1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2010-2011 Neil Brown 4 * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/module.h> 11 12 #include "md.h" 13 #include "raid1.h" 14 #include "raid5.h" 15 #include "raid10.h" 16 #include "md-bitmap.h" 17 18 #include <linux/device-mapper.h> 19 20 #define DM_MSG_PREFIX "raid" 21 #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */ 22 23 /* 24 * Minimum sectors of free reshape space per raid device 25 */ 26 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096) 27 28 /* 29 * Minimum journal space 4 MiB in sectors. 30 */ 31 #define MIN_RAID456_JOURNAL_SPACE (4*2048) 32 33 static bool devices_handle_discard_safely; 34 35 /* 36 * The following flags are used by dm-raid to set up the array state. 37 * They must be cleared before md_run is called. 38 */ 39 #define FirstUse 10 /* rdev flag */ 40 41 struct raid_dev { 42 /* 43 * Two DM devices, one to hold metadata and one to hold the 44 * actual data/parity. The reason for this is to not confuse 45 * ti->len and give more flexibility in altering size and 46 * characteristics. 47 * 48 * While it is possible for this device to be associated 49 * with a different physical device than the data_dev, it 50 * is intended for it to be the same. 51 * |--------- Physical Device ---------| 52 * |- meta_dev -|------ data_dev ------| 53 */ 54 struct dm_dev *meta_dev; 55 struct dm_dev *data_dev; 56 struct md_rdev rdev; 57 }; 58 59 /* 60 * Bits for establishing rs->ctr_flags 61 * 62 * 1 = no flag value 63 * 2 = flag with value 64 */ 65 #define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */ 66 #define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */ 67 #define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */ 68 #define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */ 69 #define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */ 70 #define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */ 71 #define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */ 72 #define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */ 73 #define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */ 74 #define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */ 75 #define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */ 76 #define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */ 77 /* New for v1.9.0 */ 78 #define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */ 79 #define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */ 80 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */ 81 82 /* New for v1.10.0 */ 83 #define __CTR_FLAG_JOURNAL_DEV 15 /* 2 */ /* Only with raid4/5/6 (journal device)! */ 84 85 /* New for v1.11.1 */ 86 #define __CTR_FLAG_JOURNAL_MODE 16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */ 87 88 /* 89 * Flags for rs->ctr_flags field. 90 */ 91 #define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC) 92 #define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC) 93 #define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD) 94 #define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP) 95 #define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE) 96 #define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE) 97 #define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND) 98 #define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY) 99 #define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE) 100 #define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE) 101 #define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES) 102 #define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT) 103 #define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS) 104 #define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET) 105 #define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS) 106 #define CTR_FLAG_JOURNAL_DEV (1 << __CTR_FLAG_JOURNAL_DEV) 107 #define CTR_FLAG_JOURNAL_MODE (1 << __CTR_FLAG_JOURNAL_MODE) 108 109 /* 110 * Definitions of various constructor flags to 111 * be used in checks of valid / invalid flags 112 * per raid level. 113 */ 114 /* Define all any sync flags */ 115 #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC) 116 117 /* Define flags for options without argument (e.g. 'nosync') */ 118 #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \ 119 CTR_FLAG_RAID10_USE_NEAR_SETS) 120 121 /* Define flags for options with one argument (e.g. 'delta_disks +2') */ 122 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \ 123 CTR_FLAG_WRITE_MOSTLY | \ 124 CTR_FLAG_DAEMON_SLEEP | \ 125 CTR_FLAG_MIN_RECOVERY_RATE | \ 126 CTR_FLAG_MAX_RECOVERY_RATE | \ 127 CTR_FLAG_MAX_WRITE_BEHIND | \ 128 CTR_FLAG_STRIPE_CACHE | \ 129 CTR_FLAG_REGION_SIZE | \ 130 CTR_FLAG_RAID10_COPIES | \ 131 CTR_FLAG_RAID10_FORMAT | \ 132 CTR_FLAG_DELTA_DISKS | \ 133 CTR_FLAG_DATA_OFFSET | \ 134 CTR_FLAG_JOURNAL_DEV | \ 135 CTR_FLAG_JOURNAL_MODE) 136 137 /* Valid options definitions per raid level... */ 138 139 /* "raid0" does only accept data offset */ 140 #define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET) 141 142 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */ 143 #define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 144 CTR_FLAG_REBUILD | \ 145 CTR_FLAG_WRITE_MOSTLY | \ 146 CTR_FLAG_DAEMON_SLEEP | \ 147 CTR_FLAG_MIN_RECOVERY_RATE | \ 148 CTR_FLAG_MAX_RECOVERY_RATE | \ 149 CTR_FLAG_MAX_WRITE_BEHIND | \ 150 CTR_FLAG_REGION_SIZE | \ 151 CTR_FLAG_DELTA_DISKS | \ 152 CTR_FLAG_DATA_OFFSET) 153 154 /* "raid10" does not accept any raid1 or stripe cache options */ 155 #define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 156 CTR_FLAG_REBUILD | \ 157 CTR_FLAG_DAEMON_SLEEP | \ 158 CTR_FLAG_MIN_RECOVERY_RATE | \ 159 CTR_FLAG_MAX_RECOVERY_RATE | \ 160 CTR_FLAG_REGION_SIZE | \ 161 CTR_FLAG_RAID10_COPIES | \ 162 CTR_FLAG_RAID10_FORMAT | \ 163 CTR_FLAG_DELTA_DISKS | \ 164 CTR_FLAG_DATA_OFFSET | \ 165 CTR_FLAG_RAID10_USE_NEAR_SETS) 166 167 /* 168 * "raid4/5/6" do not accept any raid1 or raid10 specific options 169 * 170 * "raid6" does not accept "nosync", because it is not guaranteed 171 * that both parity and q-syndrome are being written properly with 172 * any writes 173 */ 174 #define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ 175 CTR_FLAG_REBUILD | \ 176 CTR_FLAG_DAEMON_SLEEP | \ 177 CTR_FLAG_MIN_RECOVERY_RATE | \ 178 CTR_FLAG_MAX_RECOVERY_RATE | \ 179 CTR_FLAG_STRIPE_CACHE | \ 180 CTR_FLAG_REGION_SIZE | \ 181 CTR_FLAG_DELTA_DISKS | \ 182 CTR_FLAG_DATA_OFFSET | \ 183 CTR_FLAG_JOURNAL_DEV | \ 184 CTR_FLAG_JOURNAL_MODE) 185 186 #define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \ 187 CTR_FLAG_REBUILD | \ 188 CTR_FLAG_DAEMON_SLEEP | \ 189 CTR_FLAG_MIN_RECOVERY_RATE | \ 190 CTR_FLAG_MAX_RECOVERY_RATE | \ 191 CTR_FLAG_STRIPE_CACHE | \ 192 CTR_FLAG_REGION_SIZE | \ 193 CTR_FLAG_DELTA_DISKS | \ 194 CTR_FLAG_DATA_OFFSET | \ 195 CTR_FLAG_JOURNAL_DEV | \ 196 CTR_FLAG_JOURNAL_MODE) 197 /* ...valid options definitions per raid level */ 198 199 /* 200 * Flags for rs->runtime_flags field 201 * (RT_FLAG prefix meaning "runtime flag") 202 * 203 * These are all internal and used to define runtime state, 204 * e.g. to prevent another resume from preresume processing 205 * the raid set all over again. 206 */ 207 #define RT_FLAG_RS_PRERESUMED 0 208 #define RT_FLAG_RS_RESUMED 1 209 #define RT_FLAG_RS_BITMAP_LOADED 2 210 #define RT_FLAG_UPDATE_SBS 3 211 #define RT_FLAG_RESHAPE_RS 4 212 #define RT_FLAG_RS_SUSPENDED 5 213 #define RT_FLAG_RS_IN_SYNC 6 214 #define RT_FLAG_RS_RESYNCING 7 215 #define RT_FLAG_RS_GROW 8 216 #define RT_FLAG_RS_FROZEN 9 217 218 /* Array elements of 64 bit needed for rebuild/failed disk bits */ 219 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8) 220 221 /* 222 * raid set level, layout and chunk sectors backup/restore 223 */ 224 struct rs_layout { 225 int new_level; 226 int new_layout; 227 int new_chunk_sectors; 228 }; 229 230 struct raid_set { 231 struct dm_target *ti; 232 233 uint32_t stripe_cache_entries; 234 unsigned long ctr_flags; 235 unsigned long runtime_flags; 236 237 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS]; 238 239 int raid_disks; 240 int delta_disks; 241 int data_offset; 242 int raid10_copies; 243 int requested_bitmap_chunk_sectors; 244 245 struct mddev md; 246 struct raid_type *raid_type; 247 248 sector_t array_sectors; 249 sector_t dev_sectors; 250 251 /* Optional raid4/5/6 journal device */ 252 struct journal_dev { 253 struct dm_dev *dev; 254 struct md_rdev rdev; 255 int mode; 256 } journal_dev; 257 258 struct raid_dev dev[] __counted_by(raid_disks); 259 }; 260 261 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l) 262 { 263 struct mddev *mddev = &rs->md; 264 265 l->new_level = mddev->new_level; 266 l->new_layout = mddev->new_layout; 267 l->new_chunk_sectors = mddev->new_chunk_sectors; 268 } 269 270 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l) 271 { 272 struct mddev *mddev = &rs->md; 273 274 mddev->new_level = l->new_level; 275 mddev->new_layout = l->new_layout; 276 mddev->new_chunk_sectors = l->new_chunk_sectors; 277 } 278 279 /* raid10 algorithms (i.e. formats) */ 280 #define ALGORITHM_RAID10_DEFAULT 0 281 #define ALGORITHM_RAID10_NEAR 1 282 #define ALGORITHM_RAID10_OFFSET 2 283 #define ALGORITHM_RAID10_FAR 3 284 285 /* Supported raid types and properties. */ 286 static struct raid_type { 287 const char *name; /* RAID algorithm. */ 288 const char *descr; /* Descriptor text for logging. */ 289 const unsigned int parity_devs; /* # of parity devices. */ 290 const unsigned int minimal_devs;/* minimal # of devices in set. */ 291 const unsigned int level; /* RAID level. */ 292 const unsigned int algorithm; /* RAID algorithm. */ 293 } raid_types[] = { 294 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */}, 295 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */}, 296 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR}, 297 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET}, 298 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR}, 299 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT}, 300 {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */ 301 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N}, 302 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC}, 303 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC}, 304 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC}, 305 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC}, 306 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART}, 307 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART}, 308 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}, 309 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6}, 310 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6}, 311 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6}, 312 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6}, 313 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6} 314 }; 315 316 /* True, if @v is in inclusive range [@min, @max] */ 317 static bool __within_range(long v, long min, long max) 318 { 319 return v >= min && v <= max; 320 } 321 322 /* All table line arguments are defined here */ 323 static struct arg_name_flag { 324 const unsigned long flag; 325 const char *name; 326 } __arg_name_flags[] = { 327 { CTR_FLAG_SYNC, "sync"}, 328 { CTR_FLAG_NOSYNC, "nosync"}, 329 { CTR_FLAG_REBUILD, "rebuild"}, 330 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"}, 331 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"}, 332 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"}, 333 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"}, 334 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"}, 335 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"}, 336 { CTR_FLAG_REGION_SIZE, "region_size"}, 337 { CTR_FLAG_RAID10_COPIES, "raid10_copies"}, 338 { CTR_FLAG_RAID10_FORMAT, "raid10_format"}, 339 { CTR_FLAG_DATA_OFFSET, "data_offset"}, 340 { CTR_FLAG_DELTA_DISKS, "delta_disks"}, 341 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"}, 342 { CTR_FLAG_JOURNAL_DEV, "journal_dev" }, 343 { CTR_FLAG_JOURNAL_MODE, "journal_mode" }, 344 }; 345 346 /* Return argument name string for given @flag */ 347 static const char *dm_raid_arg_name_by_flag(const uint32_t flag) 348 { 349 if (hweight32(flag) == 1) { 350 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags); 351 352 while (anf-- > __arg_name_flags) 353 if (flag & anf->flag) 354 return anf->name; 355 356 } else 357 DMERR("%s called with more than one flag!", __func__); 358 359 return NULL; 360 } 361 362 /* Define correlation of raid456 journal cache modes and dm-raid target line parameters */ 363 static struct { 364 const int mode; 365 const char *param; 366 } _raid456_journal_mode[] = { 367 { R5C_JOURNAL_MODE_WRITE_THROUGH, "writethrough" }, 368 { R5C_JOURNAL_MODE_WRITE_BACK, "writeback" } 369 }; 370 371 /* Return MD raid4/5/6 journal mode for dm @journal_mode one */ 372 static int dm_raid_journal_mode_to_md(const char *mode) 373 { 374 int m = ARRAY_SIZE(_raid456_journal_mode); 375 376 while (m--) 377 if (!strcasecmp(mode, _raid456_journal_mode[m].param)) 378 return _raid456_journal_mode[m].mode; 379 380 return -EINVAL; 381 } 382 383 /* Return dm-raid raid4/5/6 journal mode string for @mode */ 384 static const char *md_journal_mode_to_dm_raid(const int mode) 385 { 386 int m = ARRAY_SIZE(_raid456_journal_mode); 387 388 while (m--) 389 if (mode == _raid456_journal_mode[m].mode) 390 return _raid456_journal_mode[m].param; 391 392 return "unknown"; 393 } 394 395 /* 396 * Bool helpers to test for various raid levels of a raid set. 397 * It's level as reported by the superblock rather than 398 * the requested raid_type passed to the constructor. 399 */ 400 /* Return true, if raid set in @rs is raid0 */ 401 static bool rs_is_raid0(struct raid_set *rs) 402 { 403 return !rs->md.level; 404 } 405 406 /* Return true, if raid set in @rs is raid1 */ 407 static bool rs_is_raid1(struct raid_set *rs) 408 { 409 return rs->md.level == 1; 410 } 411 412 /* Return true, if raid set in @rs is raid10 */ 413 static bool rs_is_raid10(struct raid_set *rs) 414 { 415 return rs->md.level == 10; 416 } 417 418 /* Return true, if raid set in @rs is level 6 */ 419 static bool rs_is_raid6(struct raid_set *rs) 420 { 421 return rs->md.level == 6; 422 } 423 424 /* Return true, if raid set in @rs is level 4, 5 or 6 */ 425 static bool rs_is_raid456(struct raid_set *rs) 426 { 427 return __within_range(rs->md.level, 4, 6); 428 } 429 430 /* Return true, if raid set in @rs is reshapable */ 431 static bool __is_raid10_far(int layout); 432 static bool rs_is_reshapable(struct raid_set *rs) 433 { 434 return rs_is_raid456(rs) || 435 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout)); 436 } 437 438 /* Return true, if raid set in @rs is recovering */ 439 static bool rs_is_recovering(struct raid_set *rs) 440 { 441 return rs->md.recovery_cp < rs->md.dev_sectors; 442 } 443 444 /* Return true, if raid set in @rs is reshaping */ 445 static bool rs_is_reshaping(struct raid_set *rs) 446 { 447 return rs->md.reshape_position != MaxSector; 448 } 449 450 /* 451 * bool helpers to test for various raid levels of a raid type @rt 452 */ 453 454 /* Return true, if raid type in @rt is raid0 */ 455 static bool rt_is_raid0(struct raid_type *rt) 456 { 457 return !rt->level; 458 } 459 460 /* Return true, if raid type in @rt is raid1 */ 461 static bool rt_is_raid1(struct raid_type *rt) 462 { 463 return rt->level == 1; 464 } 465 466 /* Return true, if raid type in @rt is raid10 */ 467 static bool rt_is_raid10(struct raid_type *rt) 468 { 469 return rt->level == 10; 470 } 471 472 /* Return true, if raid type in @rt is raid4/5 */ 473 static bool rt_is_raid45(struct raid_type *rt) 474 { 475 return __within_range(rt->level, 4, 5); 476 } 477 478 /* Return true, if raid type in @rt is raid6 */ 479 static bool rt_is_raid6(struct raid_type *rt) 480 { 481 return rt->level == 6; 482 } 483 484 /* Return true, if raid type in @rt is raid4/5/6 */ 485 static bool rt_is_raid456(struct raid_type *rt) 486 { 487 return __within_range(rt->level, 4, 6); 488 } 489 /* END: raid level bools */ 490 491 /* Return valid ctr flags for the raid level of @rs */ 492 static unsigned long __valid_flags(struct raid_set *rs) 493 { 494 if (rt_is_raid0(rs->raid_type)) 495 return RAID0_VALID_FLAGS; 496 else if (rt_is_raid1(rs->raid_type)) 497 return RAID1_VALID_FLAGS; 498 else if (rt_is_raid10(rs->raid_type)) 499 return RAID10_VALID_FLAGS; 500 else if (rt_is_raid45(rs->raid_type)) 501 return RAID45_VALID_FLAGS; 502 else if (rt_is_raid6(rs->raid_type)) 503 return RAID6_VALID_FLAGS; 504 505 return 0; 506 } 507 508 /* 509 * Check for valid flags set on @rs 510 * 511 * Has to be called after parsing of the ctr flags! 512 */ 513 static int rs_check_for_valid_flags(struct raid_set *rs) 514 { 515 if (rs->ctr_flags & ~__valid_flags(rs)) { 516 rs->ti->error = "Invalid flags combination"; 517 return -EINVAL; 518 } 519 520 return 0; 521 } 522 523 /* MD raid10 bit definitions and helpers */ 524 #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */ 525 #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */ 526 #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */ 527 #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */ 528 529 /* Return md raid10 near copies for @layout */ 530 static unsigned int __raid10_near_copies(int layout) 531 { 532 return layout & 0xFF; 533 } 534 535 /* Return md raid10 far copies for @layout */ 536 static unsigned int __raid10_far_copies(int layout) 537 { 538 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT); 539 } 540 541 /* Return true if md raid10 offset for @layout */ 542 static bool __is_raid10_offset(int layout) 543 { 544 return !!(layout & RAID10_OFFSET); 545 } 546 547 /* Return true if md raid10 near for @layout */ 548 static bool __is_raid10_near(int layout) 549 { 550 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1; 551 } 552 553 /* Return true if md raid10 far for @layout */ 554 static bool __is_raid10_far(int layout) 555 { 556 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1; 557 } 558 559 /* Return md raid10 layout string for @layout */ 560 static const char *raid10_md_layout_to_format(int layout) 561 { 562 /* 563 * Bit 16 stands for "offset" 564 * (i.e. adjacent stripes hold copies) 565 * 566 * Refer to MD's raid10.c for details 567 */ 568 if (__is_raid10_offset(layout)) 569 return "offset"; 570 571 if (__raid10_near_copies(layout) > 1) 572 return "near"; 573 574 if (__raid10_far_copies(layout) > 1) 575 return "far"; 576 577 return "unknown"; 578 } 579 580 /* Return md raid10 algorithm for @name */ 581 static int raid10_name_to_format(const char *name) 582 { 583 if (!strcasecmp(name, "near")) 584 return ALGORITHM_RAID10_NEAR; 585 else if (!strcasecmp(name, "offset")) 586 return ALGORITHM_RAID10_OFFSET; 587 else if (!strcasecmp(name, "far")) 588 return ALGORITHM_RAID10_FAR; 589 590 return -EINVAL; 591 } 592 593 /* Return md raid10 copies for @layout */ 594 static unsigned int raid10_md_layout_to_copies(int layout) 595 { 596 return max(__raid10_near_copies(layout), __raid10_far_copies(layout)); 597 } 598 599 /* Return md raid10 format id for @format string */ 600 static int raid10_format_to_md_layout(struct raid_set *rs, 601 unsigned int algorithm, 602 unsigned int copies) 603 { 604 unsigned int n = 1, f = 1, r = 0; 605 606 /* 607 * MD resilienece flaw: 608 * 609 * enabling use_far_sets for far/offset formats causes copies 610 * to be colocated on the same devs together with their origins! 611 * 612 * -> disable it for now in the definition above 613 */ 614 if (algorithm == ALGORITHM_RAID10_DEFAULT || 615 algorithm == ALGORITHM_RAID10_NEAR) 616 n = copies; 617 618 else if (algorithm == ALGORITHM_RAID10_OFFSET) { 619 f = copies; 620 r = RAID10_OFFSET; 621 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) 622 r |= RAID10_USE_FAR_SETS; 623 624 } else if (algorithm == ALGORITHM_RAID10_FAR) { 625 f = copies; 626 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) 627 r |= RAID10_USE_FAR_SETS; 628 629 } else 630 return -EINVAL; 631 632 return r | (f << RAID10_FAR_COPIES_SHIFT) | n; 633 } 634 /* END: MD raid10 bit definitions and helpers */ 635 636 /* Check for any of the raid10 algorithms */ 637 static bool __got_raid10(struct raid_type *rtp, const int layout) 638 { 639 if (rtp->level == 10) { 640 switch (rtp->algorithm) { 641 case ALGORITHM_RAID10_DEFAULT: 642 case ALGORITHM_RAID10_NEAR: 643 return __is_raid10_near(layout); 644 case ALGORITHM_RAID10_OFFSET: 645 return __is_raid10_offset(layout); 646 case ALGORITHM_RAID10_FAR: 647 return __is_raid10_far(layout); 648 default: 649 break; 650 } 651 } 652 653 return false; 654 } 655 656 /* Return raid_type for @name */ 657 static struct raid_type *get_raid_type(const char *name) 658 { 659 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); 660 661 while (rtp-- > raid_types) 662 if (!strcasecmp(rtp->name, name)) 663 return rtp; 664 665 return NULL; 666 } 667 668 /* Return raid_type for @name based derived from @level and @layout */ 669 static struct raid_type *get_raid_type_by_ll(const int level, const int layout) 670 { 671 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); 672 673 while (rtp-- > raid_types) { 674 /* RAID10 special checks based on @layout flags/properties */ 675 if (rtp->level == level && 676 (__got_raid10(rtp, layout) || rtp->algorithm == layout)) 677 return rtp; 678 } 679 680 return NULL; 681 } 682 683 /* Adjust rdev sectors */ 684 static void rs_set_rdev_sectors(struct raid_set *rs) 685 { 686 struct mddev *mddev = &rs->md; 687 struct md_rdev *rdev; 688 689 /* 690 * raid10 sets rdev->sector to the device size, which 691 * is unintended in case of out-of-place reshaping 692 */ 693 rdev_for_each(rdev, mddev) 694 if (!test_bit(Journal, &rdev->flags)) 695 rdev->sectors = mddev->dev_sectors; 696 } 697 698 /* 699 * Change bdev capacity of @rs in case of a disk add/remove reshape 700 */ 701 static void rs_set_capacity(struct raid_set *rs) 702 { 703 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table)); 704 705 set_capacity_and_notify(gendisk, rs->md.array_sectors); 706 } 707 708 /* 709 * Set the mddev properties in @rs to the current 710 * ones retrieved from the freshest superblock 711 */ 712 static void rs_set_cur(struct raid_set *rs) 713 { 714 struct mddev *mddev = &rs->md; 715 716 mddev->new_level = mddev->level; 717 mddev->new_layout = mddev->layout; 718 mddev->new_chunk_sectors = mddev->chunk_sectors; 719 } 720 721 /* 722 * Set the mddev properties in @rs to the new 723 * ones requested by the ctr 724 */ 725 static void rs_set_new(struct raid_set *rs) 726 { 727 struct mddev *mddev = &rs->md; 728 729 mddev->level = mddev->new_level; 730 mddev->layout = mddev->new_layout; 731 mddev->chunk_sectors = mddev->new_chunk_sectors; 732 mddev->raid_disks = rs->raid_disks; 733 mddev->delta_disks = 0; 734 } 735 736 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type, 737 unsigned int raid_devs) 738 { 739 unsigned int i; 740 struct raid_set *rs; 741 742 if (raid_devs <= raid_type->parity_devs) { 743 ti->error = "Insufficient number of devices"; 744 return ERR_PTR(-EINVAL); 745 } 746 747 rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL); 748 if (!rs) { 749 ti->error = "Cannot allocate raid context"; 750 return ERR_PTR(-ENOMEM); 751 } 752 753 if (mddev_init(&rs->md)) { 754 kfree(rs); 755 ti->error = "Cannot initialize raid context"; 756 return ERR_PTR(-ENOMEM); 757 } 758 759 rs->raid_disks = raid_devs; 760 rs->delta_disks = 0; 761 762 rs->ti = ti; 763 rs->raid_type = raid_type; 764 rs->stripe_cache_entries = 256; 765 rs->md.raid_disks = raid_devs; 766 rs->md.level = raid_type->level; 767 rs->md.new_level = rs->md.level; 768 rs->md.layout = raid_type->algorithm; 769 rs->md.new_layout = rs->md.layout; 770 rs->md.delta_disks = 0; 771 rs->md.recovery_cp = MaxSector; 772 773 for (i = 0; i < raid_devs; i++) 774 md_rdev_init(&rs->dev[i].rdev); 775 776 /* 777 * Remaining items to be initialized by further RAID params: 778 * rs->md.persistent 779 * rs->md.external 780 * rs->md.chunk_sectors 781 * rs->md.new_chunk_sectors 782 * rs->md.dev_sectors 783 */ 784 785 return rs; 786 } 787 788 /* Free all @rs allocations */ 789 static void raid_set_free(struct raid_set *rs) 790 { 791 int i; 792 793 if (rs->journal_dev.dev) { 794 md_rdev_clear(&rs->journal_dev.rdev); 795 dm_put_device(rs->ti, rs->journal_dev.dev); 796 } 797 798 for (i = 0; i < rs->raid_disks; i++) { 799 if (rs->dev[i].meta_dev) 800 dm_put_device(rs->ti, rs->dev[i].meta_dev); 801 md_rdev_clear(&rs->dev[i].rdev); 802 if (rs->dev[i].data_dev) 803 dm_put_device(rs->ti, rs->dev[i].data_dev); 804 } 805 806 mddev_destroy(&rs->md); 807 kfree(rs); 808 } 809 810 /* 811 * For every device we have two words 812 * <meta_dev>: meta device name or '-' if missing 813 * <data_dev>: data device name or '-' if missing 814 * 815 * The following are permitted: 816 * - - 817 * - <data_dev> 818 * <meta_dev> <data_dev> 819 * 820 * The following is not allowed: 821 * <meta_dev> - 822 * 823 * This code parses those words. If there is a failure, 824 * the caller must use raid_set_free() to unwind the operations. 825 */ 826 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as) 827 { 828 int i; 829 int rebuild = 0; 830 int metadata_available = 0; 831 int r = 0; 832 const char *arg; 833 834 /* Put off the number of raid devices argument to get to dev pairs */ 835 arg = dm_shift_arg(as); 836 if (!arg) 837 return -EINVAL; 838 839 for (i = 0; i < rs->raid_disks; i++) { 840 rs->dev[i].rdev.raid_disk = i; 841 842 rs->dev[i].meta_dev = NULL; 843 rs->dev[i].data_dev = NULL; 844 845 /* 846 * There are no offsets initially. 847 * Out of place reshape will set them accordingly. 848 */ 849 rs->dev[i].rdev.data_offset = 0; 850 rs->dev[i].rdev.new_data_offset = 0; 851 rs->dev[i].rdev.mddev = &rs->md; 852 853 arg = dm_shift_arg(as); 854 if (!arg) 855 return -EINVAL; 856 857 if (strcmp(arg, "-")) { 858 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 859 &rs->dev[i].meta_dev); 860 if (r) { 861 rs->ti->error = "RAID metadata device lookup failure"; 862 return r; 863 } 864 865 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL); 866 if (!rs->dev[i].rdev.sb_page) { 867 rs->ti->error = "Failed to allocate superblock page"; 868 return -ENOMEM; 869 } 870 } 871 872 arg = dm_shift_arg(as); 873 if (!arg) 874 return -EINVAL; 875 876 if (!strcmp(arg, "-")) { 877 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) && 878 (!rs->dev[i].rdev.recovery_offset)) { 879 rs->ti->error = "Drive designated for rebuild not specified"; 880 return -EINVAL; 881 } 882 883 if (rs->dev[i].meta_dev) { 884 rs->ti->error = "No data device supplied with metadata device"; 885 return -EINVAL; 886 } 887 888 continue; 889 } 890 891 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 892 &rs->dev[i].data_dev); 893 if (r) { 894 rs->ti->error = "RAID device lookup failure"; 895 return r; 896 } 897 898 if (rs->dev[i].meta_dev) { 899 metadata_available = 1; 900 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev; 901 } 902 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev; 903 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks); 904 if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) 905 rebuild++; 906 } 907 908 if (rs->journal_dev.dev) 909 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks); 910 911 if (metadata_available) { 912 rs->md.external = 0; 913 rs->md.persistent = 1; 914 rs->md.major_version = 2; 915 } else if (rebuild && !rs->md.recovery_cp) { 916 /* 917 * Without metadata, we will not be able to tell if the array 918 * is in-sync or not - we must assume it is not. Therefore, 919 * it is impossible to rebuild a drive. 920 * 921 * Even if there is metadata, the on-disk information may 922 * indicate that the array is not in-sync and it will then 923 * fail at that time. 924 * 925 * User could specify 'nosync' option if desperate. 926 */ 927 rs->ti->error = "Unable to rebuild drive while array is not in-sync"; 928 return -EINVAL; 929 } 930 931 return 0; 932 } 933 934 /* 935 * validate_region_size 936 * @rs 937 * @region_size: region size in sectors. If 0, pick a size (4MiB default). 938 * 939 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size'). 940 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap. 941 * 942 * Returns: 0 on success, -EINVAL on failure. 943 */ 944 static int validate_region_size(struct raid_set *rs, unsigned long region_size) 945 { 946 unsigned long min_region_size = rs->ti->len / (1 << 21); 947 948 if (rs_is_raid0(rs)) 949 return 0; 950 951 if (!region_size) { 952 /* 953 * Choose a reasonable default. All figures in sectors. 954 */ 955 if (min_region_size > (1 << 13)) { 956 /* If not a power of 2, make it the next power of 2 */ 957 region_size = roundup_pow_of_two(min_region_size); 958 DMINFO("Choosing default region size of %lu sectors", 959 region_size); 960 } else { 961 DMINFO("Choosing default region size of 4MiB"); 962 region_size = 1 << 13; /* sectors */ 963 } 964 } else { 965 /* 966 * Validate user-supplied value. 967 */ 968 if (region_size > rs->ti->len) { 969 rs->ti->error = "Supplied region size is too large"; 970 return -EINVAL; 971 } 972 973 if (region_size < min_region_size) { 974 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)", 975 region_size, min_region_size); 976 rs->ti->error = "Supplied region size is too small"; 977 return -EINVAL; 978 } 979 980 if (!is_power_of_2(region_size)) { 981 rs->ti->error = "Region size is not a power of 2"; 982 return -EINVAL; 983 } 984 985 if (region_size < rs->md.chunk_sectors) { 986 rs->ti->error = "Region size is smaller than the chunk size"; 987 return -EINVAL; 988 } 989 } 990 991 /* 992 * Convert sectors to bytes. 993 */ 994 rs->md.bitmap_info.chunksize = to_bytes(region_size); 995 996 return 0; 997 } 998 999 /* 1000 * validate_raid_redundancy 1001 * @rs 1002 * 1003 * Determine if there are enough devices in the array that haven't 1004 * failed (or are being rebuilt) to form a usable array. 1005 * 1006 * Returns: 0 on success, -EINVAL on failure. 1007 */ 1008 static int validate_raid_redundancy(struct raid_set *rs) 1009 { 1010 unsigned int i, rebuild_cnt = 0; 1011 unsigned int rebuilds_per_group = 0, copies, raid_disks; 1012 unsigned int group_size, last_group_start; 1013 1014 for (i = 0; i < rs->raid_disks; i++) 1015 if (!test_bit(FirstUse, &rs->dev[i].rdev.flags) && 1016 ((!test_bit(In_sync, &rs->dev[i].rdev.flags) || 1017 !rs->dev[i].rdev.sb_page))) 1018 rebuild_cnt++; 1019 1020 switch (rs->md.level) { 1021 case 0: 1022 break; 1023 case 1: 1024 if (rebuild_cnt >= rs->md.raid_disks) 1025 goto too_many; 1026 break; 1027 case 4: 1028 case 5: 1029 case 6: 1030 if (rebuild_cnt > rs->raid_type->parity_devs) 1031 goto too_many; 1032 break; 1033 case 10: 1034 copies = raid10_md_layout_to_copies(rs->md.new_layout); 1035 if (copies < 2) { 1036 DMERR("Bogus raid10 data copies < 2!"); 1037 return -EINVAL; 1038 } 1039 1040 if (rebuild_cnt < copies) 1041 break; 1042 1043 /* 1044 * It is possible to have a higher rebuild count for RAID10, 1045 * as long as the failed devices occur in different mirror 1046 * groups (i.e. different stripes). 1047 * 1048 * When checking "near" format, make sure no adjacent devices 1049 * have failed beyond what can be handled. In addition to the 1050 * simple case where the number of devices is a multiple of the 1051 * number of copies, we must also handle cases where the number 1052 * of devices is not a multiple of the number of copies. 1053 * E.g. dev1 dev2 dev3 dev4 dev5 1054 * A A B B C 1055 * C D D E E 1056 */ 1057 raid_disks = min(rs->raid_disks, rs->md.raid_disks); 1058 if (__is_raid10_near(rs->md.new_layout)) { 1059 for (i = 0; i < raid_disks; i++) { 1060 if (!(i % copies)) 1061 rebuilds_per_group = 0; 1062 if ((!rs->dev[i].rdev.sb_page || 1063 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 1064 (++rebuilds_per_group >= copies)) 1065 goto too_many; 1066 } 1067 break; 1068 } 1069 1070 /* 1071 * When checking "far" and "offset" formats, we need to ensure 1072 * that the device that holds its copy is not also dead or 1073 * being rebuilt. (Note that "far" and "offset" formats only 1074 * support two copies right now. These formats also only ever 1075 * use the 'use_far_sets' variant.) 1076 * 1077 * This check is somewhat complicated by the need to account 1078 * for arrays that are not a multiple of (far) copies. This 1079 * results in the need to treat the last (potentially larger) 1080 * set differently. 1081 */ 1082 group_size = (raid_disks / copies); 1083 last_group_start = (raid_disks / group_size) - 1; 1084 last_group_start *= group_size; 1085 for (i = 0; i < raid_disks; i++) { 1086 if (!(i % copies) && !(i > last_group_start)) 1087 rebuilds_per_group = 0; 1088 if ((!rs->dev[i].rdev.sb_page || 1089 !test_bit(In_sync, &rs->dev[i].rdev.flags)) && 1090 (++rebuilds_per_group >= copies)) 1091 goto too_many; 1092 } 1093 break; 1094 default: 1095 if (rebuild_cnt) 1096 return -EINVAL; 1097 } 1098 1099 return 0; 1100 1101 too_many: 1102 return -EINVAL; 1103 } 1104 1105 /* 1106 * Possible arguments are... 1107 * <chunk_size> [optional_args] 1108 * 1109 * Argument definitions 1110 * <chunk_size> The number of sectors per disk that 1111 * will form the "stripe" 1112 * [[no]sync] Force or prevent recovery of the 1113 * entire array 1114 * [rebuild <idx>] Rebuild the drive indicated by the index 1115 * [daemon_sleep <ms>] Time between bitmap daemon work to 1116 * clear bits 1117 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization 1118 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization 1119 * [write_mostly <idx>] Indicate a write mostly drive via index 1120 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm) 1121 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs 1122 * [region_size <sectors>] Defines granularity of bitmap 1123 * [journal_dev <dev>] raid4/5/6 journaling deviice 1124 * (i.e. write hole closing log) 1125 * 1126 * RAID10-only options: 1127 * [raid10_copies <# copies>] Number of copies. (Default: 2) 1128 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near) 1129 */ 1130 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as, 1131 unsigned int num_raid_params) 1132 { 1133 int value, raid10_format = ALGORITHM_RAID10_DEFAULT; 1134 unsigned int raid10_copies = 2; 1135 unsigned int i, write_mostly = 0; 1136 unsigned int region_size = 0; 1137 sector_t max_io_len; 1138 const char *arg, *key; 1139 struct raid_dev *rd; 1140 struct raid_type *rt = rs->raid_type; 1141 1142 arg = dm_shift_arg(as); 1143 num_raid_params--; /* Account for chunk_size argument */ 1144 1145 if (kstrtoint(arg, 10, &value) < 0) { 1146 rs->ti->error = "Bad numerical argument given for chunk_size"; 1147 return -EINVAL; 1148 } 1149 1150 /* 1151 * First, parse the in-order required arguments 1152 * "chunk_size" is the only argument of this type. 1153 */ 1154 if (rt_is_raid1(rt)) { 1155 if (value) 1156 DMERR("Ignoring chunk size parameter for RAID 1"); 1157 value = 0; 1158 } else if (!is_power_of_2(value)) { 1159 rs->ti->error = "Chunk size must be a power of 2"; 1160 return -EINVAL; 1161 } else if (value < 8) { 1162 rs->ti->error = "Chunk size value is too small"; 1163 return -EINVAL; 1164 } 1165 1166 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value; 1167 1168 /* 1169 * We set each individual device as In_sync with a completed 1170 * 'recovery_offset'. If there has been a device failure or 1171 * replacement then one of the following cases applies: 1172 * 1173 * 1) User specifies 'rebuild'. 1174 * - Device is reset when param is read. 1175 * 2) A new device is supplied. 1176 * - No matching superblock found, resets device. 1177 * 3) Device failure was transient and returns on reload. 1178 * - Failure noticed, resets device for bitmap replay. 1179 * 4) Device hadn't completed recovery after previous failure. 1180 * - Superblock is read and overrides recovery_offset. 1181 * 1182 * What is found in the superblocks of the devices is always 1183 * authoritative, unless 'rebuild' or '[no]sync' was specified. 1184 */ 1185 for (i = 0; i < rs->raid_disks; i++) { 1186 set_bit(In_sync, &rs->dev[i].rdev.flags); 1187 rs->dev[i].rdev.recovery_offset = MaxSector; 1188 } 1189 1190 /* 1191 * Second, parse the unordered optional arguments 1192 */ 1193 for (i = 0; i < num_raid_params; i++) { 1194 key = dm_shift_arg(as); 1195 if (!key) { 1196 rs->ti->error = "Not enough raid parameters given"; 1197 return -EINVAL; 1198 } 1199 1200 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) { 1201 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 1202 rs->ti->error = "Only one 'nosync' argument allowed"; 1203 return -EINVAL; 1204 } 1205 continue; 1206 } 1207 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) { 1208 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) { 1209 rs->ti->error = "Only one 'sync' argument allowed"; 1210 return -EINVAL; 1211 } 1212 continue; 1213 } 1214 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) { 1215 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { 1216 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed"; 1217 return -EINVAL; 1218 } 1219 continue; 1220 } 1221 1222 arg = dm_shift_arg(as); 1223 i++; /* Account for the argument pairs */ 1224 if (!arg) { 1225 rs->ti->error = "Wrong number of raid parameters given"; 1226 return -EINVAL; 1227 } 1228 1229 /* 1230 * Parameters that take a string value are checked here. 1231 */ 1232 /* "raid10_format {near|offset|far} */ 1233 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) { 1234 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) { 1235 rs->ti->error = "Only one 'raid10_format' argument pair allowed"; 1236 return -EINVAL; 1237 } 1238 if (!rt_is_raid10(rt)) { 1239 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type"; 1240 return -EINVAL; 1241 } 1242 raid10_format = raid10_name_to_format(arg); 1243 if (raid10_format < 0) { 1244 rs->ti->error = "Invalid 'raid10_format' value given"; 1245 return raid10_format; 1246 } 1247 continue; 1248 } 1249 1250 /* "journal_dev <dev>" */ 1251 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) { 1252 int r; 1253 struct md_rdev *jdev; 1254 1255 if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 1256 rs->ti->error = "Only one raid4/5/6 set journaling device allowed"; 1257 return -EINVAL; 1258 } 1259 if (!rt_is_raid456(rt)) { 1260 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type"; 1261 return -EINVAL; 1262 } 1263 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), 1264 &rs->journal_dev.dev); 1265 if (r) { 1266 rs->ti->error = "raid4/5/6 journal device lookup failure"; 1267 return r; 1268 } 1269 jdev = &rs->journal_dev.rdev; 1270 md_rdev_init(jdev); 1271 jdev->mddev = &rs->md; 1272 jdev->bdev = rs->journal_dev.dev->bdev; 1273 jdev->sectors = bdev_nr_sectors(jdev->bdev); 1274 if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) { 1275 rs->ti->error = "No space for raid4/5/6 journal"; 1276 return -ENOSPC; 1277 } 1278 rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 1279 set_bit(Journal, &jdev->flags); 1280 continue; 1281 } 1282 1283 /* "journal_mode <mode>" ("journal_dev" mandatory!) */ 1284 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) { 1285 int r; 1286 1287 if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 1288 rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'"; 1289 return -EINVAL; 1290 } 1291 if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) { 1292 rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed"; 1293 return -EINVAL; 1294 } 1295 r = dm_raid_journal_mode_to_md(arg); 1296 if (r < 0) { 1297 rs->ti->error = "Invalid 'journal_mode' argument"; 1298 return r; 1299 } 1300 rs->journal_dev.mode = r; 1301 continue; 1302 } 1303 1304 /* 1305 * Parameters with number values from here on. 1306 */ 1307 if (kstrtoint(arg, 10, &value) < 0) { 1308 rs->ti->error = "Bad numerical argument given in raid params"; 1309 return -EINVAL; 1310 } 1311 1312 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) { 1313 /* 1314 * "rebuild" is being passed in by userspace to provide 1315 * indexes of replaced devices and to set up additional 1316 * devices on raid level takeover. 1317 */ 1318 if (!__within_range(value, 0, rs->raid_disks - 1)) { 1319 rs->ti->error = "Invalid rebuild index given"; 1320 return -EINVAL; 1321 } 1322 1323 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) { 1324 rs->ti->error = "rebuild for this index already given"; 1325 return -EINVAL; 1326 } 1327 1328 rd = rs->dev + value; 1329 clear_bit(In_sync, &rd->rdev.flags); 1330 clear_bit(Faulty, &rd->rdev.flags); 1331 rd->rdev.recovery_offset = 0; 1332 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags); 1333 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) { 1334 if (!rt_is_raid1(rt)) { 1335 rs->ti->error = "write_mostly option is only valid for RAID1"; 1336 return -EINVAL; 1337 } 1338 1339 if (!__within_range(value, 0, rs->md.raid_disks - 1)) { 1340 rs->ti->error = "Invalid write_mostly index given"; 1341 return -EINVAL; 1342 } 1343 1344 write_mostly++; 1345 set_bit(WriteMostly, &rs->dev[value].rdev.flags); 1346 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags); 1347 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) { 1348 if (!rt_is_raid1(rt)) { 1349 rs->ti->error = "max_write_behind option is only valid for RAID1"; 1350 return -EINVAL; 1351 } 1352 1353 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) { 1354 rs->ti->error = "Only one max_write_behind argument pair allowed"; 1355 return -EINVAL; 1356 } 1357 1358 /* 1359 * In device-mapper, we specify things in sectors, but 1360 * MD records this value in kB 1361 */ 1362 if (value < 0 || value / 2 > COUNTER_MAX) { 1363 rs->ti->error = "Max write-behind limit out of range"; 1364 return -EINVAL; 1365 } 1366 1367 rs->md.bitmap_info.max_write_behind = value / 2; 1368 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) { 1369 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) { 1370 rs->ti->error = "Only one daemon_sleep argument pair allowed"; 1371 return -EINVAL; 1372 } 1373 if (value < 0) { 1374 rs->ti->error = "daemon sleep period out of range"; 1375 return -EINVAL; 1376 } 1377 rs->md.bitmap_info.daemon_sleep = value; 1378 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) { 1379 /* Userspace passes new data_offset after having extended the data image LV */ 1380 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { 1381 rs->ti->error = "Only one data_offset argument pair allowed"; 1382 return -EINVAL; 1383 } 1384 /* Ensure sensible data offset */ 1385 if (value < 0 || 1386 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) { 1387 rs->ti->error = "Bogus data_offset value"; 1388 return -EINVAL; 1389 } 1390 rs->data_offset = value; 1391 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) { 1392 /* Define the +/-# of disks to add to/remove from the given raid set */ 1393 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { 1394 rs->ti->error = "Only one delta_disks argument pair allowed"; 1395 return -EINVAL; 1396 } 1397 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */ 1398 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) { 1399 rs->ti->error = "Too many delta_disk requested"; 1400 return -EINVAL; 1401 } 1402 1403 rs->delta_disks = value; 1404 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) { 1405 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) { 1406 rs->ti->error = "Only one stripe_cache argument pair allowed"; 1407 return -EINVAL; 1408 } 1409 1410 if (!rt_is_raid456(rt)) { 1411 rs->ti->error = "Inappropriate argument: stripe_cache"; 1412 return -EINVAL; 1413 } 1414 1415 if (value < 0) { 1416 rs->ti->error = "Bogus stripe cache entries value"; 1417 return -EINVAL; 1418 } 1419 rs->stripe_cache_entries = value; 1420 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) { 1421 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) { 1422 rs->ti->error = "Only one min_recovery_rate argument pair allowed"; 1423 return -EINVAL; 1424 } 1425 1426 if (value < 0) { 1427 rs->ti->error = "min_recovery_rate out of range"; 1428 return -EINVAL; 1429 } 1430 rs->md.sync_speed_min = value; 1431 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) { 1432 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) { 1433 rs->ti->error = "Only one max_recovery_rate argument pair allowed"; 1434 return -EINVAL; 1435 } 1436 1437 if (value < 0) { 1438 rs->ti->error = "max_recovery_rate out of range"; 1439 return -EINVAL; 1440 } 1441 rs->md.sync_speed_max = value; 1442 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) { 1443 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) { 1444 rs->ti->error = "Only one region_size argument pair allowed"; 1445 return -EINVAL; 1446 } 1447 1448 region_size = value; 1449 rs->requested_bitmap_chunk_sectors = value; 1450 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) { 1451 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) { 1452 rs->ti->error = "Only one raid10_copies argument pair allowed"; 1453 return -EINVAL; 1454 } 1455 1456 if (!__within_range(value, 2, rs->md.raid_disks)) { 1457 rs->ti->error = "Bad value for 'raid10_copies'"; 1458 return -EINVAL; 1459 } 1460 1461 raid10_copies = value; 1462 } else { 1463 DMERR("Unable to parse RAID parameter: %s", key); 1464 rs->ti->error = "Unable to parse RAID parameter"; 1465 return -EINVAL; 1466 } 1467 } 1468 1469 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) && 1470 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 1471 rs->ti->error = "sync and nosync are mutually exclusive"; 1472 return -EINVAL; 1473 } 1474 1475 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && 1476 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) || 1477 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) { 1478 rs->ti->error = "sync/nosync and rebuild are mutually exclusive"; 1479 return -EINVAL; 1480 } 1481 1482 if (write_mostly >= rs->md.raid_disks) { 1483 rs->ti->error = "Can't set all raid1 devices to write_mostly"; 1484 return -EINVAL; 1485 } 1486 1487 if (rs->md.sync_speed_max && 1488 rs->md.sync_speed_min > rs->md.sync_speed_max) { 1489 rs->ti->error = "Bogus recovery rates"; 1490 return -EINVAL; 1491 } 1492 1493 if (validate_region_size(rs, region_size)) 1494 return -EINVAL; 1495 1496 if (rs->md.chunk_sectors) 1497 max_io_len = rs->md.chunk_sectors; 1498 else 1499 max_io_len = region_size; 1500 1501 if (dm_set_target_max_io_len(rs->ti, max_io_len)) 1502 return -EINVAL; 1503 1504 if (rt_is_raid10(rt)) { 1505 if (raid10_copies > rs->md.raid_disks) { 1506 rs->ti->error = "Not enough devices to satisfy specification"; 1507 return -EINVAL; 1508 } 1509 1510 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies); 1511 if (rs->md.new_layout < 0) { 1512 rs->ti->error = "Error getting raid10 format"; 1513 return rs->md.new_layout; 1514 } 1515 1516 rt = get_raid_type_by_ll(10, rs->md.new_layout); 1517 if (!rt) { 1518 rs->ti->error = "Failed to recognize new raid10 layout"; 1519 return -EINVAL; 1520 } 1521 1522 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT || 1523 rt->algorithm == ALGORITHM_RAID10_NEAR) && 1524 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { 1525 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible"; 1526 return -EINVAL; 1527 } 1528 } 1529 1530 rs->raid10_copies = raid10_copies; 1531 1532 /* Assume there are no metadata devices until the drives are parsed */ 1533 rs->md.persistent = 0; 1534 rs->md.external = 1; 1535 1536 /* Check, if any invalid ctr arguments have been passed in for the raid level */ 1537 return rs_check_for_valid_flags(rs); 1538 } 1539 1540 /* Set raid4/5/6 cache size */ 1541 static int rs_set_raid456_stripe_cache(struct raid_set *rs) 1542 { 1543 int r; 1544 struct r5conf *conf; 1545 struct mddev *mddev = &rs->md; 1546 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2; 1547 uint32_t nr_stripes = rs->stripe_cache_entries; 1548 1549 if (!rt_is_raid456(rs->raid_type)) { 1550 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size"; 1551 return -EINVAL; 1552 } 1553 1554 if (nr_stripes < min_stripes) { 1555 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size", 1556 nr_stripes, min_stripes); 1557 nr_stripes = min_stripes; 1558 } 1559 1560 conf = mddev->private; 1561 if (!conf) { 1562 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set"; 1563 return -EINVAL; 1564 } 1565 1566 /* Try setting number of stripes in raid456 stripe cache */ 1567 if (conf->min_nr_stripes != nr_stripes) { 1568 r = raid5_set_cache_size(mddev, nr_stripes); 1569 if (r) { 1570 rs->ti->error = "Failed to set raid4/5/6 stripe cache size"; 1571 return r; 1572 } 1573 1574 DMINFO("%u stripe cache entries", nr_stripes); 1575 } 1576 1577 return 0; 1578 } 1579 1580 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */ 1581 static unsigned int mddev_data_stripes(struct raid_set *rs) 1582 { 1583 return rs->md.raid_disks - rs->raid_type->parity_devs; 1584 } 1585 1586 /* Return # of data stripes of @rs (i.e. as of ctr) */ 1587 static unsigned int rs_data_stripes(struct raid_set *rs) 1588 { 1589 return rs->raid_disks - rs->raid_type->parity_devs; 1590 } 1591 1592 /* 1593 * Retrieve rdev->sectors from any valid raid device of @rs 1594 * to allow userpace to pass in arbitray "- -" device tupples. 1595 */ 1596 static sector_t __rdev_sectors(struct raid_set *rs) 1597 { 1598 int i; 1599 1600 for (i = 0; i < rs->raid_disks; i++) { 1601 struct md_rdev *rdev = &rs->dev[i].rdev; 1602 1603 if (!test_bit(Journal, &rdev->flags) && 1604 rdev->bdev && rdev->sectors) 1605 return rdev->sectors; 1606 } 1607 1608 return 0; 1609 } 1610 1611 /* Check that calculated dev_sectors fits all component devices. */ 1612 static int _check_data_dev_sectors(struct raid_set *rs) 1613 { 1614 sector_t ds = ~0; 1615 struct md_rdev *rdev; 1616 1617 rdev_for_each(rdev, &rs->md) 1618 if (!test_bit(Journal, &rdev->flags) && rdev->bdev) { 1619 ds = min(ds, bdev_nr_sectors(rdev->bdev)); 1620 if (ds < rs->md.dev_sectors) { 1621 rs->ti->error = "Component device(s) too small"; 1622 return -EINVAL; 1623 } 1624 } 1625 1626 return 0; 1627 } 1628 1629 /* Get reshape sectors from data_offsets or raid set */ 1630 static sector_t _get_reshape_sectors(struct raid_set *rs) 1631 { 1632 struct md_rdev *rdev; 1633 sector_t reshape_sectors = 0; 1634 1635 rdev_for_each(rdev, &rs->md) 1636 if (!test_bit(Journal, &rdev->flags)) { 1637 reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ? 1638 rdev->data_offset - rdev->new_data_offset : 1639 rdev->new_data_offset - rdev->data_offset; 1640 break; 1641 } 1642 1643 return max(reshape_sectors, (sector_t) rs->data_offset); 1644 } 1645 1646 /* Calculate the sectors per device and per array used for @rs */ 1647 static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev) 1648 { 1649 int delta_disks; 1650 unsigned int data_stripes; 1651 sector_t array_sectors = sectors, dev_sectors = sectors; 1652 struct mddev *mddev = &rs->md; 1653 1654 if (use_mddev) { 1655 delta_disks = mddev->delta_disks; 1656 data_stripes = mddev_data_stripes(rs); 1657 } else { 1658 delta_disks = rs->delta_disks; 1659 data_stripes = rs_data_stripes(rs); 1660 } 1661 1662 /* Special raid1 case w/o delta_disks support (yet) */ 1663 if (rt_is_raid1(rs->raid_type)) 1664 ; 1665 else if (rt_is_raid10(rs->raid_type)) { 1666 if (rs->raid10_copies < 2 || 1667 delta_disks < 0) { 1668 rs->ti->error = "Bogus raid10 data copies or delta disks"; 1669 return -EINVAL; 1670 } 1671 1672 dev_sectors *= rs->raid10_copies; 1673 if (sector_div(dev_sectors, data_stripes)) 1674 goto bad; 1675 1676 array_sectors = (data_stripes + delta_disks) * (dev_sectors - _get_reshape_sectors(rs)); 1677 if (sector_div(array_sectors, rs->raid10_copies)) 1678 goto bad; 1679 1680 } else if (sector_div(dev_sectors, data_stripes)) 1681 goto bad; 1682 1683 else 1684 /* Striped layouts */ 1685 array_sectors = (data_stripes + delta_disks) * (dev_sectors - _get_reshape_sectors(rs)); 1686 1687 mddev->array_sectors = array_sectors; 1688 mddev->dev_sectors = dev_sectors; 1689 rs_set_rdev_sectors(rs); 1690 1691 return _check_data_dev_sectors(rs); 1692 bad: 1693 rs->ti->error = "Target length not divisible by number of data devices"; 1694 return -EINVAL; 1695 } 1696 1697 /* Setup recovery on @rs */ 1698 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors) 1699 { 1700 /* raid0 does not recover */ 1701 if (rs_is_raid0(rs)) 1702 rs->md.recovery_cp = MaxSector; 1703 /* 1704 * A raid6 set has to be recovered either 1705 * completely or for the grown part to 1706 * ensure proper parity and Q-Syndrome 1707 */ 1708 else if (rs_is_raid6(rs)) 1709 rs->md.recovery_cp = dev_sectors; 1710 /* 1711 * Other raid set types may skip recovery 1712 * depending on the 'nosync' flag. 1713 */ 1714 else 1715 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags) 1716 ? MaxSector : dev_sectors; 1717 } 1718 1719 static void do_table_event(struct work_struct *ws) 1720 { 1721 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work); 1722 1723 smp_rmb(); /* Make sure we access most actual mddev properties */ 1724 1725 /* Only grow size resulting from added stripe(s) after reshape ended. */ 1726 if (!rs_is_reshaping(rs) && 1727 rs->array_sectors > rs->md.array_sectors && 1728 !rs->md.delta_disks && 1729 rs->md.raid_disks == rs->raid_disks) { 1730 /* The raid10 personality doesn't provide proper device sizes -> correct. */ 1731 if (rs_is_raid10(rs)) 1732 rs_set_rdev_sectors(rs); 1733 1734 rs->md.array_sectors = rs->array_sectors; 1735 rs_set_capacity(rs); 1736 } 1737 1738 dm_table_event(rs->ti->table); 1739 } 1740 1741 /* 1742 * Make sure a valid takover (level switch) is being requested on @rs 1743 * 1744 * Conversions of raid sets from one MD personality to another 1745 * have to conform to restrictions which are enforced here. 1746 */ 1747 static int rs_check_takeover(struct raid_set *rs) 1748 { 1749 struct mddev *mddev = &rs->md; 1750 unsigned int near_copies; 1751 1752 if (rs->md.degraded) { 1753 rs->ti->error = "Can't takeover degraded raid set"; 1754 return -EPERM; 1755 } 1756 1757 if (rs_is_reshaping(rs)) { 1758 rs->ti->error = "Can't takeover reshaping raid set"; 1759 return -EPERM; 1760 } 1761 1762 switch (mddev->level) { 1763 case 0: 1764 /* raid0 -> raid1/5 with one disk */ 1765 if ((mddev->new_level == 1 || mddev->new_level == 5) && 1766 mddev->raid_disks == 1) 1767 return 0; 1768 1769 /* raid0 -> raid10 */ 1770 if (mddev->new_level == 10 && 1771 !(rs->raid_disks % mddev->raid_disks)) 1772 return 0; 1773 1774 /* raid0 with multiple disks -> raid4/5/6 */ 1775 if (__within_range(mddev->new_level, 4, 6) && 1776 mddev->new_layout == ALGORITHM_PARITY_N && 1777 mddev->raid_disks > 1) 1778 return 0; 1779 1780 break; 1781 1782 case 10: 1783 /* Can't takeover raid10_offset! */ 1784 if (__is_raid10_offset(mddev->layout)) 1785 break; 1786 1787 near_copies = __raid10_near_copies(mddev->layout); 1788 1789 /* raid10* -> raid0 */ 1790 if (mddev->new_level == 0) { 1791 /* Can takeover raid10_near with raid disks divisable by data copies! */ 1792 if (near_copies > 1 && 1793 !(mddev->raid_disks % near_copies)) { 1794 mddev->raid_disks /= near_copies; 1795 mddev->delta_disks = mddev->raid_disks; 1796 return 0; 1797 } 1798 1799 /* Can takeover raid10_far */ 1800 if (near_copies == 1 && 1801 __raid10_far_copies(mddev->layout) > 1) 1802 return 0; 1803 1804 break; 1805 } 1806 1807 /* raid10_{near,far} -> raid1 */ 1808 if (mddev->new_level == 1 && 1809 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks) 1810 return 0; 1811 1812 /* raid10_{near,far} with 2 disks -> raid4/5 */ 1813 if (__within_range(mddev->new_level, 4, 5) && 1814 mddev->raid_disks == 2) 1815 return 0; 1816 break; 1817 1818 case 1: 1819 /* raid1 with 2 disks -> raid4/5 */ 1820 if (__within_range(mddev->new_level, 4, 5) && 1821 mddev->raid_disks == 2) { 1822 mddev->degraded = 1; 1823 return 0; 1824 } 1825 1826 /* raid1 -> raid0 */ 1827 if (mddev->new_level == 0 && 1828 mddev->raid_disks == 1) 1829 return 0; 1830 1831 /* raid1 -> raid10 */ 1832 if (mddev->new_level == 10) 1833 return 0; 1834 break; 1835 1836 case 4: 1837 /* raid4 -> raid0 */ 1838 if (mddev->new_level == 0) 1839 return 0; 1840 1841 /* raid4 -> raid1/5 with 2 disks */ 1842 if ((mddev->new_level == 1 || mddev->new_level == 5) && 1843 mddev->raid_disks == 2) 1844 return 0; 1845 1846 /* raid4 -> raid5/6 with parity N */ 1847 if (__within_range(mddev->new_level, 5, 6) && 1848 mddev->layout == ALGORITHM_PARITY_N) 1849 return 0; 1850 break; 1851 1852 case 5: 1853 /* raid5 with parity N -> raid0 */ 1854 if (mddev->new_level == 0 && 1855 mddev->layout == ALGORITHM_PARITY_N) 1856 return 0; 1857 1858 /* raid5 with parity N -> raid4 */ 1859 if (mddev->new_level == 4 && 1860 mddev->layout == ALGORITHM_PARITY_N) 1861 return 0; 1862 1863 /* raid5 with 2 disks -> raid1/4/10 */ 1864 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) && 1865 mddev->raid_disks == 2) 1866 return 0; 1867 1868 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */ 1869 if (mddev->new_level == 6 && 1870 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || 1871 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6))) 1872 return 0; 1873 break; 1874 1875 case 6: 1876 /* raid6 with parity N -> raid0 */ 1877 if (mddev->new_level == 0 && 1878 mddev->layout == ALGORITHM_PARITY_N) 1879 return 0; 1880 1881 /* raid6 with parity N -> raid4 */ 1882 if (mddev->new_level == 4 && 1883 mddev->layout == ALGORITHM_PARITY_N) 1884 return 0; 1885 1886 /* raid6_*_n with Q-Syndrome N -> raid5_* */ 1887 if (mddev->new_level == 5 && 1888 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || 1889 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC))) 1890 return 0; 1891 break; 1892 1893 default: 1894 break; 1895 } 1896 1897 rs->ti->error = "takeover not possible"; 1898 return -EINVAL; 1899 } 1900 1901 /* True if @rs requested to be taken over */ 1902 static bool rs_takeover_requested(struct raid_set *rs) 1903 { 1904 return rs->md.new_level != rs->md.level; 1905 } 1906 1907 /* True if layout is set to reshape. */ 1908 static bool rs_is_layout_change(struct raid_set *rs, bool use_mddev) 1909 { 1910 return (use_mddev ? rs->md.delta_disks : rs->delta_disks) || 1911 rs->md.new_layout != rs->md.layout || 1912 rs->md.new_chunk_sectors != rs->md.chunk_sectors; 1913 } 1914 1915 /* True if @rs is requested to reshape by ctr */ 1916 static bool rs_reshape_requested(struct raid_set *rs) 1917 { 1918 bool change; 1919 struct mddev *mddev = &rs->md; 1920 1921 if (rs_takeover_requested(rs)) 1922 return false; 1923 1924 if (rs_is_raid0(rs)) 1925 return false; 1926 1927 change = rs_is_layout_change(rs, false); 1928 1929 /* Historical case to support raid1 reshape without delta disks */ 1930 if (rs_is_raid1(rs)) { 1931 if (rs->delta_disks) 1932 return !!rs->delta_disks; 1933 1934 return !change && 1935 mddev->raid_disks != rs->raid_disks; 1936 } 1937 1938 if (rs_is_raid10(rs)) 1939 return change && 1940 !__is_raid10_far(mddev->new_layout) && 1941 rs->delta_disks >= 0; 1942 1943 return change; 1944 } 1945 1946 /* Features */ 1947 #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */ 1948 1949 /* State flags for sb->flags */ 1950 #define SB_FLAG_RESHAPE_ACTIVE 0x1 1951 #define SB_FLAG_RESHAPE_BACKWARDS 0x2 1952 1953 /* 1954 * This structure is never routinely used by userspace, unlike md superblocks. 1955 * Devices with this superblock should only ever be accessed via device-mapper. 1956 */ 1957 #define DM_RAID_MAGIC 0x64526D44 1958 struct dm_raid_superblock { 1959 __le32 magic; /* "DmRd" */ 1960 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */ 1961 1962 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */ 1963 __le32 array_position; /* The position of this drive in the raid set */ 1964 1965 __le64 events; /* Incremented by md when superblock updated */ 1966 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */ 1967 /* indicate failures (see extension below) */ 1968 1969 /* 1970 * This offset tracks the progress of the repair or replacement of 1971 * an individual drive. 1972 */ 1973 __le64 disk_recovery_offset; 1974 1975 /* 1976 * This offset tracks the progress of the initial raid set 1977 * synchronisation/parity calculation. 1978 */ 1979 __le64 array_resync_offset; 1980 1981 /* 1982 * raid characteristics 1983 */ 1984 __le32 level; 1985 __le32 layout; 1986 __le32 stripe_sectors; 1987 1988 /******************************************************************** 1989 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! 1990 * 1991 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist 1992 */ 1993 1994 __le32 flags; /* Flags defining array states for reshaping */ 1995 1996 /* 1997 * This offset tracks the progress of a raid 1998 * set reshape in order to be able to restart it 1999 */ 2000 __le64 reshape_position; 2001 2002 /* 2003 * These define the properties of the array in case of an interrupted reshape 2004 */ 2005 __le32 new_level; 2006 __le32 new_layout; 2007 __le32 new_stripe_sectors; 2008 __le32 delta_disks; 2009 2010 __le64 array_sectors; /* Array size in sectors */ 2011 2012 /* 2013 * Sector offsets to data on devices (reshaping). 2014 * Needed to support out of place reshaping, thus 2015 * not writing over any stripes whilst converting 2016 * them from old to new layout 2017 */ 2018 __le64 data_offset; 2019 __le64 new_data_offset; 2020 2021 __le64 sectors; /* Used device size in sectors */ 2022 2023 /* 2024 * Additional Bit field of devices indicating failures to support 2025 * up to 256 devices with the 1.9.0 on-disk metadata format 2026 */ 2027 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1]; 2028 2029 __le32 incompat_features; /* Used to indicate any incompatible features */ 2030 2031 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */ 2032 } __packed; 2033 2034 /* 2035 * Check for reshape constraints on raid set @rs: 2036 * 2037 * - reshape function non-existent 2038 * - degraded set 2039 * - ongoing recovery 2040 * - ongoing reshape 2041 * 2042 * Returns 0 if none or -EPERM if given constraint 2043 * and error message reference in @errmsg 2044 */ 2045 static int rs_check_reshape(struct raid_set *rs) 2046 { 2047 struct mddev *mddev = &rs->md; 2048 2049 if (!mddev->pers || !mddev->pers->check_reshape) 2050 rs->ti->error = "Reshape not supported"; 2051 else if (mddev->degraded) 2052 rs->ti->error = "Can't reshape degraded raid set"; 2053 else if (rs_is_recovering(rs)) 2054 rs->ti->error = "Convert request on recovering raid set prohibited"; 2055 else if (rs_is_reshaping(rs)) 2056 rs->ti->error = "raid set already reshaping!"; 2057 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs))) 2058 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10"; 2059 else 2060 return 0; 2061 2062 return -EPERM; 2063 } 2064 2065 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload) 2066 { 2067 BUG_ON(!rdev->sb_page); 2068 2069 if (rdev->sb_loaded && !force_reload) 2070 return 0; 2071 2072 rdev->sb_loaded = 0; 2073 2074 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) { 2075 DMERR("Failed to read superblock of device at position %d", 2076 rdev->raid_disk); 2077 md_error(rdev->mddev, rdev); 2078 set_bit(Faulty, &rdev->flags); 2079 return -EIO; 2080 } 2081 2082 rdev->sb_loaded = 1; 2083 2084 return 0; 2085 } 2086 2087 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) 2088 { 2089 failed_devices[0] = le64_to_cpu(sb->failed_devices); 2090 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices)); 2091 2092 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { 2093 int i = ARRAY_SIZE(sb->extended_failed_devices); 2094 2095 while (i--) 2096 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]); 2097 } 2098 } 2099 2100 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) 2101 { 2102 int i = ARRAY_SIZE(sb->extended_failed_devices); 2103 2104 sb->failed_devices = cpu_to_le64(failed_devices[0]); 2105 while (i--) 2106 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]); 2107 } 2108 2109 /* 2110 * Synchronize the superblock members with the raid set properties 2111 * 2112 * All superblock data is little endian. 2113 */ 2114 static void super_sync(struct mddev *mddev, struct md_rdev *rdev) 2115 { 2116 bool update_failed_devices = false; 2117 unsigned int i; 2118 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 2119 struct dm_raid_superblock *sb; 2120 struct raid_set *rs = container_of(mddev, struct raid_set, md); 2121 2122 /* No metadata device, no superblock */ 2123 if (!rdev->meta_bdev) 2124 return; 2125 2126 BUG_ON(!rdev->sb_page); 2127 2128 sb = page_address(rdev->sb_page); 2129 2130 sb_retrieve_failed_devices(sb, failed_devices); 2131 2132 for (i = 0; i < rs->raid_disks; i++) 2133 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) { 2134 update_failed_devices = true; 2135 set_bit(i, (void *) failed_devices); 2136 } 2137 2138 if (update_failed_devices) 2139 sb_update_failed_devices(sb, failed_devices); 2140 2141 sb->magic = cpu_to_le32(DM_RAID_MAGIC); 2142 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); 2143 2144 sb->num_devices = cpu_to_le32(mddev->raid_disks); 2145 sb->array_position = cpu_to_le32(rdev->raid_disk); 2146 2147 sb->events = cpu_to_le64(mddev->events); 2148 2149 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset); 2150 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp); 2151 2152 sb->level = cpu_to_le32(mddev->level); 2153 sb->layout = cpu_to_le32(mddev->layout); 2154 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors); 2155 2156 /******************************************************************** 2157 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! 2158 * 2159 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist 2160 */ 2161 sb->new_level = cpu_to_le32(mddev->new_level); 2162 sb->new_layout = cpu_to_le32(mddev->new_layout); 2163 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors); 2164 2165 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2166 2167 smp_rmb(); /* Make sure we access most recent reshape position */ 2168 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2169 if (le64_to_cpu(sb->reshape_position) != MaxSector) { 2170 /* Flag ongoing reshape */ 2171 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE); 2172 2173 if (mddev->delta_disks < 0 || mddev->reshape_backwards) 2174 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS); 2175 } else { 2176 /* Clear reshape flags */ 2177 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS)); 2178 } 2179 2180 sb->array_sectors = cpu_to_le64(mddev->array_sectors); 2181 sb->data_offset = cpu_to_le64(rdev->data_offset); 2182 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset); 2183 sb->sectors = cpu_to_le64(rdev->sectors); 2184 sb->incompat_features = cpu_to_le32(0); 2185 2186 /* Zero out the rest of the payload after the size of the superblock */ 2187 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb)); 2188 } 2189 2190 /* 2191 * super_load 2192 * 2193 * This function creates a superblock if one is not found on the device 2194 * and will decide which superblock to use if there's a choice. 2195 * 2196 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise 2197 */ 2198 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev) 2199 { 2200 int r; 2201 struct dm_raid_superblock *sb; 2202 struct dm_raid_superblock *refsb; 2203 uint64_t events_sb, events_refsb; 2204 2205 r = read_disk_sb(rdev, rdev->sb_size, false); 2206 if (r) 2207 return r; 2208 2209 sb = page_address(rdev->sb_page); 2210 2211 /* 2212 * Two cases that we want to write new superblocks and rebuild: 2213 * 1) New device (no matching magic number) 2214 * 2) Device specified for rebuild (!In_sync w/ offset == 0) 2215 */ 2216 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) || 2217 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) { 2218 super_sync(rdev->mddev, rdev); 2219 2220 set_bit(FirstUse, &rdev->flags); 2221 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); 2222 2223 /* Force writing of superblocks to disk */ 2224 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags); 2225 2226 /* Any superblock is better than none, choose that if given */ 2227 return refdev ? 0 : 1; 2228 } 2229 2230 if (!refdev) 2231 return 1; 2232 2233 events_sb = le64_to_cpu(sb->events); 2234 2235 refsb = page_address(refdev->sb_page); 2236 events_refsb = le64_to_cpu(refsb->events); 2237 2238 return (events_sb > events_refsb) ? 1 : 0; 2239 } 2240 2241 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev) 2242 { 2243 int role; 2244 struct mddev *mddev = &rs->md; 2245 uint64_t events_sb; 2246 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 2247 struct dm_raid_superblock *sb; 2248 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0; 2249 struct md_rdev *r; 2250 struct dm_raid_superblock *sb2; 2251 2252 sb = page_address(rdev->sb_page); 2253 events_sb = le64_to_cpu(sb->events); 2254 2255 /* 2256 * Initialise to 1 if this is a new superblock. 2257 */ 2258 mddev->events = events_sb ? : 1; 2259 2260 mddev->reshape_position = MaxSector; 2261 2262 mddev->raid_disks = le32_to_cpu(sb->num_devices); 2263 mddev->level = le32_to_cpu(sb->level); 2264 mddev->layout = le32_to_cpu(sb->layout); 2265 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors); 2266 2267 /* 2268 * Reshaping is supported, e.g. reshape_position is valid 2269 * in superblock and superblock content is authoritative. 2270 */ 2271 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { 2272 /* Superblock is authoritative wrt given raid set layout! */ 2273 mddev->new_level = le32_to_cpu(sb->new_level); 2274 mddev->new_layout = le32_to_cpu(sb->new_layout); 2275 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors); 2276 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 2277 mddev->array_sectors = le64_to_cpu(sb->array_sectors); 2278 2279 /* raid was reshaping and got interrupted */ 2280 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) { 2281 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { 2282 DMERR("Reshape requested but raid set is still reshaping"); 2283 return -EINVAL; 2284 } 2285 2286 if (mddev->delta_disks < 0 || 2287 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS))) 2288 mddev->reshape_backwards = 1; 2289 else 2290 mddev->reshape_backwards = 0; 2291 2292 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 2293 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout); 2294 } 2295 2296 } else { 2297 /* 2298 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata 2299 */ 2300 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout); 2301 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 2302 2303 if (rs_takeover_requested(rs)) { 2304 if (rt_cur && rt_new) 2305 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)", 2306 rt_cur->name, rt_new->name); 2307 else 2308 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)"); 2309 return -EINVAL; 2310 } else if (rs_reshape_requested(rs)) { 2311 DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)"); 2312 if (mddev->layout != mddev->new_layout) { 2313 if (rt_cur && rt_new) 2314 DMERR(" current layout %s vs new layout %s", 2315 rt_cur->name, rt_new->name); 2316 else 2317 DMERR(" current layout 0x%X vs new layout 0x%X", 2318 le32_to_cpu(sb->layout), mddev->new_layout); 2319 } 2320 if (mddev->chunk_sectors != mddev->new_chunk_sectors) 2321 DMERR(" current stripe sectors %u vs new stripe sectors %u", 2322 mddev->chunk_sectors, mddev->new_chunk_sectors); 2323 if (rs->delta_disks) 2324 DMERR(" current %u disks vs new %u disks", 2325 mddev->raid_disks, mddev->raid_disks + rs->delta_disks); 2326 if (rs_is_raid10(rs)) { 2327 DMERR(" Old layout: %s w/ %u copies", 2328 raid10_md_layout_to_format(mddev->layout), 2329 raid10_md_layout_to_copies(mddev->layout)); 2330 DMERR(" New layout: %s w/ %u copies", 2331 raid10_md_layout_to_format(mddev->new_layout), 2332 raid10_md_layout_to_copies(mddev->new_layout)); 2333 } 2334 return -EINVAL; 2335 } 2336 2337 DMINFO("Discovered old metadata format; upgrading to extended metadata format"); 2338 } 2339 2340 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) 2341 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset); 2342 2343 /* 2344 * During load, we set FirstUse if a new superblock was written. 2345 * There are two reasons we might not have a superblock: 2346 * 1) The raid set is brand new - in which case, all of the 2347 * devices must have their In_sync bit set. Also, 2348 * recovery_cp must be 0, unless forced. 2349 * 2) This is a new device being added to an old raid set 2350 * and the new device needs to be rebuilt - in which 2351 * case the In_sync bit will /not/ be set and 2352 * recovery_cp must be MaxSector. 2353 * 3) This is/are a new device(s) being added to an old 2354 * raid set during takeover to a higher raid level 2355 * to provide capacity for redundancy or during reshape 2356 * to add capacity to grow the raid set. 2357 */ 2358 rdev_for_each(r, mddev) { 2359 if (test_bit(Journal, &rdev->flags)) 2360 continue; 2361 2362 if (test_bit(FirstUse, &r->flags)) 2363 new_devs++; 2364 2365 if (!test_bit(In_sync, &r->flags)) { 2366 DMINFO("Device %d specified for rebuild; clearing superblock", 2367 r->raid_disk); 2368 rebuilds++; 2369 2370 if (test_bit(FirstUse, &r->flags)) 2371 rebuild_and_new++; 2372 } 2373 } 2374 2375 if (new_devs == rs->raid_disks || !rebuilds) { 2376 /* Replace a broken device */ 2377 if (new_devs == rs->raid_disks) { 2378 DMINFO("Superblocks created for new raid set"); 2379 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2380 } else if (new_devs != rebuilds && 2381 new_devs != rs->delta_disks) { 2382 DMERR("New device injected into existing raid set without " 2383 "'delta_disks' or 'rebuild' parameter specified"); 2384 return -EINVAL; 2385 } 2386 } else if (new_devs && new_devs != rebuilds) { 2387 DMERR("%u 'rebuild' devices cannot be injected into" 2388 " a raid set with %u other first-time devices", 2389 rebuilds, new_devs); 2390 return -EINVAL; 2391 } else if (rebuilds) { 2392 if (rebuild_and_new && rebuilds != rebuild_and_new) { 2393 DMERR("new device%s provided without 'rebuild'", 2394 new_devs > 1 ? "s" : ""); 2395 return -EINVAL; 2396 } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) { 2397 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)", 2398 (unsigned long long) mddev->recovery_cp); 2399 return -EINVAL; 2400 } else if (rs_is_reshaping(rs)) { 2401 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)", 2402 (unsigned long long) mddev->reshape_position); 2403 return -EINVAL; 2404 } 2405 } 2406 2407 /* 2408 * Now we set the Faulty bit for those devices that are 2409 * recorded in the superblock as failed. 2410 */ 2411 sb_retrieve_failed_devices(sb, failed_devices); 2412 rdev_for_each(r, mddev) { 2413 if (test_bit(Journal, &rdev->flags) || 2414 !r->sb_page) 2415 continue; 2416 sb2 = page_address(r->sb_page); 2417 sb2->failed_devices = 0; 2418 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices)); 2419 2420 /* 2421 * Check for any device re-ordering. 2422 */ 2423 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) { 2424 role = le32_to_cpu(sb2->array_position); 2425 if (role < 0) 2426 continue; 2427 2428 if (role != r->raid_disk) { 2429 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) { 2430 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) || 2431 rs->raid_disks % rs->raid10_copies) { 2432 rs->ti->error = 2433 "Cannot change raid10 near set to odd # of devices!"; 2434 return -EINVAL; 2435 } 2436 2437 sb2->array_position = cpu_to_le32(r->raid_disk); 2438 2439 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) && 2440 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) && 2441 !rt_is_raid1(rs->raid_type)) { 2442 rs->ti->error = "Cannot change device positions in raid set"; 2443 return -EINVAL; 2444 } 2445 2446 DMINFO("raid device #%d now at position #%d", role, r->raid_disk); 2447 } 2448 2449 /* 2450 * Partial recovery is performed on 2451 * returning failed devices. 2452 */ 2453 if (test_bit(role, (void *) failed_devices)) 2454 set_bit(Faulty, &r->flags); 2455 } 2456 } 2457 2458 return 0; 2459 } 2460 2461 static int super_validate(struct raid_set *rs, struct md_rdev *rdev) 2462 { 2463 struct mddev *mddev = &rs->md; 2464 struct dm_raid_superblock *sb; 2465 2466 if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0) 2467 return 0; 2468 2469 sb = page_address(rdev->sb_page); 2470 2471 /* 2472 * If mddev->events is not set, we know we have not yet initialized 2473 * the array. 2474 */ 2475 if (!mddev->events && super_init_validation(rs, rdev)) 2476 return -EINVAL; 2477 2478 if (le32_to_cpu(sb->compat_features) && 2479 le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) { 2480 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags"; 2481 return -EINVAL; 2482 } 2483 2484 if (sb->incompat_features) { 2485 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet"; 2486 return -EINVAL; 2487 } 2488 2489 /* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */ 2490 mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096); 2491 mddev->bitmap_info.default_offset = mddev->bitmap_info.offset; 2492 2493 if (!test_and_clear_bit(FirstUse, &rdev->flags)) { 2494 /* 2495 * Retrieve rdev size stored in superblock to be prepared for shrink. 2496 * Check extended superblock members are present otherwise the size 2497 * will not be set! 2498 */ 2499 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) 2500 rdev->sectors = le64_to_cpu(sb->sectors); 2501 2502 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset); 2503 if (rdev->recovery_offset == MaxSector) 2504 set_bit(In_sync, &rdev->flags); 2505 /* 2506 * If no reshape in progress -> we're recovering single 2507 * disk(s) and have to set the device(s) to out-of-sync 2508 */ 2509 else if (!rs_is_reshaping(rs)) 2510 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */ 2511 } 2512 2513 /* 2514 * If a device comes back, set it as not In_sync and no longer faulty. 2515 */ 2516 if (test_and_clear_bit(Faulty, &rdev->flags)) { 2517 rdev->recovery_offset = 0; 2518 clear_bit(In_sync, &rdev->flags); 2519 rdev->saved_raid_disk = rdev->raid_disk; 2520 } 2521 2522 /* Reshape support -> restore respective data offsets */ 2523 rdev->data_offset = le64_to_cpu(sb->data_offset); 2524 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset); 2525 2526 return 0; 2527 } 2528 2529 /* 2530 * Analyse superblocks and select the freshest. 2531 */ 2532 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs) 2533 { 2534 int r; 2535 struct md_rdev *rdev, *freshest; 2536 struct mddev *mddev = &rs->md; 2537 2538 freshest = NULL; 2539 rdev_for_each(rdev, mddev) { 2540 if (test_bit(Journal, &rdev->flags)) 2541 continue; 2542 2543 if (!rdev->meta_bdev) 2544 continue; 2545 2546 /* Set superblock offset/size for metadata device. */ 2547 rdev->sb_start = 0; 2548 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev); 2549 if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) { 2550 DMERR("superblock size of a logical block is no longer valid"); 2551 return -EINVAL; 2552 } 2553 2554 /* 2555 * Skipping super_load due to CTR_FLAG_SYNC will cause 2556 * the array to undergo initialization again as 2557 * though it were new. This is the intended effect 2558 * of the "sync" directive. 2559 * 2560 * With reshaping capability added, we must ensure that 2561 * the "sync" directive is disallowed during the reshape. 2562 */ 2563 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 2564 continue; 2565 2566 r = super_load(rdev, freshest); 2567 2568 switch (r) { 2569 case 1: 2570 freshest = rdev; 2571 break; 2572 case 0: 2573 break; 2574 default: 2575 /* This is a failure to read the superblock from the metadata device. */ 2576 /* 2577 * We have to keep any raid0 data/metadata device pairs or 2578 * the MD raid0 personality will fail to start the array. 2579 */ 2580 if (rs_is_raid0(rs)) 2581 continue; 2582 2583 /* 2584 * We keep the dm_devs to be able to emit the device tuple 2585 * properly on the table line in raid_status() (rather than 2586 * mistakenly acting as if '- -' got passed into the constructor). 2587 * 2588 * The rdev has to stay on the same_set list to allow for 2589 * the attempt to restore faulty devices on second resume. 2590 */ 2591 rdev->raid_disk = rdev->saved_raid_disk = -1; 2592 break; 2593 } 2594 } 2595 2596 if (!freshest) 2597 return 0; 2598 2599 /* 2600 * Validation of the freshest device provides the source of 2601 * validation for the remaining devices. 2602 */ 2603 rs->ti->error = "Unable to assemble array: Invalid superblocks"; 2604 if (super_validate(rs, freshest)) 2605 return -EINVAL; 2606 2607 if (validate_raid_redundancy(rs)) { 2608 rs->ti->error = "Insufficient redundancy to activate array"; 2609 return -EINVAL; 2610 } 2611 2612 rdev_for_each(rdev, mddev) 2613 if (!test_bit(Journal, &rdev->flags) && 2614 rdev != freshest && 2615 super_validate(rs, rdev)) 2616 return -EINVAL; 2617 return 0; 2618 } 2619 2620 /* 2621 * Adjust data_offset and new_data_offset on all disk members of @rs 2622 * for out of place reshaping if requested by constructor 2623 * 2624 * We need free space at the beginning of each raid disk for forward 2625 * and at the end for backward reshapes which userspace has to provide 2626 * via remapping/reordering of space. 2627 */ 2628 static int rs_adjust_data_offsets(struct raid_set *rs) 2629 { 2630 sector_t data_offset = 0, new_data_offset = 0; 2631 struct md_rdev *rdev; 2632 2633 /* Constructor did not request data offset change */ 2634 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { 2635 if (!rs_is_reshapable(rs)) 2636 goto out; 2637 2638 return 0; 2639 } 2640 2641 /* HM FIXME: get In_Sync raid_dev? */ 2642 rdev = &rs->dev[0].rdev; 2643 2644 if (rs->delta_disks < 0) { 2645 /* 2646 * Removing disks (reshaping backwards): 2647 * 2648 * - before reshape: data is at offset 0 and free space 2649 * is at end of each component LV 2650 * 2651 * - after reshape: data is at offset rs->data_offset != 0 on each component LV 2652 */ 2653 data_offset = 0; 2654 new_data_offset = rs->data_offset; 2655 2656 } else if (rs->delta_disks > 0) { 2657 /* 2658 * Adding disks (reshaping forwards): 2659 * 2660 * - before reshape: data is at offset rs->data_offset != 0 and 2661 * free space is at begin of each component LV 2662 * 2663 * - after reshape: data is at offset 0 on each component LV 2664 */ 2665 data_offset = rs->data_offset; 2666 new_data_offset = 0; 2667 2668 } else { 2669 /* 2670 * User space passes in 0 for data offset after having removed reshape space 2671 * 2672 * - or - (data offset != 0) 2673 * 2674 * Changing RAID layout or chunk size -> toggle offsets 2675 * 2676 * - before reshape: data is at offset rs->data_offset 0 and 2677 * free space is at end of each component LV 2678 * -or- 2679 * data is at offset rs->data_offset != 0 and 2680 * free space is at begin of each component LV 2681 * 2682 * - after reshape: data is at offset 0 if it was at offset != 0 2683 * or at offset != 0 if it was at offset 0 2684 * on each component LV 2685 * 2686 */ 2687 data_offset = rs->data_offset ? rdev->data_offset : 0; 2688 new_data_offset = data_offset ? 0 : rs->data_offset; 2689 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2690 } 2691 2692 /* 2693 * Make sure we got a minimum amount of free sectors per device 2694 */ 2695 if (rs->data_offset && 2696 bdev_nr_sectors(rdev->bdev) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) { 2697 rs->ti->error = data_offset ? "No space for forward reshape" : 2698 "No space for backward reshape"; 2699 return -ENOSPC; 2700 } 2701 out: 2702 /* 2703 * Raise recovery_cp in case data_offset != 0 to 2704 * avoid false recovery positives in the constructor. 2705 */ 2706 if (rs->md.recovery_cp < rs->md.dev_sectors) 2707 rs->md.recovery_cp += rs->dev[0].rdev.data_offset; 2708 2709 /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */ 2710 rdev_for_each(rdev, &rs->md) { 2711 if (!test_bit(Journal, &rdev->flags)) { 2712 rdev->data_offset = data_offset; 2713 rdev->new_data_offset = new_data_offset; 2714 } 2715 } 2716 2717 return 0; 2718 } 2719 2720 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */ 2721 static void __reorder_raid_disk_indexes(struct raid_set *rs) 2722 { 2723 int i = 0; 2724 struct md_rdev *rdev; 2725 2726 rdev_for_each(rdev, &rs->md) { 2727 if (!test_bit(Journal, &rdev->flags)) { 2728 rdev->raid_disk = i++; 2729 rdev->saved_raid_disk = rdev->new_raid_disk = -1; 2730 } 2731 } 2732 } 2733 2734 /* 2735 * Setup @rs for takeover by a different raid level 2736 */ 2737 static int rs_setup_takeover(struct raid_set *rs) 2738 { 2739 struct mddev *mddev = &rs->md; 2740 struct md_rdev *rdev; 2741 unsigned int d = mddev->raid_disks = rs->raid_disks; 2742 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset; 2743 2744 if (rt_is_raid10(rs->raid_type)) { 2745 if (rs_is_raid0(rs)) { 2746 /* Userpace reordered disks -> adjust raid_disk indexes */ 2747 __reorder_raid_disk_indexes(rs); 2748 2749 /* raid0 -> raid10_far layout */ 2750 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR, 2751 rs->raid10_copies); 2752 } else if (rs_is_raid1(rs)) 2753 /* raid1 -> raid10_near layout */ 2754 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, 2755 rs->raid_disks); 2756 else 2757 return -EINVAL; 2758 2759 } 2760 2761 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2762 mddev->recovery_cp = MaxSector; 2763 2764 while (d--) { 2765 rdev = &rs->dev[d].rdev; 2766 2767 if (test_bit(d, (void *) rs->rebuild_disks)) { 2768 clear_bit(In_sync, &rdev->flags); 2769 clear_bit(Faulty, &rdev->flags); 2770 mddev->recovery_cp = rdev->recovery_offset = 0; 2771 /* Bitmap has to be created when we do an "up" takeover */ 2772 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); 2773 } 2774 2775 rdev->new_data_offset = new_data_offset; 2776 } 2777 2778 return 0; 2779 } 2780 2781 /* Prepare @rs for reshape */ 2782 static int rs_prepare_reshape(struct raid_set *rs) 2783 { 2784 bool reshape; 2785 struct mddev *mddev = &rs->md; 2786 2787 if (rs_is_raid10(rs)) { 2788 if (rs->raid_disks != mddev->raid_disks && 2789 __is_raid10_near(mddev->layout) && 2790 rs->raid10_copies && 2791 rs->raid10_copies != __raid10_near_copies(mddev->layout)) { 2792 /* 2793 * raid disk have to be multiple of data copies to allow this conversion, 2794 * 2795 * This is actually not a reshape it is a 2796 * rebuild of any additional mirrors per group 2797 */ 2798 if (rs->raid_disks % rs->raid10_copies) { 2799 rs->ti->error = "Can't reshape raid10 mirror groups"; 2800 return -EINVAL; 2801 } 2802 2803 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */ 2804 __reorder_raid_disk_indexes(rs); 2805 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, 2806 rs->raid10_copies); 2807 mddev->new_layout = mddev->layout; 2808 reshape = false; 2809 } else 2810 reshape = true; 2811 2812 } else if (rs_is_raid456(rs)) 2813 reshape = true; 2814 2815 else if (rs_is_raid1(rs)) { 2816 if (rs->delta_disks) { 2817 /* Process raid1 via delta_disks */ 2818 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks; 2819 reshape = true; 2820 } else { 2821 /* Process raid1 without delta_disks */ 2822 mddev->raid_disks = rs->raid_disks; 2823 reshape = false; 2824 } 2825 } else { 2826 rs->ti->error = "Called with bogus raid type"; 2827 return -EINVAL; 2828 } 2829 2830 if (reshape) { 2831 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags); 2832 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2833 } else if (mddev->raid_disks < rs->raid_disks) 2834 /* Create new superblocks and bitmaps, if any new disks */ 2835 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 2836 2837 return 0; 2838 } 2839 2840 /* 2841 * Reshape: 2842 * - change raid layout 2843 * - change chunk size 2844 * - add disks 2845 * - remove disks 2846 */ 2847 static int rs_setup_reshape(struct raid_set *rs) 2848 { 2849 int r = 0; 2850 unsigned int cur_raid_devs, d; 2851 sector_t reshape_sectors = _get_reshape_sectors(rs); 2852 struct mddev *mddev = &rs->md; 2853 struct md_rdev *rdev; 2854 2855 mddev->delta_disks = rs->delta_disks; 2856 cur_raid_devs = mddev->raid_disks; 2857 2858 /* Ignore impossible layout change whilst adding/removing disks */ 2859 if (mddev->delta_disks && 2860 mddev->layout != mddev->new_layout) { 2861 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks); 2862 mddev->new_layout = mddev->layout; 2863 } 2864 2865 /* 2866 * Adjust array size: 2867 * 2868 * - in case of adding disk(s), array size has 2869 * to grow after the disk adding reshape, 2870 * which'll happen in the event handler; 2871 * reshape will happen forward, so space has to 2872 * be available at the beginning of each disk 2873 * 2874 * - in case of removing disk(s), array size 2875 * has to shrink before starting the reshape, 2876 * which'll happen here; 2877 * reshape will happen backward, so space has to 2878 * be available at the end of each disk 2879 * 2880 * - data_offset and new_data_offset are 2881 * adjusted for aforementioned out of place 2882 * reshaping based on userspace passing in 2883 * the "data_offset <sectors>" key/value 2884 * pair via the constructor 2885 */ 2886 2887 /* Add disk(s) */ 2888 if (rs->delta_disks > 0) { 2889 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */ 2890 for (d = cur_raid_devs; d < rs->raid_disks; d++) { 2891 rdev = &rs->dev[d].rdev; 2892 clear_bit(In_sync, &rdev->flags); 2893 2894 /* 2895 * save_raid_disk needs to be -1, or recovery_offset will be set to 0 2896 * by md, which'll store that erroneously in the superblock on reshape 2897 */ 2898 rdev->saved_raid_disk = -1; 2899 rdev->raid_disk = d; 2900 2901 rdev->sectors = mddev->dev_sectors; 2902 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector; 2903 } 2904 2905 mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */ 2906 2907 /* Remove disk(s) */ 2908 } else if (rs->delta_disks < 0) { 2909 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true); 2910 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */ 2911 2912 /* Change layout and/or chunk size */ 2913 } else { 2914 /* 2915 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size: 2916 * 2917 * keeping number of disks and do layout change -> 2918 * 2919 * toggle reshape_backward depending on data_offset: 2920 * 2921 * - free space upfront -> reshape forward 2922 * 2923 * - free space at the end -> reshape backward 2924 * 2925 * 2926 * This utilizes free reshape space avoiding the need 2927 * for userspace to move (parts of) LV segments in 2928 * case of layout/chunksize change (for disk 2929 * adding/removing reshape space has to be at 2930 * the proper address (see above with delta_disks): 2931 * 2932 * add disk(s) -> begin 2933 * remove disk(s)-> end 2934 */ 2935 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1; 2936 } 2937 2938 /* 2939 * Adjust device size for forward reshape 2940 * because md_finish_reshape() reduces it. 2941 */ 2942 if (!mddev->reshape_backwards) 2943 rdev_for_each(rdev, &rs->md) 2944 if (!test_bit(Journal, &rdev->flags)) 2945 rdev->sectors += reshape_sectors; 2946 2947 return r; 2948 } 2949 2950 /* 2951 * If the md resync thread has updated superblock with max reshape position 2952 * at the end of a reshape but not (yet) reset the layout configuration 2953 * changes -> reset the latter. 2954 */ 2955 static void rs_reset_inconclusive_reshape(struct raid_set *rs) 2956 { 2957 if (!rs_is_reshaping(rs) && rs_is_layout_change(rs, true)) { 2958 rs_set_cur(rs); 2959 rs->md.delta_disks = 0; 2960 rs->md.reshape_backwards = 0; 2961 } 2962 } 2963 2964 /* 2965 * Enable/disable discard support on RAID set depending on 2966 * RAID level and discard properties of underlying RAID members. 2967 */ 2968 static void configure_discard_support(struct raid_set *rs) 2969 { 2970 int i; 2971 bool raid456; 2972 struct dm_target *ti = rs->ti; 2973 2974 /* 2975 * XXX: RAID level 4,5,6 require zeroing for safety. 2976 */ 2977 raid456 = rs_is_raid456(rs); 2978 2979 for (i = 0; i < rs->raid_disks; i++) { 2980 if (!rs->dev[i].rdev.bdev || 2981 !bdev_max_discard_sectors(rs->dev[i].rdev.bdev)) 2982 return; 2983 2984 if (raid456) { 2985 if (!devices_handle_discard_safely) { 2986 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty."); 2987 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override."); 2988 return; 2989 } 2990 } 2991 } 2992 2993 ti->num_discard_bios = 1; 2994 } 2995 2996 /* 2997 * Construct a RAID0/1/10/4/5/6 mapping: 2998 * Args: 2999 * <raid_type> <#raid_params> <raid_params>{0,} \ 3000 * <#raid_devs> [<meta_dev1> <dev1>]{1,} 3001 * 3002 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for 3003 * details on possible <raid_params>. 3004 * 3005 * Userspace is free to initialize the metadata devices, hence the superblocks to 3006 * enforce recreation based on the passed in table parameters. 3007 * 3008 */ 3009 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv) 3010 { 3011 int r; 3012 bool resize = false; 3013 struct raid_type *rt; 3014 unsigned int num_raid_params, num_raid_devs; 3015 sector_t sb_array_sectors, rdev_sectors, reshape_sectors; 3016 struct raid_set *rs = NULL; 3017 const char *arg; 3018 struct rs_layout rs_layout; 3019 struct dm_arg_set as = { argc, argv }, as_nrd; 3020 struct dm_arg _args[] = { 3021 { 0, as.argc, "Cannot understand number of raid parameters" }, 3022 { 1, 254, "Cannot understand number of raid devices parameters" } 3023 }; 3024 3025 arg = dm_shift_arg(&as); 3026 if (!arg) { 3027 ti->error = "No arguments"; 3028 return -EINVAL; 3029 } 3030 3031 rt = get_raid_type(arg); 3032 if (!rt) { 3033 ti->error = "Unrecognised raid_type"; 3034 return -EINVAL; 3035 } 3036 3037 /* Must have <#raid_params> */ 3038 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error)) 3039 return -EINVAL; 3040 3041 /* number of raid device tupples <meta_dev data_dev> */ 3042 as_nrd = as; 3043 dm_consume_args(&as_nrd, num_raid_params); 3044 _args[1].max = (as_nrd.argc - 1) / 2; 3045 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error)) 3046 return -EINVAL; 3047 3048 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) { 3049 ti->error = "Invalid number of supplied raid devices"; 3050 return -EINVAL; 3051 } 3052 3053 rs = raid_set_alloc(ti, rt, num_raid_devs); 3054 if (IS_ERR(rs)) 3055 return PTR_ERR(rs); 3056 3057 r = parse_raid_params(rs, &as, num_raid_params); 3058 if (r) 3059 goto bad; 3060 3061 r = parse_dev_params(rs, &as); 3062 if (r) 3063 goto bad; 3064 3065 rs->md.sync_super = super_sync; 3066 3067 /* 3068 * Calculate ctr requested array and device sizes to allow 3069 * for superblock analysis needing device sizes defined. 3070 * 3071 * Any existing superblock will overwrite the array and device sizes 3072 */ 3073 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false); 3074 if (r) 3075 goto bad; 3076 3077 /* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */ 3078 rs->array_sectors = rs->md.array_sectors; 3079 rs->dev_sectors = rs->md.dev_sectors; 3080 3081 /* 3082 * Backup any new raid set level, layout, ... 3083 * requested to be able to compare to superblock 3084 * members for conversion decisions. 3085 */ 3086 rs_config_backup(rs, &rs_layout); 3087 3088 r = analyse_superblocks(ti, rs); 3089 if (r) 3090 goto bad; 3091 3092 /* All in-core metadata now as of current superblocks after calling analyse_superblocks() */ 3093 sb_array_sectors = rs->md.array_sectors; 3094 rdev_sectors = __rdev_sectors(rs); 3095 if (!rdev_sectors) { 3096 ti->error = "Invalid rdev size"; 3097 r = -EINVAL; 3098 goto bad; 3099 } 3100 3101 3102 reshape_sectors = _get_reshape_sectors(rs); 3103 if (rs->dev_sectors != rdev_sectors) { 3104 resize = (rs->dev_sectors != rdev_sectors - reshape_sectors); 3105 if (rs->dev_sectors > rdev_sectors - reshape_sectors) 3106 set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3107 } 3108 3109 INIT_WORK(&rs->md.event_work, do_table_event); 3110 ti->private = rs; 3111 ti->num_flush_bios = 1; 3112 ti->needs_bio_set_dev = true; 3113 3114 /* Restore any requested new layout for conversion decision */ 3115 rs_config_restore(rs, &rs_layout); 3116 3117 /* 3118 * Now that we have any superblock metadata available, 3119 * check for new, recovering, reshaping, to be taken over, 3120 * to be reshaped or an existing, unchanged raid set to 3121 * run in sequence. 3122 */ 3123 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) { 3124 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */ 3125 if (rs_is_raid6(rs) && 3126 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { 3127 ti->error = "'nosync' not allowed for new raid6 set"; 3128 r = -EINVAL; 3129 goto bad; 3130 } 3131 rs_setup_recovery(rs, 0); 3132 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3133 rs_set_new(rs); 3134 } else if (rs_is_recovering(rs)) { 3135 /* A recovering raid set may be resized */ 3136 goto size_check; 3137 } else if (rs_is_reshaping(rs)) { 3138 /* Have to reject size change request during reshape */ 3139 if (resize) { 3140 ti->error = "Can't resize a reshaping raid set"; 3141 r = -EPERM; 3142 goto bad; 3143 } 3144 /* skip setup rs */ 3145 } else if (rs_takeover_requested(rs)) { 3146 if (rs_is_reshaping(rs)) { 3147 ti->error = "Can't takeover a reshaping raid set"; 3148 r = -EPERM; 3149 goto bad; 3150 } 3151 3152 /* We can't takeover a journaled raid4/5/6 */ 3153 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 3154 ti->error = "Can't takeover a journaled raid4/5/6 set"; 3155 r = -EPERM; 3156 goto bad; 3157 } 3158 3159 /* 3160 * If a takeover is needed, userspace sets any additional 3161 * devices to rebuild and we can check for a valid request here. 3162 * 3163 * If acceptable, set the level to the new requested 3164 * one, prohibit requesting recovery, allow the raid 3165 * set to run and store superblocks during resume. 3166 */ 3167 r = rs_check_takeover(rs); 3168 if (r) 3169 goto bad; 3170 3171 r = rs_setup_takeover(rs); 3172 if (r) 3173 goto bad; 3174 3175 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3176 /* Takeover ain't recovery, so disable recovery */ 3177 rs_setup_recovery(rs, MaxSector); 3178 rs_set_new(rs); 3179 } else if (rs_reshape_requested(rs)) { 3180 /* Only request grow on raid set size extensions, not on reshapes. */ 3181 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3182 3183 /* 3184 * No need to check for 'ongoing' takeover here, because takeover 3185 * is an instant operation as oposed to an ongoing reshape. 3186 */ 3187 3188 /* We can't reshape a journaled raid4/5/6 */ 3189 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) { 3190 ti->error = "Can't reshape a journaled raid4/5/6 set"; 3191 r = -EPERM; 3192 goto bad; 3193 } 3194 3195 /* Out-of-place space has to be available to allow for a reshape unless raid1! */ 3196 if (reshape_sectors || rs_is_raid1(rs)) { 3197 /* 3198 * We can only prepare for a reshape here, because the 3199 * raid set needs to run to provide the repective reshape 3200 * check functions via its MD personality instance. 3201 * 3202 * So do the reshape check after md_run() succeeded. 3203 */ 3204 r = rs_prepare_reshape(rs); 3205 if (r) 3206 goto bad; 3207 3208 /* Reshaping ain't recovery, so disable recovery */ 3209 rs_setup_recovery(rs, MaxSector); 3210 } 3211 rs_set_cur(rs); 3212 } else { 3213 size_check: 3214 /* May not set recovery when a device rebuild is requested */ 3215 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) { 3216 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags); 3217 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3218 rs_setup_recovery(rs, MaxSector); 3219 } else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) { 3220 /* 3221 * Set raid set to current size, i.e. size as of 3222 * superblocks to grow to larger size in preresume. 3223 */ 3224 r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false); 3225 if (r) 3226 goto bad; 3227 3228 rs_setup_recovery(rs, rs->md.recovery_cp < rs->md.dev_sectors ? rs->md.recovery_cp : rs->md.dev_sectors); 3229 } else { 3230 /* This is no size change or it is shrinking, update size and record in superblocks */ 3231 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false); 3232 if (r) 3233 goto bad; 3234 3235 if (sb_array_sectors > rs->array_sectors) 3236 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); 3237 } 3238 rs_set_cur(rs); 3239 } 3240 3241 /* If constructor requested it, change data and new_data offsets */ 3242 r = rs_adjust_data_offsets(rs); 3243 if (r) 3244 goto bad; 3245 3246 /* Catch any inconclusive reshape superblock content. */ 3247 rs_reset_inconclusive_reshape(rs); 3248 3249 /* Start raid set read-only and assumed clean to change in raid_resume() */ 3250 rs->md.ro = 1; 3251 rs->md.in_sync = 1; 3252 3253 /* Has to be held on running the array */ 3254 mddev_suspend_and_lock_nointr(&rs->md); 3255 3256 /* Keep array frozen until resume. */ 3257 md_frozen_sync_thread(&rs->md); 3258 3259 r = md_run(&rs->md); 3260 rs->md.in_sync = 0; /* Assume already marked dirty */ 3261 if (r) { 3262 ti->error = "Failed to run raid array"; 3263 mddev_unlock(&rs->md); 3264 goto bad; 3265 } 3266 3267 r = md_start(&rs->md); 3268 if (r) { 3269 ti->error = "Failed to start raid array"; 3270 goto bad_unlock; 3271 } 3272 3273 /* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */ 3274 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) { 3275 r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode); 3276 if (r) { 3277 ti->error = "Failed to set raid4/5/6 journal mode"; 3278 goto bad_unlock; 3279 } 3280 } 3281 3282 set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags); 3283 3284 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */ 3285 if (rs_is_raid456(rs)) { 3286 r = rs_set_raid456_stripe_cache(rs); 3287 if (r) 3288 goto bad_unlock; 3289 } 3290 3291 /* Now do an early reshape check */ 3292 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { 3293 r = rs_check_reshape(rs); 3294 if (r) 3295 goto bad_unlock; 3296 3297 /* Restore new, ctr requested layout to perform check */ 3298 rs_config_restore(rs, &rs_layout); 3299 3300 if (rs->md.pers->start_reshape) { 3301 r = rs->md.pers->check_reshape(&rs->md); 3302 if (r) { 3303 ti->error = "Reshape check failed"; 3304 goto bad_unlock; 3305 } 3306 } 3307 } 3308 3309 /* Disable/enable discard support on raid set. */ 3310 configure_discard_support(rs); 3311 3312 mddev_unlock(&rs->md); 3313 return 0; 3314 3315 bad_unlock: 3316 md_stop(&rs->md); 3317 mddev_unlock(&rs->md); 3318 bad: 3319 raid_set_free(rs); 3320 3321 return r; 3322 } 3323 3324 static void raid_dtr(struct dm_target *ti) 3325 { 3326 struct raid_set *rs = ti->private; 3327 3328 mddev_lock_nointr(&rs->md); 3329 md_stop(&rs->md); 3330 mddev_unlock(&rs->md); 3331 3332 if (work_pending(&rs->md.event_work)) 3333 flush_work(&rs->md.event_work); 3334 raid_set_free(rs); 3335 } 3336 3337 static int raid_map(struct dm_target *ti, struct bio *bio) 3338 { 3339 struct raid_set *rs = ti->private; 3340 struct mddev *mddev = &rs->md; 3341 3342 /* 3343 * If we're reshaping to add disk(s), ti->len and 3344 * mddev->array_sectors will differ during the process 3345 * (ti->len > mddev->array_sectors), so we have to requeue 3346 * bios with addresses > mddev->array_sectors here or 3347 * there will occur accesses past EOD of the component 3348 * data images thus erroring the raid set. 3349 */ 3350 if (unlikely(bio_has_data(bio) && bio_end_sector(bio) > mddev->array_sectors)) 3351 return DM_MAPIO_REQUEUE; 3352 3353 if (unlikely(!md_handle_request(mddev, bio))) 3354 return DM_MAPIO_REQUEUE; 3355 3356 return DM_MAPIO_SUBMITTED; 3357 } 3358 3359 /* Return sync state string for @state */ 3360 enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle }; 3361 static const char *sync_str(enum sync_state state) 3362 { 3363 /* Has to be in above sync_state order! */ 3364 static const char *sync_strs[] = { 3365 "frozen", 3366 "reshape", 3367 "resync", 3368 "check", 3369 "repair", 3370 "recover", 3371 "idle" 3372 }; 3373 3374 return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef"; 3375 }; 3376 3377 /* Return enum sync_state for @mddev derived from @recovery flags */ 3378 static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery) 3379 { 3380 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 3381 return st_frozen; 3382 3383 /* The MD sync thread can be done with io or be interrupted but still be running */ 3384 if (!test_bit(MD_RECOVERY_DONE, &recovery) && 3385 (test_bit(MD_RECOVERY_RUNNING, &recovery) || 3386 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) { 3387 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 3388 return st_reshape; 3389 3390 if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 3391 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 3392 return st_resync; 3393 if (test_bit(MD_RECOVERY_CHECK, &recovery)) 3394 return st_check; 3395 return st_repair; 3396 } 3397 3398 if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 3399 return st_recover; 3400 3401 if (mddev->reshape_position != MaxSector) 3402 return st_reshape; 3403 } 3404 3405 return st_idle; 3406 } 3407 3408 /* 3409 * Return status string for @rdev 3410 * 3411 * Status characters: 3412 * 3413 * 'D' = Dead/Failed raid set component or raid4/5/6 journal device 3414 * 'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device 3415 * 'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device 3416 * '-' = Non-existing device (i.e. uspace passed '- -' into the ctr) 3417 */ 3418 static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev) 3419 { 3420 if (!rdev->bdev) 3421 return "-"; 3422 else if (test_bit(Faulty, &rdev->flags)) 3423 return "D"; 3424 else if (test_bit(Journal, &rdev->flags)) 3425 return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a"; 3426 else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) || 3427 (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) && 3428 !test_bit(In_sync, &rdev->flags))) 3429 return "a"; 3430 else 3431 return "A"; 3432 } 3433 3434 /* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */ 3435 static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery, 3436 enum sync_state state, sector_t resync_max_sectors) 3437 { 3438 sector_t r; 3439 struct mddev *mddev = &rs->md; 3440 3441 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3442 clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3443 3444 if (rs_is_raid0(rs)) { 3445 r = resync_max_sectors; 3446 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3447 3448 } else { 3449 if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery)) 3450 r = mddev->recovery_cp; 3451 else 3452 r = mddev->curr_resync_completed; 3453 3454 if (state == st_idle && r >= resync_max_sectors) { 3455 /* 3456 * Sync complete. 3457 */ 3458 /* In case we have finished recovering, the array is in sync. */ 3459 if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 3460 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3461 3462 } else if (state == st_recover) 3463 /* 3464 * In case we are recovering, the array is not in sync 3465 * and health chars should show the recovering legs. 3466 * 3467 * Already retrieved recovery offset from curr_resync_completed above. 3468 */ 3469 ; 3470 3471 else if (state == st_resync || state == st_reshape) 3472 /* 3473 * If "resync/reshape" is occurring, the raid set 3474 * is or may be out of sync hence the health 3475 * characters shall be 'a'. 3476 */ 3477 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3478 3479 else if (state == st_check || state == st_repair) 3480 /* 3481 * If "check" or "repair" is occurring, the raid set has 3482 * undergone an initial sync and the health characters 3483 * should not be 'a' anymore. 3484 */ 3485 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3486 3487 else if (test_bit(MD_RECOVERY_NEEDED, &recovery)) 3488 /* 3489 * We are idle and recovery is needed, prevent 'A' chars race 3490 * caused by components still set to in-sync by constructor. 3491 */ 3492 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags); 3493 3494 else { 3495 /* 3496 * We are idle and the raid set may be doing an initial 3497 * sync, or it may be rebuilding individual components. 3498 * If all the devices are In_sync, then it is the raid set 3499 * that is being initialized. 3500 */ 3501 struct md_rdev *rdev; 3502 3503 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3504 rdev_for_each(rdev, mddev) 3505 if (!test_bit(Journal, &rdev->flags) && 3506 !test_bit(In_sync, &rdev->flags)) { 3507 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags); 3508 break; 3509 } 3510 } 3511 } 3512 3513 return min(r, resync_max_sectors); 3514 } 3515 3516 /* Helper to return @dev name or "-" if !@dev */ 3517 static const char *__get_dev_name(struct dm_dev *dev) 3518 { 3519 return dev ? dev->name : "-"; 3520 } 3521 3522 static void raid_status(struct dm_target *ti, status_type_t type, 3523 unsigned int status_flags, char *result, unsigned int maxlen) 3524 { 3525 struct raid_set *rs = ti->private; 3526 struct mddev *mddev = &rs->md; 3527 struct r5conf *conf = rs_is_raid456(rs) ? mddev->private : NULL; 3528 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0; 3529 unsigned long recovery; 3530 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */ 3531 unsigned int sz = 0; 3532 unsigned int rebuild_writemostly_count = 0; 3533 sector_t progress, resync_max_sectors, resync_mismatches; 3534 enum sync_state state; 3535 struct raid_type *rt; 3536 3537 switch (type) { 3538 case STATUSTYPE_INFO: 3539 /* *Should* always succeed */ 3540 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 3541 if (!rt) 3542 return; 3543 3544 DMEMIT("%s %d ", rt->name, mddev->raid_disks); 3545 3546 /* Access most recent mddev properties for status output */ 3547 smp_rmb(); 3548 /* Get sensible max sectors even if raid set not yet started */ 3549 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ? 3550 mddev->resync_max_sectors : mddev->dev_sectors; 3551 recovery = rs->md.recovery; 3552 state = decipher_sync_action(mddev, recovery); 3553 progress = rs_get_progress(rs, recovery, state, resync_max_sectors); 3554 resync_mismatches = mddev->last_sync_action == ACTION_CHECK ? 3555 atomic64_read(&mddev->resync_mismatches) : 0; 3556 3557 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */ 3558 for (i = 0; i < rs->raid_disks; i++) 3559 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev)); 3560 3561 /* 3562 * In-sync/Reshape ratio: 3563 * The in-sync ratio shows the progress of: 3564 * - Initializing the raid set 3565 * - Rebuilding a subset of devices of the raid set 3566 * The user can distinguish between the two by referring 3567 * to the status characters. 3568 * 3569 * The reshape ratio shows the progress of 3570 * changing the raid layout or the number of 3571 * disks of a raid set 3572 */ 3573 DMEMIT(" %llu/%llu", (unsigned long long) progress, 3574 (unsigned long long) resync_max_sectors); 3575 3576 /* 3577 * v1.5.0+: 3578 * 3579 * Sync action: 3580 * See Documentation/admin-guide/device-mapper/dm-raid.rst for 3581 * information on each of these states. 3582 */ 3583 DMEMIT(" %s", sync_str(state)); 3584 3585 /* 3586 * v1.5.0+: 3587 * 3588 * resync_mismatches/mismatch_cnt 3589 * This field shows the number of discrepancies found when 3590 * performing a "check" of the raid set. 3591 */ 3592 DMEMIT(" %llu", (unsigned long long) resync_mismatches); 3593 3594 /* 3595 * v1.9.0+: 3596 * 3597 * data_offset (needed for out of space reshaping) 3598 * This field shows the data offset into the data 3599 * image LV where the first stripes data starts. 3600 * 3601 * We keep data_offset equal on all raid disks of the set, 3602 * so retrieving it from the first raid disk is sufficient. 3603 */ 3604 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset); 3605 3606 /* 3607 * v1.10.0+: 3608 */ 3609 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ? 3610 __raid_dev_status(rs, &rs->journal_dev.rdev) : "-"); 3611 break; 3612 3613 case STATUSTYPE_TABLE: 3614 /* Report the table line string you would use to construct this raid set */ 3615 3616 /* 3617 * Count any rebuild or writemostly argument pairs and subtract the 3618 * hweight count being added below of any rebuild and writemostly ctr flags. 3619 */ 3620 for (i = 0; i < rs->raid_disks; i++) { 3621 rebuild_writemostly_count += (test_bit(i, (void *) rs->rebuild_disks) ? 2 : 0) + 3622 (test_bit(WriteMostly, &rs->dev[i].rdev.flags) ? 2 : 0); 3623 } 3624 rebuild_writemostly_count -= (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) ? 2 : 0) + 3625 (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags) ? 2 : 0); 3626 /* Calculate raid parameter count based on ^ rebuild/writemostly argument counts and ctr flags set. */ 3627 raid_param_cnt += rebuild_writemostly_count + 3628 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) + 3629 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2; 3630 /* Emit table line */ 3631 /* This has to be in the documented order for userspace! */ 3632 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors); 3633 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) 3634 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC)); 3635 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) 3636 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC)); 3637 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) 3638 for (i = 0; i < rs->raid_disks; i++) 3639 if (test_bit(i, (void *) rs->rebuild_disks)) 3640 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), i); 3641 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) 3642 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP), 3643 mddev->bitmap_info.daemon_sleep); 3644 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) 3645 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE), 3646 mddev->sync_speed_min); 3647 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) 3648 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE), 3649 mddev->sync_speed_max); 3650 if (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags)) 3651 for (i = 0; i < rs->raid_disks; i++) 3652 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags)) 3653 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY), 3654 rs->dev[i].rdev.raid_disk); 3655 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) 3656 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND), 3657 mddev->bitmap_info.max_write_behind); 3658 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) 3659 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE), 3660 max_nr_stripes); 3661 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) 3662 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE), 3663 (unsigned long long) to_sector(mddev->bitmap_info.chunksize)); 3664 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) 3665 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES), 3666 raid10_md_layout_to_copies(mddev->layout)); 3667 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) 3668 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT), 3669 raid10_md_layout_to_format(mddev->layout)); 3670 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) 3671 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS), 3672 max(rs->delta_disks, mddev->delta_disks)); 3673 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) 3674 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET), 3675 (unsigned long long) rs->data_offset); 3676 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) 3677 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV), 3678 __get_dev_name(rs->journal_dev.dev)); 3679 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) 3680 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE), 3681 md_journal_mode_to_dm_raid(rs->journal_dev.mode)); 3682 DMEMIT(" %d", rs->raid_disks); 3683 for (i = 0; i < rs->raid_disks; i++) 3684 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev), 3685 __get_dev_name(rs->dev[i].data_dev)); 3686 break; 3687 3688 case STATUSTYPE_IMA: 3689 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); 3690 if (!rt) 3691 return; 3692 3693 DMEMIT_TARGET_NAME_VERSION(ti->type); 3694 DMEMIT(",raid_type=%s,raid_disks=%d", rt->name, mddev->raid_disks); 3695 3696 /* Access most recent mddev properties for status output */ 3697 smp_rmb(); 3698 recovery = rs->md.recovery; 3699 state = decipher_sync_action(mddev, recovery); 3700 DMEMIT(",raid_state=%s", sync_str(state)); 3701 3702 for (i = 0; i < rs->raid_disks; i++) { 3703 DMEMIT(",raid_device_%d_status=", i); 3704 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev)); 3705 } 3706 3707 if (rt_is_raid456(rt)) { 3708 DMEMIT(",journal_dev_mode="); 3709 switch (rs->journal_dev.mode) { 3710 case R5C_JOURNAL_MODE_WRITE_THROUGH: 3711 DMEMIT("%s", 3712 _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_THROUGH].param); 3713 break; 3714 case R5C_JOURNAL_MODE_WRITE_BACK: 3715 DMEMIT("%s", 3716 _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_BACK].param); 3717 break; 3718 default: 3719 DMEMIT("invalid"); 3720 break; 3721 } 3722 } 3723 DMEMIT(";"); 3724 break; 3725 } 3726 } 3727 3728 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv, 3729 char *result, unsigned int maxlen) 3730 { 3731 struct raid_set *rs = ti->private; 3732 struct mddev *mddev = &rs->md; 3733 int ret = 0; 3734 3735 if (!mddev->pers || !mddev->pers->sync_request) 3736 return -EINVAL; 3737 3738 if (test_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags) || 3739 test_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags)) 3740 return -EBUSY; 3741 3742 if (!strcasecmp(argv[0], "frozen")) { 3743 ret = mddev_lock(mddev); 3744 if (ret) 3745 return ret; 3746 3747 md_frozen_sync_thread(mddev); 3748 mddev_unlock(mddev); 3749 } else if (!strcasecmp(argv[0], "idle")) { 3750 ret = mddev_lock(mddev); 3751 if (ret) 3752 return ret; 3753 3754 md_idle_sync_thread(mddev); 3755 mddev_unlock(mddev); 3756 } 3757 3758 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3759 if (decipher_sync_action(mddev, mddev->recovery) != st_idle) 3760 return -EBUSY; 3761 else if (!strcasecmp(argv[0], "resync")) 3762 ; /* MD_RECOVERY_NEEDED set below */ 3763 else if (!strcasecmp(argv[0], "recover")) 3764 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3765 else { 3766 if (!strcasecmp(argv[0], "check")) { 3767 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3768 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3769 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3770 } else if (!strcasecmp(argv[0], "repair")) { 3771 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3772 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3773 } else 3774 return -EINVAL; 3775 } 3776 if (mddev->ro == 2) { 3777 /* A write to sync_action is enough to justify 3778 * canceling read-auto mode 3779 */ 3780 mddev->ro = 0; 3781 if (!mddev->suspended) 3782 md_wakeup_thread(mddev->sync_thread); 3783 } 3784 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3785 if (!mddev->suspended) 3786 md_wakeup_thread(mddev->thread); 3787 3788 return 0; 3789 } 3790 3791 static int raid_iterate_devices(struct dm_target *ti, 3792 iterate_devices_callout_fn fn, void *data) 3793 { 3794 struct raid_set *rs = ti->private; 3795 unsigned int i; 3796 int r = 0; 3797 3798 for (i = 0; !r && i < rs->raid_disks; i++) { 3799 if (rs->dev[i].data_dev) { 3800 r = fn(ti, rs->dev[i].data_dev, 3801 0, /* No offset on data devs */ 3802 rs->md.dev_sectors, data); 3803 } 3804 } 3805 3806 return r; 3807 } 3808 3809 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits) 3810 { 3811 struct raid_set *rs = ti->private; 3812 unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors); 3813 3814 limits->io_min = chunk_size_bytes; 3815 limits->io_opt = chunk_size_bytes * mddev_data_stripes(rs); 3816 } 3817 3818 static void raid_presuspend(struct dm_target *ti) 3819 { 3820 struct raid_set *rs = ti->private; 3821 struct mddev *mddev = &rs->md; 3822 3823 /* 3824 * From now on, disallow raid_message() to change sync_thread until 3825 * resume, raid_postsuspend() is too late. 3826 */ 3827 set_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags); 3828 3829 if (!reshape_interrupted(mddev)) 3830 return; 3831 3832 /* 3833 * For raid456, if reshape is interrupted, IO across reshape position 3834 * will never make progress, while caller will wait for IO to be done. 3835 * Inform raid456 to handle those IO to prevent deadlock. 3836 */ 3837 if (mddev->pers && mddev->pers->prepare_suspend) 3838 mddev->pers->prepare_suspend(mddev); 3839 } 3840 3841 static void raid_presuspend_undo(struct dm_target *ti) 3842 { 3843 struct raid_set *rs = ti->private; 3844 3845 clear_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags); 3846 } 3847 3848 static void raid_postsuspend(struct dm_target *ti) 3849 { 3850 struct raid_set *rs = ti->private; 3851 3852 if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) { 3853 /* 3854 * sync_thread must be stopped during suspend, and writes have 3855 * to be stopped before suspending to avoid deadlocks. 3856 */ 3857 md_stop_writes(&rs->md); 3858 mddev_suspend(&rs->md, false); 3859 } 3860 } 3861 3862 static void attempt_restore_of_faulty_devices(struct raid_set *rs) 3863 { 3864 int i; 3865 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS]; 3866 unsigned long flags; 3867 bool cleared = false; 3868 struct dm_raid_superblock *sb; 3869 struct mddev *mddev = &rs->md; 3870 struct md_rdev *r; 3871 3872 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */ 3873 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk) 3874 return; 3875 3876 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices)); 3877 3878 for (i = 0; i < rs->raid_disks; i++) { 3879 r = &rs->dev[i].rdev; 3880 /* HM FIXME: enhance journal device recovery processing */ 3881 if (test_bit(Journal, &r->flags)) 3882 continue; 3883 3884 if (test_bit(Faulty, &r->flags) && 3885 r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) { 3886 DMINFO("Faulty %s device #%d has readable super block." 3887 " Attempting to revive it.", 3888 rs->raid_type->name, i); 3889 3890 /* 3891 * Faulty bit may be set, but sometimes the array can 3892 * be suspended before the personalities can respond 3893 * by removing the device from the array (i.e. calling 3894 * 'hot_remove_disk'). If they haven't yet removed 3895 * the failed device, its 'raid_disk' number will be 3896 * '>= 0' - meaning we must call this function 3897 * ourselves. 3898 */ 3899 flags = r->flags; 3900 clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */ 3901 if (r->raid_disk >= 0) { 3902 if (mddev->pers->hot_remove_disk(mddev, r)) { 3903 /* Failed to revive this device, try next */ 3904 r->flags = flags; 3905 continue; 3906 } 3907 } else 3908 r->raid_disk = r->saved_raid_disk = i; 3909 3910 clear_bit(Faulty, &r->flags); 3911 clear_bit(WriteErrorSeen, &r->flags); 3912 3913 if (mddev->pers->hot_add_disk(mddev, r)) { 3914 /* Failed to revive this device, try next */ 3915 r->raid_disk = r->saved_raid_disk = -1; 3916 r->flags = flags; 3917 } else { 3918 clear_bit(In_sync, &r->flags); 3919 r->recovery_offset = 0; 3920 set_bit(i, (void *) cleared_failed_devices); 3921 cleared = true; 3922 } 3923 } 3924 } 3925 3926 /* If any failed devices could be cleared, update all sbs failed_devices bits */ 3927 if (cleared) { 3928 uint64_t failed_devices[DISKS_ARRAY_ELEMS]; 3929 3930 rdev_for_each(r, &rs->md) { 3931 if (test_bit(Journal, &r->flags)) 3932 continue; 3933 3934 sb = page_address(r->sb_page); 3935 sb_retrieve_failed_devices(sb, failed_devices); 3936 3937 for (i = 0; i < DISKS_ARRAY_ELEMS; i++) 3938 failed_devices[i] &= ~cleared_failed_devices[i]; 3939 3940 sb_update_failed_devices(sb, failed_devices); 3941 } 3942 } 3943 } 3944 3945 static int __load_dirty_region_bitmap(struct raid_set *rs) 3946 { 3947 int r = 0; 3948 3949 /* Try loading the bitmap unless "raid0", which does not have one */ 3950 if (!rs_is_raid0(rs) && 3951 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) { 3952 struct mddev *mddev = &rs->md; 3953 3954 r = mddev->bitmap_ops->load(mddev); 3955 if (r) 3956 DMERR("Failed to load bitmap"); 3957 } 3958 3959 return r; 3960 } 3961 3962 /* Enforce updating all superblocks */ 3963 static void rs_update_sbs(struct raid_set *rs) 3964 { 3965 struct mddev *mddev = &rs->md; 3966 int ro = mddev->ro; 3967 3968 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3969 mddev->ro = 0; 3970 md_update_sb(mddev, 1); 3971 mddev->ro = ro; 3972 } 3973 3974 /* 3975 * Reshape changes raid algorithm of @rs to new one within personality 3976 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes 3977 * disks from a raid set thus growing/shrinking it or resizes the set 3978 * 3979 * Call mddev_lock_nointr() before! 3980 */ 3981 static int rs_start_reshape(struct raid_set *rs) 3982 { 3983 int r; 3984 struct mddev *mddev = &rs->md; 3985 struct md_personality *pers = mddev->pers; 3986 3987 /* Don't allow the sync thread to work until the table gets reloaded. */ 3988 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 3989 3990 r = rs_setup_reshape(rs); 3991 if (r) 3992 return r; 3993 3994 /* 3995 * Check any reshape constraints enforced by the personalility 3996 * 3997 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional. 3998 */ 3999 r = pers->check_reshape(mddev); 4000 if (r) { 4001 rs->ti->error = "pers->check_reshape() failed"; 4002 return r; 4003 } 4004 4005 /* 4006 * Personality may not provide start reshape method in which 4007 * case check_reshape above has already covered everything 4008 */ 4009 if (pers->start_reshape) { 4010 r = pers->start_reshape(mddev); 4011 if (r) { 4012 rs->ti->error = "pers->start_reshape() failed"; 4013 return r; 4014 } 4015 } 4016 4017 /* 4018 * Now reshape got set up, update superblocks to 4019 * reflect the fact so that a table reload will 4020 * access proper superblock content in the ctr. 4021 */ 4022 rs_update_sbs(rs); 4023 4024 return 0; 4025 } 4026 4027 static int raid_preresume(struct dm_target *ti) 4028 { 4029 int r; 4030 struct raid_set *rs = ti->private; 4031 struct mddev *mddev = &rs->md; 4032 4033 /* This is a resume after a suspend of the set -> it's already started. */ 4034 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags)) 4035 return 0; 4036 4037 /* If different and no explicit grow request, expose MD array size as of superblock. */ 4038 if (!test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) && 4039 rs->array_sectors != mddev->array_sectors) 4040 rs_set_capacity(rs); 4041 4042 /* 4043 * The superblocks need to be updated on disk if the 4044 * array is new or new devices got added (thus zeroed 4045 * out by userspace) or __load_dirty_region_bitmap 4046 * will overwrite them in core with old data or fail. 4047 */ 4048 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags)) 4049 rs_update_sbs(rs); 4050 4051 /* Load the bitmap from disk unless raid0 */ 4052 r = __load_dirty_region_bitmap(rs); 4053 if (r) 4054 return r; 4055 4056 /* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */ 4057 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) { 4058 mddev->array_sectors = rs->array_sectors; 4059 mddev->dev_sectors = rs->dev_sectors; 4060 rs_set_rdev_sectors(rs); 4061 rs_set_capacity(rs); 4062 } 4063 4064 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */ 4065 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap && 4066 (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) || 4067 (rs->requested_bitmap_chunk_sectors && 4068 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) { 4069 int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize; 4070 4071 r = mddev->bitmap_ops->resize(mddev, mddev->dev_sectors, 4072 chunksize, false); 4073 if (r) 4074 DMERR("Failed to resize bitmap"); 4075 } 4076 4077 /* Check for any resize/reshape on @rs and adjust/initiate */ 4078 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) { 4079 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4080 mddev->resync_min = mddev->recovery_cp; 4081 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) 4082 mddev->resync_max_sectors = mddev->dev_sectors; 4083 } 4084 4085 /* Check for any reshape request unless new raid set */ 4086 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { 4087 /* Initiate a reshape. */ 4088 rs_set_rdev_sectors(rs); 4089 mddev_lock_nointr(mddev); 4090 r = rs_start_reshape(rs); 4091 mddev_unlock(mddev); 4092 if (r) 4093 DMWARN("Failed to check/start reshape, continuing without change"); 4094 r = 0; 4095 } 4096 4097 return r; 4098 } 4099 4100 static void raid_resume(struct dm_target *ti) 4101 { 4102 struct raid_set *rs = ti->private; 4103 struct mddev *mddev = &rs->md; 4104 4105 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) { 4106 /* 4107 * A secondary resume while the device is active. 4108 * Take this opportunity to check whether any failed 4109 * devices are reachable again. 4110 */ 4111 mddev_lock_nointr(mddev); 4112 attempt_restore_of_faulty_devices(rs); 4113 mddev_unlock(mddev); 4114 } 4115 4116 if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) { 4117 /* Only reduce raid set size before running a disk removing reshape. */ 4118 if (mddev->delta_disks < 0) 4119 rs_set_capacity(rs); 4120 4121 mddev_lock_nointr(mddev); 4122 WARN_ON_ONCE(!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)); 4123 WARN_ON_ONCE(rcu_dereference_protected(mddev->sync_thread, 4124 lockdep_is_held(&mddev->reconfig_mutex))); 4125 clear_bit(RT_FLAG_RS_FROZEN, &rs->runtime_flags); 4126 mddev->ro = 0; 4127 mddev->in_sync = 0; 4128 md_unfrozen_sync_thread(mddev); 4129 mddev_unlock_and_resume(mddev); 4130 } 4131 } 4132 4133 static struct target_type raid_target = { 4134 .name = "raid", 4135 .version = {1, 15, 1}, 4136 .module = THIS_MODULE, 4137 .ctr = raid_ctr, 4138 .dtr = raid_dtr, 4139 .map = raid_map, 4140 .status = raid_status, 4141 .message = raid_message, 4142 .iterate_devices = raid_iterate_devices, 4143 .io_hints = raid_io_hints, 4144 .presuspend = raid_presuspend, 4145 .presuspend_undo = raid_presuspend_undo, 4146 .postsuspend = raid_postsuspend, 4147 .preresume = raid_preresume, 4148 .resume = raid_resume, 4149 }; 4150 module_dm(raid); 4151 4152 module_param(devices_handle_discard_safely, bool, 0644); 4153 MODULE_PARM_DESC(devices_handle_discard_safely, 4154 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 4155 4156 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target"); 4157 MODULE_ALIAS("dm-raid0"); 4158 MODULE_ALIAS("dm-raid1"); 4159 MODULE_ALIAS("dm-raid10"); 4160 MODULE_ALIAS("dm-raid4"); 4161 MODULE_ALIAS("dm-raid5"); 4162 MODULE_ALIAS("dm-raid6"); 4163 MODULE_AUTHOR("Neil Brown <dm-devel@lists.linux.dev>"); 4164 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@lists.linux.dev>"); 4165 MODULE_LICENSE("GPL"); 4166