1 /* 2 * Copyright (C) 2010-2011 Neil Brown 3 * Copyright (C) 2010-2011 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/slab.h> 9 #include <linux/module.h> 10 11 #include "md.h" 12 #include "raid1.h" 13 #include "raid5.h" 14 #include "raid10.h" 15 #include "bitmap.h" 16 17 #include <linux/device-mapper.h> 18 19 #define DM_MSG_PREFIX "raid" 20 21 /* 22 * The following flags are used by dm-raid.c to set up the array state. 23 * They must be cleared before md_run is called. 24 */ 25 #define FirstUse 10 /* rdev flag */ 26 27 struct raid_dev { 28 /* 29 * Two DM devices, one to hold metadata and one to hold the 30 * actual data/parity. The reason for this is to not confuse 31 * ti->len and give more flexibility in altering size and 32 * characteristics. 33 * 34 * While it is possible for this device to be associated 35 * with a different physical device than the data_dev, it 36 * is intended for it to be the same. 37 * |--------- Physical Device ---------| 38 * |- meta_dev -|------ data_dev ------| 39 */ 40 struct dm_dev *meta_dev; 41 struct dm_dev *data_dev; 42 struct md_rdev rdev; 43 }; 44 45 /* 46 * Flags for rs->print_flags field. 47 */ 48 #define DMPF_SYNC 0x1 49 #define DMPF_NOSYNC 0x2 50 #define DMPF_REBUILD 0x4 51 #define DMPF_DAEMON_SLEEP 0x8 52 #define DMPF_MIN_RECOVERY_RATE 0x10 53 #define DMPF_MAX_RECOVERY_RATE 0x20 54 #define DMPF_MAX_WRITE_BEHIND 0x40 55 #define DMPF_STRIPE_CACHE 0x80 56 #define DMPF_REGION_SIZE 0x100 57 #define DMPF_RAID10_COPIES 0x200 58 #define DMPF_RAID10_FORMAT 0x400 59 60 struct raid_set { 61 struct dm_target *ti; 62 63 uint32_t bitmap_loaded; 64 uint32_t print_flags; 65 66 struct mddev md; 67 struct raid_type *raid_type; 68 struct dm_target_callbacks callbacks; 69 70 struct raid_dev dev[0]; 71 }; 72 73 /* Supported raid types and properties. */ 74 static struct raid_type { 75 const char *name; /* RAID algorithm. */ 76 const char *descr; /* Descriptor text for logging. */ 77 const unsigned parity_devs; /* # of parity devices. */ 78 const unsigned minimal_devs; /* minimal # of devices in set. */ 79 const unsigned level; /* RAID level. */ 80 const unsigned algorithm; /* RAID algorithm. */ 81 } raid_types[] = { 82 {"raid1", "RAID1 (mirroring)", 0, 2, 1, 0 /* NONE */}, 83 {"raid10", "RAID10 (striped mirrors)", 0, 2, 10, UINT_MAX /* Varies */}, 84 {"raid4", "RAID4 (dedicated parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, 85 {"raid5_la", "RAID5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC}, 86 {"raid5_ra", "RAID5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC}, 87 {"raid5_ls", "RAID5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC}, 88 {"raid5_rs", "RAID5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC}, 89 {"raid6_zr", "RAID6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART}, 90 {"raid6_nr", "RAID6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART}, 91 {"raid6_nc", "RAID6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE} 92 }; 93 94 static unsigned raid10_md_layout_to_copies(int layout) 95 { 96 return layout & 0xFF; 97 } 98 99 static int raid10_format_to_md_layout(char *format, unsigned copies) 100 { 101 /* 1 "far" copy, and 'copies' "near" copies */ 102 return (1 << 8) | (copies & 0xFF); 103 } 104 105 static struct raid_type *get_raid_type(char *name) 106 { 107 int i; 108 109 for (i = 0; i < ARRAY_SIZE(raid_types); i++) 110 if (!strcmp(raid_types[i].name, name)) 111 return &raid_types[i]; 112 113 return NULL; 114 } 115 116 static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs) 117 { 118 unsigned i; 119 struct raid_set *rs; 120 121 if (raid_devs <= raid_type->parity_devs) { 122 ti->error = "Insufficient number of devices"; 123 return ERR_PTR(-EINVAL); 124 } 125 126 rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL); 127 if (!rs) { 128 ti->error = "Cannot allocate raid context"; 129 return ERR_PTR(-ENOMEM); 130 } 131 132 mddev_init(&rs->md); 133 134 rs->ti = ti; 135 rs->raid_type = raid_type; 136 rs->md.raid_disks = raid_devs; 137 rs->md.level = raid_type->level; 138 rs->md.new_level = rs->md.level; 139 rs->md.layout = raid_type->algorithm; 140 rs->md.new_layout = rs->md.layout; 141 rs->md.delta_disks = 0; 142 rs->md.recovery_cp = 0; 143 144 for (i = 0; i < raid_devs; i++) 145 md_rdev_init(&rs->dev[i].rdev); 146 147 /* 148 * Remaining items to be initialized by further RAID params: 149 * rs->md.persistent 150 * rs->md.external 151 * rs->md.chunk_sectors 152 * rs->md.new_chunk_sectors 153 * rs->md.dev_sectors 154 */ 155 156 return rs; 157 } 158 159 static void context_free(struct raid_set *rs) 160 { 161 int i; 162 163 for (i = 0; i < rs->md.raid_disks; i++) { 164 if (rs->dev[i].meta_dev) 165 dm_put_device(rs->ti, rs->dev[i].meta_dev); 166 md_rdev_clear(&rs->dev[i].rdev); 167 if (rs->dev[i].data_dev) 168 dm_put_device(rs->ti, rs->dev[i].data_dev); 169 } 170 171 kfree(rs); 172 } 173 174 /* 175 * For every device we have two words 176 * <meta_dev>: meta device name or '-' if missing 177 * <data_dev>: data device name or '-' if missing 178 * 179 * The following are permitted: 180 * - - 181 * - <data_dev> 182 * <meta_dev> <data_dev> 183 * 184 * The following is not allowed: 185 * <meta_dev> - 186 * 187 * This code parses those words. If there is a failure, 188 * the caller must use context_free to unwind the operations. 189 */ 190 static int dev_parms(struct raid_set *rs, char **argv) 191 { 192 int i; 193 int rebuild = 0; 194 int metadata_available = 0; 195 int ret = 0; 196 197 for (i = 0; i < rs->md.raid_disks; i++, argv += 2) { 198 rs->dev[i].rdev.raid_disk = i; 199 200 rs->dev[i].meta_dev = NULL; 201 rs->dev[i].data_dev = NULL; 202 203 /* 204 * There are no offsets, since there is a separate device 205 * for data and metadata. 206 */ 207 rs->dev[i].rdev.data_offset = 0; 208 rs->dev[i].rdev.mddev = &rs->md; 209 210 if (strcmp(argv[0], "-")) { 211 ret = dm_get_device(rs->ti, argv[0], 212 dm_table_get_mode(rs->ti->table), 213 &rs->dev[i].meta_dev); 214 rs->ti->error = "RAID metadata device lookup failure"; 215 if (ret) 216 return ret; 217 218 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL); 219 if (!rs->dev[i].rdev.sb_page) 220 return -ENOMEM; 221 } 222 223 if (!strcmp(argv[1], "-")) { 224 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) && 225 (!rs->dev[i].rdev.recovery_offset)) { 226 rs->ti->error = "Drive designated for rebuild not specified"; 227 return -EINVAL; 228 } 229 230 rs->ti->error = "No data device supplied with metadata device"; 231 if (rs->dev[i].meta_dev) 232 return -EINVAL; 233 234 continue; 235 } 236 237 ret = dm_get_device(rs->ti, argv[1], 238 dm_table_get_mode(rs->ti->table), 239 &rs->dev[i].data_dev); 240 if (ret) { 241 rs->ti->error = "RAID device lookup failure"; 242 return ret; 243 } 244 245 if (rs->dev[i].meta_dev) { 246 metadata_available = 1; 247 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev; 248 } 249 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev; 250 list_add(&rs->dev[i].rdev.same_set, &rs->md.disks); 251 if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) 252 rebuild++; 253 } 254 255 if (metadata_available) { 256 rs->md.external = 0; 257 rs->md.persistent = 1; 258 rs->md.major_version = 2; 259 } else if (rebuild && !rs->md.recovery_cp) { 260 /* 261 * Without metadata, we will not be able to tell if the array 262 * is in-sync or not - we must assume it is not. Therefore, 263 * it is impossible to rebuild a drive. 264 * 265 * Even if there is metadata, the on-disk information may 266 * indicate that the array is not in-sync and it will then 267 * fail at that time. 268 * 269 * User could specify 'nosync' option if desperate. 270 */ 271 DMERR("Unable to rebuild drive while array is not in-sync"); 272 rs->ti->error = "RAID device lookup failure"; 273 return -EINVAL; 274 } 275 276 return 0; 277 } 278 279 /* 280 * validate_region_size 281 * @rs 282 * @region_size: region size in sectors. If 0, pick a size (4MiB default). 283 * 284 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size'). 285 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap. 286 * 287 * Returns: 0 on success, -EINVAL on failure. 288 */ 289 static int validate_region_size(struct raid_set *rs, unsigned long region_size) 290 { 291 unsigned long min_region_size = rs->ti->len / (1 << 21); 292 293 if (!region_size) { 294 /* 295 * Choose a reasonable default. All figures in sectors. 296 */ 297 if (min_region_size > (1 << 13)) { 298 /* If not a power of 2, make it the next power of 2 */ 299 if (min_region_size & (min_region_size - 1)) 300 region_size = 1 << fls(region_size); 301 DMINFO("Choosing default region size of %lu sectors", 302 region_size); 303 } else { 304 DMINFO("Choosing default region size of 4MiB"); 305 region_size = 1 << 13; /* sectors */ 306 } 307 } else { 308 /* 309 * Validate user-supplied value. 310 */ 311 if (region_size > rs->ti->len) { 312 rs->ti->error = "Supplied region size is too large"; 313 return -EINVAL; 314 } 315 316 if (region_size < min_region_size) { 317 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)", 318 region_size, min_region_size); 319 rs->ti->error = "Supplied region size is too small"; 320 return -EINVAL; 321 } 322 323 if (!is_power_of_2(region_size)) { 324 rs->ti->error = "Region size is not a power of 2"; 325 return -EINVAL; 326 } 327 328 if (region_size < rs->md.chunk_sectors) { 329 rs->ti->error = "Region size is smaller than the chunk size"; 330 return -EINVAL; 331 } 332 } 333 334 /* 335 * Convert sectors to bytes. 336 */ 337 rs->md.bitmap_info.chunksize = (region_size << 9); 338 339 return 0; 340 } 341 342 /* 343 * validate_rebuild_devices 344 * @rs 345 * 346 * Determine if the devices specified for rebuild can result in a valid 347 * usable array that is capable of rebuilding the given devices. 348 * 349 * Returns: 0 on success, -EINVAL on failure. 350 */ 351 static int validate_rebuild_devices(struct raid_set *rs) 352 { 353 unsigned i, rebuild_cnt = 0; 354 unsigned rebuilds_per_group, copies, d; 355 356 if (!(rs->print_flags & DMPF_REBUILD)) 357 return 0; 358 359 for (i = 0; i < rs->md.raid_disks; i++) 360 if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) 361 rebuild_cnt++; 362 363 switch (rs->raid_type->level) { 364 case 1: 365 if (rebuild_cnt >= rs->md.raid_disks) 366 goto too_many; 367 break; 368 case 4: 369 case 5: 370 case 6: 371 if (rebuild_cnt > rs->raid_type->parity_devs) 372 goto too_many; 373 break; 374 case 10: 375 copies = raid10_md_layout_to_copies(rs->md.layout); 376 if (rebuild_cnt < copies) 377 break; 378 379 /* 380 * It is possible to have a higher rebuild count for RAID10, 381 * as long as the failed devices occur in different mirror 382 * groups (i.e. different stripes). 383 * 384 * Right now, we only allow for "near" copies. When other 385 * formats are added, we will have to check those too. 386 * 387 * When checking "near" format, make sure no adjacent devices 388 * have failed beyond what can be handled. In addition to the 389 * simple case where the number of devices is a multiple of the 390 * number of copies, we must also handle cases where the number 391 * of devices is not a multiple of the number of copies. 392 * E.g. dev1 dev2 dev3 dev4 dev5 393 * A A B B C 394 * C D D E E 395 */ 396 rebuilds_per_group = 0; 397 for (i = 0; i < rs->md.raid_disks * copies; i++) { 398 d = i % rs->md.raid_disks; 399 if (!test_bit(In_sync, &rs->dev[d].rdev.flags) && 400 (++rebuilds_per_group >= copies)) 401 goto too_many; 402 if (!((i + 1) % copies)) 403 rebuilds_per_group = 0; 404 } 405 break; 406 default: 407 DMERR("The rebuild parameter is not supported for %s", 408 rs->raid_type->name); 409 rs->ti->error = "Rebuild not supported for this RAID type"; 410 return -EINVAL; 411 } 412 413 return 0; 414 415 too_many: 416 rs->ti->error = "Too many rebuild devices specified"; 417 return -EINVAL; 418 } 419 420 /* 421 * Possible arguments are... 422 * <chunk_size> [optional_args] 423 * 424 * Argument definitions 425 * <chunk_size> The number of sectors per disk that 426 * will form the "stripe" 427 * [[no]sync] Force or prevent recovery of the 428 * entire array 429 * [rebuild <idx>] Rebuild the drive indicated by the index 430 * [daemon_sleep <ms>] Time between bitmap daemon work to 431 * clear bits 432 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization 433 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization 434 * [write_mostly <idx>] Indicate a write mostly drive via index 435 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm) 436 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs 437 * [region_size <sectors>] Defines granularity of bitmap 438 * 439 * RAID10-only options: 440 * [raid10_copies <# copies>] Number of copies. (Default: 2) 441 * [raid10_format <near>] Layout algorithm. (Default: near) 442 */ 443 static int parse_raid_params(struct raid_set *rs, char **argv, 444 unsigned num_raid_params) 445 { 446 char *raid10_format = "near"; 447 unsigned raid10_copies = 2; 448 unsigned i; 449 unsigned long value, region_size = 0; 450 sector_t sectors_per_dev = rs->ti->len; 451 sector_t max_io_len; 452 char *key; 453 454 /* 455 * First, parse the in-order required arguments 456 * "chunk_size" is the only argument of this type. 457 */ 458 if ((strict_strtoul(argv[0], 10, &value) < 0)) { 459 rs->ti->error = "Bad chunk size"; 460 return -EINVAL; 461 } else if (rs->raid_type->level == 1) { 462 if (value) 463 DMERR("Ignoring chunk size parameter for RAID 1"); 464 value = 0; 465 } else if (!is_power_of_2(value)) { 466 rs->ti->error = "Chunk size must be a power of 2"; 467 return -EINVAL; 468 } else if (value < 8) { 469 rs->ti->error = "Chunk size value is too small"; 470 return -EINVAL; 471 } 472 473 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value; 474 argv++; 475 num_raid_params--; 476 477 /* 478 * We set each individual device as In_sync with a completed 479 * 'recovery_offset'. If there has been a device failure or 480 * replacement then one of the following cases applies: 481 * 482 * 1) User specifies 'rebuild'. 483 * - Device is reset when param is read. 484 * 2) A new device is supplied. 485 * - No matching superblock found, resets device. 486 * 3) Device failure was transient and returns on reload. 487 * - Failure noticed, resets device for bitmap replay. 488 * 4) Device hadn't completed recovery after previous failure. 489 * - Superblock is read and overrides recovery_offset. 490 * 491 * What is found in the superblocks of the devices is always 492 * authoritative, unless 'rebuild' or '[no]sync' was specified. 493 */ 494 for (i = 0; i < rs->md.raid_disks; i++) { 495 set_bit(In_sync, &rs->dev[i].rdev.flags); 496 rs->dev[i].rdev.recovery_offset = MaxSector; 497 } 498 499 /* 500 * Second, parse the unordered optional arguments 501 */ 502 for (i = 0; i < num_raid_params; i++) { 503 if (!strcasecmp(argv[i], "nosync")) { 504 rs->md.recovery_cp = MaxSector; 505 rs->print_flags |= DMPF_NOSYNC; 506 continue; 507 } 508 if (!strcasecmp(argv[i], "sync")) { 509 rs->md.recovery_cp = 0; 510 rs->print_flags |= DMPF_SYNC; 511 continue; 512 } 513 514 /* The rest of the optional arguments come in key/value pairs */ 515 if ((i + 1) >= num_raid_params) { 516 rs->ti->error = "Wrong number of raid parameters given"; 517 return -EINVAL; 518 } 519 520 key = argv[i++]; 521 522 /* Parameters that take a string value are checked here. */ 523 if (!strcasecmp(key, "raid10_format")) { 524 if (rs->raid_type->level != 10) { 525 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type"; 526 return -EINVAL; 527 } 528 if (strcmp("near", argv[i])) { 529 rs->ti->error = "Invalid 'raid10_format' value given"; 530 return -EINVAL; 531 } 532 raid10_format = argv[i]; 533 rs->print_flags |= DMPF_RAID10_FORMAT; 534 continue; 535 } 536 537 if (strict_strtoul(argv[i], 10, &value) < 0) { 538 rs->ti->error = "Bad numerical argument given in raid params"; 539 return -EINVAL; 540 } 541 542 /* Parameters that take a numeric value are checked here */ 543 if (!strcasecmp(key, "rebuild")) { 544 if (value >= rs->md.raid_disks) { 545 rs->ti->error = "Invalid rebuild index given"; 546 return -EINVAL; 547 } 548 clear_bit(In_sync, &rs->dev[value].rdev.flags); 549 rs->dev[value].rdev.recovery_offset = 0; 550 rs->print_flags |= DMPF_REBUILD; 551 } else if (!strcasecmp(key, "write_mostly")) { 552 if (rs->raid_type->level != 1) { 553 rs->ti->error = "write_mostly option is only valid for RAID1"; 554 return -EINVAL; 555 } 556 if (value >= rs->md.raid_disks) { 557 rs->ti->error = "Invalid write_mostly drive index given"; 558 return -EINVAL; 559 } 560 set_bit(WriteMostly, &rs->dev[value].rdev.flags); 561 } else if (!strcasecmp(key, "max_write_behind")) { 562 if (rs->raid_type->level != 1) { 563 rs->ti->error = "max_write_behind option is only valid for RAID1"; 564 return -EINVAL; 565 } 566 rs->print_flags |= DMPF_MAX_WRITE_BEHIND; 567 568 /* 569 * In device-mapper, we specify things in sectors, but 570 * MD records this value in kB 571 */ 572 value /= 2; 573 if (value > COUNTER_MAX) { 574 rs->ti->error = "Max write-behind limit out of range"; 575 return -EINVAL; 576 } 577 rs->md.bitmap_info.max_write_behind = value; 578 } else if (!strcasecmp(key, "daemon_sleep")) { 579 rs->print_flags |= DMPF_DAEMON_SLEEP; 580 if (!value || (value > MAX_SCHEDULE_TIMEOUT)) { 581 rs->ti->error = "daemon sleep period out of range"; 582 return -EINVAL; 583 } 584 rs->md.bitmap_info.daemon_sleep = value; 585 } else if (!strcasecmp(key, "stripe_cache")) { 586 rs->print_flags |= DMPF_STRIPE_CACHE; 587 588 /* 589 * In device-mapper, we specify things in sectors, but 590 * MD records this value in kB 591 */ 592 value /= 2; 593 594 if ((rs->raid_type->level != 5) && 595 (rs->raid_type->level != 6)) { 596 rs->ti->error = "Inappropriate argument: stripe_cache"; 597 return -EINVAL; 598 } 599 if (raid5_set_cache_size(&rs->md, (int)value)) { 600 rs->ti->error = "Bad stripe_cache size"; 601 return -EINVAL; 602 } 603 } else if (!strcasecmp(key, "min_recovery_rate")) { 604 rs->print_flags |= DMPF_MIN_RECOVERY_RATE; 605 if (value > INT_MAX) { 606 rs->ti->error = "min_recovery_rate out of range"; 607 return -EINVAL; 608 } 609 rs->md.sync_speed_min = (int)value; 610 } else if (!strcasecmp(key, "max_recovery_rate")) { 611 rs->print_flags |= DMPF_MAX_RECOVERY_RATE; 612 if (value > INT_MAX) { 613 rs->ti->error = "max_recovery_rate out of range"; 614 return -EINVAL; 615 } 616 rs->md.sync_speed_max = (int)value; 617 } else if (!strcasecmp(key, "region_size")) { 618 rs->print_flags |= DMPF_REGION_SIZE; 619 region_size = value; 620 } else if (!strcasecmp(key, "raid10_copies") && 621 (rs->raid_type->level == 10)) { 622 if ((value < 2) || (value > 0xFF)) { 623 rs->ti->error = "Bad value for 'raid10_copies'"; 624 return -EINVAL; 625 } 626 rs->print_flags |= DMPF_RAID10_COPIES; 627 raid10_copies = value; 628 } else { 629 DMERR("Unable to parse RAID parameter: %s", key); 630 rs->ti->error = "Unable to parse RAID parameters"; 631 return -EINVAL; 632 } 633 } 634 635 if (validate_region_size(rs, region_size)) 636 return -EINVAL; 637 638 if (rs->md.chunk_sectors) 639 max_io_len = rs->md.chunk_sectors; 640 else 641 max_io_len = region_size; 642 643 if (dm_set_target_max_io_len(rs->ti, max_io_len)) 644 return -EINVAL; 645 646 if (rs->raid_type->level == 10) { 647 if (raid10_copies > rs->md.raid_disks) { 648 rs->ti->error = "Not enough devices to satisfy specification"; 649 return -EINVAL; 650 } 651 652 /* (Len * #mirrors) / #devices */ 653 sectors_per_dev = rs->ti->len * raid10_copies; 654 sector_div(sectors_per_dev, rs->md.raid_disks); 655 656 rs->md.layout = raid10_format_to_md_layout(raid10_format, 657 raid10_copies); 658 rs->md.new_layout = rs->md.layout; 659 } else if ((rs->raid_type->level > 1) && 660 sector_div(sectors_per_dev, 661 (rs->md.raid_disks - rs->raid_type->parity_devs))) { 662 rs->ti->error = "Target length not divisible by number of data devices"; 663 return -EINVAL; 664 } 665 rs->md.dev_sectors = sectors_per_dev; 666 667 if (validate_rebuild_devices(rs)) 668 return -EINVAL; 669 670 /* Assume there are no metadata devices until the drives are parsed */ 671 rs->md.persistent = 0; 672 rs->md.external = 1; 673 674 return 0; 675 } 676 677 static void do_table_event(struct work_struct *ws) 678 { 679 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work); 680 681 dm_table_event(rs->ti->table); 682 } 683 684 static int raid_is_congested(struct dm_target_callbacks *cb, int bits) 685 { 686 struct raid_set *rs = container_of(cb, struct raid_set, callbacks); 687 688 if (rs->raid_type->level == 1) 689 return md_raid1_congested(&rs->md, bits); 690 691 if (rs->raid_type->level == 10) 692 return md_raid10_congested(&rs->md, bits); 693 694 return md_raid5_congested(&rs->md, bits); 695 } 696 697 /* 698 * This structure is never routinely used by userspace, unlike md superblocks. 699 * Devices with this superblock should only ever be accessed via device-mapper. 700 */ 701 #define DM_RAID_MAGIC 0x64526D44 702 struct dm_raid_superblock { 703 __le32 magic; /* "DmRd" */ 704 __le32 features; /* Used to indicate possible future changes */ 705 706 __le32 num_devices; /* Number of devices in this array. (Max 64) */ 707 __le32 array_position; /* The position of this drive in the array */ 708 709 __le64 events; /* Incremented by md when superblock updated */ 710 __le64 failed_devices; /* Bit field of devices to indicate failures */ 711 712 /* 713 * This offset tracks the progress of the repair or replacement of 714 * an individual drive. 715 */ 716 __le64 disk_recovery_offset; 717 718 /* 719 * This offset tracks the progress of the initial array 720 * synchronisation/parity calculation. 721 */ 722 __le64 array_resync_offset; 723 724 /* 725 * RAID characteristics 726 */ 727 __le32 level; 728 __le32 layout; 729 __le32 stripe_sectors; 730 731 __u8 pad[452]; /* Round struct to 512 bytes. */ 732 /* Always set to 0 when writing. */ 733 } __packed; 734 735 static int read_disk_sb(struct md_rdev *rdev, int size) 736 { 737 BUG_ON(!rdev->sb_page); 738 739 if (rdev->sb_loaded) 740 return 0; 741 742 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) { 743 DMERR("Failed to read superblock of device at position %d", 744 rdev->raid_disk); 745 md_error(rdev->mddev, rdev); 746 return -EINVAL; 747 } 748 749 rdev->sb_loaded = 1; 750 751 return 0; 752 } 753 754 static void super_sync(struct mddev *mddev, struct md_rdev *rdev) 755 { 756 int i; 757 uint64_t failed_devices; 758 struct dm_raid_superblock *sb; 759 struct raid_set *rs = container_of(mddev, struct raid_set, md); 760 761 sb = page_address(rdev->sb_page); 762 failed_devices = le64_to_cpu(sb->failed_devices); 763 764 for (i = 0; i < mddev->raid_disks; i++) 765 if (!rs->dev[i].data_dev || 766 test_bit(Faulty, &(rs->dev[i].rdev.flags))) 767 failed_devices |= (1ULL << i); 768 769 memset(sb, 0, sizeof(*sb)); 770 771 sb->magic = cpu_to_le32(DM_RAID_MAGIC); 772 sb->features = cpu_to_le32(0); /* No features yet */ 773 774 sb->num_devices = cpu_to_le32(mddev->raid_disks); 775 sb->array_position = cpu_to_le32(rdev->raid_disk); 776 777 sb->events = cpu_to_le64(mddev->events); 778 sb->failed_devices = cpu_to_le64(failed_devices); 779 780 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset); 781 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp); 782 783 sb->level = cpu_to_le32(mddev->level); 784 sb->layout = cpu_to_le32(mddev->layout); 785 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors); 786 } 787 788 /* 789 * super_load 790 * 791 * This function creates a superblock if one is not found on the device 792 * and will decide which superblock to use if there's a choice. 793 * 794 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise 795 */ 796 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev) 797 { 798 int ret; 799 struct dm_raid_superblock *sb; 800 struct dm_raid_superblock *refsb; 801 uint64_t events_sb, events_refsb; 802 803 rdev->sb_start = 0; 804 rdev->sb_size = sizeof(*sb); 805 806 ret = read_disk_sb(rdev, rdev->sb_size); 807 if (ret) 808 return ret; 809 810 sb = page_address(rdev->sb_page); 811 812 /* 813 * Two cases that we want to write new superblocks and rebuild: 814 * 1) New device (no matching magic number) 815 * 2) Device specified for rebuild (!In_sync w/ offset == 0) 816 */ 817 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) || 818 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) { 819 super_sync(rdev->mddev, rdev); 820 821 set_bit(FirstUse, &rdev->flags); 822 823 /* Force writing of superblocks to disk */ 824 set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags); 825 826 /* Any superblock is better than none, choose that if given */ 827 return refdev ? 0 : 1; 828 } 829 830 if (!refdev) 831 return 1; 832 833 events_sb = le64_to_cpu(sb->events); 834 835 refsb = page_address(refdev->sb_page); 836 events_refsb = le64_to_cpu(refsb->events); 837 838 return (events_sb > events_refsb) ? 1 : 0; 839 } 840 841 static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev) 842 { 843 int role; 844 struct raid_set *rs = container_of(mddev, struct raid_set, md); 845 uint64_t events_sb; 846 uint64_t failed_devices; 847 struct dm_raid_superblock *sb; 848 uint32_t new_devs = 0; 849 uint32_t rebuilds = 0; 850 struct md_rdev *r; 851 struct dm_raid_superblock *sb2; 852 853 sb = page_address(rdev->sb_page); 854 events_sb = le64_to_cpu(sb->events); 855 failed_devices = le64_to_cpu(sb->failed_devices); 856 857 /* 858 * Initialise to 1 if this is a new superblock. 859 */ 860 mddev->events = events_sb ? : 1; 861 862 /* 863 * Reshaping is not currently allowed 864 */ 865 if ((le32_to_cpu(sb->level) != mddev->level) || 866 (le32_to_cpu(sb->layout) != mddev->layout) || 867 (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors)) { 868 DMERR("Reshaping arrays not yet supported."); 869 return -EINVAL; 870 } 871 872 /* We can only change the number of devices in RAID1 right now */ 873 if ((rs->raid_type->level != 1) && 874 (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) { 875 DMERR("Reshaping arrays not yet supported."); 876 return -EINVAL; 877 } 878 879 if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))) 880 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset); 881 882 /* 883 * During load, we set FirstUse if a new superblock was written. 884 * There are two reasons we might not have a superblock: 885 * 1) The array is brand new - in which case, all of the 886 * devices must have their In_sync bit set. Also, 887 * recovery_cp must be 0, unless forced. 888 * 2) This is a new device being added to an old array 889 * and the new device needs to be rebuilt - in which 890 * case the In_sync bit will /not/ be set and 891 * recovery_cp must be MaxSector. 892 */ 893 rdev_for_each(r, mddev) { 894 if (!test_bit(In_sync, &r->flags)) { 895 DMINFO("Device %d specified for rebuild: " 896 "Clearing superblock", r->raid_disk); 897 rebuilds++; 898 } else if (test_bit(FirstUse, &r->flags)) 899 new_devs++; 900 } 901 902 if (!rebuilds) { 903 if (new_devs == mddev->raid_disks) { 904 DMINFO("Superblocks created for new array"); 905 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 906 } else if (new_devs) { 907 DMERR("New device injected " 908 "into existing array without 'rebuild' " 909 "parameter specified"); 910 return -EINVAL; 911 } 912 } else if (new_devs) { 913 DMERR("'rebuild' devices cannot be " 914 "injected into an array with other first-time devices"); 915 return -EINVAL; 916 } else if (mddev->recovery_cp != MaxSector) { 917 DMERR("'rebuild' specified while array is not in-sync"); 918 return -EINVAL; 919 } 920 921 /* 922 * Now we set the Faulty bit for those devices that are 923 * recorded in the superblock as failed. 924 */ 925 rdev_for_each(r, mddev) { 926 if (!r->sb_page) 927 continue; 928 sb2 = page_address(r->sb_page); 929 sb2->failed_devices = 0; 930 931 /* 932 * Check for any device re-ordering. 933 */ 934 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) { 935 role = le32_to_cpu(sb2->array_position); 936 if (role != r->raid_disk) { 937 if (rs->raid_type->level != 1) { 938 rs->ti->error = "Cannot change device " 939 "positions in RAID array"; 940 return -EINVAL; 941 } 942 DMINFO("RAID1 device #%d now at position #%d", 943 role, r->raid_disk); 944 } 945 946 /* 947 * Partial recovery is performed on 948 * returning failed devices. 949 */ 950 if (failed_devices & (1 << role)) 951 set_bit(Faulty, &r->flags); 952 } 953 } 954 955 return 0; 956 } 957 958 static int super_validate(struct mddev *mddev, struct md_rdev *rdev) 959 { 960 struct dm_raid_superblock *sb = page_address(rdev->sb_page); 961 962 /* 963 * If mddev->events is not set, we know we have not yet initialized 964 * the array. 965 */ 966 if (!mddev->events && super_init_validation(mddev, rdev)) 967 return -EINVAL; 968 969 mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */ 970 rdev->mddev->bitmap_info.default_offset = 4096 >> 9; 971 if (!test_bit(FirstUse, &rdev->flags)) { 972 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset); 973 if (rdev->recovery_offset != MaxSector) 974 clear_bit(In_sync, &rdev->flags); 975 } 976 977 /* 978 * If a device comes back, set it as not In_sync and no longer faulty. 979 */ 980 if (test_bit(Faulty, &rdev->flags)) { 981 clear_bit(Faulty, &rdev->flags); 982 clear_bit(In_sync, &rdev->flags); 983 rdev->saved_raid_disk = rdev->raid_disk; 984 rdev->recovery_offset = 0; 985 } 986 987 clear_bit(FirstUse, &rdev->flags); 988 989 return 0; 990 } 991 992 /* 993 * Analyse superblocks and select the freshest. 994 */ 995 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs) 996 { 997 int ret; 998 unsigned redundancy = 0; 999 struct raid_dev *dev; 1000 struct md_rdev *rdev, *tmp, *freshest; 1001 struct mddev *mddev = &rs->md; 1002 1003 switch (rs->raid_type->level) { 1004 case 1: 1005 redundancy = rs->md.raid_disks - 1; 1006 break; 1007 case 4: 1008 case 5: 1009 case 6: 1010 redundancy = rs->raid_type->parity_devs; 1011 break; 1012 case 10: 1013 redundancy = raid10_md_layout_to_copies(mddev->layout) - 1; 1014 break; 1015 default: 1016 ti->error = "Unknown RAID type"; 1017 return -EINVAL; 1018 } 1019 1020 freshest = NULL; 1021 rdev_for_each_safe(rdev, tmp, mddev) { 1022 /* 1023 * Skipping super_load due to DMPF_SYNC will cause 1024 * the array to undergo initialization again as 1025 * though it were new. This is the intended effect 1026 * of the "sync" directive. 1027 * 1028 * When reshaping capability is added, we must ensure 1029 * that the "sync" directive is disallowed during the 1030 * reshape. 1031 */ 1032 if (rs->print_flags & DMPF_SYNC) 1033 continue; 1034 1035 if (!rdev->meta_bdev) 1036 continue; 1037 1038 ret = super_load(rdev, freshest); 1039 1040 switch (ret) { 1041 case 1: 1042 freshest = rdev; 1043 break; 1044 case 0: 1045 break; 1046 default: 1047 dev = container_of(rdev, struct raid_dev, rdev); 1048 if (redundancy--) { 1049 if (dev->meta_dev) 1050 dm_put_device(ti, dev->meta_dev); 1051 1052 dev->meta_dev = NULL; 1053 rdev->meta_bdev = NULL; 1054 1055 if (rdev->sb_page) 1056 put_page(rdev->sb_page); 1057 1058 rdev->sb_page = NULL; 1059 1060 rdev->sb_loaded = 0; 1061 1062 /* 1063 * We might be able to salvage the data device 1064 * even though the meta device has failed. For 1065 * now, we behave as though '- -' had been 1066 * set for this device in the table. 1067 */ 1068 if (dev->data_dev) 1069 dm_put_device(ti, dev->data_dev); 1070 1071 dev->data_dev = NULL; 1072 rdev->bdev = NULL; 1073 1074 list_del(&rdev->same_set); 1075 1076 continue; 1077 } 1078 ti->error = "Failed to load superblock"; 1079 return ret; 1080 } 1081 } 1082 1083 if (!freshest) 1084 return 0; 1085 1086 /* 1087 * Validation of the freshest device provides the source of 1088 * validation for the remaining devices. 1089 */ 1090 ti->error = "Unable to assemble array: Invalid superblocks"; 1091 if (super_validate(mddev, freshest)) 1092 return -EINVAL; 1093 1094 rdev_for_each(rdev, mddev) 1095 if ((rdev != freshest) && super_validate(mddev, rdev)) 1096 return -EINVAL; 1097 1098 return 0; 1099 } 1100 1101 /* 1102 * Construct a RAID4/5/6 mapping: 1103 * Args: 1104 * <raid_type> <#raid_params> <raid_params> \ 1105 * <#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> } 1106 * 1107 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for 1108 * details on possible <raid_params>. 1109 */ 1110 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv) 1111 { 1112 int ret; 1113 struct raid_type *rt; 1114 unsigned long num_raid_params, num_raid_devs; 1115 struct raid_set *rs = NULL; 1116 1117 /* Must have at least <raid_type> <#raid_params> */ 1118 if (argc < 2) { 1119 ti->error = "Too few arguments"; 1120 return -EINVAL; 1121 } 1122 1123 /* raid type */ 1124 rt = get_raid_type(argv[0]); 1125 if (!rt) { 1126 ti->error = "Unrecognised raid_type"; 1127 return -EINVAL; 1128 } 1129 argc--; 1130 argv++; 1131 1132 /* number of RAID parameters */ 1133 if (strict_strtoul(argv[0], 10, &num_raid_params) < 0) { 1134 ti->error = "Cannot understand number of RAID parameters"; 1135 return -EINVAL; 1136 } 1137 argc--; 1138 argv++; 1139 1140 /* Skip over RAID params for now and find out # of devices */ 1141 if (num_raid_params + 1 > argc) { 1142 ti->error = "Arguments do not agree with counts given"; 1143 return -EINVAL; 1144 } 1145 1146 if ((strict_strtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) || 1147 (num_raid_devs >= INT_MAX)) { 1148 ti->error = "Cannot understand number of raid devices"; 1149 return -EINVAL; 1150 } 1151 1152 rs = context_alloc(ti, rt, (unsigned)num_raid_devs); 1153 if (IS_ERR(rs)) 1154 return PTR_ERR(rs); 1155 1156 ret = parse_raid_params(rs, argv, (unsigned)num_raid_params); 1157 if (ret) 1158 goto bad; 1159 1160 ret = -EINVAL; 1161 1162 argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */ 1163 argv += num_raid_params + 1; 1164 1165 if (argc != (num_raid_devs * 2)) { 1166 ti->error = "Supplied RAID devices does not match the count given"; 1167 goto bad; 1168 } 1169 1170 ret = dev_parms(rs, argv); 1171 if (ret) 1172 goto bad; 1173 1174 rs->md.sync_super = super_sync; 1175 ret = analyse_superblocks(ti, rs); 1176 if (ret) 1177 goto bad; 1178 1179 INIT_WORK(&rs->md.event_work, do_table_event); 1180 ti->private = rs; 1181 ti->num_flush_requests = 1; 1182 1183 mutex_lock(&rs->md.reconfig_mutex); 1184 ret = md_run(&rs->md); 1185 rs->md.in_sync = 0; /* Assume already marked dirty */ 1186 mutex_unlock(&rs->md.reconfig_mutex); 1187 1188 if (ret) { 1189 ti->error = "Fail to run raid array"; 1190 goto bad; 1191 } 1192 1193 if (ti->len != rs->md.array_sectors) { 1194 ti->error = "Array size does not match requested target length"; 1195 ret = -EINVAL; 1196 goto size_mismatch; 1197 } 1198 rs->callbacks.congested_fn = raid_is_congested; 1199 dm_table_add_target_callbacks(ti->table, &rs->callbacks); 1200 1201 mddev_suspend(&rs->md); 1202 return 0; 1203 1204 size_mismatch: 1205 md_stop(&rs->md); 1206 bad: 1207 context_free(rs); 1208 1209 return ret; 1210 } 1211 1212 static void raid_dtr(struct dm_target *ti) 1213 { 1214 struct raid_set *rs = ti->private; 1215 1216 list_del_init(&rs->callbacks.list); 1217 md_stop(&rs->md); 1218 context_free(rs); 1219 } 1220 1221 static int raid_map(struct dm_target *ti, struct bio *bio) 1222 { 1223 struct raid_set *rs = ti->private; 1224 struct mddev *mddev = &rs->md; 1225 1226 mddev->pers->make_request(mddev, bio); 1227 1228 return DM_MAPIO_SUBMITTED; 1229 } 1230 1231 static int raid_status(struct dm_target *ti, status_type_t type, 1232 unsigned status_flags, char *result, unsigned maxlen) 1233 { 1234 struct raid_set *rs = ti->private; 1235 unsigned raid_param_cnt = 1; /* at least 1 for chunksize */ 1236 unsigned sz = 0; 1237 int i, array_in_sync = 0; 1238 sector_t sync; 1239 1240 switch (type) { 1241 case STATUSTYPE_INFO: 1242 DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks); 1243 1244 if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery)) 1245 sync = rs->md.curr_resync_completed; 1246 else 1247 sync = rs->md.recovery_cp; 1248 1249 if (sync >= rs->md.resync_max_sectors) { 1250 array_in_sync = 1; 1251 sync = rs->md.resync_max_sectors; 1252 } else { 1253 /* 1254 * The array may be doing an initial sync, or it may 1255 * be rebuilding individual components. If all the 1256 * devices are In_sync, then it is the array that is 1257 * being initialized. 1258 */ 1259 for (i = 0; i < rs->md.raid_disks; i++) 1260 if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) 1261 array_in_sync = 1; 1262 } 1263 /* 1264 * Status characters: 1265 * 'D' = Dead/Failed device 1266 * 'a' = Alive but not in-sync 1267 * 'A' = Alive and in-sync 1268 */ 1269 for (i = 0; i < rs->md.raid_disks; i++) { 1270 if (test_bit(Faulty, &rs->dev[i].rdev.flags)) 1271 DMEMIT("D"); 1272 else if (!array_in_sync || 1273 !test_bit(In_sync, &rs->dev[i].rdev.flags)) 1274 DMEMIT("a"); 1275 else 1276 DMEMIT("A"); 1277 } 1278 1279 /* 1280 * In-sync ratio: 1281 * The in-sync ratio shows the progress of: 1282 * - Initializing the array 1283 * - Rebuilding a subset of devices of the array 1284 * The user can distinguish between the two by referring 1285 * to the status characters. 1286 */ 1287 DMEMIT(" %llu/%llu", 1288 (unsigned long long) sync, 1289 (unsigned long long) rs->md.resync_max_sectors); 1290 1291 break; 1292 case STATUSTYPE_TABLE: 1293 /* The string you would use to construct this array */ 1294 for (i = 0; i < rs->md.raid_disks; i++) { 1295 if ((rs->print_flags & DMPF_REBUILD) && 1296 rs->dev[i].data_dev && 1297 !test_bit(In_sync, &rs->dev[i].rdev.flags)) 1298 raid_param_cnt += 2; /* for rebuilds */ 1299 if (rs->dev[i].data_dev && 1300 test_bit(WriteMostly, &rs->dev[i].rdev.flags)) 1301 raid_param_cnt += 2; 1302 } 1303 1304 raid_param_cnt += (hweight32(rs->print_flags & ~DMPF_REBUILD) * 2); 1305 if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)) 1306 raid_param_cnt--; 1307 1308 DMEMIT("%s %u %u", rs->raid_type->name, 1309 raid_param_cnt, rs->md.chunk_sectors); 1310 1311 if ((rs->print_flags & DMPF_SYNC) && 1312 (rs->md.recovery_cp == MaxSector)) 1313 DMEMIT(" sync"); 1314 if (rs->print_flags & DMPF_NOSYNC) 1315 DMEMIT(" nosync"); 1316 1317 for (i = 0; i < rs->md.raid_disks; i++) 1318 if ((rs->print_flags & DMPF_REBUILD) && 1319 rs->dev[i].data_dev && 1320 !test_bit(In_sync, &rs->dev[i].rdev.flags)) 1321 DMEMIT(" rebuild %u", i); 1322 1323 if (rs->print_flags & DMPF_DAEMON_SLEEP) 1324 DMEMIT(" daemon_sleep %lu", 1325 rs->md.bitmap_info.daemon_sleep); 1326 1327 if (rs->print_flags & DMPF_MIN_RECOVERY_RATE) 1328 DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min); 1329 1330 if (rs->print_flags & DMPF_MAX_RECOVERY_RATE) 1331 DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max); 1332 1333 for (i = 0; i < rs->md.raid_disks; i++) 1334 if (rs->dev[i].data_dev && 1335 test_bit(WriteMostly, &rs->dev[i].rdev.flags)) 1336 DMEMIT(" write_mostly %u", i); 1337 1338 if (rs->print_flags & DMPF_MAX_WRITE_BEHIND) 1339 DMEMIT(" max_write_behind %lu", 1340 rs->md.bitmap_info.max_write_behind); 1341 1342 if (rs->print_flags & DMPF_STRIPE_CACHE) { 1343 struct r5conf *conf = rs->md.private; 1344 1345 /* convert from kiB to sectors */ 1346 DMEMIT(" stripe_cache %d", 1347 conf ? conf->max_nr_stripes * 2 : 0); 1348 } 1349 1350 if (rs->print_flags & DMPF_REGION_SIZE) 1351 DMEMIT(" region_size %lu", 1352 rs->md.bitmap_info.chunksize >> 9); 1353 1354 if (rs->print_flags & DMPF_RAID10_COPIES) 1355 DMEMIT(" raid10_copies %u", 1356 raid10_md_layout_to_copies(rs->md.layout)); 1357 1358 if (rs->print_flags & DMPF_RAID10_FORMAT) 1359 DMEMIT(" raid10_format near"); 1360 1361 DMEMIT(" %d", rs->md.raid_disks); 1362 for (i = 0; i < rs->md.raid_disks; i++) { 1363 if (rs->dev[i].meta_dev) 1364 DMEMIT(" %s", rs->dev[i].meta_dev->name); 1365 else 1366 DMEMIT(" -"); 1367 1368 if (rs->dev[i].data_dev) 1369 DMEMIT(" %s", rs->dev[i].data_dev->name); 1370 else 1371 DMEMIT(" -"); 1372 } 1373 } 1374 1375 return 0; 1376 } 1377 1378 static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data) 1379 { 1380 struct raid_set *rs = ti->private; 1381 unsigned i; 1382 int ret = 0; 1383 1384 for (i = 0; !ret && i < rs->md.raid_disks; i++) 1385 if (rs->dev[i].data_dev) 1386 ret = fn(ti, 1387 rs->dev[i].data_dev, 1388 0, /* No offset on data devs */ 1389 rs->md.dev_sectors, 1390 data); 1391 1392 return ret; 1393 } 1394 1395 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits) 1396 { 1397 struct raid_set *rs = ti->private; 1398 unsigned chunk_size = rs->md.chunk_sectors << 9; 1399 struct r5conf *conf = rs->md.private; 1400 1401 blk_limits_io_min(limits, chunk_size); 1402 blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded)); 1403 } 1404 1405 static void raid_presuspend(struct dm_target *ti) 1406 { 1407 struct raid_set *rs = ti->private; 1408 1409 md_stop_writes(&rs->md); 1410 } 1411 1412 static void raid_postsuspend(struct dm_target *ti) 1413 { 1414 struct raid_set *rs = ti->private; 1415 1416 mddev_suspend(&rs->md); 1417 } 1418 1419 static void raid_resume(struct dm_target *ti) 1420 { 1421 struct raid_set *rs = ti->private; 1422 1423 set_bit(MD_CHANGE_DEVS, &rs->md.flags); 1424 if (!rs->bitmap_loaded) { 1425 bitmap_load(&rs->md); 1426 rs->bitmap_loaded = 1; 1427 } 1428 1429 clear_bit(MD_RECOVERY_FROZEN, &rs->md.recovery); 1430 mddev_resume(&rs->md); 1431 } 1432 1433 static struct target_type raid_target = { 1434 .name = "raid", 1435 .version = {1, 4, 0}, 1436 .module = THIS_MODULE, 1437 .ctr = raid_ctr, 1438 .dtr = raid_dtr, 1439 .map = raid_map, 1440 .status = raid_status, 1441 .iterate_devices = raid_iterate_devices, 1442 .io_hints = raid_io_hints, 1443 .presuspend = raid_presuspend, 1444 .postsuspend = raid_postsuspend, 1445 .resume = raid_resume, 1446 }; 1447 1448 static int __init dm_raid_init(void) 1449 { 1450 return dm_register_target(&raid_target); 1451 } 1452 1453 static void __exit dm_raid_exit(void) 1454 { 1455 dm_unregister_target(&raid_target); 1456 } 1457 1458 module_init(dm_raid_init); 1459 module_exit(dm_raid_exit); 1460 1461 MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target"); 1462 MODULE_ALIAS("dm-raid1"); 1463 MODULE_ALIAS("dm-raid10"); 1464 MODULE_ALIAS("dm-raid4"); 1465 MODULE_ALIAS("dm-raid5"); 1466 MODULE_ALIAS("dm-raid6"); 1467 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>"); 1468 MODULE_LICENSE("GPL"); 1469