1 /* 2 * Copyright (C) 2010-2011 Neil Brown 3 * Copyright (C) 2010-2011 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/slab.h> 9 #include <linux/module.h> 10 11 #include "md.h" 12 #include "raid1.h" 13 #include "raid5.h" 14 #include "bitmap.h" 15 16 #include <linux/device-mapper.h> 17 18 #define DM_MSG_PREFIX "raid" 19 20 /* 21 * The following flags are used by dm-raid.c to set up the array state. 22 * They must be cleared before md_run is called. 23 */ 24 #define FirstUse 10 /* rdev flag */ 25 26 struct raid_dev { 27 /* 28 * Two DM devices, one to hold metadata and one to hold the 29 * actual data/parity. The reason for this is to not confuse 30 * ti->len and give more flexibility in altering size and 31 * characteristics. 32 * 33 * While it is possible for this device to be associated 34 * with a different physical device than the data_dev, it 35 * is intended for it to be the same. 36 * |--------- Physical Device ---------| 37 * |- meta_dev -|------ data_dev ------| 38 */ 39 struct dm_dev *meta_dev; 40 struct dm_dev *data_dev; 41 struct md_rdev rdev; 42 }; 43 44 /* 45 * Flags for rs->print_flags field. 46 */ 47 #define DMPF_SYNC 0x1 48 #define DMPF_NOSYNC 0x2 49 #define DMPF_REBUILD 0x4 50 #define DMPF_DAEMON_SLEEP 0x8 51 #define DMPF_MIN_RECOVERY_RATE 0x10 52 #define DMPF_MAX_RECOVERY_RATE 0x20 53 #define DMPF_MAX_WRITE_BEHIND 0x40 54 #define DMPF_STRIPE_CACHE 0x80 55 #define DMPF_REGION_SIZE 0X100 56 struct raid_set { 57 struct dm_target *ti; 58 59 uint32_t bitmap_loaded; 60 uint32_t print_flags; 61 62 struct mddev md; 63 struct raid_type *raid_type; 64 struct dm_target_callbacks callbacks; 65 66 struct raid_dev dev[0]; 67 }; 68 69 /* Supported raid types and properties. */ 70 static struct raid_type { 71 const char *name; /* RAID algorithm. */ 72 const char *descr; /* Descriptor text for logging. */ 73 const unsigned parity_devs; /* # of parity devices. */ 74 const unsigned minimal_devs; /* minimal # of devices in set. */ 75 const unsigned level; /* RAID level. */ 76 const unsigned algorithm; /* RAID algorithm. */ 77 } raid_types[] = { 78 {"raid1", "RAID1 (mirroring)", 0, 2, 1, 0 /* NONE */}, 79 {"raid4", "RAID4 (dedicated parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, 80 {"raid5_la", "RAID5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC}, 81 {"raid5_ra", "RAID5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC}, 82 {"raid5_ls", "RAID5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC}, 83 {"raid5_rs", "RAID5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC}, 84 {"raid6_zr", "RAID6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART}, 85 {"raid6_nr", "RAID6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART}, 86 {"raid6_nc", "RAID6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE} 87 }; 88 89 static struct raid_type *get_raid_type(char *name) 90 { 91 int i; 92 93 for (i = 0; i < ARRAY_SIZE(raid_types); i++) 94 if (!strcmp(raid_types[i].name, name)) 95 return &raid_types[i]; 96 97 return NULL; 98 } 99 100 static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs) 101 { 102 unsigned i; 103 struct raid_set *rs; 104 sector_t sectors_per_dev; 105 106 if (raid_devs <= raid_type->parity_devs) { 107 ti->error = "Insufficient number of devices"; 108 return ERR_PTR(-EINVAL); 109 } 110 111 sectors_per_dev = ti->len; 112 if ((raid_type->level > 1) && 113 sector_div(sectors_per_dev, (raid_devs - raid_type->parity_devs))) { 114 ti->error = "Target length not divisible by number of data devices"; 115 return ERR_PTR(-EINVAL); 116 } 117 118 rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL); 119 if (!rs) { 120 ti->error = "Cannot allocate raid context"; 121 return ERR_PTR(-ENOMEM); 122 } 123 124 mddev_init(&rs->md); 125 126 rs->ti = ti; 127 rs->raid_type = raid_type; 128 rs->md.raid_disks = raid_devs; 129 rs->md.level = raid_type->level; 130 rs->md.new_level = rs->md.level; 131 rs->md.dev_sectors = sectors_per_dev; 132 rs->md.layout = raid_type->algorithm; 133 rs->md.new_layout = rs->md.layout; 134 rs->md.delta_disks = 0; 135 rs->md.recovery_cp = 0; 136 137 for (i = 0; i < raid_devs; i++) 138 md_rdev_init(&rs->dev[i].rdev); 139 140 /* 141 * Remaining items to be initialized by further RAID params: 142 * rs->md.persistent 143 * rs->md.external 144 * rs->md.chunk_sectors 145 * rs->md.new_chunk_sectors 146 */ 147 148 return rs; 149 } 150 151 static void context_free(struct raid_set *rs) 152 { 153 int i; 154 155 for (i = 0; i < rs->md.raid_disks; i++) { 156 if (rs->dev[i].meta_dev) 157 dm_put_device(rs->ti, rs->dev[i].meta_dev); 158 if (rs->dev[i].rdev.sb_page) 159 put_page(rs->dev[i].rdev.sb_page); 160 rs->dev[i].rdev.sb_page = NULL; 161 rs->dev[i].rdev.sb_loaded = 0; 162 if (rs->dev[i].data_dev) 163 dm_put_device(rs->ti, rs->dev[i].data_dev); 164 } 165 166 kfree(rs); 167 } 168 169 /* 170 * For every device we have two words 171 * <meta_dev>: meta device name or '-' if missing 172 * <data_dev>: data device name or '-' if missing 173 * 174 * The following are permitted: 175 * - - 176 * - <data_dev> 177 * <meta_dev> <data_dev> 178 * 179 * The following is not allowed: 180 * <meta_dev> - 181 * 182 * This code parses those words. If there is a failure, 183 * the caller must use context_free to unwind the operations. 184 */ 185 static int dev_parms(struct raid_set *rs, char **argv) 186 { 187 int i; 188 int rebuild = 0; 189 int metadata_available = 0; 190 int ret = 0; 191 192 for (i = 0; i < rs->md.raid_disks; i++, argv += 2) { 193 rs->dev[i].rdev.raid_disk = i; 194 195 rs->dev[i].meta_dev = NULL; 196 rs->dev[i].data_dev = NULL; 197 198 /* 199 * There are no offsets, since there is a separate device 200 * for data and metadata. 201 */ 202 rs->dev[i].rdev.data_offset = 0; 203 rs->dev[i].rdev.mddev = &rs->md; 204 205 if (strcmp(argv[0], "-")) { 206 ret = dm_get_device(rs->ti, argv[0], 207 dm_table_get_mode(rs->ti->table), 208 &rs->dev[i].meta_dev); 209 rs->ti->error = "RAID metadata device lookup failure"; 210 if (ret) 211 return ret; 212 213 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL); 214 if (!rs->dev[i].rdev.sb_page) 215 return -ENOMEM; 216 } 217 218 if (!strcmp(argv[1], "-")) { 219 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) && 220 (!rs->dev[i].rdev.recovery_offset)) { 221 rs->ti->error = "Drive designated for rebuild not specified"; 222 return -EINVAL; 223 } 224 225 rs->ti->error = "No data device supplied with metadata device"; 226 if (rs->dev[i].meta_dev) 227 return -EINVAL; 228 229 continue; 230 } 231 232 ret = dm_get_device(rs->ti, argv[1], 233 dm_table_get_mode(rs->ti->table), 234 &rs->dev[i].data_dev); 235 if (ret) { 236 rs->ti->error = "RAID device lookup failure"; 237 return ret; 238 } 239 240 if (rs->dev[i].meta_dev) { 241 metadata_available = 1; 242 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev; 243 } 244 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev; 245 list_add(&rs->dev[i].rdev.same_set, &rs->md.disks); 246 if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) 247 rebuild++; 248 } 249 250 if (metadata_available) { 251 rs->md.external = 0; 252 rs->md.persistent = 1; 253 rs->md.major_version = 2; 254 } else if (rebuild && !rs->md.recovery_cp) { 255 /* 256 * Without metadata, we will not be able to tell if the array 257 * is in-sync or not - we must assume it is not. Therefore, 258 * it is impossible to rebuild a drive. 259 * 260 * Even if there is metadata, the on-disk information may 261 * indicate that the array is not in-sync and it will then 262 * fail at that time. 263 * 264 * User could specify 'nosync' option if desperate. 265 */ 266 DMERR("Unable to rebuild drive while array is not in-sync"); 267 rs->ti->error = "RAID device lookup failure"; 268 return -EINVAL; 269 } 270 271 return 0; 272 } 273 274 /* 275 * validate_region_size 276 * @rs 277 * @region_size: region size in sectors. If 0, pick a size (4MiB default). 278 * 279 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size'). 280 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap. 281 * 282 * Returns: 0 on success, -EINVAL on failure. 283 */ 284 static int validate_region_size(struct raid_set *rs, unsigned long region_size) 285 { 286 unsigned long min_region_size = rs->ti->len / (1 << 21); 287 288 if (!region_size) { 289 /* 290 * Choose a reasonable default. All figures in sectors. 291 */ 292 if (min_region_size > (1 << 13)) { 293 DMINFO("Choosing default region size of %lu sectors", 294 region_size); 295 region_size = min_region_size; 296 } else { 297 DMINFO("Choosing default region size of 4MiB"); 298 region_size = 1 << 13; /* sectors */ 299 } 300 } else { 301 /* 302 * Validate user-supplied value. 303 */ 304 if (region_size > rs->ti->len) { 305 rs->ti->error = "Supplied region size is too large"; 306 return -EINVAL; 307 } 308 309 if (region_size < min_region_size) { 310 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)", 311 region_size, min_region_size); 312 rs->ti->error = "Supplied region size is too small"; 313 return -EINVAL; 314 } 315 316 if (!is_power_of_2(region_size)) { 317 rs->ti->error = "Region size is not a power of 2"; 318 return -EINVAL; 319 } 320 321 if (region_size < rs->md.chunk_sectors) { 322 rs->ti->error = "Region size is smaller than the chunk size"; 323 return -EINVAL; 324 } 325 } 326 327 /* 328 * Convert sectors to bytes. 329 */ 330 rs->md.bitmap_info.chunksize = (region_size << 9); 331 332 return 0; 333 } 334 335 /* 336 * Possible arguments are... 337 * <chunk_size> [optional_args] 338 * 339 * Argument definitions 340 * <chunk_size> The number of sectors per disk that 341 * will form the "stripe" 342 * [[no]sync] Force or prevent recovery of the 343 * entire array 344 * [rebuild <idx>] Rebuild the drive indicated by the index 345 * [daemon_sleep <ms>] Time between bitmap daemon work to 346 * clear bits 347 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization 348 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization 349 * [write_mostly <idx>] Indicate a write mostly drive via index 350 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm) 351 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs 352 * [region_size <sectors>] Defines granularity of bitmap 353 */ 354 static int parse_raid_params(struct raid_set *rs, char **argv, 355 unsigned num_raid_params) 356 { 357 unsigned i, rebuild_cnt = 0; 358 unsigned long value, region_size = 0; 359 char *key; 360 361 /* 362 * First, parse the in-order required arguments 363 * "chunk_size" is the only argument of this type. 364 */ 365 if ((strict_strtoul(argv[0], 10, &value) < 0)) { 366 rs->ti->error = "Bad chunk size"; 367 return -EINVAL; 368 } else if (rs->raid_type->level == 1) { 369 if (value) 370 DMERR("Ignoring chunk size parameter for RAID 1"); 371 value = 0; 372 } else if (!is_power_of_2(value)) { 373 rs->ti->error = "Chunk size must be a power of 2"; 374 return -EINVAL; 375 } else if (value < 8) { 376 rs->ti->error = "Chunk size value is too small"; 377 return -EINVAL; 378 } 379 380 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value; 381 argv++; 382 num_raid_params--; 383 384 /* 385 * We set each individual device as In_sync with a completed 386 * 'recovery_offset'. If there has been a device failure or 387 * replacement then one of the following cases applies: 388 * 389 * 1) User specifies 'rebuild'. 390 * - Device is reset when param is read. 391 * 2) A new device is supplied. 392 * - No matching superblock found, resets device. 393 * 3) Device failure was transient and returns on reload. 394 * - Failure noticed, resets device for bitmap replay. 395 * 4) Device hadn't completed recovery after previous failure. 396 * - Superblock is read and overrides recovery_offset. 397 * 398 * What is found in the superblocks of the devices is always 399 * authoritative, unless 'rebuild' or '[no]sync' was specified. 400 */ 401 for (i = 0; i < rs->md.raid_disks; i++) { 402 set_bit(In_sync, &rs->dev[i].rdev.flags); 403 rs->dev[i].rdev.recovery_offset = MaxSector; 404 } 405 406 /* 407 * Second, parse the unordered optional arguments 408 */ 409 for (i = 0; i < num_raid_params; i++) { 410 if (!strcasecmp(argv[i], "nosync")) { 411 rs->md.recovery_cp = MaxSector; 412 rs->print_flags |= DMPF_NOSYNC; 413 continue; 414 } 415 if (!strcasecmp(argv[i], "sync")) { 416 rs->md.recovery_cp = 0; 417 rs->print_flags |= DMPF_SYNC; 418 continue; 419 } 420 421 /* The rest of the optional arguments come in key/value pairs */ 422 if ((i + 1) >= num_raid_params) { 423 rs->ti->error = "Wrong number of raid parameters given"; 424 return -EINVAL; 425 } 426 427 key = argv[i++]; 428 if (strict_strtoul(argv[i], 10, &value) < 0) { 429 rs->ti->error = "Bad numerical argument given in raid params"; 430 return -EINVAL; 431 } 432 433 if (!strcasecmp(key, "rebuild")) { 434 rebuild_cnt++; 435 if (((rs->raid_type->level != 1) && 436 (rebuild_cnt > rs->raid_type->parity_devs)) || 437 ((rs->raid_type->level == 1) && 438 (rebuild_cnt > (rs->md.raid_disks - 1)))) { 439 rs->ti->error = "Too many rebuild devices specified for given RAID type"; 440 return -EINVAL; 441 } 442 if (value > rs->md.raid_disks) { 443 rs->ti->error = "Invalid rebuild index given"; 444 return -EINVAL; 445 } 446 clear_bit(In_sync, &rs->dev[value].rdev.flags); 447 rs->dev[value].rdev.recovery_offset = 0; 448 rs->print_flags |= DMPF_REBUILD; 449 } else if (!strcasecmp(key, "write_mostly")) { 450 if (rs->raid_type->level != 1) { 451 rs->ti->error = "write_mostly option is only valid for RAID1"; 452 return -EINVAL; 453 } 454 if (value >= rs->md.raid_disks) { 455 rs->ti->error = "Invalid write_mostly drive index given"; 456 return -EINVAL; 457 } 458 set_bit(WriteMostly, &rs->dev[value].rdev.flags); 459 } else if (!strcasecmp(key, "max_write_behind")) { 460 if (rs->raid_type->level != 1) { 461 rs->ti->error = "max_write_behind option is only valid for RAID1"; 462 return -EINVAL; 463 } 464 rs->print_flags |= DMPF_MAX_WRITE_BEHIND; 465 466 /* 467 * In device-mapper, we specify things in sectors, but 468 * MD records this value in kB 469 */ 470 value /= 2; 471 if (value > COUNTER_MAX) { 472 rs->ti->error = "Max write-behind limit out of range"; 473 return -EINVAL; 474 } 475 rs->md.bitmap_info.max_write_behind = value; 476 } else if (!strcasecmp(key, "daemon_sleep")) { 477 rs->print_flags |= DMPF_DAEMON_SLEEP; 478 if (!value || (value > MAX_SCHEDULE_TIMEOUT)) { 479 rs->ti->error = "daemon sleep period out of range"; 480 return -EINVAL; 481 } 482 rs->md.bitmap_info.daemon_sleep = value; 483 } else if (!strcasecmp(key, "stripe_cache")) { 484 rs->print_flags |= DMPF_STRIPE_CACHE; 485 486 /* 487 * In device-mapper, we specify things in sectors, but 488 * MD records this value in kB 489 */ 490 value /= 2; 491 492 if (rs->raid_type->level < 5) { 493 rs->ti->error = "Inappropriate argument: stripe_cache"; 494 return -EINVAL; 495 } 496 if (raid5_set_cache_size(&rs->md, (int)value)) { 497 rs->ti->error = "Bad stripe_cache size"; 498 return -EINVAL; 499 } 500 } else if (!strcasecmp(key, "min_recovery_rate")) { 501 rs->print_flags |= DMPF_MIN_RECOVERY_RATE; 502 if (value > INT_MAX) { 503 rs->ti->error = "min_recovery_rate out of range"; 504 return -EINVAL; 505 } 506 rs->md.sync_speed_min = (int)value; 507 } else if (!strcasecmp(key, "max_recovery_rate")) { 508 rs->print_flags |= DMPF_MAX_RECOVERY_RATE; 509 if (value > INT_MAX) { 510 rs->ti->error = "max_recovery_rate out of range"; 511 return -EINVAL; 512 } 513 rs->md.sync_speed_max = (int)value; 514 } else if (!strcasecmp(key, "region_size")) { 515 rs->print_flags |= DMPF_REGION_SIZE; 516 region_size = value; 517 } else { 518 DMERR("Unable to parse RAID parameter: %s", key); 519 rs->ti->error = "Unable to parse RAID parameters"; 520 return -EINVAL; 521 } 522 } 523 524 if (validate_region_size(rs, region_size)) 525 return -EINVAL; 526 527 if (rs->md.chunk_sectors) 528 rs->ti->split_io = rs->md.chunk_sectors; 529 else 530 rs->ti->split_io = region_size; 531 532 if (rs->md.chunk_sectors) 533 rs->ti->split_io = rs->md.chunk_sectors; 534 else 535 rs->ti->split_io = region_size; 536 537 /* Assume there are no metadata devices until the drives are parsed */ 538 rs->md.persistent = 0; 539 rs->md.external = 1; 540 541 return 0; 542 } 543 544 static void do_table_event(struct work_struct *ws) 545 { 546 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work); 547 548 dm_table_event(rs->ti->table); 549 } 550 551 static int raid_is_congested(struct dm_target_callbacks *cb, int bits) 552 { 553 struct raid_set *rs = container_of(cb, struct raid_set, callbacks); 554 555 if (rs->raid_type->level == 1) 556 return md_raid1_congested(&rs->md, bits); 557 558 return md_raid5_congested(&rs->md, bits); 559 } 560 561 /* 562 * This structure is never routinely used by userspace, unlike md superblocks. 563 * Devices with this superblock should only ever be accessed via device-mapper. 564 */ 565 #define DM_RAID_MAGIC 0x64526D44 566 struct dm_raid_superblock { 567 __le32 magic; /* "DmRd" */ 568 __le32 features; /* Used to indicate possible future changes */ 569 570 __le32 num_devices; /* Number of devices in this array. (Max 64) */ 571 __le32 array_position; /* The position of this drive in the array */ 572 573 __le64 events; /* Incremented by md when superblock updated */ 574 __le64 failed_devices; /* Bit field of devices to indicate failures */ 575 576 /* 577 * This offset tracks the progress of the repair or replacement of 578 * an individual drive. 579 */ 580 __le64 disk_recovery_offset; 581 582 /* 583 * This offset tracks the progress of the initial array 584 * synchronisation/parity calculation. 585 */ 586 __le64 array_resync_offset; 587 588 /* 589 * RAID characteristics 590 */ 591 __le32 level; 592 __le32 layout; 593 __le32 stripe_sectors; 594 595 __u8 pad[452]; /* Round struct to 512 bytes. */ 596 /* Always set to 0 when writing. */ 597 } __packed; 598 599 static int read_disk_sb(struct md_rdev *rdev, int size) 600 { 601 BUG_ON(!rdev->sb_page); 602 603 if (rdev->sb_loaded) 604 return 0; 605 606 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) { 607 DMERR("Failed to read device superblock"); 608 return -EINVAL; 609 } 610 611 rdev->sb_loaded = 1; 612 613 return 0; 614 } 615 616 static void super_sync(struct mddev *mddev, struct md_rdev *rdev) 617 { 618 struct md_rdev *r, *t; 619 uint64_t failed_devices; 620 struct dm_raid_superblock *sb; 621 622 sb = page_address(rdev->sb_page); 623 failed_devices = le64_to_cpu(sb->failed_devices); 624 625 rdev_for_each(r, t, mddev) 626 if ((r->raid_disk >= 0) && test_bit(Faulty, &r->flags)) 627 failed_devices |= (1ULL << r->raid_disk); 628 629 memset(sb, 0, sizeof(*sb)); 630 631 sb->magic = cpu_to_le32(DM_RAID_MAGIC); 632 sb->features = cpu_to_le32(0); /* No features yet */ 633 634 sb->num_devices = cpu_to_le32(mddev->raid_disks); 635 sb->array_position = cpu_to_le32(rdev->raid_disk); 636 637 sb->events = cpu_to_le64(mddev->events); 638 sb->failed_devices = cpu_to_le64(failed_devices); 639 640 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset); 641 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp); 642 643 sb->level = cpu_to_le32(mddev->level); 644 sb->layout = cpu_to_le32(mddev->layout); 645 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors); 646 } 647 648 /* 649 * super_load 650 * 651 * This function creates a superblock if one is not found on the device 652 * and will decide which superblock to use if there's a choice. 653 * 654 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise 655 */ 656 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev) 657 { 658 int ret; 659 struct dm_raid_superblock *sb; 660 struct dm_raid_superblock *refsb; 661 uint64_t events_sb, events_refsb; 662 663 rdev->sb_start = 0; 664 rdev->sb_size = sizeof(*sb); 665 666 ret = read_disk_sb(rdev, rdev->sb_size); 667 if (ret) 668 return ret; 669 670 sb = page_address(rdev->sb_page); 671 672 /* 673 * Two cases that we want to write new superblocks and rebuild: 674 * 1) New device (no matching magic number) 675 * 2) Device specified for rebuild (!In_sync w/ offset == 0) 676 */ 677 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) || 678 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) { 679 super_sync(rdev->mddev, rdev); 680 681 set_bit(FirstUse, &rdev->flags); 682 683 /* Force writing of superblocks to disk */ 684 set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags); 685 686 /* Any superblock is better than none, choose that if given */ 687 return refdev ? 0 : 1; 688 } 689 690 if (!refdev) 691 return 1; 692 693 events_sb = le64_to_cpu(sb->events); 694 695 refsb = page_address(refdev->sb_page); 696 events_refsb = le64_to_cpu(refsb->events); 697 698 return (events_sb > events_refsb) ? 1 : 0; 699 } 700 701 static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev) 702 { 703 int role; 704 struct raid_set *rs = container_of(mddev, struct raid_set, md); 705 uint64_t events_sb; 706 uint64_t failed_devices; 707 struct dm_raid_superblock *sb; 708 uint32_t new_devs = 0; 709 uint32_t rebuilds = 0; 710 struct md_rdev *r, *t; 711 struct dm_raid_superblock *sb2; 712 713 sb = page_address(rdev->sb_page); 714 events_sb = le64_to_cpu(sb->events); 715 failed_devices = le64_to_cpu(sb->failed_devices); 716 717 /* 718 * Initialise to 1 if this is a new superblock. 719 */ 720 mddev->events = events_sb ? : 1; 721 722 /* 723 * Reshaping is not currently allowed 724 */ 725 if ((le32_to_cpu(sb->level) != mddev->level) || 726 (le32_to_cpu(sb->layout) != mddev->layout) || 727 (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors)) { 728 DMERR("Reshaping arrays not yet supported."); 729 return -EINVAL; 730 } 731 732 /* We can only change the number of devices in RAID1 right now */ 733 if ((rs->raid_type->level != 1) && 734 (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) { 735 DMERR("Reshaping arrays not yet supported."); 736 return -EINVAL; 737 } 738 739 if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))) 740 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset); 741 742 /* 743 * During load, we set FirstUse if a new superblock was written. 744 * There are two reasons we might not have a superblock: 745 * 1) The array is brand new - in which case, all of the 746 * devices must have their In_sync bit set. Also, 747 * recovery_cp must be 0, unless forced. 748 * 2) This is a new device being added to an old array 749 * and the new device needs to be rebuilt - in which 750 * case the In_sync bit will /not/ be set and 751 * recovery_cp must be MaxSector. 752 */ 753 rdev_for_each(r, t, mddev) { 754 if (!test_bit(In_sync, &r->flags)) { 755 DMINFO("Device %d specified for rebuild: " 756 "Clearing superblock", r->raid_disk); 757 rebuilds++; 758 } else if (test_bit(FirstUse, &r->flags)) 759 new_devs++; 760 } 761 762 if (!rebuilds) { 763 if (new_devs == mddev->raid_disks) { 764 DMINFO("Superblocks created for new array"); 765 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 766 } else if (new_devs) { 767 DMERR("New device injected " 768 "into existing array without 'rebuild' " 769 "parameter specified"); 770 return -EINVAL; 771 } 772 } else if (new_devs) { 773 DMERR("'rebuild' devices cannot be " 774 "injected into an array with other first-time devices"); 775 return -EINVAL; 776 } else if (mddev->recovery_cp != MaxSector) { 777 DMERR("'rebuild' specified while array is not in-sync"); 778 return -EINVAL; 779 } 780 781 /* 782 * Now we set the Faulty bit for those devices that are 783 * recorded in the superblock as failed. 784 */ 785 rdev_for_each(r, t, mddev) { 786 if (!r->sb_page) 787 continue; 788 sb2 = page_address(r->sb_page); 789 sb2->failed_devices = 0; 790 791 /* 792 * Check for any device re-ordering. 793 */ 794 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) { 795 role = le32_to_cpu(sb2->array_position); 796 if (role != r->raid_disk) { 797 if (rs->raid_type->level != 1) { 798 rs->ti->error = "Cannot change device " 799 "positions in RAID array"; 800 return -EINVAL; 801 } 802 DMINFO("RAID1 device #%d now at position #%d", 803 role, r->raid_disk); 804 } 805 806 /* 807 * Partial recovery is performed on 808 * returning failed devices. 809 */ 810 if (failed_devices & (1 << role)) 811 set_bit(Faulty, &r->flags); 812 } 813 } 814 815 return 0; 816 } 817 818 static int super_validate(struct mddev *mddev, struct md_rdev *rdev) 819 { 820 struct dm_raid_superblock *sb = page_address(rdev->sb_page); 821 822 /* 823 * If mddev->events is not set, we know we have not yet initialized 824 * the array. 825 */ 826 if (!mddev->events && super_init_validation(mddev, rdev)) 827 return -EINVAL; 828 829 mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */ 830 rdev->mddev->bitmap_info.default_offset = 4096 >> 9; 831 if (!test_bit(FirstUse, &rdev->flags)) { 832 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset); 833 if (rdev->recovery_offset != MaxSector) 834 clear_bit(In_sync, &rdev->flags); 835 } 836 837 /* 838 * If a device comes back, set it as not In_sync and no longer faulty. 839 */ 840 if (test_bit(Faulty, &rdev->flags)) { 841 clear_bit(Faulty, &rdev->flags); 842 clear_bit(In_sync, &rdev->flags); 843 rdev->saved_raid_disk = rdev->raid_disk; 844 rdev->recovery_offset = 0; 845 } 846 847 clear_bit(FirstUse, &rdev->flags); 848 849 return 0; 850 } 851 852 /* 853 * Analyse superblocks and select the freshest. 854 */ 855 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs) 856 { 857 int ret; 858 struct md_rdev *rdev, *freshest, *tmp; 859 struct mddev *mddev = &rs->md; 860 861 freshest = NULL; 862 rdev_for_each(rdev, tmp, mddev) { 863 if (!rdev->meta_bdev) 864 continue; 865 866 ret = super_load(rdev, freshest); 867 868 switch (ret) { 869 case 1: 870 freshest = rdev; 871 break; 872 case 0: 873 break; 874 default: 875 ti->error = "Failed to load superblock"; 876 return ret; 877 } 878 } 879 880 if (!freshest) 881 return 0; 882 883 /* 884 * Validation of the freshest device provides the source of 885 * validation for the remaining devices. 886 */ 887 ti->error = "Unable to assemble array: Invalid superblocks"; 888 if (super_validate(mddev, freshest)) 889 return -EINVAL; 890 891 rdev_for_each(rdev, tmp, mddev) 892 if ((rdev != freshest) && super_validate(mddev, rdev)) 893 return -EINVAL; 894 895 return 0; 896 } 897 898 /* 899 * Construct a RAID4/5/6 mapping: 900 * Args: 901 * <raid_type> <#raid_params> <raid_params> \ 902 * <#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> } 903 * 904 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for 905 * details on possible <raid_params>. 906 */ 907 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv) 908 { 909 int ret; 910 struct raid_type *rt; 911 unsigned long num_raid_params, num_raid_devs; 912 struct raid_set *rs = NULL; 913 914 /* Must have at least <raid_type> <#raid_params> */ 915 if (argc < 2) { 916 ti->error = "Too few arguments"; 917 return -EINVAL; 918 } 919 920 /* raid type */ 921 rt = get_raid_type(argv[0]); 922 if (!rt) { 923 ti->error = "Unrecognised raid_type"; 924 return -EINVAL; 925 } 926 argc--; 927 argv++; 928 929 /* number of RAID parameters */ 930 if (strict_strtoul(argv[0], 10, &num_raid_params) < 0) { 931 ti->error = "Cannot understand number of RAID parameters"; 932 return -EINVAL; 933 } 934 argc--; 935 argv++; 936 937 /* Skip over RAID params for now and find out # of devices */ 938 if (num_raid_params + 1 > argc) { 939 ti->error = "Arguments do not agree with counts given"; 940 return -EINVAL; 941 } 942 943 if ((strict_strtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) || 944 (num_raid_devs >= INT_MAX)) { 945 ti->error = "Cannot understand number of raid devices"; 946 return -EINVAL; 947 } 948 949 rs = context_alloc(ti, rt, (unsigned)num_raid_devs); 950 if (IS_ERR(rs)) 951 return PTR_ERR(rs); 952 953 ret = parse_raid_params(rs, argv, (unsigned)num_raid_params); 954 if (ret) 955 goto bad; 956 957 ret = -EINVAL; 958 959 argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */ 960 argv += num_raid_params + 1; 961 962 if (argc != (num_raid_devs * 2)) { 963 ti->error = "Supplied RAID devices does not match the count given"; 964 goto bad; 965 } 966 967 ret = dev_parms(rs, argv); 968 if (ret) 969 goto bad; 970 971 rs->md.sync_super = super_sync; 972 ret = analyse_superblocks(ti, rs); 973 if (ret) 974 goto bad; 975 976 INIT_WORK(&rs->md.event_work, do_table_event); 977 ti->private = rs; 978 ti->num_flush_requests = 1; 979 980 mutex_lock(&rs->md.reconfig_mutex); 981 ret = md_run(&rs->md); 982 rs->md.in_sync = 0; /* Assume already marked dirty */ 983 mutex_unlock(&rs->md.reconfig_mutex); 984 985 if (ret) { 986 ti->error = "Fail to run raid array"; 987 goto bad; 988 } 989 990 rs->callbacks.congested_fn = raid_is_congested; 991 dm_table_add_target_callbacks(ti->table, &rs->callbacks); 992 993 mddev_suspend(&rs->md); 994 return 0; 995 996 bad: 997 context_free(rs); 998 999 return ret; 1000 } 1001 1002 static void raid_dtr(struct dm_target *ti) 1003 { 1004 struct raid_set *rs = ti->private; 1005 1006 list_del_init(&rs->callbacks.list); 1007 md_stop(&rs->md); 1008 context_free(rs); 1009 } 1010 1011 static int raid_map(struct dm_target *ti, struct bio *bio, union map_info *map_context) 1012 { 1013 struct raid_set *rs = ti->private; 1014 struct mddev *mddev = &rs->md; 1015 1016 mddev->pers->make_request(mddev, bio); 1017 1018 return DM_MAPIO_SUBMITTED; 1019 } 1020 1021 static int raid_status(struct dm_target *ti, status_type_t type, 1022 char *result, unsigned maxlen) 1023 { 1024 struct raid_set *rs = ti->private; 1025 unsigned raid_param_cnt = 1; /* at least 1 for chunksize */ 1026 unsigned sz = 0; 1027 int i, array_in_sync = 0; 1028 sector_t sync; 1029 1030 switch (type) { 1031 case STATUSTYPE_INFO: 1032 DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks); 1033 1034 if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery)) 1035 sync = rs->md.curr_resync_completed; 1036 else 1037 sync = rs->md.recovery_cp; 1038 1039 if (sync >= rs->md.resync_max_sectors) { 1040 array_in_sync = 1; 1041 sync = rs->md.resync_max_sectors; 1042 } else { 1043 /* 1044 * The array may be doing an initial sync, or it may 1045 * be rebuilding individual components. If all the 1046 * devices are In_sync, then it is the array that is 1047 * being initialized. 1048 */ 1049 for (i = 0; i < rs->md.raid_disks; i++) 1050 if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) 1051 array_in_sync = 1; 1052 } 1053 /* 1054 * Status characters: 1055 * 'D' = Dead/Failed device 1056 * 'a' = Alive but not in-sync 1057 * 'A' = Alive and in-sync 1058 */ 1059 for (i = 0; i < rs->md.raid_disks; i++) { 1060 if (test_bit(Faulty, &rs->dev[i].rdev.flags)) 1061 DMEMIT("D"); 1062 else if (!array_in_sync || 1063 !test_bit(In_sync, &rs->dev[i].rdev.flags)) 1064 DMEMIT("a"); 1065 else 1066 DMEMIT("A"); 1067 } 1068 1069 /* 1070 * In-sync ratio: 1071 * The in-sync ratio shows the progress of: 1072 * - Initializing the array 1073 * - Rebuilding a subset of devices of the array 1074 * The user can distinguish between the two by referring 1075 * to the status characters. 1076 */ 1077 DMEMIT(" %llu/%llu", 1078 (unsigned long long) sync, 1079 (unsigned long long) rs->md.resync_max_sectors); 1080 1081 break; 1082 case STATUSTYPE_TABLE: 1083 /* The string you would use to construct this array */ 1084 for (i = 0; i < rs->md.raid_disks; i++) { 1085 if ((rs->print_flags & DMPF_REBUILD) && 1086 rs->dev[i].data_dev && 1087 !test_bit(In_sync, &rs->dev[i].rdev.flags)) 1088 raid_param_cnt += 2; /* for rebuilds */ 1089 if (rs->dev[i].data_dev && 1090 test_bit(WriteMostly, &rs->dev[i].rdev.flags)) 1091 raid_param_cnt += 2; 1092 } 1093 1094 raid_param_cnt += (hweight32(rs->print_flags & ~DMPF_REBUILD) * 2); 1095 if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)) 1096 raid_param_cnt--; 1097 1098 DMEMIT("%s %u %u", rs->raid_type->name, 1099 raid_param_cnt, rs->md.chunk_sectors); 1100 1101 if ((rs->print_flags & DMPF_SYNC) && 1102 (rs->md.recovery_cp == MaxSector)) 1103 DMEMIT(" sync"); 1104 if (rs->print_flags & DMPF_NOSYNC) 1105 DMEMIT(" nosync"); 1106 1107 for (i = 0; i < rs->md.raid_disks; i++) 1108 if ((rs->print_flags & DMPF_REBUILD) && 1109 rs->dev[i].data_dev && 1110 !test_bit(In_sync, &rs->dev[i].rdev.flags)) 1111 DMEMIT(" rebuild %u", i); 1112 1113 if (rs->print_flags & DMPF_DAEMON_SLEEP) 1114 DMEMIT(" daemon_sleep %lu", 1115 rs->md.bitmap_info.daemon_sleep); 1116 1117 if (rs->print_flags & DMPF_MIN_RECOVERY_RATE) 1118 DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min); 1119 1120 if (rs->print_flags & DMPF_MAX_RECOVERY_RATE) 1121 DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max); 1122 1123 for (i = 0; i < rs->md.raid_disks; i++) 1124 if (rs->dev[i].data_dev && 1125 test_bit(WriteMostly, &rs->dev[i].rdev.flags)) 1126 DMEMIT(" write_mostly %u", i); 1127 1128 if (rs->print_flags & DMPF_MAX_WRITE_BEHIND) 1129 DMEMIT(" max_write_behind %lu", 1130 rs->md.bitmap_info.max_write_behind); 1131 1132 if (rs->print_flags & DMPF_STRIPE_CACHE) { 1133 struct r5conf *conf = rs->md.private; 1134 1135 /* convert from kiB to sectors */ 1136 DMEMIT(" stripe_cache %d", 1137 conf ? conf->max_nr_stripes * 2 : 0); 1138 } 1139 1140 if (rs->print_flags & DMPF_REGION_SIZE) 1141 DMEMIT(" region_size %lu", 1142 rs->md.bitmap_info.chunksize >> 9); 1143 1144 DMEMIT(" %d", rs->md.raid_disks); 1145 for (i = 0; i < rs->md.raid_disks; i++) { 1146 if (rs->dev[i].meta_dev) 1147 DMEMIT(" %s", rs->dev[i].meta_dev->name); 1148 else 1149 DMEMIT(" -"); 1150 1151 if (rs->dev[i].data_dev) 1152 DMEMIT(" %s", rs->dev[i].data_dev->name); 1153 else 1154 DMEMIT(" -"); 1155 } 1156 } 1157 1158 return 0; 1159 } 1160 1161 static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data) 1162 { 1163 struct raid_set *rs = ti->private; 1164 unsigned i; 1165 int ret = 0; 1166 1167 for (i = 0; !ret && i < rs->md.raid_disks; i++) 1168 if (rs->dev[i].data_dev) 1169 ret = fn(ti, 1170 rs->dev[i].data_dev, 1171 0, /* No offset on data devs */ 1172 rs->md.dev_sectors, 1173 data); 1174 1175 return ret; 1176 } 1177 1178 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits) 1179 { 1180 struct raid_set *rs = ti->private; 1181 unsigned chunk_size = rs->md.chunk_sectors << 9; 1182 struct r5conf *conf = rs->md.private; 1183 1184 blk_limits_io_min(limits, chunk_size); 1185 blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded)); 1186 } 1187 1188 static void raid_presuspend(struct dm_target *ti) 1189 { 1190 struct raid_set *rs = ti->private; 1191 1192 md_stop_writes(&rs->md); 1193 } 1194 1195 static void raid_postsuspend(struct dm_target *ti) 1196 { 1197 struct raid_set *rs = ti->private; 1198 1199 mddev_suspend(&rs->md); 1200 } 1201 1202 static void raid_resume(struct dm_target *ti) 1203 { 1204 struct raid_set *rs = ti->private; 1205 1206 if (!rs->bitmap_loaded) { 1207 bitmap_load(&rs->md); 1208 rs->bitmap_loaded = 1; 1209 } else 1210 md_wakeup_thread(rs->md.thread); 1211 1212 mddev_resume(&rs->md); 1213 } 1214 1215 static struct target_type raid_target = { 1216 .name = "raid", 1217 .version = {1, 1, 0}, 1218 .module = THIS_MODULE, 1219 .ctr = raid_ctr, 1220 .dtr = raid_dtr, 1221 .map = raid_map, 1222 .status = raid_status, 1223 .iterate_devices = raid_iterate_devices, 1224 .io_hints = raid_io_hints, 1225 .presuspend = raid_presuspend, 1226 .postsuspend = raid_postsuspend, 1227 .resume = raid_resume, 1228 }; 1229 1230 static int __init dm_raid_init(void) 1231 { 1232 return dm_register_target(&raid_target); 1233 } 1234 1235 static void __exit dm_raid_exit(void) 1236 { 1237 dm_unregister_target(&raid_target); 1238 } 1239 1240 module_init(dm_raid_init); 1241 module_exit(dm_raid_exit); 1242 1243 MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target"); 1244 MODULE_ALIAS("dm-raid4"); 1245 MODULE_ALIAS("dm-raid5"); 1246 MODULE_ALIAS("dm-raid6"); 1247 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>"); 1248 MODULE_LICENSE("GPL"); 1249