1 /* 2 * Copyright (C) 2010-2011 Neil Brown 3 * Copyright (C) 2010-2014 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/slab.h> 9 #include <linux/module.h> 10 11 #include "md.h" 12 #include "raid1.h" 13 #include "raid5.h" 14 #include "raid10.h" 15 #include "bitmap.h" 16 17 #include <linux/device-mapper.h> 18 19 #define DM_MSG_PREFIX "raid" 20 21 static bool devices_handle_discard_safely = false; 22 23 /* 24 * The following flags are used by dm-raid.c to set up the array state. 25 * They must be cleared before md_run is called. 26 */ 27 #define FirstUse 10 /* rdev flag */ 28 29 struct raid_dev { 30 /* 31 * Two DM devices, one to hold metadata and one to hold the 32 * actual data/parity. The reason for this is to not confuse 33 * ti->len and give more flexibility in altering size and 34 * characteristics. 35 * 36 * While it is possible for this device to be associated 37 * with a different physical device than the data_dev, it 38 * is intended for it to be the same. 39 * |--------- Physical Device ---------| 40 * |- meta_dev -|------ data_dev ------| 41 */ 42 struct dm_dev *meta_dev; 43 struct dm_dev *data_dev; 44 struct md_rdev rdev; 45 }; 46 47 /* 48 * Flags for rs->print_flags field. 49 */ 50 #define DMPF_SYNC 0x1 51 #define DMPF_NOSYNC 0x2 52 #define DMPF_REBUILD 0x4 53 #define DMPF_DAEMON_SLEEP 0x8 54 #define DMPF_MIN_RECOVERY_RATE 0x10 55 #define DMPF_MAX_RECOVERY_RATE 0x20 56 #define DMPF_MAX_WRITE_BEHIND 0x40 57 #define DMPF_STRIPE_CACHE 0x80 58 #define DMPF_REGION_SIZE 0x100 59 #define DMPF_RAID10_COPIES 0x200 60 #define DMPF_RAID10_FORMAT 0x400 61 62 struct raid_set { 63 struct dm_target *ti; 64 65 uint32_t bitmap_loaded; 66 uint32_t print_flags; 67 68 struct mddev md; 69 struct raid_type *raid_type; 70 struct dm_target_callbacks callbacks; 71 72 struct raid_dev dev[0]; 73 }; 74 75 /* Supported raid types and properties. */ 76 static struct raid_type { 77 const char *name; /* RAID algorithm. */ 78 const char *descr; /* Descriptor text for logging. */ 79 const unsigned parity_devs; /* # of parity devices. */ 80 const unsigned minimal_devs; /* minimal # of devices in set. */ 81 const unsigned level; /* RAID level. */ 82 const unsigned algorithm; /* RAID algorithm. */ 83 } raid_types[] = { 84 {"raid1", "RAID1 (mirroring)", 0, 2, 1, 0 /* NONE */}, 85 {"raid10", "RAID10 (striped mirrors)", 0, 2, 10, UINT_MAX /* Varies */}, 86 {"raid4", "RAID4 (dedicated parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, 87 {"raid5_la", "RAID5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC}, 88 {"raid5_ra", "RAID5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC}, 89 {"raid5_ls", "RAID5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC}, 90 {"raid5_rs", "RAID5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC}, 91 {"raid6_zr", "RAID6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART}, 92 {"raid6_nr", "RAID6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART}, 93 {"raid6_nc", "RAID6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE} 94 }; 95 96 static char *raid10_md_layout_to_format(int layout) 97 { 98 /* 99 * Bit 16 and 17 stand for "offset" and "use_far_sets" 100 * Refer to MD's raid10.c for details 101 */ 102 if ((layout & 0x10000) && (layout & 0x20000)) 103 return "offset"; 104 105 if ((layout & 0xFF) > 1) 106 return "near"; 107 108 return "far"; 109 } 110 111 static unsigned raid10_md_layout_to_copies(int layout) 112 { 113 if ((layout & 0xFF) > 1) 114 return layout & 0xFF; 115 return (layout >> 8) & 0xFF; 116 } 117 118 static int raid10_format_to_md_layout(char *format, unsigned copies) 119 { 120 unsigned n = 1, f = 1; 121 122 if (!strcmp("near", format)) 123 n = copies; 124 else 125 f = copies; 126 127 if (!strcmp("offset", format)) 128 return 0x30000 | (f << 8) | n; 129 130 if (!strcmp("far", format)) 131 return 0x20000 | (f << 8) | n; 132 133 return (f << 8) | n; 134 } 135 136 static struct raid_type *get_raid_type(char *name) 137 { 138 int i; 139 140 for (i = 0; i < ARRAY_SIZE(raid_types); i++) 141 if (!strcmp(raid_types[i].name, name)) 142 return &raid_types[i]; 143 144 return NULL; 145 } 146 147 static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs) 148 { 149 unsigned i; 150 struct raid_set *rs; 151 152 if (raid_devs <= raid_type->parity_devs) { 153 ti->error = "Insufficient number of devices"; 154 return ERR_PTR(-EINVAL); 155 } 156 157 rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL); 158 if (!rs) { 159 ti->error = "Cannot allocate raid context"; 160 return ERR_PTR(-ENOMEM); 161 } 162 163 mddev_init(&rs->md); 164 165 rs->ti = ti; 166 rs->raid_type = raid_type; 167 rs->md.raid_disks = raid_devs; 168 rs->md.level = raid_type->level; 169 rs->md.new_level = rs->md.level; 170 rs->md.layout = raid_type->algorithm; 171 rs->md.new_layout = rs->md.layout; 172 rs->md.delta_disks = 0; 173 rs->md.recovery_cp = 0; 174 175 for (i = 0; i < raid_devs; i++) 176 md_rdev_init(&rs->dev[i].rdev); 177 178 /* 179 * Remaining items to be initialized by further RAID params: 180 * rs->md.persistent 181 * rs->md.external 182 * rs->md.chunk_sectors 183 * rs->md.new_chunk_sectors 184 * rs->md.dev_sectors 185 */ 186 187 return rs; 188 } 189 190 static void context_free(struct raid_set *rs) 191 { 192 int i; 193 194 for (i = 0; i < rs->md.raid_disks; i++) { 195 if (rs->dev[i].meta_dev) 196 dm_put_device(rs->ti, rs->dev[i].meta_dev); 197 md_rdev_clear(&rs->dev[i].rdev); 198 if (rs->dev[i].data_dev) 199 dm_put_device(rs->ti, rs->dev[i].data_dev); 200 } 201 202 kfree(rs); 203 } 204 205 /* 206 * For every device we have two words 207 * <meta_dev>: meta device name or '-' if missing 208 * <data_dev>: data device name or '-' if missing 209 * 210 * The following are permitted: 211 * - - 212 * - <data_dev> 213 * <meta_dev> <data_dev> 214 * 215 * The following is not allowed: 216 * <meta_dev> - 217 * 218 * This code parses those words. If there is a failure, 219 * the caller must use context_free to unwind the operations. 220 */ 221 static int dev_parms(struct raid_set *rs, char **argv) 222 { 223 int i; 224 int rebuild = 0; 225 int metadata_available = 0; 226 int ret = 0; 227 228 for (i = 0; i < rs->md.raid_disks; i++, argv += 2) { 229 rs->dev[i].rdev.raid_disk = i; 230 231 rs->dev[i].meta_dev = NULL; 232 rs->dev[i].data_dev = NULL; 233 234 /* 235 * There are no offsets, since there is a separate device 236 * for data and metadata. 237 */ 238 rs->dev[i].rdev.data_offset = 0; 239 rs->dev[i].rdev.mddev = &rs->md; 240 241 if (strcmp(argv[0], "-")) { 242 ret = dm_get_device(rs->ti, argv[0], 243 dm_table_get_mode(rs->ti->table), 244 &rs->dev[i].meta_dev); 245 rs->ti->error = "RAID metadata device lookup failure"; 246 if (ret) 247 return ret; 248 249 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL); 250 if (!rs->dev[i].rdev.sb_page) 251 return -ENOMEM; 252 } 253 254 if (!strcmp(argv[1], "-")) { 255 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) && 256 (!rs->dev[i].rdev.recovery_offset)) { 257 rs->ti->error = "Drive designated for rebuild not specified"; 258 return -EINVAL; 259 } 260 261 rs->ti->error = "No data device supplied with metadata device"; 262 if (rs->dev[i].meta_dev) 263 return -EINVAL; 264 265 continue; 266 } 267 268 ret = dm_get_device(rs->ti, argv[1], 269 dm_table_get_mode(rs->ti->table), 270 &rs->dev[i].data_dev); 271 if (ret) { 272 rs->ti->error = "RAID device lookup failure"; 273 return ret; 274 } 275 276 if (rs->dev[i].meta_dev) { 277 metadata_available = 1; 278 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev; 279 } 280 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev; 281 list_add(&rs->dev[i].rdev.same_set, &rs->md.disks); 282 if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) 283 rebuild++; 284 } 285 286 if (metadata_available) { 287 rs->md.external = 0; 288 rs->md.persistent = 1; 289 rs->md.major_version = 2; 290 } else if (rebuild && !rs->md.recovery_cp) { 291 /* 292 * Without metadata, we will not be able to tell if the array 293 * is in-sync or not - we must assume it is not. Therefore, 294 * it is impossible to rebuild a drive. 295 * 296 * Even if there is metadata, the on-disk information may 297 * indicate that the array is not in-sync and it will then 298 * fail at that time. 299 * 300 * User could specify 'nosync' option if desperate. 301 */ 302 DMERR("Unable to rebuild drive while array is not in-sync"); 303 rs->ti->error = "RAID device lookup failure"; 304 return -EINVAL; 305 } 306 307 return 0; 308 } 309 310 /* 311 * validate_region_size 312 * @rs 313 * @region_size: region size in sectors. If 0, pick a size (4MiB default). 314 * 315 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size'). 316 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap. 317 * 318 * Returns: 0 on success, -EINVAL on failure. 319 */ 320 static int validate_region_size(struct raid_set *rs, unsigned long region_size) 321 { 322 unsigned long min_region_size = rs->ti->len / (1 << 21); 323 324 if (!region_size) { 325 /* 326 * Choose a reasonable default. All figures in sectors. 327 */ 328 if (min_region_size > (1 << 13)) { 329 /* If not a power of 2, make it the next power of 2 */ 330 if (min_region_size & (min_region_size - 1)) 331 region_size = 1 << fls(region_size); 332 DMINFO("Choosing default region size of %lu sectors", 333 region_size); 334 } else { 335 DMINFO("Choosing default region size of 4MiB"); 336 region_size = 1 << 13; /* sectors */ 337 } 338 } else { 339 /* 340 * Validate user-supplied value. 341 */ 342 if (region_size > rs->ti->len) { 343 rs->ti->error = "Supplied region size is too large"; 344 return -EINVAL; 345 } 346 347 if (region_size < min_region_size) { 348 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)", 349 region_size, min_region_size); 350 rs->ti->error = "Supplied region size is too small"; 351 return -EINVAL; 352 } 353 354 if (!is_power_of_2(region_size)) { 355 rs->ti->error = "Region size is not a power of 2"; 356 return -EINVAL; 357 } 358 359 if (region_size < rs->md.chunk_sectors) { 360 rs->ti->error = "Region size is smaller than the chunk size"; 361 return -EINVAL; 362 } 363 } 364 365 /* 366 * Convert sectors to bytes. 367 */ 368 rs->md.bitmap_info.chunksize = (region_size << 9); 369 370 return 0; 371 } 372 373 /* 374 * validate_raid_redundancy 375 * @rs 376 * 377 * Determine if there are enough devices in the array that haven't 378 * failed (or are being rebuilt) to form a usable array. 379 * 380 * Returns: 0 on success, -EINVAL on failure. 381 */ 382 static int validate_raid_redundancy(struct raid_set *rs) 383 { 384 unsigned i, rebuild_cnt = 0; 385 unsigned rebuilds_per_group = 0, copies, d; 386 unsigned group_size, last_group_start; 387 388 for (i = 0; i < rs->md.raid_disks; i++) 389 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) || 390 !rs->dev[i].rdev.sb_page) 391 rebuild_cnt++; 392 393 switch (rs->raid_type->level) { 394 case 1: 395 if (rebuild_cnt >= rs->md.raid_disks) 396 goto too_many; 397 break; 398 case 4: 399 case 5: 400 case 6: 401 if (rebuild_cnt > rs->raid_type->parity_devs) 402 goto too_many; 403 break; 404 case 10: 405 copies = raid10_md_layout_to_copies(rs->md.layout); 406 if (rebuild_cnt < copies) 407 break; 408 409 /* 410 * It is possible to have a higher rebuild count for RAID10, 411 * as long as the failed devices occur in different mirror 412 * groups (i.e. different stripes). 413 * 414 * When checking "near" format, make sure no adjacent devices 415 * have failed beyond what can be handled. In addition to the 416 * simple case where the number of devices is a multiple of the 417 * number of copies, we must also handle cases where the number 418 * of devices is not a multiple of the number of copies. 419 * E.g. dev1 dev2 dev3 dev4 dev5 420 * A A B B C 421 * C D D E E 422 */ 423 if (!strcmp("near", raid10_md_layout_to_format(rs->md.layout))) { 424 for (i = 0; i < rs->md.raid_disks * copies; i++) { 425 if (!(i % copies)) 426 rebuilds_per_group = 0; 427 d = i % rs->md.raid_disks; 428 if ((!rs->dev[d].rdev.sb_page || 429 !test_bit(In_sync, &rs->dev[d].rdev.flags)) && 430 (++rebuilds_per_group >= copies)) 431 goto too_many; 432 } 433 break; 434 } 435 436 /* 437 * When checking "far" and "offset" formats, we need to ensure 438 * that the device that holds its copy is not also dead or 439 * being rebuilt. (Note that "far" and "offset" formats only 440 * support two copies right now. These formats also only ever 441 * use the 'use_far_sets' variant.) 442 * 443 * This check is somewhat complicated by the need to account 444 * for arrays that are not a multiple of (far) copies. This 445 * results in the need to treat the last (potentially larger) 446 * set differently. 447 */ 448 group_size = (rs->md.raid_disks / copies); 449 last_group_start = (rs->md.raid_disks / group_size) - 1; 450 last_group_start *= group_size; 451 for (i = 0; i < rs->md.raid_disks; i++) { 452 if (!(i % copies) && !(i > last_group_start)) 453 rebuilds_per_group = 0; 454 if ((!rs->dev[i].rdev.sb_page || 455 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 456 (++rebuilds_per_group >= copies)) 457 goto too_many; 458 } 459 break; 460 default: 461 if (rebuild_cnt) 462 return -EINVAL; 463 } 464 465 return 0; 466 467 too_many: 468 return -EINVAL; 469 } 470 471 /* 472 * Possible arguments are... 473 * <chunk_size> [optional_args] 474 * 475 * Argument definitions 476 * <chunk_size> The number of sectors per disk that 477 * will form the "stripe" 478 * [[no]sync] Force or prevent recovery of the 479 * entire array 480 * [devices_handle_discard_safely] Allow discards on RAID4/5/6; useful if RAID 481 * member device(s) properly support TRIM/UNMAP 482 * [rebuild <idx>] Rebuild the drive indicated by the index 483 * [daemon_sleep <ms>] Time between bitmap daemon work to 484 * clear bits 485 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization 486 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization 487 * [write_mostly <idx>] Indicate a write mostly drive via index 488 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm) 489 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs 490 * [region_size <sectors>] Defines granularity of bitmap 491 * 492 * RAID10-only options: 493 * [raid10_copies <# copies>] Number of copies. (Default: 2) 494 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near) 495 */ 496 static int parse_raid_params(struct raid_set *rs, char **argv, 497 unsigned num_raid_params) 498 { 499 char *raid10_format = "near"; 500 unsigned raid10_copies = 2; 501 unsigned i; 502 unsigned long value, region_size = 0; 503 sector_t sectors_per_dev = rs->ti->len; 504 sector_t max_io_len; 505 char *key; 506 507 /* 508 * First, parse the in-order required arguments 509 * "chunk_size" is the only argument of this type. 510 */ 511 if ((kstrtoul(argv[0], 10, &value) < 0)) { 512 rs->ti->error = "Bad chunk size"; 513 return -EINVAL; 514 } else if (rs->raid_type->level == 1) { 515 if (value) 516 DMERR("Ignoring chunk size parameter for RAID 1"); 517 value = 0; 518 } else if (!is_power_of_2(value)) { 519 rs->ti->error = "Chunk size must be a power of 2"; 520 return -EINVAL; 521 } else if (value < 8) { 522 rs->ti->error = "Chunk size value is too small"; 523 return -EINVAL; 524 } 525 526 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value; 527 argv++; 528 num_raid_params--; 529 530 /* 531 * We set each individual device as In_sync with a completed 532 * 'recovery_offset'. If there has been a device failure or 533 * replacement then one of the following cases applies: 534 * 535 * 1) User specifies 'rebuild'. 536 * - Device is reset when param is read. 537 * 2) A new device is supplied. 538 * - No matching superblock found, resets device. 539 * 3) Device failure was transient and returns on reload. 540 * - Failure noticed, resets device for bitmap replay. 541 * 4) Device hadn't completed recovery after previous failure. 542 * - Superblock is read and overrides recovery_offset. 543 * 544 * What is found in the superblocks of the devices is always 545 * authoritative, unless 'rebuild' or '[no]sync' was specified. 546 */ 547 for (i = 0; i < rs->md.raid_disks; i++) { 548 set_bit(In_sync, &rs->dev[i].rdev.flags); 549 rs->dev[i].rdev.recovery_offset = MaxSector; 550 } 551 552 /* 553 * Second, parse the unordered optional arguments 554 */ 555 for (i = 0; i < num_raid_params; i++) { 556 if (!strcasecmp(argv[i], "nosync")) { 557 rs->md.recovery_cp = MaxSector; 558 rs->print_flags |= DMPF_NOSYNC; 559 continue; 560 } 561 if (!strcasecmp(argv[i], "sync")) { 562 rs->md.recovery_cp = 0; 563 rs->print_flags |= DMPF_SYNC; 564 continue; 565 } 566 567 /* The rest of the optional arguments come in key/value pairs */ 568 if ((i + 1) >= num_raid_params) { 569 rs->ti->error = "Wrong number of raid parameters given"; 570 return -EINVAL; 571 } 572 573 key = argv[i++]; 574 575 /* Parameters that take a string value are checked here. */ 576 if (!strcasecmp(key, "raid10_format")) { 577 if (rs->raid_type->level != 10) { 578 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type"; 579 return -EINVAL; 580 } 581 if (strcmp("near", argv[i]) && 582 strcmp("far", argv[i]) && 583 strcmp("offset", argv[i])) { 584 rs->ti->error = "Invalid 'raid10_format' value given"; 585 return -EINVAL; 586 } 587 raid10_format = argv[i]; 588 rs->print_flags |= DMPF_RAID10_FORMAT; 589 continue; 590 } 591 592 if (kstrtoul(argv[i], 10, &value) < 0) { 593 rs->ti->error = "Bad numerical argument given in raid params"; 594 return -EINVAL; 595 } 596 597 /* Parameters that take a numeric value are checked here */ 598 if (!strcasecmp(key, "rebuild")) { 599 if (value >= rs->md.raid_disks) { 600 rs->ti->error = "Invalid rebuild index given"; 601 return -EINVAL; 602 } 603 clear_bit(In_sync, &rs->dev[value].rdev.flags); 604 rs->dev[value].rdev.recovery_offset = 0; 605 rs->print_flags |= DMPF_REBUILD; 606 } else if (!strcasecmp(key, "write_mostly")) { 607 if (rs->raid_type->level != 1) { 608 rs->ti->error = "write_mostly option is only valid for RAID1"; 609 return -EINVAL; 610 } 611 if (value >= rs->md.raid_disks) { 612 rs->ti->error = "Invalid write_mostly drive index given"; 613 return -EINVAL; 614 } 615 set_bit(WriteMostly, &rs->dev[value].rdev.flags); 616 } else if (!strcasecmp(key, "max_write_behind")) { 617 if (rs->raid_type->level != 1) { 618 rs->ti->error = "max_write_behind option is only valid for RAID1"; 619 return -EINVAL; 620 } 621 rs->print_flags |= DMPF_MAX_WRITE_BEHIND; 622 623 /* 624 * In device-mapper, we specify things in sectors, but 625 * MD records this value in kB 626 */ 627 value /= 2; 628 if (value > COUNTER_MAX) { 629 rs->ti->error = "Max write-behind limit out of range"; 630 return -EINVAL; 631 } 632 rs->md.bitmap_info.max_write_behind = value; 633 } else if (!strcasecmp(key, "daemon_sleep")) { 634 rs->print_flags |= DMPF_DAEMON_SLEEP; 635 if (!value || (value > MAX_SCHEDULE_TIMEOUT)) { 636 rs->ti->error = "daemon sleep period out of range"; 637 return -EINVAL; 638 } 639 rs->md.bitmap_info.daemon_sleep = value; 640 } else if (!strcasecmp(key, "stripe_cache")) { 641 rs->print_flags |= DMPF_STRIPE_CACHE; 642 643 /* 644 * In device-mapper, we specify things in sectors, but 645 * MD records this value in kB 646 */ 647 value /= 2; 648 649 if ((rs->raid_type->level != 5) && 650 (rs->raid_type->level != 6)) { 651 rs->ti->error = "Inappropriate argument: stripe_cache"; 652 return -EINVAL; 653 } 654 if (raid5_set_cache_size(&rs->md, (int)value)) { 655 rs->ti->error = "Bad stripe_cache size"; 656 return -EINVAL; 657 } 658 } else if (!strcasecmp(key, "min_recovery_rate")) { 659 rs->print_flags |= DMPF_MIN_RECOVERY_RATE; 660 if (value > INT_MAX) { 661 rs->ti->error = "min_recovery_rate out of range"; 662 return -EINVAL; 663 } 664 rs->md.sync_speed_min = (int)value; 665 } else if (!strcasecmp(key, "max_recovery_rate")) { 666 rs->print_flags |= DMPF_MAX_RECOVERY_RATE; 667 if (value > INT_MAX) { 668 rs->ti->error = "max_recovery_rate out of range"; 669 return -EINVAL; 670 } 671 rs->md.sync_speed_max = (int)value; 672 } else if (!strcasecmp(key, "region_size")) { 673 rs->print_flags |= DMPF_REGION_SIZE; 674 region_size = value; 675 } else if (!strcasecmp(key, "raid10_copies") && 676 (rs->raid_type->level == 10)) { 677 if ((value < 2) || (value > 0xFF)) { 678 rs->ti->error = "Bad value for 'raid10_copies'"; 679 return -EINVAL; 680 } 681 rs->print_flags |= DMPF_RAID10_COPIES; 682 raid10_copies = value; 683 } else { 684 DMERR("Unable to parse RAID parameter: %s", key); 685 rs->ti->error = "Unable to parse RAID parameters"; 686 return -EINVAL; 687 } 688 } 689 690 if (validate_region_size(rs, region_size)) 691 return -EINVAL; 692 693 if (rs->md.chunk_sectors) 694 max_io_len = rs->md.chunk_sectors; 695 else 696 max_io_len = region_size; 697 698 if (dm_set_target_max_io_len(rs->ti, max_io_len)) 699 return -EINVAL; 700 701 if (rs->raid_type->level == 10) { 702 if (raid10_copies > rs->md.raid_disks) { 703 rs->ti->error = "Not enough devices to satisfy specification"; 704 return -EINVAL; 705 } 706 707 /* 708 * If the format is not "near", we only support 709 * two copies at the moment. 710 */ 711 if (strcmp("near", raid10_format) && (raid10_copies > 2)) { 712 rs->ti->error = "Too many copies for given RAID10 format."; 713 return -EINVAL; 714 } 715 716 /* (Len * #mirrors) / #devices */ 717 sectors_per_dev = rs->ti->len * raid10_copies; 718 sector_div(sectors_per_dev, rs->md.raid_disks); 719 720 rs->md.layout = raid10_format_to_md_layout(raid10_format, 721 raid10_copies); 722 rs->md.new_layout = rs->md.layout; 723 } else if ((rs->raid_type->level > 1) && 724 sector_div(sectors_per_dev, 725 (rs->md.raid_disks - rs->raid_type->parity_devs))) { 726 rs->ti->error = "Target length not divisible by number of data devices"; 727 return -EINVAL; 728 } 729 rs->md.dev_sectors = sectors_per_dev; 730 731 /* Assume there are no metadata devices until the drives are parsed */ 732 rs->md.persistent = 0; 733 rs->md.external = 1; 734 735 return 0; 736 } 737 738 static void do_table_event(struct work_struct *ws) 739 { 740 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work); 741 742 dm_table_event(rs->ti->table); 743 } 744 745 static int raid_is_congested(struct dm_target_callbacks *cb, int bits) 746 { 747 struct raid_set *rs = container_of(cb, struct raid_set, callbacks); 748 749 return mddev_congested(&rs->md, bits); 750 } 751 752 /* 753 * This structure is never routinely used by userspace, unlike md superblocks. 754 * Devices with this superblock should only ever be accessed via device-mapper. 755 */ 756 #define DM_RAID_MAGIC 0x64526D44 757 struct dm_raid_superblock { 758 __le32 magic; /* "DmRd" */ 759 __le32 features; /* Used to indicate possible future changes */ 760 761 __le32 num_devices; /* Number of devices in this array. (Max 64) */ 762 __le32 array_position; /* The position of this drive in the array */ 763 764 __le64 events; /* Incremented by md when superblock updated */ 765 __le64 failed_devices; /* Bit field of devices to indicate failures */ 766 767 /* 768 * This offset tracks the progress of the repair or replacement of 769 * an individual drive. 770 */ 771 __le64 disk_recovery_offset; 772 773 /* 774 * This offset tracks the progress of the initial array 775 * synchronisation/parity calculation. 776 */ 777 __le64 array_resync_offset; 778 779 /* 780 * RAID characteristics 781 */ 782 __le32 level; 783 __le32 layout; 784 __le32 stripe_sectors; 785 786 /* Remainder of a logical block is zero-filled when writing (see super_sync()). */ 787 } __packed; 788 789 static int read_disk_sb(struct md_rdev *rdev, int size) 790 { 791 BUG_ON(!rdev->sb_page); 792 793 if (rdev->sb_loaded) 794 return 0; 795 796 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) { 797 DMERR("Failed to read superblock of device at position %d", 798 rdev->raid_disk); 799 md_error(rdev->mddev, rdev); 800 return -EINVAL; 801 } 802 803 rdev->sb_loaded = 1; 804 805 return 0; 806 } 807 808 static void super_sync(struct mddev *mddev, struct md_rdev *rdev) 809 { 810 int i; 811 uint64_t failed_devices; 812 struct dm_raid_superblock *sb; 813 struct raid_set *rs = container_of(mddev, struct raid_set, md); 814 815 sb = page_address(rdev->sb_page); 816 failed_devices = le64_to_cpu(sb->failed_devices); 817 818 for (i = 0; i < mddev->raid_disks; i++) 819 if (!rs->dev[i].data_dev || 820 test_bit(Faulty, &(rs->dev[i].rdev.flags))) 821 failed_devices |= (1ULL << i); 822 823 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb)); 824 825 sb->magic = cpu_to_le32(DM_RAID_MAGIC); 826 sb->features = cpu_to_le32(0); /* No features yet */ 827 828 sb->num_devices = cpu_to_le32(mddev->raid_disks); 829 sb->array_position = cpu_to_le32(rdev->raid_disk); 830 831 sb->events = cpu_to_le64(mddev->events); 832 sb->failed_devices = cpu_to_le64(failed_devices); 833 834 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset); 835 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp); 836 837 sb->level = cpu_to_le32(mddev->level); 838 sb->layout = cpu_to_le32(mddev->layout); 839 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors); 840 } 841 842 /* 843 * super_load 844 * 845 * This function creates a superblock if one is not found on the device 846 * and will decide which superblock to use if there's a choice. 847 * 848 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise 849 */ 850 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev) 851 { 852 int ret; 853 struct dm_raid_superblock *sb; 854 struct dm_raid_superblock *refsb; 855 uint64_t events_sb, events_refsb; 856 857 rdev->sb_start = 0; 858 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev); 859 if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) { 860 DMERR("superblock size of a logical block is no longer valid"); 861 return -EINVAL; 862 } 863 864 ret = read_disk_sb(rdev, rdev->sb_size); 865 if (ret) 866 return ret; 867 868 sb = page_address(rdev->sb_page); 869 870 /* 871 * Two cases that we want to write new superblocks and rebuild: 872 * 1) New device (no matching magic number) 873 * 2) Device specified for rebuild (!In_sync w/ offset == 0) 874 */ 875 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) || 876 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) { 877 super_sync(rdev->mddev, rdev); 878 879 set_bit(FirstUse, &rdev->flags); 880 881 /* Force writing of superblocks to disk */ 882 set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags); 883 884 /* Any superblock is better than none, choose that if given */ 885 return refdev ? 0 : 1; 886 } 887 888 if (!refdev) 889 return 1; 890 891 events_sb = le64_to_cpu(sb->events); 892 893 refsb = page_address(refdev->sb_page); 894 events_refsb = le64_to_cpu(refsb->events); 895 896 return (events_sb > events_refsb) ? 1 : 0; 897 } 898 899 static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev) 900 { 901 int role; 902 struct raid_set *rs = container_of(mddev, struct raid_set, md); 903 uint64_t events_sb; 904 uint64_t failed_devices; 905 struct dm_raid_superblock *sb; 906 uint32_t new_devs = 0; 907 uint32_t rebuilds = 0; 908 struct md_rdev *r; 909 struct dm_raid_superblock *sb2; 910 911 sb = page_address(rdev->sb_page); 912 events_sb = le64_to_cpu(sb->events); 913 failed_devices = le64_to_cpu(sb->failed_devices); 914 915 /* 916 * Initialise to 1 if this is a new superblock. 917 */ 918 mddev->events = events_sb ? : 1; 919 920 /* 921 * Reshaping is not currently allowed 922 */ 923 if (le32_to_cpu(sb->level) != mddev->level) { 924 DMERR("Reshaping arrays not yet supported. (RAID level change)"); 925 return -EINVAL; 926 } 927 if (le32_to_cpu(sb->layout) != mddev->layout) { 928 DMERR("Reshaping arrays not yet supported. (RAID layout change)"); 929 DMERR(" 0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout); 930 DMERR(" Old layout: %s w/ %d copies", 931 raid10_md_layout_to_format(le32_to_cpu(sb->layout)), 932 raid10_md_layout_to_copies(le32_to_cpu(sb->layout))); 933 DMERR(" New layout: %s w/ %d copies", 934 raid10_md_layout_to_format(mddev->layout), 935 raid10_md_layout_to_copies(mddev->layout)); 936 return -EINVAL; 937 } 938 if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) { 939 DMERR("Reshaping arrays not yet supported. (stripe sectors change)"); 940 return -EINVAL; 941 } 942 943 /* We can only change the number of devices in RAID1 right now */ 944 if ((rs->raid_type->level != 1) && 945 (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) { 946 DMERR("Reshaping arrays not yet supported. (device count change)"); 947 return -EINVAL; 948 } 949 950 if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))) 951 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset); 952 953 /* 954 * During load, we set FirstUse if a new superblock was written. 955 * There are two reasons we might not have a superblock: 956 * 1) The array is brand new - in which case, all of the 957 * devices must have their In_sync bit set. Also, 958 * recovery_cp must be 0, unless forced. 959 * 2) This is a new device being added to an old array 960 * and the new device needs to be rebuilt - in which 961 * case the In_sync bit will /not/ be set and 962 * recovery_cp must be MaxSector. 963 */ 964 rdev_for_each(r, mddev) { 965 if (!test_bit(In_sync, &r->flags)) { 966 DMINFO("Device %d specified for rebuild: " 967 "Clearing superblock", r->raid_disk); 968 rebuilds++; 969 } else if (test_bit(FirstUse, &r->flags)) 970 new_devs++; 971 } 972 973 if (!rebuilds) { 974 if (new_devs == mddev->raid_disks) { 975 DMINFO("Superblocks created for new array"); 976 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 977 } else if (new_devs) { 978 DMERR("New device injected " 979 "into existing array without 'rebuild' " 980 "parameter specified"); 981 return -EINVAL; 982 } 983 } else if (new_devs) { 984 DMERR("'rebuild' devices cannot be " 985 "injected into an array with other first-time devices"); 986 return -EINVAL; 987 } else if (mddev->recovery_cp != MaxSector) { 988 DMERR("'rebuild' specified while array is not in-sync"); 989 return -EINVAL; 990 } 991 992 /* 993 * Now we set the Faulty bit for those devices that are 994 * recorded in the superblock as failed. 995 */ 996 rdev_for_each(r, mddev) { 997 if (!r->sb_page) 998 continue; 999 sb2 = page_address(r->sb_page); 1000 sb2->failed_devices = 0; 1001 1002 /* 1003 * Check for any device re-ordering. 1004 */ 1005 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) { 1006 role = le32_to_cpu(sb2->array_position); 1007 if (role != r->raid_disk) { 1008 if (rs->raid_type->level != 1) { 1009 rs->ti->error = "Cannot change device " 1010 "positions in RAID array"; 1011 return -EINVAL; 1012 } 1013 DMINFO("RAID1 device #%d now at position #%d", 1014 role, r->raid_disk); 1015 } 1016 1017 /* 1018 * Partial recovery is performed on 1019 * returning failed devices. 1020 */ 1021 if (failed_devices & (1 << role)) 1022 set_bit(Faulty, &r->flags); 1023 } 1024 } 1025 1026 return 0; 1027 } 1028 1029 static int super_validate(struct mddev *mddev, struct md_rdev *rdev) 1030 { 1031 struct dm_raid_superblock *sb = page_address(rdev->sb_page); 1032 1033 /* 1034 * If mddev->events is not set, we know we have not yet initialized 1035 * the array. 1036 */ 1037 if (!mddev->events && super_init_validation(mddev, rdev)) 1038 return -EINVAL; 1039 1040 mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */ 1041 rdev->mddev->bitmap_info.default_offset = 4096 >> 9; 1042 if (!test_bit(FirstUse, &rdev->flags)) { 1043 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset); 1044 if (rdev->recovery_offset != MaxSector) 1045 clear_bit(In_sync, &rdev->flags); 1046 } 1047 1048 /* 1049 * If a device comes back, set it as not In_sync and no longer faulty. 1050 */ 1051 if (test_bit(Faulty, &rdev->flags)) { 1052 clear_bit(Faulty, &rdev->flags); 1053 clear_bit(In_sync, &rdev->flags); 1054 rdev->saved_raid_disk = rdev->raid_disk; 1055 rdev->recovery_offset = 0; 1056 } 1057 1058 clear_bit(FirstUse, &rdev->flags); 1059 1060 return 0; 1061 } 1062 1063 /* 1064 * Analyse superblocks and select the freshest. 1065 */ 1066 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs) 1067 { 1068 int ret; 1069 struct raid_dev *dev; 1070 struct md_rdev *rdev, *tmp, *freshest; 1071 struct mddev *mddev = &rs->md; 1072 1073 freshest = NULL; 1074 rdev_for_each_safe(rdev, tmp, mddev) { 1075 /* 1076 * Skipping super_load due to DMPF_SYNC will cause 1077 * the array to undergo initialization again as 1078 * though it were new. This is the intended effect 1079 * of the "sync" directive. 1080 * 1081 * When reshaping capability is added, we must ensure 1082 * that the "sync" directive is disallowed during the 1083 * reshape. 1084 */ 1085 if (rs->print_flags & DMPF_SYNC) 1086 continue; 1087 1088 if (!rdev->meta_bdev) 1089 continue; 1090 1091 ret = super_load(rdev, freshest); 1092 1093 switch (ret) { 1094 case 1: 1095 freshest = rdev; 1096 break; 1097 case 0: 1098 break; 1099 default: 1100 dev = container_of(rdev, struct raid_dev, rdev); 1101 if (dev->meta_dev) 1102 dm_put_device(ti, dev->meta_dev); 1103 1104 dev->meta_dev = NULL; 1105 rdev->meta_bdev = NULL; 1106 1107 if (rdev->sb_page) 1108 put_page(rdev->sb_page); 1109 1110 rdev->sb_page = NULL; 1111 1112 rdev->sb_loaded = 0; 1113 1114 /* 1115 * We might be able to salvage the data device 1116 * even though the meta device has failed. For 1117 * now, we behave as though '- -' had been 1118 * set for this device in the table. 1119 */ 1120 if (dev->data_dev) 1121 dm_put_device(ti, dev->data_dev); 1122 1123 dev->data_dev = NULL; 1124 rdev->bdev = NULL; 1125 1126 list_del(&rdev->same_set); 1127 } 1128 } 1129 1130 if (!freshest) 1131 return 0; 1132 1133 if (validate_raid_redundancy(rs)) { 1134 rs->ti->error = "Insufficient redundancy to activate array"; 1135 return -EINVAL; 1136 } 1137 1138 /* 1139 * Validation of the freshest device provides the source of 1140 * validation for the remaining devices. 1141 */ 1142 ti->error = "Unable to assemble array: Invalid superblocks"; 1143 if (super_validate(mddev, freshest)) 1144 return -EINVAL; 1145 1146 rdev_for_each(rdev, mddev) 1147 if ((rdev != freshest) && super_validate(mddev, rdev)) 1148 return -EINVAL; 1149 1150 return 0; 1151 } 1152 1153 /* 1154 * Enable/disable discard support on RAID set depending on 1155 * RAID level and discard properties of underlying RAID members. 1156 */ 1157 static void configure_discard_support(struct dm_target *ti, struct raid_set *rs) 1158 { 1159 int i; 1160 bool raid456; 1161 1162 /* Assume discards not supported until after checks below. */ 1163 ti->discards_supported = false; 1164 1165 /* RAID level 4,5,6 require discard_zeroes_data for data integrity! */ 1166 raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6); 1167 1168 for (i = 0; i < rs->md.raid_disks; i++) { 1169 struct request_queue *q; 1170 1171 if (!rs->dev[i].rdev.bdev) 1172 continue; 1173 1174 q = bdev_get_queue(rs->dev[i].rdev.bdev); 1175 if (!q || !blk_queue_discard(q)) 1176 return; 1177 1178 if (raid456) { 1179 if (!q->limits.discard_zeroes_data) 1180 return; 1181 if (!devices_handle_discard_safely) { 1182 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty."); 1183 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override."); 1184 return; 1185 } 1186 } 1187 } 1188 1189 /* All RAID members properly support discards */ 1190 ti->discards_supported = true; 1191 1192 /* 1193 * RAID1 and RAID10 personalities require bio splitting, 1194 * RAID0/4/5/6 don't and process large discard bios properly. 1195 */ 1196 ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10); 1197 ti->num_discard_bios = 1; 1198 } 1199 1200 /* 1201 * Construct a RAID4/5/6 mapping: 1202 * Args: 1203 * <raid_type> <#raid_params> <raid_params> \ 1204 * <#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> } 1205 * 1206 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for 1207 * details on possible <raid_params>. 1208 */ 1209 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv) 1210 { 1211 int ret; 1212 struct raid_type *rt; 1213 unsigned long num_raid_params, num_raid_devs; 1214 struct raid_set *rs = NULL; 1215 1216 /* Must have at least <raid_type> <#raid_params> */ 1217 if (argc < 2) { 1218 ti->error = "Too few arguments"; 1219 return -EINVAL; 1220 } 1221 1222 /* raid type */ 1223 rt = get_raid_type(argv[0]); 1224 if (!rt) { 1225 ti->error = "Unrecognised raid_type"; 1226 return -EINVAL; 1227 } 1228 argc--; 1229 argv++; 1230 1231 /* number of RAID parameters */ 1232 if (kstrtoul(argv[0], 10, &num_raid_params) < 0) { 1233 ti->error = "Cannot understand number of RAID parameters"; 1234 return -EINVAL; 1235 } 1236 argc--; 1237 argv++; 1238 1239 /* Skip over RAID params for now and find out # of devices */ 1240 if (num_raid_params >= argc) { 1241 ti->error = "Arguments do not agree with counts given"; 1242 return -EINVAL; 1243 } 1244 1245 if ((kstrtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) || 1246 (num_raid_devs >= INT_MAX)) { 1247 ti->error = "Cannot understand number of raid devices"; 1248 return -EINVAL; 1249 } 1250 1251 argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */ 1252 if (argc != (num_raid_devs * 2)) { 1253 ti->error = "Supplied RAID devices does not match the count given"; 1254 return -EINVAL; 1255 } 1256 1257 rs = context_alloc(ti, rt, (unsigned)num_raid_devs); 1258 if (IS_ERR(rs)) 1259 return PTR_ERR(rs); 1260 1261 ret = parse_raid_params(rs, argv, (unsigned)num_raid_params); 1262 if (ret) 1263 goto bad; 1264 1265 argv += num_raid_params + 1; 1266 1267 ret = dev_parms(rs, argv); 1268 if (ret) 1269 goto bad; 1270 1271 rs->md.sync_super = super_sync; 1272 ret = analyse_superblocks(ti, rs); 1273 if (ret) 1274 goto bad; 1275 1276 INIT_WORK(&rs->md.event_work, do_table_event); 1277 ti->private = rs; 1278 ti->num_flush_bios = 1; 1279 1280 /* 1281 * Disable/enable discard support on RAID set. 1282 */ 1283 configure_discard_support(ti, rs); 1284 1285 mutex_lock(&rs->md.reconfig_mutex); 1286 ret = md_run(&rs->md); 1287 rs->md.in_sync = 0; /* Assume already marked dirty */ 1288 mutex_unlock(&rs->md.reconfig_mutex); 1289 1290 if (ret) { 1291 ti->error = "Fail to run raid array"; 1292 goto bad; 1293 } 1294 1295 if (ti->len != rs->md.array_sectors) { 1296 ti->error = "Array size does not match requested target length"; 1297 ret = -EINVAL; 1298 goto size_mismatch; 1299 } 1300 rs->callbacks.congested_fn = raid_is_congested; 1301 dm_table_add_target_callbacks(ti->table, &rs->callbacks); 1302 1303 mddev_suspend(&rs->md); 1304 return 0; 1305 1306 size_mismatch: 1307 md_stop(&rs->md); 1308 bad: 1309 context_free(rs); 1310 1311 return ret; 1312 } 1313 1314 static void raid_dtr(struct dm_target *ti) 1315 { 1316 struct raid_set *rs = ti->private; 1317 1318 list_del_init(&rs->callbacks.list); 1319 md_stop(&rs->md); 1320 context_free(rs); 1321 } 1322 1323 static int raid_map(struct dm_target *ti, struct bio *bio) 1324 { 1325 struct raid_set *rs = ti->private; 1326 struct mddev *mddev = &rs->md; 1327 1328 mddev->pers->make_request(mddev, bio); 1329 1330 return DM_MAPIO_SUBMITTED; 1331 } 1332 1333 static const char *decipher_sync_action(struct mddev *mddev) 1334 { 1335 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 1336 return "frozen"; 1337 1338 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 1339 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 1340 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1341 return "reshape"; 1342 1343 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1344 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1345 return "resync"; 1346 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1347 return "check"; 1348 return "repair"; 1349 } 1350 1351 if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 1352 return "recover"; 1353 } 1354 1355 return "idle"; 1356 } 1357 1358 static void raid_status(struct dm_target *ti, status_type_t type, 1359 unsigned status_flags, char *result, unsigned maxlen) 1360 { 1361 struct raid_set *rs = ti->private; 1362 unsigned raid_param_cnt = 1; /* at least 1 for chunksize */ 1363 unsigned sz = 0; 1364 int i, array_in_sync = 0; 1365 sector_t sync; 1366 1367 switch (type) { 1368 case STATUSTYPE_INFO: 1369 DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks); 1370 1371 if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery)) 1372 sync = rs->md.curr_resync_completed; 1373 else 1374 sync = rs->md.recovery_cp; 1375 1376 if (sync >= rs->md.resync_max_sectors) { 1377 /* 1378 * Sync complete. 1379 */ 1380 array_in_sync = 1; 1381 sync = rs->md.resync_max_sectors; 1382 } else if (test_bit(MD_RECOVERY_REQUESTED, &rs->md.recovery)) { 1383 /* 1384 * If "check" or "repair" is occurring, the array has 1385 * undergone and initial sync and the health characters 1386 * should not be 'a' anymore. 1387 */ 1388 array_in_sync = 1; 1389 } else { 1390 /* 1391 * The array may be doing an initial sync, or it may 1392 * be rebuilding individual components. If all the 1393 * devices are In_sync, then it is the array that is 1394 * being initialized. 1395 */ 1396 for (i = 0; i < rs->md.raid_disks; i++) 1397 if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) 1398 array_in_sync = 1; 1399 } 1400 1401 /* 1402 * Status characters: 1403 * 'D' = Dead/Failed device 1404 * 'a' = Alive but not in-sync 1405 * 'A' = Alive and in-sync 1406 */ 1407 for (i = 0; i < rs->md.raid_disks; i++) { 1408 if (test_bit(Faulty, &rs->dev[i].rdev.flags)) 1409 DMEMIT("D"); 1410 else if (!array_in_sync || 1411 !test_bit(In_sync, &rs->dev[i].rdev.flags)) 1412 DMEMIT("a"); 1413 else 1414 DMEMIT("A"); 1415 } 1416 1417 /* 1418 * In-sync ratio: 1419 * The in-sync ratio shows the progress of: 1420 * - Initializing the array 1421 * - Rebuilding a subset of devices of the array 1422 * The user can distinguish between the two by referring 1423 * to the status characters. 1424 */ 1425 DMEMIT(" %llu/%llu", 1426 (unsigned long long) sync, 1427 (unsigned long long) rs->md.resync_max_sectors); 1428 1429 /* 1430 * Sync action: 1431 * See Documentation/device-mapper/dm-raid.c for 1432 * information on each of these states. 1433 */ 1434 DMEMIT(" %s", decipher_sync_action(&rs->md)); 1435 1436 /* 1437 * resync_mismatches/mismatch_cnt 1438 * This field shows the number of discrepancies found when 1439 * performing a "check" of the array. 1440 */ 1441 DMEMIT(" %llu", 1442 (strcmp(rs->md.last_sync_action, "check")) ? 0 : 1443 (unsigned long long) 1444 atomic64_read(&rs->md.resync_mismatches)); 1445 break; 1446 case STATUSTYPE_TABLE: 1447 /* The string you would use to construct this array */ 1448 for (i = 0; i < rs->md.raid_disks; i++) { 1449 if ((rs->print_flags & DMPF_REBUILD) && 1450 rs->dev[i].data_dev && 1451 !test_bit(In_sync, &rs->dev[i].rdev.flags)) 1452 raid_param_cnt += 2; /* for rebuilds */ 1453 if (rs->dev[i].data_dev && 1454 test_bit(WriteMostly, &rs->dev[i].rdev.flags)) 1455 raid_param_cnt += 2; 1456 } 1457 1458 raid_param_cnt += (hweight32(rs->print_flags & ~DMPF_REBUILD) * 2); 1459 if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)) 1460 raid_param_cnt--; 1461 1462 DMEMIT("%s %u %u", rs->raid_type->name, 1463 raid_param_cnt, rs->md.chunk_sectors); 1464 1465 if ((rs->print_flags & DMPF_SYNC) && 1466 (rs->md.recovery_cp == MaxSector)) 1467 DMEMIT(" sync"); 1468 if (rs->print_flags & DMPF_NOSYNC) 1469 DMEMIT(" nosync"); 1470 1471 for (i = 0; i < rs->md.raid_disks; i++) 1472 if ((rs->print_flags & DMPF_REBUILD) && 1473 rs->dev[i].data_dev && 1474 !test_bit(In_sync, &rs->dev[i].rdev.flags)) 1475 DMEMIT(" rebuild %u", i); 1476 1477 if (rs->print_flags & DMPF_DAEMON_SLEEP) 1478 DMEMIT(" daemon_sleep %lu", 1479 rs->md.bitmap_info.daemon_sleep); 1480 1481 if (rs->print_flags & DMPF_MIN_RECOVERY_RATE) 1482 DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min); 1483 1484 if (rs->print_flags & DMPF_MAX_RECOVERY_RATE) 1485 DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max); 1486 1487 for (i = 0; i < rs->md.raid_disks; i++) 1488 if (rs->dev[i].data_dev && 1489 test_bit(WriteMostly, &rs->dev[i].rdev.flags)) 1490 DMEMIT(" write_mostly %u", i); 1491 1492 if (rs->print_flags & DMPF_MAX_WRITE_BEHIND) 1493 DMEMIT(" max_write_behind %lu", 1494 rs->md.bitmap_info.max_write_behind); 1495 1496 if (rs->print_flags & DMPF_STRIPE_CACHE) { 1497 struct r5conf *conf = rs->md.private; 1498 1499 /* convert from kiB to sectors */ 1500 DMEMIT(" stripe_cache %d", 1501 conf ? conf->max_nr_stripes * 2 : 0); 1502 } 1503 1504 if (rs->print_flags & DMPF_REGION_SIZE) 1505 DMEMIT(" region_size %lu", 1506 rs->md.bitmap_info.chunksize >> 9); 1507 1508 if (rs->print_flags & DMPF_RAID10_COPIES) 1509 DMEMIT(" raid10_copies %u", 1510 raid10_md_layout_to_copies(rs->md.layout)); 1511 1512 if (rs->print_flags & DMPF_RAID10_FORMAT) 1513 DMEMIT(" raid10_format %s", 1514 raid10_md_layout_to_format(rs->md.layout)); 1515 1516 DMEMIT(" %d", rs->md.raid_disks); 1517 for (i = 0; i < rs->md.raid_disks; i++) { 1518 if (rs->dev[i].meta_dev) 1519 DMEMIT(" %s", rs->dev[i].meta_dev->name); 1520 else 1521 DMEMIT(" -"); 1522 1523 if (rs->dev[i].data_dev) 1524 DMEMIT(" %s", rs->dev[i].data_dev->name); 1525 else 1526 DMEMIT(" -"); 1527 } 1528 } 1529 } 1530 1531 static int raid_message(struct dm_target *ti, unsigned argc, char **argv) 1532 { 1533 struct raid_set *rs = ti->private; 1534 struct mddev *mddev = &rs->md; 1535 1536 if (!strcasecmp(argv[0], "reshape")) { 1537 DMERR("Reshape not supported."); 1538 return -EINVAL; 1539 } 1540 1541 if (!mddev->pers || !mddev->pers->sync_request) 1542 return -EINVAL; 1543 1544 if (!strcasecmp(argv[0], "frozen")) 1545 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 1546 else 1547 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 1548 1549 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) { 1550 if (mddev->sync_thread) { 1551 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1552 md_reap_sync_thread(mddev); 1553 } 1554 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 1555 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 1556 return -EBUSY; 1557 else if (!strcasecmp(argv[0], "resync")) 1558 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 1559 else if (!strcasecmp(argv[0], "recover")) { 1560 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 1561 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 1562 } else { 1563 if (!strcasecmp(argv[0], "check")) 1564 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 1565 else if (!!strcasecmp(argv[0], "repair")) 1566 return -EINVAL; 1567 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 1568 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 1569 } 1570 if (mddev->ro == 2) { 1571 /* A write to sync_action is enough to justify 1572 * canceling read-auto mode 1573 */ 1574 mddev->ro = 0; 1575 if (!mddev->suspended) 1576 md_wakeup_thread(mddev->sync_thread); 1577 } 1578 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 1579 if (!mddev->suspended) 1580 md_wakeup_thread(mddev->thread); 1581 1582 return 0; 1583 } 1584 1585 static int raid_iterate_devices(struct dm_target *ti, 1586 iterate_devices_callout_fn fn, void *data) 1587 { 1588 struct raid_set *rs = ti->private; 1589 unsigned i; 1590 int ret = 0; 1591 1592 for (i = 0; !ret && i < rs->md.raid_disks; i++) 1593 if (rs->dev[i].data_dev) 1594 ret = fn(ti, 1595 rs->dev[i].data_dev, 1596 0, /* No offset on data devs */ 1597 rs->md.dev_sectors, 1598 data); 1599 1600 return ret; 1601 } 1602 1603 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits) 1604 { 1605 struct raid_set *rs = ti->private; 1606 unsigned chunk_size = rs->md.chunk_sectors << 9; 1607 struct r5conf *conf = rs->md.private; 1608 1609 blk_limits_io_min(limits, chunk_size); 1610 blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded)); 1611 } 1612 1613 static void raid_presuspend(struct dm_target *ti) 1614 { 1615 struct raid_set *rs = ti->private; 1616 1617 md_stop_writes(&rs->md); 1618 } 1619 1620 static void raid_postsuspend(struct dm_target *ti) 1621 { 1622 struct raid_set *rs = ti->private; 1623 1624 mddev_suspend(&rs->md); 1625 } 1626 1627 static void attempt_restore_of_faulty_devices(struct raid_set *rs) 1628 { 1629 int i; 1630 uint64_t failed_devices, cleared_failed_devices = 0; 1631 unsigned long flags; 1632 struct dm_raid_superblock *sb; 1633 struct md_rdev *r; 1634 1635 for (i = 0; i < rs->md.raid_disks; i++) { 1636 r = &rs->dev[i].rdev; 1637 if (test_bit(Faulty, &r->flags) && r->sb_page && 1638 sync_page_io(r, 0, r->sb_size, r->sb_page, READ, 1)) { 1639 DMINFO("Faulty %s device #%d has readable super block." 1640 " Attempting to revive it.", 1641 rs->raid_type->name, i); 1642 1643 /* 1644 * Faulty bit may be set, but sometimes the array can 1645 * be suspended before the personalities can respond 1646 * by removing the device from the array (i.e. calling 1647 * 'hot_remove_disk'). If they haven't yet removed 1648 * the failed device, its 'raid_disk' number will be 1649 * '>= 0' - meaning we must call this function 1650 * ourselves. 1651 */ 1652 if ((r->raid_disk >= 0) && 1653 (r->mddev->pers->hot_remove_disk(r->mddev, r) != 0)) 1654 /* Failed to revive this device, try next */ 1655 continue; 1656 1657 r->raid_disk = i; 1658 r->saved_raid_disk = i; 1659 flags = r->flags; 1660 clear_bit(Faulty, &r->flags); 1661 clear_bit(WriteErrorSeen, &r->flags); 1662 clear_bit(In_sync, &r->flags); 1663 if (r->mddev->pers->hot_add_disk(r->mddev, r)) { 1664 r->raid_disk = -1; 1665 r->saved_raid_disk = -1; 1666 r->flags = flags; 1667 } else { 1668 r->recovery_offset = 0; 1669 cleared_failed_devices |= 1 << i; 1670 } 1671 } 1672 } 1673 if (cleared_failed_devices) { 1674 rdev_for_each(r, &rs->md) { 1675 sb = page_address(r->sb_page); 1676 failed_devices = le64_to_cpu(sb->failed_devices); 1677 failed_devices &= ~cleared_failed_devices; 1678 sb->failed_devices = cpu_to_le64(failed_devices); 1679 } 1680 } 1681 } 1682 1683 static void raid_resume(struct dm_target *ti) 1684 { 1685 struct raid_set *rs = ti->private; 1686 1687 set_bit(MD_CHANGE_DEVS, &rs->md.flags); 1688 if (!rs->bitmap_loaded) { 1689 bitmap_load(&rs->md); 1690 rs->bitmap_loaded = 1; 1691 } else { 1692 /* 1693 * A secondary resume while the device is active. 1694 * Take this opportunity to check whether any failed 1695 * devices are reachable again. 1696 */ 1697 attempt_restore_of_faulty_devices(rs); 1698 } 1699 1700 clear_bit(MD_RECOVERY_FROZEN, &rs->md.recovery); 1701 mddev_resume(&rs->md); 1702 } 1703 1704 static struct target_type raid_target = { 1705 .name = "raid", 1706 .version = {1, 6, 0}, 1707 .module = THIS_MODULE, 1708 .ctr = raid_ctr, 1709 .dtr = raid_dtr, 1710 .map = raid_map, 1711 .status = raid_status, 1712 .message = raid_message, 1713 .iterate_devices = raid_iterate_devices, 1714 .io_hints = raid_io_hints, 1715 .presuspend = raid_presuspend, 1716 .postsuspend = raid_postsuspend, 1717 .resume = raid_resume, 1718 }; 1719 1720 static int __init dm_raid_init(void) 1721 { 1722 DMINFO("Loading target version %u.%u.%u", 1723 raid_target.version[0], 1724 raid_target.version[1], 1725 raid_target.version[2]); 1726 return dm_register_target(&raid_target); 1727 } 1728 1729 static void __exit dm_raid_exit(void) 1730 { 1731 dm_unregister_target(&raid_target); 1732 } 1733 1734 module_init(dm_raid_init); 1735 module_exit(dm_raid_exit); 1736 1737 module_param(devices_handle_discard_safely, bool, 0644); 1738 MODULE_PARM_DESC(devices_handle_discard_safely, 1739 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 1740 1741 MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target"); 1742 MODULE_ALIAS("dm-raid1"); 1743 MODULE_ALIAS("dm-raid10"); 1744 MODULE_ALIAS("dm-raid4"); 1745 MODULE_ALIAS("dm-raid5"); 1746 MODULE_ALIAS("dm-raid6"); 1747 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>"); 1748 MODULE_LICENSE("GPL"); 1749