xref: /linux/drivers/md/dm-raid.c (revision 6a35ddc5445a8291ced6247a67977e110275acde)
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/module.h>
10 
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "md-bitmap.h"
16 
17 #include <linux/device-mapper.h>
18 
19 #define DM_MSG_PREFIX "raid"
20 #define	MAX_RAID_DEVICES	253 /* md-raid kernel limit */
21 
22 /*
23  * Minimum sectors of free reshape space per raid device
24  */
25 #define	MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26 
27 /*
28  * Minimum journal space 4 MiB in sectors.
29  */
30 #define	MIN_RAID456_JOURNAL_SPACE (4*2048)
31 
32 static bool devices_handle_discard_safely = false;
33 
34 /*
35  * The following flags are used by dm-raid.c to set up the array state.
36  * They must be cleared before md_run is called.
37  */
38 #define FirstUse 10		/* rdev flag */
39 
40 struct raid_dev {
41 	/*
42 	 * Two DM devices, one to hold metadata and one to hold the
43 	 * actual data/parity.	The reason for this is to not confuse
44 	 * ti->len and give more flexibility in altering size and
45 	 * characteristics.
46 	 *
47 	 * While it is possible for this device to be associated
48 	 * with a different physical device than the data_dev, it
49 	 * is intended for it to be the same.
50 	 *    |--------- Physical Device ---------|
51 	 *    |- meta_dev -|------ data_dev ------|
52 	 */
53 	struct dm_dev *meta_dev;
54 	struct dm_dev *data_dev;
55 	struct md_rdev rdev;
56 };
57 
58 /*
59  * Bits for establishing rs->ctr_flags
60  *
61  * 1 = no flag value
62  * 2 = flag with value
63  */
64 #define __CTR_FLAG_SYNC			0  /* 1 */ /* Not with raid0! */
65 #define __CTR_FLAG_NOSYNC		1  /* 1 */ /* Not with raid0! */
66 #define __CTR_FLAG_REBUILD		2  /* 2 */ /* Not with raid0! */
67 #define __CTR_FLAG_DAEMON_SLEEP		3  /* 2 */ /* Not with raid0! */
68 #define __CTR_FLAG_MIN_RECOVERY_RATE	4  /* 2 */ /* Not with raid0! */
69 #define __CTR_FLAG_MAX_RECOVERY_RATE	5  /* 2 */ /* Not with raid0! */
70 #define __CTR_FLAG_MAX_WRITE_BEHIND	6  /* 2 */ /* Only with raid1! */
71 #define __CTR_FLAG_WRITE_MOSTLY		7  /* 2 */ /* Only with raid1! */
72 #define __CTR_FLAG_STRIPE_CACHE		8  /* 2 */ /* Only with raid4/5/6! */
73 #define __CTR_FLAG_REGION_SIZE		9  /* 2 */ /* Not with raid0! */
74 #define __CTR_FLAG_RAID10_COPIES	10 /* 2 */ /* Only with raid10 */
75 #define __CTR_FLAG_RAID10_FORMAT	11 /* 2 */ /* Only with raid10 */
76 /* New for v1.9.0 */
77 #define __CTR_FLAG_DELTA_DISKS		12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
78 #define __CTR_FLAG_DATA_OFFSET		13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
79 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
80 
81 /* New for v1.10.0 */
82 #define __CTR_FLAG_JOURNAL_DEV		15 /* 2 */ /* Only with raid4/5/6 (journal device)! */
83 
84 /* New for v1.11.1 */
85 #define __CTR_FLAG_JOURNAL_MODE		16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */
86 
87 /*
88  * Flags for rs->ctr_flags field.
89  */
90 #define CTR_FLAG_SYNC			(1 << __CTR_FLAG_SYNC)
91 #define CTR_FLAG_NOSYNC			(1 << __CTR_FLAG_NOSYNC)
92 #define CTR_FLAG_REBUILD		(1 << __CTR_FLAG_REBUILD)
93 #define CTR_FLAG_DAEMON_SLEEP		(1 << __CTR_FLAG_DAEMON_SLEEP)
94 #define CTR_FLAG_MIN_RECOVERY_RATE	(1 << __CTR_FLAG_MIN_RECOVERY_RATE)
95 #define CTR_FLAG_MAX_RECOVERY_RATE	(1 << __CTR_FLAG_MAX_RECOVERY_RATE)
96 #define CTR_FLAG_MAX_WRITE_BEHIND	(1 << __CTR_FLAG_MAX_WRITE_BEHIND)
97 #define CTR_FLAG_WRITE_MOSTLY		(1 << __CTR_FLAG_WRITE_MOSTLY)
98 #define CTR_FLAG_STRIPE_CACHE		(1 << __CTR_FLAG_STRIPE_CACHE)
99 #define CTR_FLAG_REGION_SIZE		(1 << __CTR_FLAG_REGION_SIZE)
100 #define CTR_FLAG_RAID10_COPIES		(1 << __CTR_FLAG_RAID10_COPIES)
101 #define CTR_FLAG_RAID10_FORMAT		(1 << __CTR_FLAG_RAID10_FORMAT)
102 #define CTR_FLAG_DELTA_DISKS		(1 << __CTR_FLAG_DELTA_DISKS)
103 #define CTR_FLAG_DATA_OFFSET		(1 << __CTR_FLAG_DATA_OFFSET)
104 #define CTR_FLAG_RAID10_USE_NEAR_SETS	(1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
105 #define CTR_FLAG_JOURNAL_DEV		(1 << __CTR_FLAG_JOURNAL_DEV)
106 #define CTR_FLAG_JOURNAL_MODE		(1 << __CTR_FLAG_JOURNAL_MODE)
107 
108 /*
109  * Definitions of various constructor flags to
110  * be used in checks of valid / invalid flags
111  * per raid level.
112  */
113 /* Define all any sync flags */
114 #define	CTR_FLAGS_ANY_SYNC		(CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
115 
116 /* Define flags for options without argument (e.g. 'nosync') */
117 #define	CTR_FLAG_OPTIONS_NO_ARGS	(CTR_FLAGS_ANY_SYNC | \
118 					 CTR_FLAG_RAID10_USE_NEAR_SETS)
119 
120 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
121 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
122 				  CTR_FLAG_WRITE_MOSTLY | \
123 				  CTR_FLAG_DAEMON_SLEEP | \
124 				  CTR_FLAG_MIN_RECOVERY_RATE | \
125 				  CTR_FLAG_MAX_RECOVERY_RATE | \
126 				  CTR_FLAG_MAX_WRITE_BEHIND | \
127 				  CTR_FLAG_STRIPE_CACHE | \
128 				  CTR_FLAG_REGION_SIZE | \
129 				  CTR_FLAG_RAID10_COPIES | \
130 				  CTR_FLAG_RAID10_FORMAT | \
131 				  CTR_FLAG_DELTA_DISKS | \
132 				  CTR_FLAG_DATA_OFFSET)
133 
134 /* Valid options definitions per raid level... */
135 
136 /* "raid0" does only accept data offset */
137 #define RAID0_VALID_FLAGS	(CTR_FLAG_DATA_OFFSET)
138 
139 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
140 #define RAID1_VALID_FLAGS	(CTR_FLAGS_ANY_SYNC | \
141 				 CTR_FLAG_REBUILD | \
142 				 CTR_FLAG_WRITE_MOSTLY | \
143 				 CTR_FLAG_DAEMON_SLEEP | \
144 				 CTR_FLAG_MIN_RECOVERY_RATE | \
145 				 CTR_FLAG_MAX_RECOVERY_RATE | \
146 				 CTR_FLAG_MAX_WRITE_BEHIND | \
147 				 CTR_FLAG_REGION_SIZE | \
148 				 CTR_FLAG_DELTA_DISKS | \
149 				 CTR_FLAG_DATA_OFFSET)
150 
151 /* "raid10" does not accept any raid1 or stripe cache options */
152 #define RAID10_VALID_FLAGS	(CTR_FLAGS_ANY_SYNC | \
153 				 CTR_FLAG_REBUILD | \
154 				 CTR_FLAG_DAEMON_SLEEP | \
155 				 CTR_FLAG_MIN_RECOVERY_RATE | \
156 				 CTR_FLAG_MAX_RECOVERY_RATE | \
157 				 CTR_FLAG_REGION_SIZE | \
158 				 CTR_FLAG_RAID10_COPIES | \
159 				 CTR_FLAG_RAID10_FORMAT | \
160 				 CTR_FLAG_DELTA_DISKS | \
161 				 CTR_FLAG_DATA_OFFSET | \
162 				 CTR_FLAG_RAID10_USE_NEAR_SETS)
163 
164 /*
165  * "raid4/5/6" do not accept any raid1 or raid10 specific options
166  *
167  * "raid6" does not accept "nosync", because it is not guaranteed
168  * that both parity and q-syndrome are being written properly with
169  * any writes
170  */
171 #define RAID45_VALID_FLAGS	(CTR_FLAGS_ANY_SYNC | \
172 				 CTR_FLAG_REBUILD | \
173 				 CTR_FLAG_DAEMON_SLEEP | \
174 				 CTR_FLAG_MIN_RECOVERY_RATE | \
175 				 CTR_FLAG_MAX_RECOVERY_RATE | \
176 				 CTR_FLAG_STRIPE_CACHE | \
177 				 CTR_FLAG_REGION_SIZE | \
178 				 CTR_FLAG_DELTA_DISKS | \
179 				 CTR_FLAG_DATA_OFFSET | \
180 				 CTR_FLAG_JOURNAL_DEV | \
181 				 CTR_FLAG_JOURNAL_MODE)
182 
183 #define RAID6_VALID_FLAGS	(CTR_FLAG_SYNC | \
184 				 CTR_FLAG_REBUILD | \
185 				 CTR_FLAG_DAEMON_SLEEP | \
186 				 CTR_FLAG_MIN_RECOVERY_RATE | \
187 				 CTR_FLAG_MAX_RECOVERY_RATE | \
188 				 CTR_FLAG_STRIPE_CACHE | \
189 				 CTR_FLAG_REGION_SIZE | \
190 				 CTR_FLAG_DELTA_DISKS | \
191 				 CTR_FLAG_DATA_OFFSET | \
192 				 CTR_FLAG_JOURNAL_DEV | \
193 				 CTR_FLAG_JOURNAL_MODE)
194 /* ...valid options definitions per raid level */
195 
196 /*
197  * Flags for rs->runtime_flags field
198  * (RT_FLAG prefix meaning "runtime flag")
199  *
200  * These are all internal and used to define runtime state,
201  * e.g. to prevent another resume from preresume processing
202  * the raid set all over again.
203  */
204 #define RT_FLAG_RS_PRERESUMED		0
205 #define RT_FLAG_RS_RESUMED		1
206 #define RT_FLAG_RS_BITMAP_LOADED	2
207 #define RT_FLAG_UPDATE_SBS		3
208 #define RT_FLAG_RESHAPE_RS		4
209 #define RT_FLAG_RS_SUSPENDED		5
210 #define RT_FLAG_RS_IN_SYNC		6
211 #define RT_FLAG_RS_RESYNCING		7
212 #define RT_FLAG_RS_GROW			8
213 
214 /* Array elements of 64 bit needed for rebuild/failed disk bits */
215 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
216 
217 /*
218  * raid set level, layout and chunk sectors backup/restore
219  */
220 struct rs_layout {
221 	int new_level;
222 	int new_layout;
223 	int new_chunk_sectors;
224 };
225 
226 struct raid_set {
227 	struct dm_target *ti;
228 
229 	uint32_t stripe_cache_entries;
230 	unsigned long ctr_flags;
231 	unsigned long runtime_flags;
232 
233 	uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
234 
235 	int raid_disks;
236 	int delta_disks;
237 	int data_offset;
238 	int raid10_copies;
239 	int requested_bitmap_chunk_sectors;
240 
241 	struct mddev md;
242 	struct raid_type *raid_type;
243 	struct dm_target_callbacks callbacks;
244 
245 	sector_t array_sectors;
246 	sector_t dev_sectors;
247 
248 	/* Optional raid4/5/6 journal device */
249 	struct journal_dev {
250 		struct dm_dev *dev;
251 		struct md_rdev rdev;
252 		int mode;
253 	} journal_dev;
254 
255 	struct raid_dev dev[0];
256 };
257 
258 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
259 {
260 	struct mddev *mddev = &rs->md;
261 
262 	l->new_level = mddev->new_level;
263 	l->new_layout = mddev->new_layout;
264 	l->new_chunk_sectors = mddev->new_chunk_sectors;
265 }
266 
267 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
268 {
269 	struct mddev *mddev = &rs->md;
270 
271 	mddev->new_level = l->new_level;
272 	mddev->new_layout = l->new_layout;
273 	mddev->new_chunk_sectors = l->new_chunk_sectors;
274 }
275 
276 /* raid10 algorithms (i.e. formats) */
277 #define	ALGORITHM_RAID10_DEFAULT	0
278 #define	ALGORITHM_RAID10_NEAR		1
279 #define	ALGORITHM_RAID10_OFFSET		2
280 #define	ALGORITHM_RAID10_FAR		3
281 
282 /* Supported raid types and properties. */
283 static struct raid_type {
284 	const char *name;		/* RAID algorithm. */
285 	const char *descr;		/* Descriptor text for logging. */
286 	const unsigned int parity_devs;	/* # of parity devices. */
287 	const unsigned int minimal_devs;/* minimal # of devices in set. */
288 	const unsigned int level;	/* RAID level. */
289 	const unsigned int algorithm;	/* RAID algorithm. */
290 } raid_types[] = {
291 	{"raid0",	  "raid0 (striping)",			    0, 2, 0,  0 /* NONE */},
292 	{"raid1",	  "raid1 (mirroring)",			    0, 2, 1,  0 /* NONE */},
293 	{"raid10_far",	  "raid10 far (striped mirrors)",	    0, 2, 10, ALGORITHM_RAID10_FAR},
294 	{"raid10_offset", "raid10 offset (striped mirrors)",	    0, 2, 10, ALGORITHM_RAID10_OFFSET},
295 	{"raid10_near",	  "raid10 near (striped mirrors)",	    0, 2, 10, ALGORITHM_RAID10_NEAR},
296 	{"raid10",	  "raid10 (striped mirrors)",		    0, 2, 10, ALGORITHM_RAID10_DEFAULT},
297 	{"raid4",	  "raid4 (dedicated first parity disk)",    1, 2, 5,  ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
298 	{"raid5_n",	  "raid5 (dedicated last parity disk)",	    1, 2, 5,  ALGORITHM_PARITY_N},
299 	{"raid5_ls",	  "raid5 (left symmetric)",		    1, 2, 5,  ALGORITHM_LEFT_SYMMETRIC},
300 	{"raid5_rs",	  "raid5 (right symmetric)",		    1, 2, 5,  ALGORITHM_RIGHT_SYMMETRIC},
301 	{"raid5_la",	  "raid5 (left asymmetric)",		    1, 2, 5,  ALGORITHM_LEFT_ASYMMETRIC},
302 	{"raid5_ra",	  "raid5 (right asymmetric)",		    1, 2, 5,  ALGORITHM_RIGHT_ASYMMETRIC},
303 	{"raid6_zr",	  "raid6 (zero restart)",		    2, 4, 6,  ALGORITHM_ROTATING_ZERO_RESTART},
304 	{"raid6_nr",	  "raid6 (N restart)",			    2, 4, 6,  ALGORITHM_ROTATING_N_RESTART},
305 	{"raid6_nc",	  "raid6 (N continue)",			    2, 4, 6,  ALGORITHM_ROTATING_N_CONTINUE},
306 	{"raid6_n_6",	  "raid6 (dedicated parity/Q n/6)",	    2, 4, 6,  ALGORITHM_PARITY_N_6},
307 	{"raid6_ls_6",	  "raid6 (left symmetric dedicated Q 6)",   2, 4, 6,  ALGORITHM_LEFT_SYMMETRIC_6},
308 	{"raid6_rs_6",	  "raid6 (right symmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_RIGHT_SYMMETRIC_6},
309 	{"raid6_la_6",	  "raid6 (left asymmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_LEFT_ASYMMETRIC_6},
310 	{"raid6_ra_6",	  "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6,  ALGORITHM_RIGHT_ASYMMETRIC_6}
311 };
312 
313 /* True, if @v is in inclusive range [@min, @max] */
314 static bool __within_range(long v, long min, long max)
315 {
316 	return v >= min && v <= max;
317 }
318 
319 /* All table line arguments are defined here */
320 static struct arg_name_flag {
321 	const unsigned long flag;
322 	const char *name;
323 } __arg_name_flags[] = {
324 	{ CTR_FLAG_SYNC, "sync"},
325 	{ CTR_FLAG_NOSYNC, "nosync"},
326 	{ CTR_FLAG_REBUILD, "rebuild"},
327 	{ CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
328 	{ CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
329 	{ CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
330 	{ CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
331 	{ CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
332 	{ CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
333 	{ CTR_FLAG_REGION_SIZE, "region_size"},
334 	{ CTR_FLAG_RAID10_COPIES, "raid10_copies"},
335 	{ CTR_FLAG_RAID10_FORMAT, "raid10_format"},
336 	{ CTR_FLAG_DATA_OFFSET, "data_offset"},
337 	{ CTR_FLAG_DELTA_DISKS, "delta_disks"},
338 	{ CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
339 	{ CTR_FLAG_JOURNAL_DEV, "journal_dev" },
340 	{ CTR_FLAG_JOURNAL_MODE, "journal_mode" },
341 };
342 
343 /* Return argument name string for given @flag */
344 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
345 {
346 	if (hweight32(flag) == 1) {
347 		struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
348 
349 		while (anf-- > __arg_name_flags)
350 			if (flag & anf->flag)
351 				return anf->name;
352 
353 	} else
354 		DMERR("%s called with more than one flag!", __func__);
355 
356 	return NULL;
357 }
358 
359 /* Define correlation of raid456 journal cache modes and dm-raid target line parameters */
360 static struct {
361 	const int mode;
362 	const char *param;
363 } _raid456_journal_mode[] = {
364 	{ R5C_JOURNAL_MODE_WRITE_THROUGH , "writethrough" },
365 	{ R5C_JOURNAL_MODE_WRITE_BACK    , "writeback" }
366 };
367 
368 /* Return MD raid4/5/6 journal mode for dm @journal_mode one */
369 static int dm_raid_journal_mode_to_md(const char *mode)
370 {
371 	int m = ARRAY_SIZE(_raid456_journal_mode);
372 
373 	while (m--)
374 		if (!strcasecmp(mode, _raid456_journal_mode[m].param))
375 			return _raid456_journal_mode[m].mode;
376 
377 	return -EINVAL;
378 }
379 
380 /* Return dm-raid raid4/5/6 journal mode string for @mode */
381 static const char *md_journal_mode_to_dm_raid(const int mode)
382 {
383 	int m = ARRAY_SIZE(_raid456_journal_mode);
384 
385 	while (m--)
386 		if (mode == _raid456_journal_mode[m].mode)
387 			return _raid456_journal_mode[m].param;
388 
389 	return "unknown";
390 }
391 
392 /*
393  * Bool helpers to test for various raid levels of a raid set.
394  * It's level as reported by the superblock rather than
395  * the requested raid_type passed to the constructor.
396  */
397 /* Return true, if raid set in @rs is raid0 */
398 static bool rs_is_raid0(struct raid_set *rs)
399 {
400 	return !rs->md.level;
401 }
402 
403 /* Return true, if raid set in @rs is raid1 */
404 static bool rs_is_raid1(struct raid_set *rs)
405 {
406 	return rs->md.level == 1;
407 }
408 
409 /* Return true, if raid set in @rs is raid10 */
410 static bool rs_is_raid10(struct raid_set *rs)
411 {
412 	return rs->md.level == 10;
413 }
414 
415 /* Return true, if raid set in @rs is level 6 */
416 static bool rs_is_raid6(struct raid_set *rs)
417 {
418 	return rs->md.level == 6;
419 }
420 
421 /* Return true, if raid set in @rs is level 4, 5 or 6 */
422 static bool rs_is_raid456(struct raid_set *rs)
423 {
424 	return __within_range(rs->md.level, 4, 6);
425 }
426 
427 /* Return true, if raid set in @rs is reshapable */
428 static bool __is_raid10_far(int layout);
429 static bool rs_is_reshapable(struct raid_set *rs)
430 {
431 	return rs_is_raid456(rs) ||
432 	       (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
433 }
434 
435 /* Return true, if raid set in @rs is recovering */
436 static bool rs_is_recovering(struct raid_set *rs)
437 {
438 	return rs->md.recovery_cp < rs->md.dev_sectors;
439 }
440 
441 /* Return true, if raid set in @rs is reshaping */
442 static bool rs_is_reshaping(struct raid_set *rs)
443 {
444 	return rs->md.reshape_position != MaxSector;
445 }
446 
447 /*
448  * bool helpers to test for various raid levels of a raid type @rt
449  */
450 
451 /* Return true, if raid type in @rt is raid0 */
452 static bool rt_is_raid0(struct raid_type *rt)
453 {
454 	return !rt->level;
455 }
456 
457 /* Return true, if raid type in @rt is raid1 */
458 static bool rt_is_raid1(struct raid_type *rt)
459 {
460 	return rt->level == 1;
461 }
462 
463 /* Return true, if raid type in @rt is raid10 */
464 static bool rt_is_raid10(struct raid_type *rt)
465 {
466 	return rt->level == 10;
467 }
468 
469 /* Return true, if raid type in @rt is raid4/5 */
470 static bool rt_is_raid45(struct raid_type *rt)
471 {
472 	return __within_range(rt->level, 4, 5);
473 }
474 
475 /* Return true, if raid type in @rt is raid6 */
476 static bool rt_is_raid6(struct raid_type *rt)
477 {
478 	return rt->level == 6;
479 }
480 
481 /* Return true, if raid type in @rt is raid4/5/6 */
482 static bool rt_is_raid456(struct raid_type *rt)
483 {
484 	return __within_range(rt->level, 4, 6);
485 }
486 /* END: raid level bools */
487 
488 /* Return valid ctr flags for the raid level of @rs */
489 static unsigned long __valid_flags(struct raid_set *rs)
490 {
491 	if (rt_is_raid0(rs->raid_type))
492 		return RAID0_VALID_FLAGS;
493 	else if (rt_is_raid1(rs->raid_type))
494 		return RAID1_VALID_FLAGS;
495 	else if (rt_is_raid10(rs->raid_type))
496 		return RAID10_VALID_FLAGS;
497 	else if (rt_is_raid45(rs->raid_type))
498 		return RAID45_VALID_FLAGS;
499 	else if (rt_is_raid6(rs->raid_type))
500 		return RAID6_VALID_FLAGS;
501 
502 	return 0;
503 }
504 
505 /*
506  * Check for valid flags set on @rs
507  *
508  * Has to be called after parsing of the ctr flags!
509  */
510 static int rs_check_for_valid_flags(struct raid_set *rs)
511 {
512 	if (rs->ctr_flags & ~__valid_flags(rs)) {
513 		rs->ti->error = "Invalid flags combination";
514 		return -EINVAL;
515 	}
516 
517 	return 0;
518 }
519 
520 /* MD raid10 bit definitions and helpers */
521 #define RAID10_OFFSET			(1 << 16) /* stripes with data copies area adjacent on devices */
522 #define RAID10_BROCKEN_USE_FAR_SETS	(1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
523 #define RAID10_USE_FAR_SETS		(1 << 18) /* Use sets instead of whole stripe rotation */
524 #define RAID10_FAR_COPIES_SHIFT		8	  /* raid10 # far copies shift (2nd byte of layout) */
525 
526 /* Return md raid10 near copies for @layout */
527 static unsigned int __raid10_near_copies(int layout)
528 {
529 	return layout & 0xFF;
530 }
531 
532 /* Return md raid10 far copies for @layout */
533 static unsigned int __raid10_far_copies(int layout)
534 {
535 	return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
536 }
537 
538 /* Return true if md raid10 offset for @layout */
539 static bool __is_raid10_offset(int layout)
540 {
541 	return !!(layout & RAID10_OFFSET);
542 }
543 
544 /* Return true if md raid10 near for @layout */
545 static bool __is_raid10_near(int layout)
546 {
547 	return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
548 }
549 
550 /* Return true if md raid10 far for @layout */
551 static bool __is_raid10_far(int layout)
552 {
553 	return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
554 }
555 
556 /* Return md raid10 layout string for @layout */
557 static const char *raid10_md_layout_to_format(int layout)
558 {
559 	/*
560 	 * Bit 16 stands for "offset"
561 	 * (i.e. adjacent stripes hold copies)
562 	 *
563 	 * Refer to MD's raid10.c for details
564 	 */
565 	if (__is_raid10_offset(layout))
566 		return "offset";
567 
568 	if (__raid10_near_copies(layout) > 1)
569 		return "near";
570 
571 	if (__raid10_far_copies(layout) > 1)
572 		return "far";
573 
574 	return "unknown";
575 }
576 
577 /* Return md raid10 algorithm for @name */
578 static int raid10_name_to_format(const char *name)
579 {
580 	if (!strcasecmp(name, "near"))
581 		return ALGORITHM_RAID10_NEAR;
582 	else if (!strcasecmp(name, "offset"))
583 		return ALGORITHM_RAID10_OFFSET;
584 	else if (!strcasecmp(name, "far"))
585 		return ALGORITHM_RAID10_FAR;
586 
587 	return -EINVAL;
588 }
589 
590 /* Return md raid10 copies for @layout */
591 static unsigned int raid10_md_layout_to_copies(int layout)
592 {
593 	return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
594 }
595 
596 /* Return md raid10 format id for @format string */
597 static int raid10_format_to_md_layout(struct raid_set *rs,
598 				      unsigned int algorithm,
599 				      unsigned int copies)
600 {
601 	unsigned int n = 1, f = 1, r = 0;
602 
603 	/*
604 	 * MD resilienece flaw:
605 	 *
606 	 * enabling use_far_sets for far/offset formats causes copies
607 	 * to be colocated on the same devs together with their origins!
608 	 *
609 	 * -> disable it for now in the definition above
610 	 */
611 	if (algorithm == ALGORITHM_RAID10_DEFAULT ||
612 	    algorithm == ALGORITHM_RAID10_NEAR)
613 		n = copies;
614 
615 	else if (algorithm == ALGORITHM_RAID10_OFFSET) {
616 		f = copies;
617 		r = RAID10_OFFSET;
618 		if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
619 			r |= RAID10_USE_FAR_SETS;
620 
621 	} else if (algorithm == ALGORITHM_RAID10_FAR) {
622 		f = copies;
623 		if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
624 			r |= RAID10_USE_FAR_SETS;
625 
626 	} else
627 		return -EINVAL;
628 
629 	return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
630 }
631 /* END: MD raid10 bit definitions and helpers */
632 
633 /* Check for any of the raid10 algorithms */
634 static bool __got_raid10(struct raid_type *rtp, const int layout)
635 {
636 	if (rtp->level == 10) {
637 		switch (rtp->algorithm) {
638 		case ALGORITHM_RAID10_DEFAULT:
639 		case ALGORITHM_RAID10_NEAR:
640 			return __is_raid10_near(layout);
641 		case ALGORITHM_RAID10_OFFSET:
642 			return __is_raid10_offset(layout);
643 		case ALGORITHM_RAID10_FAR:
644 			return __is_raid10_far(layout);
645 		default:
646 			break;
647 		}
648 	}
649 
650 	return false;
651 }
652 
653 /* Return raid_type for @name */
654 static struct raid_type *get_raid_type(const char *name)
655 {
656 	struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
657 
658 	while (rtp-- > raid_types)
659 		if (!strcasecmp(rtp->name, name))
660 			return rtp;
661 
662 	return NULL;
663 }
664 
665 /* Return raid_type for @name based derived from @level and @layout */
666 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
667 {
668 	struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
669 
670 	while (rtp-- > raid_types) {
671 		/* RAID10 special checks based on @layout flags/properties */
672 		if (rtp->level == level &&
673 		    (__got_raid10(rtp, layout) || rtp->algorithm == layout))
674 			return rtp;
675 	}
676 
677 	return NULL;
678 }
679 
680 /* Adjust rdev sectors */
681 static void rs_set_rdev_sectors(struct raid_set *rs)
682 {
683 	struct mddev *mddev = &rs->md;
684 	struct md_rdev *rdev;
685 
686 	/*
687 	 * raid10 sets rdev->sector to the device size, which
688 	 * is unintended in case of out-of-place reshaping
689 	 */
690 	rdev_for_each(rdev, mddev)
691 		if (!test_bit(Journal, &rdev->flags))
692 			rdev->sectors = mddev->dev_sectors;
693 }
694 
695 /*
696  * Change bdev capacity of @rs in case of a disk add/remove reshape
697  */
698 static void rs_set_capacity(struct raid_set *rs)
699 {
700 	struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
701 
702 	set_capacity(gendisk, rs->md.array_sectors);
703 	revalidate_disk(gendisk);
704 }
705 
706 /*
707  * Set the mddev properties in @rs to the current
708  * ones retrieved from the freshest superblock
709  */
710 static void rs_set_cur(struct raid_set *rs)
711 {
712 	struct mddev *mddev = &rs->md;
713 
714 	mddev->new_level = mddev->level;
715 	mddev->new_layout = mddev->layout;
716 	mddev->new_chunk_sectors = mddev->chunk_sectors;
717 }
718 
719 /*
720  * Set the mddev properties in @rs to the new
721  * ones requested by the ctr
722  */
723 static void rs_set_new(struct raid_set *rs)
724 {
725 	struct mddev *mddev = &rs->md;
726 
727 	mddev->level = mddev->new_level;
728 	mddev->layout = mddev->new_layout;
729 	mddev->chunk_sectors = mddev->new_chunk_sectors;
730 	mddev->raid_disks = rs->raid_disks;
731 	mddev->delta_disks = 0;
732 }
733 
734 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
735 				       unsigned int raid_devs)
736 {
737 	unsigned int i;
738 	struct raid_set *rs;
739 
740 	if (raid_devs <= raid_type->parity_devs) {
741 		ti->error = "Insufficient number of devices";
742 		return ERR_PTR(-EINVAL);
743 	}
744 
745 	rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL);
746 	if (!rs) {
747 		ti->error = "Cannot allocate raid context";
748 		return ERR_PTR(-ENOMEM);
749 	}
750 
751 	mddev_init(&rs->md);
752 
753 	rs->raid_disks = raid_devs;
754 	rs->delta_disks = 0;
755 
756 	rs->ti = ti;
757 	rs->raid_type = raid_type;
758 	rs->stripe_cache_entries = 256;
759 	rs->md.raid_disks = raid_devs;
760 	rs->md.level = raid_type->level;
761 	rs->md.new_level = rs->md.level;
762 	rs->md.layout = raid_type->algorithm;
763 	rs->md.new_layout = rs->md.layout;
764 	rs->md.delta_disks = 0;
765 	rs->md.recovery_cp = MaxSector;
766 
767 	for (i = 0; i < raid_devs; i++)
768 		md_rdev_init(&rs->dev[i].rdev);
769 
770 	/*
771 	 * Remaining items to be initialized by further RAID params:
772 	 *  rs->md.persistent
773 	 *  rs->md.external
774 	 *  rs->md.chunk_sectors
775 	 *  rs->md.new_chunk_sectors
776 	 *  rs->md.dev_sectors
777 	 */
778 
779 	return rs;
780 }
781 
782 /* Free all @rs allocations */
783 static void raid_set_free(struct raid_set *rs)
784 {
785 	int i;
786 
787 	if (rs->journal_dev.dev) {
788 		md_rdev_clear(&rs->journal_dev.rdev);
789 		dm_put_device(rs->ti, rs->journal_dev.dev);
790 	}
791 
792 	for (i = 0; i < rs->raid_disks; i++) {
793 		if (rs->dev[i].meta_dev)
794 			dm_put_device(rs->ti, rs->dev[i].meta_dev);
795 		md_rdev_clear(&rs->dev[i].rdev);
796 		if (rs->dev[i].data_dev)
797 			dm_put_device(rs->ti, rs->dev[i].data_dev);
798 	}
799 
800 	kfree(rs);
801 }
802 
803 /*
804  * For every device we have two words
805  *  <meta_dev>: meta device name or '-' if missing
806  *  <data_dev>: data device name or '-' if missing
807  *
808  * The following are permitted:
809  *    - -
810  *    - <data_dev>
811  *    <meta_dev> <data_dev>
812  *
813  * The following is not allowed:
814  *    <meta_dev> -
815  *
816  * This code parses those words.  If there is a failure,
817  * the caller must use raid_set_free() to unwind the operations.
818  */
819 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
820 {
821 	int i;
822 	int rebuild = 0;
823 	int metadata_available = 0;
824 	int r = 0;
825 	const char *arg;
826 
827 	/* Put off the number of raid devices argument to get to dev pairs */
828 	arg = dm_shift_arg(as);
829 	if (!arg)
830 		return -EINVAL;
831 
832 	for (i = 0; i < rs->raid_disks; i++) {
833 		rs->dev[i].rdev.raid_disk = i;
834 
835 		rs->dev[i].meta_dev = NULL;
836 		rs->dev[i].data_dev = NULL;
837 
838 		/*
839 		 * There are no offsets initially.
840 		 * Out of place reshape will set them accordingly.
841 		 */
842 		rs->dev[i].rdev.data_offset = 0;
843 		rs->dev[i].rdev.new_data_offset = 0;
844 		rs->dev[i].rdev.mddev = &rs->md;
845 
846 		arg = dm_shift_arg(as);
847 		if (!arg)
848 			return -EINVAL;
849 
850 		if (strcmp(arg, "-")) {
851 			r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
852 					  &rs->dev[i].meta_dev);
853 			if (r) {
854 				rs->ti->error = "RAID metadata device lookup failure";
855 				return r;
856 			}
857 
858 			rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
859 			if (!rs->dev[i].rdev.sb_page) {
860 				rs->ti->error = "Failed to allocate superblock page";
861 				return -ENOMEM;
862 			}
863 		}
864 
865 		arg = dm_shift_arg(as);
866 		if (!arg)
867 			return -EINVAL;
868 
869 		if (!strcmp(arg, "-")) {
870 			if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
871 			    (!rs->dev[i].rdev.recovery_offset)) {
872 				rs->ti->error = "Drive designated for rebuild not specified";
873 				return -EINVAL;
874 			}
875 
876 			if (rs->dev[i].meta_dev) {
877 				rs->ti->error = "No data device supplied with metadata device";
878 				return -EINVAL;
879 			}
880 
881 			continue;
882 		}
883 
884 		r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
885 				  &rs->dev[i].data_dev);
886 		if (r) {
887 			rs->ti->error = "RAID device lookup failure";
888 			return r;
889 		}
890 
891 		if (rs->dev[i].meta_dev) {
892 			metadata_available = 1;
893 			rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
894 		}
895 		rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
896 		list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
897 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
898 			rebuild++;
899 	}
900 
901 	if (rs->journal_dev.dev)
902 		list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks);
903 
904 	if (metadata_available) {
905 		rs->md.external = 0;
906 		rs->md.persistent = 1;
907 		rs->md.major_version = 2;
908 	} else if (rebuild && !rs->md.recovery_cp) {
909 		/*
910 		 * Without metadata, we will not be able to tell if the array
911 		 * is in-sync or not - we must assume it is not.  Therefore,
912 		 * it is impossible to rebuild a drive.
913 		 *
914 		 * Even if there is metadata, the on-disk information may
915 		 * indicate that the array is not in-sync and it will then
916 		 * fail at that time.
917 		 *
918 		 * User could specify 'nosync' option if desperate.
919 		 */
920 		rs->ti->error = "Unable to rebuild drive while array is not in-sync";
921 		return -EINVAL;
922 	}
923 
924 	return 0;
925 }
926 
927 /*
928  * validate_region_size
929  * @rs
930  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
931  *
932  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
933  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
934  *
935  * Returns: 0 on success, -EINVAL on failure.
936  */
937 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
938 {
939 	unsigned long min_region_size = rs->ti->len / (1 << 21);
940 
941 	if (rs_is_raid0(rs))
942 		return 0;
943 
944 	if (!region_size) {
945 		/*
946 		 * Choose a reasonable default.	 All figures in sectors.
947 		 */
948 		if (min_region_size > (1 << 13)) {
949 			/* If not a power of 2, make it the next power of 2 */
950 			region_size = roundup_pow_of_two(min_region_size);
951 			DMINFO("Choosing default region size of %lu sectors",
952 			       region_size);
953 		} else {
954 			DMINFO("Choosing default region size of 4MiB");
955 			region_size = 1 << 13; /* sectors */
956 		}
957 	} else {
958 		/*
959 		 * Validate user-supplied value.
960 		 */
961 		if (region_size > rs->ti->len) {
962 			rs->ti->error = "Supplied region size is too large";
963 			return -EINVAL;
964 		}
965 
966 		if (region_size < min_region_size) {
967 			DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
968 			      region_size, min_region_size);
969 			rs->ti->error = "Supplied region size is too small";
970 			return -EINVAL;
971 		}
972 
973 		if (!is_power_of_2(region_size)) {
974 			rs->ti->error = "Region size is not a power of 2";
975 			return -EINVAL;
976 		}
977 
978 		if (region_size < rs->md.chunk_sectors) {
979 			rs->ti->error = "Region size is smaller than the chunk size";
980 			return -EINVAL;
981 		}
982 	}
983 
984 	/*
985 	 * Convert sectors to bytes.
986 	 */
987 	rs->md.bitmap_info.chunksize = to_bytes(region_size);
988 
989 	return 0;
990 }
991 
992 /*
993  * validate_raid_redundancy
994  * @rs
995  *
996  * Determine if there are enough devices in the array that haven't
997  * failed (or are being rebuilt) to form a usable array.
998  *
999  * Returns: 0 on success, -EINVAL on failure.
1000  */
1001 static int validate_raid_redundancy(struct raid_set *rs)
1002 {
1003 	unsigned int i, rebuild_cnt = 0;
1004 	unsigned int rebuilds_per_group = 0, copies;
1005 	unsigned int group_size, last_group_start;
1006 
1007 	for (i = 0; i < rs->md.raid_disks; i++)
1008 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
1009 		    !rs->dev[i].rdev.sb_page)
1010 			rebuild_cnt++;
1011 
1012 	switch (rs->md.level) {
1013 	case 0:
1014 		break;
1015 	case 1:
1016 		if (rebuild_cnt >= rs->md.raid_disks)
1017 			goto too_many;
1018 		break;
1019 	case 4:
1020 	case 5:
1021 	case 6:
1022 		if (rebuild_cnt > rs->raid_type->parity_devs)
1023 			goto too_many;
1024 		break;
1025 	case 10:
1026 		copies = raid10_md_layout_to_copies(rs->md.new_layout);
1027 		if (copies < 2) {
1028 			DMERR("Bogus raid10 data copies < 2!");
1029 			return -EINVAL;
1030 		}
1031 
1032 		if (rebuild_cnt < copies)
1033 			break;
1034 
1035 		/*
1036 		 * It is possible to have a higher rebuild count for RAID10,
1037 		 * as long as the failed devices occur in different mirror
1038 		 * groups (i.e. different stripes).
1039 		 *
1040 		 * When checking "near" format, make sure no adjacent devices
1041 		 * have failed beyond what can be handled.  In addition to the
1042 		 * simple case where the number of devices is a multiple of the
1043 		 * number of copies, we must also handle cases where the number
1044 		 * of devices is not a multiple of the number of copies.
1045 		 * E.g.	   dev1 dev2 dev3 dev4 dev5
1046 		 *	    A	 A    B	   B	C
1047 		 *	    C	 D    D	   E	E
1048 		 */
1049 		if (__is_raid10_near(rs->md.new_layout)) {
1050 			for (i = 0; i < rs->md.raid_disks; i++) {
1051 				if (!(i % copies))
1052 					rebuilds_per_group = 0;
1053 				if ((!rs->dev[i].rdev.sb_page ||
1054 				    !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1055 				    (++rebuilds_per_group >= copies))
1056 					goto too_many;
1057 			}
1058 			break;
1059 		}
1060 
1061 		/*
1062 		 * When checking "far" and "offset" formats, we need to ensure
1063 		 * that the device that holds its copy is not also dead or
1064 		 * being rebuilt.  (Note that "far" and "offset" formats only
1065 		 * support two copies right now.  These formats also only ever
1066 		 * use the 'use_far_sets' variant.)
1067 		 *
1068 		 * This check is somewhat complicated by the need to account
1069 		 * for arrays that are not a multiple of (far) copies.	This
1070 		 * results in the need to treat the last (potentially larger)
1071 		 * set differently.
1072 		 */
1073 		group_size = (rs->md.raid_disks / copies);
1074 		last_group_start = (rs->md.raid_disks / group_size) - 1;
1075 		last_group_start *= group_size;
1076 		for (i = 0; i < rs->md.raid_disks; i++) {
1077 			if (!(i % copies) && !(i > last_group_start))
1078 				rebuilds_per_group = 0;
1079 			if ((!rs->dev[i].rdev.sb_page ||
1080 			     !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1081 			    (++rebuilds_per_group >= copies))
1082 					goto too_many;
1083 		}
1084 		break;
1085 	default:
1086 		if (rebuild_cnt)
1087 			return -EINVAL;
1088 	}
1089 
1090 	return 0;
1091 
1092 too_many:
1093 	return -EINVAL;
1094 }
1095 
1096 /*
1097  * Possible arguments are...
1098  *	<chunk_size> [optional_args]
1099  *
1100  * Argument definitions
1101  *    <chunk_size>			The number of sectors per disk that
1102  *					will form the "stripe"
1103  *    [[no]sync]			Force or prevent recovery of the
1104  *					entire array
1105  *    [rebuild <idx>]			Rebuild the drive indicated by the index
1106  *    [daemon_sleep <ms>]		Time between bitmap daemon work to
1107  *					clear bits
1108  *    [min_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
1109  *    [max_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
1110  *    [write_mostly <idx>]		Indicate a write mostly drive via index
1111  *    [max_write_behind <sectors>]	See '-write-behind=' (man mdadm)
1112  *    [stripe_cache <sectors>]		Stripe cache size for higher RAIDs
1113  *    [region_size <sectors>]		Defines granularity of bitmap
1114  *    [journal_dev <dev>]		raid4/5/6 journaling deviice
1115  *    					(i.e. write hole closing log)
1116  *
1117  * RAID10-only options:
1118  *    [raid10_copies <# copies>]	Number of copies.  (Default: 2)
1119  *    [raid10_format <near|far|offset>] Layout algorithm.  (Default: near)
1120  */
1121 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1122 			     unsigned int num_raid_params)
1123 {
1124 	int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1125 	unsigned int raid10_copies = 2;
1126 	unsigned int i, write_mostly = 0;
1127 	unsigned int region_size = 0;
1128 	sector_t max_io_len;
1129 	const char *arg, *key;
1130 	struct raid_dev *rd;
1131 	struct raid_type *rt = rs->raid_type;
1132 
1133 	arg = dm_shift_arg(as);
1134 	num_raid_params--; /* Account for chunk_size argument */
1135 
1136 	if (kstrtoint(arg, 10, &value) < 0) {
1137 		rs->ti->error = "Bad numerical argument given for chunk_size";
1138 		return -EINVAL;
1139 	}
1140 
1141 	/*
1142 	 * First, parse the in-order required arguments
1143 	 * "chunk_size" is the only argument of this type.
1144 	 */
1145 	if (rt_is_raid1(rt)) {
1146 		if (value)
1147 			DMERR("Ignoring chunk size parameter for RAID 1");
1148 		value = 0;
1149 	} else if (!is_power_of_2(value)) {
1150 		rs->ti->error = "Chunk size must be a power of 2";
1151 		return -EINVAL;
1152 	} else if (value < 8) {
1153 		rs->ti->error = "Chunk size value is too small";
1154 		return -EINVAL;
1155 	}
1156 
1157 	rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1158 
1159 	/*
1160 	 * We set each individual device as In_sync with a completed
1161 	 * 'recovery_offset'.  If there has been a device failure or
1162 	 * replacement then one of the following cases applies:
1163 	 *
1164 	 *   1) User specifies 'rebuild'.
1165 	 *	- Device is reset when param is read.
1166 	 *   2) A new device is supplied.
1167 	 *	- No matching superblock found, resets device.
1168 	 *   3) Device failure was transient and returns on reload.
1169 	 *	- Failure noticed, resets device for bitmap replay.
1170 	 *   4) Device hadn't completed recovery after previous failure.
1171 	 *	- Superblock is read and overrides recovery_offset.
1172 	 *
1173 	 * What is found in the superblocks of the devices is always
1174 	 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1175 	 */
1176 	for (i = 0; i < rs->raid_disks; i++) {
1177 		set_bit(In_sync, &rs->dev[i].rdev.flags);
1178 		rs->dev[i].rdev.recovery_offset = MaxSector;
1179 	}
1180 
1181 	/*
1182 	 * Second, parse the unordered optional arguments
1183 	 */
1184 	for (i = 0; i < num_raid_params; i++) {
1185 		key = dm_shift_arg(as);
1186 		if (!key) {
1187 			rs->ti->error = "Not enough raid parameters given";
1188 			return -EINVAL;
1189 		}
1190 
1191 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1192 			if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1193 				rs->ti->error = "Only one 'nosync' argument allowed";
1194 				return -EINVAL;
1195 			}
1196 			continue;
1197 		}
1198 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1199 			if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1200 				rs->ti->error = "Only one 'sync' argument allowed";
1201 				return -EINVAL;
1202 			}
1203 			continue;
1204 		}
1205 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1206 			if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1207 				rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1208 				return -EINVAL;
1209 			}
1210 			continue;
1211 		}
1212 
1213 		arg = dm_shift_arg(as);
1214 		i++; /* Account for the argument pairs */
1215 		if (!arg) {
1216 			rs->ti->error = "Wrong number of raid parameters given";
1217 			return -EINVAL;
1218 		}
1219 
1220 		/*
1221 		 * Parameters that take a string value are checked here.
1222 		 */
1223 		/* "raid10_format {near|offset|far} */
1224 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1225 			if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1226 				rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1227 				return -EINVAL;
1228 			}
1229 			if (!rt_is_raid10(rt)) {
1230 				rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1231 				return -EINVAL;
1232 			}
1233 			raid10_format = raid10_name_to_format(arg);
1234 			if (raid10_format < 0) {
1235 				rs->ti->error = "Invalid 'raid10_format' value given";
1236 				return raid10_format;
1237 			}
1238 			continue;
1239 		}
1240 
1241 		/* "journal_dev <dev>" */
1242 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) {
1243 			int r;
1244 			struct md_rdev *jdev;
1245 
1246 			if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1247 				rs->ti->error = "Only one raid4/5/6 set journaling device allowed";
1248 				return -EINVAL;
1249 			}
1250 			if (!rt_is_raid456(rt)) {
1251 				rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type";
1252 				return -EINVAL;
1253 			}
1254 			r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
1255 					  &rs->journal_dev.dev);
1256 			if (r) {
1257 				rs->ti->error = "raid4/5/6 journal device lookup failure";
1258 				return r;
1259 			}
1260 			jdev = &rs->journal_dev.rdev;
1261 			md_rdev_init(jdev);
1262 			jdev->mddev = &rs->md;
1263 			jdev->bdev = rs->journal_dev.dev->bdev;
1264 			jdev->sectors = to_sector(i_size_read(jdev->bdev->bd_inode));
1265 			if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) {
1266 				rs->ti->error = "No space for raid4/5/6 journal";
1267 				return -ENOSPC;
1268 			}
1269 			rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
1270 			set_bit(Journal, &jdev->flags);
1271 			continue;
1272 		}
1273 
1274 		/* "journal_mode <mode>" ("journal_dev" mandatory!) */
1275 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) {
1276 			int r;
1277 
1278 			if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1279 				rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'";
1280 				return -EINVAL;
1281 			}
1282 			if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
1283 				rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed";
1284 				return -EINVAL;
1285 			}
1286 			r = dm_raid_journal_mode_to_md(arg);
1287 			if (r < 0) {
1288 				rs->ti->error = "Invalid 'journal_mode' argument";
1289 				return r;
1290 			}
1291 			rs->journal_dev.mode = r;
1292 			continue;
1293 		}
1294 
1295 		/*
1296 		 * Parameters with number values from here on.
1297 		 */
1298 		if (kstrtoint(arg, 10, &value) < 0) {
1299 			rs->ti->error = "Bad numerical argument given in raid params";
1300 			return -EINVAL;
1301 		}
1302 
1303 		if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1304 			/*
1305 			 * "rebuild" is being passed in by userspace to provide
1306 			 * indexes of replaced devices and to set up additional
1307 			 * devices on raid level takeover.
1308 			 */
1309 			if (!__within_range(value, 0, rs->raid_disks - 1)) {
1310 				rs->ti->error = "Invalid rebuild index given";
1311 				return -EINVAL;
1312 			}
1313 
1314 			if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1315 				rs->ti->error = "rebuild for this index already given";
1316 				return -EINVAL;
1317 			}
1318 
1319 			rd = rs->dev + value;
1320 			clear_bit(In_sync, &rd->rdev.flags);
1321 			clear_bit(Faulty, &rd->rdev.flags);
1322 			rd->rdev.recovery_offset = 0;
1323 			set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1324 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1325 			if (!rt_is_raid1(rt)) {
1326 				rs->ti->error = "write_mostly option is only valid for RAID1";
1327 				return -EINVAL;
1328 			}
1329 
1330 			if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1331 				rs->ti->error = "Invalid write_mostly index given";
1332 				return -EINVAL;
1333 			}
1334 
1335 			write_mostly++;
1336 			set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1337 			set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1338 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1339 			if (!rt_is_raid1(rt)) {
1340 				rs->ti->error = "max_write_behind option is only valid for RAID1";
1341 				return -EINVAL;
1342 			}
1343 
1344 			if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1345 				rs->ti->error = "Only one max_write_behind argument pair allowed";
1346 				return -EINVAL;
1347 			}
1348 
1349 			/*
1350 			 * In device-mapper, we specify things in sectors, but
1351 			 * MD records this value in kB
1352 			 */
1353 			if (value < 0 || value / 2 > COUNTER_MAX) {
1354 				rs->ti->error = "Max write-behind limit out of range";
1355 				return -EINVAL;
1356 			}
1357 
1358 			rs->md.bitmap_info.max_write_behind = value / 2;
1359 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1360 			if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1361 				rs->ti->error = "Only one daemon_sleep argument pair allowed";
1362 				return -EINVAL;
1363 			}
1364 			if (value < 0) {
1365 				rs->ti->error = "daemon sleep period out of range";
1366 				return -EINVAL;
1367 			}
1368 			rs->md.bitmap_info.daemon_sleep = value;
1369 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1370 			/* Userspace passes new data_offset after having extended the the data image LV */
1371 			if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1372 				rs->ti->error = "Only one data_offset argument pair allowed";
1373 				return -EINVAL;
1374 			}
1375 			/* Ensure sensible data offset */
1376 			if (value < 0 ||
1377 			    (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1378 				rs->ti->error = "Bogus data_offset value";
1379 				return -EINVAL;
1380 			}
1381 			rs->data_offset = value;
1382 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1383 			/* Define the +/-# of disks to add to/remove from the given raid set */
1384 			if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1385 				rs->ti->error = "Only one delta_disks argument pair allowed";
1386 				return -EINVAL;
1387 			}
1388 			/* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1389 			if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1390 				rs->ti->error = "Too many delta_disk requested";
1391 				return -EINVAL;
1392 			}
1393 
1394 			rs->delta_disks = value;
1395 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1396 			if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1397 				rs->ti->error = "Only one stripe_cache argument pair allowed";
1398 				return -EINVAL;
1399 			}
1400 
1401 			if (!rt_is_raid456(rt)) {
1402 				rs->ti->error = "Inappropriate argument: stripe_cache";
1403 				return -EINVAL;
1404 			}
1405 
1406 			if (value < 0) {
1407 				rs->ti->error = "Bogus stripe cache entries value";
1408 				return -EINVAL;
1409 			}
1410 			rs->stripe_cache_entries = value;
1411 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1412 			if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1413 				rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1414 				return -EINVAL;
1415 			}
1416 
1417 			if (value < 0) {
1418 				rs->ti->error = "min_recovery_rate out of range";
1419 				return -EINVAL;
1420 			}
1421 			rs->md.sync_speed_min = value;
1422 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1423 			if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1424 				rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1425 				return -EINVAL;
1426 			}
1427 
1428 			if (value < 0) {
1429 				rs->ti->error = "max_recovery_rate out of range";
1430 				return -EINVAL;
1431 			}
1432 			rs->md.sync_speed_max = value;
1433 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1434 			if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1435 				rs->ti->error = "Only one region_size argument pair allowed";
1436 				return -EINVAL;
1437 			}
1438 
1439 			region_size = value;
1440 			rs->requested_bitmap_chunk_sectors = value;
1441 		} else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1442 			if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1443 				rs->ti->error = "Only one raid10_copies argument pair allowed";
1444 				return -EINVAL;
1445 			}
1446 
1447 			if (!__within_range(value, 2, rs->md.raid_disks)) {
1448 				rs->ti->error = "Bad value for 'raid10_copies'";
1449 				return -EINVAL;
1450 			}
1451 
1452 			raid10_copies = value;
1453 		} else {
1454 			DMERR("Unable to parse RAID parameter: %s", key);
1455 			rs->ti->error = "Unable to parse RAID parameter";
1456 			return -EINVAL;
1457 		}
1458 	}
1459 
1460 	if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1461 	    test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1462 		rs->ti->error = "sync and nosync are mutually exclusive";
1463 		return -EINVAL;
1464 	}
1465 
1466 	if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1467 	    (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1468 	     test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1469 		rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1470 		return -EINVAL;
1471 	}
1472 
1473 	if (write_mostly >= rs->md.raid_disks) {
1474 		rs->ti->error = "Can't set all raid1 devices to write_mostly";
1475 		return -EINVAL;
1476 	}
1477 
1478 	if (rs->md.sync_speed_max &&
1479 	    rs->md.sync_speed_min > rs->md.sync_speed_max) {
1480 		rs->ti->error = "Bogus recovery rates";
1481 		return -EINVAL;
1482 	}
1483 
1484 	if (validate_region_size(rs, region_size))
1485 		return -EINVAL;
1486 
1487 	if (rs->md.chunk_sectors)
1488 		max_io_len = rs->md.chunk_sectors;
1489 	else
1490 		max_io_len = region_size;
1491 
1492 	if (dm_set_target_max_io_len(rs->ti, max_io_len))
1493 		return -EINVAL;
1494 
1495 	if (rt_is_raid10(rt)) {
1496 		if (raid10_copies > rs->md.raid_disks) {
1497 			rs->ti->error = "Not enough devices to satisfy specification";
1498 			return -EINVAL;
1499 		}
1500 
1501 		rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1502 		if (rs->md.new_layout < 0) {
1503 			rs->ti->error = "Error getting raid10 format";
1504 			return rs->md.new_layout;
1505 		}
1506 
1507 		rt = get_raid_type_by_ll(10, rs->md.new_layout);
1508 		if (!rt) {
1509 			rs->ti->error = "Failed to recognize new raid10 layout";
1510 			return -EINVAL;
1511 		}
1512 
1513 		if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1514 		     rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1515 		    test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1516 			rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1517 			return -EINVAL;
1518 		}
1519 	}
1520 
1521 	rs->raid10_copies = raid10_copies;
1522 
1523 	/* Assume there are no metadata devices until the drives are parsed */
1524 	rs->md.persistent = 0;
1525 	rs->md.external = 1;
1526 
1527 	/* Check, if any invalid ctr arguments have been passed in for the raid level */
1528 	return rs_check_for_valid_flags(rs);
1529 }
1530 
1531 /* Set raid4/5/6 cache size */
1532 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1533 {
1534 	int r;
1535 	struct r5conf *conf;
1536 	struct mddev *mddev = &rs->md;
1537 	uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1538 	uint32_t nr_stripes = rs->stripe_cache_entries;
1539 
1540 	if (!rt_is_raid456(rs->raid_type)) {
1541 		rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1542 		return -EINVAL;
1543 	}
1544 
1545 	if (nr_stripes < min_stripes) {
1546 		DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1547 		       nr_stripes, min_stripes);
1548 		nr_stripes = min_stripes;
1549 	}
1550 
1551 	conf = mddev->private;
1552 	if (!conf) {
1553 		rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1554 		return -EINVAL;
1555 	}
1556 
1557 	/* Try setting number of stripes in raid456 stripe cache */
1558 	if (conf->min_nr_stripes != nr_stripes) {
1559 		r = raid5_set_cache_size(mddev, nr_stripes);
1560 		if (r) {
1561 			rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1562 			return r;
1563 		}
1564 
1565 		DMINFO("%u stripe cache entries", nr_stripes);
1566 	}
1567 
1568 	return 0;
1569 }
1570 
1571 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1572 static unsigned int mddev_data_stripes(struct raid_set *rs)
1573 {
1574 	return rs->md.raid_disks - rs->raid_type->parity_devs;
1575 }
1576 
1577 /* Return # of data stripes of @rs (i.e. as of ctr) */
1578 static unsigned int rs_data_stripes(struct raid_set *rs)
1579 {
1580 	return rs->raid_disks - rs->raid_type->parity_devs;
1581 }
1582 
1583 /*
1584  * Retrieve rdev->sectors from any valid raid device of @rs
1585  * to allow userpace to pass in arbitray "- -" device tupples.
1586  */
1587 static sector_t __rdev_sectors(struct raid_set *rs)
1588 {
1589 	int i;
1590 
1591 	for (i = 0; i < rs->md.raid_disks; i++) {
1592 		struct md_rdev *rdev = &rs->dev[i].rdev;
1593 
1594 		if (!test_bit(Journal, &rdev->flags) &&
1595 		    rdev->bdev && rdev->sectors)
1596 			return rdev->sectors;
1597 	}
1598 
1599 	return 0;
1600 }
1601 
1602 /* Check that calculated dev_sectors fits all component devices. */
1603 static int _check_data_dev_sectors(struct raid_set *rs)
1604 {
1605 	sector_t ds = ~0;
1606 	struct md_rdev *rdev;
1607 
1608 	rdev_for_each(rdev, &rs->md)
1609 		if (!test_bit(Journal, &rdev->flags) && rdev->bdev) {
1610 			ds = min(ds, to_sector(i_size_read(rdev->bdev->bd_inode)));
1611 			if (ds < rs->md.dev_sectors) {
1612 				rs->ti->error = "Component device(s) too small";
1613 				return -EINVAL;
1614 			}
1615 		}
1616 
1617 	return 0;
1618 }
1619 
1620 /* Calculate the sectors per device and per array used for @rs */
1621 static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev)
1622 {
1623 	int delta_disks;
1624 	unsigned int data_stripes;
1625 	sector_t array_sectors = sectors, dev_sectors = sectors;
1626 	struct mddev *mddev = &rs->md;
1627 
1628 	if (use_mddev) {
1629 		delta_disks = mddev->delta_disks;
1630 		data_stripes = mddev_data_stripes(rs);
1631 	} else {
1632 		delta_disks = rs->delta_disks;
1633 		data_stripes = rs_data_stripes(rs);
1634 	}
1635 
1636 	/* Special raid1 case w/o delta_disks support (yet) */
1637 	if (rt_is_raid1(rs->raid_type))
1638 		;
1639 	else if (rt_is_raid10(rs->raid_type)) {
1640 		if (rs->raid10_copies < 2 ||
1641 		    delta_disks < 0) {
1642 			rs->ti->error = "Bogus raid10 data copies or delta disks";
1643 			return -EINVAL;
1644 		}
1645 
1646 		dev_sectors *= rs->raid10_copies;
1647 		if (sector_div(dev_sectors, data_stripes))
1648 			goto bad;
1649 
1650 		array_sectors = (data_stripes + delta_disks) * dev_sectors;
1651 		if (sector_div(array_sectors, rs->raid10_copies))
1652 			goto bad;
1653 
1654 	} else if (sector_div(dev_sectors, data_stripes))
1655 		goto bad;
1656 
1657 	else
1658 		/* Striped layouts */
1659 		array_sectors = (data_stripes + delta_disks) * dev_sectors;
1660 
1661 	mddev->array_sectors = array_sectors;
1662 	mddev->dev_sectors = dev_sectors;
1663 	rs_set_rdev_sectors(rs);
1664 
1665 	return _check_data_dev_sectors(rs);
1666 bad:
1667 	rs->ti->error = "Target length not divisible by number of data devices";
1668 	return -EINVAL;
1669 }
1670 
1671 /* Setup recovery on @rs */
1672 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1673 {
1674 	/* raid0 does not recover */
1675 	if (rs_is_raid0(rs))
1676 		rs->md.recovery_cp = MaxSector;
1677 	/*
1678 	 * A raid6 set has to be recovered either
1679 	 * completely or for the grown part to
1680 	 * ensure proper parity and Q-Syndrome
1681 	 */
1682 	else if (rs_is_raid6(rs))
1683 		rs->md.recovery_cp = dev_sectors;
1684 	/*
1685 	 * Other raid set types may skip recovery
1686 	 * depending on the 'nosync' flag.
1687 	 */
1688 	else
1689 		rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1690 				     ? MaxSector : dev_sectors;
1691 }
1692 
1693 static void do_table_event(struct work_struct *ws)
1694 {
1695 	struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1696 
1697 	smp_rmb(); /* Make sure we access most actual mddev properties */
1698 	if (!rs_is_reshaping(rs)) {
1699 		if (rs_is_raid10(rs))
1700 			rs_set_rdev_sectors(rs);
1701 		rs_set_capacity(rs);
1702 	}
1703 	dm_table_event(rs->ti->table);
1704 }
1705 
1706 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1707 {
1708 	struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1709 
1710 	return mddev_congested(&rs->md, bits);
1711 }
1712 
1713 /*
1714  * Make sure a valid takover (level switch) is being requested on @rs
1715  *
1716  * Conversions of raid sets from one MD personality to another
1717  * have to conform to restrictions which are enforced here.
1718  */
1719 static int rs_check_takeover(struct raid_set *rs)
1720 {
1721 	struct mddev *mddev = &rs->md;
1722 	unsigned int near_copies;
1723 
1724 	if (rs->md.degraded) {
1725 		rs->ti->error = "Can't takeover degraded raid set";
1726 		return -EPERM;
1727 	}
1728 
1729 	if (rs_is_reshaping(rs)) {
1730 		rs->ti->error = "Can't takeover reshaping raid set";
1731 		return -EPERM;
1732 	}
1733 
1734 	switch (mddev->level) {
1735 	case 0:
1736 		/* raid0 -> raid1/5 with one disk */
1737 		if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1738 		    mddev->raid_disks == 1)
1739 			return 0;
1740 
1741 		/* raid0 -> raid10 */
1742 		if (mddev->new_level == 10 &&
1743 		    !(rs->raid_disks % mddev->raid_disks))
1744 			return 0;
1745 
1746 		/* raid0 with multiple disks -> raid4/5/6 */
1747 		if (__within_range(mddev->new_level, 4, 6) &&
1748 		    mddev->new_layout == ALGORITHM_PARITY_N &&
1749 		    mddev->raid_disks > 1)
1750 			return 0;
1751 
1752 		break;
1753 
1754 	case 10:
1755 		/* Can't takeover raid10_offset! */
1756 		if (__is_raid10_offset(mddev->layout))
1757 			break;
1758 
1759 		near_copies = __raid10_near_copies(mddev->layout);
1760 
1761 		/* raid10* -> raid0 */
1762 		if (mddev->new_level == 0) {
1763 			/* Can takeover raid10_near with raid disks divisable by data copies! */
1764 			if (near_copies > 1 &&
1765 			    !(mddev->raid_disks % near_copies)) {
1766 				mddev->raid_disks /= near_copies;
1767 				mddev->delta_disks = mddev->raid_disks;
1768 				return 0;
1769 			}
1770 
1771 			/* Can takeover raid10_far */
1772 			if (near_copies == 1 &&
1773 			    __raid10_far_copies(mddev->layout) > 1)
1774 				return 0;
1775 
1776 			break;
1777 		}
1778 
1779 		/* raid10_{near,far} -> raid1 */
1780 		if (mddev->new_level == 1 &&
1781 		    max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1782 			return 0;
1783 
1784 		/* raid10_{near,far} with 2 disks -> raid4/5 */
1785 		if (__within_range(mddev->new_level, 4, 5) &&
1786 		    mddev->raid_disks == 2)
1787 			return 0;
1788 		break;
1789 
1790 	case 1:
1791 		/* raid1 with 2 disks -> raid4/5 */
1792 		if (__within_range(mddev->new_level, 4, 5) &&
1793 		    mddev->raid_disks == 2) {
1794 			mddev->degraded = 1;
1795 			return 0;
1796 		}
1797 
1798 		/* raid1 -> raid0 */
1799 		if (mddev->new_level == 0 &&
1800 		    mddev->raid_disks == 1)
1801 			return 0;
1802 
1803 		/* raid1 -> raid10 */
1804 		if (mddev->new_level == 10)
1805 			return 0;
1806 		break;
1807 
1808 	case 4:
1809 		/* raid4 -> raid0 */
1810 		if (mddev->new_level == 0)
1811 			return 0;
1812 
1813 		/* raid4 -> raid1/5 with 2 disks */
1814 		if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1815 		    mddev->raid_disks == 2)
1816 			return 0;
1817 
1818 		/* raid4 -> raid5/6 with parity N */
1819 		if (__within_range(mddev->new_level, 5, 6) &&
1820 		    mddev->layout == ALGORITHM_PARITY_N)
1821 			return 0;
1822 		break;
1823 
1824 	case 5:
1825 		/* raid5 with parity N -> raid0 */
1826 		if (mddev->new_level == 0 &&
1827 		    mddev->layout == ALGORITHM_PARITY_N)
1828 			return 0;
1829 
1830 		/* raid5 with parity N -> raid4 */
1831 		if (mddev->new_level == 4 &&
1832 		    mddev->layout == ALGORITHM_PARITY_N)
1833 			return 0;
1834 
1835 		/* raid5 with 2 disks -> raid1/4/10 */
1836 		if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1837 		    mddev->raid_disks == 2)
1838 			return 0;
1839 
1840 		/* raid5_* ->  raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1841 		if (mddev->new_level == 6 &&
1842 		    ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1843 		      __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1844 			return 0;
1845 		break;
1846 
1847 	case 6:
1848 		/* raid6 with parity N -> raid0 */
1849 		if (mddev->new_level == 0 &&
1850 		    mddev->layout == ALGORITHM_PARITY_N)
1851 			return 0;
1852 
1853 		/* raid6 with parity N -> raid4 */
1854 		if (mddev->new_level == 4 &&
1855 		    mddev->layout == ALGORITHM_PARITY_N)
1856 			return 0;
1857 
1858 		/* raid6_*_n with Q-Syndrome N -> raid5_* */
1859 		if (mddev->new_level == 5 &&
1860 		    ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1861 		     __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1862 			return 0;
1863 
1864 	default:
1865 		break;
1866 	}
1867 
1868 	rs->ti->error = "takeover not possible";
1869 	return -EINVAL;
1870 }
1871 
1872 /* True if @rs requested to be taken over */
1873 static bool rs_takeover_requested(struct raid_set *rs)
1874 {
1875 	return rs->md.new_level != rs->md.level;
1876 }
1877 
1878 /* True if @rs is requested to reshape by ctr */
1879 static bool rs_reshape_requested(struct raid_set *rs)
1880 {
1881 	bool change;
1882 	struct mddev *mddev = &rs->md;
1883 
1884 	if (rs_takeover_requested(rs))
1885 		return false;
1886 
1887 	if (rs_is_raid0(rs))
1888 		return false;
1889 
1890 	change = mddev->new_layout != mddev->layout ||
1891 		 mddev->new_chunk_sectors != mddev->chunk_sectors ||
1892 		 rs->delta_disks;
1893 
1894 	/* Historical case to support raid1 reshape without delta disks */
1895 	if (rs_is_raid1(rs)) {
1896 		if (rs->delta_disks)
1897 			return !!rs->delta_disks;
1898 
1899 		return !change &&
1900 		       mddev->raid_disks != rs->raid_disks;
1901 	}
1902 
1903 	if (rs_is_raid10(rs))
1904 		return change &&
1905 		       !__is_raid10_far(mddev->new_layout) &&
1906 		       rs->delta_disks >= 0;
1907 
1908 	return change;
1909 }
1910 
1911 /*  Features */
1912 #define	FEATURE_FLAG_SUPPORTS_V190	0x1 /* Supports extended superblock */
1913 
1914 /* State flags for sb->flags */
1915 #define	SB_FLAG_RESHAPE_ACTIVE		0x1
1916 #define	SB_FLAG_RESHAPE_BACKWARDS	0x2
1917 
1918 /*
1919  * This structure is never routinely used by userspace, unlike md superblocks.
1920  * Devices with this superblock should only ever be accessed via device-mapper.
1921  */
1922 #define DM_RAID_MAGIC 0x64526D44
1923 struct dm_raid_superblock {
1924 	__le32 magic;		/* "DmRd" */
1925 	__le32 compat_features;	/* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1926 
1927 	__le32 num_devices;	/* Number of devices in this raid set. (Max 64) */
1928 	__le32 array_position;	/* The position of this drive in the raid set */
1929 
1930 	__le64 events;		/* Incremented by md when superblock updated */
1931 	__le64 failed_devices;	/* Pre 1.9.0 part of bit field of devices to */
1932 				/* indicate failures (see extension below) */
1933 
1934 	/*
1935 	 * This offset tracks the progress of the repair or replacement of
1936 	 * an individual drive.
1937 	 */
1938 	__le64 disk_recovery_offset;
1939 
1940 	/*
1941 	 * This offset tracks the progress of the initial raid set
1942 	 * synchronisation/parity calculation.
1943 	 */
1944 	__le64 array_resync_offset;
1945 
1946 	/*
1947 	 * raid characteristics
1948 	 */
1949 	__le32 level;
1950 	__le32 layout;
1951 	__le32 stripe_sectors;
1952 
1953 	/********************************************************************
1954 	 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1955 	 *
1956 	 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
1957 	 */
1958 
1959 	__le32 flags; /* Flags defining array states for reshaping */
1960 
1961 	/*
1962 	 * This offset tracks the progress of a raid
1963 	 * set reshape in order to be able to restart it
1964 	 */
1965 	__le64 reshape_position;
1966 
1967 	/*
1968 	 * These define the properties of the array in case of an interrupted reshape
1969 	 */
1970 	__le32 new_level;
1971 	__le32 new_layout;
1972 	__le32 new_stripe_sectors;
1973 	__le32 delta_disks;
1974 
1975 	__le64 array_sectors; /* Array size in sectors */
1976 
1977 	/*
1978 	 * Sector offsets to data on devices (reshaping).
1979 	 * Needed to support out of place reshaping, thus
1980 	 * not writing over any stripes whilst converting
1981 	 * them from old to new layout
1982 	 */
1983 	__le64 data_offset;
1984 	__le64 new_data_offset;
1985 
1986 	__le64 sectors; /* Used device size in sectors */
1987 
1988 	/*
1989 	 * Additonal Bit field of devices indicating failures to support
1990 	 * up to 256 devices with the 1.9.0 on-disk metadata format
1991 	 */
1992 	__le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1993 
1994 	__le32 incompat_features;	/* Used to indicate any incompatible features */
1995 
1996 	/* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
1997 } __packed;
1998 
1999 /*
2000  * Check for reshape constraints on raid set @rs:
2001  *
2002  * - reshape function non-existent
2003  * - degraded set
2004  * - ongoing recovery
2005  * - ongoing reshape
2006  *
2007  * Returns 0 if none or -EPERM if given constraint
2008  * and error message reference in @errmsg
2009  */
2010 static int rs_check_reshape(struct raid_set *rs)
2011 {
2012 	struct mddev *mddev = &rs->md;
2013 
2014 	if (!mddev->pers || !mddev->pers->check_reshape)
2015 		rs->ti->error = "Reshape not supported";
2016 	else if (mddev->degraded)
2017 		rs->ti->error = "Can't reshape degraded raid set";
2018 	else if (rs_is_recovering(rs))
2019 		rs->ti->error = "Convert request on recovering raid set prohibited";
2020 	else if (rs_is_reshaping(rs))
2021 		rs->ti->error = "raid set already reshaping!";
2022 	else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
2023 		rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
2024 	else
2025 		return 0;
2026 
2027 	return -EPERM;
2028 }
2029 
2030 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload)
2031 {
2032 	BUG_ON(!rdev->sb_page);
2033 
2034 	if (rdev->sb_loaded && !force_reload)
2035 		return 0;
2036 
2037 	rdev->sb_loaded = 0;
2038 
2039 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) {
2040 		DMERR("Failed to read superblock of device at position %d",
2041 		      rdev->raid_disk);
2042 		md_error(rdev->mddev, rdev);
2043 		set_bit(Faulty, &rdev->flags);
2044 		return -EIO;
2045 	}
2046 
2047 	rdev->sb_loaded = 1;
2048 
2049 	return 0;
2050 }
2051 
2052 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2053 {
2054 	failed_devices[0] = le64_to_cpu(sb->failed_devices);
2055 	memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
2056 
2057 	if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2058 		int i = ARRAY_SIZE(sb->extended_failed_devices);
2059 
2060 		while (i--)
2061 			failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
2062 	}
2063 }
2064 
2065 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2066 {
2067 	int i = ARRAY_SIZE(sb->extended_failed_devices);
2068 
2069 	sb->failed_devices = cpu_to_le64(failed_devices[0]);
2070 	while (i--)
2071 		sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
2072 }
2073 
2074 /*
2075  * Synchronize the superblock members with the raid set properties
2076  *
2077  * All superblock data is little endian.
2078  */
2079 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
2080 {
2081 	bool update_failed_devices = false;
2082 	unsigned int i;
2083 	uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2084 	struct dm_raid_superblock *sb;
2085 	struct raid_set *rs = container_of(mddev, struct raid_set, md);
2086 
2087 	/* No metadata device, no superblock */
2088 	if (!rdev->meta_bdev)
2089 		return;
2090 
2091 	BUG_ON(!rdev->sb_page);
2092 
2093 	sb = page_address(rdev->sb_page);
2094 
2095 	sb_retrieve_failed_devices(sb, failed_devices);
2096 
2097 	for (i = 0; i < rs->raid_disks; i++)
2098 		if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
2099 			update_failed_devices = true;
2100 			set_bit(i, (void *) failed_devices);
2101 		}
2102 
2103 	if (update_failed_devices)
2104 		sb_update_failed_devices(sb, failed_devices);
2105 
2106 	sb->magic = cpu_to_le32(DM_RAID_MAGIC);
2107 	sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2108 
2109 	sb->num_devices = cpu_to_le32(mddev->raid_disks);
2110 	sb->array_position = cpu_to_le32(rdev->raid_disk);
2111 
2112 	sb->events = cpu_to_le64(mddev->events);
2113 
2114 	sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
2115 	sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
2116 
2117 	sb->level = cpu_to_le32(mddev->level);
2118 	sb->layout = cpu_to_le32(mddev->layout);
2119 	sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
2120 
2121 	/********************************************************************
2122 	 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
2123 	 *
2124 	 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
2125 	 */
2126 	sb->new_level = cpu_to_le32(mddev->new_level);
2127 	sb->new_layout = cpu_to_le32(mddev->new_layout);
2128 	sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
2129 
2130 	sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2131 
2132 	smp_rmb(); /* Make sure we access most recent reshape position */
2133 	sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2134 	if (le64_to_cpu(sb->reshape_position) != MaxSector) {
2135 		/* Flag ongoing reshape */
2136 		sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
2137 
2138 		if (mddev->delta_disks < 0 || mddev->reshape_backwards)
2139 			sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
2140 	} else {
2141 		/* Clear reshape flags */
2142 		sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
2143 	}
2144 
2145 	sb->array_sectors = cpu_to_le64(mddev->array_sectors);
2146 	sb->data_offset = cpu_to_le64(rdev->data_offset);
2147 	sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
2148 	sb->sectors = cpu_to_le64(rdev->sectors);
2149 	sb->incompat_features = cpu_to_le32(0);
2150 
2151 	/* Zero out the rest of the payload after the size of the superblock */
2152 	memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
2153 }
2154 
2155 /*
2156  * super_load
2157  *
2158  * This function creates a superblock if one is not found on the device
2159  * and will decide which superblock to use if there's a choice.
2160  *
2161  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
2162  */
2163 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
2164 {
2165 	int r;
2166 	struct dm_raid_superblock *sb;
2167 	struct dm_raid_superblock *refsb;
2168 	uint64_t events_sb, events_refsb;
2169 
2170 	r = read_disk_sb(rdev, rdev->sb_size, false);
2171 	if (r)
2172 		return r;
2173 
2174 	sb = page_address(rdev->sb_page);
2175 
2176 	/*
2177 	 * Two cases that we want to write new superblocks and rebuild:
2178 	 * 1) New device (no matching magic number)
2179 	 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2180 	 */
2181 	if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2182 	    (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2183 		super_sync(rdev->mddev, rdev);
2184 
2185 		set_bit(FirstUse, &rdev->flags);
2186 		sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2187 
2188 		/* Force writing of superblocks to disk */
2189 		set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
2190 
2191 		/* Any superblock is better than none, choose that if given */
2192 		return refdev ? 0 : 1;
2193 	}
2194 
2195 	if (!refdev)
2196 		return 1;
2197 
2198 	events_sb = le64_to_cpu(sb->events);
2199 
2200 	refsb = page_address(refdev->sb_page);
2201 	events_refsb = le64_to_cpu(refsb->events);
2202 
2203 	return (events_sb > events_refsb) ? 1 : 0;
2204 }
2205 
2206 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2207 {
2208 	int role;
2209 	unsigned int d;
2210 	struct mddev *mddev = &rs->md;
2211 	uint64_t events_sb;
2212 	uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2213 	struct dm_raid_superblock *sb;
2214 	uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2215 	struct md_rdev *r;
2216 	struct dm_raid_superblock *sb2;
2217 
2218 	sb = page_address(rdev->sb_page);
2219 	events_sb = le64_to_cpu(sb->events);
2220 
2221 	/*
2222 	 * Initialise to 1 if this is a new superblock.
2223 	 */
2224 	mddev->events = events_sb ? : 1;
2225 
2226 	mddev->reshape_position = MaxSector;
2227 
2228 	mddev->raid_disks = le32_to_cpu(sb->num_devices);
2229 	mddev->level = le32_to_cpu(sb->level);
2230 	mddev->layout = le32_to_cpu(sb->layout);
2231 	mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2232 
2233 	/*
2234 	 * Reshaping is supported, e.g. reshape_position is valid
2235 	 * in superblock and superblock content is authoritative.
2236 	 */
2237 	if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2238 		/* Superblock is authoritative wrt given raid set layout! */
2239 		mddev->new_level = le32_to_cpu(sb->new_level);
2240 		mddev->new_layout = le32_to_cpu(sb->new_layout);
2241 		mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2242 		mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2243 		mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2244 
2245 		/* raid was reshaping and got interrupted */
2246 		if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2247 			if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2248 				DMERR("Reshape requested but raid set is still reshaping");
2249 				return -EINVAL;
2250 			}
2251 
2252 			if (mddev->delta_disks < 0 ||
2253 			    (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2254 				mddev->reshape_backwards = 1;
2255 			else
2256 				mddev->reshape_backwards = 0;
2257 
2258 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2259 			rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2260 		}
2261 
2262 	} else {
2263 		/*
2264 		 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2265 		 */
2266 		struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
2267 		struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2268 
2269 		if (rs_takeover_requested(rs)) {
2270 			if (rt_cur && rt_new)
2271 				DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
2272 				      rt_cur->name, rt_new->name);
2273 			else
2274 				DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
2275 			return -EINVAL;
2276 		} else if (rs_reshape_requested(rs)) {
2277 			DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
2278 			if (mddev->layout != mddev->new_layout) {
2279 				if (rt_cur && rt_new)
2280 					DMERR("	 current layout %s vs new layout %s",
2281 					      rt_cur->name, rt_new->name);
2282 				else
2283 					DMERR("	 current layout 0x%X vs new layout 0x%X",
2284 					      le32_to_cpu(sb->layout), mddev->new_layout);
2285 			}
2286 			if (mddev->chunk_sectors != mddev->new_chunk_sectors)
2287 				DMERR("	 current stripe sectors %u vs new stripe sectors %u",
2288 				      mddev->chunk_sectors, mddev->new_chunk_sectors);
2289 			if (rs->delta_disks)
2290 				DMERR("	 current %u disks vs new %u disks",
2291 				      mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
2292 			if (rs_is_raid10(rs)) {
2293 				DMERR("	 Old layout: %s w/ %u copies",
2294 				      raid10_md_layout_to_format(mddev->layout),
2295 				      raid10_md_layout_to_copies(mddev->layout));
2296 				DMERR("	 New layout: %s w/ %u copies",
2297 				      raid10_md_layout_to_format(mddev->new_layout),
2298 				      raid10_md_layout_to_copies(mddev->new_layout));
2299 			}
2300 			return -EINVAL;
2301 		}
2302 
2303 		DMINFO("Discovered old metadata format; upgrading to extended metadata format");
2304 	}
2305 
2306 	if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2307 		mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2308 
2309 	/*
2310 	 * During load, we set FirstUse if a new superblock was written.
2311 	 * There are two reasons we might not have a superblock:
2312 	 * 1) The raid set is brand new - in which case, all of the
2313 	 *    devices must have their In_sync bit set.	Also,
2314 	 *    recovery_cp must be 0, unless forced.
2315 	 * 2) This is a new device being added to an old raid set
2316 	 *    and the new device needs to be rebuilt - in which
2317 	 *    case the In_sync bit will /not/ be set and
2318 	 *    recovery_cp must be MaxSector.
2319 	 * 3) This is/are a new device(s) being added to an old
2320 	 *    raid set during takeover to a higher raid level
2321 	 *    to provide capacity for redundancy or during reshape
2322 	 *    to add capacity to grow the raid set.
2323 	 */
2324 	d = 0;
2325 	rdev_for_each(r, mddev) {
2326 		if (test_bit(Journal, &rdev->flags))
2327 			continue;
2328 
2329 		if (test_bit(FirstUse, &r->flags))
2330 			new_devs++;
2331 
2332 		if (!test_bit(In_sync, &r->flags)) {
2333 			DMINFO("Device %d specified for rebuild; clearing superblock",
2334 				r->raid_disk);
2335 			rebuilds++;
2336 
2337 			if (test_bit(FirstUse, &r->flags))
2338 				rebuild_and_new++;
2339 		}
2340 
2341 		d++;
2342 	}
2343 
2344 	if (new_devs == rs->raid_disks || !rebuilds) {
2345 		/* Replace a broken device */
2346 		if (new_devs == 1 && !rs->delta_disks)
2347 			;
2348 		if (new_devs == rs->raid_disks) {
2349 			DMINFO("Superblocks created for new raid set");
2350 			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2351 		} else if (new_devs != rebuilds &&
2352 			   new_devs != rs->delta_disks) {
2353 			DMERR("New device injected into existing raid set without "
2354 			      "'delta_disks' or 'rebuild' parameter specified");
2355 			return -EINVAL;
2356 		}
2357 	} else if (new_devs && new_devs != rebuilds) {
2358 		DMERR("%u 'rebuild' devices cannot be injected into"
2359 		      " a raid set with %u other first-time devices",
2360 		      rebuilds, new_devs);
2361 		return -EINVAL;
2362 	} else if (rebuilds) {
2363 		if (rebuild_and_new && rebuilds != rebuild_and_new) {
2364 			DMERR("new device%s provided without 'rebuild'",
2365 			      new_devs > 1 ? "s" : "");
2366 			return -EINVAL;
2367 		} else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) {
2368 			DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2369 			      (unsigned long long) mddev->recovery_cp);
2370 			return -EINVAL;
2371 		} else if (rs_is_reshaping(rs)) {
2372 			DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2373 			      (unsigned long long) mddev->reshape_position);
2374 			return -EINVAL;
2375 		}
2376 	}
2377 
2378 	/*
2379 	 * Now we set the Faulty bit for those devices that are
2380 	 * recorded in the superblock as failed.
2381 	 */
2382 	sb_retrieve_failed_devices(sb, failed_devices);
2383 	rdev_for_each(r, mddev) {
2384 		if (test_bit(Journal, &rdev->flags) ||
2385 		    !r->sb_page)
2386 			continue;
2387 		sb2 = page_address(r->sb_page);
2388 		sb2->failed_devices = 0;
2389 		memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2390 
2391 		/*
2392 		 * Check for any device re-ordering.
2393 		 */
2394 		if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2395 			role = le32_to_cpu(sb2->array_position);
2396 			if (role < 0)
2397 				continue;
2398 
2399 			if (role != r->raid_disk) {
2400 				if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
2401 					if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2402 					    rs->raid_disks % rs->raid10_copies) {
2403 						rs->ti->error =
2404 							"Cannot change raid10 near set to odd # of devices!";
2405 						return -EINVAL;
2406 					}
2407 
2408 					sb2->array_position = cpu_to_le32(r->raid_disk);
2409 
2410 				} else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2411 					   !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2412 					   !rt_is_raid1(rs->raid_type)) {
2413 					rs->ti->error = "Cannot change device positions in raid set";
2414 					return -EINVAL;
2415 				}
2416 
2417 				DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2418 			}
2419 
2420 			/*
2421 			 * Partial recovery is performed on
2422 			 * returning failed devices.
2423 			 */
2424 			if (test_bit(role, (void *) failed_devices))
2425 				set_bit(Faulty, &r->flags);
2426 		}
2427 	}
2428 
2429 	return 0;
2430 }
2431 
2432 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2433 {
2434 	struct mddev *mddev = &rs->md;
2435 	struct dm_raid_superblock *sb;
2436 
2437 	if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0)
2438 		return 0;
2439 
2440 	sb = page_address(rdev->sb_page);
2441 
2442 	/*
2443 	 * If mddev->events is not set, we know we have not yet initialized
2444 	 * the array.
2445 	 */
2446 	if (!mddev->events && super_init_validation(rs, rdev))
2447 		return -EINVAL;
2448 
2449 	if (le32_to_cpu(sb->compat_features) &&
2450 	    le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2451 		rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2452 		return -EINVAL;
2453 	}
2454 
2455 	if (sb->incompat_features) {
2456 		rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2457 		return -EINVAL;
2458 	}
2459 
2460 	/* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */
2461 	mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096);
2462 	mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2463 
2464 	if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2465 		/*
2466 		 * Retrieve rdev size stored in superblock to be prepared for shrink.
2467 		 * Check extended superblock members are present otherwise the size
2468 		 * will not be set!
2469 		 */
2470 		if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190)
2471 			rdev->sectors = le64_to_cpu(sb->sectors);
2472 
2473 		rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2474 		if (rdev->recovery_offset == MaxSector)
2475 			set_bit(In_sync, &rdev->flags);
2476 		/*
2477 		 * If no reshape in progress -> we're recovering single
2478 		 * disk(s) and have to set the device(s) to out-of-sync
2479 		 */
2480 		else if (!rs_is_reshaping(rs))
2481 			clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2482 	}
2483 
2484 	/*
2485 	 * If a device comes back, set it as not In_sync and no longer faulty.
2486 	 */
2487 	if (test_and_clear_bit(Faulty, &rdev->flags)) {
2488 		rdev->recovery_offset = 0;
2489 		clear_bit(In_sync, &rdev->flags);
2490 		rdev->saved_raid_disk = rdev->raid_disk;
2491 	}
2492 
2493 	/* Reshape support -> restore repective data offsets */
2494 	rdev->data_offset = le64_to_cpu(sb->data_offset);
2495 	rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2496 
2497 	return 0;
2498 }
2499 
2500 /*
2501  * Analyse superblocks and select the freshest.
2502  */
2503 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2504 {
2505 	int r;
2506 	struct md_rdev *rdev, *freshest;
2507 	struct mddev *mddev = &rs->md;
2508 
2509 	freshest = NULL;
2510 	rdev_for_each(rdev, mddev) {
2511 		if (test_bit(Journal, &rdev->flags))
2512 			continue;
2513 
2514 		if (!rdev->meta_bdev)
2515 			continue;
2516 
2517 		/* Set superblock offset/size for metadata device. */
2518 		rdev->sb_start = 0;
2519 		rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
2520 		if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) {
2521 			DMERR("superblock size of a logical block is no longer valid");
2522 			return -EINVAL;
2523 		}
2524 
2525 		/*
2526 		 * Skipping super_load due to CTR_FLAG_SYNC will cause
2527 		 * the array to undergo initialization again as
2528 		 * though it were new.	This is the intended effect
2529 		 * of the "sync" directive.
2530 		 *
2531 		 * With reshaping capability added, we must ensure that
2532 		 * that the "sync" directive is disallowed during the reshape.
2533 		 */
2534 		if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2535 			continue;
2536 
2537 		r = super_load(rdev, freshest);
2538 
2539 		switch (r) {
2540 		case 1:
2541 			freshest = rdev;
2542 			break;
2543 		case 0:
2544 			break;
2545 		default:
2546 			/* This is a failure to read the superblock from the metadata device. */
2547 			/*
2548 			 * We have to keep any raid0 data/metadata device pairs or
2549 			 * the MD raid0 personality will fail to start the array.
2550 			 */
2551 			if (rs_is_raid0(rs))
2552 				continue;
2553 
2554 			/*
2555 			 * We keep the dm_devs to be able to emit the device tuple
2556 			 * properly on the table line in raid_status() (rather than
2557 			 * mistakenly acting as if '- -' got passed into the constructor).
2558 			 *
2559 			 * The rdev has to stay on the same_set list to allow for
2560 			 * the attempt to restore faulty devices on second resume.
2561 			 */
2562 			rdev->raid_disk = rdev->saved_raid_disk = -1;
2563 			break;
2564 		}
2565 	}
2566 
2567 	if (!freshest)
2568 		return 0;
2569 
2570 	/*
2571 	 * Validation of the freshest device provides the source of
2572 	 * validation for the remaining devices.
2573 	 */
2574 	rs->ti->error = "Unable to assemble array: Invalid superblocks";
2575 	if (super_validate(rs, freshest))
2576 		return -EINVAL;
2577 
2578 	if (validate_raid_redundancy(rs)) {
2579 		rs->ti->error = "Insufficient redundancy to activate array";
2580 		return -EINVAL;
2581 	}
2582 
2583 	rdev_for_each(rdev, mddev)
2584 		if (!test_bit(Journal, &rdev->flags) &&
2585 		    rdev != freshest &&
2586 		    super_validate(rs, rdev))
2587 			return -EINVAL;
2588 	return 0;
2589 }
2590 
2591 /*
2592  * Adjust data_offset and new_data_offset on all disk members of @rs
2593  * for out of place reshaping if requested by contructor
2594  *
2595  * We need free space at the beginning of each raid disk for forward
2596  * and at the end for backward reshapes which userspace has to provide
2597  * via remapping/reordering of space.
2598  */
2599 static int rs_adjust_data_offsets(struct raid_set *rs)
2600 {
2601 	sector_t data_offset = 0, new_data_offset = 0;
2602 	struct md_rdev *rdev;
2603 
2604 	/* Constructor did not request data offset change */
2605 	if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2606 		if (!rs_is_reshapable(rs))
2607 			goto out;
2608 
2609 		return 0;
2610 	}
2611 
2612 	/* HM FIXME: get In_Sync raid_dev? */
2613 	rdev = &rs->dev[0].rdev;
2614 
2615 	if (rs->delta_disks < 0) {
2616 		/*
2617 		 * Removing disks (reshaping backwards):
2618 		 *
2619 		 * - before reshape: data is at offset 0 and free space
2620 		 *		     is at end of each component LV
2621 		 *
2622 		 * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2623 		 */
2624 		data_offset = 0;
2625 		new_data_offset = rs->data_offset;
2626 
2627 	} else if (rs->delta_disks > 0) {
2628 		/*
2629 		 * Adding disks (reshaping forwards):
2630 		 *
2631 		 * - before reshape: data is at offset rs->data_offset != 0 and
2632 		 *		     free space is at begin of each component LV
2633 		 *
2634 		 * - after reshape: data is at offset 0 on each component LV
2635 		 */
2636 		data_offset = rs->data_offset;
2637 		new_data_offset = 0;
2638 
2639 	} else {
2640 		/*
2641 		 * User space passes in 0 for data offset after having removed reshape space
2642 		 *
2643 		 * - or - (data offset != 0)
2644 		 *
2645 		 * Changing RAID layout or chunk size -> toggle offsets
2646 		 *
2647 		 * - before reshape: data is at offset rs->data_offset 0 and
2648 		 *		     free space is at end of each component LV
2649 		 *		     -or-
2650 		 *                   data is at offset rs->data_offset != 0 and
2651 		 *		     free space is at begin of each component LV
2652 		 *
2653 		 * - after reshape: data is at offset 0 if it was at offset != 0
2654 		 *                  or at offset != 0 if it was at offset 0
2655 		 *                  on each component LV
2656 		 *
2657 		 */
2658 		data_offset = rs->data_offset ? rdev->data_offset : 0;
2659 		new_data_offset = data_offset ? 0 : rs->data_offset;
2660 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2661 	}
2662 
2663 	/*
2664 	 * Make sure we got a minimum amount of free sectors per device
2665 	 */
2666 	if (rs->data_offset &&
2667 	    to_sector(i_size_read(rdev->bdev->bd_inode)) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) {
2668 		rs->ti->error = data_offset ? "No space for forward reshape" :
2669 					      "No space for backward reshape";
2670 		return -ENOSPC;
2671 	}
2672 out:
2673 	/*
2674 	 * Raise recovery_cp in case data_offset != 0 to
2675 	 * avoid false recovery positives in the constructor.
2676 	 */
2677 	if (rs->md.recovery_cp < rs->md.dev_sectors)
2678 		rs->md.recovery_cp += rs->dev[0].rdev.data_offset;
2679 
2680 	/* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */
2681 	rdev_for_each(rdev, &rs->md) {
2682 		if (!test_bit(Journal, &rdev->flags)) {
2683 			rdev->data_offset = data_offset;
2684 			rdev->new_data_offset = new_data_offset;
2685 		}
2686 	}
2687 
2688 	return 0;
2689 }
2690 
2691 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2692 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2693 {
2694 	int i = 0;
2695 	struct md_rdev *rdev;
2696 
2697 	rdev_for_each(rdev, &rs->md) {
2698 		if (!test_bit(Journal, &rdev->flags)) {
2699 			rdev->raid_disk = i++;
2700 			rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2701 		}
2702 	}
2703 }
2704 
2705 /*
2706  * Setup @rs for takeover by a different raid level
2707  */
2708 static int rs_setup_takeover(struct raid_set *rs)
2709 {
2710 	struct mddev *mddev = &rs->md;
2711 	struct md_rdev *rdev;
2712 	unsigned int d = mddev->raid_disks = rs->raid_disks;
2713 	sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2714 
2715 	if (rt_is_raid10(rs->raid_type)) {
2716 		if (rs_is_raid0(rs)) {
2717 			/* Userpace reordered disks -> adjust raid_disk indexes */
2718 			__reorder_raid_disk_indexes(rs);
2719 
2720 			/* raid0 -> raid10_far layout */
2721 			mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2722 								   rs->raid10_copies);
2723 		} else if (rs_is_raid1(rs))
2724 			/* raid1 -> raid10_near layout */
2725 			mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2726 								   rs->raid_disks);
2727 		else
2728 			return -EINVAL;
2729 
2730 	}
2731 
2732 	clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2733 	mddev->recovery_cp = MaxSector;
2734 
2735 	while (d--) {
2736 		rdev = &rs->dev[d].rdev;
2737 
2738 		if (test_bit(d, (void *) rs->rebuild_disks)) {
2739 			clear_bit(In_sync, &rdev->flags);
2740 			clear_bit(Faulty, &rdev->flags);
2741 			mddev->recovery_cp = rdev->recovery_offset = 0;
2742 			/* Bitmap has to be created when we do an "up" takeover */
2743 			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2744 		}
2745 
2746 		rdev->new_data_offset = new_data_offset;
2747 	}
2748 
2749 	return 0;
2750 }
2751 
2752 /* Prepare @rs for reshape */
2753 static int rs_prepare_reshape(struct raid_set *rs)
2754 {
2755 	bool reshape;
2756 	struct mddev *mddev = &rs->md;
2757 
2758 	if (rs_is_raid10(rs)) {
2759 		if (rs->raid_disks != mddev->raid_disks &&
2760 		    __is_raid10_near(mddev->layout) &&
2761 		    rs->raid10_copies &&
2762 		    rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2763 			/*
2764 			 * raid disk have to be multiple of data copies to allow this conversion,
2765 			 *
2766 			 * This is actually not a reshape it is a
2767 			 * rebuild of any additional mirrors per group
2768 			 */
2769 			if (rs->raid_disks % rs->raid10_copies) {
2770 				rs->ti->error = "Can't reshape raid10 mirror groups";
2771 				return -EINVAL;
2772 			}
2773 
2774 			/* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2775 			__reorder_raid_disk_indexes(rs);
2776 			mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2777 								   rs->raid10_copies);
2778 			mddev->new_layout = mddev->layout;
2779 			reshape = false;
2780 		} else
2781 			reshape = true;
2782 
2783 	} else if (rs_is_raid456(rs))
2784 		reshape = true;
2785 
2786 	else if (rs_is_raid1(rs)) {
2787 		if (rs->delta_disks) {
2788 			/* Process raid1 via delta_disks */
2789 			mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2790 			reshape = true;
2791 		} else {
2792 			/* Process raid1 without delta_disks */
2793 			mddev->raid_disks = rs->raid_disks;
2794 			reshape = false;
2795 		}
2796 	} else {
2797 		rs->ti->error = "Called with bogus raid type";
2798 		return -EINVAL;
2799 	}
2800 
2801 	if (reshape) {
2802 		set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2803 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2804 	} else if (mddev->raid_disks < rs->raid_disks)
2805 		/* Create new superblocks and bitmaps, if any new disks */
2806 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2807 
2808 	return 0;
2809 }
2810 
2811 /* Get reshape sectors from data_offsets or raid set */
2812 static sector_t _get_reshape_sectors(struct raid_set *rs)
2813 {
2814 	struct md_rdev *rdev;
2815 	sector_t reshape_sectors = 0;
2816 
2817 	rdev_for_each(rdev, &rs->md)
2818 		if (!test_bit(Journal, &rdev->flags)) {
2819 			reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ?
2820 					rdev->data_offset - rdev->new_data_offset :
2821 					rdev->new_data_offset - rdev->data_offset;
2822 			break;
2823 		}
2824 
2825 	return max(reshape_sectors, (sector_t) rs->data_offset);
2826 }
2827 
2828 /*
2829  *
2830  * - change raid layout
2831  * - change chunk size
2832  * - add disks
2833  * - remove disks
2834  */
2835 static int rs_setup_reshape(struct raid_set *rs)
2836 {
2837 	int r = 0;
2838 	unsigned int cur_raid_devs, d;
2839 	sector_t reshape_sectors = _get_reshape_sectors(rs);
2840 	struct mddev *mddev = &rs->md;
2841 	struct md_rdev *rdev;
2842 
2843 	mddev->delta_disks = rs->delta_disks;
2844 	cur_raid_devs = mddev->raid_disks;
2845 
2846 	/* Ignore impossible layout change whilst adding/removing disks */
2847 	if (mddev->delta_disks &&
2848 	    mddev->layout != mddev->new_layout) {
2849 		DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2850 		mddev->new_layout = mddev->layout;
2851 	}
2852 
2853 	/*
2854 	 * Adjust array size:
2855 	 *
2856 	 * - in case of adding disk(s), array size has
2857 	 *   to grow after the disk adding reshape,
2858 	 *   which'll hapen in the event handler;
2859 	 *   reshape will happen forward, so space has to
2860 	 *   be available at the beginning of each disk
2861 	 *
2862 	 * - in case of removing disk(s), array size
2863 	 *   has to shrink before starting the reshape,
2864 	 *   which'll happen here;
2865 	 *   reshape will happen backward, so space has to
2866 	 *   be available at the end of each disk
2867 	 *
2868 	 * - data_offset and new_data_offset are
2869 	 *   adjusted for aforementioned out of place
2870 	 *   reshaping based on userspace passing in
2871 	 *   the "data_offset <sectors>" key/value
2872 	 *   pair via the constructor
2873 	 */
2874 
2875 	/* Add disk(s) */
2876 	if (rs->delta_disks > 0) {
2877 		/* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2878 		for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2879 			rdev = &rs->dev[d].rdev;
2880 			clear_bit(In_sync, &rdev->flags);
2881 
2882 			/*
2883 			 * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2884 			 * by md, which'll store that erroneously in the superblock on reshape
2885 			 */
2886 			rdev->saved_raid_disk = -1;
2887 			rdev->raid_disk = d;
2888 
2889 			rdev->sectors = mddev->dev_sectors;
2890 			rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2891 		}
2892 
2893 		mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */
2894 
2895 	/* Remove disk(s) */
2896 	} else if (rs->delta_disks < 0) {
2897 		r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true);
2898 		mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2899 
2900 	/* Change layout and/or chunk size */
2901 	} else {
2902 		/*
2903 		 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2904 		 *
2905 		 * keeping number of disks and do layout change ->
2906 		 *
2907 		 * toggle reshape_backward depending on data_offset:
2908 		 *
2909 		 * - free space upfront -> reshape forward
2910 		 *
2911 		 * - free space at the end -> reshape backward
2912 		 *
2913 		 *
2914 		 * This utilizes free reshape space avoiding the need
2915 		 * for userspace to move (parts of) LV segments in
2916 		 * case of layout/chunksize change  (for disk
2917 		 * adding/removing reshape space has to be at
2918 		 * the proper address (see above with delta_disks):
2919 		 *
2920 		 * add disk(s)   -> begin
2921 		 * remove disk(s)-> end
2922 		 */
2923 		mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2924 	}
2925 
2926 	/*
2927 	 * Adjust device size for forward reshape
2928 	 * because md_finish_reshape() reduces it.
2929 	 */
2930 	if (!mddev->reshape_backwards)
2931 		rdev_for_each(rdev, &rs->md)
2932 			if (!test_bit(Journal, &rdev->flags))
2933 				rdev->sectors += reshape_sectors;
2934 
2935 	return r;
2936 }
2937 
2938 /*
2939  * Enable/disable discard support on RAID set depending on
2940  * RAID level and discard properties of underlying RAID members.
2941  */
2942 static void configure_discard_support(struct raid_set *rs)
2943 {
2944 	int i;
2945 	bool raid456;
2946 	struct dm_target *ti = rs->ti;
2947 
2948 	/*
2949 	 * XXX: RAID level 4,5,6 require zeroing for safety.
2950 	 */
2951 	raid456 = rs_is_raid456(rs);
2952 
2953 	for (i = 0; i < rs->raid_disks; i++) {
2954 		struct request_queue *q;
2955 
2956 		if (!rs->dev[i].rdev.bdev)
2957 			continue;
2958 
2959 		q = bdev_get_queue(rs->dev[i].rdev.bdev);
2960 		if (!q || !blk_queue_discard(q))
2961 			return;
2962 
2963 		if (raid456) {
2964 			if (!devices_handle_discard_safely) {
2965 				DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2966 				DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2967 				return;
2968 			}
2969 		}
2970 	}
2971 
2972 	ti->num_discard_bios = 1;
2973 }
2974 
2975 /*
2976  * Construct a RAID0/1/10/4/5/6 mapping:
2977  * Args:
2978  *	<raid_type> <#raid_params> <raid_params>{0,}	\
2979  *	<#raid_devs> [<meta_dev1> <dev1>]{1,}
2980  *
2981  * <raid_params> varies by <raid_type>.	 See 'parse_raid_params' for
2982  * details on possible <raid_params>.
2983  *
2984  * Userspace is free to initialize the metadata devices, hence the superblocks to
2985  * enforce recreation based on the passed in table parameters.
2986  *
2987  */
2988 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2989 {
2990 	int r;
2991 	bool resize = false;
2992 	struct raid_type *rt;
2993 	unsigned int num_raid_params, num_raid_devs;
2994 	sector_t sb_array_sectors, rdev_sectors, reshape_sectors;
2995 	struct raid_set *rs = NULL;
2996 	const char *arg;
2997 	struct rs_layout rs_layout;
2998 	struct dm_arg_set as = { argc, argv }, as_nrd;
2999 	struct dm_arg _args[] = {
3000 		{ 0, as.argc, "Cannot understand number of raid parameters" },
3001 		{ 1, 254, "Cannot understand number of raid devices parameters" }
3002 	};
3003 
3004 	/* Must have <raid_type> */
3005 	arg = dm_shift_arg(&as);
3006 	if (!arg) {
3007 		ti->error = "No arguments";
3008 		return -EINVAL;
3009 	}
3010 
3011 	rt = get_raid_type(arg);
3012 	if (!rt) {
3013 		ti->error = "Unrecognised raid_type";
3014 		return -EINVAL;
3015 	}
3016 
3017 	/* Must have <#raid_params> */
3018 	if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
3019 		return -EINVAL;
3020 
3021 	/* number of raid device tupples <meta_dev data_dev> */
3022 	as_nrd = as;
3023 	dm_consume_args(&as_nrd, num_raid_params);
3024 	_args[1].max = (as_nrd.argc - 1) / 2;
3025 	if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
3026 		return -EINVAL;
3027 
3028 	if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
3029 		ti->error = "Invalid number of supplied raid devices";
3030 		return -EINVAL;
3031 	}
3032 
3033 	rs = raid_set_alloc(ti, rt, num_raid_devs);
3034 	if (IS_ERR(rs))
3035 		return PTR_ERR(rs);
3036 
3037 	r = parse_raid_params(rs, &as, num_raid_params);
3038 	if (r)
3039 		goto bad;
3040 
3041 	r = parse_dev_params(rs, &as);
3042 	if (r)
3043 		goto bad;
3044 
3045 	rs->md.sync_super = super_sync;
3046 
3047 	/*
3048 	 * Calculate ctr requested array and device sizes to allow
3049 	 * for superblock analysis needing device sizes defined.
3050 	 *
3051 	 * Any existing superblock will overwrite the array and device sizes
3052 	 */
3053 	r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3054 	if (r)
3055 		goto bad;
3056 
3057 	/* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */
3058 	rs->array_sectors = rs->md.array_sectors;
3059 	rs->dev_sectors = rs->md.dev_sectors;
3060 
3061 	/*
3062 	 * Backup any new raid set level, layout, ...
3063 	 * requested to be able to compare to superblock
3064 	 * members for conversion decisions.
3065 	 */
3066 	rs_config_backup(rs, &rs_layout);
3067 
3068 	r = analyse_superblocks(ti, rs);
3069 	if (r)
3070 		goto bad;
3071 
3072 	/* All in-core metadata now as of current superblocks after calling analyse_superblocks() */
3073 	sb_array_sectors = rs->md.array_sectors;
3074 	rdev_sectors = __rdev_sectors(rs);
3075 	if (!rdev_sectors) {
3076 		ti->error = "Invalid rdev size";
3077 		r = -EINVAL;
3078 		goto bad;
3079 	}
3080 
3081 
3082 	reshape_sectors = _get_reshape_sectors(rs);
3083 	if (rs->dev_sectors != rdev_sectors) {
3084 		resize = (rs->dev_sectors != rdev_sectors - reshape_sectors);
3085 		if (rs->dev_sectors > rdev_sectors - reshape_sectors)
3086 			set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3087 	}
3088 
3089 	INIT_WORK(&rs->md.event_work, do_table_event);
3090 	ti->private = rs;
3091 	ti->num_flush_bios = 1;
3092 
3093 	/* Restore any requested new layout for conversion decision */
3094 	rs_config_restore(rs, &rs_layout);
3095 
3096 	/*
3097 	 * Now that we have any superblock metadata available,
3098 	 * check for new, recovering, reshaping, to be taken over,
3099 	 * to be reshaped or an existing, unchanged raid set to
3100 	 * run in sequence.
3101 	 */
3102 	if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
3103 		/* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
3104 		if (rs_is_raid6(rs) &&
3105 		    test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
3106 			ti->error = "'nosync' not allowed for new raid6 set";
3107 			r = -EINVAL;
3108 			goto bad;
3109 		}
3110 		rs_setup_recovery(rs, 0);
3111 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3112 		rs_set_new(rs);
3113 	} else if (rs_is_recovering(rs)) {
3114 		/* A recovering raid set may be resized */
3115 		goto size_check;
3116 	} else if (rs_is_reshaping(rs)) {
3117 		/* Have to reject size change request during reshape */
3118 		if (resize) {
3119 			ti->error = "Can't resize a reshaping raid set";
3120 			r = -EPERM;
3121 			goto bad;
3122 		}
3123 		/* skip setup rs */
3124 	} else if (rs_takeover_requested(rs)) {
3125 		if (rs_is_reshaping(rs)) {
3126 			ti->error = "Can't takeover a reshaping raid set";
3127 			r = -EPERM;
3128 			goto bad;
3129 		}
3130 
3131 		/* We can't takeover a journaled raid4/5/6 */
3132 		if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3133 			ti->error = "Can't takeover a journaled raid4/5/6 set";
3134 			r = -EPERM;
3135 			goto bad;
3136 		}
3137 
3138 		/*
3139 		 * If a takeover is needed, userspace sets any additional
3140 		 * devices to rebuild and we can check for a valid request here.
3141 		 *
3142 		 * If acceptible, set the level to the new requested
3143 		 * one, prohibit requesting recovery, allow the raid
3144 		 * set to run and store superblocks during resume.
3145 		 */
3146 		r = rs_check_takeover(rs);
3147 		if (r)
3148 			goto bad;
3149 
3150 		r = rs_setup_takeover(rs);
3151 		if (r)
3152 			goto bad;
3153 
3154 		set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3155 		/* Takeover ain't recovery, so disable recovery */
3156 		rs_setup_recovery(rs, MaxSector);
3157 		rs_set_new(rs);
3158 	} else if (rs_reshape_requested(rs)) {
3159 		/* Only request grow on raid set size extensions, not on reshapes. */
3160 		clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3161 
3162 		/*
3163 		 * No need to check for 'ongoing' takeover here, because takeover
3164 		 * is an instant operation as oposed to an ongoing reshape.
3165 		 */
3166 
3167 		/* We can't reshape a journaled raid4/5/6 */
3168 		if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3169 			ti->error = "Can't reshape a journaled raid4/5/6 set";
3170 			r = -EPERM;
3171 			goto bad;
3172 		}
3173 
3174 		/* Out-of-place space has to be available to allow for a reshape unless raid1! */
3175 		if (reshape_sectors || rs_is_raid1(rs)) {
3176 			/*
3177 			  * We can only prepare for a reshape here, because the
3178 			  * raid set needs to run to provide the repective reshape
3179 			  * check functions via its MD personality instance.
3180 			  *
3181 			  * So do the reshape check after md_run() succeeded.
3182 			  */
3183 			r = rs_prepare_reshape(rs);
3184 			if (r)
3185 				goto bad;
3186 
3187 			/* Reshaping ain't recovery, so disable recovery */
3188 			rs_setup_recovery(rs, MaxSector);
3189 		}
3190 		rs_set_cur(rs);
3191 	} else {
3192 size_check:
3193 		/* May not set recovery when a device rebuild is requested */
3194 		if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3195 			clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3196 			set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3197 			rs_setup_recovery(rs, MaxSector);
3198 		} else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3199 			/*
3200 			 * Set raid set to current size, i.e. size as of
3201 			 * superblocks to grow to larger size in preresume.
3202 			 */
3203 			r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false);
3204 			if (r)
3205 				goto bad;
3206 
3207 			rs_setup_recovery(rs, rs->md.recovery_cp < rs->md.dev_sectors ? rs->md.recovery_cp : rs->md.dev_sectors);
3208 		} else {
3209 			/* This is no size change or it is shrinking, update size and record in superblocks */
3210 			r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3211 			if (r)
3212 				goto bad;
3213 
3214 			if (sb_array_sectors > rs->array_sectors)
3215 				set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3216 		}
3217 		rs_set_cur(rs);
3218 	}
3219 
3220 	/* If constructor requested it, change data and new_data offsets */
3221 	r = rs_adjust_data_offsets(rs);
3222 	if (r)
3223 		goto bad;
3224 
3225 	/* Start raid set read-only and assumed clean to change in raid_resume() */
3226 	rs->md.ro = 1;
3227 	rs->md.in_sync = 1;
3228 
3229 	/* Keep array frozen */
3230 	set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
3231 
3232 	/* Has to be held on running the array */
3233 	mddev_lock_nointr(&rs->md);
3234 	r = md_run(&rs->md);
3235 	rs->md.in_sync = 0; /* Assume already marked dirty */
3236 	if (r) {
3237 		ti->error = "Failed to run raid array";
3238 		mddev_unlock(&rs->md);
3239 		goto bad;
3240 	}
3241 
3242 	r = md_start(&rs->md);
3243 
3244 	if (r) {
3245 		ti->error = "Failed to start raid array";
3246 		mddev_unlock(&rs->md);
3247 		goto bad_md_start;
3248 	}
3249 
3250 	rs->callbacks.congested_fn = raid_is_congested;
3251 	dm_table_add_target_callbacks(ti->table, &rs->callbacks);
3252 
3253 	/* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */
3254 	if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
3255 		r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode);
3256 		if (r) {
3257 			ti->error = "Failed to set raid4/5/6 journal mode";
3258 			mddev_unlock(&rs->md);
3259 			goto bad_journal_mode_set;
3260 		}
3261 	}
3262 
3263 	mddev_suspend(&rs->md);
3264 	set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags);
3265 
3266 	/* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
3267 	if (rs_is_raid456(rs)) {
3268 		r = rs_set_raid456_stripe_cache(rs);
3269 		if (r)
3270 			goto bad_stripe_cache;
3271 	}
3272 
3273 	/* Now do an early reshape check */
3274 	if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3275 		r = rs_check_reshape(rs);
3276 		if (r)
3277 			goto bad_check_reshape;
3278 
3279 		/* Restore new, ctr requested layout to perform check */
3280 		rs_config_restore(rs, &rs_layout);
3281 
3282 		if (rs->md.pers->start_reshape) {
3283 			r = rs->md.pers->check_reshape(&rs->md);
3284 			if (r) {
3285 				ti->error = "Reshape check failed";
3286 				goto bad_check_reshape;
3287 			}
3288 		}
3289 	}
3290 
3291 	/* Disable/enable discard support on raid set. */
3292 	configure_discard_support(rs);
3293 
3294 	mddev_unlock(&rs->md);
3295 	return 0;
3296 
3297 bad_md_start:
3298 bad_journal_mode_set:
3299 bad_stripe_cache:
3300 bad_check_reshape:
3301 	md_stop(&rs->md);
3302 bad:
3303 	raid_set_free(rs);
3304 
3305 	return r;
3306 }
3307 
3308 static void raid_dtr(struct dm_target *ti)
3309 {
3310 	struct raid_set *rs = ti->private;
3311 
3312 	list_del_init(&rs->callbacks.list);
3313 	md_stop(&rs->md);
3314 	raid_set_free(rs);
3315 }
3316 
3317 static int raid_map(struct dm_target *ti, struct bio *bio)
3318 {
3319 	struct raid_set *rs = ti->private;
3320 	struct mddev *mddev = &rs->md;
3321 
3322 	/*
3323 	 * If we're reshaping to add disk(s)), ti->len and
3324 	 * mddev->array_sectors will differ during the process
3325 	 * (ti->len > mddev->array_sectors), so we have to requeue
3326 	 * bios with addresses > mddev->array_sectors here or
3327 	 * there will occur accesses past EOD of the component
3328 	 * data images thus erroring the raid set.
3329 	 */
3330 	if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
3331 		return DM_MAPIO_REQUEUE;
3332 
3333 	md_handle_request(mddev, bio);
3334 
3335 	return DM_MAPIO_SUBMITTED;
3336 }
3337 
3338 /* Return sync state string for @state */
3339 enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle };
3340 static const char *sync_str(enum sync_state state)
3341 {
3342 	/* Has to be in above sync_state order! */
3343 	static const char *sync_strs[] = {
3344 		"frozen",
3345 		"reshape",
3346 		"resync",
3347 		"check",
3348 		"repair",
3349 		"recover",
3350 		"idle"
3351 	};
3352 
3353 	return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef";
3354 };
3355 
3356 /* Return enum sync_state for @mddev derived from @recovery flags */
3357 static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery)
3358 {
3359 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
3360 		return st_frozen;
3361 
3362 	/* The MD sync thread can be done with io or be interrupted but still be running */
3363 	if (!test_bit(MD_RECOVERY_DONE, &recovery) &&
3364 	    (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
3365 	     (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) {
3366 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
3367 			return st_reshape;
3368 
3369 		if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
3370 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
3371 				return st_resync;
3372 			if (test_bit(MD_RECOVERY_CHECK, &recovery))
3373 				return st_check;
3374 			return st_repair;
3375 		}
3376 
3377 		if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3378 			return st_recover;
3379 
3380 		if (mddev->reshape_position != MaxSector)
3381 			return st_reshape;
3382 	}
3383 
3384 	return st_idle;
3385 }
3386 
3387 /*
3388  * Return status string for @rdev
3389  *
3390  * Status characters:
3391  *
3392  *  'D' = Dead/Failed raid set component or raid4/5/6 journal device
3393  *  'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device
3394  *  'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device
3395  *  '-' = Non-existing device (i.e. uspace passed '- -' into the ctr)
3396  */
3397 static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev)
3398 {
3399 	if (!rdev->bdev)
3400 		return "-";
3401 	else if (test_bit(Faulty, &rdev->flags))
3402 		return "D";
3403 	else if (test_bit(Journal, &rdev->flags))
3404 		return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a";
3405 	else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) ||
3406 		 (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) &&
3407 		  !test_bit(In_sync, &rdev->flags)))
3408 		return "a";
3409 	else
3410 		return "A";
3411 }
3412 
3413 /* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */
3414 static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery,
3415 				enum sync_state state, sector_t resync_max_sectors)
3416 {
3417 	sector_t r;
3418 	struct mddev *mddev = &rs->md;
3419 
3420 	clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3421 	clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3422 
3423 	if (rs_is_raid0(rs)) {
3424 		r = resync_max_sectors;
3425 		set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3426 
3427 	} else {
3428 		if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery))
3429 			r = mddev->recovery_cp;
3430 		else
3431 			r = mddev->curr_resync_completed;
3432 
3433 		if (state == st_idle && r >= resync_max_sectors) {
3434 			/*
3435 			 * Sync complete.
3436 			 */
3437 			/* In case we have finished recovering, the array is in sync. */
3438 			if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3439 				set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3440 
3441 		} else if (state == st_recover)
3442 			/*
3443 			 * In case we are recovering, the array is not in sync
3444 			 * and health chars should show the recovering legs.
3445 			 *
3446 			 * Already retrieved recovery offset from curr_resync_completed above.
3447 			 */
3448 			;
3449 
3450 		else if (state == st_resync || state == st_reshape)
3451 			/*
3452 			 * If "resync/reshape" is occurring, the raid set
3453 			 * is or may be out of sync hence the health
3454 			 * characters shall be 'a'.
3455 			 */
3456 			set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3457 
3458 		else if (state == st_check || state == st_repair)
3459 			/*
3460 			 * If "check" or "repair" is occurring, the raid set has
3461 			 * undergone an initial sync and the health characters
3462 			 * should not be 'a' anymore.
3463 			 */
3464 			set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3465 
3466 		else if (test_bit(MD_RECOVERY_NEEDED, &recovery))
3467 			/*
3468 			 * We are idle and recovery is needed, prevent 'A' chars race
3469 			 * caused by components still set to in-sync by constructor.
3470 			 */
3471 			set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3472 
3473 		else {
3474 			/*
3475 			 * We are idle and the raid set may be doing an initial
3476 			 * sync, or it may be rebuilding individual components.
3477 			 * If all the devices are In_sync, then it is the raid set
3478 			 * that is being initialized.
3479 			 */
3480 			struct md_rdev *rdev;
3481 
3482 			set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3483 			rdev_for_each(rdev, mddev)
3484 				if (!test_bit(Journal, &rdev->flags) &&
3485 				    !test_bit(In_sync, &rdev->flags)) {
3486 					clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3487 					break;
3488 				}
3489 		}
3490 	}
3491 
3492 	return min(r, resync_max_sectors);
3493 }
3494 
3495 /* Helper to return @dev name or "-" if !@dev */
3496 static const char *__get_dev_name(struct dm_dev *dev)
3497 {
3498 	return dev ? dev->name : "-";
3499 }
3500 
3501 static void raid_status(struct dm_target *ti, status_type_t type,
3502 			unsigned int status_flags, char *result, unsigned int maxlen)
3503 {
3504 	struct raid_set *rs = ti->private;
3505 	struct mddev *mddev = &rs->md;
3506 	struct r5conf *conf = mddev->private;
3507 	int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3508 	unsigned long recovery;
3509 	unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3510 	unsigned int sz = 0;
3511 	unsigned int rebuild_disks;
3512 	unsigned int write_mostly_params = 0;
3513 	sector_t progress, resync_max_sectors, resync_mismatches;
3514 	enum sync_state state;
3515 	struct raid_type *rt;
3516 
3517 	switch (type) {
3518 	case STATUSTYPE_INFO:
3519 		/* *Should* always succeed */
3520 		rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3521 		if (!rt)
3522 			return;
3523 
3524 		DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3525 
3526 		/* Access most recent mddev properties for status output */
3527 		smp_rmb();
3528 		/* Get sensible max sectors even if raid set not yet started */
3529 		resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3530 				      mddev->resync_max_sectors : mddev->dev_sectors;
3531 		recovery = rs->md.recovery;
3532 		state = decipher_sync_action(mddev, recovery);
3533 		progress = rs_get_progress(rs, recovery, state, resync_max_sectors);
3534 		resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3535 				    atomic64_read(&mddev->resync_mismatches) : 0;
3536 
3537 		/* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */
3538 		for (i = 0; i < rs->raid_disks; i++)
3539 			DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3540 
3541 		/*
3542 		 * In-sync/Reshape ratio:
3543 		 *  The in-sync ratio shows the progress of:
3544 		 *   - Initializing the raid set
3545 		 *   - Rebuilding a subset of devices of the raid set
3546 		 *  The user can distinguish between the two by referring
3547 		 *  to the status characters.
3548 		 *
3549 		 *  The reshape ratio shows the progress of
3550 		 *  changing the raid layout or the number of
3551 		 *  disks of a raid set
3552 		 */
3553 		DMEMIT(" %llu/%llu", (unsigned long long) progress,
3554 				     (unsigned long long) resync_max_sectors);
3555 
3556 		/*
3557 		 * v1.5.0+:
3558 		 *
3559 		 * Sync action:
3560 		 *   See Documentation/admin-guide/device-mapper/dm-raid.rst for
3561 		 *   information on each of these states.
3562 		 */
3563 		DMEMIT(" %s", sync_str(state));
3564 
3565 		/*
3566 		 * v1.5.0+:
3567 		 *
3568 		 * resync_mismatches/mismatch_cnt
3569 		 *   This field shows the number of discrepancies found when
3570 		 *   performing a "check" of the raid set.
3571 		 */
3572 		DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3573 
3574 		/*
3575 		 * v1.9.0+:
3576 		 *
3577 		 * data_offset (needed for out of space reshaping)
3578 		 *   This field shows the data offset into the data
3579 		 *   image LV where the first stripes data starts.
3580 		 *
3581 		 * We keep data_offset equal on all raid disks of the set,
3582 		 * so retrieving it from the first raid disk is sufficient.
3583 		 */
3584 		DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3585 
3586 		/*
3587 		 * v1.10.0+:
3588 		 */
3589 		DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ?
3590 			      __raid_dev_status(rs, &rs->journal_dev.rdev) : "-");
3591 		break;
3592 
3593 	case STATUSTYPE_TABLE:
3594 		/* Report the table line string you would use to construct this raid set */
3595 
3596 		/* Calculate raid parameter count */
3597 		for (i = 0; i < rs->raid_disks; i++)
3598 			if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3599 				write_mostly_params += 2;
3600 		rebuild_disks = memweight(rs->rebuild_disks, DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks));
3601 		raid_param_cnt += rebuild_disks * 2 +
3602 				  write_mostly_params +
3603 				  hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3604 				  hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2 +
3605 				  (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ? 2 : 0) +
3606 				  (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags) ? 2 : 0);
3607 
3608 		/* Emit table line */
3609 		/* This has to be in the documented order for userspace! */
3610 		DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3611 		if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3612 			DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3613 		if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3614 			DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3615 		if (rebuild_disks)
3616 			for (i = 0; i < rs->raid_disks; i++)
3617 				if (test_bit(rs->dev[i].rdev.raid_disk, (void *) rs->rebuild_disks))
3618 					DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD),
3619 							 rs->dev[i].rdev.raid_disk);
3620 		if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3621 			DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3622 					  mddev->bitmap_info.daemon_sleep);
3623 		if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3624 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3625 					 mddev->sync_speed_min);
3626 		if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3627 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3628 					 mddev->sync_speed_max);
3629 		if (write_mostly_params)
3630 			for (i = 0; i < rs->raid_disks; i++)
3631 				if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3632 					DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3633 					       rs->dev[i].rdev.raid_disk);
3634 		if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3635 			DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3636 					  mddev->bitmap_info.max_write_behind);
3637 		if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3638 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3639 					 max_nr_stripes);
3640 		if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3641 			DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3642 					   (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3643 		if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3644 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3645 					 raid10_md_layout_to_copies(mddev->layout));
3646 		if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3647 			DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3648 					 raid10_md_layout_to_format(mddev->layout));
3649 		if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3650 			DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3651 					 max(rs->delta_disks, mddev->delta_disks));
3652 		if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3653 			DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3654 					   (unsigned long long) rs->data_offset);
3655 		if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags))
3656 			DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV),
3657 					__get_dev_name(rs->journal_dev.dev));
3658 		if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags))
3659 			DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE),
3660 					 md_journal_mode_to_dm_raid(rs->journal_dev.mode));
3661 		DMEMIT(" %d", rs->raid_disks);
3662 		for (i = 0; i < rs->raid_disks; i++)
3663 			DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3664 					 __get_dev_name(rs->dev[i].data_dev));
3665 	}
3666 }
3667 
3668 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv,
3669 			char *result, unsigned maxlen)
3670 {
3671 	struct raid_set *rs = ti->private;
3672 	struct mddev *mddev = &rs->md;
3673 
3674 	if (!mddev->pers || !mddev->pers->sync_request)
3675 		return -EINVAL;
3676 
3677 	if (!strcasecmp(argv[0], "frozen"))
3678 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3679 	else
3680 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3681 
3682 	if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3683 		if (mddev->sync_thread) {
3684 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3685 			md_reap_sync_thread(mddev);
3686 		}
3687 	} else if (decipher_sync_action(mddev, mddev->recovery) != st_idle)
3688 		return -EBUSY;
3689 	else if (!strcasecmp(argv[0], "resync"))
3690 		; /* MD_RECOVERY_NEEDED set below */
3691 	else if (!strcasecmp(argv[0], "recover"))
3692 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3693 	else {
3694 		if (!strcasecmp(argv[0], "check")) {
3695 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3696 			set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3697 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3698 		} else if (!strcasecmp(argv[0], "repair")) {
3699 			set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3700 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3701 		} else
3702 			return -EINVAL;
3703 	}
3704 	if (mddev->ro == 2) {
3705 		/* A write to sync_action is enough to justify
3706 		 * canceling read-auto mode
3707 		 */
3708 		mddev->ro = 0;
3709 		if (!mddev->suspended && mddev->sync_thread)
3710 			md_wakeup_thread(mddev->sync_thread);
3711 	}
3712 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3713 	if (!mddev->suspended && mddev->thread)
3714 		md_wakeup_thread(mddev->thread);
3715 
3716 	return 0;
3717 }
3718 
3719 static int raid_iterate_devices(struct dm_target *ti,
3720 				iterate_devices_callout_fn fn, void *data)
3721 {
3722 	struct raid_set *rs = ti->private;
3723 	unsigned int i;
3724 	int r = 0;
3725 
3726 	for (i = 0; !r && i < rs->md.raid_disks; i++)
3727 		if (rs->dev[i].data_dev)
3728 			r = fn(ti,
3729 				 rs->dev[i].data_dev,
3730 				 0, /* No offset on data devs */
3731 				 rs->md.dev_sectors,
3732 				 data);
3733 
3734 	return r;
3735 }
3736 
3737 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3738 {
3739 	struct raid_set *rs = ti->private;
3740 	unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors);
3741 
3742 	blk_limits_io_min(limits, chunk_size_bytes);
3743 	blk_limits_io_opt(limits, chunk_size_bytes * mddev_data_stripes(rs));
3744 
3745 	/*
3746 	 * RAID1 and RAID10 personalities require bio splitting,
3747 	 * RAID0/4/5/6 don't and process large discard bios properly.
3748 	 */
3749 	if (rs_is_raid1(rs) || rs_is_raid10(rs)) {
3750 		limits->discard_granularity = chunk_size_bytes;
3751 		limits->max_discard_sectors = rs->md.chunk_sectors;
3752 	}
3753 }
3754 
3755 static void raid_postsuspend(struct dm_target *ti)
3756 {
3757 	struct raid_set *rs = ti->private;
3758 
3759 	if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
3760 		/* Writes have to be stopped before suspending to avoid deadlocks. */
3761 		if (!test_bit(MD_RECOVERY_FROZEN, &rs->md.recovery))
3762 			md_stop_writes(&rs->md);
3763 
3764 		mddev_lock_nointr(&rs->md);
3765 		mddev_suspend(&rs->md);
3766 		mddev_unlock(&rs->md);
3767 	}
3768 }
3769 
3770 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3771 {
3772 	int i;
3773 	uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3774 	unsigned long flags;
3775 	bool cleared = false;
3776 	struct dm_raid_superblock *sb;
3777 	struct mddev *mddev = &rs->md;
3778 	struct md_rdev *r;
3779 
3780 	/* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3781 	if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3782 		return;
3783 
3784 	memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3785 
3786 	for (i = 0; i < mddev->raid_disks; i++) {
3787 		r = &rs->dev[i].rdev;
3788 		/* HM FIXME: enhance journal device recovery processing */
3789 		if (test_bit(Journal, &r->flags))
3790 			continue;
3791 
3792 		if (test_bit(Faulty, &r->flags) &&
3793 		    r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) {
3794 			DMINFO("Faulty %s device #%d has readable super block."
3795 			       "  Attempting to revive it.",
3796 			       rs->raid_type->name, i);
3797 
3798 			/*
3799 			 * Faulty bit may be set, but sometimes the array can
3800 			 * be suspended before the personalities can respond
3801 			 * by removing the device from the array (i.e. calling
3802 			 * 'hot_remove_disk').	If they haven't yet removed
3803 			 * the failed device, its 'raid_disk' number will be
3804 			 * '>= 0' - meaning we must call this function
3805 			 * ourselves.
3806 			 */
3807 			flags = r->flags;
3808 			clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */
3809 			if (r->raid_disk >= 0) {
3810 				if (mddev->pers->hot_remove_disk(mddev, r)) {
3811 					/* Failed to revive this device, try next */
3812 					r->flags = flags;
3813 					continue;
3814 				}
3815 			} else
3816 				r->raid_disk = r->saved_raid_disk = i;
3817 
3818 			clear_bit(Faulty, &r->flags);
3819 			clear_bit(WriteErrorSeen, &r->flags);
3820 
3821 			if (mddev->pers->hot_add_disk(mddev, r)) {
3822 				/* Failed to revive this device, try next */
3823 				r->raid_disk = r->saved_raid_disk = -1;
3824 				r->flags = flags;
3825 			} else {
3826 				clear_bit(In_sync, &r->flags);
3827 				r->recovery_offset = 0;
3828 				set_bit(i, (void *) cleared_failed_devices);
3829 				cleared = true;
3830 			}
3831 		}
3832 	}
3833 
3834 	/* If any failed devices could be cleared, update all sbs failed_devices bits */
3835 	if (cleared) {
3836 		uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3837 
3838 		rdev_for_each(r, &rs->md) {
3839 			if (test_bit(Journal, &r->flags))
3840 				continue;
3841 
3842 			sb = page_address(r->sb_page);
3843 			sb_retrieve_failed_devices(sb, failed_devices);
3844 
3845 			for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3846 				failed_devices[i] &= ~cleared_failed_devices[i];
3847 
3848 			sb_update_failed_devices(sb, failed_devices);
3849 		}
3850 	}
3851 }
3852 
3853 static int __load_dirty_region_bitmap(struct raid_set *rs)
3854 {
3855 	int r = 0;
3856 
3857 	/* Try loading the bitmap unless "raid0", which does not have one */
3858 	if (!rs_is_raid0(rs) &&
3859 	    !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3860 		r = md_bitmap_load(&rs->md);
3861 		if (r)
3862 			DMERR("Failed to load bitmap");
3863 	}
3864 
3865 	return r;
3866 }
3867 
3868 /* Enforce updating all superblocks */
3869 static void rs_update_sbs(struct raid_set *rs)
3870 {
3871 	struct mddev *mddev = &rs->md;
3872 	int ro = mddev->ro;
3873 
3874 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3875 	mddev->ro = 0;
3876 	md_update_sb(mddev, 1);
3877 	mddev->ro = ro;
3878 }
3879 
3880 /*
3881  * Reshape changes raid algorithm of @rs to new one within personality
3882  * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3883  * disks from a raid set thus growing/shrinking it or resizes the set
3884  *
3885  * Call mddev_lock_nointr() before!
3886  */
3887 static int rs_start_reshape(struct raid_set *rs)
3888 {
3889 	int r;
3890 	struct mddev *mddev = &rs->md;
3891 	struct md_personality *pers = mddev->pers;
3892 
3893 	/* Don't allow the sync thread to work until the table gets reloaded. */
3894 	set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
3895 
3896 	r = rs_setup_reshape(rs);
3897 	if (r)
3898 		return r;
3899 
3900 	/*
3901 	 * Check any reshape constraints enforced by the personalility
3902 	 *
3903 	 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3904 	 */
3905 	r = pers->check_reshape(mddev);
3906 	if (r) {
3907 		rs->ti->error = "pers->check_reshape() failed";
3908 		return r;
3909 	}
3910 
3911 	/*
3912 	 * Personality may not provide start reshape method in which
3913 	 * case check_reshape above has already covered everything
3914 	 */
3915 	if (pers->start_reshape) {
3916 		r = pers->start_reshape(mddev);
3917 		if (r) {
3918 			rs->ti->error = "pers->start_reshape() failed";
3919 			return r;
3920 		}
3921 	}
3922 
3923 	/*
3924 	 * Now reshape got set up, update superblocks to
3925 	 * reflect the fact so that a table reload will
3926 	 * access proper superblock content in the ctr.
3927 	 */
3928 	rs_update_sbs(rs);
3929 
3930 	return 0;
3931 }
3932 
3933 static int raid_preresume(struct dm_target *ti)
3934 {
3935 	int r;
3936 	struct raid_set *rs = ti->private;
3937 	struct mddev *mddev = &rs->md;
3938 
3939 	/* This is a resume after a suspend of the set -> it's already started. */
3940 	if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3941 		return 0;
3942 
3943 	/*
3944 	 * The superblocks need to be updated on disk if the
3945 	 * array is new or new devices got added (thus zeroed
3946 	 * out by userspace) or __load_dirty_region_bitmap
3947 	 * will overwrite them in core with old data or fail.
3948 	 */
3949 	if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3950 		rs_update_sbs(rs);
3951 
3952 	/* Load the bitmap from disk unless raid0 */
3953 	r = __load_dirty_region_bitmap(rs);
3954 	if (r)
3955 		return r;
3956 
3957 	/* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */
3958 	if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3959 		mddev->array_sectors = rs->array_sectors;
3960 		mddev->dev_sectors = rs->dev_sectors;
3961 		rs_set_rdev_sectors(rs);
3962 		rs_set_capacity(rs);
3963 	}
3964 
3965 	/* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */
3966         if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap &&
3967 	    (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) ||
3968 	     (rs->requested_bitmap_chunk_sectors &&
3969 	       mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) {
3970 		int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize;
3971 
3972 		r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors, chunksize, 0);
3973 		if (r)
3974 			DMERR("Failed to resize bitmap");
3975 	}
3976 
3977 	/* Check for any resize/reshape on @rs and adjust/initiate */
3978 	/* Be prepared for mddev_resume() in raid_resume() */
3979 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3980 	if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
3981 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3982 		mddev->resync_min = mddev->recovery_cp;
3983 		if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags))
3984 			mddev->resync_max_sectors = mddev->dev_sectors;
3985 	}
3986 
3987 	/* Check for any reshape request unless new raid set */
3988 	if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3989 		/* Initiate a reshape. */
3990 		rs_set_rdev_sectors(rs);
3991 		mddev_lock_nointr(mddev);
3992 		r = rs_start_reshape(rs);
3993 		mddev_unlock(mddev);
3994 		if (r)
3995 			DMWARN("Failed to check/start reshape, continuing without change");
3996 		r = 0;
3997 	}
3998 
3999 	return r;
4000 }
4001 
4002 static void raid_resume(struct dm_target *ti)
4003 {
4004 	struct raid_set *rs = ti->private;
4005 	struct mddev *mddev = &rs->md;
4006 
4007 	if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
4008 		/*
4009 		 * A secondary resume while the device is active.
4010 		 * Take this opportunity to check whether any failed
4011 		 * devices are reachable again.
4012 		 */
4013 		attempt_restore_of_faulty_devices(rs);
4014 	}
4015 
4016 	if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
4017 		/* Only reduce raid set size before running a disk removing reshape. */
4018 		if (mddev->delta_disks < 0)
4019 			rs_set_capacity(rs);
4020 
4021 		mddev_lock_nointr(mddev);
4022 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4023 		mddev->ro = 0;
4024 		mddev->in_sync = 0;
4025 		mddev_resume(mddev);
4026 		mddev_unlock(mddev);
4027 	}
4028 }
4029 
4030 static struct target_type raid_target = {
4031 	.name = "raid",
4032 	.version = {1, 15, 0},
4033 	.module = THIS_MODULE,
4034 	.ctr = raid_ctr,
4035 	.dtr = raid_dtr,
4036 	.map = raid_map,
4037 	.status = raid_status,
4038 	.message = raid_message,
4039 	.iterate_devices = raid_iterate_devices,
4040 	.io_hints = raid_io_hints,
4041 	.postsuspend = raid_postsuspend,
4042 	.preresume = raid_preresume,
4043 	.resume = raid_resume,
4044 };
4045 
4046 static int __init dm_raid_init(void)
4047 {
4048 	DMINFO("Loading target version %u.%u.%u",
4049 	       raid_target.version[0],
4050 	       raid_target.version[1],
4051 	       raid_target.version[2]);
4052 	return dm_register_target(&raid_target);
4053 }
4054 
4055 static void __exit dm_raid_exit(void)
4056 {
4057 	dm_unregister_target(&raid_target);
4058 }
4059 
4060 module_init(dm_raid_init);
4061 module_exit(dm_raid_exit);
4062 
4063 module_param(devices_handle_discard_safely, bool, 0644);
4064 MODULE_PARM_DESC(devices_handle_discard_safely,
4065 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
4066 
4067 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
4068 MODULE_ALIAS("dm-raid0");
4069 MODULE_ALIAS("dm-raid1");
4070 MODULE_ALIAS("dm-raid10");
4071 MODULE_ALIAS("dm-raid4");
4072 MODULE_ALIAS("dm-raid5");
4073 MODULE_ALIAS("dm-raid6");
4074 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
4075 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
4076 MODULE_LICENSE("GPL");
4077