1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 #include "cache.h"
4 #include "backing_dev.h"
5 #include "cache_dev.h"
6 #include "dm_pcache.h"
7
cache_data_head_init(struct pcache_cache * cache)8 static int cache_data_head_init(struct pcache_cache *cache)
9 {
10 struct pcache_cache_segment *next_seg;
11 struct pcache_cache_data_head *data_head;
12
13 data_head = get_data_head(cache);
14 next_seg = get_cache_segment(cache);
15 if (!next_seg)
16 return -EBUSY;
17
18 cache_seg_get(next_seg);
19 data_head->head_pos.cache_seg = next_seg;
20 data_head->head_pos.seg_off = 0;
21
22 return 0;
23 }
24
25 /**
26 * cache_data_alloc - Allocate data for a cache key.
27 * @cache: Pointer to the cache structure.
28 * @key: Pointer to the cache key to allocate data for.
29 *
30 * This function tries to allocate space from the cache segment specified by the
31 * data head. If the remaining space in the segment is insufficient to allocate
32 * the requested length for the cache key, it will allocate whatever is available
33 * and adjust the key's length accordingly. This function does not allocate
34 * space that crosses segment boundaries.
35 */
cache_data_alloc(struct pcache_cache * cache,struct pcache_cache_key * key)36 static int cache_data_alloc(struct pcache_cache *cache, struct pcache_cache_key *key)
37 {
38 struct pcache_cache_data_head *data_head;
39 struct pcache_cache_pos *head_pos;
40 struct pcache_cache_segment *cache_seg;
41 u32 seg_remain;
42 u32 allocated = 0, to_alloc;
43 int ret = 0;
44
45 preempt_disable();
46 data_head = get_data_head(cache);
47 again:
48 to_alloc = key->len - allocated;
49 if (!data_head->head_pos.cache_seg) {
50 seg_remain = 0;
51 } else {
52 cache_pos_copy(&key->cache_pos, &data_head->head_pos);
53 key->seg_gen = key->cache_pos.cache_seg->gen;
54
55 head_pos = &data_head->head_pos;
56 cache_seg = head_pos->cache_seg;
57 seg_remain = cache_seg_remain(head_pos);
58 }
59
60 if (seg_remain > to_alloc) {
61 /* If remaining space in segment is sufficient for the cache key, allocate it. */
62 cache_pos_advance(head_pos, to_alloc);
63 allocated += to_alloc;
64 cache_seg_get(cache_seg);
65 } else if (seg_remain) {
66 /* If remaining space is not enough, allocate the remaining space and adjust the cache key length. */
67 cache_pos_advance(head_pos, seg_remain);
68 key->len = seg_remain;
69
70 /* Get for key: obtain a reference to the cache segment for the key. */
71 cache_seg_get(cache_seg);
72 /* Put for head_pos->cache_seg: release the reference for the current head's segment. */
73 cache_seg_put(head_pos->cache_seg);
74 head_pos->cache_seg = NULL;
75 } else {
76 /* Initialize a new data head if no segment is available. */
77 ret = cache_data_head_init(cache);
78 if (ret)
79 goto out;
80
81 goto again;
82 }
83
84 out:
85 preempt_enable();
86
87 return ret;
88 }
89
cache_copy_from_req_bio(struct pcache_cache * cache,struct pcache_cache_key * key,struct pcache_request * pcache_req,u32 bio_off)90 static int cache_copy_from_req_bio(struct pcache_cache *cache, struct pcache_cache_key *key,
91 struct pcache_request *pcache_req, u32 bio_off)
92 {
93 struct pcache_cache_pos *pos = &key->cache_pos;
94 struct pcache_segment *segment;
95
96 segment = &pos->cache_seg->segment;
97
98 return segment_copy_from_bio(segment, pos->seg_off, key->len, pcache_req->bio, bio_off);
99 }
100
cache_copy_to_req_bio(struct pcache_cache * cache,struct pcache_request * pcache_req,u32 bio_off,u32 len,struct pcache_cache_pos * pos,u64 key_gen)101 static int cache_copy_to_req_bio(struct pcache_cache *cache, struct pcache_request *pcache_req,
102 u32 bio_off, u32 len, struct pcache_cache_pos *pos, u64 key_gen)
103 {
104 struct pcache_cache_segment *cache_seg = pos->cache_seg;
105 struct pcache_segment *segment = &cache_seg->segment;
106 int ret;
107
108 spin_lock(&cache_seg->gen_lock);
109 if (key_gen < cache_seg->gen) {
110 spin_unlock(&cache_seg->gen_lock);
111 return -EINVAL;
112 }
113
114 ret = segment_copy_to_bio(segment, pos->seg_off, len, pcache_req->bio, bio_off);
115 spin_unlock(&cache_seg->gen_lock);
116
117 return ret;
118 }
119
120 /**
121 * miss_read_end_req - Handle the end of a miss read request.
122 * @backing_req: Pointer to the request structure.
123 * @read_ret: Return value of read.
124 *
125 * This function is called when a backing request to read data from
126 * the backing_dev is completed. If the key associated with the request
127 * is empty (a placeholder), it allocates cache space for the key,
128 * copies the data read from the bio into the cache, and updates
129 * the key's status. If the key has been overwritten by a write
130 * request during this process, it will be deleted from the cache
131 * tree and no further action will be taken.
132 */
miss_read_end_req(struct pcache_backing_dev_req * backing_req,int read_ret)133 static void miss_read_end_req(struct pcache_backing_dev_req *backing_req, int read_ret)
134 {
135 void *priv_data = backing_req->priv_data;
136 struct pcache_request *pcache_req = backing_req->req.upper_req;
137 struct pcache_cache *cache = backing_req->backing_dev->cache;
138 int ret;
139
140 if (priv_data) {
141 struct pcache_cache_key *key;
142 struct pcache_cache_subtree *cache_subtree;
143
144 key = (struct pcache_cache_key *)priv_data;
145 cache_subtree = key->cache_subtree;
146
147 /* if this key was deleted from cache_subtree by a write, key->flags should be cleared,
148 * so if cache_key_empty() return true, this key is still in cache_subtree
149 */
150 spin_lock(&cache_subtree->tree_lock);
151 if (cache_key_empty(key)) {
152 /* Check if the backing request was successful. */
153 if (read_ret) {
154 cache_key_delete(key);
155 goto unlock;
156 }
157
158 /* Allocate cache space for the key and copy data from the backing_dev. */
159 ret = cache_data_alloc(cache, key);
160 if (ret) {
161 cache_key_delete(key);
162 goto unlock;
163 }
164
165 ret = cache_copy_from_req_bio(cache, key, pcache_req, backing_req->req.bio_off);
166 if (ret) {
167 cache_seg_put(key->cache_pos.cache_seg);
168 cache_key_delete(key);
169 goto unlock;
170 }
171 key->flags &= ~PCACHE_CACHE_KEY_FLAGS_EMPTY;
172 key->flags |= PCACHE_CACHE_KEY_FLAGS_CLEAN;
173
174 /* Append the key to the cache. */
175 ret = cache_key_append(cache, key, false);
176 if (ret) {
177 cache_seg_put(key->cache_pos.cache_seg);
178 cache_key_delete(key);
179 goto unlock;
180 }
181 }
182 unlock:
183 spin_unlock(&cache_subtree->tree_lock);
184 cache_key_put(key);
185 }
186 }
187
188 /**
189 * submit_cache_miss_req - Submit a backing request when cache data is missing
190 * @cache: The cache context that manages cache operations
191 * @backing_req: The cache request containing information about the read request
192 *
193 * This function is used to handle cases where a cache read request cannot locate
194 * the required data in the cache. When such a miss occurs during `cache_subtree_walk`,
195 * it triggers a backing read request to fetch data from the backing storage.
196 *
197 * If `pcache_req->priv_data` is set, it points to a `pcache_cache_key`, representing
198 * a new cache key to be inserted into the cache. The function calls `cache_key_insert`
199 * to attempt adding the key. On insertion failure, it releases the key reference and
200 * clears `priv_data` to avoid further processing.
201 */
submit_cache_miss_req(struct pcache_cache * cache,struct pcache_backing_dev_req * backing_req)202 static void submit_cache_miss_req(struct pcache_cache *cache, struct pcache_backing_dev_req *backing_req)
203 {
204 if (backing_req->priv_data) {
205 struct pcache_cache_key *key;
206
207 /* Attempt to insert the key into the cache if priv_data is set */
208 key = (struct pcache_cache_key *)backing_req->priv_data;
209 cache_key_insert(&cache->req_key_tree, key, true);
210 }
211 backing_dev_req_submit(backing_req, false);
212 }
213
cache_miss_req_free(struct pcache_backing_dev_req * backing_req)214 static void cache_miss_req_free(struct pcache_backing_dev_req *backing_req)
215 {
216 struct pcache_cache_key *key;
217
218 if (backing_req->priv_data) {
219 key = backing_req->priv_data;
220 backing_req->priv_data = NULL;
221 cache_key_put(key); /* for ->priv_data */
222 cache_key_put(key); /* for init ref in alloc */
223 }
224
225 backing_dev_req_end(backing_req);
226 }
227
cache_miss_req_alloc(struct pcache_cache * cache,struct pcache_request * parent,gfp_t gfp_mask)228 static struct pcache_backing_dev_req *cache_miss_req_alloc(struct pcache_cache *cache,
229 struct pcache_request *parent,
230 gfp_t gfp_mask)
231 {
232 struct pcache_backing_dev *backing_dev = cache->backing_dev;
233 struct pcache_backing_dev_req *backing_req;
234 struct pcache_cache_key *key = NULL;
235 struct pcache_backing_dev_req_opts req_opts = { 0 };
236
237 req_opts.type = BACKING_DEV_REQ_TYPE_REQ;
238 req_opts.gfp_mask = gfp_mask;
239 req_opts.req.upper_req = parent;
240
241 backing_req = backing_dev_req_alloc(backing_dev, &req_opts);
242 if (!backing_req)
243 return NULL;
244
245 key = cache_key_alloc(&cache->req_key_tree, gfp_mask);
246 if (!key)
247 goto free_backing_req;
248
249 cache_key_get(key);
250 backing_req->priv_data = key;
251
252 return backing_req;
253
254 free_backing_req:
255 cache_miss_req_free(backing_req);
256 return NULL;
257 }
258
cache_miss_req_init(struct pcache_cache * cache,struct pcache_backing_dev_req * backing_req,struct pcache_request * parent,u32 off,u32 len,bool insert_key)259 static void cache_miss_req_init(struct pcache_cache *cache,
260 struct pcache_backing_dev_req *backing_req,
261 struct pcache_request *parent,
262 u32 off, u32 len, bool insert_key)
263 {
264 struct pcache_cache_key *key;
265 struct pcache_backing_dev_req_opts req_opts = { 0 };
266
267 req_opts.type = BACKING_DEV_REQ_TYPE_REQ;
268 req_opts.req.upper_req = parent;
269 req_opts.req.req_off = off;
270 req_opts.req.len = len;
271 req_opts.end_fn = miss_read_end_req;
272
273 backing_dev_req_init(backing_req, &req_opts);
274
275 if (insert_key) {
276 key = backing_req->priv_data;
277 key->off = parent->off + off;
278 key->len = len;
279 key->flags |= PCACHE_CACHE_KEY_FLAGS_EMPTY;
280 } else {
281 key = backing_req->priv_data;
282 backing_req->priv_data = NULL;
283 cache_key_put(key);
284 cache_key_put(key);
285 }
286 }
287
get_pre_alloc_req(struct pcache_cache_subtree_walk_ctx * ctx)288 static struct pcache_backing_dev_req *get_pre_alloc_req(struct pcache_cache_subtree_walk_ctx *ctx)
289 {
290 struct pcache_cache *cache = ctx->cache_tree->cache;
291 struct pcache_request *pcache_req = ctx->pcache_req;
292 struct pcache_backing_dev_req *backing_req;
293
294 if (ctx->pre_alloc_req) {
295 backing_req = ctx->pre_alloc_req;
296 ctx->pre_alloc_req = NULL;
297
298 return backing_req;
299 }
300
301 return cache_miss_req_alloc(cache, pcache_req, GFP_NOWAIT);
302 }
303
304 /*
305 * In the process of walking the cache tree to locate cached data, this
306 * function handles the situation where the requested data range lies
307 * entirely before an existing cache node (`key_tmp`). This outcome
308 * signifies that the target data is absent from the cache (cache miss).
309 *
310 * To fulfill this portion of the read request, the function creates a
311 * backing request (`backing_req`) for the missing data range represented
312 * by `key`. It then appends this request to the submission list in the
313 * `ctx`, which will later be processed to retrieve the data from backing
314 * storage. After setting up the backing request, `req_done` in `ctx` is
315 * updated to reflect the length of the handled range, and the range
316 * in `key` is adjusted by trimming off the portion that is now handled.
317 *
318 * The scenario handled here:
319 *
320 * |--------| key_tmp (existing cached range)
321 * |====| key (requested range, preceding key_tmp)
322 *
323 * Since `key` is before `key_tmp`, it signifies that the requested data
324 * range is missing in the cache (cache miss) and needs retrieval from
325 * backing storage.
326 */
read_before(struct pcache_cache_key * key,struct pcache_cache_key * key_tmp,struct pcache_cache_subtree_walk_ctx * ctx)327 static int read_before(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp,
328 struct pcache_cache_subtree_walk_ctx *ctx)
329 {
330 struct pcache_backing_dev_req *backing_req;
331 struct pcache_cache *cache = ctx->cache_tree->cache;
332
333 /*
334 * In this scenario, `key` represents a range that precedes `key_tmp`,
335 * meaning the requested data range is missing from the cache tree
336 * and must be retrieved from the backing_dev.
337 */
338 backing_req = get_pre_alloc_req(ctx);
339 if (!backing_req)
340 return SUBTREE_WALK_RET_NEED_REQ;
341
342 cache_miss_req_init(cache, backing_req, ctx->pcache_req, ctx->req_done, key->len, true);
343
344 list_add(&backing_req->node, ctx->submit_req_list);
345 ctx->req_done += key->len;
346 cache_key_cutfront(key, key->len);
347
348 return SUBTREE_WALK_RET_OK;
349 }
350
351 /*
352 * During cache_subtree_walk, this function manages a scenario where part of the
353 * requested data range overlaps with an existing cache node (`key_tmp`).
354 *
355 * |----------------| key_tmp (existing cached range)
356 * |===========| key (requested range, overlapping the tail of key_tmp)
357 */
read_overlap_tail(struct pcache_cache_key * key,struct pcache_cache_key * key_tmp,struct pcache_cache_subtree_walk_ctx * ctx)358 static int read_overlap_tail(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp,
359 struct pcache_cache_subtree_walk_ctx *ctx)
360 {
361 struct pcache_cache *cache = ctx->cache_tree->cache;
362 struct pcache_backing_dev_req *backing_req;
363 u32 io_len;
364 int ret;
365
366 /*
367 * Calculate the length of the non-overlapping portion of `key`
368 * before `key_tmp`, representing the data missing in the cache.
369 */
370 io_len = cache_key_lstart(key_tmp) - cache_key_lstart(key);
371 if (io_len) {
372 backing_req = get_pre_alloc_req(ctx);
373 if (!backing_req)
374 return SUBTREE_WALK_RET_NEED_REQ;
375
376 cache_miss_req_init(cache, backing_req, ctx->pcache_req, ctx->req_done, io_len, true);
377
378 list_add(&backing_req->node, ctx->submit_req_list);
379 ctx->req_done += io_len;
380 cache_key_cutfront(key, io_len);
381 }
382
383 /*
384 * Handle the overlapping portion by calculating the length of
385 * the remaining data in `key` that coincides with `key_tmp`.
386 */
387 io_len = cache_key_lend(key) - cache_key_lstart(key_tmp);
388 if (cache_key_empty(key_tmp)) {
389 backing_req = get_pre_alloc_req(ctx);
390 if (!backing_req)
391 return SUBTREE_WALK_RET_NEED_REQ;
392
393 cache_miss_req_init(cache, backing_req, ctx->pcache_req, ctx->req_done, io_len, false);
394 submit_cache_miss_req(cache, backing_req);
395 } else {
396 ret = cache_copy_to_req_bio(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done,
397 io_len, &key_tmp->cache_pos, key_tmp->seg_gen);
398 if (ret) {
399 if (ret == -EINVAL) {
400 cache_key_delete(key_tmp);
401 return SUBTREE_WALK_RET_RESEARCH;
402 }
403
404 ctx->ret = ret;
405 return SUBTREE_WALK_RET_ERR;
406 }
407 }
408
409 ctx->req_done += io_len;
410 cache_key_cutfront(key, io_len);
411
412 return SUBTREE_WALK_RET_OK;
413 }
414
415 /*
416 * |----| key_tmp (existing cached range)
417 * |==========| key (requested range)
418 */
read_overlap_contain(struct pcache_cache_key * key,struct pcache_cache_key * key_tmp,struct pcache_cache_subtree_walk_ctx * ctx)419 static int read_overlap_contain(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp,
420 struct pcache_cache_subtree_walk_ctx *ctx)
421 {
422 struct pcache_cache *cache = ctx->cache_tree->cache;
423 struct pcache_backing_dev_req *backing_req;
424 u32 io_len;
425 int ret;
426
427 /*
428 * Calculate the non-overlapping part of `key` before `key_tmp`
429 * to identify the missing data length.
430 */
431 io_len = cache_key_lstart(key_tmp) - cache_key_lstart(key);
432 if (io_len) {
433 backing_req = get_pre_alloc_req(ctx);
434 if (!backing_req)
435 return SUBTREE_WALK_RET_NEED_REQ;
436
437 cache_miss_req_init(cache, backing_req, ctx->pcache_req, ctx->req_done, io_len, true);
438
439 list_add(&backing_req->node, ctx->submit_req_list);
440
441 ctx->req_done += io_len;
442 cache_key_cutfront(key, io_len);
443 }
444
445 /*
446 * Handle the overlapping portion between `key` and `key_tmp`.
447 */
448 io_len = key_tmp->len;
449 if (cache_key_empty(key_tmp)) {
450 backing_req = get_pre_alloc_req(ctx);
451 if (!backing_req)
452 return SUBTREE_WALK_RET_NEED_REQ;
453
454 cache_miss_req_init(cache, backing_req, ctx->pcache_req, ctx->req_done, io_len, false);
455 submit_cache_miss_req(cache, backing_req);
456 } else {
457 ret = cache_copy_to_req_bio(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done,
458 io_len, &key_tmp->cache_pos, key_tmp->seg_gen);
459 if (ret) {
460 if (ret == -EINVAL) {
461 cache_key_delete(key_tmp);
462 return SUBTREE_WALK_RET_RESEARCH;
463 }
464
465 ctx->ret = ret;
466 return SUBTREE_WALK_RET_ERR;
467 }
468 }
469
470 ctx->req_done += io_len;
471 cache_key_cutfront(key, io_len);
472
473 return SUBTREE_WALK_RET_OK;
474 }
475
476 /*
477 * |-----------| key_tmp (existing cached range)
478 * |====| key (requested range, fully within key_tmp)
479 *
480 * If `key_tmp` contains valid cached data, this function copies the relevant
481 * portion to the request's bio. Otherwise, it sends a backing request to
482 * fetch the required data range.
483 */
read_overlap_contained(struct pcache_cache_key * key,struct pcache_cache_key * key_tmp,struct pcache_cache_subtree_walk_ctx * ctx)484 static int read_overlap_contained(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp,
485 struct pcache_cache_subtree_walk_ctx *ctx)
486 {
487 struct pcache_cache *cache = ctx->cache_tree->cache;
488 struct pcache_backing_dev_req *backing_req;
489 struct pcache_cache_pos pos;
490 int ret;
491
492 /*
493 * Check if `key_tmp` is empty, indicating a miss. If so, initiate
494 * a backing request to fetch the required data for `key`.
495 */
496 if (cache_key_empty(key_tmp)) {
497 backing_req = get_pre_alloc_req(ctx);
498 if (!backing_req)
499 return SUBTREE_WALK_RET_NEED_REQ;
500
501 cache_miss_req_init(cache, backing_req, ctx->pcache_req, ctx->req_done, key->len, false);
502 submit_cache_miss_req(cache, backing_req);
503 } else {
504 cache_pos_copy(&pos, &key_tmp->cache_pos);
505 cache_pos_advance(&pos, cache_key_lstart(key) - cache_key_lstart(key_tmp));
506
507 ret = cache_copy_to_req_bio(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done,
508 key->len, &pos, key_tmp->seg_gen);
509 if (ret) {
510 if (ret == -EINVAL) {
511 cache_key_delete(key_tmp);
512 return SUBTREE_WALK_RET_RESEARCH;
513 }
514
515 ctx->ret = ret;
516 return SUBTREE_WALK_RET_ERR;
517 }
518 }
519
520 ctx->req_done += key->len;
521 cache_key_cutfront(key, key->len);
522
523 return SUBTREE_WALK_RET_OK;
524 }
525
526 /*
527 * |--------| key_tmp (existing cached range)
528 * |==========| key (requested range, overlapping the head of key_tmp)
529 */
read_overlap_head(struct pcache_cache_key * key,struct pcache_cache_key * key_tmp,struct pcache_cache_subtree_walk_ctx * ctx)530 static int read_overlap_head(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp,
531 struct pcache_cache_subtree_walk_ctx *ctx)
532 {
533 struct pcache_cache *cache = ctx->cache_tree->cache;
534 struct pcache_backing_dev_req *backing_req;
535 struct pcache_cache_pos pos;
536 u32 io_len;
537 int ret;
538
539 io_len = cache_key_lend(key_tmp) - cache_key_lstart(key);
540
541 if (cache_key_empty(key_tmp)) {
542 backing_req = get_pre_alloc_req(ctx);
543 if (!backing_req)
544 return SUBTREE_WALK_RET_NEED_REQ;
545
546 cache_miss_req_init(cache, backing_req, ctx->pcache_req, ctx->req_done, io_len, false);
547 submit_cache_miss_req(cache, backing_req);
548 } else {
549 cache_pos_copy(&pos, &key_tmp->cache_pos);
550 cache_pos_advance(&pos, cache_key_lstart(key) - cache_key_lstart(key_tmp));
551
552 ret = cache_copy_to_req_bio(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done,
553 io_len, &pos, key_tmp->seg_gen);
554 if (ret) {
555 if (ret == -EINVAL) {
556 cache_key_delete(key_tmp);
557 return SUBTREE_WALK_RET_RESEARCH;
558 }
559
560 ctx->ret = ret;
561 return SUBTREE_WALK_RET_ERR;
562 }
563 }
564
565 ctx->req_done += io_len;
566 cache_key_cutfront(key, io_len);
567
568 return SUBTREE_WALK_RET_OK;
569 }
570
571 /**
572 * read_walk_finally - Finalizes the cache read tree walk by submitting any
573 * remaining backing requests
574 * @ctx: Context structure holding information about the cache,
575 * read request, and submission list
576 * @ret: the return value after this walk.
577 *
578 * This function is called at the end of the `cache_subtree_walk` during a
579 * cache read operation. It completes the walk by checking if any data
580 * requested by `key` was not found in the cache tree, and if so, it sends
581 * a backing request to retrieve that data. Then, it iterates through the
582 * submission list of backing requests created during the walk, removing
583 * each request from the list and submitting it.
584 *
585 * The scenario managed here includes:
586 * - Sending a backing request for the remaining length of `key` if it was
587 * not fulfilled by existing cache entries.
588 * - Iterating through `ctx->submit_req_list` to submit each backing request
589 * enqueued during the walk.
590 *
591 * This ensures all necessary backing requests for cache misses are submitted
592 * to the backing storage to retrieve any data that could not be found in
593 * the cache.
594 */
read_walk_finally(struct pcache_cache_subtree_walk_ctx * ctx,int ret)595 static int read_walk_finally(struct pcache_cache_subtree_walk_ctx *ctx, int ret)
596 {
597 struct pcache_cache *cache = ctx->cache_tree->cache;
598 struct pcache_backing_dev_req *backing_req, *next_req;
599 struct pcache_cache_key *key = ctx->key;
600
601 list_for_each_entry_safe(backing_req, next_req, ctx->submit_req_list, node) {
602 list_del_init(&backing_req->node);
603 submit_cache_miss_req(ctx->cache_tree->cache, backing_req);
604 }
605
606 if (ret != SUBTREE_WALK_RET_OK)
607 return ret;
608
609 if (key->len) {
610 backing_req = get_pre_alloc_req(ctx);
611 if (!backing_req)
612 return SUBTREE_WALK_RET_NEED_REQ;
613
614 cache_miss_req_init(cache, backing_req, ctx->pcache_req, ctx->req_done, key->len, true);
615 submit_cache_miss_req(cache, backing_req);
616 ctx->req_done += key->len;
617 }
618
619 return SUBTREE_WALK_RET_OK;
620 }
621
622 /*
623 * This function is used within `cache_subtree_walk` to determine whether the
624 * read operation has covered the requested data length. It compares the
625 * amount of data processed (`ctx->req_done`) with the total data length
626 * specified in the original request (`ctx->pcache_req->data_len`).
627 *
628 * If `req_done` meets or exceeds the required data length, the function
629 * returns `true`, indicating the walk is complete. Otherwise, it returns `false`,
630 * signaling that additional data processing is needed to fulfill the request.
631 */
read_walk_done(struct pcache_cache_subtree_walk_ctx * ctx)632 static bool read_walk_done(struct pcache_cache_subtree_walk_ctx *ctx)
633 {
634 return (ctx->req_done >= ctx->pcache_req->data_len);
635 }
636
637 /**
638 * cache_read - Process a read request by traversing the cache tree
639 * @cache: Cache structure holding cache trees and related configurations
640 * @pcache_req: Request structure with information about the data to read
641 *
642 * This function attempts to fulfill a read request by traversing the cache tree(s)
643 * to locate cached data for the requested range. If parts of the data are missing
644 * in the cache, backing requests are generated to retrieve the required segments.
645 *
646 * The function operates by initializing a key for the requested data range and
647 * preparing a context (`walk_ctx`) to manage the cache tree traversal. The context
648 * includes pointers to functions (e.g., `read_before`, `read_overlap_tail`) that handle
649 * specific conditions encountered during the traversal. The `walk_finally` and `walk_done`
650 * functions manage the end stages of the traversal, while the `delete_key_list` and
651 * `submit_req_list` lists track any keys to be deleted or requests to be submitted.
652 *
653 * The function first calculates the requested range and checks if it fits within the
654 * current cache tree (based on the tree's size limits). It then locks the cache tree
655 * and performs a search to locate any matching keys. If there are outdated keys,
656 * these are deleted, and the search is restarted to ensure accurate data retrieval.
657 *
658 * If the requested range spans multiple cache trees, the function moves on to the
659 * next tree once the current range has been processed. This continues until the
660 * entire requested data length has been handled.
661 */
cache_read(struct pcache_cache * cache,struct pcache_request * pcache_req)662 static int cache_read(struct pcache_cache *cache, struct pcache_request *pcache_req)
663 {
664 struct pcache_cache_key key_data = { .off = pcache_req->off, .len = pcache_req->data_len };
665 struct pcache_cache_subtree *cache_subtree;
666 struct pcache_cache_key *key_tmp = NULL, *key_next;
667 struct rb_node *prev_node = NULL;
668 struct pcache_cache_key *key = &key_data;
669 struct pcache_cache_subtree_walk_ctx walk_ctx = { 0 };
670 struct pcache_backing_dev_req *backing_req, *next_req;
671 LIST_HEAD(delete_key_list);
672 LIST_HEAD(submit_req_list);
673 int ret;
674
675 walk_ctx.cache_tree = &cache->req_key_tree;
676 walk_ctx.req_done = 0;
677 walk_ctx.pcache_req = pcache_req;
678 walk_ctx.before = read_before;
679 walk_ctx.overlap_tail = read_overlap_tail;
680 walk_ctx.overlap_head = read_overlap_head;
681 walk_ctx.overlap_contain = read_overlap_contain;
682 walk_ctx.overlap_contained = read_overlap_contained;
683 walk_ctx.walk_finally = read_walk_finally;
684 walk_ctx.walk_done = read_walk_done;
685 walk_ctx.delete_key_list = &delete_key_list;
686 walk_ctx.submit_req_list = &submit_req_list;
687
688 next:
689 key->off = pcache_req->off + walk_ctx.req_done;
690 key->len = pcache_req->data_len - walk_ctx.req_done;
691 if (key->len > PCACHE_CACHE_SUBTREE_SIZE - (key->off & PCACHE_CACHE_SUBTREE_SIZE_MASK))
692 key->len = PCACHE_CACHE_SUBTREE_SIZE - (key->off & PCACHE_CACHE_SUBTREE_SIZE_MASK);
693
694 cache_subtree = get_subtree(&cache->req_key_tree, key->off);
695 spin_lock(&cache_subtree->tree_lock);
696 search:
697 prev_node = cache_subtree_search(cache_subtree, key, NULL, NULL, &delete_key_list);
698 if (!list_empty(&delete_key_list)) {
699 list_for_each_entry_safe(key_tmp, key_next, &delete_key_list, list_node) {
700 list_del_init(&key_tmp->list_node);
701 cache_key_delete(key_tmp);
702 }
703 goto search;
704 }
705
706 walk_ctx.start_node = prev_node;
707 walk_ctx.key = key;
708
709 ret = cache_subtree_walk(&walk_ctx);
710 if (ret == SUBTREE_WALK_RET_RESEARCH)
711 goto search;
712 spin_unlock(&cache_subtree->tree_lock);
713
714 if (ret == SUBTREE_WALK_RET_ERR) {
715 ret = walk_ctx.ret;
716 goto out;
717 }
718
719 if (ret == SUBTREE_WALK_RET_NEED_REQ) {
720 walk_ctx.pre_alloc_req = cache_miss_req_alloc(cache, pcache_req, GFP_NOIO);
721 pcache_dev_debug(CACHE_TO_PCACHE(cache), "allocate pre_alloc_req with GFP_NOIO");
722 }
723
724 if (walk_ctx.req_done < pcache_req->data_len)
725 goto next;
726 ret = 0;
727 out:
728 if (walk_ctx.pre_alloc_req)
729 cache_miss_req_free(walk_ctx.pre_alloc_req);
730
731 list_for_each_entry_safe(backing_req, next_req, &submit_req_list, node) {
732 list_del_init(&backing_req->node);
733 backing_dev_req_end(backing_req);
734 }
735
736 return ret;
737 }
738
cache_write(struct pcache_cache * cache,struct pcache_request * pcache_req)739 static int cache_write(struct pcache_cache *cache, struct pcache_request *pcache_req)
740 {
741 struct pcache_cache_subtree *cache_subtree;
742 struct pcache_cache_key *key;
743 u64 offset = pcache_req->off;
744 u32 length = pcache_req->data_len;
745 u32 io_done = 0;
746 int ret;
747
748 while (true) {
749 if (io_done >= length)
750 break;
751
752 key = cache_key_alloc(&cache->req_key_tree, GFP_NOIO);
753 key->off = offset + io_done;
754 key->len = length - io_done;
755 if (key->len > PCACHE_CACHE_SUBTREE_SIZE - (key->off & PCACHE_CACHE_SUBTREE_SIZE_MASK))
756 key->len = PCACHE_CACHE_SUBTREE_SIZE - (key->off & PCACHE_CACHE_SUBTREE_SIZE_MASK);
757
758 ret = cache_data_alloc(cache, key);
759 if (ret) {
760 cache_key_put(key);
761 goto err;
762 }
763
764 ret = cache_copy_from_req_bio(cache, key, pcache_req, io_done);
765 if (ret) {
766 cache_seg_put(key->cache_pos.cache_seg);
767 cache_key_put(key);
768 goto err;
769 }
770
771 cache_subtree = get_subtree(&cache->req_key_tree, key->off);
772 spin_lock(&cache_subtree->tree_lock);
773 cache_key_insert(&cache->req_key_tree, key, true);
774 ret = cache_key_append(cache, key, pcache_req->bio->bi_opf & REQ_FUA);
775 if (ret) {
776 cache_seg_put(key->cache_pos.cache_seg);
777 cache_key_delete(key);
778 goto unlock;
779 }
780
781 io_done += key->len;
782 spin_unlock(&cache_subtree->tree_lock);
783 }
784
785 return 0;
786 unlock:
787 spin_unlock(&cache_subtree->tree_lock);
788 err:
789 return ret;
790 }
791
792 /**
793 * pcache_cache_flush - Flush all ksets to persist any pending cache data
794 * @cache: Pointer to the cache structure
795 *
796 * This function iterates through all ksets associated with the provided `cache`
797 * and ensures that any data marked for persistence is written to media. For each
798 * kset, it acquires the kset lock, then invokes `cache_kset_close`, which handles
799 * the persistence logic for that kset.
800 *
801 * If `cache_kset_close` encounters an error, the function exits immediately with
802 * the respective error code, preventing the flush operation from proceeding to
803 * subsequent ksets.
804 */
pcache_cache_flush(struct pcache_cache * cache)805 int pcache_cache_flush(struct pcache_cache *cache)
806 {
807 struct pcache_cache_kset *kset;
808 int ret;
809 u32 i;
810
811 for (i = 0; i < cache->n_ksets; i++) {
812 kset = get_kset(cache, i);
813
814 spin_lock(&kset->kset_lock);
815 ret = cache_kset_close(cache, kset);
816 spin_unlock(&kset->kset_lock);
817
818 if (ret)
819 return ret;
820 }
821
822 return 0;
823 }
824
pcache_cache_handle_req(struct pcache_cache * cache,struct pcache_request * pcache_req)825 int pcache_cache_handle_req(struct pcache_cache *cache, struct pcache_request *pcache_req)
826 {
827 struct bio *bio = pcache_req->bio;
828
829 if (unlikely(bio->bi_opf & REQ_PREFLUSH))
830 return pcache_cache_flush(cache);
831
832 if (bio_data_dir(bio) == READ)
833 return cache_read(cache, pcache_req);
834
835 return cache_write(cache, pcache_req);
836 }
837