1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2010-2011 Neil Brown 4 * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/module.h> 11 12 #include "md.h" 13 #include "raid1.h" 14 #include "raid5.h" 15 #include "raid10.h" 16 #include "md-bitmap.h" 17 18 #include <linux/device-mapper.h> 19 20 #define DM_MSG_PREFIX "raid" 21 #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */ 22 23 /* 24 * Minimum sectors of free reshape space per raid device 25 */ 26 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096) 27 28 /* 29 * Minimum journal space 4 MiB in sectors. 30 */ 31 #define MIN_RAID456_JOURNAL_SPACE (4*2048) 32 33 static bool devices_handle_discard_safely; 34 35 /* 36 * The following flags are used by dm-raid to set up the array state. 37 * They must be cleared before md_run is called. 38 */ 39 #define FirstUse 10 /* rdev flag */ 40 41 struct raid_dev { 42 /* 43 * Two DM devices, one to hold metadata and one to hold the 44 * actual data/parity. The reason for this is to not confuse 45 * ti->len and give more flexibility in altering size and 46 * characteristics. 47 * 48 * While it is possible for this device to be associated 49 * with a different physical device than the data_dev, it 50 * is intended for it to be the same. 51 * |--------- Physical Device ---------| 52 * |- meta_dev -|------ data_dev ------| 53 */ 54 struct dm_dev *meta_dev; 55 struct dm_dev *data_dev; 56 struct md_rdev rdev; 57 }; 58 59 /* 60 * Bits for establishing rs->ctr_flags 61 * 62 * 1 = no flag value 63 * 2 = flag with value 64 */ 65 #define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */ 66 #define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */ 67 #define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */ 68 #define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */ 69 #define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */ 70 #define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */ 71 #define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */ 72 #define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */ 73 #define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */ 74 #define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */ 75 #define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */ 76 #define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */ 77 /* New for v1.9.0 */ 78 #define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */ 79 #define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */ 80 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */ 81 82 /* New for v1.10.0 */ 83 #define __CTR_FLAG_JOURNAL_DEV 15 /* 2 */ /* Only with raid4/5/6 (journal device)! */ 84 85 /* New for v1.11.1 */ 86 #define __CTR_FLAG_JOURNAL_MODE 16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */ 87 88 /* 89 * Flags for rs->ctr_flags field. 90 */ 91 #define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC) 92 #define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC) 93 #define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD) 94 #define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP) 95 #define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE) 96 #define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE) 97 #define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND) 98 #define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY) 99 #define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE) 100 #define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE) 101 #define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES) 102 #define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT) 103 #define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS) 104 #define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET) 105 #define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS) 106 #define CTR_FLAG_JOURNAL_DEV (1 << __CTR_FLAG_JOURNAL_DEV) 107 #define CTR_FLAG_JOURNAL_MODE (1 << __CTR_FLAG_JOURNAL_MODE) 108 109 /* 110 * Definitions of various constructor flags to 111 * be used in checks of valid / invalid flags 112 * per raid level. 113 */ 114 /* Define all any sync flags */ 115 #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC) 116 117 /* Define flags for options without argument (e.g. 'nosync') */ 118 #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \ 119 CTR_FLAG_RAID10_USE_NEAR_SETS) 120 121 /* Define flags for options with one argument (e.g. 'delta_disks +2') */ 122 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \ 123 CTR_FLAG_WRITE_MOSTLY | \ 124 CTR_FLAG_DAEMON_SLEEP | \ 125 CTR_FLAG_MIN_RECOVERY_RATE | \ 126 CTR_FLAG_MAX_RECOVERY_RATE | \ 127 CTR_FLAG_MAX_WRITE_BEHIND | \ 128 CTR_FLAG_STRIPE_CACHE | \ 129 CTR_FLAG_REGION_SIZE | \ 130 CTR_FLAG_RAID10_COPIES | \ 131 CTR_FLAG_RAID10_FORMAT | \ 132 CTR_FLAG_DELTA_DISKS | \ 133 CTR_FLAG_DATA_OFFSET | \ 134 CTR_FLAG_JOURNAL_DEV | \ 135 CTR_FLAG_JOURNAL_MODE) 136 137 /* Valid options definitions per raid level... */ 138 139 /* "raid0" does only accept data offset */ 140 #define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET) 141 142 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */ 143 #define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 144 CTR_FLAG_REBUILD | \ 145 CTR_FLAG_WRITE_MOSTLY | \ 146 CTR_FLAG_DAEMON_SLEEP | \ 147 CTR_FLAG_MIN_RECOVERY_RATE | \ 148 CTR_FLAG_MAX_RECOVERY_RATE | \ 149 CTR_FLAG_MAX_WRITE_BEHIND | \ 150 CTR_FLAG_REGION_SIZE | \ 151 CTR_FLAG_DELTA_DISKS | \ 152 CTR_FLAG_DATA_OFFSET) 153 154 /* "raid10" does not accept any raid1 or stripe cache options */ 155 #define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 156 CTR_FLAG_REBUILD | \ 157 CTR_FLAG_DAEMON_SLEEP | \ 158 CTR_FLAG_MIN_RECOVERY_RATE | \ 159 CTR_FLAG_MAX_RECOVERY_RATE | \ 160 CTR_FLAG_REGION_SIZE | \ 161 CTR_FLAG_RAID10_COPIES | \ 162 CTR_FLAG_RAID10_FORMAT | \ 163 CTR_FLAG_DELTA_DISKS | \ 164 CTR_FLAG_DATA_OFFSET | \ 165 CTR_FLAG_RAID10_USE_NEAR_SETS) 166 167 /* 168 * "raid4/5/6" do not accept any raid1 or raid10 specific options 169 * 170 * "raid6" does not accept "nosync", because it is not guaranteed 171 * that both parity and q-syndrome are being written properly with 172 * any writes 173 */ 174 #define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 175 CTR_FLAG_REBUILD | \ 176 CTR_FLAG_DAEMON_SLEEP | \ 177 CTR_FLAG_MIN_RECOVERY_RATE | \ 178 CTR_FLAG_MAX_RECOVERY_RATE | \ 179 CTR_FLAG_STRIPE_CACHE | \ 180 CTR_FLAG_REGION_SIZE | \ 181 CTR_FLAG_DELTA_DISKS | \ 182 CTR_FLAG_DATA_OFFSET | \ 183 CTR_FLAG_JOURNAL_DEV | \ 184 CTR_FLAG_JOURNAL_MODE) 185 186 #define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \ 187 CTR_FLAG_REBUILD | \ 188 CTR_FLAG_DAEMON_SLEEP | \ 189 CTR_FLAG_MIN_RECOVERY_RATE | \ 190 CTR_FLAG_MAX_RECOVERY_RATE | \ 191 CTR_FLAG_STRIPE_CACHE | \ 192 CTR_FLAG_REGION_SIZE | \ 193 CTR_FLAG_DELTA_DISKS | \ 194 CTR_FLAG_DATA_OFFSET | \ 195 CTR_FLAG_JOURNAL_DEV | \ 196 CTR_FLAG_JOURNAL_MODE) 197 /* ...valid options definitions per raid level */ 198 199 /* 200 * Flags for rs->runtime_flags field 201 * (RT_FLAG prefix meaning "runtime flag") 202 * 203 * These are all internal and used to define runtime state, 204 * e.g. to prevent another resume from preresume processing 205 * the raid set all over again. 206 */ 207 #define RT_FLAG_RS_PRERESUMED 0 208 #define RT_FLAG_RS_RESUMED 1 209 #define RT_FLAG_RS_BITMAP_LOADED 2 210 #define RT_FLAG_UPDATE_SBS 3 211 #define RT_FLAG_RESHAPE_RS 4 212 #define RT_FLAG_RS_SUSPENDED 5 213 #define RT_FLAG_RS_IN_SYNC 6 214 #define RT_FLAG_RS_RESYNCING 7 215 #define RT_FLAG_RS_GROW 8 216 217 /* Array elements of 64 bit needed for rebuild/failed disk bits */ 218 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8) 219 220 /* 221 * raid set level, layout and chunk sectors backup/restore 222 */ 223 struct rs_layout { 224 int new_level; 225 int new_layout; 226 int new_chunk_sectors; 227 }; 228 229 struct raid_set { 230 struct dm_target *ti; 231 232 uint32_t stripe_cache_entries; 233 unsigned long ctr_flags; 234 unsigned long runtime_flags; 235 236 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS]; 237 238 int raid_disks; 239 int delta_disks; 240 int data_offset; 241 int raid10_copies; 242 int requested_bitmap_chunk_sectors; 243 244 struct mddev md; 245 struct raid_type *raid_type; 246 247 sector_t array_sectors; 248 sector_t dev_sectors; 249 250 /* Optional raid4/5/6 journal device */ 251 struct journal_dev { 252 struct dm_dev *dev; 253 struct md_rdev rdev; 254 int mode; 255 } journal_dev; 256 257 struct raid_dev dev[] __counted_by(raid_disks); 258 }; 259 260 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l) 261 { 262 struct mddev *mddev = &rs->md; 263 264 l->new_level = mddev->new_level; 265 l->new_layout = mddev->new_layout; 266 l->new_chunk_sectors = mddev->new_chunk_sectors; 267 } 268 269 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l) 270 { 271 struct mddev *mddev = &rs->md; 272 273 mddev->new_level = l->new_level; 274 mddev->new_layout = l->new_layout; 275 mddev->new_chunk_sectors = l->new_chunk_sectors; 276 } 277 278 /* raid10 algorithms (i.e. formats) */ 279 #define ALGORITHM_RAID10_DEFAULT 0 280 #define ALGORITHM_RAID10_NEAR 1 281 #define ALGORITHM_RAID10_OFFSET 2 282 #define ALGORITHM_RAID10_FAR 3 283 284 /* Supported raid types and properties. */ 285 static struct raid_type { 286 const char *name; /* RAID algorithm. */ 287 const char *descr; /* Descriptor text for logging. */ 288 const unsigned int parity_devs; /* # of parity devices. */ 289 const unsigned int minimal_devs;/* minimal # of devices in set. */ 290 const unsigned int level; /* RAID level. */ 291 const unsigned int algorithm; /* RAID algorithm. */ 292 } raid_types[] = { 293 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */}, 294 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */}, 295 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR}, 296 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET}, 297 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR}, 298 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT}, 299 {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */ 300 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N}, 301 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC}, 302 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC}, 303 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC}, 304 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC}, 305 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART}, 306 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART}, 307 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}, 308 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6}, 309 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6}, 310 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6}, 311 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6}, 312 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6} 313 }; 314 315 /* True, if @v is in inclusive range [@min, @max] */ 316 static bool __within_range(long v, long min, long max) 317 { 318 return v >= min && v <= max; 319 } 320 321 /* All table line arguments are defined here */ 322 static struct arg_name_flag { 323 const unsigned long flag; 324 const char *name; 325 } __arg_name_flags[] = { 326 { CTR_FLAG_SYNC, "sync"}, 327 { CTR_FLAG_NOSYNC, "nosync"}, 328 { CTR_FLAG_REBUILD, "rebuild"}, 329 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"}, 330 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"}, 331 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"}, 332 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"}, 333 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"}, 334 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"}, 335 { CTR_FLAG_REGION_SIZE, "region_size"}, 336 { CTR_FLAG_RAID10_COPIES, "raid10_copies"}, 337 { CTR_FLAG_RAID10_FORMAT, "raid10_format"}, 338 { CTR_FLAG_DATA_OFFSET, "data_offset"}, 339 { CTR_FLAG_DELTA_DISKS, "delta_disks"}, 340 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"}, 341 { CTR_FLAG_JOURNAL_DEV, "journal_dev" }, 342 { CTR_FLAG_JOURNAL_MODE, "journal_mode" }, 343 }; 344 345 /* Return argument name string for given @flag */ 346 static const char *dm_raid_arg_name_by_flag(const uint32_t flag) 347 { 348 if (hweight32(flag) == 1) { 349 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags); 350 351 while (anf-- > __arg_name_flags) 352 if (flag & anf->flag) 353 return anf->name; 354 355 } else 356 DMERR("%s called with more than one flag!", __func__); 357 358 return NULL; 359 } 360 361 /* Define correlation of raid456 journal cache modes and dm-raid target line parameters */ 362 static struct { 363 const int mode; 364 const char *param; 365 } _raid456_journal_mode[] = { 366 { R5C_JOURNAL_MODE_WRITE_THROUGH, "writethrough" }, 367 { R5C_JOURNAL_MODE_WRITE_BACK, "writeback" } 368 }; 369 370 /* Return MD raid4/5/6 journal mode for dm @journal_mode one */ 371 static int dm_raid_journal_mode_to_md(const char *mode) 372 { 373 int m = ARRAY_SIZE(_raid456_journal_mode); 374 375 while (m--) 376 if (!strcasecmp(mode, _raid456_journal_mode[m].param)) 377 return _raid456_journal_mode[m].mode; 378 379 return -EINVAL; 380 } 381 382 /* Return dm-raid raid4/5/6 journal mode string for @mode */ 383 static const char *md_journal_mode_to_dm_raid(const int mode) 384 { 385 int m = ARRAY_SIZE(_raid456_journal_mode); 386 387 while (m--) 388 if (mode == _raid456_journal_mode[m].mode) 389 return _raid456_journal_mode[m].param; 390 391 return "unknown"; 392 } 393 394 /* 395 * Bool helpers to test for various raid levels of a raid set. 396 * It's level as reported by the superblock rather than 397 * the requested raid_type passed to the constructor. 398 */ 399 /* Return true, if raid set in @rs is raid0 */ 400 static bool rs_is_raid0(struct raid_set *rs) 401 { 402 return !rs->md.level; 403 } 404 405 /* Return true, if raid set in @rs is raid1 */ 406 static bool rs_is_raid1(struct raid_set *rs) 407 { 408 return rs->md.level == 1; 409 } 410 411 /* Return true, if raid set in @rs is raid10 */ 412 static bool rs_is_raid10(struct raid_set *rs) 413 { 414 return rs->md.level == 10; 415 } 416 417 /* Return true, if raid set in @rs is level 6 */ 418 static bool rs_is_raid6(struct raid_set *rs) 419 { 420 return rs->md.level == 6; 421 } 422 423 /* Return true, if raid set in @rs is level 4, 5 or 6 */ 424 static bool rs_is_raid456(struct raid_set *rs) 425 { 426 return __within_range(rs->md.level, 4, 6); 427 } 428 429 /* Return true, if raid set in @rs is reshapable */ 430 static bool __is_raid10_far(int layout); 431 static bool rs_is_reshapable(struct raid_set *rs) 432 { 433 return rs_is_raid456(rs) || 434 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout)); 435 } 436 437 /* Return true, if raid set in @rs is recovering */ 438 static bool rs_is_recovering(struct raid_set *rs) 439 { 440 return rs->md.recovery_cp < rs->md.dev_sectors; 441 } 442 443 /* Return true, if raid set in @rs is reshaping */ 444 static bool rs_is_reshaping(struct raid_set *rs) 445 { 446 return rs->md.reshape_position != MaxSector; 447 } 448 449 /* 450 * bool helpers to test for various raid levels of a raid type @rt 451 */ 452 453 /* Return true, if raid type in @rt is raid0 */ 454 static bool rt_is_raid0(struct raid_type *rt) 455 { 456 return !rt->level; 457 } 458 459 /* Return true, if raid type in @rt is raid1 */ 460 static bool rt_is_raid1(struct raid_type *rt) 461 { 462 return rt->level == 1; 463 } 464 465 /* Return true, if raid type in @rt is raid10 */ 466 static bool rt_is_raid10(struct raid_type *rt) 467 { 468 return rt->level == 10; 469 } 470 471 /* Return true, if raid type in @rt is raid4/5 */ 472 static bool rt_is_raid45(struct raid_type *rt) 473 { 474 return __within_range(rt->level, 4, 5); 475 } 476 477 /* Return true, if raid type in @rt is raid6 */ 478 static bool rt_is_raid6(struct raid_type *rt) 479 { 480 return rt->level == 6; 481 } 482 483 /* Return true, if raid type in @rt is raid4/5/6 */ 484 static bool rt_is_raid456(struct raid_type *rt) 485 { 486 return __within_range(rt->level, 4, 6); 487 } 488 /* END: raid level bools */ 489 490 /* Return valid ctr flags for the raid level of @rs */ 491 static unsigned long __valid_flags(struct raid_set *rs) 492 { 493 if (rt_is_raid0(rs->raid_type)) 494 return RAID0_VALID_FLAGS; 495 else if (rt_is_raid1(rs->raid_type)) 496 return RAID1_VALID_FLAGS; 497 else if (rt_is_raid10(rs->raid_type)) 498 return RAID10_VALID_FLAGS; 499 else if (rt_is_raid45(rs->raid_type)) 500 return RAID45_VALID_FLAGS; 501 else if (rt_is_raid6(rs->raid_type)) 502 return RAID6_VALID_FLAGS; 503 504 return 0; 505 } 506 507 /* 508 * Check for valid flags set on @rs 509 * 510 * Has to be called after parsing of the ctr flags! 511 */ 512 static int rs_check_for_valid_flags(struct raid_set *rs) 513 { 514 if (rs->ctr_flags & ~__valid_flags(rs)) { 515 rs->ti->error = "Invalid flags combination"; 516 return -EINVAL; 517 } 518 519 return 0; 520 } 521 522 /* MD raid10 bit definitions and helpers */ 523 #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */ 524 #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */ 525 #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */ 526 #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */ 527 528 /* Return md raid10 near copies for @layout */ 529 static unsigned int __raid10_near_copies(int layout) 530 { 531 return layout & 0xFF; 532 } 533 534 /* Return md raid10 far copies for @layout */ 535 static unsigned int __raid10_far_copies(int layout) 536 { 537 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT); 538 } 539 540 /* Return true if md raid10 offset for @layout */ 541 static bool __is_raid10_offset(int layout) 542 { 543 return !!(layout & RAID10_OFFSET); 544 } 545 546 /* Return true if md raid10 near for @layout */ 547 static bool __is_raid10_near(int layout) 548 { 549 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1; 550 } 551 552 /* Return true if md raid10 far for @layout */ 553 static bool __is_raid10_far(int layout) 554 { 555 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1; 556 } 557 558 /* Return md raid10 layout string for @layout */ 559 static const char *raid10_md_layout_to_format(int layout) 560 { 561 /* 562 * Bit 16 stands for "offset" 563 * (i.e. adjacent stripes hold copies) 564 * 565 * Refer to MD's raid10.c for details 566 */ 567 if (__is_raid10_offset(layout)) 568 return "offset"; 569 570 if (__raid10_near_copies(layout) > 1) 571 return "near"; 572 573 if (__raid10_far_copies(layout) > 1) 574 return "far"; 575 576 return "unknown"; 577 } 578 579 /* Return md raid10 algorithm for @name */ 580 static int raid10_name_to_format(const char *name) 581 { 582 if (!strcasecmp(name, "near")) 583 return ALGORITHM_RAID10_NEAR; 584 else if (!strcasecmp(name, "offset")) 585 return ALGORITHM_RAID10_OFFSET; 586 else if (!strcasecmp(name, "far")) 587 return ALGORITHM_RAID10_FAR; 588 589 return -EINVAL; 590 } 591 592 /* Return md raid10 copies for @layout */ 593 static unsigned int raid10_md_layout_to_copies(int layout) 594 { 595 return max(__raid10_near_copies(layout), __raid10_far_copies(layout)); 596 } 597 598 /* Return md raid10 format id for @format string */ 599 static int raid10_format_to_md_layout(struct raid_set *rs, 600 unsigned int algorithm, 601 unsigned int copies) 602 { 603 unsigned int n = 1, f = 1, r = 0; 604 605 /* 606 * MD resilienece flaw: 607 * 608 * enabling use_far_sets for far/offset formats causes copies 609 * to be colocated on the same devs together with their origins! 610 * 611 * -> disable it for now in the definition above 612 */ 613 if (algorithm == ALGORITHM_RAID10_DEFAULT || 614 algorithm == ALGORITHM_RAID10_NEAR) 615 n = copies; 616 617 else if (algorithm == ALGORITHM_RAID10_OFFSET) { 618 f = copies; 619 r = RAID10_OFFSET; 620 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) 621 r |= RAID10_USE_FAR_SETS; 622 623 } else if (algorithm == ALGORITHM_RAID10_FAR) { 624 f = copies; 625 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) 626 r |= RAID10_USE_FAR_SETS; 627 628 } else 629 return -EINVAL; 630 631 return r | (f << RAID10_FAR_COPIES_SHIFT) | n; 632 } 633 /* END: MD raid10 bit definitions and helpers */ 634 635 /* Check for any of the raid10 algorithms */ 636 static bool __got_raid10(struct raid_type *rtp, const int layout) 637 { 638 if (rtp->level == 10) { 639 switch (rtp->algorithm) { 640 case ALGORITHM_RAID10_DEFAULT: 641 case ALGORITHM_RAID10_NEAR: 642 return __is_raid10_near(layout); 643 case ALGORITHM_RAID10_OFFSET: 644 return __is_raid10_offset(layout); 645 case ALGORITHM_RAID10_FAR: 646 return __is_raid10_far(layout); 647 default: 648 break; 649 } 650 } 651 652 return false; 653 } 654 655 /* Return raid_type for @name */ 656 static struct raid_type *get_raid_type(const char *name) 657 { 658 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); 659 660 while (rtp-- > raid_types) 661 if (!strcasecmp(rtp->name, name)) 662 return rtp; 663 664 return NULL; 665 } 666 667 /* Return raid_type for @name based derived from @level and @layout */ 668 static struct raid_type *get_raid_type_by_ll(const int level, const int layout) 669 { 670 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); 671 672 while (rtp-- > raid_types) { 673 /* RAID10 special checks based on @layout flags/properties */ 674 if (rtp->level == level && 675 (__got_raid10(rtp, layout) || rtp->algorithm == layout)) 676 return rtp; 677 } 678 679 return NULL; 680 } 681 682 /* Adjust rdev sectors */ 683 static void rs_set_rdev_sectors(struct raid_set *rs) 684 { 685 struct mddev *mddev = &rs->md; 686 struct md_rdev *rdev; 687 688 /* 689 * raid10 sets rdev->sector to the device size, which 690 * is unintended in case of out-of-place reshaping 691 */ 692 rdev_for_each(rdev, mddev) 693 if (!test_bit(Journal, &rdev->flags)) 694 rdev->sectors = mddev->dev_sectors; 695 } 696 697 /* 698 * Change bdev capacity of @rs in case of a disk add/remove reshape 699 */ 700 static void rs_set_capacity(struct raid_set *rs) 701 { 702 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table)); 703 704 set_capacity_and_notify(gendisk, rs->md.array_sectors); 705 } 706 707 /* 708 * Set the mddev properties in @rs to the current 709 * ones retrieved from the freshest superblock 710 */ 711 static void rs_set_cur(struct raid_set *rs) 712 { 713 struct mddev *mddev = &rs->md; 714 715 mddev->new_level = mddev->level; 716 mddev->new_layout = mddev->layout; 717 mddev->new_chunk_sectors = mddev->chunk_sectors; 718 } 719 720 /* 721 * Set the mddev properties in @rs to the new 722 * ones requested by the ctr 723 */ 724 static void rs_set_new(struct raid_set *rs) 725 { 726 struct mddev *mddev = &rs->md; 727 728 mddev->level = mddev->new_level; 729 mddev->layout = mddev->new_layout; 730 mddev->chunk_sectors = mddev->new_chunk_sectors; 731 mddev->raid_disks = rs->raid_disks; 732 mddev->delta_disks = 0; 733 } 734 735 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type, 736 unsigned int raid_devs) 737 { 738 unsigned int i; 739 struct raid_set *rs; 740 741 if (raid_devs <= raid_type->parity_devs) { 742 ti->error = "Insufficient number of devices"; 743 return ERR_PTR(-EINVAL); 744 } 745 746 rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL); 747 if (!rs) { 748 ti->error = "Cannot allocate raid context"; 749 return ERR_PTR(-ENOMEM); 750 } 751 752 if (mddev_init(&rs->md)) { 753 kfree(rs); 754 ti->error = "Cannot initialize raid context"; 755 return ERR_PTR(-ENOMEM); 756 } 757 758 rs->raid_disks = raid_devs; 759 rs->delta_disks = 0; 760 761 rs->ti = ti; 762 rs->raid_type = raid_type; 763 rs->stripe_cache_entries = 256; 764 rs->md.raid_disks = raid_devs; 765 rs->md.level = raid_type->level; 766 rs->md.new_level = rs->md.level; 767 rs->md.layout = raid_type->algorithm; 768 rs->md.new_layout = rs->md.layout; 769 rs->md.delta_disks = 0; 770 rs->md.recovery_cp = MaxSector; 771 772 for (i = 0; i < raid_devs; i++) 773 md_rdev_init(&rs->dev[i].rdev); 774 775 /* 776 * Remaining items to be initialized by further RAID params: 777 * rs->md.persistent 778 * rs->md.external 779 * rs->md.chunk_sectors 780 * rs->md.new_chunk_sectors 781 * rs->md.dev_sectors 782 */ 783 784 return rs; 785 } 786 787 /* Free all @rs allocations */ 788 static void raid_set_free(struct raid_set *rs) 789 { 790 int i; 791 792 if (rs->journal_dev.dev) { 793 md_rdev_clear(&rs->journal_dev.rdev); 794 dm_put_device(rs->ti, rs->journal_dev.dev); 795 } 796 797 for (i = 0; i < rs->raid_disks; i++) { 798 if (rs->dev[i].meta_dev) 799 dm_put_device(rs->ti, rs->dev[i].meta_dev); 800 md_rdev_clear(&rs->dev[i].rdev); 801 if (rs->dev[i].data_dev) 802 dm_put_device(rs->ti, rs->dev[i].data_dev); 803 } 804 805 mddev_destroy(&rs->md); 806 kfree(rs); 807 } 808 809 /* 810 * For every device we have two words 811 * <meta_dev>: meta device name or '-' if missing 812 * <data_dev>: data device name or '-' if missing 813 * 814 * The following are permitted: 815 * - - 816 * - <data_dev> 817 * <meta_dev> <data_dev> 818 * 819 * The following is not allowed: 820 * <meta_dev> - 821 * 822 * This code parses those words. If there is a failure, 823 * the caller must use raid_set_free() to unwind the operations. 824 */ 825 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as) 826 { 827 int i; 828 int rebuild = 0; 829 int metadata_available = 0; 830 int r = 0; 831 const char *arg; 832 833 /* Put off the number of raid devices argument to get to dev pairs */ 834 arg = dm_shift_arg(as); 835 if (!arg) 836 return -EINVAL; 837 838 for (i = 0; i < rs->raid_disks; i++) { 839 rs->dev[i].rdev.raid_disk = i; 840 841 rs->dev[i].meta_dev = NULL; 842 rs->dev[i].data_dev = NULL; 843 844 /* 845 * There are no offsets initially. 846 * Out of place reshape will set them accordingly. 847 */ 848 rs->dev[i].rdev.data_offset = 0; 849 rs->dev[i].rdev.new_data_offset = 0; 850 rs->dev[i].rdev.mddev = &rs->md; 851 852 arg = dm_shift_arg(as); 853 if (!arg) 854 return -EINVAL; 855 856 if (strcmp(arg, "-")) { 857 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 858 &rs->dev[i].meta_dev); 859 if (r) { 860 rs->ti->error = "RAID metadata device lookup failure"; 861 return r; 862 } 863 864 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL); 865 if (!rs->dev[i].rdev.sb_page) { 866 rs->ti->error = "Failed to allocate superblock page"; 867 return -ENOMEM; 868 } 869 } 870 871 arg = dm_shift_arg(as); 872 if (!arg) 873 return -EINVAL; 874 875 if (!strcmp(arg, "-")) { 876 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) && 877 (!rs->dev[i].rdev.recovery_offset)) { 878 rs->ti->error = "Drive designated for rebuild not specified"; 879 return -EINVAL; 880 } 881 882 if (rs->dev[i].meta_dev) { 883 rs->ti->error = "No data device supplied with metadata device"; 884 return -EINVAL; 885 } 886 887 continue; 888 } 889 890 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 891 &rs->dev[i].data_dev); 892 if (r) { 893 rs->ti->error = "RAID device lookup failure"; 894 return r; 895 } 896 897 if (rs->dev[i].meta_dev) { 898 metadata_available = 1; 899 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev; 900 } 901 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev; 902 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks); 903 if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) 904 rebuild++; 905 } 906 907 if (rs->journal_dev.dev) 908 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks); 909 910 if (metadata_available) { 911 rs->md.external = 0; 912 rs->md.persistent = 1; 913 rs->md.major_version = 2; 914 } else if (rebuild && !rs->md.recovery_cp) { 915 /* 916 * Without metadata, we will not be able to tell if the array 917 * is in-sync or not - we must assume it is not. Therefore, 918 * it is impossible to rebuild a drive. 919 * 920 * Even if there is metadata, the on-disk information may 921 * indicate that the array is not in-sync and it will then 922 * fail at that time. 923 * 924 * User could specify 'nosync' option if desperate. 925 */ 926 rs->ti->error = "Unable to rebuild drive while array is not in-sync"; 927 return -EINVAL; 928 } 929 930 return 0; 931 } 932 933 /* 934 * validate_region_size 935 * @rs 936 * @region_size: region size in sectors. If 0, pick a size (4MiB default). 937 * 938 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size'). 939 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap. 940 * 941 * Returns: 0 on success, -EINVAL on failure. 942 */ 943 static int validate_region_size(struct raid_set *rs, unsigned long region_size) 944 { 945 unsigned long min_region_size = rs->ti->len / (1 << 21); 946 947 if (rs_is_raid0(rs)) 948 return 0; 949 950 if (!region_size) { 951 /* 952 * Choose a reasonable default. All figures in sectors. 953 */ 954 if (min_region_size > (1 << 13)) { 955 /* If not a power of 2, make it the next power of 2 */ 956 region_size = roundup_pow_of_two(min_region_size); 957 DMINFO("Choosing default region size of %lu sectors", 958 region_size); 959 } else { 960 DMINFO("Choosing default region size of 4MiB"); 961 region_size = 1 << 13; /* sectors */ 962 } 963 } else { 964 /* 965 * Validate user-supplied value. 966 */ 967 if (region_size > rs->ti->len) { 968 rs->ti->error = "Supplied region size is too large"; 969 return -EINVAL; 970 } 971 972 if (region_size < min_region_size) { 973 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)", 974 region_size, min_region_size); 975 rs->ti->error = "Supplied region size is too small"; 976 return -EINVAL; 977 } 978 979 if (!is_power_of_2(region_size)) { 980 rs->ti->error = "Region size is not a power of 2"; 981 return -EINVAL; 982 } 983 984 if (region_size < rs->md.chunk_sectors) { 985 rs->ti->error = "Region size is smaller than the chunk size"; 986 return -EINVAL; 987 } 988 } 989 990 /* 991 * Convert sectors to bytes. 992 */ 993 rs->md.bitmap_info.chunksize = to_bytes(region_size); 994 995 return 0; 996 } 997 998 /* 999 * validate_raid_redundancy 1000 * @rs 1001 * 1002 * Determine if there are enough devices in the array that haven't 1003 * failed (or are being rebuilt) to form a usable array. 1004 * 1005 * Returns: 0 on success, -EINVAL on failure. 1006 */ 1007 static int validate_raid_redundancy(struct raid_set *rs) 1008 { 1009 unsigned int i, rebuild_cnt = 0; 1010 unsigned int rebuilds_per_group = 0, copies, raid_disks; 1011 unsigned int group_size, last_group_start; 1012 1013 for (i = 0; i < rs->raid_disks; i++) 1014 if (!test_bit(FirstUse, &rs->dev[i].rdev.flags) && 1015 ((!test_bit(In_sync, &rs->dev[i].rdev.flags) || 1016 !rs->dev[i].rdev.sb_page))) 1017 rebuild_cnt++; 1018 1019 switch (rs->md.level) { 1020 case 0: 1021 break; 1022 case 1: 1023 if (rebuild_cnt >= rs->md.raid_disks) 1024 goto too_many; 1025 break; 1026 case 4: 1027 case 5: 1028 case 6: 1029 if (rebuild_cnt > rs->raid_type->parity_devs) 1030 goto too_many; 1031 break; 1032 case 10: 1033 copies = raid10_md_layout_to_copies(rs->md.new_layout); 1034 if (copies < 2) { 1035 DMERR("Bogus raid10 data copies < 2!"); 1036 return -EINVAL; 1037 } 1038 1039 if (rebuild_cnt < copies) 1040 break; 1041 1042 /* 1043 * It is possible to have a higher rebuild count for RAID10, 1044 * as long as the failed devices occur in different mirror 1045 * groups (i.e. different stripes). 1046 * 1047 * When checking "near" format, make sure no adjacent devices 1048 * have failed beyond what can be handled. In addition to the 1049 * simple case where the number of devices is a multiple of the 1050 * number of copies, we must also handle cases where the number 1051 * of devices is not a multiple of the number of copies. 1052 * E.g. dev1 dev2 dev3 dev4 dev5 1053 * A A B B C 1054 * C D D E E 1055 */ 1056 raid_disks = min(rs->raid_disks, rs->md.raid_disks); 1057 if (__is_raid10_near(rs->md.new_layout)) { 1058 for (i = 0; i < raid_disks; i++) { 1059 if (!(i % copies)) 1060 rebuilds_per_group = 0; 1061 if ((!rs->dev[i].rdev.sb_page || 1062 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 1063 (++rebuilds_per_group >= copies)) 1064 goto too_many; 1065 } 1066 break; 1067 } 1068 1069 /* 1070 * When checking "far" and "offset" formats, we need to ensure 1071 * that the device that holds its copy is not also dead or 1072 * being rebuilt. (Note that "far" and "offset" formats only 1073 * support two copies right now. These formats also only ever 1074 * use the 'use_far_sets' variant.) 1075 * 1076 * This check is somewhat complicated by the need to account 1077 * for arrays that are not a multiple of (far) copies. This 1078 * results in the need to treat the last (potentially larger) 1079 * set differently. 1080 */ 1081 group_size = (raid_disks / copies); 1082 last_group_start = (raid_disks / group_size) - 1; 1083 last_group_start *= group_size; 1084 for (i = 0; i < raid_disks; i++) { 1085 if (!(i % copies) && !(i > last_group_start)) 1086 rebuilds_per_group = 0; 1087 if ((!rs->dev[i].rdev.sb_page || 1088 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 1089 (++rebuilds_per_group >= copies)) 1090 goto too_many; 1091 } 1092 break; 1093 default: 1094 if (rebuild_cnt) 1095 return -EINVAL; 1096 } 1097 1098 return 0; 1099 1100 too_many: 1101 return -EINVAL; 1102 } 1103 1104 /* 1105 * Possible arguments are... 1106 * <chunk_size> [optional_args] 1107 * 1108 * Argument definitions 1109 * <chunk_size> The number of sectors per disk that 1110 * will form the "stripe" 1111 * [[no]sync] Force or prevent recovery of the 1112 * entire array 1113 * [rebuild <idx>] Rebuild the drive indicated by the index 1114 * [daemon_sleep <ms>] Time between bitmap daemon work to 1115 * clear bits 1116 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization 1117 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization 1118 * [write_mostly <idx>] Indicate a write mostly drive via index 1119 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm) 1120 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs 1121 * [region_size <sectors>] Defines granularity of bitmap 1122 * [journal_dev <dev>] raid4/5/6 journaling deviice 1123 * (i.e. write hole closing log) 1124 * 1125 * RAID10-only options: 1126 * [raid10_copies <# copies>] Number of copies. (Default: 2) 1127 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near) 1128 */ 1129 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as, 1130 unsigned int num_raid_params) 1131 { 1132 int value, raid10_format = ALGORITHM_RAID10_DEFAULT; 1133 unsigned int raid10_copies = 2; 1134 unsigned int i, write_mostly = 0; 1135 unsigned int region_size = 0; 1136 sector_t max_io_len; 1137 const char *arg, *key; 1138 struct raid_dev *rd; 1139 struct raid_type *rt = rs->raid_type; 1140 1141 arg = dm_shift_arg(as); 1142 num_raid_params--; /* Account for chunk_size argument */ 1143 1144 if (kstrtoint(arg, 10, &value) < 0) { 1145 rs->ti->error = "Bad numerical argument given for chunk_size"; 1146 return -EINVAL; 1147 } 1148 1149 /* 1150 * First, parse the in-order required arguments 1151 * "chunk_size" is the only argument of this type. 1152 */ 1153 if (rt_is_raid1(rt)) { 1154 if (value) 1155 DMERR("Ignoring chunk size parameter for RAID 1"); 1156 value = 0; 1157 } else if (!is_power_of_2(value)) { 1158 rs->ti->error = "Chunk size must be a power of 2"; 1159 return -EINVAL; 1160 } else if (value < 8) { 1161 rs->ti->error = "Chunk size value is too small"; 1162 return -EINVAL; 1163 } 1164 1165 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value; 1166 1167 /* 1168 * We set each individual device as In_sync with a completed 1169 * 'recovery_offset'. If there has been a device failure or 1170 * replacement then one of the following cases applies: 1171 * 1172 * 1) User specifies 'rebuild'. 1173 * - Device is reset when param is read. 1174 * 2) A new device is supplied. 1175 * - No matching superblock found, resets device. 1176 * 3) Device failure was transient and returns on reload. 1177 * - Failure noticed, resets device for bitmap replay. 1178 * 4) Device hadn't completed recovery after previous failure. 1179 * - Superblock is read and overrides recovery_offset. 1180 * 1181 * What is found in the superblocks of the devices is always 1182 * authoritative, unless 'rebuild' or '[no]sync' was specified. 1183 */ 1184 for (i = 0; i < rs->raid_disks; i++) { 1185 set_bit(In_sync, &rs->dev[i].rdev.flags); 1186 rs->dev[i].rdev.recovery_offset = MaxSector; 1187 } 1188 1189 /* 1190 * Second, parse the unordered optional arguments 1191 */ 1192 for (i = 0; i < num_raid_params; i++) { 1193 key = dm_shift_arg(as); 1194 if (!key) { 1195 rs->ti->error = "Not enough raid parameters given"; 1196 return -EINVAL; 1197 } 1198 1199 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) { 1200 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 1201 rs->ti->error = "Only one 'nosync' argument allowed"; 1202 return -EINVAL; 1203 } 1204 continue; 1205 } 1206 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) { 1207 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) { 1208 rs->ti->error = "Only one 'sync' argument allowed"; 1209 return -EINVAL; 1210 } 1211 continue; 1212 } 1213 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) { 1214 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { 1215 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed"; 1216 return -EINVAL; 1217 } 1218 continue; 1219 } 1220 1221 arg = dm_shift_arg(as); 1222 i++; /* Account for the argument pairs */ 1223 if (!arg) { 1224 rs->ti->error = "Wrong number of raid parameters given"; 1225 return -EINVAL; 1226 } 1227 1228 /* 1229 * Parameters that take a string value are checked here. 1230 */ 1231 /* "raid10_format {near|offset|far} */ 1232 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) { 1233 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) { 1234 rs->ti->error = "Only one 'raid10_format' argument pair allowed"; 1235 return -EINVAL; 1236 } 1237 if (!rt_is_raid10(rt)) { 1238 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type"; 1239 return -EINVAL; 1240 } 1241 raid10_format = raid10_name_to_format(arg); 1242 if (raid10_format < 0) { 1243 rs->ti->error = "Invalid 'raid10_format' value given"; 1244 return raid10_format; 1245 } 1246 continue; 1247 } 1248 1249 /* "journal_dev <dev>" */ 1250 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) { 1251 int r; 1252 struct md_rdev *jdev; 1253 1254 if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 1255 rs->ti->error = "Only one raid4/5/6 set journaling device allowed"; 1256 return -EINVAL; 1257 } 1258 if (!rt_is_raid456(rt)) { 1259 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type"; 1260 return -EINVAL; 1261 } 1262 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 1263 &rs->journal_dev.dev); 1264 if (r) { 1265 rs->ti->error = "raid4/5/6 journal device lookup failure"; 1266 return r; 1267 } 1268 jdev = &rs->journal_dev.rdev; 1269 md_rdev_init(jdev); 1270 jdev->mddev = &rs->md; 1271 jdev->bdev = rs->journal_dev.dev->bdev; 1272 jdev->sectors = bdev_nr_sectors(jdev->bdev); 1273 if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) { 1274 rs->ti->error = "No space for raid4/5/6 journal"; 1275 return -ENOSPC; 1276 } 1277 rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 1278 set_bit(Journal, &jdev->flags); 1279 continue; 1280 } 1281 1282 /* "journal_mode <mode>" ("journal_dev" mandatory!) */ 1283 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) { 1284 int r; 1285 1286 if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 1287 rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'"; 1288 return -EINVAL; 1289 } 1290 if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) { 1291 rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed"; 1292 return -EINVAL; 1293 } 1294 r = dm_raid_journal_mode_to_md(arg); 1295 if (r < 0) { 1296 rs->ti->error = "Invalid 'journal_mode' argument"; 1297 return r; 1298 } 1299 rs->journal_dev.mode = r; 1300 continue; 1301 } 1302 1303 /* 1304 * Parameters with number values from here on. 1305 */ 1306 if (kstrtoint(arg, 10, &value) < 0) { 1307 rs->ti->error = "Bad numerical argument given in raid params"; 1308 return -EINVAL; 1309 } 1310 1311 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) { 1312 /* 1313 * "rebuild" is being passed in by userspace to provide 1314 * indexes of replaced devices and to set up additional 1315 * devices on raid level takeover. 1316 */ 1317 if (!__within_range(value, 0, rs->raid_disks - 1)) { 1318 rs->ti->error = "Invalid rebuild index given"; 1319 return -EINVAL; 1320 } 1321 1322 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) { 1323 rs->ti->error = "rebuild for this index already given"; 1324 return -EINVAL; 1325 } 1326 1327 rd = rs->dev + value; 1328 clear_bit(In_sync, &rd->rdev.flags); 1329 clear_bit(Faulty, &rd->rdev.flags); 1330 rd->rdev.recovery_offset = 0; 1331 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags); 1332 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) { 1333 if (!rt_is_raid1(rt)) { 1334 rs->ti->error = "write_mostly option is only valid for RAID1"; 1335 return -EINVAL; 1336 } 1337 1338 if (!__within_range(value, 0, rs->md.raid_disks - 1)) { 1339 rs->ti->error = "Invalid write_mostly index given"; 1340 return -EINVAL; 1341 } 1342 1343 write_mostly++; 1344 set_bit(WriteMostly, &rs->dev[value].rdev.flags); 1345 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags); 1346 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) { 1347 if (!rt_is_raid1(rt)) { 1348 rs->ti->error = "max_write_behind option is only valid for RAID1"; 1349 return -EINVAL; 1350 } 1351 1352 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) { 1353 rs->ti->error = "Only one max_write_behind argument pair allowed"; 1354 return -EINVAL; 1355 } 1356 1357 /* 1358 * In device-mapper, we specify things in sectors, but 1359 * MD records this value in kB 1360 */ 1361 if (value < 0 || value / 2 > COUNTER_MAX) { 1362 rs->ti->error = "Max write-behind limit out of range"; 1363 return -EINVAL; 1364 } 1365 1366 rs->md.bitmap_info.max_write_behind = value / 2; 1367 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) { 1368 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) { 1369 rs->ti->error = "Only one daemon_sleep argument pair allowed"; 1370 return -EINVAL; 1371 } 1372 if (value < 0) { 1373 rs->ti->error = "daemon sleep period out of range"; 1374 return -EINVAL; 1375 } 1376 rs->md.bitmap_info.daemon_sleep = value; 1377 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) { 1378 /* Userspace passes new data_offset after having extended the data image LV */ 1379 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { 1380 rs->ti->error = "Only one data_offset argument pair allowed"; 1381 return -EINVAL; 1382 } 1383 /* Ensure sensible data offset */ 1384 if (value < 0 || 1385 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) { 1386 rs->ti->error = "Bogus data_offset value"; 1387 return -EINVAL; 1388 } 1389 rs->data_offset = value; 1390 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) { 1391 /* Define the +/-# of disks to add to/remove from the given raid set */ 1392 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { 1393 rs->ti->error = "Only one delta_disks argument pair allowed"; 1394 return -EINVAL; 1395 } 1396 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */ 1397 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) { 1398 rs->ti->error = "Too many delta_disk requested"; 1399 return -EINVAL; 1400 } 1401 1402 rs->delta_disks = value; 1403 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) { 1404 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) { 1405 rs->ti->error = "Only one stripe_cache argument pair allowed"; 1406 return -EINVAL; 1407 } 1408 1409 if (!rt_is_raid456(rt)) { 1410 rs->ti->error = "Inappropriate argument: stripe_cache"; 1411 return -EINVAL; 1412 } 1413 1414 if (value < 0) { 1415 rs->ti->error = "Bogus stripe cache entries value"; 1416 return -EINVAL; 1417 } 1418 rs->stripe_cache_entries = value; 1419 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) { 1420 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) { 1421 rs->ti->error = "Only one min_recovery_rate argument pair allowed"; 1422 return -EINVAL; 1423 } 1424 1425 if (value < 0) { 1426 rs->ti->error = "min_recovery_rate out of range"; 1427 return -EINVAL; 1428 } 1429 rs->md.sync_speed_min = value; 1430 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) { 1431 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) { 1432 rs->ti->error = "Only one max_recovery_rate argument pair allowed"; 1433 return -EINVAL; 1434 } 1435 1436 if (value < 0) { 1437 rs->ti->error = "max_recovery_rate out of range"; 1438 return -EINVAL; 1439 } 1440 rs->md.sync_speed_max = value; 1441 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) { 1442 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) { 1443 rs->ti->error = "Only one region_size argument pair allowed"; 1444 return -EINVAL; 1445 } 1446 1447 region_size = value; 1448 rs->requested_bitmap_chunk_sectors = value; 1449 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) { 1450 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) { 1451 rs->ti->error = "Only one raid10_copies argument pair allowed"; 1452 return -EINVAL; 1453 } 1454 1455 if (!__within_range(value, 2, rs->md.raid_disks)) { 1456 rs->ti->error = "Bad value for 'raid10_copies'"; 1457 return -EINVAL; 1458 } 1459 1460 raid10_copies = value; 1461 } else { 1462 DMERR("Unable to parse RAID parameter: %s", key); 1463 rs->ti->error = "Unable to parse RAID parameter"; 1464 return -EINVAL; 1465 } 1466 } 1467 1468 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) && 1469 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 1470 rs->ti->error = "sync and nosync are mutually exclusive"; 1471 return -EINVAL; 1472 } 1473 1474 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && 1475 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) || 1476 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) { 1477 rs->ti->error = "sync/nosync and rebuild are mutually exclusive"; 1478 return -EINVAL; 1479 } 1480 1481 if (write_mostly >= rs->md.raid_disks) { 1482 rs->ti->error = "Can't set all raid1 devices to write_mostly"; 1483 return -EINVAL; 1484 } 1485 1486 if (rs->md.sync_speed_max && 1487 rs->md.sync_speed_min > rs->md.sync_speed_max) { 1488 rs->ti->error = "Bogus recovery rates"; 1489 return -EINVAL; 1490 } 1491 1492 if (validate_region_size(rs, region_size)) 1493 return -EINVAL; 1494 1495 if (rs->md.chunk_sectors) 1496 max_io_len = rs->md.chunk_sectors; 1497 else 1498 max_io_len = region_size; 1499 1500 if (dm_set_target_max_io_len(rs->ti, max_io_len)) 1501 return -EINVAL; 1502 1503 if (rt_is_raid10(rt)) { 1504 if (raid10_copies > rs->md.raid_disks) { 1505 rs->ti->error = "Not enough devices to satisfy specification"; 1506 return -EINVAL; 1507 } 1508 1509 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies); 1510 if (rs->md.new_layout < 0) { 1511 rs->ti->error = "Error getting raid10 format"; 1512 return rs->md.new_layout; 1513 } 1514 1515 rt = get_raid_type_by_ll(10, rs->md.new_layout); 1516 if (!rt) { 1517 rs->ti->error = "Failed to recognize new raid10 layout"; 1518 return -EINVAL; 1519 } 1520 1521 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT || 1522 rt->algorithm == ALGORITHM_RAID10_NEAR) && 1523 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { 1524 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible"; 1525 return -EINVAL; 1526 } 1527 } 1528 1529 rs->raid10_copies = raid10_copies; 1530 1531 /* Assume there are no metadata devices until the drives are parsed */ 1532 rs->md.persistent = 0; 1533 rs->md.external = 1; 1534 1535 /* Check, if any invalid ctr arguments have been passed in for the raid level */ 1536 return rs_check_for_valid_flags(rs); 1537 } 1538 1539 /* Set raid4/5/6 cache size */ 1540 static int rs_set_raid456_stripe_cache(struct raid_set *rs) 1541 { 1542 int r; 1543 struct r5conf *conf; 1544 struct mddev *mddev = &rs->md; 1545 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2; 1546 uint32_t nr_stripes = rs->stripe_cache_entries; 1547 1548 if (!rt_is_raid456(rs->raid_type)) { 1549 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size"; 1550 return -EINVAL; 1551 } 1552 1553 if (nr_stripes < min_stripes) { 1554 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size", 1555 nr_stripes, min_stripes); 1556 nr_stripes = min_stripes; 1557 } 1558 1559 conf = mddev->private; 1560 if (!conf) { 1561 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set"; 1562 return -EINVAL; 1563 } 1564 1565 /* Try setting number of stripes in raid456 stripe cache */ 1566 if (conf->min_nr_stripes != nr_stripes) { 1567 r = raid5_set_cache_size(mddev, nr_stripes); 1568 if (r) { 1569 rs->ti->error = "Failed to set raid4/5/6 stripe cache size"; 1570 return r; 1571 } 1572 1573 DMINFO("%u stripe cache entries", nr_stripes); 1574 } 1575 1576 return 0; 1577 } 1578 1579 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */ 1580 static unsigned int mddev_data_stripes(struct raid_set *rs) 1581 { 1582 return rs->md.raid_disks - rs->raid_type->parity_devs; 1583 } 1584 1585 /* Return # of data stripes of @rs (i.e. as of ctr) */ 1586 static unsigned int rs_data_stripes(struct raid_set *rs) 1587 { 1588 return rs->raid_disks - rs->raid_type->parity_devs; 1589 } 1590 1591 /* 1592 * Retrieve rdev->sectors from any valid raid device of @rs 1593 * to allow userpace to pass in arbitray "- -" device tupples. 1594 */ 1595 static sector_t __rdev_sectors(struct raid_set *rs) 1596 { 1597 int i; 1598 1599 for (i = 0; i < rs->raid_disks; i++) { 1600 struct md_rdev *rdev = &rs->dev[i].rdev; 1601 1602 if (!test_bit(Journal, &rdev->flags) && 1603 rdev->bdev && rdev->sectors) 1604 return rdev->sectors; 1605 } 1606 1607 return 0; 1608 } 1609 1610 /* Check that calculated dev_sectors fits all component devices. */ 1611 static int _check_data_dev_sectors(struct raid_set *rs) 1612 { 1613 sector_t ds = ~0; 1614 struct md_rdev *rdev; 1615 1616 rdev_for_each(rdev, &rs->md) 1617 if (!test_bit(Journal, &rdev->flags) && rdev->bdev) { 1618 ds = min(ds, bdev_nr_sectors(rdev->bdev)); 1619 if (ds < rs->md.dev_sectors) { 1620 rs->ti->error = "Component device(s) too small"; 1621 return -EINVAL; 1622 } 1623 } 1624 1625 return 0; 1626 } 1627 1628 /* Calculate the sectors per device and per array used for @rs */ 1629 static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev) 1630 { 1631 int delta_disks; 1632 unsigned int data_stripes; 1633 sector_t array_sectors = sectors, dev_sectors = sectors; 1634 struct mddev *mddev = &rs->md; 1635 1636 if (use_mddev) { 1637 delta_disks = mddev->delta_disks; 1638 data_stripes = mddev_data_stripes(rs); 1639 } else { 1640 delta_disks = rs->delta_disks; 1641 data_stripes = rs_data_stripes(rs); 1642 } 1643 1644 /* Special raid1 case w/o delta_disks support (yet) */ 1645 if (rt_is_raid1(rs->raid_type)) 1646 ; 1647 else if (rt_is_raid10(rs->raid_type)) { 1648 if (rs->raid10_copies < 2 || 1649 delta_disks < 0) { 1650 rs->ti->error = "Bogus raid10 data copies or delta disks"; 1651 return -EINVAL; 1652 } 1653 1654 dev_sectors *= rs->raid10_copies; 1655 if (sector_div(dev_sectors, data_stripes)) 1656 goto bad; 1657 1658 array_sectors = (data_stripes + delta_disks) * dev_sectors; 1659 if (sector_div(array_sectors, rs->raid10_copies)) 1660 goto bad; 1661 1662 } else if (sector_div(dev_sectors, data_stripes)) 1663 goto bad; 1664 1665 else 1666 /* Striped layouts */ 1667 array_sectors = (data_stripes + delta_disks) * dev_sectors; 1668 1669 mddev->array_sectors = array_sectors; 1670 mddev->dev_sectors = dev_sectors; 1671 rs_set_rdev_sectors(rs); 1672 1673 return _check_data_dev_sectors(rs); 1674 bad: 1675 rs->ti->error = "Target length not divisible by number of data devices"; 1676 return -EINVAL; 1677 } 1678 1679 /* Setup recovery on @rs */ 1680 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors) 1681 { 1682 /* raid0 does not recover */ 1683 if (rs_is_raid0(rs)) 1684 rs->md.recovery_cp = MaxSector; 1685 /* 1686 * A raid6 set has to be recovered either 1687 * completely or for the grown part to 1688 * ensure proper parity and Q-Syndrome 1689 */ 1690 else if (rs_is_raid6(rs)) 1691 rs->md.recovery_cp = dev_sectors; 1692 /* 1693 * Other raid set types may skip recovery 1694 * depending on the 'nosync' flag. 1695 */ 1696 else 1697 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags) 1698 ? MaxSector : dev_sectors; 1699 } 1700 1701 static void do_table_event(struct work_struct *ws) 1702 { 1703 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work); 1704 1705 smp_rmb(); /* Make sure we access most actual mddev properties */ 1706 if (!rs_is_reshaping(rs)) { 1707 if (rs_is_raid10(rs)) 1708 rs_set_rdev_sectors(rs); 1709 rs_set_capacity(rs); 1710 } 1711 dm_table_event(rs->ti->table); 1712 } 1713 1714 /* 1715 * Make sure a valid takover (level switch) is being requested on @rs 1716 * 1717 * Conversions of raid sets from one MD personality to another 1718 * have to conform to restrictions which are enforced here. 1719 */ 1720 static int rs_check_takeover(struct raid_set *rs) 1721 { 1722 struct mddev *mddev = &rs->md; 1723 unsigned int near_copies; 1724 1725 if (rs->md.degraded) { 1726 rs->ti->error = "Can't takeover degraded raid set"; 1727 return -EPERM; 1728 } 1729 1730 if (rs_is_reshaping(rs)) { 1731 rs->ti->error = "Can't takeover reshaping raid set"; 1732 return -EPERM; 1733 } 1734 1735 switch (mddev->level) { 1736 case 0: 1737 /* raid0 -> raid1/5 with one disk */ 1738 if ((mddev->new_level == 1 || mddev->new_level == 5) && 1739 mddev->raid_disks == 1) 1740 return 0; 1741 1742 /* raid0 -> raid10 */ 1743 if (mddev->new_level == 10 && 1744 !(rs->raid_disks % mddev->raid_disks)) 1745 return 0; 1746 1747 /* raid0 with multiple disks -> raid4/5/6 */ 1748 if (__within_range(mddev->new_level, 4, 6) && 1749 mddev->new_layout == ALGORITHM_PARITY_N && 1750 mddev->raid_disks > 1) 1751 return 0; 1752 1753 break; 1754 1755 case 10: 1756 /* Can't takeover raid10_offset! */ 1757 if (__is_raid10_offset(mddev->layout)) 1758 break; 1759 1760 near_copies = __raid10_near_copies(mddev->layout); 1761 1762 /* raid10* -> raid0 */ 1763 if (mddev->new_level == 0) { 1764 /* Can takeover raid10_near with raid disks divisable by data copies! */ 1765 if (near_copies > 1 && 1766 !(mddev->raid_disks % near_copies)) { 1767 mddev->raid_disks /= near_copies; 1768 mddev->delta_disks = mddev->raid_disks; 1769 return 0; 1770 } 1771 1772 /* Can takeover raid10_far */ 1773 if (near_copies == 1 && 1774 __raid10_far_copies(mddev->layout) > 1) 1775 return 0; 1776 1777 break; 1778 } 1779 1780 /* raid10_{near,far} -> raid1 */ 1781 if (mddev->new_level == 1 && 1782 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks) 1783 return 0; 1784 1785 /* raid10_{near,far} with 2 disks -> raid4/5 */ 1786 if (__within_range(mddev->new_level, 4, 5) && 1787 mddev->raid_disks == 2) 1788 return 0; 1789 break; 1790 1791 case 1: 1792 /* raid1 with 2 disks -> raid4/5 */ 1793 if (__within_range(mddev->new_level, 4, 5) && 1794 mddev->raid_disks == 2) { 1795 mddev->degraded = 1; 1796 return 0; 1797 } 1798 1799 /* raid1 -> raid0 */ 1800 if (mddev->new_level == 0 && 1801 mddev->raid_disks == 1) 1802 return 0; 1803 1804 /* raid1 -> raid10 */ 1805 if (mddev->new_level == 10) 1806 return 0; 1807 break; 1808 1809 case 4: 1810 /* raid4 -> raid0 */ 1811 if (mddev->new_level == 0) 1812 return 0; 1813 1814 /* raid4 -> raid1/5 with 2 disks */ 1815 if ((mddev->new_level == 1 || mddev->new_level == 5) && 1816 mddev->raid_disks == 2) 1817 return 0; 1818 1819 /* raid4 -> raid5/6 with parity N */ 1820 if (__within_range(mddev->new_level, 5, 6) && 1821 mddev->layout == ALGORITHM_PARITY_N) 1822 return 0; 1823 break; 1824 1825 case 5: 1826 /* raid5 with parity N -> raid0 */ 1827 if (mddev->new_level == 0 && 1828 mddev->layout == ALGORITHM_PARITY_N) 1829 return 0; 1830 1831 /* raid5 with parity N -> raid4 */ 1832 if (mddev->new_level == 4 && 1833 mddev->layout == ALGORITHM_PARITY_N) 1834 return 0; 1835 1836 /* raid5 with 2 disks -> raid1/4/10 */ 1837 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) && 1838 mddev->raid_disks == 2) 1839 return 0; 1840 1841 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */ 1842 if (mddev->new_level == 6 && 1843 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || 1844 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6))) 1845 return 0; 1846 break; 1847 1848 case 6: 1849 /* raid6 with parity N -> raid0 */ 1850 if (mddev->new_level == 0 && 1851 mddev->layout == ALGORITHM_PARITY_N) 1852 return 0; 1853 1854 /* raid6 with parity N -> raid4 */ 1855 if (mddev->new_level == 4 && 1856 mddev->layout == ALGORITHM_PARITY_N) 1857 return 0; 1858 1859 /* raid6_*_n with Q-Syndrome N -> raid5_* */ 1860 if (mddev->new_level == 5 && 1861 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || 1862 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC))) 1863 return 0; 1864 break; 1865 1866 default: 1867 break; 1868 } 1869 1870 rs->ti->error = "takeover not possible"; 1871 return -EINVAL; 1872 } 1873 1874 /* True if @rs requested to be taken over */ 1875 static bool rs_takeover_requested(struct raid_set *rs) 1876 { 1877 return rs->md.new_level != rs->md.level; 1878 } 1879 1880 /* True if layout is set to reshape. */ 1881 static bool rs_is_layout_change(struct raid_set *rs, bool use_mddev) 1882 { 1883 return (use_mddev ? rs->md.delta_disks : rs->delta_disks) || 1884 rs->md.new_layout != rs->md.layout || 1885 rs->md.new_chunk_sectors != rs->md.chunk_sectors; 1886 } 1887 1888 /* True if @rs is requested to reshape by ctr */ 1889 static bool rs_reshape_requested(struct raid_set *rs) 1890 { 1891 bool change; 1892 struct mddev *mddev = &rs->md; 1893 1894 if (rs_takeover_requested(rs)) 1895 return false; 1896 1897 if (rs_is_raid0(rs)) 1898 return false; 1899 1900 change = rs_is_layout_change(rs, false); 1901 1902 /* Historical case to support raid1 reshape without delta disks */ 1903 if (rs_is_raid1(rs)) { 1904 if (rs->delta_disks) 1905 return !!rs->delta_disks; 1906 1907 return !change && 1908 mddev->raid_disks != rs->raid_disks; 1909 } 1910 1911 if (rs_is_raid10(rs)) 1912 return change && 1913 !__is_raid10_far(mddev->new_layout) && 1914 rs->delta_disks >= 0; 1915 1916 return change; 1917 } 1918 1919 /* Features */ 1920 #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */ 1921 1922 /* State flags for sb->flags */ 1923 #define SB_FLAG_RESHAPE_ACTIVE 0x1 1924 #define SB_FLAG_RESHAPE_BACKWARDS 0x2 1925 1926 /* 1927 * This structure is never routinely used by userspace, unlike md superblocks. 1928 * Devices with this superblock should only ever be accessed via device-mapper. 1929 */ 1930 #define DM_RAID_MAGIC 0x64526D44 1931 struct dm_raid_superblock { 1932 __le32 magic; /* "DmRd" */ 1933 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */ 1934 1935 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */ 1936 __le32 array_position; /* The position of this drive in the raid set */ 1937 1938 __le64 events; /* Incremented by md when superblock updated */ 1939 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */ 1940 /* indicate failures (see extension below) */ 1941 1942 /* 1943 * This offset tracks the progress of the repair or replacement of 1944 * an individual drive. 1945 */ 1946 __le64 disk_recovery_offset; 1947 1948 /* 1949 * This offset tracks the progress of the initial raid set 1950 * synchronisation/parity calculation. 1951 */ 1952 __le64 array_resync_offset; 1953 1954 /* 1955 * raid characteristics 1956 */ 1957 __le32 level; 1958 __le32 layout; 1959 __le32 stripe_sectors; 1960 1961 /******************************************************************** 1962 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! 1963 * 1964 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist 1965 */ 1966 1967 __le32 flags; /* Flags defining array states for reshaping */ 1968 1969 /* 1970 * This offset tracks the progress of a raid 1971 * set reshape in order to be able to restart it 1972 */ 1973 __le64 reshape_position; 1974 1975 /* 1976 * These define the properties of the array in case of an interrupted reshape 1977 */ 1978 __le32 new_level; 1979 __le32 new_layout; 1980 __le32 new_stripe_sectors; 1981 __le32 delta_disks; 1982 1983 __le64 array_sectors; /* Array size in sectors */ 1984 1985 /* 1986 * Sector offsets to data on devices (reshaping). 1987 * Needed to support out of place reshaping, thus 1988 * not writing over any stripes whilst converting 1989 * them from old to new layout 1990 */ 1991 __le64 data_offset; 1992 __le64 new_data_offset; 1993 1994 __le64 sectors; /* Used device size in sectors */ 1995 1996 /* 1997 * Additional Bit field of devices indicating failures to support 1998 * up to 256 devices with the 1.9.0 on-disk metadata format 1999 */ 2000 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1]; 2001 2002 __le32 incompat_features; /* Used to indicate any incompatible features */ 2003 2004 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */ 2005 } __packed; 2006 2007 /* 2008 * Check for reshape constraints on raid set @rs: 2009 * 2010 * - reshape function non-existent 2011 * - degraded set 2012 * - ongoing recovery 2013 * - ongoing reshape 2014 * 2015 * Returns 0 if none or -EPERM if given constraint 2016 * and error message reference in @errmsg 2017 */ 2018 static int rs_check_reshape(struct raid_set *rs) 2019 { 2020 struct mddev *mddev = &rs->md; 2021 2022 if (!mddev->pers || !mddev->pers->check_reshape) 2023 rs->ti->error = "Reshape not supported"; 2024 else if (mddev->degraded) 2025 rs->ti->error = "Can't reshape degraded raid set"; 2026 else if (rs_is_recovering(rs)) 2027 rs->ti->error = "Convert request on recovering raid set prohibited"; 2028 else if (rs_is_reshaping(rs)) 2029 rs->ti->error = "raid set already reshaping!"; 2030 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs))) 2031 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10"; 2032 else 2033 return 0; 2034 2035 return -EPERM; 2036 } 2037 2038 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload) 2039 { 2040 BUG_ON(!rdev->sb_page); 2041 2042 if (rdev->sb_loaded && !force_reload) 2043 return 0; 2044 2045 rdev->sb_loaded = 0; 2046 2047 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) { 2048 DMERR("Failed to read superblock of device at position %d", 2049 rdev->raid_disk); 2050 md_error(rdev->mddev, rdev); 2051 set_bit(Faulty, &rdev->flags); 2052 return -EIO; 2053 } 2054 2055 rdev->sb_loaded = 1; 2056 2057 return 0; 2058 } 2059 2060 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) 2061 { 2062 failed_devices[0] = le64_to_cpu(sb->failed_devices); 2063 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices)); 2064 2065 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { 2066 int i = ARRAY_SIZE(sb->extended_failed_devices); 2067 2068 while (i--) 2069 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]); 2070 } 2071 } 2072 2073 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) 2074 { 2075 int i = ARRAY_SIZE(sb->extended_failed_devices); 2076 2077 sb->failed_devices = cpu_to_le64(failed_devices[0]); 2078 while (i--) 2079 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]); 2080 } 2081 2082 /* 2083 * Synchronize the superblock members with the raid set properties 2084 * 2085 * All superblock data is little endian. 2086 */ 2087 static void super_sync(struct mddev *mddev, struct md_rdev *rdev) 2088 { 2089 bool update_failed_devices = false; 2090 unsigned int i; 2091 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 2092 struct dm_raid_superblock *sb; 2093 struct raid_set *rs = container_of(mddev, struct raid_set, md); 2094 2095 /* No metadata device, no superblock */ 2096 if (!rdev->meta_bdev) 2097 return; 2098 2099 BUG_ON(!rdev->sb_page); 2100 2101 sb = page_address(rdev->sb_page); 2102 2103 sb_retrieve_failed_devices(sb, failed_devices); 2104 2105 for (i = 0; i < rs->raid_disks; i++) 2106 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) { 2107 update_failed_devices = true; 2108 set_bit(i, (void *) failed_devices); 2109 } 2110 2111 if (update_failed_devices) 2112 sb_update_failed_devices(sb, failed_devices); 2113 2114 sb->magic = cpu_to_le32(DM_RAID_MAGIC); 2115 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); 2116 2117 sb->num_devices = cpu_to_le32(mddev->raid_disks); 2118 sb->array_position = cpu_to_le32(rdev->raid_disk); 2119 2120 sb->events = cpu_to_le64(mddev->events); 2121 2122 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset); 2123 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp); 2124 2125 sb->level = cpu_to_le32(mddev->level); 2126 sb->layout = cpu_to_le32(mddev->layout); 2127 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors); 2128 2129 /******************************************************************** 2130 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! 2131 * 2132 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist 2133 */ 2134 sb->new_level = cpu_to_le32(mddev->new_level); 2135 sb->new_layout = cpu_to_le32(mddev->new_layout); 2136 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors); 2137 2138 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2139 2140 smp_rmb(); /* Make sure we access most recent reshape position */ 2141 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2142 if (le64_to_cpu(sb->reshape_position) != MaxSector) { 2143 /* Flag ongoing reshape */ 2144 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE); 2145 2146 if (mddev->delta_disks < 0 || mddev->reshape_backwards) 2147 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS); 2148 } else { 2149 /* Clear reshape flags */ 2150 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS)); 2151 } 2152 2153 sb->array_sectors = cpu_to_le64(mddev->array_sectors); 2154 sb->data_offset = cpu_to_le64(rdev->data_offset); 2155 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset); 2156 sb->sectors = cpu_to_le64(rdev->sectors); 2157 sb->incompat_features = cpu_to_le32(0); 2158 2159 /* Zero out the rest of the payload after the size of the superblock */ 2160 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb)); 2161 } 2162 2163 /* 2164 * super_load 2165 * 2166 * This function creates a superblock if one is not found on the device 2167 * and will decide which superblock to use if there's a choice. 2168 * 2169 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise 2170 */ 2171 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev) 2172 { 2173 int r; 2174 struct dm_raid_superblock *sb; 2175 struct dm_raid_superblock *refsb; 2176 uint64_t events_sb, events_refsb; 2177 2178 r = read_disk_sb(rdev, rdev->sb_size, false); 2179 if (r) 2180 return r; 2181 2182 sb = page_address(rdev->sb_page); 2183 2184 /* 2185 * Two cases that we want to write new superblocks and rebuild: 2186 * 1) New device (no matching magic number) 2187 * 2) Device specified for rebuild (!In_sync w/ offset == 0) 2188 */ 2189 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) || 2190 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) { 2191 super_sync(rdev->mddev, rdev); 2192 2193 set_bit(FirstUse, &rdev->flags); 2194 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); 2195 2196 /* Force writing of superblocks to disk */ 2197 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags); 2198 2199 /* Any superblock is better than none, choose that if given */ 2200 return refdev ? 0 : 1; 2201 } 2202 2203 if (!refdev) 2204 return 1; 2205 2206 events_sb = le64_to_cpu(sb->events); 2207 2208 refsb = page_address(refdev->sb_page); 2209 events_refsb = le64_to_cpu(refsb->events); 2210 2211 return (events_sb > events_refsb) ? 1 : 0; 2212 } 2213 2214 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev) 2215 { 2216 int role; 2217 struct mddev *mddev = &rs->md; 2218 uint64_t events_sb; 2219 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 2220 struct dm_raid_superblock *sb; 2221 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0; 2222 struct md_rdev *r; 2223 struct dm_raid_superblock *sb2; 2224 2225 sb = page_address(rdev->sb_page); 2226 events_sb = le64_to_cpu(sb->events); 2227 2228 /* 2229 * Initialise to 1 if this is a new superblock. 2230 */ 2231 mddev->events = events_sb ? : 1; 2232 2233 mddev->reshape_position = MaxSector; 2234 2235 mddev->raid_disks = le32_to_cpu(sb->num_devices); 2236 mddev->level = le32_to_cpu(sb->level); 2237 mddev->layout = le32_to_cpu(sb->layout); 2238 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors); 2239 2240 /* 2241 * Reshaping is supported, e.g. reshape_position is valid 2242 * in superblock and superblock content is authoritative. 2243 */ 2244 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { 2245 /* Superblock is authoritative wrt given raid set layout! */ 2246 mddev->new_level = le32_to_cpu(sb->new_level); 2247 mddev->new_layout = le32_to_cpu(sb->new_layout); 2248 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors); 2249 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 2250 mddev->array_sectors = le64_to_cpu(sb->array_sectors); 2251 2252 /* raid was reshaping and got interrupted */ 2253 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) { 2254 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { 2255 DMERR("Reshape requested but raid set is still reshaping"); 2256 return -EINVAL; 2257 } 2258 2259 if (mddev->delta_disks < 0 || 2260 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS))) 2261 mddev->reshape_backwards = 1; 2262 else 2263 mddev->reshape_backwards = 0; 2264 2265 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 2266 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout); 2267 } 2268 2269 } else { 2270 /* 2271 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata 2272 */ 2273 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout); 2274 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 2275 2276 if (rs_takeover_requested(rs)) { 2277 if (rt_cur && rt_new) 2278 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)", 2279 rt_cur->name, rt_new->name); 2280 else 2281 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)"); 2282 return -EINVAL; 2283 } else if (rs_reshape_requested(rs)) { 2284 DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)"); 2285 if (mddev->layout != mddev->new_layout) { 2286 if (rt_cur && rt_new) 2287 DMERR(" current layout %s vs new layout %s", 2288 rt_cur->name, rt_new->name); 2289 else 2290 DMERR(" current layout 0x%X vs new layout 0x%X", 2291 le32_to_cpu(sb->layout), mddev->new_layout); 2292 } 2293 if (mddev->chunk_sectors != mddev->new_chunk_sectors) 2294 DMERR(" current stripe sectors %u vs new stripe sectors %u", 2295 mddev->chunk_sectors, mddev->new_chunk_sectors); 2296 if (rs->delta_disks) 2297 DMERR(" current %u disks vs new %u disks", 2298 mddev->raid_disks, mddev->raid_disks + rs->delta_disks); 2299 if (rs_is_raid10(rs)) { 2300 DMERR(" Old layout: %s w/ %u copies", 2301 raid10_md_layout_to_format(mddev->layout), 2302 raid10_md_layout_to_copies(mddev->layout)); 2303 DMERR(" New layout: %s w/ %u copies", 2304 raid10_md_layout_to_format(mddev->new_layout), 2305 raid10_md_layout_to_copies(mddev->new_layout)); 2306 } 2307 return -EINVAL; 2308 } 2309 2310 DMINFO("Discovered old metadata format; upgrading to extended metadata format"); 2311 } 2312 2313 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) 2314 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset); 2315 2316 /* 2317 * During load, we set FirstUse if a new superblock was written. 2318 * There are two reasons we might not have a superblock: 2319 * 1) The raid set is brand new - in which case, all of the 2320 * devices must have their In_sync bit set. Also, 2321 * recovery_cp must be 0, unless forced. 2322 * 2) This is a new device being added to an old raid set 2323 * and the new device needs to be rebuilt - in which 2324 * case the In_sync bit will /not/ be set and 2325 * recovery_cp must be MaxSector. 2326 * 3) This is/are a new device(s) being added to an old 2327 * raid set during takeover to a higher raid level 2328 * to provide capacity for redundancy or during reshape 2329 * to add capacity to grow the raid set. 2330 */ 2331 rdev_for_each(r, mddev) { 2332 if (test_bit(Journal, &rdev->flags)) 2333 continue; 2334 2335 if (test_bit(FirstUse, &r->flags)) 2336 new_devs++; 2337 2338 if (!test_bit(In_sync, &r->flags)) { 2339 DMINFO("Device %d specified for rebuild; clearing superblock", 2340 r->raid_disk); 2341 rebuilds++; 2342 2343 if (test_bit(FirstUse, &r->flags)) 2344 rebuild_and_new++; 2345 } 2346 } 2347 2348 if (new_devs == rs->raid_disks || !rebuilds) { 2349 /* Replace a broken device */ 2350 if (new_devs == rs->raid_disks) { 2351 DMINFO("Superblocks created for new raid set"); 2352 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2353 } else if (new_devs != rebuilds && 2354 new_devs != rs->delta_disks) { 2355 DMERR("New device injected into existing raid set without " 2356 "'delta_disks' or 'rebuild' parameter specified"); 2357 return -EINVAL; 2358 } 2359 } else if (new_devs && new_devs != rebuilds) { 2360 DMERR("%u 'rebuild' devices cannot be injected into" 2361 " a raid set with %u other first-time devices", 2362 rebuilds, new_devs); 2363 return -EINVAL; 2364 } else if (rebuilds) { 2365 if (rebuild_and_new && rebuilds != rebuild_and_new) { 2366 DMERR("new device%s provided without 'rebuild'", 2367 new_devs > 1 ? "s" : ""); 2368 return -EINVAL; 2369 } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) { 2370 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)", 2371 (unsigned long long) mddev->recovery_cp); 2372 return -EINVAL; 2373 } else if (rs_is_reshaping(rs)) { 2374 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)", 2375 (unsigned long long) mddev->reshape_position); 2376 return -EINVAL; 2377 } 2378 } 2379 2380 /* 2381 * Now we set the Faulty bit for those devices that are 2382 * recorded in the superblock as failed. 2383 */ 2384 sb_retrieve_failed_devices(sb, failed_devices); 2385 rdev_for_each(r, mddev) { 2386 if (test_bit(Journal, &rdev->flags) || 2387 !r->sb_page) 2388 continue; 2389 sb2 = page_address(r->sb_page); 2390 sb2->failed_devices = 0; 2391 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices)); 2392 2393 /* 2394 * Check for any device re-ordering. 2395 */ 2396 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) { 2397 role = le32_to_cpu(sb2->array_position); 2398 if (role < 0) 2399 continue; 2400 2401 if (role != r->raid_disk) { 2402 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) { 2403 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) || 2404 rs->raid_disks % rs->raid10_copies) { 2405 rs->ti->error = 2406 "Cannot change raid10 near set to odd # of devices!"; 2407 return -EINVAL; 2408 } 2409 2410 sb2->array_position = cpu_to_le32(r->raid_disk); 2411 2412 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) && 2413 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) && 2414 !rt_is_raid1(rs->raid_type)) { 2415 rs->ti->error = "Cannot change device positions in raid set"; 2416 return -EINVAL; 2417 } 2418 2419 DMINFO("raid device #%d now at position #%d", role, r->raid_disk); 2420 } 2421 2422 /* 2423 * Partial recovery is performed on 2424 * returning failed devices. 2425 */ 2426 if (test_bit(role, (void *) failed_devices)) 2427 set_bit(Faulty, &r->flags); 2428 } 2429 } 2430 2431 return 0; 2432 } 2433 2434 static int super_validate(struct raid_set *rs, struct md_rdev *rdev) 2435 { 2436 struct mddev *mddev = &rs->md; 2437 struct dm_raid_superblock *sb; 2438 2439 if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0) 2440 return 0; 2441 2442 sb = page_address(rdev->sb_page); 2443 2444 /* 2445 * If mddev->events is not set, we know we have not yet initialized 2446 * the array. 2447 */ 2448 if (!mddev->events && super_init_validation(rs, rdev)) 2449 return -EINVAL; 2450 2451 if (le32_to_cpu(sb->compat_features) && 2452 le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) { 2453 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags"; 2454 return -EINVAL; 2455 } 2456 2457 if (sb->incompat_features) { 2458 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet"; 2459 return -EINVAL; 2460 } 2461 2462 /* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */ 2463 mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096); 2464 mddev->bitmap_info.default_offset = mddev->bitmap_info.offset; 2465 2466 if (!test_and_clear_bit(FirstUse, &rdev->flags)) { 2467 /* 2468 * Retrieve rdev size stored in superblock to be prepared for shrink. 2469 * Check extended superblock members are present otherwise the size 2470 * will not be set! 2471 */ 2472 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) 2473 rdev->sectors = le64_to_cpu(sb->sectors); 2474 2475 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset); 2476 if (rdev->recovery_offset == MaxSector) 2477 set_bit(In_sync, &rdev->flags); 2478 /* 2479 * If no reshape in progress -> we're recovering single 2480 * disk(s) and have to set the device(s) to out-of-sync 2481 */ 2482 else if (!rs_is_reshaping(rs)) 2483 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */ 2484 } 2485 2486 /* 2487 * If a device comes back, set it as not In_sync and no longer faulty. 2488 */ 2489 if (test_and_clear_bit(Faulty, &rdev->flags)) { 2490 rdev->recovery_offset = 0; 2491 clear_bit(In_sync, &rdev->flags); 2492 rdev->saved_raid_disk = rdev->raid_disk; 2493 } 2494 2495 /* Reshape support -> restore repective data offsets */ 2496 rdev->data_offset = le64_to_cpu(sb->data_offset); 2497 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset); 2498 2499 return 0; 2500 } 2501 2502 /* 2503 * Analyse superblocks and select the freshest. 2504 */ 2505 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs) 2506 { 2507 int r; 2508 struct md_rdev *rdev, *freshest; 2509 struct mddev *mddev = &rs->md; 2510 2511 freshest = NULL; 2512 rdev_for_each(rdev, mddev) { 2513 if (test_bit(Journal, &rdev->flags)) 2514 continue; 2515 2516 if (!rdev->meta_bdev) 2517 continue; 2518 2519 /* Set superblock offset/size for metadata device. */ 2520 rdev->sb_start = 0; 2521 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev); 2522 if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) { 2523 DMERR("superblock size of a logical block is no longer valid"); 2524 return -EINVAL; 2525 } 2526 2527 /* 2528 * Skipping super_load due to CTR_FLAG_SYNC will cause 2529 * the array to undergo initialization again as 2530 * though it were new. This is the intended effect 2531 * of the "sync" directive. 2532 * 2533 * With reshaping capability added, we must ensure that 2534 * the "sync" directive is disallowed during the reshape. 2535 */ 2536 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 2537 continue; 2538 2539 r = super_load(rdev, freshest); 2540 2541 switch (r) { 2542 case 1: 2543 freshest = rdev; 2544 break; 2545 case 0: 2546 break; 2547 default: 2548 /* This is a failure to read the superblock from the metadata device. */ 2549 /* 2550 * We have to keep any raid0 data/metadata device pairs or 2551 * the MD raid0 personality will fail to start the array. 2552 */ 2553 if (rs_is_raid0(rs)) 2554 continue; 2555 2556 /* 2557 * We keep the dm_devs to be able to emit the device tuple 2558 * properly on the table line in raid_status() (rather than 2559 * mistakenly acting as if '- -' got passed into the constructor). 2560 * 2561 * The rdev has to stay on the same_set list to allow for 2562 * the attempt to restore faulty devices on second resume. 2563 */ 2564 rdev->raid_disk = rdev->saved_raid_disk = -1; 2565 break; 2566 } 2567 } 2568 2569 if (!freshest) 2570 return 0; 2571 2572 /* 2573 * Validation of the freshest device provides the source of 2574 * validation for the remaining devices. 2575 */ 2576 rs->ti->error = "Unable to assemble array: Invalid superblocks"; 2577 if (super_validate(rs, freshest)) 2578 return -EINVAL; 2579 2580 if (validate_raid_redundancy(rs)) { 2581 rs->ti->error = "Insufficient redundancy to activate array"; 2582 return -EINVAL; 2583 } 2584 2585 rdev_for_each(rdev, mddev) 2586 if (!test_bit(Journal, &rdev->flags) && 2587 rdev != freshest && 2588 super_validate(rs, rdev)) 2589 return -EINVAL; 2590 return 0; 2591 } 2592 2593 /* 2594 * Adjust data_offset and new_data_offset on all disk members of @rs 2595 * for out of place reshaping if requested by constructor 2596 * 2597 * We need free space at the beginning of each raid disk for forward 2598 * and at the end for backward reshapes which userspace has to provide 2599 * via remapping/reordering of space. 2600 */ 2601 static int rs_adjust_data_offsets(struct raid_set *rs) 2602 { 2603 sector_t data_offset = 0, new_data_offset = 0; 2604 struct md_rdev *rdev; 2605 2606 /* Constructor did not request data offset change */ 2607 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { 2608 if (!rs_is_reshapable(rs)) 2609 goto out; 2610 2611 return 0; 2612 } 2613 2614 /* HM FIXME: get In_Sync raid_dev? */ 2615 rdev = &rs->dev[0].rdev; 2616 2617 if (rs->delta_disks < 0) { 2618 /* 2619 * Removing disks (reshaping backwards): 2620 * 2621 * - before reshape: data is at offset 0 and free space 2622 * is at end of each component LV 2623 * 2624 * - after reshape: data is at offset rs->data_offset != 0 on each component LV 2625 */ 2626 data_offset = 0; 2627 new_data_offset = rs->data_offset; 2628 2629 } else if (rs->delta_disks > 0) { 2630 /* 2631 * Adding disks (reshaping forwards): 2632 * 2633 * - before reshape: data is at offset rs->data_offset != 0 and 2634 * free space is at begin of each component LV 2635 * 2636 * - after reshape: data is at offset 0 on each component LV 2637 */ 2638 data_offset = rs->data_offset; 2639 new_data_offset = 0; 2640 2641 } else { 2642 /* 2643 * User space passes in 0 for data offset after having removed reshape space 2644 * 2645 * - or - (data offset != 0) 2646 * 2647 * Changing RAID layout or chunk size -> toggle offsets 2648 * 2649 * - before reshape: data is at offset rs->data_offset 0 and 2650 * free space is at end of each component LV 2651 * -or- 2652 * data is at offset rs->data_offset != 0 and 2653 * free space is at begin of each component LV 2654 * 2655 * - after reshape: data is at offset 0 if it was at offset != 0 2656 * or at offset != 0 if it was at offset 0 2657 * on each component LV 2658 * 2659 */ 2660 data_offset = rs->data_offset ? rdev->data_offset : 0; 2661 new_data_offset = data_offset ? 0 : rs->data_offset; 2662 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2663 } 2664 2665 /* 2666 * Make sure we got a minimum amount of free sectors per device 2667 */ 2668 if (rs->data_offset && 2669 bdev_nr_sectors(rdev->bdev) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) { 2670 rs->ti->error = data_offset ? "No space for forward reshape" : 2671 "No space for backward reshape"; 2672 return -ENOSPC; 2673 } 2674 out: 2675 /* 2676 * Raise recovery_cp in case data_offset != 0 to 2677 * avoid false recovery positives in the constructor. 2678 */ 2679 if (rs->md.recovery_cp < rs->md.dev_sectors) 2680 rs->md.recovery_cp += rs->dev[0].rdev.data_offset; 2681 2682 /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */ 2683 rdev_for_each(rdev, &rs->md) { 2684 if (!test_bit(Journal, &rdev->flags)) { 2685 rdev->data_offset = data_offset; 2686 rdev->new_data_offset = new_data_offset; 2687 } 2688 } 2689 2690 return 0; 2691 } 2692 2693 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */ 2694 static void __reorder_raid_disk_indexes(struct raid_set *rs) 2695 { 2696 int i = 0; 2697 struct md_rdev *rdev; 2698 2699 rdev_for_each(rdev, &rs->md) { 2700 if (!test_bit(Journal, &rdev->flags)) { 2701 rdev->raid_disk = i++; 2702 rdev->saved_raid_disk = rdev->new_raid_disk = -1; 2703 } 2704 } 2705 } 2706 2707 /* 2708 * Setup @rs for takeover by a different raid level 2709 */ 2710 static int rs_setup_takeover(struct raid_set *rs) 2711 { 2712 struct mddev *mddev = &rs->md; 2713 struct md_rdev *rdev; 2714 unsigned int d = mddev->raid_disks = rs->raid_disks; 2715 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset; 2716 2717 if (rt_is_raid10(rs->raid_type)) { 2718 if (rs_is_raid0(rs)) { 2719 /* Userpace reordered disks -> adjust raid_disk indexes */ 2720 __reorder_raid_disk_indexes(rs); 2721 2722 /* raid0 -> raid10_far layout */ 2723 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR, 2724 rs->raid10_copies); 2725 } else if (rs_is_raid1(rs)) 2726 /* raid1 -> raid10_near layout */ 2727 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, 2728 rs->raid_disks); 2729 else 2730 return -EINVAL; 2731 2732 } 2733 2734 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2735 mddev->recovery_cp = MaxSector; 2736 2737 while (d--) { 2738 rdev = &rs->dev[d].rdev; 2739 2740 if (test_bit(d, (void *) rs->rebuild_disks)) { 2741 clear_bit(In_sync, &rdev->flags); 2742 clear_bit(Faulty, &rdev->flags); 2743 mddev->recovery_cp = rdev->recovery_offset = 0; 2744 /* Bitmap has to be created when we do an "up" takeover */ 2745 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2746 } 2747 2748 rdev->new_data_offset = new_data_offset; 2749 } 2750 2751 return 0; 2752 } 2753 2754 /* Prepare @rs for reshape */ 2755 static int rs_prepare_reshape(struct raid_set *rs) 2756 { 2757 bool reshape; 2758 struct mddev *mddev = &rs->md; 2759 2760 if (rs_is_raid10(rs)) { 2761 if (rs->raid_disks != mddev->raid_disks && 2762 __is_raid10_near(mddev->layout) && 2763 rs->raid10_copies && 2764 rs->raid10_copies != __raid10_near_copies(mddev->layout)) { 2765 /* 2766 * raid disk have to be multiple of data copies to allow this conversion, 2767 * 2768 * This is actually not a reshape it is a 2769 * rebuild of any additional mirrors per group 2770 */ 2771 if (rs->raid_disks % rs->raid10_copies) { 2772 rs->ti->error = "Can't reshape raid10 mirror groups"; 2773 return -EINVAL; 2774 } 2775 2776 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */ 2777 __reorder_raid_disk_indexes(rs); 2778 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, 2779 rs->raid10_copies); 2780 mddev->new_layout = mddev->layout; 2781 reshape = false; 2782 } else 2783 reshape = true; 2784 2785 } else if (rs_is_raid456(rs)) 2786 reshape = true; 2787 2788 else if (rs_is_raid1(rs)) { 2789 if (rs->delta_disks) { 2790 /* Process raid1 via delta_disks */ 2791 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks; 2792 reshape = true; 2793 } else { 2794 /* Process raid1 without delta_disks */ 2795 mddev->raid_disks = rs->raid_disks; 2796 reshape = false; 2797 } 2798 } else { 2799 rs->ti->error = "Called with bogus raid type"; 2800 return -EINVAL; 2801 } 2802 2803 if (reshape) { 2804 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags); 2805 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2806 } else if (mddev->raid_disks < rs->raid_disks) 2807 /* Create new superblocks and bitmaps, if any new disks */ 2808 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2809 2810 return 0; 2811 } 2812 2813 /* Get reshape sectors from data_offsets or raid set */ 2814 static sector_t _get_reshape_sectors(struct raid_set *rs) 2815 { 2816 struct md_rdev *rdev; 2817 sector_t reshape_sectors = 0; 2818 2819 rdev_for_each(rdev, &rs->md) 2820 if (!test_bit(Journal, &rdev->flags)) { 2821 reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ? 2822 rdev->data_offset - rdev->new_data_offset : 2823 rdev->new_data_offset - rdev->data_offset; 2824 break; 2825 } 2826 2827 return max(reshape_sectors, (sector_t) rs->data_offset); 2828 } 2829 2830 /* 2831 * Reshape: 2832 * - change raid layout 2833 * - change chunk size 2834 * - add disks 2835 * - remove disks 2836 */ 2837 static int rs_setup_reshape(struct raid_set *rs) 2838 { 2839 int r = 0; 2840 unsigned int cur_raid_devs, d; 2841 sector_t reshape_sectors = _get_reshape_sectors(rs); 2842 struct mddev *mddev = &rs->md; 2843 struct md_rdev *rdev; 2844 2845 mddev->delta_disks = rs->delta_disks; 2846 cur_raid_devs = mddev->raid_disks; 2847 2848 /* Ignore impossible layout change whilst adding/removing disks */ 2849 if (mddev->delta_disks && 2850 mddev->layout != mddev->new_layout) { 2851 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks); 2852 mddev->new_layout = mddev->layout; 2853 } 2854 2855 /* 2856 * Adjust array size: 2857 * 2858 * - in case of adding disk(s), array size has 2859 * to grow after the disk adding reshape, 2860 * which'll happen in the event handler; 2861 * reshape will happen forward, so space has to 2862 * be available at the beginning of each disk 2863 * 2864 * - in case of removing disk(s), array size 2865 * has to shrink before starting the reshape, 2866 * which'll happen here; 2867 * reshape will happen backward, so space has to 2868 * be available at the end of each disk 2869 * 2870 * - data_offset and new_data_offset are 2871 * adjusted for aforementioned out of place 2872 * reshaping based on userspace passing in 2873 * the "data_offset <sectors>" key/value 2874 * pair via the constructor 2875 */ 2876 2877 /* Add disk(s) */ 2878 if (rs->delta_disks > 0) { 2879 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */ 2880 for (d = cur_raid_devs; d < rs->raid_disks; d++) { 2881 rdev = &rs->dev[d].rdev; 2882 clear_bit(In_sync, &rdev->flags); 2883 2884 /* 2885 * save_raid_disk needs to be -1, or recovery_offset will be set to 0 2886 * by md, which'll store that erroneously in the superblock on reshape 2887 */ 2888 rdev->saved_raid_disk = -1; 2889 rdev->raid_disk = d; 2890 2891 rdev->sectors = mddev->dev_sectors; 2892 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector; 2893 } 2894 2895 mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */ 2896 2897 /* Remove disk(s) */ 2898 } else if (rs->delta_disks < 0) { 2899 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true); 2900 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */ 2901 2902 /* Change layout and/or chunk size */ 2903 } else { 2904 /* 2905 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size: 2906 * 2907 * keeping number of disks and do layout change -> 2908 * 2909 * toggle reshape_backward depending on data_offset: 2910 * 2911 * - free space upfront -> reshape forward 2912 * 2913 * - free space at the end -> reshape backward 2914 * 2915 * 2916 * This utilizes free reshape space avoiding the need 2917 * for userspace to move (parts of) LV segments in 2918 * case of layout/chunksize change (for disk 2919 * adding/removing reshape space has to be at 2920 * the proper address (see above with delta_disks): 2921 * 2922 * add disk(s) -> begin 2923 * remove disk(s)-> end 2924 */ 2925 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1; 2926 } 2927 2928 /* 2929 * Adjust device size for forward reshape 2930 * because md_finish_reshape() reduces it. 2931 */ 2932 if (!mddev->reshape_backwards) 2933 rdev_for_each(rdev, &rs->md) 2934 if (!test_bit(Journal, &rdev->flags)) 2935 rdev->sectors += reshape_sectors; 2936 2937 return r; 2938 } 2939 2940 /* 2941 * If the md resync thread has updated superblock with max reshape position 2942 * at the end of a reshape but not (yet) reset the layout configuration 2943 * changes -> reset the latter. 2944 */ 2945 static void rs_reset_inconclusive_reshape(struct raid_set *rs) 2946 { 2947 if (!rs_is_reshaping(rs) && rs_is_layout_change(rs, true)) { 2948 rs_set_cur(rs); 2949 rs->md.delta_disks = 0; 2950 rs->md.reshape_backwards = 0; 2951 } 2952 } 2953 2954 /* 2955 * Enable/disable discard support on RAID set depending on 2956 * RAID level and discard properties of underlying RAID members. 2957 */ 2958 static void configure_discard_support(struct raid_set *rs) 2959 { 2960 int i; 2961 bool raid456; 2962 struct dm_target *ti = rs->ti; 2963 2964 /* 2965 * XXX: RAID level 4,5,6 require zeroing for safety. 2966 */ 2967 raid456 = rs_is_raid456(rs); 2968 2969 for (i = 0; i < rs->raid_disks; i++) { 2970 if (!rs->dev[i].rdev.bdev || 2971 !bdev_max_discard_sectors(rs->dev[i].rdev.bdev)) 2972 return; 2973 2974 if (raid456) { 2975 if (!devices_handle_discard_safely) { 2976 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty."); 2977 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override."); 2978 return; 2979 } 2980 } 2981 } 2982 2983 ti->num_discard_bios = 1; 2984 } 2985 2986 /* 2987 * Construct a RAID0/1/10/4/5/6 mapping: 2988 * Args: 2989 * <raid_type> <#raid_params> <raid_params>{0,} \ 2990 * <#raid_devs> [<meta_dev1> <dev1>]{1,} 2991 * 2992 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for 2993 * details on possible <raid_params>. 2994 * 2995 * Userspace is free to initialize the metadata devices, hence the superblocks to 2996 * enforce recreation based on the passed in table parameters. 2997 * 2998 */ 2999 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv) 3000 { 3001 int r; 3002 bool resize = false; 3003 struct raid_type *rt; 3004 unsigned int num_raid_params, num_raid_devs; 3005 sector_t sb_array_sectors, rdev_sectors, reshape_sectors; 3006 struct raid_set *rs = NULL; 3007 const char *arg; 3008 struct rs_layout rs_layout; 3009 struct dm_arg_set as = { argc, argv }, as_nrd; 3010 struct dm_arg _args[] = { 3011 { 0, as.argc, "Cannot understand number of raid parameters" }, 3012 { 1, 254, "Cannot understand number of raid devices parameters" } 3013 }; 3014 3015 arg = dm_shift_arg(&as); 3016 if (!arg) { 3017 ti->error = "No arguments"; 3018 return -EINVAL; 3019 } 3020 3021 rt = get_raid_type(arg); 3022 if (!rt) { 3023 ti->error = "Unrecognised raid_type"; 3024 return -EINVAL; 3025 } 3026 3027 /* Must have <#raid_params> */ 3028 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error)) 3029 return -EINVAL; 3030 3031 /* number of raid device tupples <meta_dev data_dev> */ 3032 as_nrd = as; 3033 dm_consume_args(&as_nrd, num_raid_params); 3034 _args[1].max = (as_nrd.argc - 1) / 2; 3035 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error)) 3036 return -EINVAL; 3037 3038 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) { 3039 ti->error = "Invalid number of supplied raid devices"; 3040 return -EINVAL; 3041 } 3042 3043 rs = raid_set_alloc(ti, rt, num_raid_devs); 3044 if (IS_ERR(rs)) 3045 return PTR_ERR(rs); 3046 3047 r = parse_raid_params(rs, &as, num_raid_params); 3048 if (r) 3049 goto bad; 3050 3051 r = parse_dev_params(rs, &as); 3052 if (r) 3053 goto bad; 3054 3055 rs->md.sync_super = super_sync; 3056 3057 /* 3058 * Calculate ctr requested array and device sizes to allow 3059 * for superblock analysis needing device sizes defined. 3060 * 3061 * Any existing superblock will overwrite the array and device sizes 3062 */ 3063 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false); 3064 if (r) 3065 goto bad; 3066 3067 /* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */ 3068 rs->array_sectors = rs->md.array_sectors; 3069 rs->dev_sectors = rs->md.dev_sectors; 3070 3071 /* 3072 * Backup any new raid set level, layout, ... 3073 * requested to be able to compare to superblock 3074 * members for conversion decisions. 3075 */ 3076 rs_config_backup(rs, &rs_layout); 3077 3078 r = analyse_superblocks(ti, rs); 3079 if (r) 3080 goto bad; 3081 3082 /* All in-core metadata now as of current superblocks after calling analyse_superblocks() */ 3083 sb_array_sectors = rs->md.array_sectors; 3084 rdev_sectors = __rdev_sectors(rs); 3085 if (!rdev_sectors) { 3086 ti->error = "Invalid rdev size"; 3087 r = -EINVAL; 3088 goto bad; 3089 } 3090 3091 3092 reshape_sectors = _get_reshape_sectors(rs); 3093 if (rs->dev_sectors != rdev_sectors) { 3094 resize = (rs->dev_sectors != rdev_sectors - reshape_sectors); 3095 if (rs->dev_sectors > rdev_sectors - reshape_sectors) 3096 set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3097 } 3098 3099 INIT_WORK(&rs->md.event_work, do_table_event); 3100 ti->private = rs; 3101 ti->num_flush_bios = 1; 3102 ti->needs_bio_set_dev = true; 3103 3104 /* Restore any requested new layout for conversion decision */ 3105 rs_config_restore(rs, &rs_layout); 3106 3107 /* 3108 * Now that we have any superblock metadata available, 3109 * check for new, recovering, reshaping, to be taken over, 3110 * to be reshaped or an existing, unchanged raid set to 3111 * run in sequence. 3112 */ 3113 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) { 3114 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */ 3115 if (rs_is_raid6(rs) && 3116 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 3117 ti->error = "'nosync' not allowed for new raid6 set"; 3118 r = -EINVAL; 3119 goto bad; 3120 } 3121 rs_setup_recovery(rs, 0); 3122 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3123 rs_set_new(rs); 3124 } else if (rs_is_recovering(rs)) { 3125 /* A recovering raid set may be resized */ 3126 goto size_check; 3127 } else if (rs_is_reshaping(rs)) { 3128 /* Have to reject size change request during reshape */ 3129 if (resize) { 3130 ti->error = "Can't resize a reshaping raid set"; 3131 r = -EPERM; 3132 goto bad; 3133 } 3134 /* skip setup rs */ 3135 } else if (rs_takeover_requested(rs)) { 3136 if (rs_is_reshaping(rs)) { 3137 ti->error = "Can't takeover a reshaping raid set"; 3138 r = -EPERM; 3139 goto bad; 3140 } 3141 3142 /* We can't takeover a journaled raid4/5/6 */ 3143 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 3144 ti->error = "Can't takeover a journaled raid4/5/6 set"; 3145 r = -EPERM; 3146 goto bad; 3147 } 3148 3149 /* 3150 * If a takeover is needed, userspace sets any additional 3151 * devices to rebuild and we can check for a valid request here. 3152 * 3153 * If acceptable, set the level to the new requested 3154 * one, prohibit requesting recovery, allow the raid 3155 * set to run and store superblocks during resume. 3156 */ 3157 r = rs_check_takeover(rs); 3158 if (r) 3159 goto bad; 3160 3161 r = rs_setup_takeover(rs); 3162 if (r) 3163 goto bad; 3164 3165 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3166 /* Takeover ain't recovery, so disable recovery */ 3167 rs_setup_recovery(rs, MaxSector); 3168 rs_set_new(rs); 3169 } else if (rs_reshape_requested(rs)) { 3170 /* Only request grow on raid set size extensions, not on reshapes. */ 3171 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3172 3173 /* 3174 * No need to check for 'ongoing' takeover here, because takeover 3175 * is an instant operation as oposed to an ongoing reshape. 3176 */ 3177 3178 /* We can't reshape a journaled raid4/5/6 */ 3179 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 3180 ti->error = "Can't reshape a journaled raid4/5/6 set"; 3181 r = -EPERM; 3182 goto bad; 3183 } 3184 3185 /* Out-of-place space has to be available to allow for a reshape unless raid1! */ 3186 if (reshape_sectors || rs_is_raid1(rs)) { 3187 /* 3188 * We can only prepare for a reshape here, because the 3189 * raid set needs to run to provide the repective reshape 3190 * check functions via its MD personality instance. 3191 * 3192 * So do the reshape check after md_run() succeeded. 3193 */ 3194 r = rs_prepare_reshape(rs); 3195 if (r) 3196 goto bad; 3197 3198 /* Reshaping ain't recovery, so disable recovery */ 3199 rs_setup_recovery(rs, MaxSector); 3200 } 3201 rs_set_cur(rs); 3202 } else { 3203 size_check: 3204 /* May not set recovery when a device rebuild is requested */ 3205 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) { 3206 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3207 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3208 rs_setup_recovery(rs, MaxSector); 3209 } else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) { 3210 /* 3211 * Set raid set to current size, i.e. size as of 3212 * superblocks to grow to larger size in preresume. 3213 */ 3214 r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false); 3215 if (r) 3216 goto bad; 3217 3218 rs_setup_recovery(rs, rs->md.recovery_cp < rs->md.dev_sectors ? rs->md.recovery_cp : rs->md.dev_sectors); 3219 } else { 3220 /* This is no size change or it is shrinking, update size and record in superblocks */ 3221 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false); 3222 if (r) 3223 goto bad; 3224 3225 if (sb_array_sectors > rs->array_sectors) 3226 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3227 } 3228 rs_set_cur(rs); 3229 } 3230 3231 /* If constructor requested it, change data and new_data offsets */ 3232 r = rs_adjust_data_offsets(rs); 3233 if (r) 3234 goto bad; 3235 3236 /* Catch any inconclusive reshape superblock content. */ 3237 rs_reset_inconclusive_reshape(rs); 3238 3239 /* Start raid set read-only and assumed clean to change in raid_resume() */ 3240 rs->md.ro = 1; 3241 rs->md.in_sync = 1; 3242 3243 /* Keep array frozen until resume. */ 3244 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery); 3245 3246 /* Has to be held on running the array */ 3247 mddev_suspend_and_lock_nointr(&rs->md); 3248 r = md_run(&rs->md); 3249 rs->md.in_sync = 0; /* Assume already marked dirty */ 3250 if (r) { 3251 ti->error = "Failed to run raid array"; 3252 mddev_unlock(&rs->md); 3253 goto bad; 3254 } 3255 3256 r = md_start(&rs->md); 3257 if (r) { 3258 ti->error = "Failed to start raid array"; 3259 goto bad_unlock; 3260 } 3261 3262 /* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */ 3263 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) { 3264 r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode); 3265 if (r) { 3266 ti->error = "Failed to set raid4/5/6 journal mode"; 3267 goto bad_unlock; 3268 } 3269 } 3270 3271 set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags); 3272 3273 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */ 3274 if (rs_is_raid456(rs)) { 3275 r = rs_set_raid456_stripe_cache(rs); 3276 if (r) 3277 goto bad_unlock; 3278 } 3279 3280 /* Now do an early reshape check */ 3281 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { 3282 r = rs_check_reshape(rs); 3283 if (r) 3284 goto bad_unlock; 3285 3286 /* Restore new, ctr requested layout to perform check */ 3287 rs_config_restore(rs, &rs_layout); 3288 3289 if (rs->md.pers->start_reshape) { 3290 r = rs->md.pers->check_reshape(&rs->md); 3291 if (r) { 3292 ti->error = "Reshape check failed"; 3293 goto bad_unlock; 3294 } 3295 } 3296 } 3297 3298 /* Disable/enable discard support on raid set. */ 3299 configure_discard_support(rs); 3300 3301 mddev_unlock(&rs->md); 3302 return 0; 3303 3304 bad_unlock: 3305 md_stop(&rs->md); 3306 mddev_unlock(&rs->md); 3307 bad: 3308 raid_set_free(rs); 3309 3310 return r; 3311 } 3312 3313 static void raid_dtr(struct dm_target *ti) 3314 { 3315 struct raid_set *rs = ti->private; 3316 3317 mddev_lock_nointr(&rs->md); 3318 md_stop(&rs->md); 3319 mddev_unlock(&rs->md); 3320 raid_set_free(rs); 3321 } 3322 3323 static int raid_map(struct dm_target *ti, struct bio *bio) 3324 { 3325 struct raid_set *rs = ti->private; 3326 struct mddev *mddev = &rs->md; 3327 3328 /* 3329 * If we're reshaping to add disk(s)), ti->len and 3330 * mddev->array_sectors will differ during the process 3331 * (ti->len > mddev->array_sectors), so we have to requeue 3332 * bios with addresses > mddev->array_sectors here or 3333 * there will occur accesses past EOD of the component 3334 * data images thus erroring the raid set. 3335 */ 3336 if (unlikely(bio_end_sector(bio) > mddev->array_sectors)) 3337 return DM_MAPIO_REQUEUE; 3338 3339 md_handle_request(mddev, bio); 3340 3341 return DM_MAPIO_SUBMITTED; 3342 } 3343 3344 /* Return sync state string for @state */ 3345 enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle }; 3346 static const char *sync_str(enum sync_state state) 3347 { 3348 /* Has to be in above sync_state order! */ 3349 static const char *sync_strs[] = { 3350 "frozen", 3351 "reshape", 3352 "resync", 3353 "check", 3354 "repair", 3355 "recover", 3356 "idle" 3357 }; 3358 3359 return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef"; 3360 }; 3361 3362 /* Return enum sync_state for @mddev derived from @recovery flags */ 3363 static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery) 3364 { 3365 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 3366 return st_frozen; 3367 3368 /* The MD sync thread can be done with io or be interrupted but still be running */ 3369 if (!test_bit(MD_RECOVERY_DONE, &recovery) && 3370 (test_bit(MD_RECOVERY_RUNNING, &recovery) || 3371 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) { 3372 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 3373 return st_reshape; 3374 3375 if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 3376 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 3377 return st_resync; 3378 if (test_bit(MD_RECOVERY_CHECK, &recovery)) 3379 return st_check; 3380 return st_repair; 3381 } 3382 3383 if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 3384 return st_recover; 3385 3386 if (mddev->reshape_position != MaxSector) 3387 return st_reshape; 3388 } 3389 3390 return st_idle; 3391 } 3392 3393 /* 3394 * Return status string for @rdev 3395 * 3396 * Status characters: 3397 * 3398 * 'D' = Dead/Failed raid set component or raid4/5/6 journal device 3399 * 'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device 3400 * 'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device 3401 * '-' = Non-existing device (i.e. uspace passed '- -' into the ctr) 3402 */ 3403 static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev) 3404 { 3405 if (!rdev->bdev) 3406 return "-"; 3407 else if (test_bit(Faulty, &rdev->flags)) 3408 return "D"; 3409 else if (test_bit(Journal, &rdev->flags)) 3410 return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a"; 3411 else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) || 3412 (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) && 3413 !test_bit(In_sync, &rdev->flags))) 3414 return "a"; 3415 else 3416 return "A"; 3417 } 3418 3419 /* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */ 3420 static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery, 3421 enum sync_state state, sector_t resync_max_sectors) 3422 { 3423 sector_t r; 3424 struct mddev *mddev = &rs->md; 3425 3426 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3427 clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3428 3429 if (rs_is_raid0(rs)) { 3430 r = resync_max_sectors; 3431 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3432 3433 } else { 3434 if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery)) 3435 r = mddev->recovery_cp; 3436 else 3437 r = mddev->curr_resync_completed; 3438 3439 if (state == st_idle && r >= resync_max_sectors) { 3440 /* 3441 * Sync complete. 3442 */ 3443 /* In case we have finished recovering, the array is in sync. */ 3444 if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 3445 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3446 3447 } else if (state == st_recover) 3448 /* 3449 * In case we are recovering, the array is not in sync 3450 * and health chars should show the recovering legs. 3451 * 3452 * Already retrieved recovery offset from curr_resync_completed above. 3453 */ 3454 ; 3455 3456 else if (state == st_resync || state == st_reshape) 3457 /* 3458 * If "resync/reshape" is occurring, the raid set 3459 * is or may be out of sync hence the health 3460 * characters shall be 'a'. 3461 */ 3462 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3463 3464 else if (state == st_check || state == st_repair) 3465 /* 3466 * If "check" or "repair" is occurring, the raid set has 3467 * undergone an initial sync and the health characters 3468 * should not be 'a' anymore. 3469 */ 3470 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3471 3472 else if (test_bit(MD_RECOVERY_NEEDED, &recovery)) 3473 /* 3474 * We are idle and recovery is needed, prevent 'A' chars race 3475 * caused by components still set to in-sync by constructor. 3476 */ 3477 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3478 3479 else { 3480 /* 3481 * We are idle and the raid set may be doing an initial 3482 * sync, or it may be rebuilding individual components. 3483 * If all the devices are In_sync, then it is the raid set 3484 * that is being initialized. 3485 */ 3486 struct md_rdev *rdev; 3487 3488 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3489 rdev_for_each(rdev, mddev) 3490 if (!test_bit(Journal, &rdev->flags) && 3491 !test_bit(In_sync, &rdev->flags)) { 3492 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3493 break; 3494 } 3495 } 3496 } 3497 3498 return min(r, resync_max_sectors); 3499 } 3500 3501 /* Helper to return @dev name or "-" if !@dev */ 3502 static const char *__get_dev_name(struct dm_dev *dev) 3503 { 3504 return dev ? dev->name : "-"; 3505 } 3506 3507 static void raid_status(struct dm_target *ti, status_type_t type, 3508 unsigned int status_flags, char *result, unsigned int maxlen) 3509 { 3510 struct raid_set *rs = ti->private; 3511 struct mddev *mddev = &rs->md; 3512 struct r5conf *conf = rs_is_raid456(rs) ? mddev->private : NULL; 3513 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0; 3514 unsigned long recovery; 3515 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */ 3516 unsigned int sz = 0; 3517 unsigned int rebuild_writemostly_count = 0; 3518 sector_t progress, resync_max_sectors, resync_mismatches; 3519 enum sync_state state; 3520 struct raid_type *rt; 3521 3522 switch (type) { 3523 case STATUSTYPE_INFO: 3524 /* *Should* always succeed */ 3525 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 3526 if (!rt) 3527 return; 3528 3529 DMEMIT("%s %d ", rt->name, mddev->raid_disks); 3530 3531 /* Access most recent mddev properties for status output */ 3532 smp_rmb(); 3533 /* Get sensible max sectors even if raid set not yet started */ 3534 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ? 3535 mddev->resync_max_sectors : mddev->dev_sectors; 3536 recovery = rs->md.recovery; 3537 state = decipher_sync_action(mddev, recovery); 3538 progress = rs_get_progress(rs, recovery, state, resync_max_sectors); 3539 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ? 3540 atomic64_read(&mddev->resync_mismatches) : 0; 3541 3542 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */ 3543 for (i = 0; i < rs->raid_disks; i++) 3544 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev)); 3545 3546 /* 3547 * In-sync/Reshape ratio: 3548 * The in-sync ratio shows the progress of: 3549 * - Initializing the raid set 3550 * - Rebuilding a subset of devices of the raid set 3551 * The user can distinguish between the two by referring 3552 * to the status characters. 3553 * 3554 * The reshape ratio shows the progress of 3555 * changing the raid layout or the number of 3556 * disks of a raid set 3557 */ 3558 DMEMIT(" %llu/%llu", (unsigned long long) progress, 3559 (unsigned long long) resync_max_sectors); 3560 3561 /* 3562 * v1.5.0+: 3563 * 3564 * Sync action: 3565 * See Documentation/admin-guide/device-mapper/dm-raid.rst for 3566 * information on each of these states. 3567 */ 3568 DMEMIT(" %s", sync_str(state)); 3569 3570 /* 3571 * v1.5.0+: 3572 * 3573 * resync_mismatches/mismatch_cnt 3574 * This field shows the number of discrepancies found when 3575 * performing a "check" of the raid set. 3576 */ 3577 DMEMIT(" %llu", (unsigned long long) resync_mismatches); 3578 3579 /* 3580 * v1.9.0+: 3581 * 3582 * data_offset (needed for out of space reshaping) 3583 * This field shows the data offset into the data 3584 * image LV where the first stripes data starts. 3585 * 3586 * We keep data_offset equal on all raid disks of the set, 3587 * so retrieving it from the first raid disk is sufficient. 3588 */ 3589 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset); 3590 3591 /* 3592 * v1.10.0+: 3593 */ 3594 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ? 3595 __raid_dev_status(rs, &rs->journal_dev.rdev) : "-"); 3596 break; 3597 3598 case STATUSTYPE_TABLE: 3599 /* Report the table line string you would use to construct this raid set */ 3600 3601 /* 3602 * Count any rebuild or writemostly argument pairs and subtract the 3603 * hweight count being added below of any rebuild and writemostly ctr flags. 3604 */ 3605 for (i = 0; i < rs->raid_disks; i++) { 3606 rebuild_writemostly_count += (test_bit(i, (void *) rs->rebuild_disks) ? 2 : 0) + 3607 (test_bit(WriteMostly, &rs->dev[i].rdev.flags) ? 2 : 0); 3608 } 3609 rebuild_writemostly_count -= (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) ? 2 : 0) + 3610 (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags) ? 2 : 0); 3611 /* Calculate raid parameter count based on ^ rebuild/writemostly argument counts and ctr flags set. */ 3612 raid_param_cnt += rebuild_writemostly_count + 3613 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) + 3614 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2; 3615 /* Emit table line */ 3616 /* This has to be in the documented order for userspace! */ 3617 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors); 3618 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 3619 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC)); 3620 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) 3621 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC)); 3622 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) 3623 for (i = 0; i < rs->raid_disks; i++) 3624 if (test_bit(i, (void *) rs->rebuild_disks)) 3625 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), i); 3626 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) 3627 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP), 3628 mddev->bitmap_info.daemon_sleep); 3629 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) 3630 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE), 3631 mddev->sync_speed_min); 3632 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) 3633 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE), 3634 mddev->sync_speed_max); 3635 if (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags)) 3636 for (i = 0; i < rs->raid_disks; i++) 3637 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags)) 3638 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY), 3639 rs->dev[i].rdev.raid_disk); 3640 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) 3641 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND), 3642 mddev->bitmap_info.max_write_behind); 3643 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) 3644 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE), 3645 max_nr_stripes); 3646 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) 3647 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE), 3648 (unsigned long long) to_sector(mddev->bitmap_info.chunksize)); 3649 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) 3650 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES), 3651 raid10_md_layout_to_copies(mddev->layout)); 3652 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) 3653 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT), 3654 raid10_md_layout_to_format(mddev->layout)); 3655 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) 3656 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS), 3657 max(rs->delta_disks, mddev->delta_disks)); 3658 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) 3659 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET), 3660 (unsigned long long) rs->data_offset); 3661 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) 3662 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV), 3663 __get_dev_name(rs->journal_dev.dev)); 3664 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) 3665 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE), 3666 md_journal_mode_to_dm_raid(rs->journal_dev.mode)); 3667 DMEMIT(" %d", rs->raid_disks); 3668 for (i = 0; i < rs->raid_disks; i++) 3669 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev), 3670 __get_dev_name(rs->dev[i].data_dev)); 3671 break; 3672 3673 case STATUSTYPE_IMA: 3674 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 3675 if (!rt) 3676 return; 3677 3678 DMEMIT_TARGET_NAME_VERSION(ti->type); 3679 DMEMIT(",raid_type=%s,raid_disks=%d", rt->name, mddev->raid_disks); 3680 3681 /* Access most recent mddev properties for status output */ 3682 smp_rmb(); 3683 recovery = rs->md.recovery; 3684 state = decipher_sync_action(mddev, recovery); 3685 DMEMIT(",raid_state=%s", sync_str(state)); 3686 3687 for (i = 0; i < rs->raid_disks; i++) { 3688 DMEMIT(",raid_device_%d_status=", i); 3689 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev)); 3690 } 3691 3692 if (rt_is_raid456(rt)) { 3693 DMEMIT(",journal_dev_mode="); 3694 switch (rs->journal_dev.mode) { 3695 case R5C_JOURNAL_MODE_WRITE_THROUGH: 3696 DMEMIT("%s", 3697 _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_THROUGH].param); 3698 break; 3699 case R5C_JOURNAL_MODE_WRITE_BACK: 3700 DMEMIT("%s", 3701 _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_BACK].param); 3702 break; 3703 default: 3704 DMEMIT("invalid"); 3705 break; 3706 } 3707 } 3708 DMEMIT(";"); 3709 break; 3710 } 3711 } 3712 3713 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv, 3714 char *result, unsigned int maxlen) 3715 { 3716 struct raid_set *rs = ti->private; 3717 struct mddev *mddev = &rs->md; 3718 3719 if (!mddev->pers || !mddev->pers->sync_request) 3720 return -EINVAL; 3721 3722 if (!strcasecmp(argv[0], "frozen")) 3723 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3724 else 3725 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3726 3727 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) { 3728 if (mddev->sync_thread) { 3729 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3730 md_reap_sync_thread(mddev); 3731 } 3732 } else if (decipher_sync_action(mddev, mddev->recovery) != st_idle) 3733 return -EBUSY; 3734 else if (!strcasecmp(argv[0], "resync")) 3735 ; /* MD_RECOVERY_NEEDED set below */ 3736 else if (!strcasecmp(argv[0], "recover")) 3737 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3738 else { 3739 if (!strcasecmp(argv[0], "check")) { 3740 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3741 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3742 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3743 } else if (!strcasecmp(argv[0], "repair")) { 3744 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3745 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3746 } else 3747 return -EINVAL; 3748 } 3749 if (mddev->ro == 2) { 3750 /* A write to sync_action is enough to justify 3751 * canceling read-auto mode 3752 */ 3753 mddev->ro = 0; 3754 if (!mddev->suspended) 3755 md_wakeup_thread(mddev->sync_thread); 3756 } 3757 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3758 if (!mddev->suspended) 3759 md_wakeup_thread(mddev->thread); 3760 3761 return 0; 3762 } 3763 3764 static int raid_iterate_devices(struct dm_target *ti, 3765 iterate_devices_callout_fn fn, void *data) 3766 { 3767 struct raid_set *rs = ti->private; 3768 unsigned int i; 3769 int r = 0; 3770 3771 for (i = 0; !r && i < rs->raid_disks; i++) { 3772 if (rs->dev[i].data_dev) { 3773 r = fn(ti, rs->dev[i].data_dev, 3774 0, /* No offset on data devs */ 3775 rs->md.dev_sectors, data); 3776 } 3777 } 3778 3779 return r; 3780 } 3781 3782 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits) 3783 { 3784 struct raid_set *rs = ti->private; 3785 unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors); 3786 3787 blk_limits_io_min(limits, chunk_size_bytes); 3788 blk_limits_io_opt(limits, chunk_size_bytes * mddev_data_stripes(rs)); 3789 } 3790 3791 static void raid_postsuspend(struct dm_target *ti) 3792 { 3793 struct raid_set *rs = ti->private; 3794 3795 if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) { 3796 /* Writes have to be stopped before suspending to avoid deadlocks. */ 3797 if (!test_bit(MD_RECOVERY_FROZEN, &rs->md.recovery)) 3798 md_stop_writes(&rs->md); 3799 3800 mddev_suspend(&rs->md, false); 3801 } 3802 } 3803 3804 static void attempt_restore_of_faulty_devices(struct raid_set *rs) 3805 { 3806 int i; 3807 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS]; 3808 unsigned long flags; 3809 bool cleared = false; 3810 struct dm_raid_superblock *sb; 3811 struct mddev *mddev = &rs->md; 3812 struct md_rdev *r; 3813 3814 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */ 3815 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk) 3816 return; 3817 3818 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices)); 3819 3820 for (i = 0; i < rs->raid_disks; i++) { 3821 r = &rs->dev[i].rdev; 3822 /* HM FIXME: enhance journal device recovery processing */ 3823 if (test_bit(Journal, &r->flags)) 3824 continue; 3825 3826 if (test_bit(Faulty, &r->flags) && 3827 r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) { 3828 DMINFO("Faulty %s device #%d has readable super block." 3829 " Attempting to revive it.", 3830 rs->raid_type->name, i); 3831 3832 /* 3833 * Faulty bit may be set, but sometimes the array can 3834 * be suspended before the personalities can respond 3835 * by removing the device from the array (i.e. calling 3836 * 'hot_remove_disk'). If they haven't yet removed 3837 * the failed device, its 'raid_disk' number will be 3838 * '>= 0' - meaning we must call this function 3839 * ourselves. 3840 */ 3841 flags = r->flags; 3842 clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */ 3843 if (r->raid_disk >= 0) { 3844 if (mddev->pers->hot_remove_disk(mddev, r)) { 3845 /* Failed to revive this device, try next */ 3846 r->flags = flags; 3847 continue; 3848 } 3849 } else 3850 r->raid_disk = r->saved_raid_disk = i; 3851 3852 clear_bit(Faulty, &r->flags); 3853 clear_bit(WriteErrorSeen, &r->flags); 3854 3855 if (mddev->pers->hot_add_disk(mddev, r)) { 3856 /* Failed to revive this device, try next */ 3857 r->raid_disk = r->saved_raid_disk = -1; 3858 r->flags = flags; 3859 } else { 3860 clear_bit(In_sync, &r->flags); 3861 r->recovery_offset = 0; 3862 set_bit(i, (void *) cleared_failed_devices); 3863 cleared = true; 3864 } 3865 } 3866 } 3867 3868 /* If any failed devices could be cleared, update all sbs failed_devices bits */ 3869 if (cleared) { 3870 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 3871 3872 rdev_for_each(r, &rs->md) { 3873 if (test_bit(Journal, &r->flags)) 3874 continue; 3875 3876 sb = page_address(r->sb_page); 3877 sb_retrieve_failed_devices(sb, failed_devices); 3878 3879 for (i = 0; i < DISKS_ARRAY_ELEMS; i++) 3880 failed_devices[i] &= ~cleared_failed_devices[i]; 3881 3882 sb_update_failed_devices(sb, failed_devices); 3883 } 3884 } 3885 } 3886 3887 static int __load_dirty_region_bitmap(struct raid_set *rs) 3888 { 3889 int r = 0; 3890 3891 /* Try loading the bitmap unless "raid0", which does not have one */ 3892 if (!rs_is_raid0(rs) && 3893 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) { 3894 r = md_bitmap_load(&rs->md); 3895 if (r) 3896 DMERR("Failed to load bitmap"); 3897 } 3898 3899 return r; 3900 } 3901 3902 /* Enforce updating all superblocks */ 3903 static void rs_update_sbs(struct raid_set *rs) 3904 { 3905 struct mddev *mddev = &rs->md; 3906 int ro = mddev->ro; 3907 3908 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3909 mddev->ro = 0; 3910 md_update_sb(mddev, 1); 3911 mddev->ro = ro; 3912 } 3913 3914 /* 3915 * Reshape changes raid algorithm of @rs to new one within personality 3916 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes 3917 * disks from a raid set thus growing/shrinking it or resizes the set 3918 * 3919 * Call mddev_lock_nointr() before! 3920 */ 3921 static int rs_start_reshape(struct raid_set *rs) 3922 { 3923 int r; 3924 struct mddev *mddev = &rs->md; 3925 struct md_personality *pers = mddev->pers; 3926 3927 /* Don't allow the sync thread to work until the table gets reloaded. */ 3928 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 3929 3930 r = rs_setup_reshape(rs); 3931 if (r) 3932 return r; 3933 3934 /* 3935 * Check any reshape constraints enforced by the personalility 3936 * 3937 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional. 3938 */ 3939 r = pers->check_reshape(mddev); 3940 if (r) { 3941 rs->ti->error = "pers->check_reshape() failed"; 3942 return r; 3943 } 3944 3945 /* 3946 * Personality may not provide start reshape method in which 3947 * case check_reshape above has already covered everything 3948 */ 3949 if (pers->start_reshape) { 3950 r = pers->start_reshape(mddev); 3951 if (r) { 3952 rs->ti->error = "pers->start_reshape() failed"; 3953 return r; 3954 } 3955 } 3956 3957 /* 3958 * Now reshape got set up, update superblocks to 3959 * reflect the fact so that a table reload will 3960 * access proper superblock content in the ctr. 3961 */ 3962 rs_update_sbs(rs); 3963 3964 return 0; 3965 } 3966 3967 static int raid_preresume(struct dm_target *ti) 3968 { 3969 int r; 3970 struct raid_set *rs = ti->private; 3971 struct mddev *mddev = &rs->md; 3972 3973 /* This is a resume after a suspend of the set -> it's already started. */ 3974 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags)) 3975 return 0; 3976 3977 /* 3978 * The superblocks need to be updated on disk if the 3979 * array is new or new devices got added (thus zeroed 3980 * out by userspace) or __load_dirty_region_bitmap 3981 * will overwrite them in core with old data or fail. 3982 */ 3983 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags)) 3984 rs_update_sbs(rs); 3985 3986 /* Load the bitmap from disk unless raid0 */ 3987 r = __load_dirty_region_bitmap(rs); 3988 if (r) 3989 return r; 3990 3991 /* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */ 3992 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) { 3993 mddev->array_sectors = rs->array_sectors; 3994 mddev->dev_sectors = rs->dev_sectors; 3995 rs_set_rdev_sectors(rs); 3996 rs_set_capacity(rs); 3997 } 3998 3999 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */ 4000 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap && 4001 (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) || 4002 (rs->requested_bitmap_chunk_sectors && 4003 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) { 4004 int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize; 4005 4006 r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors, chunksize, 0); 4007 if (r) 4008 DMERR("Failed to resize bitmap"); 4009 } 4010 4011 /* Check for any resize/reshape on @rs and adjust/initiate */ 4012 /* Be prepared for mddev_resume() in raid_resume() */ 4013 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4014 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) { 4015 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4016 mddev->resync_min = mddev->recovery_cp; 4017 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) 4018 mddev->resync_max_sectors = mddev->dev_sectors; 4019 } 4020 4021 /* Check for any reshape request unless new raid set */ 4022 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { 4023 /* Initiate a reshape. */ 4024 rs_set_rdev_sectors(rs); 4025 mddev_lock_nointr(mddev); 4026 r = rs_start_reshape(rs); 4027 mddev_unlock(mddev); 4028 if (r) 4029 DMWARN("Failed to check/start reshape, continuing without change"); 4030 r = 0; 4031 } 4032 4033 return r; 4034 } 4035 4036 static void raid_resume(struct dm_target *ti) 4037 { 4038 struct raid_set *rs = ti->private; 4039 struct mddev *mddev = &rs->md; 4040 4041 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) { 4042 /* 4043 * A secondary resume while the device is active. 4044 * Take this opportunity to check whether any failed 4045 * devices are reachable again. 4046 */ 4047 attempt_restore_of_faulty_devices(rs); 4048 } 4049 4050 if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) { 4051 /* Only reduce raid set size before running a disk removing reshape. */ 4052 if (mddev->delta_disks < 0) 4053 rs_set_capacity(rs); 4054 4055 mddev_lock_nointr(mddev); 4056 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4057 mddev->ro = 0; 4058 mddev->in_sync = 0; 4059 mddev_unlock_and_resume(mddev); 4060 } 4061 } 4062 4063 static struct target_type raid_target = { 4064 .name = "raid", 4065 .version = {1, 15, 1}, 4066 .module = THIS_MODULE, 4067 .ctr = raid_ctr, 4068 .dtr = raid_dtr, 4069 .map = raid_map, 4070 .status = raid_status, 4071 .message = raid_message, 4072 .iterate_devices = raid_iterate_devices, 4073 .io_hints = raid_io_hints, 4074 .postsuspend = raid_postsuspend, 4075 .preresume = raid_preresume, 4076 .resume = raid_resume, 4077 }; 4078 module_dm(raid); 4079 4080 module_param(devices_handle_discard_safely, bool, 0644); 4081 MODULE_PARM_DESC(devices_handle_discard_safely, 4082 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 4083 4084 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target"); 4085 MODULE_ALIAS("dm-raid0"); 4086 MODULE_ALIAS("dm-raid1"); 4087 MODULE_ALIAS("dm-raid10"); 4088 MODULE_ALIAS("dm-raid4"); 4089 MODULE_ALIAS("dm-raid5"); 4090 MODULE_ALIAS("dm-raid6"); 4091 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>"); 4092 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>"); 4093 MODULE_LICENSE("GPL"); 4094