xref: /linux/drivers/md/dm-raid.c (revision 4c62e9764ab403d42f9b8871b1241fe7812f19d4)
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2011 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/module.h>
10 
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16 
17 #include <linux/device-mapper.h>
18 
19 #define DM_MSG_PREFIX "raid"
20 
21 /*
22  * The following flags are used by dm-raid.c to set up the array state.
23  * They must be cleared before md_run is called.
24  */
25 #define FirstUse 10             /* rdev flag */
26 
27 struct raid_dev {
28 	/*
29 	 * Two DM devices, one to hold metadata and one to hold the
30 	 * actual data/parity.  The reason for this is to not confuse
31 	 * ti->len and give more flexibility in altering size and
32 	 * characteristics.
33 	 *
34 	 * While it is possible for this device to be associated
35 	 * with a different physical device than the data_dev, it
36 	 * is intended for it to be the same.
37 	 *    |--------- Physical Device ---------|
38 	 *    |- meta_dev -|------ data_dev ------|
39 	 */
40 	struct dm_dev *meta_dev;
41 	struct dm_dev *data_dev;
42 	struct md_rdev rdev;
43 };
44 
45 /*
46  * Flags for rs->print_flags field.
47  */
48 #define DMPF_SYNC              0x1
49 #define DMPF_NOSYNC            0x2
50 #define DMPF_REBUILD           0x4
51 #define DMPF_DAEMON_SLEEP      0x8
52 #define DMPF_MIN_RECOVERY_RATE 0x10
53 #define DMPF_MAX_RECOVERY_RATE 0x20
54 #define DMPF_MAX_WRITE_BEHIND  0x40
55 #define DMPF_STRIPE_CACHE      0x80
56 #define DMPF_REGION_SIZE       0x100
57 #define DMPF_RAID10_COPIES     0x200
58 #define DMPF_RAID10_FORMAT     0x400
59 
60 struct raid_set {
61 	struct dm_target *ti;
62 
63 	uint32_t bitmap_loaded;
64 	uint32_t print_flags;
65 
66 	struct mddev md;
67 	struct raid_type *raid_type;
68 	struct dm_target_callbacks callbacks;
69 
70 	struct raid_dev dev[0];
71 };
72 
73 /* Supported raid types and properties. */
74 static struct raid_type {
75 	const char *name;		/* RAID algorithm. */
76 	const char *descr;		/* Descriptor text for logging. */
77 	const unsigned parity_devs;	/* # of parity devices. */
78 	const unsigned minimal_devs;	/* minimal # of devices in set. */
79 	const unsigned level;		/* RAID level. */
80 	const unsigned algorithm;	/* RAID algorithm. */
81 } raid_types[] = {
82 	{"raid1",    "RAID1 (mirroring)",               0, 2, 1, 0 /* NONE */},
83 	{"raid10",   "RAID10 (striped mirrors)",        0, 2, 10, UINT_MAX /* Varies */},
84 	{"raid4",    "RAID4 (dedicated parity disk)",	1, 2, 5, ALGORITHM_PARITY_0},
85 	{"raid5_la", "RAID5 (left asymmetric)",		1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
86 	{"raid5_ra", "RAID5 (right asymmetric)",	1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
87 	{"raid5_ls", "RAID5 (left symmetric)",		1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
88 	{"raid5_rs", "RAID5 (right symmetric)",		1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
89 	{"raid6_zr", "RAID6 (zero restart)",		2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
90 	{"raid6_nr", "RAID6 (N restart)",		2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
91 	{"raid6_nc", "RAID6 (N continue)",		2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
92 };
93 
94 static unsigned raid10_md_layout_to_copies(int layout)
95 {
96 	return layout & 0xFF;
97 }
98 
99 static int raid10_format_to_md_layout(char *format, unsigned copies)
100 {
101 	/* 1 "far" copy, and 'copies' "near" copies */
102 	return (1 << 8) | (copies & 0xFF);
103 }
104 
105 static struct raid_type *get_raid_type(char *name)
106 {
107 	int i;
108 
109 	for (i = 0; i < ARRAY_SIZE(raid_types); i++)
110 		if (!strcmp(raid_types[i].name, name))
111 			return &raid_types[i];
112 
113 	return NULL;
114 }
115 
116 static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
117 {
118 	unsigned i;
119 	struct raid_set *rs;
120 
121 	if (raid_devs <= raid_type->parity_devs) {
122 		ti->error = "Insufficient number of devices";
123 		return ERR_PTR(-EINVAL);
124 	}
125 
126 	rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
127 	if (!rs) {
128 		ti->error = "Cannot allocate raid context";
129 		return ERR_PTR(-ENOMEM);
130 	}
131 
132 	mddev_init(&rs->md);
133 
134 	rs->ti = ti;
135 	rs->raid_type = raid_type;
136 	rs->md.raid_disks = raid_devs;
137 	rs->md.level = raid_type->level;
138 	rs->md.new_level = rs->md.level;
139 	rs->md.layout = raid_type->algorithm;
140 	rs->md.new_layout = rs->md.layout;
141 	rs->md.delta_disks = 0;
142 	rs->md.recovery_cp = 0;
143 
144 	for (i = 0; i < raid_devs; i++)
145 		md_rdev_init(&rs->dev[i].rdev);
146 
147 	/*
148 	 * Remaining items to be initialized by further RAID params:
149 	 *  rs->md.persistent
150 	 *  rs->md.external
151 	 *  rs->md.chunk_sectors
152 	 *  rs->md.new_chunk_sectors
153 	 *  rs->md.dev_sectors
154 	 */
155 
156 	return rs;
157 }
158 
159 static void context_free(struct raid_set *rs)
160 {
161 	int i;
162 
163 	for (i = 0; i < rs->md.raid_disks; i++) {
164 		if (rs->dev[i].meta_dev)
165 			dm_put_device(rs->ti, rs->dev[i].meta_dev);
166 		md_rdev_clear(&rs->dev[i].rdev);
167 		if (rs->dev[i].data_dev)
168 			dm_put_device(rs->ti, rs->dev[i].data_dev);
169 	}
170 
171 	kfree(rs);
172 }
173 
174 /*
175  * For every device we have two words
176  *  <meta_dev>: meta device name or '-' if missing
177  *  <data_dev>: data device name or '-' if missing
178  *
179  * The following are permitted:
180  *    - -
181  *    - <data_dev>
182  *    <meta_dev> <data_dev>
183  *
184  * The following is not allowed:
185  *    <meta_dev> -
186  *
187  * This code parses those words.  If there is a failure,
188  * the caller must use context_free to unwind the operations.
189  */
190 static int dev_parms(struct raid_set *rs, char **argv)
191 {
192 	int i;
193 	int rebuild = 0;
194 	int metadata_available = 0;
195 	int ret = 0;
196 
197 	for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
198 		rs->dev[i].rdev.raid_disk = i;
199 
200 		rs->dev[i].meta_dev = NULL;
201 		rs->dev[i].data_dev = NULL;
202 
203 		/*
204 		 * There are no offsets, since there is a separate device
205 		 * for data and metadata.
206 		 */
207 		rs->dev[i].rdev.data_offset = 0;
208 		rs->dev[i].rdev.mddev = &rs->md;
209 
210 		if (strcmp(argv[0], "-")) {
211 			ret = dm_get_device(rs->ti, argv[0],
212 					    dm_table_get_mode(rs->ti->table),
213 					    &rs->dev[i].meta_dev);
214 			rs->ti->error = "RAID metadata device lookup failure";
215 			if (ret)
216 				return ret;
217 
218 			rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
219 			if (!rs->dev[i].rdev.sb_page)
220 				return -ENOMEM;
221 		}
222 
223 		if (!strcmp(argv[1], "-")) {
224 			if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
225 			    (!rs->dev[i].rdev.recovery_offset)) {
226 				rs->ti->error = "Drive designated for rebuild not specified";
227 				return -EINVAL;
228 			}
229 
230 			rs->ti->error = "No data device supplied with metadata device";
231 			if (rs->dev[i].meta_dev)
232 				return -EINVAL;
233 
234 			continue;
235 		}
236 
237 		ret = dm_get_device(rs->ti, argv[1],
238 				    dm_table_get_mode(rs->ti->table),
239 				    &rs->dev[i].data_dev);
240 		if (ret) {
241 			rs->ti->error = "RAID device lookup failure";
242 			return ret;
243 		}
244 
245 		if (rs->dev[i].meta_dev) {
246 			metadata_available = 1;
247 			rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
248 		}
249 		rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
250 		list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
251 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
252 			rebuild++;
253 	}
254 
255 	if (metadata_available) {
256 		rs->md.external = 0;
257 		rs->md.persistent = 1;
258 		rs->md.major_version = 2;
259 	} else if (rebuild && !rs->md.recovery_cp) {
260 		/*
261 		 * Without metadata, we will not be able to tell if the array
262 		 * is in-sync or not - we must assume it is not.  Therefore,
263 		 * it is impossible to rebuild a drive.
264 		 *
265 		 * Even if there is metadata, the on-disk information may
266 		 * indicate that the array is not in-sync and it will then
267 		 * fail at that time.
268 		 *
269 		 * User could specify 'nosync' option if desperate.
270 		 */
271 		DMERR("Unable to rebuild drive while array is not in-sync");
272 		rs->ti->error = "RAID device lookup failure";
273 		return -EINVAL;
274 	}
275 
276 	return 0;
277 }
278 
279 /*
280  * validate_region_size
281  * @rs
282  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
283  *
284  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
285  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
286  *
287  * Returns: 0 on success, -EINVAL on failure.
288  */
289 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
290 {
291 	unsigned long min_region_size = rs->ti->len / (1 << 21);
292 
293 	if (!region_size) {
294 		/*
295 		 * Choose a reasonable default.  All figures in sectors.
296 		 */
297 		if (min_region_size > (1 << 13)) {
298 			/* If not a power of 2, make it the next power of 2 */
299 			if (min_region_size & (min_region_size - 1))
300 				region_size = 1 << fls(region_size);
301 			DMINFO("Choosing default region size of %lu sectors",
302 			       region_size);
303 		} else {
304 			DMINFO("Choosing default region size of 4MiB");
305 			region_size = 1 << 13; /* sectors */
306 		}
307 	} else {
308 		/*
309 		 * Validate user-supplied value.
310 		 */
311 		if (region_size > rs->ti->len) {
312 			rs->ti->error = "Supplied region size is too large";
313 			return -EINVAL;
314 		}
315 
316 		if (region_size < min_region_size) {
317 			DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
318 			      region_size, min_region_size);
319 			rs->ti->error = "Supplied region size is too small";
320 			return -EINVAL;
321 		}
322 
323 		if (!is_power_of_2(region_size)) {
324 			rs->ti->error = "Region size is not a power of 2";
325 			return -EINVAL;
326 		}
327 
328 		if (region_size < rs->md.chunk_sectors) {
329 			rs->ti->error = "Region size is smaller than the chunk size";
330 			return -EINVAL;
331 		}
332 	}
333 
334 	/*
335 	 * Convert sectors to bytes.
336 	 */
337 	rs->md.bitmap_info.chunksize = (region_size << 9);
338 
339 	return 0;
340 }
341 
342 /*
343  * validate_rebuild_devices
344  * @rs
345  *
346  * Determine if the devices specified for rebuild can result in a valid
347  * usable array that is capable of rebuilding the given devices.
348  *
349  * Returns: 0 on success, -EINVAL on failure.
350  */
351 static int validate_rebuild_devices(struct raid_set *rs)
352 {
353 	unsigned i, rebuild_cnt = 0;
354 	unsigned rebuilds_per_group, copies, d;
355 
356 	if (!(rs->print_flags & DMPF_REBUILD))
357 		return 0;
358 
359 	for (i = 0; i < rs->md.raid_disks; i++)
360 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
361 			rebuild_cnt++;
362 
363 	switch (rs->raid_type->level) {
364 	case 1:
365 		if (rebuild_cnt >= rs->md.raid_disks)
366 			goto too_many;
367 		break;
368 	case 4:
369 	case 5:
370 	case 6:
371 		if (rebuild_cnt > rs->raid_type->parity_devs)
372 			goto too_many;
373 		break;
374 	case 10:
375 		copies = raid10_md_layout_to_copies(rs->md.layout);
376 		if (rebuild_cnt < copies)
377 			break;
378 
379 		/*
380 		 * It is possible to have a higher rebuild count for RAID10,
381 		 * as long as the failed devices occur in different mirror
382 		 * groups (i.e. different stripes).
383 		 *
384 		 * Right now, we only allow for "near" copies.  When other
385 		 * formats are added, we will have to check those too.
386 		 *
387 		 * When checking "near" format, make sure no adjacent devices
388 		 * have failed beyond what can be handled.  In addition to the
389 		 * simple case where the number of devices is a multiple of the
390 		 * number of copies, we must also handle cases where the number
391 		 * of devices is not a multiple of the number of copies.
392 		 * E.g.    dev1 dev2 dev3 dev4 dev5
393 		 *          A    A    B    B    C
394 		 *          C    D    D    E    E
395 		 */
396 		rebuilds_per_group = 0;
397 		for (i = 0; i < rs->md.raid_disks * copies; i++) {
398 			d = i % rs->md.raid_disks;
399 			if (!test_bit(In_sync, &rs->dev[d].rdev.flags) &&
400 			    (++rebuilds_per_group >= copies))
401 				goto too_many;
402 			if (!((i + 1) % copies))
403 				rebuilds_per_group = 0;
404 		}
405 		break;
406 	default:
407 		DMERR("The rebuild parameter is not supported for %s",
408 		      rs->raid_type->name);
409 		rs->ti->error = "Rebuild not supported for this RAID type";
410 		return -EINVAL;
411 	}
412 
413 	return 0;
414 
415 too_many:
416 	rs->ti->error = "Too many rebuild devices specified";
417 	return -EINVAL;
418 }
419 
420 /*
421  * Possible arguments are...
422  *	<chunk_size> [optional_args]
423  *
424  * Argument definitions
425  *    <chunk_size>			The number of sectors per disk that
426  *                                      will form the "stripe"
427  *    [[no]sync]			Force or prevent recovery of the
428  *                                      entire array
429  *    [rebuild <idx>]			Rebuild the drive indicated by the index
430  *    [daemon_sleep <ms>]		Time between bitmap daemon work to
431  *                                      clear bits
432  *    [min_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
433  *    [max_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
434  *    [write_mostly <idx>]		Indicate a write mostly drive via index
435  *    [max_write_behind <sectors>]	See '-write-behind=' (man mdadm)
436  *    [stripe_cache <sectors>]		Stripe cache size for higher RAIDs
437  *    [region_size <sectors>]           Defines granularity of bitmap
438  *
439  * RAID10-only options:
440  *    [raid10_copies <# copies>]        Number of copies.  (Default: 2)
441  *    [raid10_format <near>]            Layout algorithm.  (Default: near)
442  */
443 static int parse_raid_params(struct raid_set *rs, char **argv,
444 			     unsigned num_raid_params)
445 {
446 	char *raid10_format = "near";
447 	unsigned raid10_copies = 2;
448 	unsigned i;
449 	unsigned long value, region_size = 0;
450 	sector_t sectors_per_dev = rs->ti->len;
451 	sector_t max_io_len;
452 	char *key;
453 
454 	/*
455 	 * First, parse the in-order required arguments
456 	 * "chunk_size" is the only argument of this type.
457 	 */
458 	if ((strict_strtoul(argv[0], 10, &value) < 0)) {
459 		rs->ti->error = "Bad chunk size";
460 		return -EINVAL;
461 	} else if (rs->raid_type->level == 1) {
462 		if (value)
463 			DMERR("Ignoring chunk size parameter for RAID 1");
464 		value = 0;
465 	} else if (!is_power_of_2(value)) {
466 		rs->ti->error = "Chunk size must be a power of 2";
467 		return -EINVAL;
468 	} else if (value < 8) {
469 		rs->ti->error = "Chunk size value is too small";
470 		return -EINVAL;
471 	}
472 
473 	rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
474 	argv++;
475 	num_raid_params--;
476 
477 	/*
478 	 * We set each individual device as In_sync with a completed
479 	 * 'recovery_offset'.  If there has been a device failure or
480 	 * replacement then one of the following cases applies:
481 	 *
482 	 *   1) User specifies 'rebuild'.
483 	 *      - Device is reset when param is read.
484 	 *   2) A new device is supplied.
485 	 *      - No matching superblock found, resets device.
486 	 *   3) Device failure was transient and returns on reload.
487 	 *      - Failure noticed, resets device for bitmap replay.
488 	 *   4) Device hadn't completed recovery after previous failure.
489 	 *      - Superblock is read and overrides recovery_offset.
490 	 *
491 	 * What is found in the superblocks of the devices is always
492 	 * authoritative, unless 'rebuild' or '[no]sync' was specified.
493 	 */
494 	for (i = 0; i < rs->md.raid_disks; i++) {
495 		set_bit(In_sync, &rs->dev[i].rdev.flags);
496 		rs->dev[i].rdev.recovery_offset = MaxSector;
497 	}
498 
499 	/*
500 	 * Second, parse the unordered optional arguments
501 	 */
502 	for (i = 0; i < num_raid_params; i++) {
503 		if (!strcasecmp(argv[i], "nosync")) {
504 			rs->md.recovery_cp = MaxSector;
505 			rs->print_flags |= DMPF_NOSYNC;
506 			continue;
507 		}
508 		if (!strcasecmp(argv[i], "sync")) {
509 			rs->md.recovery_cp = 0;
510 			rs->print_flags |= DMPF_SYNC;
511 			continue;
512 		}
513 
514 		/* The rest of the optional arguments come in key/value pairs */
515 		if ((i + 1) >= num_raid_params) {
516 			rs->ti->error = "Wrong number of raid parameters given";
517 			return -EINVAL;
518 		}
519 
520 		key = argv[i++];
521 
522 		/* Parameters that take a string value are checked here. */
523 		if (!strcasecmp(key, "raid10_format")) {
524 			if (rs->raid_type->level != 10) {
525 				rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
526 				return -EINVAL;
527 			}
528 			if (strcmp("near", argv[i])) {
529 				rs->ti->error = "Invalid 'raid10_format' value given";
530 				return -EINVAL;
531 			}
532 			raid10_format = argv[i];
533 			rs->print_flags |= DMPF_RAID10_FORMAT;
534 			continue;
535 		}
536 
537 		if (strict_strtoul(argv[i], 10, &value) < 0) {
538 			rs->ti->error = "Bad numerical argument given in raid params";
539 			return -EINVAL;
540 		}
541 
542 		/* Parameters that take a numeric value are checked here */
543 		if (!strcasecmp(key, "rebuild")) {
544 			if (value >= rs->md.raid_disks) {
545 				rs->ti->error = "Invalid rebuild index given";
546 				return -EINVAL;
547 			}
548 			clear_bit(In_sync, &rs->dev[value].rdev.flags);
549 			rs->dev[value].rdev.recovery_offset = 0;
550 			rs->print_flags |= DMPF_REBUILD;
551 		} else if (!strcasecmp(key, "write_mostly")) {
552 			if (rs->raid_type->level != 1) {
553 				rs->ti->error = "write_mostly option is only valid for RAID1";
554 				return -EINVAL;
555 			}
556 			if (value >= rs->md.raid_disks) {
557 				rs->ti->error = "Invalid write_mostly drive index given";
558 				return -EINVAL;
559 			}
560 			set_bit(WriteMostly, &rs->dev[value].rdev.flags);
561 		} else if (!strcasecmp(key, "max_write_behind")) {
562 			if (rs->raid_type->level != 1) {
563 				rs->ti->error = "max_write_behind option is only valid for RAID1";
564 				return -EINVAL;
565 			}
566 			rs->print_flags |= DMPF_MAX_WRITE_BEHIND;
567 
568 			/*
569 			 * In device-mapper, we specify things in sectors, but
570 			 * MD records this value in kB
571 			 */
572 			value /= 2;
573 			if (value > COUNTER_MAX) {
574 				rs->ti->error = "Max write-behind limit out of range";
575 				return -EINVAL;
576 			}
577 			rs->md.bitmap_info.max_write_behind = value;
578 		} else if (!strcasecmp(key, "daemon_sleep")) {
579 			rs->print_flags |= DMPF_DAEMON_SLEEP;
580 			if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
581 				rs->ti->error = "daemon sleep period out of range";
582 				return -EINVAL;
583 			}
584 			rs->md.bitmap_info.daemon_sleep = value;
585 		} else if (!strcasecmp(key, "stripe_cache")) {
586 			rs->print_flags |= DMPF_STRIPE_CACHE;
587 
588 			/*
589 			 * In device-mapper, we specify things in sectors, but
590 			 * MD records this value in kB
591 			 */
592 			value /= 2;
593 
594 			if ((rs->raid_type->level != 5) &&
595 			    (rs->raid_type->level != 6)) {
596 				rs->ti->error = "Inappropriate argument: stripe_cache";
597 				return -EINVAL;
598 			}
599 			if (raid5_set_cache_size(&rs->md, (int)value)) {
600 				rs->ti->error = "Bad stripe_cache size";
601 				return -EINVAL;
602 			}
603 		} else if (!strcasecmp(key, "min_recovery_rate")) {
604 			rs->print_flags |= DMPF_MIN_RECOVERY_RATE;
605 			if (value > INT_MAX) {
606 				rs->ti->error = "min_recovery_rate out of range";
607 				return -EINVAL;
608 			}
609 			rs->md.sync_speed_min = (int)value;
610 		} else if (!strcasecmp(key, "max_recovery_rate")) {
611 			rs->print_flags |= DMPF_MAX_RECOVERY_RATE;
612 			if (value > INT_MAX) {
613 				rs->ti->error = "max_recovery_rate out of range";
614 				return -EINVAL;
615 			}
616 			rs->md.sync_speed_max = (int)value;
617 		} else if (!strcasecmp(key, "region_size")) {
618 			rs->print_flags |= DMPF_REGION_SIZE;
619 			region_size = value;
620 		} else if (!strcasecmp(key, "raid10_copies") &&
621 			   (rs->raid_type->level == 10)) {
622 			if ((value < 2) || (value > 0xFF)) {
623 				rs->ti->error = "Bad value for 'raid10_copies'";
624 				return -EINVAL;
625 			}
626 			rs->print_flags |= DMPF_RAID10_COPIES;
627 			raid10_copies = value;
628 		} else {
629 			DMERR("Unable to parse RAID parameter: %s", key);
630 			rs->ti->error = "Unable to parse RAID parameters";
631 			return -EINVAL;
632 		}
633 	}
634 
635 	if (validate_region_size(rs, region_size))
636 		return -EINVAL;
637 
638 	if (rs->md.chunk_sectors)
639 		max_io_len = rs->md.chunk_sectors;
640 	else
641 		max_io_len = region_size;
642 
643 	if (dm_set_target_max_io_len(rs->ti, max_io_len))
644 		return -EINVAL;
645 
646 	if (rs->raid_type->level == 10) {
647 		if (raid10_copies > rs->md.raid_disks) {
648 			rs->ti->error = "Not enough devices to satisfy specification";
649 			return -EINVAL;
650 		}
651 
652 		/* (Len * #mirrors) / #devices */
653 		sectors_per_dev = rs->ti->len * raid10_copies;
654 		sector_div(sectors_per_dev, rs->md.raid_disks);
655 
656 		rs->md.layout = raid10_format_to_md_layout(raid10_format,
657 							   raid10_copies);
658 		rs->md.new_layout = rs->md.layout;
659 	} else if ((rs->raid_type->level > 1) &&
660 		   sector_div(sectors_per_dev,
661 			      (rs->md.raid_disks - rs->raid_type->parity_devs))) {
662 		rs->ti->error = "Target length not divisible by number of data devices";
663 		return -EINVAL;
664 	}
665 	rs->md.dev_sectors = sectors_per_dev;
666 
667 	if (validate_rebuild_devices(rs))
668 		return -EINVAL;
669 
670 	/* Assume there are no metadata devices until the drives are parsed */
671 	rs->md.persistent = 0;
672 	rs->md.external = 1;
673 
674 	return 0;
675 }
676 
677 static void do_table_event(struct work_struct *ws)
678 {
679 	struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
680 
681 	dm_table_event(rs->ti->table);
682 }
683 
684 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
685 {
686 	struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
687 
688 	if (rs->raid_type->level == 1)
689 		return md_raid1_congested(&rs->md, bits);
690 
691 	if (rs->raid_type->level == 10)
692 		return md_raid10_congested(&rs->md, bits);
693 
694 	return md_raid5_congested(&rs->md, bits);
695 }
696 
697 /*
698  * This structure is never routinely used by userspace, unlike md superblocks.
699  * Devices with this superblock should only ever be accessed via device-mapper.
700  */
701 #define DM_RAID_MAGIC 0x64526D44
702 struct dm_raid_superblock {
703 	__le32 magic;		/* "DmRd" */
704 	__le32 features;	/* Used to indicate possible future changes */
705 
706 	__le32 num_devices;	/* Number of devices in this array. (Max 64) */
707 	__le32 array_position;	/* The position of this drive in the array */
708 
709 	__le64 events;		/* Incremented by md when superblock updated */
710 	__le64 failed_devices;	/* Bit field of devices to indicate failures */
711 
712 	/*
713 	 * This offset tracks the progress of the repair or replacement of
714 	 * an individual drive.
715 	 */
716 	__le64 disk_recovery_offset;
717 
718 	/*
719 	 * This offset tracks the progress of the initial array
720 	 * synchronisation/parity calculation.
721 	 */
722 	__le64 array_resync_offset;
723 
724 	/*
725 	 * RAID characteristics
726 	 */
727 	__le32 level;
728 	__le32 layout;
729 	__le32 stripe_sectors;
730 
731 	__u8 pad[452];		/* Round struct to 512 bytes. */
732 				/* Always set to 0 when writing. */
733 } __packed;
734 
735 static int read_disk_sb(struct md_rdev *rdev, int size)
736 {
737 	BUG_ON(!rdev->sb_page);
738 
739 	if (rdev->sb_loaded)
740 		return 0;
741 
742 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
743 		DMERR("Failed to read superblock of device at position %d",
744 		      rdev->raid_disk);
745 		md_error(rdev->mddev, rdev);
746 		return -EINVAL;
747 	}
748 
749 	rdev->sb_loaded = 1;
750 
751 	return 0;
752 }
753 
754 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
755 {
756 	int i;
757 	uint64_t failed_devices;
758 	struct dm_raid_superblock *sb;
759 	struct raid_set *rs = container_of(mddev, struct raid_set, md);
760 
761 	sb = page_address(rdev->sb_page);
762 	failed_devices = le64_to_cpu(sb->failed_devices);
763 
764 	for (i = 0; i < mddev->raid_disks; i++)
765 		if (!rs->dev[i].data_dev ||
766 		    test_bit(Faulty, &(rs->dev[i].rdev.flags)))
767 			failed_devices |= (1ULL << i);
768 
769 	memset(sb, 0, sizeof(*sb));
770 
771 	sb->magic = cpu_to_le32(DM_RAID_MAGIC);
772 	sb->features = cpu_to_le32(0);	/* No features yet */
773 
774 	sb->num_devices = cpu_to_le32(mddev->raid_disks);
775 	sb->array_position = cpu_to_le32(rdev->raid_disk);
776 
777 	sb->events = cpu_to_le64(mddev->events);
778 	sb->failed_devices = cpu_to_le64(failed_devices);
779 
780 	sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
781 	sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
782 
783 	sb->level = cpu_to_le32(mddev->level);
784 	sb->layout = cpu_to_le32(mddev->layout);
785 	sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
786 }
787 
788 /*
789  * super_load
790  *
791  * This function creates a superblock if one is not found on the device
792  * and will decide which superblock to use if there's a choice.
793  *
794  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
795  */
796 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
797 {
798 	int ret;
799 	struct dm_raid_superblock *sb;
800 	struct dm_raid_superblock *refsb;
801 	uint64_t events_sb, events_refsb;
802 
803 	rdev->sb_start = 0;
804 	rdev->sb_size = sizeof(*sb);
805 
806 	ret = read_disk_sb(rdev, rdev->sb_size);
807 	if (ret)
808 		return ret;
809 
810 	sb = page_address(rdev->sb_page);
811 
812 	/*
813 	 * Two cases that we want to write new superblocks and rebuild:
814 	 * 1) New device (no matching magic number)
815 	 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
816 	 */
817 	if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
818 	    (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
819 		super_sync(rdev->mddev, rdev);
820 
821 		set_bit(FirstUse, &rdev->flags);
822 
823 		/* Force writing of superblocks to disk */
824 		set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
825 
826 		/* Any superblock is better than none, choose that if given */
827 		return refdev ? 0 : 1;
828 	}
829 
830 	if (!refdev)
831 		return 1;
832 
833 	events_sb = le64_to_cpu(sb->events);
834 
835 	refsb = page_address(refdev->sb_page);
836 	events_refsb = le64_to_cpu(refsb->events);
837 
838 	return (events_sb > events_refsb) ? 1 : 0;
839 }
840 
841 static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev)
842 {
843 	int role;
844 	struct raid_set *rs = container_of(mddev, struct raid_set, md);
845 	uint64_t events_sb;
846 	uint64_t failed_devices;
847 	struct dm_raid_superblock *sb;
848 	uint32_t new_devs = 0;
849 	uint32_t rebuilds = 0;
850 	struct md_rdev *r;
851 	struct dm_raid_superblock *sb2;
852 
853 	sb = page_address(rdev->sb_page);
854 	events_sb = le64_to_cpu(sb->events);
855 	failed_devices = le64_to_cpu(sb->failed_devices);
856 
857 	/*
858 	 * Initialise to 1 if this is a new superblock.
859 	 */
860 	mddev->events = events_sb ? : 1;
861 
862 	/*
863 	 * Reshaping is not currently allowed
864 	 */
865 	if ((le32_to_cpu(sb->level) != mddev->level) ||
866 	    (le32_to_cpu(sb->layout) != mddev->layout) ||
867 	    (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors)) {
868 		DMERR("Reshaping arrays not yet supported.");
869 		return -EINVAL;
870 	}
871 
872 	/* We can only change the number of devices in RAID1 right now */
873 	if ((rs->raid_type->level != 1) &&
874 	    (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
875 		DMERR("Reshaping arrays not yet supported.");
876 		return -EINVAL;
877 	}
878 
879 	if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)))
880 		mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
881 
882 	/*
883 	 * During load, we set FirstUse if a new superblock was written.
884 	 * There are two reasons we might not have a superblock:
885 	 * 1) The array is brand new - in which case, all of the
886 	 *    devices must have their In_sync bit set.  Also,
887 	 *    recovery_cp must be 0, unless forced.
888 	 * 2) This is a new device being added to an old array
889 	 *    and the new device needs to be rebuilt - in which
890 	 *    case the In_sync bit will /not/ be set and
891 	 *    recovery_cp must be MaxSector.
892 	 */
893 	rdev_for_each(r, mddev) {
894 		if (!test_bit(In_sync, &r->flags)) {
895 			DMINFO("Device %d specified for rebuild: "
896 			       "Clearing superblock", r->raid_disk);
897 			rebuilds++;
898 		} else if (test_bit(FirstUse, &r->flags))
899 			new_devs++;
900 	}
901 
902 	if (!rebuilds) {
903 		if (new_devs == mddev->raid_disks) {
904 			DMINFO("Superblocks created for new array");
905 			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
906 		} else if (new_devs) {
907 			DMERR("New device injected "
908 			      "into existing array without 'rebuild' "
909 			      "parameter specified");
910 			return -EINVAL;
911 		}
912 	} else if (new_devs) {
913 		DMERR("'rebuild' devices cannot be "
914 		      "injected into an array with other first-time devices");
915 		return -EINVAL;
916 	} else if (mddev->recovery_cp != MaxSector) {
917 		DMERR("'rebuild' specified while array is not in-sync");
918 		return -EINVAL;
919 	}
920 
921 	/*
922 	 * Now we set the Faulty bit for those devices that are
923 	 * recorded in the superblock as failed.
924 	 */
925 	rdev_for_each(r, mddev) {
926 		if (!r->sb_page)
927 			continue;
928 		sb2 = page_address(r->sb_page);
929 		sb2->failed_devices = 0;
930 
931 		/*
932 		 * Check for any device re-ordering.
933 		 */
934 		if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
935 			role = le32_to_cpu(sb2->array_position);
936 			if (role != r->raid_disk) {
937 				if (rs->raid_type->level != 1) {
938 					rs->ti->error = "Cannot change device "
939 						"positions in RAID array";
940 					return -EINVAL;
941 				}
942 				DMINFO("RAID1 device #%d now at position #%d",
943 				       role, r->raid_disk);
944 			}
945 
946 			/*
947 			 * Partial recovery is performed on
948 			 * returning failed devices.
949 			 */
950 			if (failed_devices & (1 << role))
951 				set_bit(Faulty, &r->flags);
952 		}
953 	}
954 
955 	return 0;
956 }
957 
958 static int super_validate(struct mddev *mddev, struct md_rdev *rdev)
959 {
960 	struct dm_raid_superblock *sb = page_address(rdev->sb_page);
961 
962 	/*
963 	 * If mddev->events is not set, we know we have not yet initialized
964 	 * the array.
965 	 */
966 	if (!mddev->events && super_init_validation(mddev, rdev))
967 		return -EINVAL;
968 
969 	mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */
970 	rdev->mddev->bitmap_info.default_offset = 4096 >> 9;
971 	if (!test_bit(FirstUse, &rdev->flags)) {
972 		rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
973 		if (rdev->recovery_offset != MaxSector)
974 			clear_bit(In_sync, &rdev->flags);
975 	}
976 
977 	/*
978 	 * If a device comes back, set it as not In_sync and no longer faulty.
979 	 */
980 	if (test_bit(Faulty, &rdev->flags)) {
981 		clear_bit(Faulty, &rdev->flags);
982 		clear_bit(In_sync, &rdev->flags);
983 		rdev->saved_raid_disk = rdev->raid_disk;
984 		rdev->recovery_offset = 0;
985 	}
986 
987 	clear_bit(FirstUse, &rdev->flags);
988 
989 	return 0;
990 }
991 
992 /*
993  * Analyse superblocks and select the freshest.
994  */
995 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
996 {
997 	int ret;
998 	unsigned redundancy = 0;
999 	struct raid_dev *dev;
1000 	struct md_rdev *rdev, *tmp, *freshest;
1001 	struct mddev *mddev = &rs->md;
1002 
1003 	switch (rs->raid_type->level) {
1004 	case 1:
1005 		redundancy = rs->md.raid_disks - 1;
1006 		break;
1007 	case 4:
1008 	case 5:
1009 	case 6:
1010 		redundancy = rs->raid_type->parity_devs;
1011 		break;
1012 	case 10:
1013 		redundancy = raid10_md_layout_to_copies(mddev->layout) - 1;
1014 		break;
1015 	default:
1016 		ti->error = "Unknown RAID type";
1017 		return -EINVAL;
1018 	}
1019 
1020 	freshest = NULL;
1021 	rdev_for_each_safe(rdev, tmp, mddev) {
1022 		/*
1023 		 * Skipping super_load due to DMPF_SYNC will cause
1024 		 * the array to undergo initialization again as
1025 		 * though it were new.  This is the intended effect
1026 		 * of the "sync" directive.
1027 		 *
1028 		 * When reshaping capability is added, we must ensure
1029 		 * that the "sync" directive is disallowed during the
1030 		 * reshape.
1031 		 */
1032 		if (rs->print_flags & DMPF_SYNC)
1033 			continue;
1034 
1035 		if (!rdev->meta_bdev)
1036 			continue;
1037 
1038 		ret = super_load(rdev, freshest);
1039 
1040 		switch (ret) {
1041 		case 1:
1042 			freshest = rdev;
1043 			break;
1044 		case 0:
1045 			break;
1046 		default:
1047 			dev = container_of(rdev, struct raid_dev, rdev);
1048 			if (redundancy--) {
1049 				if (dev->meta_dev)
1050 					dm_put_device(ti, dev->meta_dev);
1051 
1052 				dev->meta_dev = NULL;
1053 				rdev->meta_bdev = NULL;
1054 
1055 				if (rdev->sb_page)
1056 					put_page(rdev->sb_page);
1057 
1058 				rdev->sb_page = NULL;
1059 
1060 				rdev->sb_loaded = 0;
1061 
1062 				/*
1063 				 * We might be able to salvage the data device
1064 				 * even though the meta device has failed.  For
1065 				 * now, we behave as though '- -' had been
1066 				 * set for this device in the table.
1067 				 */
1068 				if (dev->data_dev)
1069 					dm_put_device(ti, dev->data_dev);
1070 
1071 				dev->data_dev = NULL;
1072 				rdev->bdev = NULL;
1073 
1074 				list_del(&rdev->same_set);
1075 
1076 				continue;
1077 			}
1078 			ti->error = "Failed to load superblock";
1079 			return ret;
1080 		}
1081 	}
1082 
1083 	if (!freshest)
1084 		return 0;
1085 
1086 	/*
1087 	 * Validation of the freshest device provides the source of
1088 	 * validation for the remaining devices.
1089 	 */
1090 	ti->error = "Unable to assemble array: Invalid superblocks";
1091 	if (super_validate(mddev, freshest))
1092 		return -EINVAL;
1093 
1094 	rdev_for_each(rdev, mddev)
1095 		if ((rdev != freshest) && super_validate(mddev, rdev))
1096 			return -EINVAL;
1097 
1098 	return 0;
1099 }
1100 
1101 /*
1102  * Construct a RAID4/5/6 mapping:
1103  * Args:
1104  *	<raid_type> <#raid_params> <raid_params>		\
1105  *	<#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
1106  *
1107  * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
1108  * details on possible <raid_params>.
1109  */
1110 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
1111 {
1112 	int ret;
1113 	struct raid_type *rt;
1114 	unsigned long num_raid_params, num_raid_devs;
1115 	struct raid_set *rs = NULL;
1116 
1117 	/* Must have at least <raid_type> <#raid_params> */
1118 	if (argc < 2) {
1119 		ti->error = "Too few arguments";
1120 		return -EINVAL;
1121 	}
1122 
1123 	/* raid type */
1124 	rt = get_raid_type(argv[0]);
1125 	if (!rt) {
1126 		ti->error = "Unrecognised raid_type";
1127 		return -EINVAL;
1128 	}
1129 	argc--;
1130 	argv++;
1131 
1132 	/* number of RAID parameters */
1133 	if (strict_strtoul(argv[0], 10, &num_raid_params) < 0) {
1134 		ti->error = "Cannot understand number of RAID parameters";
1135 		return -EINVAL;
1136 	}
1137 	argc--;
1138 	argv++;
1139 
1140 	/* Skip over RAID params for now and find out # of devices */
1141 	if (num_raid_params + 1 > argc) {
1142 		ti->error = "Arguments do not agree with counts given";
1143 		return -EINVAL;
1144 	}
1145 
1146 	if ((strict_strtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
1147 	    (num_raid_devs >= INT_MAX)) {
1148 		ti->error = "Cannot understand number of raid devices";
1149 		return -EINVAL;
1150 	}
1151 
1152 	rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
1153 	if (IS_ERR(rs))
1154 		return PTR_ERR(rs);
1155 
1156 	ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
1157 	if (ret)
1158 		goto bad;
1159 
1160 	ret = -EINVAL;
1161 
1162 	argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
1163 	argv += num_raid_params + 1;
1164 
1165 	if (argc != (num_raid_devs * 2)) {
1166 		ti->error = "Supplied RAID devices does not match the count given";
1167 		goto bad;
1168 	}
1169 
1170 	ret = dev_parms(rs, argv);
1171 	if (ret)
1172 		goto bad;
1173 
1174 	rs->md.sync_super = super_sync;
1175 	ret = analyse_superblocks(ti, rs);
1176 	if (ret)
1177 		goto bad;
1178 
1179 	INIT_WORK(&rs->md.event_work, do_table_event);
1180 	ti->private = rs;
1181 	ti->num_flush_requests = 1;
1182 
1183 	mutex_lock(&rs->md.reconfig_mutex);
1184 	ret = md_run(&rs->md);
1185 	rs->md.in_sync = 0; /* Assume already marked dirty */
1186 	mutex_unlock(&rs->md.reconfig_mutex);
1187 
1188 	if (ret) {
1189 		ti->error = "Fail to run raid array";
1190 		goto bad;
1191 	}
1192 
1193 	if (ti->len != rs->md.array_sectors) {
1194 		ti->error = "Array size does not match requested target length";
1195 		ret = -EINVAL;
1196 		goto size_mismatch;
1197 	}
1198 	rs->callbacks.congested_fn = raid_is_congested;
1199 	dm_table_add_target_callbacks(ti->table, &rs->callbacks);
1200 
1201 	mddev_suspend(&rs->md);
1202 	return 0;
1203 
1204 size_mismatch:
1205 	md_stop(&rs->md);
1206 bad:
1207 	context_free(rs);
1208 
1209 	return ret;
1210 }
1211 
1212 static void raid_dtr(struct dm_target *ti)
1213 {
1214 	struct raid_set *rs = ti->private;
1215 
1216 	list_del_init(&rs->callbacks.list);
1217 	md_stop(&rs->md);
1218 	context_free(rs);
1219 }
1220 
1221 static int raid_map(struct dm_target *ti, struct bio *bio)
1222 {
1223 	struct raid_set *rs = ti->private;
1224 	struct mddev *mddev = &rs->md;
1225 
1226 	mddev->pers->make_request(mddev, bio);
1227 
1228 	return DM_MAPIO_SUBMITTED;
1229 }
1230 
1231 static int raid_status(struct dm_target *ti, status_type_t type,
1232 		       unsigned status_flags, char *result, unsigned maxlen)
1233 {
1234 	struct raid_set *rs = ti->private;
1235 	unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
1236 	unsigned sz = 0;
1237 	int i, array_in_sync = 0;
1238 	sector_t sync;
1239 
1240 	switch (type) {
1241 	case STATUSTYPE_INFO:
1242 		DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
1243 
1244 		if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
1245 			sync = rs->md.curr_resync_completed;
1246 		else
1247 			sync = rs->md.recovery_cp;
1248 
1249 		if (sync >= rs->md.resync_max_sectors) {
1250 			array_in_sync = 1;
1251 			sync = rs->md.resync_max_sectors;
1252 		} else {
1253 			/*
1254 			 * The array may be doing an initial sync, or it may
1255 			 * be rebuilding individual components.  If all the
1256 			 * devices are In_sync, then it is the array that is
1257 			 * being initialized.
1258 			 */
1259 			for (i = 0; i < rs->md.raid_disks; i++)
1260 				if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
1261 					array_in_sync = 1;
1262 		}
1263 		/*
1264 		 * Status characters:
1265 		 *  'D' = Dead/Failed device
1266 		 *  'a' = Alive but not in-sync
1267 		 *  'A' = Alive and in-sync
1268 		 */
1269 		for (i = 0; i < rs->md.raid_disks; i++) {
1270 			if (test_bit(Faulty, &rs->dev[i].rdev.flags))
1271 				DMEMIT("D");
1272 			else if (!array_in_sync ||
1273 				 !test_bit(In_sync, &rs->dev[i].rdev.flags))
1274 				DMEMIT("a");
1275 			else
1276 				DMEMIT("A");
1277 		}
1278 
1279 		/*
1280 		 * In-sync ratio:
1281 		 *  The in-sync ratio shows the progress of:
1282 		 *   - Initializing the array
1283 		 *   - Rebuilding a subset of devices of the array
1284 		 *  The user can distinguish between the two by referring
1285 		 *  to the status characters.
1286 		 */
1287 		DMEMIT(" %llu/%llu",
1288 		       (unsigned long long) sync,
1289 		       (unsigned long long) rs->md.resync_max_sectors);
1290 
1291 		break;
1292 	case STATUSTYPE_TABLE:
1293 		/* The string you would use to construct this array */
1294 		for (i = 0; i < rs->md.raid_disks; i++) {
1295 			if ((rs->print_flags & DMPF_REBUILD) &&
1296 			    rs->dev[i].data_dev &&
1297 			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
1298 				raid_param_cnt += 2; /* for rebuilds */
1299 			if (rs->dev[i].data_dev &&
1300 			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1301 				raid_param_cnt += 2;
1302 		}
1303 
1304 		raid_param_cnt += (hweight32(rs->print_flags & ~DMPF_REBUILD) * 2);
1305 		if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))
1306 			raid_param_cnt--;
1307 
1308 		DMEMIT("%s %u %u", rs->raid_type->name,
1309 		       raid_param_cnt, rs->md.chunk_sectors);
1310 
1311 		if ((rs->print_flags & DMPF_SYNC) &&
1312 		    (rs->md.recovery_cp == MaxSector))
1313 			DMEMIT(" sync");
1314 		if (rs->print_flags & DMPF_NOSYNC)
1315 			DMEMIT(" nosync");
1316 
1317 		for (i = 0; i < rs->md.raid_disks; i++)
1318 			if ((rs->print_flags & DMPF_REBUILD) &&
1319 			    rs->dev[i].data_dev &&
1320 			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
1321 				DMEMIT(" rebuild %u", i);
1322 
1323 		if (rs->print_flags & DMPF_DAEMON_SLEEP)
1324 			DMEMIT(" daemon_sleep %lu",
1325 			       rs->md.bitmap_info.daemon_sleep);
1326 
1327 		if (rs->print_flags & DMPF_MIN_RECOVERY_RATE)
1328 			DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
1329 
1330 		if (rs->print_flags & DMPF_MAX_RECOVERY_RATE)
1331 			DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
1332 
1333 		for (i = 0; i < rs->md.raid_disks; i++)
1334 			if (rs->dev[i].data_dev &&
1335 			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1336 				DMEMIT(" write_mostly %u", i);
1337 
1338 		if (rs->print_flags & DMPF_MAX_WRITE_BEHIND)
1339 			DMEMIT(" max_write_behind %lu",
1340 			       rs->md.bitmap_info.max_write_behind);
1341 
1342 		if (rs->print_flags & DMPF_STRIPE_CACHE) {
1343 			struct r5conf *conf = rs->md.private;
1344 
1345 			/* convert from kiB to sectors */
1346 			DMEMIT(" stripe_cache %d",
1347 			       conf ? conf->max_nr_stripes * 2 : 0);
1348 		}
1349 
1350 		if (rs->print_flags & DMPF_REGION_SIZE)
1351 			DMEMIT(" region_size %lu",
1352 			       rs->md.bitmap_info.chunksize >> 9);
1353 
1354 		if (rs->print_flags & DMPF_RAID10_COPIES)
1355 			DMEMIT(" raid10_copies %u",
1356 			       raid10_md_layout_to_copies(rs->md.layout));
1357 
1358 		if (rs->print_flags & DMPF_RAID10_FORMAT)
1359 			DMEMIT(" raid10_format near");
1360 
1361 		DMEMIT(" %d", rs->md.raid_disks);
1362 		for (i = 0; i < rs->md.raid_disks; i++) {
1363 			if (rs->dev[i].meta_dev)
1364 				DMEMIT(" %s", rs->dev[i].meta_dev->name);
1365 			else
1366 				DMEMIT(" -");
1367 
1368 			if (rs->dev[i].data_dev)
1369 				DMEMIT(" %s", rs->dev[i].data_dev->name);
1370 			else
1371 				DMEMIT(" -");
1372 		}
1373 	}
1374 
1375 	return 0;
1376 }
1377 
1378 static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data)
1379 {
1380 	struct raid_set *rs = ti->private;
1381 	unsigned i;
1382 	int ret = 0;
1383 
1384 	for (i = 0; !ret && i < rs->md.raid_disks; i++)
1385 		if (rs->dev[i].data_dev)
1386 			ret = fn(ti,
1387 				 rs->dev[i].data_dev,
1388 				 0, /* No offset on data devs */
1389 				 rs->md.dev_sectors,
1390 				 data);
1391 
1392 	return ret;
1393 }
1394 
1395 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
1396 {
1397 	struct raid_set *rs = ti->private;
1398 	unsigned chunk_size = rs->md.chunk_sectors << 9;
1399 	struct r5conf *conf = rs->md.private;
1400 
1401 	blk_limits_io_min(limits, chunk_size);
1402 	blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
1403 }
1404 
1405 static void raid_presuspend(struct dm_target *ti)
1406 {
1407 	struct raid_set *rs = ti->private;
1408 
1409 	md_stop_writes(&rs->md);
1410 }
1411 
1412 static void raid_postsuspend(struct dm_target *ti)
1413 {
1414 	struct raid_set *rs = ti->private;
1415 
1416 	mddev_suspend(&rs->md);
1417 }
1418 
1419 static void raid_resume(struct dm_target *ti)
1420 {
1421 	struct raid_set *rs = ti->private;
1422 
1423 	set_bit(MD_CHANGE_DEVS, &rs->md.flags);
1424 	if (!rs->bitmap_loaded) {
1425 		bitmap_load(&rs->md);
1426 		rs->bitmap_loaded = 1;
1427 	}
1428 
1429 	clear_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
1430 	mddev_resume(&rs->md);
1431 }
1432 
1433 static struct target_type raid_target = {
1434 	.name = "raid",
1435 	.version = {1, 4, 0},
1436 	.module = THIS_MODULE,
1437 	.ctr = raid_ctr,
1438 	.dtr = raid_dtr,
1439 	.map = raid_map,
1440 	.status = raid_status,
1441 	.iterate_devices = raid_iterate_devices,
1442 	.io_hints = raid_io_hints,
1443 	.presuspend = raid_presuspend,
1444 	.postsuspend = raid_postsuspend,
1445 	.resume = raid_resume,
1446 };
1447 
1448 static int __init dm_raid_init(void)
1449 {
1450 	return dm_register_target(&raid_target);
1451 }
1452 
1453 static void __exit dm_raid_exit(void)
1454 {
1455 	dm_unregister_target(&raid_target);
1456 }
1457 
1458 module_init(dm_raid_init);
1459 module_exit(dm_raid_exit);
1460 
1461 MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
1462 MODULE_ALIAS("dm-raid1");
1463 MODULE_ALIAS("dm-raid10");
1464 MODULE_ALIAS("dm-raid4");
1465 MODULE_ALIAS("dm-raid5");
1466 MODULE_ALIAS("dm-raid6");
1467 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
1468 MODULE_LICENSE("GPL");
1469