 data_offset = rs->data_offset ? rdev->data_offset : 0; 2699 new_data_offset = data_offset ? 0 : rs->data_offset; 2700 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2701 } 2702 2703 /* 2704 * Make sure we got a minimum amount of free sectors per device 2705 */ 2706 if (rs->data_offset && 2707 to_sector(i_size_read(rdev->bdev->bd_inode)) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) { 2708 rs->ti->error = data_offset ? "No space for forward reshape" : 2709 "No space for backward reshape"; 2710 return -ENOSPC; 2711 } 2712 out: 2713 /* 2714 * Raise recovery_cp in case data_offset != 0 to 2715 * avoid false recovery positives in the constructor. 2716 */ 2717 if (rs->md.recovery_cp < rs->md.dev_sectors) 2718 rs->md.recovery_cp += rs->dev[0].rdev.data_offset; 2719 2720 /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */ 2721 rdev_for_each(rdev, &rs->md) { 2722 if (!test_bit(Journal, &rdev->flags)) { 2723 rdev->data_offset = data_offset; 2724 rdev->new_data_offset = new_data_offset; 2725 } 2726 } 2727 2728 return 0; 2729 } 2730 2731 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */ 2732 static void __reorder_raid_disk_indexes(struct raid_set *rs) 2733 { 2734 int i = 0; 2735 struct md_rdev *rdev; 2736 2737 rdev_for_each(rdev, &rs->md) { 2738 if (!test_bit(Journal, &rdev->flags)) { 2739 rdev->raid_disk = i++; 2740 rdev->saved_raid_disk = rdev->new_raid_disk = -1; 2741 } 2742 } 2743 } 2744 2745 /* 2746 * Setup @rs for takeover by a different raid level 2747 */ 2748 static int rs_setup_takeover(struct raid_set *rs) 2749 { 2750 struct mddev *mddev = &rs->md; 2751 struct md_rdev *rdev; 2752 unsigned int d = mddev->raid_disks = rs->raid_disks; 2753 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset; 2754 2755 if (rt_is_raid10(rs->raid_type)) { 2756 if (rs_is_raid0(rs)) { 2757 /* Userpace reordered disks -> adjust raid_disk indexes */ 2758 __reorder_raid_disk_indexes(rs); 2759 2760 /* raid0 -> raid10_far layout */ 2761 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR, 2762 rs->raid10_copies); 2763 } else if (rs_is_raid1(rs)) 2764 /* raid1 -> raid10_near layout */ 2765 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, 2766 rs->raid_disks); 2767 else 2768 return -EINVAL; 2769 2770 } 2771 2772 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2773 mddev->recovery_cp = MaxSector; 2774 2775 while (d--) { 2776 rdev = &rs->dev[d].rdev; 2777 2778 if (test_bit(d, (void *) rs->rebuild_disks)) { 2779 clear_bit(In_sync, &rdev->flags); 2780 clear_bit(Faulty, &rdev->flags); 2781 mddev->recovery_cp = rdev->recovery_offset = 0; 2782 /* Bitmap has to be created when we do an "up" takeover */ 2783 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2784 } 2785 2786 rdev->new_data_offset = new_data_offset; 2787 } 2788 2789 return 0; 2790 } 2791 2792 /* Prepare @rs for reshape */ 2793 static int rs_prepare_reshape(struct raid_set *rs) 2794 { 2795 bool reshape; 2796 struct mddev *mddev = &rs->md; 2797 2798 if (rs_is_raid10(rs)) { 2799 if (rs->raid_disks != mddev->raid_disks && 2800 __is_raid10_near(mddev->layout) && 2801 rs->raid10_copies && 2802 rs->raid10_copies != __raid10_near_copies(mddev->layout)) { 2803 /* 2804 * raid disk have to be multiple of data copies to allow this conversion, 2805 * 2806 * This is actually not a reshape it is a 2807 * rebuild of any additional mirrors per group 2808 */ 2809 if (rs->raid_disks % rs->raid10_copies) { 2810 rs->ti->error = "Can't reshape raid10 mirror groups"; 2811 return -EINVAL; 2812 } 2813 2814 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */ 2815 __reorder_raid_disk_indexes(rs); 2816 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, 2817 rs->raid10_copies); 2818 mddev->new_layout = mddev->layout; 2819 reshape = false; 2820 } else 2821 reshape = true; 2822 2823 } else if (rs_is_raid456(rs)) 2824 reshape = true; 2825 2826 else if (rs_is_raid1(rs)) { 2827 if (rs->delta_disks) { 2828 /* Process raid1 via delta_disks */ 2829 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks; 2830 reshape = true; 2831 } else { 2832 /* Process raid1 without delta_disks */ 2833 mddev->raid_disks = rs->raid_disks; 2834 reshape = false; 2835 } 2836 } else { 2837 rs->ti->error = "Called with bogus raid type"; 2838 return -EINVAL; 2839 } 2840 2841 if (reshape) { 2842 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags); 2843 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2844 } else if (mddev->raid_disks < rs->raid_disks) 2845 /* Create new superblocks and bitmaps, if any new disks */ 2846 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2847 2848 return 0; 2849 } 2850 2851 /* Get reshape sectors from data_offsets or raid set */ 2852 static sector_t _get_reshape_sectors(struct raid_set *rs) 2853 { 2854 struct md_rdev *rdev; 2855 sector_t reshape_sectors = 0; 2856 2857 rdev_for_each(rdev, &rs->md) 2858 if (!test_bit(Journal, &rdev->flags)) { 2859 reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ? 2860 rdev->data_offset - rdev->new_data_offset : 2861 rdev->new_data_offset - rdev->data_offset; 2862 break; 2863 } 2864 2865 return max(reshape_sectors, (sector_t) rs->data_offset); 2866 } 2867 2868 /* 2869 * 2870 * - change raid layout 2871 * - change chunk size 2872 * - add disks 2873 * - remove disks 2874 */ 2875 static int rs_setup_reshape(struct raid_set *rs) 2876 { 2877 int r = 0; 2878 unsigned int cur_raid_devs, d; 2879 sector_t reshape_sectors = _get_reshape_sectors(rs); 2880 struct mddev *mddev = &rs->md; 2881 struct md_rdev *rdev; 2882 2883 mddev->delta_disks = rs->delta_disks; 2884 cur_raid_devs = mddev->raid_disks; 2885 2886 /* Ignore impossible layout change whilst adding/removing disks */ 2887 if (mddev->delta_disks && 2888 mddev->layout != mddev->new_layout) { 2889 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks); 2890 mddev->new_layout = mddev->layout; 2891 } 2892 2893 /* 2894 * Adjust array size: 2895 * 2896 * - in case of adding disk(s), array size has 2897 * to grow after the disk adding reshape, 2898 * which'll hapen in the event handler; 2899 * reshape will happen forward, so space has to 2900 * be available at the beginning of each disk 2901 * 2902 * - in case of removing disk(s), array size 2903 * has to shrink before starting the reshape, 2904 * which'll happen here; 2905 * reshape will happen backward, so space has to 2906 * be available at the end of each disk 2907 * 2908 * - data_offset and new_data_offset are 2909 * adjusted for aforementioned out of place 2910 * reshaping based on userspace passing in 2911 * the "data_offset <sectors>" key/value 2912 * pair via the constructor 2913 */ 2914 2915 /* Add disk(s) */ 2916 if (rs->delta_disks > 0) { 2917 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */ 2918 for (d = cur_raid_devs; d < rs->raid_disks; d++) { 2919 rdev = &rs->dev[d].rdev; 2920 clear_bit(In_sync, &rdev->flags); 2921 2922 /* 2923 * save_raid_disk needs to be -1, or recovery_offset will be set to 0 2924 * by md, which'll store that erroneously in the superblock on reshape 2925 */ 2926 rdev->saved_raid_disk = -1; 2927 rdev->raid_disk = d; 2928 2929 rdev->sectors = mddev->dev_sectors; 2930 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector; 2931 } 2932 2933 mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */ 2934 2935 /* Remove disk(s) */ 2936 } else if (rs->delta_disks < 0) { 2937 r = rs_set_dev_and_array_sectors(rs, true); 2938 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */ 2939 2940 /* Change layout and/or chunk size */ 2941 } else { 2942 /* 2943 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size: 2944 * 2945 * keeping number of disks and do layout change -> 2946 * 2947 * toggle reshape_backward depending on data_offset: 2948 * 2949 * - free space upfront -> reshape forward 2950 * 2951 * - free space at the end -> reshape backward 2952 * 2953 * 2954 * This utilizes free reshape space avoiding the need 2955 * for userspace to move (parts of) LV segments in 2956 * case of layout/chunksize change (for disk 2957 * adding/removing reshape space has to be at 2958 * the proper address (see above with delta_disks): 2959 * 2960 * add disk(s) -> begin 2961 * remove disk(s)-> end 2962 */ 2963 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1; 2964 } 2965 2966 /* 2967 * Adjust device size for forward reshape 2968 * because md_finish_reshape() reduces it. 2969 */ 2970 if (!mddev->reshape_backwards) 2971 rdev_for_each(rdev, &rs->md) 2972 if (!test_bit(Journal, &rdev->flags)) 2973 rdev->sectors += reshape_sectors; 2974 2975 return r; 2976 } 2977 2978 /* 2979 * Enable/disable discard support on RAID set depending on 2980 * RAID level and discard properties of underlying RAID members. 2981 */ 2982 static void configure_discard_support(struct raid_set *rs) 2983 { 2984 int i; 2985 bool raid456; 2986 struct dm_target *ti = rs->ti; 2987 2988 /* 2989 * XXX: RAID level 4,5,6 require zeroing for safety. 2990 */ 2991 raid456 = rs_is_raid456(rs); 2992 2993 for (i = 0; i < rs->raid_disks; i++) { 2994 struct request_queue *q; 2995 2996 if (!rs->dev[i].rdev.bdev) 2997 continue; 2998 2999 q = bdev_get_queue(rs->dev[i].rdev.bdev); 3000 if (!q || !blk_queue_discard(q)) 3001 return; 3002 3003 if (raid456) { 3004 if (!devices_handle_discard_safely) { 3005 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty."); 3006 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override."); 3007 return; 3008 } 3009 } 3010 } 3011 3012 /* 3013 * RAID1 and RAID10 personalities require bio splitting, 3014 * RAID0/4/5/6 don't and process large discard bios properly. 3015 */ 3016 ti->split_discard_bios = !!(rs_is_raid1(rs) || rs_is_raid10(rs)); 3017 ti->num_discard_bios = 1; 3018 } 3019 3020 /* 3021 * Construct a RAID0/1/10/4/5/6 mapping: 3022 * Args: 3023 * <raid_type> <#raid_params> <raid_params>{0,} \ 3024 * <#raid_devs> [<meta_dev1> <dev1>]{1,} 3025 * 3026 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for 3027 * details on possible <raid_params>. 3028 * 3029 * Userspace is free to initialize the metadata devices, hence the superblocks to 3030 * enforce recreation based on the passed in table parameters. 3031 * 3032 */ 3033 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv) 3034 { 3035 int r; 3036 bool resize = false; 3037 struct raid_type *rt; 3038 unsigned int num_raid_params, num_raid_devs; 3039 sector_t calculated_dev_sectors, rdev_sectors, reshape_sectors; 3040 struct raid_set *rs = NULL; 3041 const char *arg; 3042 struct rs_layout rs_layout; 3043 struct dm_arg_set as = { argc, argv }, as_nrd; 3044 struct dm_arg _args[] = { 3045 { 0, as.argc, "Cannot understand number of raid parameters" }, 3046 { 1, 254, "Cannot understand number of raid devices parameters" } 3047 }; 3048 3049 /* Must have <raid_type> */ 3050 arg = dm_shift_arg(&as); 3051 if (!arg) { 3052 ti->error = "No arguments"; 3053 return -EINVAL; 3054 } 3055 3056 rt = get_raid_type(arg); 3057 if (!rt) { 3058 ti->error = "Unrecognised raid_type"; 3059 return -EINVAL; 3060 } 3061 3062 /* Must have <#raid_params> */ 3063 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error)) 3064 return -EINVAL; 3065 3066 /* number of raid device tupples <meta_dev data_dev> */ 3067 as_nrd = as; 3068 dm_consume_args(&as_nrd, num_raid_params); 3069 _args[1].max = (as_nrd.argc - 1) / 2; 3070 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error)) 3071 return -EINVAL; 3072 3073 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) { 3074 ti->error = "Invalid number of supplied raid devices"; 3075 return -EINVAL; 3076 } 3077 3078 rs = raid_set_alloc(ti, rt, num_raid_devs); 3079 if (IS_ERR(rs)) 3080 return PTR_ERR(rs); 3081 3082 r = parse_raid_params(rs, &as, num_raid_params); 3083 if (r) 3084 goto bad; 3085 3086 r = parse_dev_params(rs, &as); 3087 if (r) 3088 goto bad; 3089 3090 rs->md.sync_super = super_sync; 3091 3092 /* 3093 * Calculate ctr requested array and device sizes to allow 3094 * for superblock analysis needing device sizes defined. 3095 * 3096 * Any existing superblock will overwrite the array and device sizes 3097 */ 3098 r = rs_set_dev_and_array_sectors(rs, false); 3099 if (r) 3100 goto bad; 3101 3102 calculated_dev_sectors = rs->md.dev_sectors; 3103 3104 /* 3105 * Backup any new raid set level, layout, ... 3106 * requested to be able to compare to superblock 3107 * members for conversion decisions. 3108 */ 3109 rs_config_backup(rs, &rs_layout); 3110 3111 r = analyse_superblocks(ti, rs); 3112 if (r) 3113 goto bad; 3114 3115 rdev_sectors = __rdev_sectors(rs); 3116 if (!rdev_sectors) { 3117 ti->error = "Invalid rdev size"; 3118 r = -EINVAL; 3119 goto bad; 3120 } 3121 3122 3123 reshape_sectors = _get_reshape_sectors(rs); 3124 if (calculated_dev_sectors != rdev_sectors) 3125 resize = calculated_dev_sectors != (reshape_sectors ? rdev_sectors - reshape_sectors : rdev_sectors); 3126 3127 INIT_WORK(&rs->md.event_work, do_table_event); 3128 ti->private = rs; 3129 ti->num_flush_bios = 1; 3130 3131 /* Restore any requested new layout for conversion decision */ 3132 rs_config_restore(rs, &rs_layout); 3133 3134 /* 3135 * Now that we have any superblock metadata available, 3136 * check for new, recovering, reshaping, to be taken over, 3137 * to be reshaped or an existing, unchanged raid set to 3138 * run in sequence. 3139 */ 3140 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) { 3141 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */ 3142 if (rs_is_raid6(rs) && 3143 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 3144 ti->error = "'nosync' not allowed for new raid6 set"; 3145 r = -EINVAL; 3146 goto bad; 3147 } 3148 rs_setup_recovery(rs, 0); 3149 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3150 rs_set_new(rs); 3151 } else if (rs_is_recovering(rs)) { 3152 /* A recovering raid set may be resized */ 3153 ; /* skip setup rs */ 3154 } else if (rs_is_reshaping(rs)) { 3155 /* Have to reject size change request during reshape */ 3156 if (resize) { 3157 ti->error = "Can't resize a reshaping raid set"; 3158 r = -EPERM; 3159 goto bad; 3160 } 3161 /* skip setup rs */ 3162 } else if (rs_takeover_requested(rs)) { 3163 if (rs_is_reshaping(rs)) { 3164 ti->error = "Can't takeover a reshaping raid set"; 3165 r = -EPERM; 3166 goto bad; 3167 } 3168 3169 /* We can't takeover a journaled raid4/5/6 */ 3170 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 3171 ti->error = "Can't takeover a journaled raid4/5/6 set"; 3172 r = -EPERM; 3173 goto bad; 3174 } 3175 3176 /* 3177 * If a takeover is needed, userspace sets any additional 3178 * devices to rebuild and we can check for a valid request here. 3179 * 3180 * If acceptible, set the level to the new requested 3181 * one, prohibit requesting recovery, allow the raid 3182 * set to run and store superblocks during resume. 3183 */ 3184 r = rs_check_takeover(rs); 3185 if (r) 3186 goto bad; 3187 3188 r = rs_setup_takeover(rs); 3189 if (r) 3190 goto bad; 3191 3192 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3193 /* Takeover ain't recovery, so disable recovery */ 3194 rs_setup_recovery(rs, MaxSector); 3195 rs_set_new(rs); 3196 } else if (rs_reshape_requested(rs)) { 3197 /* 3198 * No need to check for 'ongoing' takeover here, because takeover 3199 * is an instant operation as oposed to an ongoing reshape. 3200 */ 3201 3202 /* We can't reshape a journaled raid4/5/6 */ 3203 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 3204 ti->error = "Can't reshape a journaled raid4/5/6 set"; 3205 r = -EPERM; 3206 goto bad; 3207 } 3208 3209 /* Out-of-place space has to be available to allow for a reshape unless raid1! */ 3210 if (reshape_sectors || rs_is_raid1(rs)) { 3211 /* 3212 * We can only prepare for a reshape here, because the 3213 * raid set needs to run to provide the repective reshape 3214 * check functions via its MD personality instance. 3215 * 3216 * So do the reshape check after md_run() succeeded. 3217 */ 3218 r = rs_prepare_reshape(rs); 3219 if (r) 3220 return r; 3221 3222 /* Reshaping ain't recovery, so disable recovery */ 3223 rs_setup_recovery(rs, MaxSector); 3224 } 3225 rs_set_cur(rs); 3226 } else { 3227 /* May not set recovery when a device rebuild is requested */ 3228 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) { 3229 rs_setup_recovery(rs, MaxSector); 3230 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3231 } else 3232 rs_setup_recovery(rs, test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ? 3233 0 : (resize ? calculated_dev_sectors : MaxSector)); 3234 rs_set_cur(rs); 3235 } 3236 3237 /* If constructor requested it, change data and new_data offsets */ 3238 r = rs_adjust_data_offsets(rs); 3239 if (r) 3240 goto bad; 3241 3242 /* Start raid set read-only and assumed clean to change in raid_resume() */ 3243 rs->md.ro = 1; 3244 rs->md.in_sync = 1; 3245 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery); 3246 3247 /* Has to be held on running the array */ 3248 mddev_lock_nointr(&rs->md); 3249 r = md_run(&rs->md); 3250 rs->md.in_sync = 0; /* Assume already marked dirty */ 3251 if (r) { 3252 ti->error = "Failed to run raid array"; 3253 mddev_unlock(&rs->md); 3254 goto bad; 3255 } 3256 3257 r = md_start(&rs->md); 3258 3259 if (r) { 3260 ti->error = "Failed to start raid array"; 3261 mddev_unlock(&rs->md); 3262 goto bad_md_start; 3263 } 3264 3265 rs->callbacks.congested_fn = raid_is_congested; 3266 dm_table_add_target_callbacks(ti->table, &rs->callbacks); 3267 3268 /* If raid4/5/6 journal mode explictely requested (only possible with journal dev) -> set it */ 3269 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) { 3270 r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode); 3271 if (r) { 3272 ti->error = "Failed to set raid4/5/6 journal mode"; 3273 mddev_unlock(&rs->md); 3274 goto bad_journal_mode_set; 3275 } 3276 } 3277 3278 mddev_suspend(&rs->md); 3279 set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags); 3280 3281 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */ 3282 if (rs_is_raid456(rs)) { 3283 r = rs_set_raid456_stripe_cache(rs); 3284 if (r) 3285 goto bad_stripe_cache; 3286 } 3287 3288 /* Now do an early reshape check */ 3289 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { 3290 r = rs_check_reshape(rs); 3291 if (r) 3292 goto bad_check_reshape; 3293 3294 /* Restore new, ctr requested layout to perform check */ 3295 rs_config_restore(rs, &rs_layout); 3296 3297 if (rs->md.pers->start_reshape) { 3298 r = rs->md.pers->check_reshape(&rs->md); 3299 if (r) { 3300 ti->error = "Reshape check failed"; 3301 goto bad_check_reshape; 3302 } 3303 } 3304 } 3305 3306 /* Disable/enable discard support on raid set. */ 3307 configure_discard_support(rs); 3308 3309 mddev_unlock(&rs->md); 3310 return 0; 3311 3312 bad_md_start: 3313 bad_journal_mode_set: 3314 bad_stripe_cache: 3315 bad_check_reshape: 3316 md_stop(&rs->md); 3317 bad: 3318 raid_set_free(rs); 3319 3320 return r; 3321 } 3322 3323 static void raid_dtr(struct dm_target *ti) 3324 { 3325 struct raid_set *rs = ti->private; 3326 3327 list_del_init(&rs->callbacks.list); 3328 md_stop(&rs->md); 3329 raid_set_free(rs); 3330 } 3331 3332 static int raid_map(struct dm_target *ti, struct bio *bio) 3333 { 3334 struct raid_set *rs = ti->private; 3335 struct mddev *mddev = &rs->md; 3336 3337 /* 3338 * If we're reshaping to add disk(s)), ti->len and 3339 * mddev->array_sectors will differ during the process 3340 * (ti->len > mddev->array_sectors), so we have to requeue 3341 * bios with addresses > mddev->array_sectors here or 3342 * there will occur accesses past EOD of the component 3343 * data images thus erroring the raid set. 3344 */ 3345 if (unlikely(bio_end_sector(bio) > mddev->array_sectors)) 3346 return DM_MAPIO_REQUEUE; 3347 3348 md_handle_request(mddev, bio); 3349 3350 return DM_MAPIO_SUBMITTED; 3351 } 3352 3353 /* Return string describing the current sync action of @mddev */ 3354 static const char *decipher_sync_action(struct mddev *mddev, unsigned long recovery) 3355 { 3356 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 3357 return "frozen"; 3358 3359 /* The MD sync thread can be done with io but still be running */ 3360 if (!test_bit(MD_RECOVERY_DONE, &recovery) && 3361 (test_bit(MD_RECOVERY_RUNNING, &recovery) || 3362 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) { 3363 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 3364 return "reshape"; 3365 3366 if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 3367 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 3368 return "resync"; 3369 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 3370 return "check"; 3371 return "repair"; 3372 } 3373 3374 if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 3375 return "recover"; 3376 } 3377 3378 return "idle"; 3379 } 3380 3381 /* 3382 * Return status string for @rdev 3383 * 3384 * Status characters: 3385 * 3386 * 'D' = Dead/Failed raid set component or raid4/5/6 journal device 3387 * 'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device 3388 * 'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device 3389 * '-' = Non-existing device (i.e. uspace passed '- -' into the ctr) 3390 */ 3391 static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev) 3392 { 3393 if (!rdev->bdev) 3394 return "-"; 3395 else if (test_bit(Faulty, &rdev->flags)) 3396 return "D"; 3397 else if (test_bit(Journal, &rdev->flags)) 3398 return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a"; 3399 else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) || 3400 (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) && 3401 !test_bit(In_sync, &rdev->flags))) 3402 return "a"; 3403 else 3404 return "A"; 3405 } 3406 3407 /* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */ 3408 static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery, 3409 sector_t resync_max_sectors) 3410 { 3411 sector_t r; 3412 struct mddev *mddev = &rs->md; 3413 3414 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3415 clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3416 3417 if (rs_is_raid0(rs)) { 3418 r = resync_max_sectors; 3419 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3420 3421 } else { 3422 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags) && 3423 !test_bit(MD_RECOVERY_INTR, &recovery) && 3424 (test_bit(MD_RECOVERY_NEEDED, &recovery) || 3425 test_bit(MD_RECOVERY_RESHAPE, &recovery) || 3426 test_bit(MD_RECOVERY_RUNNING, &recovery))) 3427 r = mddev->curr_resync_completed; 3428 else 3429 r = mddev->recovery_cp; 3430 3431 if (r >= resync_max_sectors && 3432 (!test_bit(MD_RECOVERY_REQUESTED, &recovery) || 3433 (!test_bit(MD_RECOVERY_FROZEN, &recovery) && 3434 !test_bit(MD_RECOVERY_NEEDED, &recovery) && 3435 !test_bit(MD_RECOVERY_RUNNING, &recovery)))) { 3436 /* 3437 * Sync complete. 3438 */ 3439 /* In case we have finished recovering, the array is in sync. */ 3440 if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 3441 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3442 3443 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) { 3444 /* 3445 * In case we are recovering, the array is not in sync 3446 * and health chars should show the recovering legs. 3447 */ 3448 ; 3449 3450 } else if (test_bit(MD_RECOVERY_SYNC, &recovery) && 3451 !test_bit(MD_RECOVERY_REQUESTED, &recovery)) { 3452 /* 3453 * If "resync" is occurring, the raid set 3454 * is or may be out of sync hence the health 3455 * characters shall be 'a'. 3456 */ 3457 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3458 3459 } else if (test_bit(MD_RECOVERY_RESHAPE, &recovery) && 3460 !test_bit(MD_RECOVERY_REQUESTED, &recovery)) { 3461 /* 3462 * If "reshape" is occurring, the raid set 3463 * is or may be out of sync hence the health 3464 * characters shall be 'a'. 3465 */ 3466 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3467 3468 } else if (test_bit(MD_RECOVERY_REQUESTED, &recovery)) { 3469 /* 3470 * If "check" or "repair" is occurring, the raid set has 3471 * undergone an initial sync and the health characters 3472 * should not be 'a' anymore. 3473 */ 3474 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3475 3476 } else { 3477 struct md_rdev *rdev; 3478 3479 /* 3480 * We are idle and recovery is needed, prevent 'A' chars race 3481 * caused by components still set to in-sync by constrcuctor. 3482 */ 3483 if (test_bit(MD_RECOVERY_NEEDED, &recovery)) 3484 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3485 3486 /* 3487 * The raid set may be doing an initial sync, or it may 3488 * be rebuilding individual components. If all the 3489 * devices are In_sync, then it is the raid set that is 3490 * being initialized. 3491 */ 3492 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3493 rdev_for_each(rdev, mddev) 3494 if (!test_bit(Journal, &rdev->flags) && 3495 !test_bit(In_sync, &rdev->flags)) { 3496 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3497 break; 3498 } 3499 } 3500 } 3501 3502 return min(r, resync_max_sectors); 3503 } 3504 3505 /* Helper to return @dev name or "-" if !@dev */ 3506 static const char *__get_dev_name(struct dm_dev *dev) 3507 { 3508 return dev ? dev->name : "-"; 3509 } 3510 3511 static void raid_status(struct dm_target *ti, status_type_t type, 3512 unsigned int status_flags, char *result, unsigned int maxlen) 3513 { 3514 struct raid_set *rs = ti->private; 3515 struct mddev *mddev = &rs->md; 3516 struct r5conf *conf = mddev->private; 3517 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0; 3518 unsigned long recovery; 3519 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */ 3520 unsigned int sz = 0; 3521 unsigned int rebuild_disks; 3522 unsigned int write_mostly_params = 0; 3523 sector_t progress, resync_max_sectors, resync_mismatches; 3524 const char *sync_action; 3525 struct raid_type *rt; 3526 3527 switch (type) { 3528 case STATUSTYPE_INFO: 3529 /* *Should* always succeed */ 3530 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 3531 if (!rt) 3532 return; 3533 3534 DMEMIT("%s %d ", rt->name, mddev->raid_disks); 3535 3536 /* Access most recent mddev properties for status output */ 3537 smp_rmb(); 3538 recovery = rs->md.recovery; 3539 /* Get sensible max sectors even if raid set not yet started */ 3540 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ? 3541 mddev->resync_max_sectors : mddev->dev_sectors; 3542 progress = rs_get_progress(rs, recovery, resync_max_sectors); 3543 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ? 3544 atomic64_read(&mddev->resync_mismatches) : 0; 3545 sync_action = decipher_sync_action(&rs->md, recovery); 3546 3547 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */ 3548 for (i = 0; i < rs->raid_disks; i++) 3549 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev)); 3550 3551 /* 3552 * In-sync/Reshape ratio: 3553 * The in-sync ratio shows the progress of: 3554 * - Initializing the raid set 3555 * - Rebuilding a subset of devices of the raid set 3556 * The user can distinguish between the two by referring 3557 * to the status characters. 3558 * 3559 * The reshape ratio shows the progress of 3560 * changing the raid layout or the number of 3561 * disks of a raid set 3562 */ 3563 DMEMIT(" %llu/%llu", (unsigned long long) progress, 3564 (unsigned long long) resync_max_sectors); 3565 3566 /* 3567 * v1.5.0+: 3568 * 3569 * Sync action: 3570 * See Documentation/device-mapper/dm-raid.txt for 3571 * information on each of these states. 3572 */ 3573 DMEMIT(" %s", sync_action); 3574 3575 /* 3576 * v1.5.0+: 3577 * 3578 * resync_mismatches/mismatch_cnt 3579 * This field shows the number of discrepancies found when 3580 * performing a "check" of the raid set. 3581 */ 3582 DMEMIT(" %llu", (unsigned long long) resync_mismatches); 3583 3584 /* 3585 * v1.9.0+: 3586 * 3587 * data_offset (needed for out of space reshaping) 3588 * This field shows the data offset into the data 3589 * image LV where the first stripes data starts. 3590 * 3591 * We keep data_offset equal on all raid disks of the set, 3592 * so retrieving it from the first raid disk is sufficient. 3593 */ 3594 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset); 3595 3596 /* 3597 * v1.10.0+: 3598 */ 3599 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ? 3600 __raid_dev_status(rs, &rs->journal_dev.rdev) : "-"); 3601 break; 3602 3603 case STATUSTYPE_TABLE: 3604 /* Report the table line string you would use to construct this raid set */ 3605 3606 /* Calculate raid parameter count */ 3607 for (i = 0; i < rs->raid_disks; i++) 3608 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags)) 3609 write_mostly_params += 2; 3610 rebuild_disks = memweight(rs->rebuild_disks, DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks)); 3611 raid_param_cnt += rebuild_disks * 2 + 3612 write_mostly_params + 3613 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) + 3614 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2 + 3615 (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ? 2 : 0) + 3616 (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags) ? 2 : 0); 3617 3618 /* Emit table line */ 3619 /* This has to be in the documented order for userspace! */ 3620 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors); 3621 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 3622 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC)); 3623 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) 3624 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC)); 3625 if (rebuild_disks) 3626 for (i = 0; i < rs->raid_disks; i++) 3627 if (test_bit(rs->dev[i].rdev.raid_disk, (void *) rs->rebuild_disks)) 3628 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), 3629 rs->dev[i].rdev.raid_disk); 3630 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) 3631 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP), 3632 mddev->bitmap_info.daemon_sleep); 3633 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) 3634 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE), 3635 mddev->sync_speed_min); 3636 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) 3637 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE), 3638 mddev->sync_speed_max); 3639 if (write_mostly_params) 3640 for (i = 0; i < rs->raid_disks; i++) 3641 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags)) 3642 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY), 3643 rs->dev[i].rdev.raid_disk); 3644 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) 3645 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND), 3646 mddev->bitmap_info.max_write_behind); 3647 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) 3648 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE), 3649 max_nr_stripes); 3650 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) 3651 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE), 3652 (unsigned long long) to_sector(mddev->bitmap_info.chunksize)); 3653 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) 3654 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES), 3655 raid10_md_layout_to_copies(mddev->layout)); 3656 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) 3657 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT), 3658 raid10_md_layout_to_format(mddev->layout)); 3659 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) 3660 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS), 3661 max(rs->delta_disks, mddev->delta_disks)); 3662 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) 3663 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET), 3664 (unsigned long long) rs->data_offset); 3665 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) 3666 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV), 3667 __get_dev_name(rs->journal_dev.dev)); 3668 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) 3669 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE), 3670 md_journal_mode_to_dm_raid(rs->journal_dev.mode)); 3671 DMEMIT(" %d", rs->raid_disks); 3672 for (i = 0; i < rs->raid_disks; i++) 3673 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev), 3674 __get_dev_name(rs->dev[i].data_dev)); 3675 } 3676 } 3677 3678 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv, 3679 char *result, unsigned maxlen) 3680 { 3681 struct raid_set *rs = ti->private; 3682 struct mddev *mddev = &rs->md; 3683 3684 if (!mddev->pers || !mddev->pers->sync_request) 3685 return -EINVAL; 3686 3687 if (!strcasecmp(argv[0], "frozen")) 3688 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3689 else 3690 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3691 3692 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) { 3693 if (mddev->sync_thread) { 3694 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3695 md_reap_sync_thread(mddev); 3696 } 3697 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3698 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 3699 return -EBUSY; 3700 else if (!strcasecmp(argv[0], "resync")) 3701 ; /* MD_RECOVERY_NEEDED set below */ 3702 else if (!strcasecmp(argv[0], "recover")) 3703 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3704 else { 3705 if (!strcasecmp(argv[0], "check")) { 3706 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3707 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3708 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3709 } else if (!strcasecmp(argv[0], "repair")) { 3710 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3711 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3712 } else 3713 return -EINVAL; 3714 } 3715 if (mddev->ro == 2) { 3716 /* A write to sync_action is enough to justify 3717 * canceling read-auto mode 3718 */ 3719 mddev->ro = 0; 3720 if (!mddev->suspended && mddev->sync_thread) 3721 md_wakeup_thread(mddev->sync_thread); 3722 } 3723 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3724 if (!mddev->suspended && mddev->thread) 3725 md_wakeup_thread(mddev->thread); 3726 3727 return 0; 3728 } 3729 3730 static int raid_iterate_devices(struct dm_target *ti, 3731 iterate_devices_callout_fn fn, void *data) 3732 { 3733 struct raid_set *rs = ti->private; 3734 unsigned int i; 3735 int r = 0; 3736 3737 for (i = 0; !r && i < rs->md.raid_disks; i++) 3738 if (rs->dev[i].data_dev) 3739 r = fn(ti, 3740 rs->dev[i].data_dev, 3741 0, /* No offset on data devs */ 3742 rs->md.dev_sectors, 3743 data); 3744 3745 return r; 3746 } 3747 3748 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits) 3749 { 3750 struct raid_set *rs = ti->private; 3751 unsigned int chunk_size = to_bytes(rs->md.chunk_sectors); 3752 3753 blk_limits_io_min(limits, chunk_size); 3754 blk_limits_io_opt(limits, chunk_size * mddev_data_stripes(rs)); 3755 } 3756 3757 static void raid_postsuspend(struct dm_target *ti) 3758 { 3759 struct raid_set *rs = ti->private; 3760 3761 if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) { 3762 /* Writes have to be stopped before suspending to avoid deadlocks. */ 3763 if (!test_bit(MD_RECOVERY_FROZEN, &rs->md.recovery)) 3764 md_stop_writes(&rs->md); 3765 3766 mddev_lock_nointr(&rs->md); 3767 mddev_suspend(&rs->md); 3768 mddev_unlock(&rs->md); 3769 } 3770 } 3771 3772 static void attempt_restore_of_faulty_devices(struct raid_set *rs) 3773 { 3774 int i; 3775 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS]; 3776 unsigned long flags; 3777 bool cleared = false; 3778 struct dm_raid_superblock *sb; 3779 struct mddev *mddev = &rs->md; 3780 struct md_rdev *r; 3781 3782 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */ 3783 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk) 3784 return; 3785 3786 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices)); 3787 3788 for (i = 0; i < mddev->raid_disks; i++) { 3789 r = &rs->dev[i].rdev; 3790 /* HM FIXME: enhance journal device recovery processing */ 3791 if (test_bit(Journal, &r->flags)) 3792 continue; 3793 3794 if (test_bit(Faulty, &r->flags) && 3795 r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) { 3796 DMINFO("Faulty %s device #%d has readable super block." 3797 " Attempting to revive it.", 3798 rs->raid_type->name, i); 3799 3800 /* 3801 * Faulty bit may be set, but sometimes the array can 3802 * be suspended before the personalities can respond 3803 * by removing the device from the array (i.e. calling 3804 * 'hot_remove_disk'). If they haven't yet removed 3805 * the failed device, its 'raid_disk' number will be 3806 * '>= 0' - meaning we must call this function 3807 * ourselves. 3808 */ 3809 flags = r->flags; 3810 clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */ 3811 if (r->raid_disk >= 0) { 3812 if (mddev->pers->hot_remove_disk(mddev, r)) { 3813 /* Failed to revive this device, try next */ 3814 r->flags = flags; 3815 continue; 3816 } 3817 } else 3818 r->raid_disk = r->saved_raid_disk = i; 3819 3820 clear_bit(Faulty, &r->flags); 3821 clear_bit(WriteErrorSeen, &r->flags); 3822 3823 if (mddev->pers->hot_add_disk(mddev, r)) { 3824 /* Failed to revive this device, try next */ 3825 r->raid_disk = r->saved_raid_disk = -1; 3826 r->flags = flags; 3827 } else { 3828 clear_bit(In_sync, &r->flags); 3829 r->recovery_offset = 0; 3830 set_bit(i, (void *) cleared_failed_devices); 3831 cleared = true; 3832 } 3833 } 3834 } 3835 3836 /* If any failed devices could be cleared, update all sbs failed_devices bits */ 3837 if (cleared) { 3838 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 3839 3840 rdev_for_each(r, &rs->md) { 3841 if (test_bit(Journal, &r->flags)) 3842 continue; 3843 3844 sb = page_address(r->sb_page); 3845 sb_retrieve_failed_devices(sb, failed_devices); 3846 3847 for (i = 0; i < DISKS_ARRAY_ELEMS; i++) 3848 failed_devices[i] &= ~cleared_failed_devices[i]; 3849 3850 sb_update_failed_devices(sb, failed_devices); 3851 } 3852 } 3853 } 3854 3855 static int __load_dirty_region_bitmap(struct raid_set *rs) 3856 { 3857 int r = 0; 3858 3859 /* Try loading the bitmap unless "raid0", which does not have one */ 3860 if (!rs_is_raid0(rs) && 3861 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) { 3862 r = bitmap_load(&rs->md); 3863 if (r) 3864 DMERR("Failed to load bitmap"); 3865 } 3866 3867 return r; 3868 } 3869 3870 /* Enforce updating all superblocks */ 3871 static void rs_update_sbs(struct raid_set *rs) 3872 { 3873 struct mddev *mddev = &rs->md; 3874 int ro = mddev->ro; 3875 3876 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3877 mddev->ro = 0; 3878 md_update_sb(mddev, 1); 3879 mddev->ro = ro; 3880 } 3881 3882 /* 3883 * Reshape changes raid algorithm of @rs to new one within personality 3884 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes 3885 * disks from a raid set thus growing/shrinking it or resizes the set 3886 * 3887 * Call mddev_lock_nointr() before! 3888 */ 3889 static int rs_start_reshape(struct raid_set *rs) 3890 { 3891 int r; 3892 struct mddev *mddev = &rs->md; 3893 struct md_personality *pers = mddev->pers; 3894 3895 r = rs_setup_reshape(rs); 3896 if (r) 3897 return r; 3898 3899 /* Need to be resumed to be able to start reshape, recovery is frozen until raid_resume() though */ 3900 if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) 3901 mddev_resume(mddev); 3902 3903 /* 3904 * Check any reshape constraints enforced by the personalility 3905 * 3906 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional. 3907 */ 3908 r = pers->check_reshape(mddev); 3909 if (r) { 3910 rs->ti->error = "pers->check_reshape() failed"; 3911 return r; 3912 } 3913 3914 /* 3915 * Personality may not provide start reshape method in which 3916 * case check_reshape above has already covered everything 3917 */ 3918 if (pers->start_reshape) { 3919 r = pers->start_reshape(mddev); 3920 if (r) { 3921 rs->ti->error = "pers->start_reshape() failed"; 3922 return r; 3923 } 3924 } 3925 3926 /* Suspend because a resume will happen in raid_resume() */ 3927 set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags); 3928 mddev_suspend(mddev); 3929 3930 /* 3931 * Now reshape got set up, update superblocks to 3932 * reflect the fact so that a table reload will 3933 * access proper superblock content in the ctr. 3934 */ 3935 rs_update_sbs(rs); 3936 3937 return 0; 3938 } 3939 3940 static int raid_preresume(struct dm_target *ti) 3941 { 3942 int r; 3943 struct raid_set *rs = ti->private; 3944 struct mddev *mddev = &rs->md; 3945 3946 /* This is a resume after a suspend of the set -> it's already started. */ 3947 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags)) 3948 return 0; 3949 3950 if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) { 3951 struct raid_set *rs_active = rs_find_active(rs); 3952 3953 if (rs_active) { 3954 /* 3955 * In case no rebuilds have been requested 3956 * and an active table slot exists, copy 3957 * current resynchonization completed and 3958 * reshape position pointers across from 3959 * suspended raid set in the active slot. 3960 * 3961 * This resumes the new mapping at current 3962 * offsets to continue recover/reshape without 3963 * necessarily redoing a raid set partially or 3964 * causing data corruption in case of a reshape. 3965 */ 3966 if (rs_active->md.curr_resync_completed != MaxSector) 3967 mddev->curr_resync_completed = rs_active->md.curr_resync_completed; 3968 if (rs_active->md.reshape_position != MaxSector) 3969 mddev->reshape_position = rs_active->md.reshape_position; 3970 } 3971 } 3972 3973 /* 3974 * The superblocks need to be updated on disk if the 3975 * array is new or new devices got added (thus zeroed 3976 * out by userspace) or __load_dirty_region_bitmap 3977 * will overwrite them in core with old data or fail. 3978 */ 3979 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags)) 3980 rs_update_sbs(rs); 3981 3982 /* Load the bitmap from disk unless raid0 */ 3983 r = __load_dirty_region_bitmap(rs); 3984 if (r) 3985 return r; 3986 3987 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) */ 3988 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap && 3989 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)) { 3990 r = bitmap_resize(mddev->bitmap, mddev->dev_sectors, 3991 to_bytes(rs->requested_bitmap_chunk_sectors), 0); 3992 if (r) 3993 DMERR("Failed to resize bitmap"); 3994 } 3995 3996 /* Check for any resize/reshape on @rs and adjust/initiate */ 3997 /* Be prepared for mddev_resume() in raid_resume() */ 3998 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3999 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) { 4000 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4001 mddev->resync_min = mddev->recovery_cp; 4002 } 4003 4004 /* Check for any reshape request unless new raid set */ 4005 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { 4006 /* Initiate a reshape. */ 4007 rs_set_rdev_sectors(rs); 4008 mddev_lock_nointr(mddev); 4009 r = rs_start_reshape(rs); 4010 mddev_unlock(mddev); 4011 if (r) 4012 DMWARN("Failed to check/start reshape, continuing without change"); 4013 r = 0; 4014 } 4015 4016 return r; 4017 } 4018 4019 static void raid_resume(struct dm_target *ti) 4020 { 4021 struct raid_set *rs = ti->private; 4022 struct mddev *mddev = &rs->md; 4023 4024 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) { 4025 /* 4026 * A secondary resume while the device is active. 4027 * Take this opportunity to check whether any failed 4028 * devices are reachable again. 4029 */ 4030 attempt_restore_of_faulty_devices(rs); 4031 } 4032 4033 if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) { 4034 /* Only reduce raid set size before running a disk removing reshape. */ 4035 if (mddev->delta_disks < 0) 4036 rs_set_capacity(rs); 4037 4038 mddev_lock_nointr(mddev); 4039 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4040 mddev->ro = 0; 4041 mddev->in_sync = 0; 4042 mddev_resume(mddev); 4043 mddev_unlock(mddev); 4044 } 4045 } 4046 4047 static struct target_type raid_target = { 4048 .name = "raid", 4049 .version = {1, 13, 2}, 4050 .module = THIS_MODULE, 4051 .ctr = raid_ctr, 4052 .dtr = raid_dtr, 4053 .map = raid_map, 4054 .status = raid_status, 4055 .message = raid_message, 4056 .iterate_devices = raid_iterate_devices, 4057 .io_hints = raid_io_hints, 4058 .postsuspend = raid_postsuspend, 4059 .preresume = raid_preresume, 4060 .resume = raid_resume, 4061 }; 4062 4063 static int __init dm_raid_init(void) 4064 { 4065 DMINFO("Loading target version %u.%u.%u", 4066 raid_target.version[0], 4067 raid_target.version[1], 4068 raid_target.version[2]); 4069 return dm_register_target(&raid_target); 4070 } 4071 4072 static void __exit dm_raid_exit(void) 4073 { 4074 dm_unregister_target(&raid_target); 4075 } 4076 4077 module_init(dm_raid_init); 4078 module_exit(dm_raid_exit); 4079 4080 module_param(devices_handle_discard_safely, bool, 0644); 4081 MODULE_PARM_DESC(devices_handle_discard_safely, 4082 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 4083 4084 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target"); 4085 MODULE_ALIAS("dm-raid0"); 4086 MODULE_ALIAS("dm-raid1"); 4087 MODULE_ALIAS("dm-raid10"); 4088 MODULE_ALIAS("dm-raid4"); 4089 MODULE_ALIAS("dm-raid5"); 4090 MODULE_ALIAS("dm-raid6"); 4091 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>"); 4092 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>"); 4093 MODULE_LICENSE("GPL"); 4094