1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 10 #include "dm-rq.h" 11 #include "dm-bio-record.h" 12 #include "dm-path-selector.h" 13 #include "dm-uevent.h" 14 15 #include <linux/blkdev.h> 16 #include <linux/ctype.h> 17 #include <linux/init.h> 18 #include <linux/mempool.h> 19 #include <linux/module.h> 20 #include <linux/pagemap.h> 21 #include <linux/slab.h> 22 #include <linux/time.h> 23 #include <linux/workqueue.h> 24 #include <linux/delay.h> 25 #include <scsi/scsi_dh.h> 26 #include <linux/atomic.h> 27 #include <linux/blk-mq.h> 28 29 #define DM_MSG_PREFIX "multipath" 30 #define DM_PG_INIT_DELAY_MSECS 2000 31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1) 32 33 /* Path properties */ 34 struct pgpath { 35 struct list_head list; 36 37 struct priority_group *pg; /* Owning PG */ 38 unsigned fail_count; /* Cumulative failure count */ 39 40 struct dm_path path; 41 struct delayed_work activate_path; 42 43 bool is_active:1; /* Path status */ 44 }; 45 46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 47 48 /* 49 * Paths are grouped into Priority Groups and numbered from 1 upwards. 50 * Each has a path selector which controls which path gets used. 51 */ 52 struct priority_group { 53 struct list_head list; 54 55 struct multipath *m; /* Owning multipath instance */ 56 struct path_selector ps; 57 58 unsigned pg_num; /* Reference number */ 59 unsigned nr_pgpaths; /* Number of paths in PG */ 60 struct list_head pgpaths; 61 62 bool bypassed:1; /* Temporarily bypass this PG? */ 63 }; 64 65 /* Multipath context */ 66 struct multipath { 67 unsigned long flags; /* Multipath state flags */ 68 69 spinlock_t lock; 70 enum dm_queue_mode queue_mode; 71 72 struct pgpath *current_pgpath; 73 struct priority_group *current_pg; 74 struct priority_group *next_pg; /* Switch to this PG if set */ 75 76 atomic_t nr_valid_paths; /* Total number of usable paths */ 77 unsigned nr_priority_groups; 78 struct list_head priority_groups; 79 80 const char *hw_handler_name; 81 char *hw_handler_params; 82 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 83 unsigned pg_init_retries; /* Number of times to retry pg_init */ 84 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */ 85 atomic_t pg_init_in_progress; /* Only one pg_init allowed at once */ 86 atomic_t pg_init_count; /* Number of times pg_init called */ 87 88 struct mutex work_mutex; 89 struct work_struct trigger_event; 90 struct dm_target *ti; 91 92 struct work_struct process_queued_bios; 93 struct bio_list queued_bios; 94 }; 95 96 /* 97 * Context information attached to each io we process. 98 */ 99 struct dm_mpath_io { 100 struct pgpath *pgpath; 101 size_t nr_bytes; 102 }; 103 104 typedef int (*action_fn) (struct pgpath *pgpath); 105 106 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 107 static void trigger_event(struct work_struct *work); 108 static void activate_or_offline_path(struct pgpath *pgpath); 109 static void activate_path_work(struct work_struct *work); 110 static void process_queued_bios(struct work_struct *work); 111 112 /*----------------------------------------------- 113 * Multipath state flags. 114 *-----------------------------------------------*/ 115 116 #define MPATHF_QUEUE_IO 0 /* Must we queue all I/O? */ 117 #define MPATHF_QUEUE_IF_NO_PATH 1 /* Queue I/O if last path fails? */ 118 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2 /* Saved state during suspension */ 119 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3 /* If there's already a hw_handler present, don't change it. */ 120 #define MPATHF_PG_INIT_DISABLED 4 /* pg_init is not currently allowed */ 121 #define MPATHF_PG_INIT_REQUIRED 5 /* pg_init needs calling? */ 122 #define MPATHF_PG_INIT_DELAY_RETRY 6 /* Delay pg_init retry? */ 123 124 /*----------------------------------------------- 125 * Allocation routines 126 *-----------------------------------------------*/ 127 128 static struct pgpath *alloc_pgpath(void) 129 { 130 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 131 132 if (!pgpath) 133 return NULL; 134 135 pgpath->is_active = true; 136 137 return pgpath; 138 } 139 140 static void free_pgpath(struct pgpath *pgpath) 141 { 142 kfree(pgpath); 143 } 144 145 static struct priority_group *alloc_priority_group(void) 146 { 147 struct priority_group *pg; 148 149 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 150 151 if (pg) 152 INIT_LIST_HEAD(&pg->pgpaths); 153 154 return pg; 155 } 156 157 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 158 { 159 struct pgpath *pgpath, *tmp; 160 161 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 162 list_del(&pgpath->list); 163 dm_put_device(ti, pgpath->path.dev); 164 free_pgpath(pgpath); 165 } 166 } 167 168 static void free_priority_group(struct priority_group *pg, 169 struct dm_target *ti) 170 { 171 struct path_selector *ps = &pg->ps; 172 173 if (ps->type) { 174 ps->type->destroy(ps); 175 dm_put_path_selector(ps->type); 176 } 177 178 free_pgpaths(&pg->pgpaths, ti); 179 kfree(pg); 180 } 181 182 static struct multipath *alloc_multipath(struct dm_target *ti) 183 { 184 struct multipath *m; 185 186 m = kzalloc(sizeof(*m), GFP_KERNEL); 187 if (m) { 188 INIT_LIST_HEAD(&m->priority_groups); 189 spin_lock_init(&m->lock); 190 atomic_set(&m->nr_valid_paths, 0); 191 INIT_WORK(&m->trigger_event, trigger_event); 192 mutex_init(&m->work_mutex); 193 194 m->queue_mode = DM_TYPE_NONE; 195 196 m->ti = ti; 197 ti->private = m; 198 } 199 200 return m; 201 } 202 203 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m) 204 { 205 if (m->queue_mode == DM_TYPE_NONE) { 206 /* 207 * Default to request-based. 208 */ 209 if (dm_use_blk_mq(dm_table_get_md(ti->table))) 210 m->queue_mode = DM_TYPE_MQ_REQUEST_BASED; 211 else 212 m->queue_mode = DM_TYPE_REQUEST_BASED; 213 214 } else if (m->queue_mode == DM_TYPE_BIO_BASED) { 215 INIT_WORK(&m->process_queued_bios, process_queued_bios); 216 /* 217 * bio-based doesn't support any direct scsi_dh management; 218 * it just discovers if a scsi_dh is attached. 219 */ 220 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 221 } 222 223 dm_table_set_type(ti->table, m->queue_mode); 224 225 /* 226 * Init fields that are only used when a scsi_dh is attached 227 * - must do this unconditionally (really doesn't hurt non-SCSI uses) 228 */ 229 set_bit(MPATHF_QUEUE_IO, &m->flags); 230 atomic_set(&m->pg_init_in_progress, 0); 231 atomic_set(&m->pg_init_count, 0); 232 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; 233 init_waitqueue_head(&m->pg_init_wait); 234 235 return 0; 236 } 237 238 static void free_multipath(struct multipath *m) 239 { 240 struct priority_group *pg, *tmp; 241 242 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 243 list_del(&pg->list); 244 free_priority_group(pg, m->ti); 245 } 246 247 kfree(m->hw_handler_name); 248 kfree(m->hw_handler_params); 249 mutex_destroy(&m->work_mutex); 250 kfree(m); 251 } 252 253 static struct dm_mpath_io *get_mpio(union map_info *info) 254 { 255 return info->ptr; 256 } 257 258 static size_t multipath_per_bio_data_size(void) 259 { 260 return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details); 261 } 262 263 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio) 264 { 265 return dm_per_bio_data(bio, multipath_per_bio_data_size()); 266 } 267 268 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio) 269 { 270 /* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */ 271 void *bio_details = mpio + 1; 272 return bio_details; 273 } 274 275 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p) 276 { 277 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 278 struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio); 279 280 mpio->nr_bytes = bio->bi_iter.bi_size; 281 mpio->pgpath = NULL; 282 *mpio_p = mpio; 283 284 dm_bio_record(bio_details, bio); 285 } 286 287 /*----------------------------------------------- 288 * Path selection 289 *-----------------------------------------------*/ 290 291 static int __pg_init_all_paths(struct multipath *m) 292 { 293 struct pgpath *pgpath; 294 unsigned long pg_init_delay = 0; 295 296 lockdep_assert_held(&m->lock); 297 298 if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 299 return 0; 300 301 atomic_inc(&m->pg_init_count); 302 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 303 304 /* Check here to reset pg_init_required */ 305 if (!m->current_pg) 306 return 0; 307 308 if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags)) 309 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? 310 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); 311 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) { 312 /* Skip failed paths */ 313 if (!pgpath->is_active) 314 continue; 315 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path, 316 pg_init_delay)) 317 atomic_inc(&m->pg_init_in_progress); 318 } 319 return atomic_read(&m->pg_init_in_progress); 320 } 321 322 static int pg_init_all_paths(struct multipath *m) 323 { 324 int ret; 325 unsigned long flags; 326 327 spin_lock_irqsave(&m->lock, flags); 328 ret = __pg_init_all_paths(m); 329 spin_unlock_irqrestore(&m->lock, flags); 330 331 return ret; 332 } 333 334 static void __switch_pg(struct multipath *m, struct priority_group *pg) 335 { 336 m->current_pg = pg; 337 338 /* Must we initialise the PG first, and queue I/O till it's ready? */ 339 if (m->hw_handler_name) { 340 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 341 set_bit(MPATHF_QUEUE_IO, &m->flags); 342 } else { 343 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 344 clear_bit(MPATHF_QUEUE_IO, &m->flags); 345 } 346 347 atomic_set(&m->pg_init_count, 0); 348 } 349 350 static struct pgpath *choose_path_in_pg(struct multipath *m, 351 struct priority_group *pg, 352 size_t nr_bytes) 353 { 354 unsigned long flags; 355 struct dm_path *path; 356 struct pgpath *pgpath; 357 358 path = pg->ps.type->select_path(&pg->ps, nr_bytes); 359 if (!path) 360 return ERR_PTR(-ENXIO); 361 362 pgpath = path_to_pgpath(path); 363 364 if (unlikely(READ_ONCE(m->current_pg) != pg)) { 365 /* Only update current_pgpath if pg changed */ 366 spin_lock_irqsave(&m->lock, flags); 367 m->current_pgpath = pgpath; 368 __switch_pg(m, pg); 369 spin_unlock_irqrestore(&m->lock, flags); 370 } 371 372 return pgpath; 373 } 374 375 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes) 376 { 377 unsigned long flags; 378 struct priority_group *pg; 379 struct pgpath *pgpath; 380 unsigned bypassed = 1; 381 382 if (!atomic_read(&m->nr_valid_paths)) { 383 clear_bit(MPATHF_QUEUE_IO, &m->flags); 384 goto failed; 385 } 386 387 /* Were we instructed to switch PG? */ 388 if (READ_ONCE(m->next_pg)) { 389 spin_lock_irqsave(&m->lock, flags); 390 pg = m->next_pg; 391 if (!pg) { 392 spin_unlock_irqrestore(&m->lock, flags); 393 goto check_current_pg; 394 } 395 m->next_pg = NULL; 396 spin_unlock_irqrestore(&m->lock, flags); 397 pgpath = choose_path_in_pg(m, pg, nr_bytes); 398 if (!IS_ERR_OR_NULL(pgpath)) 399 return pgpath; 400 } 401 402 /* Don't change PG until it has no remaining paths */ 403 check_current_pg: 404 pg = READ_ONCE(m->current_pg); 405 if (pg) { 406 pgpath = choose_path_in_pg(m, pg, nr_bytes); 407 if (!IS_ERR_OR_NULL(pgpath)) 408 return pgpath; 409 } 410 411 /* 412 * Loop through priority groups until we find a valid path. 413 * First time we skip PGs marked 'bypassed'. 414 * Second time we only try the ones we skipped, but set 415 * pg_init_delay_retry so we do not hammer controllers. 416 */ 417 do { 418 list_for_each_entry(pg, &m->priority_groups, list) { 419 if (pg->bypassed == !!bypassed) 420 continue; 421 pgpath = choose_path_in_pg(m, pg, nr_bytes); 422 if (!IS_ERR_OR_NULL(pgpath)) { 423 if (!bypassed) 424 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 425 return pgpath; 426 } 427 } 428 } while (bypassed--); 429 430 failed: 431 spin_lock_irqsave(&m->lock, flags); 432 m->current_pgpath = NULL; 433 m->current_pg = NULL; 434 spin_unlock_irqrestore(&m->lock, flags); 435 436 return NULL; 437 } 438 439 /* 440 * dm_report_EIO() is a macro instead of a function to make pr_debug() 441 * report the function name and line number of the function from which 442 * it has been invoked. 443 */ 444 #define dm_report_EIO(m) \ 445 do { \ 446 struct mapped_device *md = dm_table_get_md((m)->ti->table); \ 447 \ 448 pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \ 449 dm_device_name(md), \ 450 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags), \ 451 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags), \ 452 dm_noflush_suspending((m)->ti)); \ 453 } while (0) 454 455 /* 456 * Check whether bios must be queued in the device-mapper core rather 457 * than here in the target. 458 * 459 * If MPATHF_QUEUE_IF_NO_PATH and MPATHF_SAVED_QUEUE_IF_NO_PATH hold 460 * the same value then we are not between multipath_presuspend() 461 * and multipath_resume() calls and we have no need to check 462 * for the DMF_NOFLUSH_SUSPENDING flag. 463 */ 464 static bool __must_push_back(struct multipath *m, unsigned long flags) 465 { 466 return ((test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) != 467 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &flags)) && 468 dm_noflush_suspending(m->ti)); 469 } 470 471 /* 472 * Following functions use READ_ONCE to get atomic access to 473 * all m->flags to avoid taking spinlock 474 */ 475 static bool must_push_back_rq(struct multipath *m) 476 { 477 unsigned long flags = READ_ONCE(m->flags); 478 return test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) || __must_push_back(m, flags); 479 } 480 481 static bool must_push_back_bio(struct multipath *m) 482 { 483 unsigned long flags = READ_ONCE(m->flags); 484 return __must_push_back(m, flags); 485 } 486 487 /* 488 * Map cloned requests (request-based multipath) 489 */ 490 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq, 491 union map_info *map_context, 492 struct request **__clone) 493 { 494 struct multipath *m = ti->private; 495 size_t nr_bytes = blk_rq_bytes(rq); 496 struct pgpath *pgpath; 497 struct block_device *bdev; 498 struct dm_mpath_io *mpio = get_mpio(map_context); 499 struct request_queue *q; 500 struct request *clone; 501 502 /* Do we need to select a new pgpath? */ 503 pgpath = READ_ONCE(m->current_pgpath); 504 if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags)) 505 pgpath = choose_pgpath(m, nr_bytes); 506 507 if (!pgpath) { 508 if (must_push_back_rq(m)) 509 return DM_MAPIO_DELAY_REQUEUE; 510 dm_report_EIO(m); /* Failed */ 511 return DM_MAPIO_KILL; 512 } else if (test_bit(MPATHF_QUEUE_IO, &m->flags) || 513 test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 514 pg_init_all_paths(m); 515 return DM_MAPIO_DELAY_REQUEUE; 516 } 517 518 mpio->pgpath = pgpath; 519 mpio->nr_bytes = nr_bytes; 520 521 bdev = pgpath->path.dev->bdev; 522 q = bdev_get_queue(bdev); 523 clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE, 524 BLK_MQ_REQ_NOWAIT); 525 if (IS_ERR(clone)) { 526 /* EBUSY, ENODEV or EWOULDBLOCK: requeue */ 527 if (blk_queue_dying(q)) { 528 atomic_inc(&m->pg_init_in_progress); 529 activate_or_offline_path(pgpath); 530 return DM_MAPIO_DELAY_REQUEUE; 531 } 532 533 /* 534 * blk-mq's SCHED_RESTART can cover this requeue, so we 535 * needn't deal with it by DELAY_REQUEUE. More importantly, 536 * we have to return DM_MAPIO_REQUEUE so that blk-mq can 537 * get the queue busy feedback (via BLK_STS_RESOURCE), 538 * otherwise I/O merging can suffer. 539 */ 540 if (q->mq_ops) 541 return DM_MAPIO_REQUEUE; 542 else 543 return DM_MAPIO_DELAY_REQUEUE; 544 } 545 clone->bio = clone->biotail = NULL; 546 clone->rq_disk = bdev->bd_disk; 547 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 548 *__clone = clone; 549 550 if (pgpath->pg->ps.type->start_io) 551 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 552 &pgpath->path, 553 nr_bytes); 554 return DM_MAPIO_REMAPPED; 555 } 556 557 static void multipath_release_clone(struct request *clone) 558 { 559 blk_put_request(clone); 560 } 561 562 /* 563 * Map cloned bios (bio-based multipath) 564 */ 565 566 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio) 567 { 568 struct pgpath *pgpath; 569 unsigned long flags; 570 bool queue_io; 571 572 /* Do we need to select a new pgpath? */ 573 pgpath = READ_ONCE(m->current_pgpath); 574 queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags); 575 if (!pgpath || !queue_io) 576 pgpath = choose_pgpath(m, bio->bi_iter.bi_size); 577 578 if ((pgpath && queue_io) || 579 (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) { 580 /* Queue for the daemon to resubmit */ 581 spin_lock_irqsave(&m->lock, flags); 582 bio_list_add(&m->queued_bios, bio); 583 spin_unlock_irqrestore(&m->lock, flags); 584 585 /* PG_INIT_REQUIRED cannot be set without QUEUE_IO */ 586 if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 587 pg_init_all_paths(m); 588 else if (!queue_io) 589 queue_work(kmultipathd, &m->process_queued_bios); 590 591 return ERR_PTR(-EAGAIN); 592 } 593 594 return pgpath; 595 } 596 597 static struct pgpath *__map_bio_fast(struct multipath *m, struct bio *bio) 598 { 599 struct pgpath *pgpath; 600 unsigned long flags; 601 602 /* Do we need to select a new pgpath? */ 603 /* 604 * FIXME: currently only switching path if no path (due to failure, etc) 605 * - which negates the point of using a path selector 606 */ 607 pgpath = READ_ONCE(m->current_pgpath); 608 if (!pgpath) 609 pgpath = choose_pgpath(m, bio->bi_iter.bi_size); 610 611 if (!pgpath) { 612 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 613 /* Queue for the daemon to resubmit */ 614 spin_lock_irqsave(&m->lock, flags); 615 bio_list_add(&m->queued_bios, bio); 616 spin_unlock_irqrestore(&m->lock, flags); 617 queue_work(kmultipathd, &m->process_queued_bios); 618 619 return ERR_PTR(-EAGAIN); 620 } 621 return NULL; 622 } 623 624 return pgpath; 625 } 626 627 static int __multipath_map_bio(struct multipath *m, struct bio *bio, 628 struct dm_mpath_io *mpio) 629 { 630 struct pgpath *pgpath; 631 632 if (!m->hw_handler_name) 633 pgpath = __map_bio_fast(m, bio); 634 else 635 pgpath = __map_bio(m, bio); 636 637 if (IS_ERR(pgpath)) 638 return DM_MAPIO_SUBMITTED; 639 640 if (!pgpath) { 641 if (must_push_back_bio(m)) 642 return DM_MAPIO_REQUEUE; 643 dm_report_EIO(m); 644 return DM_MAPIO_KILL; 645 } 646 647 mpio->pgpath = pgpath; 648 649 bio->bi_status = 0; 650 bio_set_dev(bio, pgpath->path.dev->bdev); 651 bio->bi_opf |= REQ_FAILFAST_TRANSPORT; 652 653 if (pgpath->pg->ps.type->start_io) 654 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 655 &pgpath->path, 656 mpio->nr_bytes); 657 return DM_MAPIO_REMAPPED; 658 } 659 660 static int multipath_map_bio(struct dm_target *ti, struct bio *bio) 661 { 662 struct multipath *m = ti->private; 663 struct dm_mpath_io *mpio = NULL; 664 665 multipath_init_per_bio_data(bio, &mpio); 666 return __multipath_map_bio(m, bio, mpio); 667 } 668 669 static void process_queued_io_list(struct multipath *m) 670 { 671 if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED) 672 dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table)); 673 else if (m->queue_mode == DM_TYPE_BIO_BASED) 674 queue_work(kmultipathd, &m->process_queued_bios); 675 } 676 677 static void process_queued_bios(struct work_struct *work) 678 { 679 int r; 680 unsigned long flags; 681 struct bio *bio; 682 struct bio_list bios; 683 struct blk_plug plug; 684 struct multipath *m = 685 container_of(work, struct multipath, process_queued_bios); 686 687 bio_list_init(&bios); 688 689 spin_lock_irqsave(&m->lock, flags); 690 691 if (bio_list_empty(&m->queued_bios)) { 692 spin_unlock_irqrestore(&m->lock, flags); 693 return; 694 } 695 696 bio_list_merge(&bios, &m->queued_bios); 697 bio_list_init(&m->queued_bios); 698 699 spin_unlock_irqrestore(&m->lock, flags); 700 701 blk_start_plug(&plug); 702 while ((bio = bio_list_pop(&bios))) { 703 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 704 dm_bio_restore(get_bio_details_from_mpio(mpio), bio); 705 r = __multipath_map_bio(m, bio, mpio); 706 switch (r) { 707 case DM_MAPIO_KILL: 708 bio->bi_status = BLK_STS_IOERR; 709 bio_endio(bio); 710 break; 711 case DM_MAPIO_REQUEUE: 712 bio->bi_status = BLK_STS_DM_REQUEUE; 713 bio_endio(bio); 714 break; 715 case DM_MAPIO_REMAPPED: 716 generic_make_request(bio); 717 break; 718 case DM_MAPIO_SUBMITTED: 719 break; 720 default: 721 WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r); 722 } 723 } 724 blk_finish_plug(&plug); 725 } 726 727 /* 728 * If we run out of usable paths, should we queue I/O or error it? 729 */ 730 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path, 731 bool save_old_value) 732 { 733 unsigned long flags; 734 735 spin_lock_irqsave(&m->lock, flags); 736 assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags, 737 (save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) || 738 (!save_old_value && queue_if_no_path)); 739 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path); 740 spin_unlock_irqrestore(&m->lock, flags); 741 742 if (!queue_if_no_path) { 743 dm_table_run_md_queue_async(m->ti->table); 744 process_queued_io_list(m); 745 } 746 747 return 0; 748 } 749 750 /* 751 * An event is triggered whenever a path is taken out of use. 752 * Includes path failure and PG bypass. 753 */ 754 static void trigger_event(struct work_struct *work) 755 { 756 struct multipath *m = 757 container_of(work, struct multipath, trigger_event); 758 759 dm_table_event(m->ti->table); 760 } 761 762 /*----------------------------------------------------------------- 763 * Constructor/argument parsing: 764 * <#multipath feature args> [<arg>]* 765 * <#hw_handler args> [hw_handler [<arg>]*] 766 * <#priority groups> 767 * <initial priority group> 768 * [<selector> <#selector args> [<arg>]* 769 * <#paths> <#per-path selector args> 770 * [<path> [<arg>]* ]+ ]+ 771 *---------------------------------------------------------------*/ 772 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg, 773 struct dm_target *ti) 774 { 775 int r; 776 struct path_selector_type *pst; 777 unsigned ps_argc; 778 779 static const struct dm_arg _args[] = { 780 {0, 1024, "invalid number of path selector args"}, 781 }; 782 783 pst = dm_get_path_selector(dm_shift_arg(as)); 784 if (!pst) { 785 ti->error = "unknown path selector type"; 786 return -EINVAL; 787 } 788 789 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error); 790 if (r) { 791 dm_put_path_selector(pst); 792 return -EINVAL; 793 } 794 795 r = pst->create(&pg->ps, ps_argc, as->argv); 796 if (r) { 797 dm_put_path_selector(pst); 798 ti->error = "path selector constructor failed"; 799 return r; 800 } 801 802 pg->ps.type = pst; 803 dm_consume_args(as, ps_argc); 804 805 return 0; 806 } 807 808 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m, 809 const char *attached_handler_name, char **error) 810 { 811 struct request_queue *q = bdev_get_queue(bdev); 812 int r; 813 814 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) { 815 retain: 816 if (attached_handler_name) { 817 /* 818 * Clear any hw_handler_params associated with a 819 * handler that isn't already attached. 820 */ 821 if (m->hw_handler_name && strcmp(attached_handler_name, m->hw_handler_name)) { 822 kfree(m->hw_handler_params); 823 m->hw_handler_params = NULL; 824 } 825 826 /* 827 * Reset hw_handler_name to match the attached handler 828 * 829 * NB. This modifies the table line to show the actual 830 * handler instead of the original table passed in. 831 */ 832 kfree(m->hw_handler_name); 833 m->hw_handler_name = attached_handler_name; 834 } 835 } 836 837 if (m->hw_handler_name) { 838 r = scsi_dh_attach(q, m->hw_handler_name); 839 if (r == -EBUSY) { 840 char b[BDEVNAME_SIZE]; 841 842 printk(KERN_INFO "dm-mpath: retaining handler on device %s\n", 843 bdevname(bdev, b)); 844 goto retain; 845 } 846 if (r < 0) { 847 *error = "error attaching hardware handler"; 848 return r; 849 } 850 851 if (m->hw_handler_params) { 852 r = scsi_dh_set_params(q, m->hw_handler_params); 853 if (r < 0) { 854 *error = "unable to set hardware handler parameters"; 855 return r; 856 } 857 } 858 } 859 860 return 0; 861 } 862 863 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps, 864 struct dm_target *ti) 865 { 866 int r; 867 struct pgpath *p; 868 struct multipath *m = ti->private; 869 struct request_queue *q; 870 const char *attached_handler_name; 871 872 /* we need at least a path arg */ 873 if (as->argc < 1) { 874 ti->error = "no device given"; 875 return ERR_PTR(-EINVAL); 876 } 877 878 p = alloc_pgpath(); 879 if (!p) 880 return ERR_PTR(-ENOMEM); 881 882 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table), 883 &p->path.dev); 884 if (r) { 885 ti->error = "error getting device"; 886 goto bad; 887 } 888 889 q = bdev_get_queue(p->path.dev->bdev); 890 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL); 891 if (attached_handler_name || m->hw_handler_name) { 892 INIT_DELAYED_WORK(&p->activate_path, activate_path_work); 893 r = setup_scsi_dh(p->path.dev->bdev, m, attached_handler_name, &ti->error); 894 if (r) { 895 dm_put_device(ti, p->path.dev); 896 goto bad; 897 } 898 } 899 900 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 901 if (r) { 902 dm_put_device(ti, p->path.dev); 903 goto bad; 904 } 905 906 return p; 907 bad: 908 free_pgpath(p); 909 return ERR_PTR(r); 910 } 911 912 static struct priority_group *parse_priority_group(struct dm_arg_set *as, 913 struct multipath *m) 914 { 915 static const struct dm_arg _args[] = { 916 {1, 1024, "invalid number of paths"}, 917 {0, 1024, "invalid number of selector args"} 918 }; 919 920 int r; 921 unsigned i, nr_selector_args, nr_args; 922 struct priority_group *pg; 923 struct dm_target *ti = m->ti; 924 925 if (as->argc < 2) { 926 as->argc = 0; 927 ti->error = "not enough priority group arguments"; 928 return ERR_PTR(-EINVAL); 929 } 930 931 pg = alloc_priority_group(); 932 if (!pg) { 933 ti->error = "couldn't allocate priority group"; 934 return ERR_PTR(-ENOMEM); 935 } 936 pg->m = m; 937 938 r = parse_path_selector(as, pg, ti); 939 if (r) 940 goto bad; 941 942 /* 943 * read the paths 944 */ 945 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error); 946 if (r) 947 goto bad; 948 949 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error); 950 if (r) 951 goto bad; 952 953 nr_args = 1 + nr_selector_args; 954 for (i = 0; i < pg->nr_pgpaths; i++) { 955 struct pgpath *pgpath; 956 struct dm_arg_set path_args; 957 958 if (as->argc < nr_args) { 959 ti->error = "not enough path parameters"; 960 r = -EINVAL; 961 goto bad; 962 } 963 964 path_args.argc = nr_args; 965 path_args.argv = as->argv; 966 967 pgpath = parse_path(&path_args, &pg->ps, ti); 968 if (IS_ERR(pgpath)) { 969 r = PTR_ERR(pgpath); 970 goto bad; 971 } 972 973 pgpath->pg = pg; 974 list_add_tail(&pgpath->list, &pg->pgpaths); 975 dm_consume_args(as, nr_args); 976 } 977 978 return pg; 979 980 bad: 981 free_priority_group(pg, ti); 982 return ERR_PTR(r); 983 } 984 985 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m) 986 { 987 unsigned hw_argc; 988 int ret; 989 struct dm_target *ti = m->ti; 990 991 static const struct dm_arg _args[] = { 992 {0, 1024, "invalid number of hardware handler args"}, 993 }; 994 995 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error)) 996 return -EINVAL; 997 998 if (!hw_argc) 999 return 0; 1000 1001 if (m->queue_mode == DM_TYPE_BIO_BASED) { 1002 dm_consume_args(as, hw_argc); 1003 DMERR("bio-based multipath doesn't allow hardware handler args"); 1004 return 0; 1005 } 1006 1007 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL); 1008 if (!m->hw_handler_name) 1009 return -EINVAL; 1010 1011 if (hw_argc > 1) { 1012 char *p; 1013 int i, j, len = 4; 1014 1015 for (i = 0; i <= hw_argc - 2; i++) 1016 len += strlen(as->argv[i]) + 1; 1017 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 1018 if (!p) { 1019 ti->error = "memory allocation failed"; 1020 ret = -ENOMEM; 1021 goto fail; 1022 } 1023 j = sprintf(p, "%d", hw_argc - 1); 1024 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1) 1025 j = sprintf(p, "%s", as->argv[i]); 1026 } 1027 dm_consume_args(as, hw_argc - 1); 1028 1029 return 0; 1030 fail: 1031 kfree(m->hw_handler_name); 1032 m->hw_handler_name = NULL; 1033 return ret; 1034 } 1035 1036 static int parse_features(struct dm_arg_set *as, struct multipath *m) 1037 { 1038 int r; 1039 unsigned argc; 1040 struct dm_target *ti = m->ti; 1041 const char *arg_name; 1042 1043 static const struct dm_arg _args[] = { 1044 {0, 8, "invalid number of feature args"}, 1045 {1, 50, "pg_init_retries must be between 1 and 50"}, 1046 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"}, 1047 }; 1048 1049 r = dm_read_arg_group(_args, as, &argc, &ti->error); 1050 if (r) 1051 return -EINVAL; 1052 1053 if (!argc) 1054 return 0; 1055 1056 do { 1057 arg_name = dm_shift_arg(as); 1058 argc--; 1059 1060 if (!strcasecmp(arg_name, "queue_if_no_path")) { 1061 r = queue_if_no_path(m, true, false); 1062 continue; 1063 } 1064 1065 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) { 1066 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 1067 continue; 1068 } 1069 1070 if (!strcasecmp(arg_name, "pg_init_retries") && 1071 (argc >= 1)) { 1072 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error); 1073 argc--; 1074 continue; 1075 } 1076 1077 if (!strcasecmp(arg_name, "pg_init_delay_msecs") && 1078 (argc >= 1)) { 1079 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error); 1080 argc--; 1081 continue; 1082 } 1083 1084 if (!strcasecmp(arg_name, "queue_mode") && 1085 (argc >= 1)) { 1086 const char *queue_mode_name = dm_shift_arg(as); 1087 1088 if (!strcasecmp(queue_mode_name, "bio")) 1089 m->queue_mode = DM_TYPE_BIO_BASED; 1090 else if (!strcasecmp(queue_mode_name, "rq")) 1091 m->queue_mode = DM_TYPE_REQUEST_BASED; 1092 else if (!strcasecmp(queue_mode_name, "mq")) 1093 m->queue_mode = DM_TYPE_MQ_REQUEST_BASED; 1094 else { 1095 ti->error = "Unknown 'queue_mode' requested"; 1096 r = -EINVAL; 1097 } 1098 argc--; 1099 continue; 1100 } 1101 1102 ti->error = "Unrecognised multipath feature request"; 1103 r = -EINVAL; 1104 } while (argc && !r); 1105 1106 return r; 1107 } 1108 1109 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv) 1110 { 1111 /* target arguments */ 1112 static const struct dm_arg _args[] = { 1113 {0, 1024, "invalid number of priority groups"}, 1114 {0, 1024, "invalid initial priority group number"}, 1115 }; 1116 1117 int r; 1118 struct multipath *m; 1119 struct dm_arg_set as; 1120 unsigned pg_count = 0; 1121 unsigned next_pg_num; 1122 1123 as.argc = argc; 1124 as.argv = argv; 1125 1126 m = alloc_multipath(ti); 1127 if (!m) { 1128 ti->error = "can't allocate multipath"; 1129 return -EINVAL; 1130 } 1131 1132 r = parse_features(&as, m); 1133 if (r) 1134 goto bad; 1135 1136 r = alloc_multipath_stage2(ti, m); 1137 if (r) 1138 goto bad; 1139 1140 r = parse_hw_handler(&as, m); 1141 if (r) 1142 goto bad; 1143 1144 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error); 1145 if (r) 1146 goto bad; 1147 1148 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error); 1149 if (r) 1150 goto bad; 1151 1152 if ((!m->nr_priority_groups && next_pg_num) || 1153 (m->nr_priority_groups && !next_pg_num)) { 1154 ti->error = "invalid initial priority group"; 1155 r = -EINVAL; 1156 goto bad; 1157 } 1158 1159 /* parse the priority groups */ 1160 while (as.argc) { 1161 struct priority_group *pg; 1162 unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths); 1163 1164 pg = parse_priority_group(&as, m); 1165 if (IS_ERR(pg)) { 1166 r = PTR_ERR(pg); 1167 goto bad; 1168 } 1169 1170 nr_valid_paths += pg->nr_pgpaths; 1171 atomic_set(&m->nr_valid_paths, nr_valid_paths); 1172 1173 list_add_tail(&pg->list, &m->priority_groups); 1174 pg_count++; 1175 pg->pg_num = pg_count; 1176 if (!--next_pg_num) 1177 m->next_pg = pg; 1178 } 1179 1180 if (pg_count != m->nr_priority_groups) { 1181 ti->error = "priority group count mismatch"; 1182 r = -EINVAL; 1183 goto bad; 1184 } 1185 1186 ti->num_flush_bios = 1; 1187 ti->num_discard_bios = 1; 1188 ti->num_write_same_bios = 1; 1189 ti->num_write_zeroes_bios = 1; 1190 if (m->queue_mode == DM_TYPE_BIO_BASED) 1191 ti->per_io_data_size = multipath_per_bio_data_size(); 1192 else 1193 ti->per_io_data_size = sizeof(struct dm_mpath_io); 1194 1195 return 0; 1196 1197 bad: 1198 free_multipath(m); 1199 return r; 1200 } 1201 1202 static void multipath_wait_for_pg_init_completion(struct multipath *m) 1203 { 1204 DEFINE_WAIT(wait); 1205 1206 while (1) { 1207 prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE); 1208 1209 if (!atomic_read(&m->pg_init_in_progress)) 1210 break; 1211 1212 io_schedule(); 1213 } 1214 finish_wait(&m->pg_init_wait, &wait); 1215 } 1216 1217 static void flush_multipath_work(struct multipath *m) 1218 { 1219 if (m->hw_handler_name) { 1220 set_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1221 smp_mb__after_atomic(); 1222 1223 flush_workqueue(kmpath_handlerd); 1224 multipath_wait_for_pg_init_completion(m); 1225 1226 clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1227 smp_mb__after_atomic(); 1228 } 1229 1230 flush_workqueue(kmultipathd); 1231 flush_work(&m->trigger_event); 1232 } 1233 1234 static void multipath_dtr(struct dm_target *ti) 1235 { 1236 struct multipath *m = ti->private; 1237 1238 flush_multipath_work(m); 1239 free_multipath(m); 1240 } 1241 1242 /* 1243 * Take a path out of use. 1244 */ 1245 static int fail_path(struct pgpath *pgpath) 1246 { 1247 unsigned long flags; 1248 struct multipath *m = pgpath->pg->m; 1249 1250 spin_lock_irqsave(&m->lock, flags); 1251 1252 if (!pgpath->is_active) 1253 goto out; 1254 1255 DMWARN("Failing path %s.", pgpath->path.dev->name); 1256 1257 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 1258 pgpath->is_active = false; 1259 pgpath->fail_count++; 1260 1261 atomic_dec(&m->nr_valid_paths); 1262 1263 if (pgpath == m->current_pgpath) 1264 m->current_pgpath = NULL; 1265 1266 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 1267 pgpath->path.dev->name, atomic_read(&m->nr_valid_paths)); 1268 1269 schedule_work(&m->trigger_event); 1270 1271 out: 1272 spin_unlock_irqrestore(&m->lock, flags); 1273 1274 return 0; 1275 } 1276 1277 /* 1278 * Reinstate a previously-failed path 1279 */ 1280 static int reinstate_path(struct pgpath *pgpath) 1281 { 1282 int r = 0, run_queue = 0; 1283 unsigned long flags; 1284 struct multipath *m = pgpath->pg->m; 1285 unsigned nr_valid_paths; 1286 1287 spin_lock_irqsave(&m->lock, flags); 1288 1289 if (pgpath->is_active) 1290 goto out; 1291 1292 DMWARN("Reinstating path %s.", pgpath->path.dev->name); 1293 1294 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 1295 if (r) 1296 goto out; 1297 1298 pgpath->is_active = true; 1299 1300 nr_valid_paths = atomic_inc_return(&m->nr_valid_paths); 1301 if (nr_valid_paths == 1) { 1302 m->current_pgpath = NULL; 1303 run_queue = 1; 1304 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 1305 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) 1306 atomic_inc(&m->pg_init_in_progress); 1307 } 1308 1309 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 1310 pgpath->path.dev->name, nr_valid_paths); 1311 1312 schedule_work(&m->trigger_event); 1313 1314 out: 1315 spin_unlock_irqrestore(&m->lock, flags); 1316 if (run_queue) { 1317 dm_table_run_md_queue_async(m->ti->table); 1318 process_queued_io_list(m); 1319 } 1320 1321 return r; 1322 } 1323 1324 /* 1325 * Fail or reinstate all paths that match the provided struct dm_dev. 1326 */ 1327 static int action_dev(struct multipath *m, struct dm_dev *dev, 1328 action_fn action) 1329 { 1330 int r = -EINVAL; 1331 struct pgpath *pgpath; 1332 struct priority_group *pg; 1333 1334 list_for_each_entry(pg, &m->priority_groups, list) { 1335 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1336 if (pgpath->path.dev == dev) 1337 r = action(pgpath); 1338 } 1339 } 1340 1341 return r; 1342 } 1343 1344 /* 1345 * Temporarily try to avoid having to use the specified PG 1346 */ 1347 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1348 bool bypassed) 1349 { 1350 unsigned long flags; 1351 1352 spin_lock_irqsave(&m->lock, flags); 1353 1354 pg->bypassed = bypassed; 1355 m->current_pgpath = NULL; 1356 m->current_pg = NULL; 1357 1358 spin_unlock_irqrestore(&m->lock, flags); 1359 1360 schedule_work(&m->trigger_event); 1361 } 1362 1363 /* 1364 * Switch to using the specified PG from the next I/O that gets mapped 1365 */ 1366 static int switch_pg_num(struct multipath *m, const char *pgstr) 1367 { 1368 struct priority_group *pg; 1369 unsigned pgnum; 1370 unsigned long flags; 1371 char dummy; 1372 1373 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1374 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1375 DMWARN("invalid PG number supplied to switch_pg_num"); 1376 return -EINVAL; 1377 } 1378 1379 spin_lock_irqsave(&m->lock, flags); 1380 list_for_each_entry(pg, &m->priority_groups, list) { 1381 pg->bypassed = false; 1382 if (--pgnum) 1383 continue; 1384 1385 m->current_pgpath = NULL; 1386 m->current_pg = NULL; 1387 m->next_pg = pg; 1388 } 1389 spin_unlock_irqrestore(&m->lock, flags); 1390 1391 schedule_work(&m->trigger_event); 1392 return 0; 1393 } 1394 1395 /* 1396 * Set/clear bypassed status of a PG. 1397 * PGs are numbered upwards from 1 in the order they were declared. 1398 */ 1399 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed) 1400 { 1401 struct priority_group *pg; 1402 unsigned pgnum; 1403 char dummy; 1404 1405 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1406 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1407 DMWARN("invalid PG number supplied to bypass_pg"); 1408 return -EINVAL; 1409 } 1410 1411 list_for_each_entry(pg, &m->priority_groups, list) { 1412 if (!--pgnum) 1413 break; 1414 } 1415 1416 bypass_pg(m, pg, bypassed); 1417 return 0; 1418 } 1419 1420 /* 1421 * Should we retry pg_init immediately? 1422 */ 1423 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1424 { 1425 unsigned long flags; 1426 bool limit_reached = false; 1427 1428 spin_lock_irqsave(&m->lock, flags); 1429 1430 if (atomic_read(&m->pg_init_count) <= m->pg_init_retries && 1431 !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 1432 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 1433 else 1434 limit_reached = true; 1435 1436 spin_unlock_irqrestore(&m->lock, flags); 1437 1438 return limit_reached; 1439 } 1440 1441 static void pg_init_done(void *data, int errors) 1442 { 1443 struct pgpath *pgpath = data; 1444 struct priority_group *pg = pgpath->pg; 1445 struct multipath *m = pg->m; 1446 unsigned long flags; 1447 bool delay_retry = false; 1448 1449 /* device or driver problems */ 1450 switch (errors) { 1451 case SCSI_DH_OK: 1452 break; 1453 case SCSI_DH_NOSYS: 1454 if (!m->hw_handler_name) { 1455 errors = 0; 1456 break; 1457 } 1458 DMERR("Could not failover the device: Handler scsi_dh_%s " 1459 "Error %d.", m->hw_handler_name, errors); 1460 /* 1461 * Fail path for now, so we do not ping pong 1462 */ 1463 fail_path(pgpath); 1464 break; 1465 case SCSI_DH_DEV_TEMP_BUSY: 1466 /* 1467 * Probably doing something like FW upgrade on the 1468 * controller so try the other pg. 1469 */ 1470 bypass_pg(m, pg, true); 1471 break; 1472 case SCSI_DH_RETRY: 1473 /* Wait before retrying. */ 1474 delay_retry = 1; 1475 /* fall through */ 1476 case SCSI_DH_IMM_RETRY: 1477 case SCSI_DH_RES_TEMP_UNAVAIL: 1478 if (pg_init_limit_reached(m, pgpath)) 1479 fail_path(pgpath); 1480 errors = 0; 1481 break; 1482 case SCSI_DH_DEV_OFFLINED: 1483 default: 1484 /* 1485 * We probably do not want to fail the path for a device 1486 * error, but this is what the old dm did. In future 1487 * patches we can do more advanced handling. 1488 */ 1489 fail_path(pgpath); 1490 } 1491 1492 spin_lock_irqsave(&m->lock, flags); 1493 if (errors) { 1494 if (pgpath == m->current_pgpath) { 1495 DMERR("Could not failover device. Error %d.", errors); 1496 m->current_pgpath = NULL; 1497 m->current_pg = NULL; 1498 } 1499 } else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1500 pg->bypassed = false; 1501 1502 if (atomic_dec_return(&m->pg_init_in_progress) > 0) 1503 /* Activations of other paths are still on going */ 1504 goto out; 1505 1506 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 1507 if (delay_retry) 1508 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1509 else 1510 clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1511 1512 if (__pg_init_all_paths(m)) 1513 goto out; 1514 } 1515 clear_bit(MPATHF_QUEUE_IO, &m->flags); 1516 1517 process_queued_io_list(m); 1518 1519 /* 1520 * Wake up any thread waiting to suspend. 1521 */ 1522 wake_up(&m->pg_init_wait); 1523 1524 out: 1525 spin_unlock_irqrestore(&m->lock, flags); 1526 } 1527 1528 static void activate_or_offline_path(struct pgpath *pgpath) 1529 { 1530 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1531 1532 if (pgpath->is_active && !blk_queue_dying(q)) 1533 scsi_dh_activate(q, pg_init_done, pgpath); 1534 else 1535 pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED); 1536 } 1537 1538 static void activate_path_work(struct work_struct *work) 1539 { 1540 struct pgpath *pgpath = 1541 container_of(work, struct pgpath, activate_path.work); 1542 1543 activate_or_offline_path(pgpath); 1544 } 1545 1546 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1547 blk_status_t error, union map_info *map_context) 1548 { 1549 struct dm_mpath_io *mpio = get_mpio(map_context); 1550 struct pgpath *pgpath = mpio->pgpath; 1551 int r = DM_ENDIO_DONE; 1552 1553 /* 1554 * We don't queue any clone request inside the multipath target 1555 * during end I/O handling, since those clone requests don't have 1556 * bio clones. If we queue them inside the multipath target, 1557 * we need to make bio clones, that requires memory allocation. 1558 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests 1559 * don't have bio clones.) 1560 * Instead of queueing the clone request here, we queue the original 1561 * request into dm core, which will remake a clone request and 1562 * clone bios for it and resubmit it later. 1563 */ 1564 if (error && blk_path_error(error)) { 1565 struct multipath *m = ti->private; 1566 1567 if (error == BLK_STS_RESOURCE) 1568 r = DM_ENDIO_DELAY_REQUEUE; 1569 else 1570 r = DM_ENDIO_REQUEUE; 1571 1572 if (pgpath) 1573 fail_path(pgpath); 1574 1575 if (atomic_read(&m->nr_valid_paths) == 0 && 1576 !must_push_back_rq(m)) { 1577 if (error == BLK_STS_IOERR) 1578 dm_report_EIO(m); 1579 /* complete with the original error */ 1580 r = DM_ENDIO_DONE; 1581 } 1582 } 1583 1584 if (pgpath) { 1585 struct path_selector *ps = &pgpath->pg->ps; 1586 1587 if (ps->type->end_io) 1588 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1589 } 1590 1591 return r; 1592 } 1593 1594 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone, 1595 blk_status_t *error) 1596 { 1597 struct multipath *m = ti->private; 1598 struct dm_mpath_io *mpio = get_mpio_from_bio(clone); 1599 struct pgpath *pgpath = mpio->pgpath; 1600 unsigned long flags; 1601 int r = DM_ENDIO_DONE; 1602 1603 if (!*error || !blk_path_error(*error)) 1604 goto done; 1605 1606 if (pgpath) 1607 fail_path(pgpath); 1608 1609 if (atomic_read(&m->nr_valid_paths) == 0 && 1610 !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 1611 if (must_push_back_bio(m)) { 1612 r = DM_ENDIO_REQUEUE; 1613 } else { 1614 dm_report_EIO(m); 1615 *error = BLK_STS_IOERR; 1616 } 1617 goto done; 1618 } 1619 1620 spin_lock_irqsave(&m->lock, flags); 1621 bio_list_add(&m->queued_bios, clone); 1622 spin_unlock_irqrestore(&m->lock, flags); 1623 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) 1624 queue_work(kmultipathd, &m->process_queued_bios); 1625 1626 r = DM_ENDIO_INCOMPLETE; 1627 done: 1628 if (pgpath) { 1629 struct path_selector *ps = &pgpath->pg->ps; 1630 1631 if (ps->type->end_io) 1632 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1633 } 1634 1635 return r; 1636 } 1637 1638 /* 1639 * Suspend can't complete until all the I/O is processed so if 1640 * the last path fails we must error any remaining I/O. 1641 * Note that if the freeze_bdev fails while suspending, the 1642 * queue_if_no_path state is lost - userspace should reset it. 1643 */ 1644 static void multipath_presuspend(struct dm_target *ti) 1645 { 1646 struct multipath *m = ti->private; 1647 1648 queue_if_no_path(m, false, true); 1649 } 1650 1651 static void multipath_postsuspend(struct dm_target *ti) 1652 { 1653 struct multipath *m = ti->private; 1654 1655 mutex_lock(&m->work_mutex); 1656 flush_multipath_work(m); 1657 mutex_unlock(&m->work_mutex); 1658 } 1659 1660 /* 1661 * Restore the queue_if_no_path setting. 1662 */ 1663 static void multipath_resume(struct dm_target *ti) 1664 { 1665 struct multipath *m = ti->private; 1666 unsigned long flags; 1667 1668 spin_lock_irqsave(&m->lock, flags); 1669 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, 1670 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)); 1671 spin_unlock_irqrestore(&m->lock, flags); 1672 } 1673 1674 /* 1675 * Info output has the following format: 1676 * num_multipath_feature_args [multipath_feature_args]* 1677 * num_handler_status_args [handler_status_args]* 1678 * num_groups init_group_number 1679 * [A|D|E num_ps_status_args [ps_status_args]* 1680 * num_paths num_selector_args 1681 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1682 * 1683 * Table output has the following format (identical to the constructor string): 1684 * num_feature_args [features_args]* 1685 * num_handler_args hw_handler [hw_handler_args]* 1686 * num_groups init_group_number 1687 * [priority selector-name num_ps_args [ps_args]* 1688 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1689 */ 1690 static void multipath_status(struct dm_target *ti, status_type_t type, 1691 unsigned status_flags, char *result, unsigned maxlen) 1692 { 1693 int sz = 0; 1694 unsigned long flags; 1695 struct multipath *m = ti->private; 1696 struct priority_group *pg; 1697 struct pgpath *p; 1698 unsigned pg_num; 1699 char state; 1700 1701 spin_lock_irqsave(&m->lock, flags); 1702 1703 /* Features */ 1704 if (type == STATUSTYPE_INFO) 1705 DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags), 1706 atomic_read(&m->pg_init_count)); 1707 else { 1708 DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) + 1709 (m->pg_init_retries > 0) * 2 + 1710 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 + 1711 test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) + 1712 (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2); 1713 1714 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1715 DMEMIT("queue_if_no_path "); 1716 if (m->pg_init_retries) 1717 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1718 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) 1719 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs); 1720 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) 1721 DMEMIT("retain_attached_hw_handler "); 1722 if (m->queue_mode != DM_TYPE_REQUEST_BASED) { 1723 switch(m->queue_mode) { 1724 case DM_TYPE_BIO_BASED: 1725 DMEMIT("queue_mode bio "); 1726 break; 1727 case DM_TYPE_MQ_REQUEST_BASED: 1728 DMEMIT("queue_mode mq "); 1729 break; 1730 default: 1731 WARN_ON_ONCE(true); 1732 break; 1733 } 1734 } 1735 } 1736 1737 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1738 DMEMIT("0 "); 1739 else 1740 DMEMIT("1 %s ", m->hw_handler_name); 1741 1742 DMEMIT("%u ", m->nr_priority_groups); 1743 1744 if (m->next_pg) 1745 pg_num = m->next_pg->pg_num; 1746 else if (m->current_pg) 1747 pg_num = m->current_pg->pg_num; 1748 else 1749 pg_num = (m->nr_priority_groups ? 1 : 0); 1750 1751 DMEMIT("%u ", pg_num); 1752 1753 switch (type) { 1754 case STATUSTYPE_INFO: 1755 list_for_each_entry(pg, &m->priority_groups, list) { 1756 if (pg->bypassed) 1757 state = 'D'; /* Disabled */ 1758 else if (pg == m->current_pg) 1759 state = 'A'; /* Currently Active */ 1760 else 1761 state = 'E'; /* Enabled */ 1762 1763 DMEMIT("%c ", state); 1764 1765 if (pg->ps.type->status) 1766 sz += pg->ps.type->status(&pg->ps, NULL, type, 1767 result + sz, 1768 maxlen - sz); 1769 else 1770 DMEMIT("0 "); 1771 1772 DMEMIT("%u %u ", pg->nr_pgpaths, 1773 pg->ps.type->info_args); 1774 1775 list_for_each_entry(p, &pg->pgpaths, list) { 1776 DMEMIT("%s %s %u ", p->path.dev->name, 1777 p->is_active ? "A" : "F", 1778 p->fail_count); 1779 if (pg->ps.type->status) 1780 sz += pg->ps.type->status(&pg->ps, 1781 &p->path, type, result + sz, 1782 maxlen - sz); 1783 } 1784 } 1785 break; 1786 1787 case STATUSTYPE_TABLE: 1788 list_for_each_entry(pg, &m->priority_groups, list) { 1789 DMEMIT("%s ", pg->ps.type->name); 1790 1791 if (pg->ps.type->status) 1792 sz += pg->ps.type->status(&pg->ps, NULL, type, 1793 result + sz, 1794 maxlen - sz); 1795 else 1796 DMEMIT("0 "); 1797 1798 DMEMIT("%u %u ", pg->nr_pgpaths, 1799 pg->ps.type->table_args); 1800 1801 list_for_each_entry(p, &pg->pgpaths, list) { 1802 DMEMIT("%s ", p->path.dev->name); 1803 if (pg->ps.type->status) 1804 sz += pg->ps.type->status(&pg->ps, 1805 &p->path, type, result + sz, 1806 maxlen - sz); 1807 } 1808 } 1809 break; 1810 } 1811 1812 spin_unlock_irqrestore(&m->lock, flags); 1813 } 1814 1815 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv, 1816 char *result, unsigned maxlen) 1817 { 1818 int r = -EINVAL; 1819 struct dm_dev *dev; 1820 struct multipath *m = ti->private; 1821 action_fn action; 1822 1823 mutex_lock(&m->work_mutex); 1824 1825 if (dm_suspended(ti)) { 1826 r = -EBUSY; 1827 goto out; 1828 } 1829 1830 if (argc == 1) { 1831 if (!strcasecmp(argv[0], "queue_if_no_path")) { 1832 r = queue_if_no_path(m, true, false); 1833 goto out; 1834 } else if (!strcasecmp(argv[0], "fail_if_no_path")) { 1835 r = queue_if_no_path(m, false, false); 1836 goto out; 1837 } 1838 } 1839 1840 if (argc != 2) { 1841 DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc); 1842 goto out; 1843 } 1844 1845 if (!strcasecmp(argv[0], "disable_group")) { 1846 r = bypass_pg_num(m, argv[1], true); 1847 goto out; 1848 } else if (!strcasecmp(argv[0], "enable_group")) { 1849 r = bypass_pg_num(m, argv[1], false); 1850 goto out; 1851 } else if (!strcasecmp(argv[0], "switch_group")) { 1852 r = switch_pg_num(m, argv[1]); 1853 goto out; 1854 } else if (!strcasecmp(argv[0], "reinstate_path")) 1855 action = reinstate_path; 1856 else if (!strcasecmp(argv[0], "fail_path")) 1857 action = fail_path; 1858 else { 1859 DMWARN("Unrecognised multipath message received: %s", argv[0]); 1860 goto out; 1861 } 1862 1863 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev); 1864 if (r) { 1865 DMWARN("message: error getting device %s", 1866 argv[1]); 1867 goto out; 1868 } 1869 1870 r = action_dev(m, dev, action); 1871 1872 dm_put_device(ti, dev); 1873 1874 out: 1875 mutex_unlock(&m->work_mutex); 1876 return r; 1877 } 1878 1879 static int multipath_prepare_ioctl(struct dm_target *ti, 1880 struct block_device **bdev) 1881 { 1882 struct multipath *m = ti->private; 1883 struct pgpath *current_pgpath; 1884 int r; 1885 1886 current_pgpath = READ_ONCE(m->current_pgpath); 1887 if (!current_pgpath) 1888 current_pgpath = choose_pgpath(m, 0); 1889 1890 if (current_pgpath) { 1891 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) { 1892 *bdev = current_pgpath->path.dev->bdev; 1893 r = 0; 1894 } else { 1895 /* pg_init has not started or completed */ 1896 r = -ENOTCONN; 1897 } 1898 } else { 1899 /* No path is available */ 1900 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1901 r = -ENOTCONN; 1902 else 1903 r = -EIO; 1904 } 1905 1906 if (r == -ENOTCONN) { 1907 if (!READ_ONCE(m->current_pg)) { 1908 /* Path status changed, redo selection */ 1909 (void) choose_pgpath(m, 0); 1910 } 1911 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1912 pg_init_all_paths(m); 1913 dm_table_run_md_queue_async(m->ti->table); 1914 process_queued_io_list(m); 1915 } 1916 1917 /* 1918 * Only pass ioctls through if the device sizes match exactly. 1919 */ 1920 if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT) 1921 return 1; 1922 return r; 1923 } 1924 1925 static int multipath_iterate_devices(struct dm_target *ti, 1926 iterate_devices_callout_fn fn, void *data) 1927 { 1928 struct multipath *m = ti->private; 1929 struct priority_group *pg; 1930 struct pgpath *p; 1931 int ret = 0; 1932 1933 list_for_each_entry(pg, &m->priority_groups, list) { 1934 list_for_each_entry(p, &pg->pgpaths, list) { 1935 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 1936 if (ret) 1937 goto out; 1938 } 1939 } 1940 1941 out: 1942 return ret; 1943 } 1944 1945 static int pgpath_busy(struct pgpath *pgpath) 1946 { 1947 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1948 1949 return blk_lld_busy(q); 1950 } 1951 1952 /* 1953 * We return "busy", only when we can map I/Os but underlying devices 1954 * are busy (so even if we map I/Os now, the I/Os will wait on 1955 * the underlying queue). 1956 * In other words, if we want to kill I/Os or queue them inside us 1957 * due to map unavailability, we don't return "busy". Otherwise, 1958 * dm core won't give us the I/Os and we can't do what we want. 1959 */ 1960 static int multipath_busy(struct dm_target *ti) 1961 { 1962 bool busy = false, has_active = false; 1963 struct multipath *m = ti->private; 1964 struct priority_group *pg, *next_pg; 1965 struct pgpath *pgpath; 1966 1967 /* pg_init in progress */ 1968 if (atomic_read(&m->pg_init_in_progress)) 1969 return true; 1970 1971 /* no paths available, for blk-mq: rely on IO mapping to delay requeue */ 1972 if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1973 return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED); 1974 1975 /* Guess which priority_group will be used at next mapping time */ 1976 pg = READ_ONCE(m->current_pg); 1977 next_pg = READ_ONCE(m->next_pg); 1978 if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg)) 1979 pg = next_pg; 1980 1981 if (!pg) { 1982 /* 1983 * We don't know which pg will be used at next mapping time. 1984 * We don't call choose_pgpath() here to avoid to trigger 1985 * pg_init just by busy checking. 1986 * So we don't know whether underlying devices we will be using 1987 * at next mapping time are busy or not. Just try mapping. 1988 */ 1989 return busy; 1990 } 1991 1992 /* 1993 * If there is one non-busy active path at least, the path selector 1994 * will be able to select it. So we consider such a pg as not busy. 1995 */ 1996 busy = true; 1997 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1998 if (pgpath->is_active) { 1999 has_active = true; 2000 if (!pgpath_busy(pgpath)) { 2001 busy = false; 2002 break; 2003 } 2004 } 2005 } 2006 2007 if (!has_active) { 2008 /* 2009 * No active path in this pg, so this pg won't be used and 2010 * the current_pg will be changed at next mapping time. 2011 * We need to try mapping to determine it. 2012 */ 2013 busy = false; 2014 } 2015 2016 return busy; 2017 } 2018 2019 /*----------------------------------------------------------------- 2020 * Module setup 2021 *---------------------------------------------------------------*/ 2022 static struct target_type multipath_target = { 2023 .name = "multipath", 2024 .version = {1, 13, 0}, 2025 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE | 2026 DM_TARGET_PASSES_INTEGRITY, 2027 .module = THIS_MODULE, 2028 .ctr = multipath_ctr, 2029 .dtr = multipath_dtr, 2030 .clone_and_map_rq = multipath_clone_and_map, 2031 .release_clone_rq = multipath_release_clone, 2032 .rq_end_io = multipath_end_io, 2033 .map = multipath_map_bio, 2034 .end_io = multipath_end_io_bio, 2035 .presuspend = multipath_presuspend, 2036 .postsuspend = multipath_postsuspend, 2037 .resume = multipath_resume, 2038 .status = multipath_status, 2039 .message = multipath_message, 2040 .prepare_ioctl = multipath_prepare_ioctl, 2041 .iterate_devices = multipath_iterate_devices, 2042 .busy = multipath_busy, 2043 }; 2044 2045 static int __init dm_multipath_init(void) 2046 { 2047 int r; 2048 2049 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0); 2050 if (!kmultipathd) { 2051 DMERR("failed to create workqueue kmpathd"); 2052 r = -ENOMEM; 2053 goto bad_alloc_kmultipathd; 2054 } 2055 2056 /* 2057 * A separate workqueue is used to handle the device handlers 2058 * to avoid overloading existing workqueue. Overloading the 2059 * old workqueue would also create a bottleneck in the 2060 * path of the storage hardware device activation. 2061 */ 2062 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd", 2063 WQ_MEM_RECLAIM); 2064 if (!kmpath_handlerd) { 2065 DMERR("failed to create workqueue kmpath_handlerd"); 2066 r = -ENOMEM; 2067 goto bad_alloc_kmpath_handlerd; 2068 } 2069 2070 r = dm_register_target(&multipath_target); 2071 if (r < 0) { 2072 DMERR("request-based register failed %d", r); 2073 r = -EINVAL; 2074 goto bad_register_target; 2075 } 2076 2077 return 0; 2078 2079 bad_register_target: 2080 destroy_workqueue(kmpath_handlerd); 2081 bad_alloc_kmpath_handlerd: 2082 destroy_workqueue(kmultipathd); 2083 bad_alloc_kmultipathd: 2084 return r; 2085 } 2086 2087 static void __exit dm_multipath_exit(void) 2088 { 2089 destroy_workqueue(kmpath_handlerd); 2090 destroy_workqueue(kmultipathd); 2091 2092 dm_unregister_target(&multipath_target); 2093 } 2094 2095 module_init(dm_multipath_init); 2096 module_exit(dm_multipath_exit); 2097 2098 MODULE_DESCRIPTION(DM_NAME " multipath target"); 2099 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>"); 2100 MODULE_LICENSE("GPL"); 2101