xref: /linux/drivers/md/dm-raid.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2011 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/module.h>
10 
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "bitmap.h"
15 
16 #include <linux/device-mapper.h>
17 
18 #define DM_MSG_PREFIX "raid"
19 
20 /*
21  * The following flags are used by dm-raid.c to set up the array state.
22  * They must be cleared before md_run is called.
23  */
24 #define FirstUse 10             /* rdev flag */
25 
26 struct raid_dev {
27 	/*
28 	 * Two DM devices, one to hold metadata and one to hold the
29 	 * actual data/parity.  The reason for this is to not confuse
30 	 * ti->len and give more flexibility in altering size and
31 	 * characteristics.
32 	 *
33 	 * While it is possible for this device to be associated
34 	 * with a different physical device than the data_dev, it
35 	 * is intended for it to be the same.
36 	 *    |--------- Physical Device ---------|
37 	 *    |- meta_dev -|------ data_dev ------|
38 	 */
39 	struct dm_dev *meta_dev;
40 	struct dm_dev *data_dev;
41 	struct md_rdev rdev;
42 };
43 
44 /*
45  * Flags for rs->print_flags field.
46  */
47 #define DMPF_SYNC              0x1
48 #define DMPF_NOSYNC            0x2
49 #define DMPF_REBUILD           0x4
50 #define DMPF_DAEMON_SLEEP      0x8
51 #define DMPF_MIN_RECOVERY_RATE 0x10
52 #define DMPF_MAX_RECOVERY_RATE 0x20
53 #define DMPF_MAX_WRITE_BEHIND  0x40
54 #define DMPF_STRIPE_CACHE      0x80
55 #define DMPF_REGION_SIZE       0X100
56 struct raid_set {
57 	struct dm_target *ti;
58 
59 	uint32_t bitmap_loaded;
60 	uint32_t print_flags;
61 
62 	struct mddev md;
63 	struct raid_type *raid_type;
64 	struct dm_target_callbacks callbacks;
65 
66 	struct raid_dev dev[0];
67 };
68 
69 /* Supported raid types and properties. */
70 static struct raid_type {
71 	const char *name;		/* RAID algorithm. */
72 	const char *descr;		/* Descriptor text for logging. */
73 	const unsigned parity_devs;	/* # of parity devices. */
74 	const unsigned minimal_devs;	/* minimal # of devices in set. */
75 	const unsigned level;		/* RAID level. */
76 	const unsigned algorithm;	/* RAID algorithm. */
77 } raid_types[] = {
78 	{"raid1",    "RAID1 (mirroring)",               0, 2, 1, 0 /* NONE */},
79 	{"raid4",    "RAID4 (dedicated parity disk)",	1, 2, 5, ALGORITHM_PARITY_0},
80 	{"raid5_la", "RAID5 (left asymmetric)",		1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
81 	{"raid5_ra", "RAID5 (right asymmetric)",	1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
82 	{"raid5_ls", "RAID5 (left symmetric)",		1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
83 	{"raid5_rs", "RAID5 (right symmetric)",		1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
84 	{"raid6_zr", "RAID6 (zero restart)",		2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
85 	{"raid6_nr", "RAID6 (N restart)",		2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
86 	{"raid6_nc", "RAID6 (N continue)",		2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
87 };
88 
89 static struct raid_type *get_raid_type(char *name)
90 {
91 	int i;
92 
93 	for (i = 0; i < ARRAY_SIZE(raid_types); i++)
94 		if (!strcmp(raid_types[i].name, name))
95 			return &raid_types[i];
96 
97 	return NULL;
98 }
99 
100 static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
101 {
102 	unsigned i;
103 	struct raid_set *rs;
104 	sector_t sectors_per_dev;
105 
106 	if (raid_devs <= raid_type->parity_devs) {
107 		ti->error = "Insufficient number of devices";
108 		return ERR_PTR(-EINVAL);
109 	}
110 
111 	sectors_per_dev = ti->len;
112 	if ((raid_type->level > 1) &&
113 	    sector_div(sectors_per_dev, (raid_devs - raid_type->parity_devs))) {
114 		ti->error = "Target length not divisible by number of data devices";
115 		return ERR_PTR(-EINVAL);
116 	}
117 
118 	rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
119 	if (!rs) {
120 		ti->error = "Cannot allocate raid context";
121 		return ERR_PTR(-ENOMEM);
122 	}
123 
124 	mddev_init(&rs->md);
125 
126 	rs->ti = ti;
127 	rs->raid_type = raid_type;
128 	rs->md.raid_disks = raid_devs;
129 	rs->md.level = raid_type->level;
130 	rs->md.new_level = rs->md.level;
131 	rs->md.dev_sectors = sectors_per_dev;
132 	rs->md.layout = raid_type->algorithm;
133 	rs->md.new_layout = rs->md.layout;
134 	rs->md.delta_disks = 0;
135 	rs->md.recovery_cp = 0;
136 
137 	for (i = 0; i < raid_devs; i++)
138 		md_rdev_init(&rs->dev[i].rdev);
139 
140 	/*
141 	 * Remaining items to be initialized by further RAID params:
142 	 *  rs->md.persistent
143 	 *  rs->md.external
144 	 *  rs->md.chunk_sectors
145 	 *  rs->md.new_chunk_sectors
146 	 */
147 
148 	return rs;
149 }
150 
151 static void context_free(struct raid_set *rs)
152 {
153 	int i;
154 
155 	for (i = 0; i < rs->md.raid_disks; i++) {
156 		if (rs->dev[i].meta_dev)
157 			dm_put_device(rs->ti, rs->dev[i].meta_dev);
158 		md_rdev_clear(&rs->dev[i].rdev);
159 		if (rs->dev[i].data_dev)
160 			dm_put_device(rs->ti, rs->dev[i].data_dev);
161 	}
162 
163 	kfree(rs);
164 }
165 
166 /*
167  * For every device we have two words
168  *  <meta_dev>: meta device name or '-' if missing
169  *  <data_dev>: data device name or '-' if missing
170  *
171  * The following are permitted:
172  *    - -
173  *    - <data_dev>
174  *    <meta_dev> <data_dev>
175  *
176  * The following is not allowed:
177  *    <meta_dev> -
178  *
179  * This code parses those words.  If there is a failure,
180  * the caller must use context_free to unwind the operations.
181  */
182 static int dev_parms(struct raid_set *rs, char **argv)
183 {
184 	int i;
185 	int rebuild = 0;
186 	int metadata_available = 0;
187 	int ret = 0;
188 
189 	for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
190 		rs->dev[i].rdev.raid_disk = i;
191 
192 		rs->dev[i].meta_dev = NULL;
193 		rs->dev[i].data_dev = NULL;
194 
195 		/*
196 		 * There are no offsets, since there is a separate device
197 		 * for data and metadata.
198 		 */
199 		rs->dev[i].rdev.data_offset = 0;
200 		rs->dev[i].rdev.mddev = &rs->md;
201 
202 		if (strcmp(argv[0], "-")) {
203 			ret = dm_get_device(rs->ti, argv[0],
204 					    dm_table_get_mode(rs->ti->table),
205 					    &rs->dev[i].meta_dev);
206 			rs->ti->error = "RAID metadata device lookup failure";
207 			if (ret)
208 				return ret;
209 
210 			rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
211 			if (!rs->dev[i].rdev.sb_page)
212 				return -ENOMEM;
213 		}
214 
215 		if (!strcmp(argv[1], "-")) {
216 			if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
217 			    (!rs->dev[i].rdev.recovery_offset)) {
218 				rs->ti->error = "Drive designated for rebuild not specified";
219 				return -EINVAL;
220 			}
221 
222 			rs->ti->error = "No data device supplied with metadata device";
223 			if (rs->dev[i].meta_dev)
224 				return -EINVAL;
225 
226 			continue;
227 		}
228 
229 		ret = dm_get_device(rs->ti, argv[1],
230 				    dm_table_get_mode(rs->ti->table),
231 				    &rs->dev[i].data_dev);
232 		if (ret) {
233 			rs->ti->error = "RAID device lookup failure";
234 			return ret;
235 		}
236 
237 		if (rs->dev[i].meta_dev) {
238 			metadata_available = 1;
239 			rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
240 		}
241 		rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
242 		list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
243 		if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
244 			rebuild++;
245 	}
246 
247 	if (metadata_available) {
248 		rs->md.external = 0;
249 		rs->md.persistent = 1;
250 		rs->md.major_version = 2;
251 	} else if (rebuild && !rs->md.recovery_cp) {
252 		/*
253 		 * Without metadata, we will not be able to tell if the array
254 		 * is in-sync or not - we must assume it is not.  Therefore,
255 		 * it is impossible to rebuild a drive.
256 		 *
257 		 * Even if there is metadata, the on-disk information may
258 		 * indicate that the array is not in-sync and it will then
259 		 * fail at that time.
260 		 *
261 		 * User could specify 'nosync' option if desperate.
262 		 */
263 		DMERR("Unable to rebuild drive while array is not in-sync");
264 		rs->ti->error = "RAID device lookup failure";
265 		return -EINVAL;
266 	}
267 
268 	return 0;
269 }
270 
271 /*
272  * validate_region_size
273  * @rs
274  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
275  *
276  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
277  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
278  *
279  * Returns: 0 on success, -EINVAL on failure.
280  */
281 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
282 {
283 	unsigned long min_region_size = rs->ti->len / (1 << 21);
284 
285 	if (!region_size) {
286 		/*
287 		 * Choose a reasonable default.  All figures in sectors.
288 		 */
289 		if (min_region_size > (1 << 13)) {
290 			DMINFO("Choosing default region size of %lu sectors",
291 			       region_size);
292 			region_size = min_region_size;
293 		} else {
294 			DMINFO("Choosing default region size of 4MiB");
295 			region_size = 1 << 13; /* sectors */
296 		}
297 	} else {
298 		/*
299 		 * Validate user-supplied value.
300 		 */
301 		if (region_size > rs->ti->len) {
302 			rs->ti->error = "Supplied region size is too large";
303 			return -EINVAL;
304 		}
305 
306 		if (region_size < min_region_size) {
307 			DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
308 			      region_size, min_region_size);
309 			rs->ti->error = "Supplied region size is too small";
310 			return -EINVAL;
311 		}
312 
313 		if (!is_power_of_2(region_size)) {
314 			rs->ti->error = "Region size is not a power of 2";
315 			return -EINVAL;
316 		}
317 
318 		if (region_size < rs->md.chunk_sectors) {
319 			rs->ti->error = "Region size is smaller than the chunk size";
320 			return -EINVAL;
321 		}
322 	}
323 
324 	/*
325 	 * Convert sectors to bytes.
326 	 */
327 	rs->md.bitmap_info.chunksize = (region_size << 9);
328 
329 	return 0;
330 }
331 
332 /*
333  * Possible arguments are...
334  *	<chunk_size> [optional_args]
335  *
336  * Argument definitions
337  *    <chunk_size>			The number of sectors per disk that
338  *                                      will form the "stripe"
339  *    [[no]sync]			Force or prevent recovery of the
340  *                                      entire array
341  *    [rebuild <idx>]			Rebuild the drive indicated by the index
342  *    [daemon_sleep <ms>]		Time between bitmap daemon work to
343  *                                      clear bits
344  *    [min_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
345  *    [max_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
346  *    [write_mostly <idx>]		Indicate a write mostly drive via index
347  *    [max_write_behind <sectors>]	See '-write-behind=' (man mdadm)
348  *    [stripe_cache <sectors>]		Stripe cache size for higher RAIDs
349  *    [region_size <sectors>]           Defines granularity of bitmap
350  */
351 static int parse_raid_params(struct raid_set *rs, char **argv,
352 			     unsigned num_raid_params)
353 {
354 	unsigned i, rebuild_cnt = 0;
355 	unsigned long value, region_size = 0;
356 	char *key;
357 
358 	/*
359 	 * First, parse the in-order required arguments
360 	 * "chunk_size" is the only argument of this type.
361 	 */
362 	if ((strict_strtoul(argv[0], 10, &value) < 0)) {
363 		rs->ti->error = "Bad chunk size";
364 		return -EINVAL;
365 	} else if (rs->raid_type->level == 1) {
366 		if (value)
367 			DMERR("Ignoring chunk size parameter for RAID 1");
368 		value = 0;
369 	} else if (!is_power_of_2(value)) {
370 		rs->ti->error = "Chunk size must be a power of 2";
371 		return -EINVAL;
372 	} else if (value < 8) {
373 		rs->ti->error = "Chunk size value is too small";
374 		return -EINVAL;
375 	}
376 
377 	rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
378 	argv++;
379 	num_raid_params--;
380 
381 	/*
382 	 * We set each individual device as In_sync with a completed
383 	 * 'recovery_offset'.  If there has been a device failure or
384 	 * replacement then one of the following cases applies:
385 	 *
386 	 *   1) User specifies 'rebuild'.
387 	 *      - Device is reset when param is read.
388 	 *   2) A new device is supplied.
389 	 *      - No matching superblock found, resets device.
390 	 *   3) Device failure was transient and returns on reload.
391 	 *      - Failure noticed, resets device for bitmap replay.
392 	 *   4) Device hadn't completed recovery after previous failure.
393 	 *      - Superblock is read and overrides recovery_offset.
394 	 *
395 	 * What is found in the superblocks of the devices is always
396 	 * authoritative, unless 'rebuild' or '[no]sync' was specified.
397 	 */
398 	for (i = 0; i < rs->md.raid_disks; i++) {
399 		set_bit(In_sync, &rs->dev[i].rdev.flags);
400 		rs->dev[i].rdev.recovery_offset = MaxSector;
401 	}
402 
403 	/*
404 	 * Second, parse the unordered optional arguments
405 	 */
406 	for (i = 0; i < num_raid_params; i++) {
407 		if (!strcasecmp(argv[i], "nosync")) {
408 			rs->md.recovery_cp = MaxSector;
409 			rs->print_flags |= DMPF_NOSYNC;
410 			continue;
411 		}
412 		if (!strcasecmp(argv[i], "sync")) {
413 			rs->md.recovery_cp = 0;
414 			rs->print_flags |= DMPF_SYNC;
415 			continue;
416 		}
417 
418 		/* The rest of the optional arguments come in key/value pairs */
419 		if ((i + 1) >= num_raid_params) {
420 			rs->ti->error = "Wrong number of raid parameters given";
421 			return -EINVAL;
422 		}
423 
424 		key = argv[i++];
425 		if (strict_strtoul(argv[i], 10, &value) < 0) {
426 			rs->ti->error = "Bad numerical argument given in raid params";
427 			return -EINVAL;
428 		}
429 
430 		if (!strcasecmp(key, "rebuild")) {
431 			rebuild_cnt++;
432 			if (((rs->raid_type->level != 1) &&
433 			     (rebuild_cnt > rs->raid_type->parity_devs)) ||
434 			    ((rs->raid_type->level == 1) &&
435 			     (rebuild_cnt > (rs->md.raid_disks - 1)))) {
436 				rs->ti->error = "Too many rebuild devices specified for given RAID type";
437 				return -EINVAL;
438 			}
439 			if (value > rs->md.raid_disks) {
440 				rs->ti->error = "Invalid rebuild index given";
441 				return -EINVAL;
442 			}
443 			clear_bit(In_sync, &rs->dev[value].rdev.flags);
444 			rs->dev[value].rdev.recovery_offset = 0;
445 			rs->print_flags |= DMPF_REBUILD;
446 		} else if (!strcasecmp(key, "write_mostly")) {
447 			if (rs->raid_type->level != 1) {
448 				rs->ti->error = "write_mostly option is only valid for RAID1";
449 				return -EINVAL;
450 			}
451 			if (value >= rs->md.raid_disks) {
452 				rs->ti->error = "Invalid write_mostly drive index given";
453 				return -EINVAL;
454 			}
455 			set_bit(WriteMostly, &rs->dev[value].rdev.flags);
456 		} else if (!strcasecmp(key, "max_write_behind")) {
457 			if (rs->raid_type->level != 1) {
458 				rs->ti->error = "max_write_behind option is only valid for RAID1";
459 				return -EINVAL;
460 			}
461 			rs->print_flags |= DMPF_MAX_WRITE_BEHIND;
462 
463 			/*
464 			 * In device-mapper, we specify things in sectors, but
465 			 * MD records this value in kB
466 			 */
467 			value /= 2;
468 			if (value > COUNTER_MAX) {
469 				rs->ti->error = "Max write-behind limit out of range";
470 				return -EINVAL;
471 			}
472 			rs->md.bitmap_info.max_write_behind = value;
473 		} else if (!strcasecmp(key, "daemon_sleep")) {
474 			rs->print_flags |= DMPF_DAEMON_SLEEP;
475 			if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
476 				rs->ti->error = "daemon sleep period out of range";
477 				return -EINVAL;
478 			}
479 			rs->md.bitmap_info.daemon_sleep = value;
480 		} else if (!strcasecmp(key, "stripe_cache")) {
481 			rs->print_flags |= DMPF_STRIPE_CACHE;
482 
483 			/*
484 			 * In device-mapper, we specify things in sectors, but
485 			 * MD records this value in kB
486 			 */
487 			value /= 2;
488 
489 			if (rs->raid_type->level < 5) {
490 				rs->ti->error = "Inappropriate argument: stripe_cache";
491 				return -EINVAL;
492 			}
493 			if (raid5_set_cache_size(&rs->md, (int)value)) {
494 				rs->ti->error = "Bad stripe_cache size";
495 				return -EINVAL;
496 			}
497 		} else if (!strcasecmp(key, "min_recovery_rate")) {
498 			rs->print_flags |= DMPF_MIN_RECOVERY_RATE;
499 			if (value > INT_MAX) {
500 				rs->ti->error = "min_recovery_rate out of range";
501 				return -EINVAL;
502 			}
503 			rs->md.sync_speed_min = (int)value;
504 		} else if (!strcasecmp(key, "max_recovery_rate")) {
505 			rs->print_flags |= DMPF_MAX_RECOVERY_RATE;
506 			if (value > INT_MAX) {
507 				rs->ti->error = "max_recovery_rate out of range";
508 				return -EINVAL;
509 			}
510 			rs->md.sync_speed_max = (int)value;
511 		} else if (!strcasecmp(key, "region_size")) {
512 			rs->print_flags |= DMPF_REGION_SIZE;
513 			region_size = value;
514 		} else {
515 			DMERR("Unable to parse RAID parameter: %s", key);
516 			rs->ti->error = "Unable to parse RAID parameters";
517 			return -EINVAL;
518 		}
519 	}
520 
521 	if (validate_region_size(rs, region_size))
522 		return -EINVAL;
523 
524 	if (rs->md.chunk_sectors)
525 		rs->ti->split_io = rs->md.chunk_sectors;
526 	else
527 		rs->ti->split_io = region_size;
528 
529 	if (rs->md.chunk_sectors)
530 		rs->ti->split_io = rs->md.chunk_sectors;
531 	else
532 		rs->ti->split_io = region_size;
533 
534 	/* Assume there are no metadata devices until the drives are parsed */
535 	rs->md.persistent = 0;
536 	rs->md.external = 1;
537 
538 	return 0;
539 }
540 
541 static void do_table_event(struct work_struct *ws)
542 {
543 	struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
544 
545 	dm_table_event(rs->ti->table);
546 }
547 
548 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
549 {
550 	struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
551 
552 	if (rs->raid_type->level == 1)
553 		return md_raid1_congested(&rs->md, bits);
554 
555 	return md_raid5_congested(&rs->md, bits);
556 }
557 
558 /*
559  * This structure is never routinely used by userspace, unlike md superblocks.
560  * Devices with this superblock should only ever be accessed via device-mapper.
561  */
562 #define DM_RAID_MAGIC 0x64526D44
563 struct dm_raid_superblock {
564 	__le32 magic;		/* "DmRd" */
565 	__le32 features;	/* Used to indicate possible future changes */
566 
567 	__le32 num_devices;	/* Number of devices in this array. (Max 64) */
568 	__le32 array_position;	/* The position of this drive in the array */
569 
570 	__le64 events;		/* Incremented by md when superblock updated */
571 	__le64 failed_devices;	/* Bit field of devices to indicate failures */
572 
573 	/*
574 	 * This offset tracks the progress of the repair or replacement of
575 	 * an individual drive.
576 	 */
577 	__le64 disk_recovery_offset;
578 
579 	/*
580 	 * This offset tracks the progress of the initial array
581 	 * synchronisation/parity calculation.
582 	 */
583 	__le64 array_resync_offset;
584 
585 	/*
586 	 * RAID characteristics
587 	 */
588 	__le32 level;
589 	__le32 layout;
590 	__le32 stripe_sectors;
591 
592 	__u8 pad[452];		/* Round struct to 512 bytes. */
593 				/* Always set to 0 when writing. */
594 } __packed;
595 
596 static int read_disk_sb(struct md_rdev *rdev, int size)
597 {
598 	BUG_ON(!rdev->sb_page);
599 
600 	if (rdev->sb_loaded)
601 		return 0;
602 
603 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
604 		DMERR("Failed to read superblock of device at position %d",
605 		      rdev->raid_disk);
606 		md_error(rdev->mddev, rdev);
607 		return -EINVAL;
608 	}
609 
610 	rdev->sb_loaded = 1;
611 
612 	return 0;
613 }
614 
615 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
616 {
617 	int i;
618 	uint64_t failed_devices;
619 	struct dm_raid_superblock *sb;
620 	struct raid_set *rs = container_of(mddev, struct raid_set, md);
621 
622 	sb = page_address(rdev->sb_page);
623 	failed_devices = le64_to_cpu(sb->failed_devices);
624 
625 	for (i = 0; i < mddev->raid_disks; i++)
626 		if (!rs->dev[i].data_dev ||
627 		    test_bit(Faulty, &(rs->dev[i].rdev.flags)))
628 			failed_devices |= (1ULL << i);
629 
630 	memset(sb, 0, sizeof(*sb));
631 
632 	sb->magic = cpu_to_le32(DM_RAID_MAGIC);
633 	sb->features = cpu_to_le32(0);	/* No features yet */
634 
635 	sb->num_devices = cpu_to_le32(mddev->raid_disks);
636 	sb->array_position = cpu_to_le32(rdev->raid_disk);
637 
638 	sb->events = cpu_to_le64(mddev->events);
639 	sb->failed_devices = cpu_to_le64(failed_devices);
640 
641 	sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
642 	sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
643 
644 	sb->level = cpu_to_le32(mddev->level);
645 	sb->layout = cpu_to_le32(mddev->layout);
646 	sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
647 }
648 
649 /*
650  * super_load
651  *
652  * This function creates a superblock if one is not found on the device
653  * and will decide which superblock to use if there's a choice.
654  *
655  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
656  */
657 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
658 {
659 	int ret;
660 	struct dm_raid_superblock *sb;
661 	struct dm_raid_superblock *refsb;
662 	uint64_t events_sb, events_refsb;
663 
664 	rdev->sb_start = 0;
665 	rdev->sb_size = sizeof(*sb);
666 
667 	ret = read_disk_sb(rdev, rdev->sb_size);
668 	if (ret)
669 		return ret;
670 
671 	sb = page_address(rdev->sb_page);
672 
673 	/*
674 	 * Two cases that we want to write new superblocks and rebuild:
675 	 * 1) New device (no matching magic number)
676 	 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
677 	 */
678 	if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
679 	    (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
680 		super_sync(rdev->mddev, rdev);
681 
682 		set_bit(FirstUse, &rdev->flags);
683 
684 		/* Force writing of superblocks to disk */
685 		set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
686 
687 		/* Any superblock is better than none, choose that if given */
688 		return refdev ? 0 : 1;
689 	}
690 
691 	if (!refdev)
692 		return 1;
693 
694 	events_sb = le64_to_cpu(sb->events);
695 
696 	refsb = page_address(refdev->sb_page);
697 	events_refsb = le64_to_cpu(refsb->events);
698 
699 	return (events_sb > events_refsb) ? 1 : 0;
700 }
701 
702 static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev)
703 {
704 	int role;
705 	struct raid_set *rs = container_of(mddev, struct raid_set, md);
706 	uint64_t events_sb;
707 	uint64_t failed_devices;
708 	struct dm_raid_superblock *sb;
709 	uint32_t new_devs = 0;
710 	uint32_t rebuilds = 0;
711 	struct md_rdev *r;
712 	struct dm_raid_superblock *sb2;
713 
714 	sb = page_address(rdev->sb_page);
715 	events_sb = le64_to_cpu(sb->events);
716 	failed_devices = le64_to_cpu(sb->failed_devices);
717 
718 	/*
719 	 * Initialise to 1 if this is a new superblock.
720 	 */
721 	mddev->events = events_sb ? : 1;
722 
723 	/*
724 	 * Reshaping is not currently allowed
725 	 */
726 	if ((le32_to_cpu(sb->level) != mddev->level) ||
727 	    (le32_to_cpu(sb->layout) != mddev->layout) ||
728 	    (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors)) {
729 		DMERR("Reshaping arrays not yet supported.");
730 		return -EINVAL;
731 	}
732 
733 	/* We can only change the number of devices in RAID1 right now */
734 	if ((rs->raid_type->level != 1) &&
735 	    (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
736 		DMERR("Reshaping arrays not yet supported.");
737 		return -EINVAL;
738 	}
739 
740 	if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)))
741 		mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
742 
743 	/*
744 	 * During load, we set FirstUse if a new superblock was written.
745 	 * There are two reasons we might not have a superblock:
746 	 * 1) The array is brand new - in which case, all of the
747 	 *    devices must have their In_sync bit set.  Also,
748 	 *    recovery_cp must be 0, unless forced.
749 	 * 2) This is a new device being added to an old array
750 	 *    and the new device needs to be rebuilt - in which
751 	 *    case the In_sync bit will /not/ be set and
752 	 *    recovery_cp must be MaxSector.
753 	 */
754 	rdev_for_each(r, mddev) {
755 		if (!test_bit(In_sync, &r->flags)) {
756 			DMINFO("Device %d specified for rebuild: "
757 			       "Clearing superblock", r->raid_disk);
758 			rebuilds++;
759 		} else if (test_bit(FirstUse, &r->flags))
760 			new_devs++;
761 	}
762 
763 	if (!rebuilds) {
764 		if (new_devs == mddev->raid_disks) {
765 			DMINFO("Superblocks created for new array");
766 			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
767 		} else if (new_devs) {
768 			DMERR("New device injected "
769 			      "into existing array without 'rebuild' "
770 			      "parameter specified");
771 			return -EINVAL;
772 		}
773 	} else if (new_devs) {
774 		DMERR("'rebuild' devices cannot be "
775 		      "injected into an array with other first-time devices");
776 		return -EINVAL;
777 	} else if (mddev->recovery_cp != MaxSector) {
778 		DMERR("'rebuild' specified while array is not in-sync");
779 		return -EINVAL;
780 	}
781 
782 	/*
783 	 * Now we set the Faulty bit for those devices that are
784 	 * recorded in the superblock as failed.
785 	 */
786 	rdev_for_each(r, mddev) {
787 		if (!r->sb_page)
788 			continue;
789 		sb2 = page_address(r->sb_page);
790 		sb2->failed_devices = 0;
791 
792 		/*
793 		 * Check for any device re-ordering.
794 		 */
795 		if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
796 			role = le32_to_cpu(sb2->array_position);
797 			if (role != r->raid_disk) {
798 				if (rs->raid_type->level != 1) {
799 					rs->ti->error = "Cannot change device "
800 						"positions in RAID array";
801 					return -EINVAL;
802 				}
803 				DMINFO("RAID1 device #%d now at position #%d",
804 				       role, r->raid_disk);
805 			}
806 
807 			/*
808 			 * Partial recovery is performed on
809 			 * returning failed devices.
810 			 */
811 			if (failed_devices & (1 << role))
812 				set_bit(Faulty, &r->flags);
813 		}
814 	}
815 
816 	return 0;
817 }
818 
819 static int super_validate(struct mddev *mddev, struct md_rdev *rdev)
820 {
821 	struct dm_raid_superblock *sb = page_address(rdev->sb_page);
822 
823 	/*
824 	 * If mddev->events is not set, we know we have not yet initialized
825 	 * the array.
826 	 */
827 	if (!mddev->events && super_init_validation(mddev, rdev))
828 		return -EINVAL;
829 
830 	mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */
831 	rdev->mddev->bitmap_info.default_offset = 4096 >> 9;
832 	if (!test_bit(FirstUse, &rdev->flags)) {
833 		rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
834 		if (rdev->recovery_offset != MaxSector)
835 			clear_bit(In_sync, &rdev->flags);
836 	}
837 
838 	/*
839 	 * If a device comes back, set it as not In_sync and no longer faulty.
840 	 */
841 	if (test_bit(Faulty, &rdev->flags)) {
842 		clear_bit(Faulty, &rdev->flags);
843 		clear_bit(In_sync, &rdev->flags);
844 		rdev->saved_raid_disk = rdev->raid_disk;
845 		rdev->recovery_offset = 0;
846 	}
847 
848 	clear_bit(FirstUse, &rdev->flags);
849 
850 	return 0;
851 }
852 
853 /*
854  * Analyse superblocks and select the freshest.
855  */
856 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
857 {
858 	int ret;
859 	unsigned redundancy = 0;
860 	struct raid_dev *dev;
861 	struct md_rdev *rdev, *tmp, *freshest;
862 	struct mddev *mddev = &rs->md;
863 
864 	switch (rs->raid_type->level) {
865 	case 1:
866 		redundancy = rs->md.raid_disks - 1;
867 		break;
868 	case 4:
869 	case 5:
870 	case 6:
871 		redundancy = rs->raid_type->parity_devs;
872 		break;
873 	default:
874 		ti->error = "Unknown RAID type";
875 		return -EINVAL;
876 	}
877 
878 	freshest = NULL;
879 	rdev_for_each_safe(rdev, tmp, mddev) {
880 		if (!rdev->meta_bdev)
881 			continue;
882 
883 		ret = super_load(rdev, freshest);
884 
885 		switch (ret) {
886 		case 1:
887 			freshest = rdev;
888 			break;
889 		case 0:
890 			break;
891 		default:
892 			dev = container_of(rdev, struct raid_dev, rdev);
893 			if (redundancy--) {
894 				if (dev->meta_dev)
895 					dm_put_device(ti, dev->meta_dev);
896 
897 				dev->meta_dev = NULL;
898 				rdev->meta_bdev = NULL;
899 
900 				if (rdev->sb_page)
901 					put_page(rdev->sb_page);
902 
903 				rdev->sb_page = NULL;
904 
905 				rdev->sb_loaded = 0;
906 
907 				/*
908 				 * We might be able to salvage the data device
909 				 * even though the meta device has failed.  For
910 				 * now, we behave as though '- -' had been
911 				 * set for this device in the table.
912 				 */
913 				if (dev->data_dev)
914 					dm_put_device(ti, dev->data_dev);
915 
916 				dev->data_dev = NULL;
917 				rdev->bdev = NULL;
918 
919 				list_del(&rdev->same_set);
920 
921 				continue;
922 			}
923 			ti->error = "Failed to load superblock";
924 			return ret;
925 		}
926 	}
927 
928 	if (!freshest)
929 		return 0;
930 
931 	/*
932 	 * Validation of the freshest device provides the source of
933 	 * validation for the remaining devices.
934 	 */
935 	ti->error = "Unable to assemble array: Invalid superblocks";
936 	if (super_validate(mddev, freshest))
937 		return -EINVAL;
938 
939 	rdev_for_each(rdev, mddev)
940 		if ((rdev != freshest) && super_validate(mddev, rdev))
941 			return -EINVAL;
942 
943 	return 0;
944 }
945 
946 /*
947  * Construct a RAID4/5/6 mapping:
948  * Args:
949  *	<raid_type> <#raid_params> <raid_params>		\
950  *	<#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
951  *
952  * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
953  * details on possible <raid_params>.
954  */
955 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
956 {
957 	int ret;
958 	struct raid_type *rt;
959 	unsigned long num_raid_params, num_raid_devs;
960 	struct raid_set *rs = NULL;
961 
962 	/* Must have at least <raid_type> <#raid_params> */
963 	if (argc < 2) {
964 		ti->error = "Too few arguments";
965 		return -EINVAL;
966 	}
967 
968 	/* raid type */
969 	rt = get_raid_type(argv[0]);
970 	if (!rt) {
971 		ti->error = "Unrecognised raid_type";
972 		return -EINVAL;
973 	}
974 	argc--;
975 	argv++;
976 
977 	/* number of RAID parameters */
978 	if (strict_strtoul(argv[0], 10, &num_raid_params) < 0) {
979 		ti->error = "Cannot understand number of RAID parameters";
980 		return -EINVAL;
981 	}
982 	argc--;
983 	argv++;
984 
985 	/* Skip over RAID params for now and find out # of devices */
986 	if (num_raid_params + 1 > argc) {
987 		ti->error = "Arguments do not agree with counts given";
988 		return -EINVAL;
989 	}
990 
991 	if ((strict_strtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
992 	    (num_raid_devs >= INT_MAX)) {
993 		ti->error = "Cannot understand number of raid devices";
994 		return -EINVAL;
995 	}
996 
997 	rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
998 	if (IS_ERR(rs))
999 		return PTR_ERR(rs);
1000 
1001 	ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
1002 	if (ret)
1003 		goto bad;
1004 
1005 	ret = -EINVAL;
1006 
1007 	argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
1008 	argv += num_raid_params + 1;
1009 
1010 	if (argc != (num_raid_devs * 2)) {
1011 		ti->error = "Supplied RAID devices does not match the count given";
1012 		goto bad;
1013 	}
1014 
1015 	ret = dev_parms(rs, argv);
1016 	if (ret)
1017 		goto bad;
1018 
1019 	rs->md.sync_super = super_sync;
1020 	ret = analyse_superblocks(ti, rs);
1021 	if (ret)
1022 		goto bad;
1023 
1024 	INIT_WORK(&rs->md.event_work, do_table_event);
1025 	ti->private = rs;
1026 	ti->num_flush_requests = 1;
1027 
1028 	mutex_lock(&rs->md.reconfig_mutex);
1029 	ret = md_run(&rs->md);
1030 	rs->md.in_sync = 0; /* Assume already marked dirty */
1031 	mutex_unlock(&rs->md.reconfig_mutex);
1032 
1033 	if (ret) {
1034 		ti->error = "Fail to run raid array";
1035 		goto bad;
1036 	}
1037 
1038 	rs->callbacks.congested_fn = raid_is_congested;
1039 	dm_table_add_target_callbacks(ti->table, &rs->callbacks);
1040 
1041 	mddev_suspend(&rs->md);
1042 	return 0;
1043 
1044 bad:
1045 	context_free(rs);
1046 
1047 	return ret;
1048 }
1049 
1050 static void raid_dtr(struct dm_target *ti)
1051 {
1052 	struct raid_set *rs = ti->private;
1053 
1054 	list_del_init(&rs->callbacks.list);
1055 	md_stop(&rs->md);
1056 	context_free(rs);
1057 }
1058 
1059 static int raid_map(struct dm_target *ti, struct bio *bio, union map_info *map_context)
1060 {
1061 	struct raid_set *rs = ti->private;
1062 	struct mddev *mddev = &rs->md;
1063 
1064 	mddev->pers->make_request(mddev, bio);
1065 
1066 	return DM_MAPIO_SUBMITTED;
1067 }
1068 
1069 static int raid_status(struct dm_target *ti, status_type_t type,
1070 		       char *result, unsigned maxlen)
1071 {
1072 	struct raid_set *rs = ti->private;
1073 	unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
1074 	unsigned sz = 0;
1075 	int i, array_in_sync = 0;
1076 	sector_t sync;
1077 
1078 	switch (type) {
1079 	case STATUSTYPE_INFO:
1080 		DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
1081 
1082 		if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
1083 			sync = rs->md.curr_resync_completed;
1084 		else
1085 			sync = rs->md.recovery_cp;
1086 
1087 		if (sync >= rs->md.resync_max_sectors) {
1088 			array_in_sync = 1;
1089 			sync = rs->md.resync_max_sectors;
1090 		} else {
1091 			/*
1092 			 * The array may be doing an initial sync, or it may
1093 			 * be rebuilding individual components.  If all the
1094 			 * devices are In_sync, then it is the array that is
1095 			 * being initialized.
1096 			 */
1097 			for (i = 0; i < rs->md.raid_disks; i++)
1098 				if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
1099 					array_in_sync = 1;
1100 		}
1101 		/*
1102 		 * Status characters:
1103 		 *  'D' = Dead/Failed device
1104 		 *  'a' = Alive but not in-sync
1105 		 *  'A' = Alive and in-sync
1106 		 */
1107 		for (i = 0; i < rs->md.raid_disks; i++) {
1108 			if (test_bit(Faulty, &rs->dev[i].rdev.flags))
1109 				DMEMIT("D");
1110 			else if (!array_in_sync ||
1111 				 !test_bit(In_sync, &rs->dev[i].rdev.flags))
1112 				DMEMIT("a");
1113 			else
1114 				DMEMIT("A");
1115 		}
1116 
1117 		/*
1118 		 * In-sync ratio:
1119 		 *  The in-sync ratio shows the progress of:
1120 		 *   - Initializing the array
1121 		 *   - Rebuilding a subset of devices of the array
1122 		 *  The user can distinguish between the two by referring
1123 		 *  to the status characters.
1124 		 */
1125 		DMEMIT(" %llu/%llu",
1126 		       (unsigned long long) sync,
1127 		       (unsigned long long) rs->md.resync_max_sectors);
1128 
1129 		break;
1130 	case STATUSTYPE_TABLE:
1131 		/* The string you would use to construct this array */
1132 		for (i = 0; i < rs->md.raid_disks; i++) {
1133 			if ((rs->print_flags & DMPF_REBUILD) &&
1134 			    rs->dev[i].data_dev &&
1135 			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
1136 				raid_param_cnt += 2; /* for rebuilds */
1137 			if (rs->dev[i].data_dev &&
1138 			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1139 				raid_param_cnt += 2;
1140 		}
1141 
1142 		raid_param_cnt += (hweight32(rs->print_flags & ~DMPF_REBUILD) * 2);
1143 		if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))
1144 			raid_param_cnt--;
1145 
1146 		DMEMIT("%s %u %u", rs->raid_type->name,
1147 		       raid_param_cnt, rs->md.chunk_sectors);
1148 
1149 		if ((rs->print_flags & DMPF_SYNC) &&
1150 		    (rs->md.recovery_cp == MaxSector))
1151 			DMEMIT(" sync");
1152 		if (rs->print_flags & DMPF_NOSYNC)
1153 			DMEMIT(" nosync");
1154 
1155 		for (i = 0; i < rs->md.raid_disks; i++)
1156 			if ((rs->print_flags & DMPF_REBUILD) &&
1157 			    rs->dev[i].data_dev &&
1158 			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
1159 				DMEMIT(" rebuild %u", i);
1160 
1161 		if (rs->print_flags & DMPF_DAEMON_SLEEP)
1162 			DMEMIT(" daemon_sleep %lu",
1163 			       rs->md.bitmap_info.daemon_sleep);
1164 
1165 		if (rs->print_flags & DMPF_MIN_RECOVERY_RATE)
1166 			DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
1167 
1168 		if (rs->print_flags & DMPF_MAX_RECOVERY_RATE)
1169 			DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
1170 
1171 		for (i = 0; i < rs->md.raid_disks; i++)
1172 			if (rs->dev[i].data_dev &&
1173 			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1174 				DMEMIT(" write_mostly %u", i);
1175 
1176 		if (rs->print_flags & DMPF_MAX_WRITE_BEHIND)
1177 			DMEMIT(" max_write_behind %lu",
1178 			       rs->md.bitmap_info.max_write_behind);
1179 
1180 		if (rs->print_flags & DMPF_STRIPE_CACHE) {
1181 			struct r5conf *conf = rs->md.private;
1182 
1183 			/* convert from kiB to sectors */
1184 			DMEMIT(" stripe_cache %d",
1185 			       conf ? conf->max_nr_stripes * 2 : 0);
1186 		}
1187 
1188 		if (rs->print_flags & DMPF_REGION_SIZE)
1189 			DMEMIT(" region_size %lu",
1190 			       rs->md.bitmap_info.chunksize >> 9);
1191 
1192 		DMEMIT(" %d", rs->md.raid_disks);
1193 		for (i = 0; i < rs->md.raid_disks; i++) {
1194 			if (rs->dev[i].meta_dev)
1195 				DMEMIT(" %s", rs->dev[i].meta_dev->name);
1196 			else
1197 				DMEMIT(" -");
1198 
1199 			if (rs->dev[i].data_dev)
1200 				DMEMIT(" %s", rs->dev[i].data_dev->name);
1201 			else
1202 				DMEMIT(" -");
1203 		}
1204 	}
1205 
1206 	return 0;
1207 }
1208 
1209 static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data)
1210 {
1211 	struct raid_set *rs = ti->private;
1212 	unsigned i;
1213 	int ret = 0;
1214 
1215 	for (i = 0; !ret && i < rs->md.raid_disks; i++)
1216 		if (rs->dev[i].data_dev)
1217 			ret = fn(ti,
1218 				 rs->dev[i].data_dev,
1219 				 0, /* No offset on data devs */
1220 				 rs->md.dev_sectors,
1221 				 data);
1222 
1223 	return ret;
1224 }
1225 
1226 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
1227 {
1228 	struct raid_set *rs = ti->private;
1229 	unsigned chunk_size = rs->md.chunk_sectors << 9;
1230 	struct r5conf *conf = rs->md.private;
1231 
1232 	blk_limits_io_min(limits, chunk_size);
1233 	blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
1234 }
1235 
1236 static void raid_presuspend(struct dm_target *ti)
1237 {
1238 	struct raid_set *rs = ti->private;
1239 
1240 	md_stop_writes(&rs->md);
1241 }
1242 
1243 static void raid_postsuspend(struct dm_target *ti)
1244 {
1245 	struct raid_set *rs = ti->private;
1246 
1247 	mddev_suspend(&rs->md);
1248 }
1249 
1250 static void raid_resume(struct dm_target *ti)
1251 {
1252 	struct raid_set *rs = ti->private;
1253 
1254 	set_bit(MD_CHANGE_DEVS, &rs->md.flags);
1255 	if (!rs->bitmap_loaded) {
1256 		bitmap_load(&rs->md);
1257 		rs->bitmap_loaded = 1;
1258 	}
1259 
1260 	clear_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
1261 	mddev_resume(&rs->md);
1262 }
1263 
1264 static struct target_type raid_target = {
1265 	.name = "raid",
1266 	.version = {1, 2, 0},
1267 	.module = THIS_MODULE,
1268 	.ctr = raid_ctr,
1269 	.dtr = raid_dtr,
1270 	.map = raid_map,
1271 	.status = raid_status,
1272 	.iterate_devices = raid_iterate_devices,
1273 	.io_hints = raid_io_hints,
1274 	.presuspend = raid_presuspend,
1275 	.postsuspend = raid_postsuspend,
1276 	.resume = raid_resume,
1277 };
1278 
1279 static int __init dm_raid_init(void)
1280 {
1281 	return dm_register_target(&raid_target);
1282 }
1283 
1284 static void __exit dm_raid_exit(void)
1285 {
1286 	dm_unregister_target(&raid_target);
1287 }
1288 
1289 module_init(dm_raid_init);
1290 module_exit(dm_raid_exit);
1291 
1292 MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
1293 MODULE_ALIAS("dm-raid4");
1294 MODULE_ALIAS("dm-raid5");
1295 MODULE_ALIAS("dm-raid6");
1296 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
1297 MODULE_LICENSE("GPL");
1298