xref: /linux/drivers/md/dm-mpath.c (revision e60e1ee60630cafef5e430c2ae364877e061d980)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-rq.h"
11 #include "dm-bio-record.h"
12 #include "dm-path-selector.h"
13 #include "dm-uevent.h"
14 
15 #include <linux/blkdev.h>
16 #include <linux/ctype.h>
17 #include <linux/init.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/time.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <scsi/scsi_dh.h>
26 #include <linux/atomic.h>
27 #include <linux/blk-mq.h>
28 
29 #define DM_MSG_PREFIX "multipath"
30 #define DM_PG_INIT_DELAY_MSECS 2000
31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
32 
33 /* Path properties */
34 struct pgpath {
35 	struct list_head list;
36 
37 	struct priority_group *pg;	/* Owning PG */
38 	unsigned fail_count;		/* Cumulative failure count */
39 
40 	struct dm_path path;
41 	struct delayed_work activate_path;
42 
43 	bool is_active:1;		/* Path status */
44 };
45 
46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
47 
48 /*
49  * Paths are grouped into Priority Groups and numbered from 1 upwards.
50  * Each has a path selector which controls which path gets used.
51  */
52 struct priority_group {
53 	struct list_head list;
54 
55 	struct multipath *m;		/* Owning multipath instance */
56 	struct path_selector ps;
57 
58 	unsigned pg_num;		/* Reference number */
59 	unsigned nr_pgpaths;		/* Number of paths in PG */
60 	struct list_head pgpaths;
61 
62 	bool bypassed:1;		/* Temporarily bypass this PG? */
63 };
64 
65 /* Multipath context */
66 struct multipath {
67 	struct list_head list;
68 	struct dm_target *ti;
69 
70 	const char *hw_handler_name;
71 	char *hw_handler_params;
72 
73 	spinlock_t lock;
74 
75 	unsigned nr_priority_groups;
76 	struct list_head priority_groups;
77 
78 	wait_queue_head_t pg_init_wait;	/* Wait for pg_init completion */
79 
80 	struct pgpath *current_pgpath;
81 	struct priority_group *current_pg;
82 	struct priority_group *next_pg;	/* Switch to this PG if set */
83 
84 	unsigned long flags;		/* Multipath state flags */
85 
86 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
87 	unsigned pg_init_delay_msecs;	/* Number of msecs before pg_init retry */
88 
89 	atomic_t nr_valid_paths;	/* Total number of usable paths */
90 	atomic_t pg_init_in_progress;	/* Only one pg_init allowed at once */
91 	atomic_t pg_init_count;		/* Number of times pg_init called */
92 
93 	enum dm_queue_mode queue_mode;
94 
95 	struct mutex work_mutex;
96 	struct work_struct trigger_event;
97 
98 	struct work_struct process_queued_bios;
99 	struct bio_list queued_bios;
100 };
101 
102 /*
103  * Context information attached to each io we process.
104  */
105 struct dm_mpath_io {
106 	struct pgpath *pgpath;
107 	size_t nr_bytes;
108 };
109 
110 typedef int (*action_fn) (struct pgpath *pgpath);
111 
112 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
113 static void trigger_event(struct work_struct *work);
114 static void activate_or_offline_path(struct pgpath *pgpath);
115 static void activate_path_work(struct work_struct *work);
116 static void process_queued_bios(struct work_struct *work);
117 
118 /*-----------------------------------------------
119  * Multipath state flags.
120  *-----------------------------------------------*/
121 
122 #define MPATHF_QUEUE_IO 0			/* Must we queue all I/O? */
123 #define MPATHF_QUEUE_IF_NO_PATH 1		/* Queue I/O if last path fails? */
124 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2		/* Saved state during suspension */
125 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3	/* If there's already a hw_handler present, don't change it. */
126 #define MPATHF_PG_INIT_DISABLED 4		/* pg_init is not currently allowed */
127 #define MPATHF_PG_INIT_REQUIRED 5		/* pg_init needs calling? */
128 #define MPATHF_PG_INIT_DELAY_RETRY 6		/* Delay pg_init retry? */
129 
130 /*-----------------------------------------------
131  * Allocation routines
132  *-----------------------------------------------*/
133 
134 static struct pgpath *alloc_pgpath(void)
135 {
136 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
137 
138 	if (pgpath) {
139 		pgpath->is_active = true;
140 		INIT_DELAYED_WORK(&pgpath->activate_path, activate_path_work);
141 	}
142 
143 	return pgpath;
144 }
145 
146 static void free_pgpath(struct pgpath *pgpath)
147 {
148 	kfree(pgpath);
149 }
150 
151 static struct priority_group *alloc_priority_group(void)
152 {
153 	struct priority_group *pg;
154 
155 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
156 
157 	if (pg)
158 		INIT_LIST_HEAD(&pg->pgpaths);
159 
160 	return pg;
161 }
162 
163 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
164 {
165 	struct pgpath *pgpath, *tmp;
166 
167 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
168 		list_del(&pgpath->list);
169 		dm_put_device(ti, pgpath->path.dev);
170 		free_pgpath(pgpath);
171 	}
172 }
173 
174 static void free_priority_group(struct priority_group *pg,
175 				struct dm_target *ti)
176 {
177 	struct path_selector *ps = &pg->ps;
178 
179 	if (ps->type) {
180 		ps->type->destroy(ps);
181 		dm_put_path_selector(ps->type);
182 	}
183 
184 	free_pgpaths(&pg->pgpaths, ti);
185 	kfree(pg);
186 }
187 
188 static struct multipath *alloc_multipath(struct dm_target *ti)
189 {
190 	struct multipath *m;
191 
192 	m = kzalloc(sizeof(*m), GFP_KERNEL);
193 	if (m) {
194 		INIT_LIST_HEAD(&m->priority_groups);
195 		spin_lock_init(&m->lock);
196 		set_bit(MPATHF_QUEUE_IO, &m->flags);
197 		atomic_set(&m->nr_valid_paths, 0);
198 		atomic_set(&m->pg_init_in_progress, 0);
199 		atomic_set(&m->pg_init_count, 0);
200 		m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
201 		INIT_WORK(&m->trigger_event, trigger_event);
202 		init_waitqueue_head(&m->pg_init_wait);
203 		mutex_init(&m->work_mutex);
204 
205 		m->queue_mode = DM_TYPE_NONE;
206 
207 		m->ti = ti;
208 		ti->private = m;
209 	}
210 
211 	return m;
212 }
213 
214 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m)
215 {
216 	if (m->queue_mode == DM_TYPE_NONE) {
217 		/*
218 		 * Default to request-based.
219 		 */
220 		if (dm_use_blk_mq(dm_table_get_md(ti->table)))
221 			m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
222 		else
223 			m->queue_mode = DM_TYPE_REQUEST_BASED;
224 	} else if (m->queue_mode == DM_TYPE_BIO_BASED) {
225 		INIT_WORK(&m->process_queued_bios, process_queued_bios);
226 		/*
227 		 * bio-based doesn't support any direct scsi_dh management;
228 		 * it just discovers if a scsi_dh is attached.
229 		 */
230 		set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
231 	}
232 
233 	dm_table_set_type(ti->table, m->queue_mode);
234 
235 	return 0;
236 }
237 
238 static void free_multipath(struct multipath *m)
239 {
240 	struct priority_group *pg, *tmp;
241 
242 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
243 		list_del(&pg->list);
244 		free_priority_group(pg, m->ti);
245 	}
246 
247 	kfree(m->hw_handler_name);
248 	kfree(m->hw_handler_params);
249 	kfree(m);
250 }
251 
252 static struct dm_mpath_io *get_mpio(union map_info *info)
253 {
254 	return info->ptr;
255 }
256 
257 static size_t multipath_per_bio_data_size(void)
258 {
259 	return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details);
260 }
261 
262 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio)
263 {
264 	return dm_per_bio_data(bio, multipath_per_bio_data_size());
265 }
266 
267 static struct dm_bio_details *get_bio_details_from_bio(struct bio *bio)
268 {
269 	/* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */
270 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
271 	void *bio_details = mpio + 1;
272 
273 	return bio_details;
274 }
275 
276 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p,
277 					struct dm_bio_details **bio_details_p)
278 {
279 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
280 	struct dm_bio_details *bio_details = get_bio_details_from_bio(bio);
281 
282 	memset(mpio, 0, sizeof(*mpio));
283 	memset(bio_details, 0, sizeof(*bio_details));
284 	dm_bio_record(bio_details, bio);
285 
286 	if (mpio_p)
287 		*mpio_p = mpio;
288 	if (bio_details_p)
289 		*bio_details_p = bio_details;
290 }
291 
292 /*-----------------------------------------------
293  * Path selection
294  *-----------------------------------------------*/
295 
296 static int __pg_init_all_paths(struct multipath *m)
297 {
298 	struct pgpath *pgpath;
299 	unsigned long pg_init_delay = 0;
300 
301 	lockdep_assert_held(&m->lock);
302 
303 	if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
304 		return 0;
305 
306 	atomic_inc(&m->pg_init_count);
307 	clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
308 
309 	/* Check here to reset pg_init_required */
310 	if (!m->current_pg)
311 		return 0;
312 
313 	if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags))
314 		pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
315 						 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
316 	list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
317 		/* Skip failed paths */
318 		if (!pgpath->is_active)
319 			continue;
320 		if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
321 				       pg_init_delay))
322 			atomic_inc(&m->pg_init_in_progress);
323 	}
324 	return atomic_read(&m->pg_init_in_progress);
325 }
326 
327 static int pg_init_all_paths(struct multipath *m)
328 {
329 	int ret;
330 	unsigned long flags;
331 
332 	spin_lock_irqsave(&m->lock, flags);
333 	ret = __pg_init_all_paths(m);
334 	spin_unlock_irqrestore(&m->lock, flags);
335 
336 	return ret;
337 }
338 
339 static void __switch_pg(struct multipath *m, struct priority_group *pg)
340 {
341 	m->current_pg = pg;
342 
343 	/* Must we initialise the PG first, and queue I/O till it's ready? */
344 	if (m->hw_handler_name) {
345 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
346 		set_bit(MPATHF_QUEUE_IO, &m->flags);
347 	} else {
348 		clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
349 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
350 	}
351 
352 	atomic_set(&m->pg_init_count, 0);
353 }
354 
355 static struct pgpath *choose_path_in_pg(struct multipath *m,
356 					struct priority_group *pg,
357 					size_t nr_bytes)
358 {
359 	unsigned long flags;
360 	struct dm_path *path;
361 	struct pgpath *pgpath;
362 
363 	path = pg->ps.type->select_path(&pg->ps, nr_bytes);
364 	if (!path)
365 		return ERR_PTR(-ENXIO);
366 
367 	pgpath = path_to_pgpath(path);
368 
369 	if (unlikely(READ_ONCE(m->current_pg) != pg)) {
370 		/* Only update current_pgpath if pg changed */
371 		spin_lock_irqsave(&m->lock, flags);
372 		m->current_pgpath = pgpath;
373 		__switch_pg(m, pg);
374 		spin_unlock_irqrestore(&m->lock, flags);
375 	}
376 
377 	return pgpath;
378 }
379 
380 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes)
381 {
382 	unsigned long flags;
383 	struct priority_group *pg;
384 	struct pgpath *pgpath;
385 	unsigned bypassed = 1;
386 
387 	if (!atomic_read(&m->nr_valid_paths)) {
388 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
389 		goto failed;
390 	}
391 
392 	/* Were we instructed to switch PG? */
393 	if (READ_ONCE(m->next_pg)) {
394 		spin_lock_irqsave(&m->lock, flags);
395 		pg = m->next_pg;
396 		if (!pg) {
397 			spin_unlock_irqrestore(&m->lock, flags);
398 			goto check_current_pg;
399 		}
400 		m->next_pg = NULL;
401 		spin_unlock_irqrestore(&m->lock, flags);
402 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
403 		if (!IS_ERR_OR_NULL(pgpath))
404 			return pgpath;
405 	}
406 
407 	/* Don't change PG until it has no remaining paths */
408 check_current_pg:
409 	pg = READ_ONCE(m->current_pg);
410 	if (pg) {
411 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
412 		if (!IS_ERR_OR_NULL(pgpath))
413 			return pgpath;
414 	}
415 
416 	/*
417 	 * Loop through priority groups until we find a valid path.
418 	 * First time we skip PGs marked 'bypassed'.
419 	 * Second time we only try the ones we skipped, but set
420 	 * pg_init_delay_retry so we do not hammer controllers.
421 	 */
422 	do {
423 		list_for_each_entry(pg, &m->priority_groups, list) {
424 			if (pg->bypassed == !!bypassed)
425 				continue;
426 			pgpath = choose_path_in_pg(m, pg, nr_bytes);
427 			if (!IS_ERR_OR_NULL(pgpath)) {
428 				if (!bypassed)
429 					set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
430 				return pgpath;
431 			}
432 		}
433 	} while (bypassed--);
434 
435 failed:
436 	spin_lock_irqsave(&m->lock, flags);
437 	m->current_pgpath = NULL;
438 	m->current_pg = NULL;
439 	spin_unlock_irqrestore(&m->lock, flags);
440 
441 	return NULL;
442 }
443 
444 /*
445  * dm_report_EIO() is a macro instead of a function to make pr_debug()
446  * report the function name and line number of the function from which
447  * it has been invoked.
448  */
449 #define dm_report_EIO(m)						\
450 do {									\
451 	struct mapped_device *md = dm_table_get_md((m)->ti->table);	\
452 									\
453 	pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \
454 		 dm_device_name(md),					\
455 		 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags),	\
456 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags),	\
457 		 dm_noflush_suspending((m)->ti));			\
458 } while (0)
459 
460 /*
461  * Map cloned requests (request-based multipath)
462  */
463 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq,
464 				   union map_info *map_context,
465 				   struct request **__clone)
466 {
467 	struct multipath *m = ti->private;
468 	size_t nr_bytes = blk_rq_bytes(rq);
469 	struct pgpath *pgpath;
470 	struct block_device *bdev;
471 	struct dm_mpath_io *mpio = get_mpio(map_context);
472 	struct request_queue *q;
473 	struct request *clone;
474 
475 	/* Do we need to select a new pgpath? */
476 	pgpath = READ_ONCE(m->current_pgpath);
477 	if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags))
478 		pgpath = choose_pgpath(m, nr_bytes);
479 
480 	if (!pgpath) {
481 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
482 			return DM_MAPIO_DELAY_REQUEUE;
483 		dm_report_EIO(m);	/* Failed */
484 		return DM_MAPIO_KILL;
485 	} else if (test_bit(MPATHF_QUEUE_IO, &m->flags) ||
486 		   test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
487 		if (pg_init_all_paths(m))
488 			return DM_MAPIO_DELAY_REQUEUE;
489 		return DM_MAPIO_REQUEUE;
490 	}
491 
492 	memset(mpio, 0, sizeof(*mpio));
493 	mpio->pgpath = pgpath;
494 	mpio->nr_bytes = nr_bytes;
495 
496 	bdev = pgpath->path.dev->bdev;
497 	q = bdev_get_queue(bdev);
498 	clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE, GFP_ATOMIC);
499 	if (IS_ERR(clone)) {
500 		/* EBUSY, ENODEV or EWOULDBLOCK: requeue */
501 		bool queue_dying = blk_queue_dying(q);
502 		DMERR_LIMIT("blk_get_request() returned %ld%s - requeuing",
503 			    PTR_ERR(clone), queue_dying ? " (path offline)" : "");
504 		if (queue_dying) {
505 			atomic_inc(&m->pg_init_in_progress);
506 			activate_or_offline_path(pgpath);
507 		}
508 		return DM_MAPIO_DELAY_REQUEUE;
509 	}
510 	clone->bio = clone->biotail = NULL;
511 	clone->rq_disk = bdev->bd_disk;
512 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
513 	*__clone = clone;
514 
515 	if (pgpath->pg->ps.type->start_io)
516 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
517 					      &pgpath->path,
518 					      nr_bytes);
519 	return DM_MAPIO_REMAPPED;
520 }
521 
522 static void multipath_release_clone(struct request *clone)
523 {
524 	blk_put_request(clone);
525 }
526 
527 /*
528  * Map cloned bios (bio-based multipath)
529  */
530 static int __multipath_map_bio(struct multipath *m, struct bio *bio, struct dm_mpath_io *mpio)
531 {
532 	size_t nr_bytes = bio->bi_iter.bi_size;
533 	struct pgpath *pgpath;
534 	unsigned long flags;
535 	bool queue_io;
536 
537 	/* Do we need to select a new pgpath? */
538 	pgpath = READ_ONCE(m->current_pgpath);
539 	queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags);
540 	if (!pgpath || !queue_io)
541 		pgpath = choose_pgpath(m, nr_bytes);
542 
543 	if ((pgpath && queue_io) ||
544 	    (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) {
545 		/* Queue for the daemon to resubmit */
546 		spin_lock_irqsave(&m->lock, flags);
547 		bio_list_add(&m->queued_bios, bio);
548 		spin_unlock_irqrestore(&m->lock, flags);
549 		/* PG_INIT_REQUIRED cannot be set without QUEUE_IO */
550 		if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
551 			pg_init_all_paths(m);
552 		else if (!queue_io)
553 			queue_work(kmultipathd, &m->process_queued_bios);
554 		return DM_MAPIO_SUBMITTED;
555 	}
556 
557 	if (!pgpath) {
558 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
559 			return DM_MAPIO_REQUEUE;
560 		dm_report_EIO(m);
561 		return DM_MAPIO_KILL;
562 	}
563 
564 	mpio->pgpath = pgpath;
565 	mpio->nr_bytes = nr_bytes;
566 
567 	bio->bi_status = 0;
568 	bio_set_dev(bio, pgpath->path.dev->bdev);
569 	bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
570 
571 	if (pgpath->pg->ps.type->start_io)
572 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
573 					      &pgpath->path,
574 					      nr_bytes);
575 	return DM_MAPIO_REMAPPED;
576 }
577 
578 static int multipath_map_bio(struct dm_target *ti, struct bio *bio)
579 {
580 	struct multipath *m = ti->private;
581 	struct dm_mpath_io *mpio = NULL;
582 
583 	multipath_init_per_bio_data(bio, &mpio, NULL);
584 
585 	return __multipath_map_bio(m, bio, mpio);
586 }
587 
588 static void process_queued_io_list(struct multipath *m)
589 {
590 	if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED)
591 		dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table));
592 	else if (m->queue_mode == DM_TYPE_BIO_BASED)
593 		queue_work(kmultipathd, &m->process_queued_bios);
594 }
595 
596 static void process_queued_bios(struct work_struct *work)
597 {
598 	int r;
599 	unsigned long flags;
600 	struct bio *bio;
601 	struct bio_list bios;
602 	struct blk_plug plug;
603 	struct multipath *m =
604 		container_of(work, struct multipath, process_queued_bios);
605 
606 	bio_list_init(&bios);
607 
608 	spin_lock_irqsave(&m->lock, flags);
609 
610 	if (bio_list_empty(&m->queued_bios)) {
611 		spin_unlock_irqrestore(&m->lock, flags);
612 		return;
613 	}
614 
615 	bio_list_merge(&bios, &m->queued_bios);
616 	bio_list_init(&m->queued_bios);
617 
618 	spin_unlock_irqrestore(&m->lock, flags);
619 
620 	blk_start_plug(&plug);
621 	while ((bio = bio_list_pop(&bios))) {
622 		r = __multipath_map_bio(m, bio, get_mpio_from_bio(bio));
623 		switch (r) {
624 		case DM_MAPIO_KILL:
625 			bio->bi_status = BLK_STS_IOERR;
626 			bio_endio(bio);
627 			break;
628 		case DM_MAPIO_REQUEUE:
629 			bio->bi_status = BLK_STS_DM_REQUEUE;
630 			bio_endio(bio);
631 			break;
632 		case DM_MAPIO_REMAPPED:
633 			generic_make_request(bio);
634 			break;
635 		case 0:
636 			break;
637 		default:
638 			WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r);
639 		}
640 	}
641 	blk_finish_plug(&plug);
642 }
643 
644 /*
645  * If we run out of usable paths, should we queue I/O or error it?
646  */
647 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path,
648 			    bool save_old_value)
649 {
650 	unsigned long flags;
651 
652 	spin_lock_irqsave(&m->lock, flags);
653 	assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags,
654 		   (save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) ||
655 		   (!save_old_value && queue_if_no_path));
656 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags,
657 		   queue_if_no_path || dm_noflush_suspending(m->ti));
658 	spin_unlock_irqrestore(&m->lock, flags);
659 
660 	if (!queue_if_no_path) {
661 		dm_table_run_md_queue_async(m->ti->table);
662 		process_queued_io_list(m);
663 	}
664 
665 	return 0;
666 }
667 
668 /*
669  * An event is triggered whenever a path is taken out of use.
670  * Includes path failure and PG bypass.
671  */
672 static void trigger_event(struct work_struct *work)
673 {
674 	struct multipath *m =
675 		container_of(work, struct multipath, trigger_event);
676 
677 	dm_table_event(m->ti->table);
678 }
679 
680 /*-----------------------------------------------------------------
681  * Constructor/argument parsing:
682  * <#multipath feature args> [<arg>]*
683  * <#hw_handler args> [hw_handler [<arg>]*]
684  * <#priority groups>
685  * <initial priority group>
686  *     [<selector> <#selector args> [<arg>]*
687  *      <#paths> <#per-path selector args>
688  *         [<path> [<arg>]* ]+ ]+
689  *---------------------------------------------------------------*/
690 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
691 			       struct dm_target *ti)
692 {
693 	int r;
694 	struct path_selector_type *pst;
695 	unsigned ps_argc;
696 
697 	static const struct dm_arg _args[] = {
698 		{0, 1024, "invalid number of path selector args"},
699 	};
700 
701 	pst = dm_get_path_selector(dm_shift_arg(as));
702 	if (!pst) {
703 		ti->error = "unknown path selector type";
704 		return -EINVAL;
705 	}
706 
707 	r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
708 	if (r) {
709 		dm_put_path_selector(pst);
710 		return -EINVAL;
711 	}
712 
713 	r = pst->create(&pg->ps, ps_argc, as->argv);
714 	if (r) {
715 		dm_put_path_selector(pst);
716 		ti->error = "path selector constructor failed";
717 		return r;
718 	}
719 
720 	pg->ps.type = pst;
721 	dm_consume_args(as, ps_argc);
722 
723 	return 0;
724 }
725 
726 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
727 			       struct dm_target *ti)
728 {
729 	int r;
730 	struct pgpath *p;
731 	struct multipath *m = ti->private;
732 	struct request_queue *q = NULL;
733 	const char *attached_handler_name;
734 
735 	/* we need at least a path arg */
736 	if (as->argc < 1) {
737 		ti->error = "no device given";
738 		return ERR_PTR(-EINVAL);
739 	}
740 
741 	p = alloc_pgpath();
742 	if (!p)
743 		return ERR_PTR(-ENOMEM);
744 
745 	r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
746 			  &p->path.dev);
747 	if (r) {
748 		ti->error = "error getting device";
749 		goto bad;
750 	}
751 
752 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) || m->hw_handler_name)
753 		q = bdev_get_queue(p->path.dev->bdev);
754 
755 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) {
756 retain:
757 		attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
758 		if (attached_handler_name) {
759 			/*
760 			 * Clear any hw_handler_params associated with a
761 			 * handler that isn't already attached.
762 			 */
763 			if (m->hw_handler_name && strcmp(attached_handler_name, m->hw_handler_name)) {
764 				kfree(m->hw_handler_params);
765 				m->hw_handler_params = NULL;
766 			}
767 
768 			/*
769 			 * Reset hw_handler_name to match the attached handler
770 			 *
771 			 * NB. This modifies the table line to show the actual
772 			 * handler instead of the original table passed in.
773 			 */
774 			kfree(m->hw_handler_name);
775 			m->hw_handler_name = attached_handler_name;
776 		}
777 	}
778 
779 	if (m->hw_handler_name) {
780 		r = scsi_dh_attach(q, m->hw_handler_name);
781 		if (r == -EBUSY) {
782 			char b[BDEVNAME_SIZE];
783 
784 			printk(KERN_INFO "dm-mpath: retaining handler on device %s\n",
785 				bdevname(p->path.dev->bdev, b));
786 			goto retain;
787 		}
788 		if (r < 0) {
789 			ti->error = "error attaching hardware handler";
790 			dm_put_device(ti, p->path.dev);
791 			goto bad;
792 		}
793 
794 		if (m->hw_handler_params) {
795 			r = scsi_dh_set_params(q, m->hw_handler_params);
796 			if (r < 0) {
797 				ti->error = "unable to set hardware "
798 							"handler parameters";
799 				dm_put_device(ti, p->path.dev);
800 				goto bad;
801 			}
802 		}
803 	}
804 
805 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
806 	if (r) {
807 		dm_put_device(ti, p->path.dev);
808 		goto bad;
809 	}
810 
811 	return p;
812 
813  bad:
814 	free_pgpath(p);
815 	return ERR_PTR(r);
816 }
817 
818 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
819 						   struct multipath *m)
820 {
821 	static const struct dm_arg _args[] = {
822 		{1, 1024, "invalid number of paths"},
823 		{0, 1024, "invalid number of selector args"}
824 	};
825 
826 	int r;
827 	unsigned i, nr_selector_args, nr_args;
828 	struct priority_group *pg;
829 	struct dm_target *ti = m->ti;
830 
831 	if (as->argc < 2) {
832 		as->argc = 0;
833 		ti->error = "not enough priority group arguments";
834 		return ERR_PTR(-EINVAL);
835 	}
836 
837 	pg = alloc_priority_group();
838 	if (!pg) {
839 		ti->error = "couldn't allocate priority group";
840 		return ERR_PTR(-ENOMEM);
841 	}
842 	pg->m = m;
843 
844 	r = parse_path_selector(as, pg, ti);
845 	if (r)
846 		goto bad;
847 
848 	/*
849 	 * read the paths
850 	 */
851 	r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
852 	if (r)
853 		goto bad;
854 
855 	r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
856 	if (r)
857 		goto bad;
858 
859 	nr_args = 1 + nr_selector_args;
860 	for (i = 0; i < pg->nr_pgpaths; i++) {
861 		struct pgpath *pgpath;
862 		struct dm_arg_set path_args;
863 
864 		if (as->argc < nr_args) {
865 			ti->error = "not enough path parameters";
866 			r = -EINVAL;
867 			goto bad;
868 		}
869 
870 		path_args.argc = nr_args;
871 		path_args.argv = as->argv;
872 
873 		pgpath = parse_path(&path_args, &pg->ps, ti);
874 		if (IS_ERR(pgpath)) {
875 			r = PTR_ERR(pgpath);
876 			goto bad;
877 		}
878 
879 		pgpath->pg = pg;
880 		list_add_tail(&pgpath->list, &pg->pgpaths);
881 		dm_consume_args(as, nr_args);
882 	}
883 
884 	return pg;
885 
886  bad:
887 	free_priority_group(pg, ti);
888 	return ERR_PTR(r);
889 }
890 
891 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
892 {
893 	unsigned hw_argc;
894 	int ret;
895 	struct dm_target *ti = m->ti;
896 
897 	static const struct dm_arg _args[] = {
898 		{0, 1024, "invalid number of hardware handler args"},
899 	};
900 
901 	if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
902 		return -EINVAL;
903 
904 	if (!hw_argc)
905 		return 0;
906 
907 	if (m->queue_mode == DM_TYPE_BIO_BASED) {
908 		dm_consume_args(as, hw_argc);
909 		DMERR("bio-based multipath doesn't allow hardware handler args");
910 		return 0;
911 	}
912 
913 	m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
914 	if (!m->hw_handler_name)
915 		return -EINVAL;
916 
917 	if (hw_argc > 1) {
918 		char *p;
919 		int i, j, len = 4;
920 
921 		for (i = 0; i <= hw_argc - 2; i++)
922 			len += strlen(as->argv[i]) + 1;
923 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
924 		if (!p) {
925 			ti->error = "memory allocation failed";
926 			ret = -ENOMEM;
927 			goto fail;
928 		}
929 		j = sprintf(p, "%d", hw_argc - 1);
930 		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
931 			j = sprintf(p, "%s", as->argv[i]);
932 	}
933 	dm_consume_args(as, hw_argc - 1);
934 
935 	return 0;
936 fail:
937 	kfree(m->hw_handler_name);
938 	m->hw_handler_name = NULL;
939 	return ret;
940 }
941 
942 static int parse_features(struct dm_arg_set *as, struct multipath *m)
943 {
944 	int r;
945 	unsigned argc;
946 	struct dm_target *ti = m->ti;
947 	const char *arg_name;
948 
949 	static const struct dm_arg _args[] = {
950 		{0, 8, "invalid number of feature args"},
951 		{1, 50, "pg_init_retries must be between 1 and 50"},
952 		{0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
953 	};
954 
955 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
956 	if (r)
957 		return -EINVAL;
958 
959 	if (!argc)
960 		return 0;
961 
962 	do {
963 		arg_name = dm_shift_arg(as);
964 		argc--;
965 
966 		if (!strcasecmp(arg_name, "queue_if_no_path")) {
967 			r = queue_if_no_path(m, true, false);
968 			continue;
969 		}
970 
971 		if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
972 			set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
973 			continue;
974 		}
975 
976 		if (!strcasecmp(arg_name, "pg_init_retries") &&
977 		    (argc >= 1)) {
978 			r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
979 			argc--;
980 			continue;
981 		}
982 
983 		if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
984 		    (argc >= 1)) {
985 			r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
986 			argc--;
987 			continue;
988 		}
989 
990 		if (!strcasecmp(arg_name, "queue_mode") &&
991 		    (argc >= 1)) {
992 			const char *queue_mode_name = dm_shift_arg(as);
993 
994 			if (!strcasecmp(queue_mode_name, "bio"))
995 				m->queue_mode = DM_TYPE_BIO_BASED;
996 			else if (!strcasecmp(queue_mode_name, "rq"))
997 				m->queue_mode = DM_TYPE_REQUEST_BASED;
998 			else if (!strcasecmp(queue_mode_name, "mq"))
999 				m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
1000 			else {
1001 				ti->error = "Unknown 'queue_mode' requested";
1002 				r = -EINVAL;
1003 			}
1004 			argc--;
1005 			continue;
1006 		}
1007 
1008 		ti->error = "Unrecognised multipath feature request";
1009 		r = -EINVAL;
1010 	} while (argc && !r);
1011 
1012 	return r;
1013 }
1014 
1015 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv)
1016 {
1017 	/* target arguments */
1018 	static const struct dm_arg _args[] = {
1019 		{0, 1024, "invalid number of priority groups"},
1020 		{0, 1024, "invalid initial priority group number"},
1021 	};
1022 
1023 	int r;
1024 	struct multipath *m;
1025 	struct dm_arg_set as;
1026 	unsigned pg_count = 0;
1027 	unsigned next_pg_num;
1028 
1029 	as.argc = argc;
1030 	as.argv = argv;
1031 
1032 	m = alloc_multipath(ti);
1033 	if (!m) {
1034 		ti->error = "can't allocate multipath";
1035 		return -EINVAL;
1036 	}
1037 
1038 	r = parse_features(&as, m);
1039 	if (r)
1040 		goto bad;
1041 
1042 	r = alloc_multipath_stage2(ti, m);
1043 	if (r)
1044 		goto bad;
1045 
1046 	r = parse_hw_handler(&as, m);
1047 	if (r)
1048 		goto bad;
1049 
1050 	r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
1051 	if (r)
1052 		goto bad;
1053 
1054 	r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
1055 	if (r)
1056 		goto bad;
1057 
1058 	if ((!m->nr_priority_groups && next_pg_num) ||
1059 	    (m->nr_priority_groups && !next_pg_num)) {
1060 		ti->error = "invalid initial priority group";
1061 		r = -EINVAL;
1062 		goto bad;
1063 	}
1064 
1065 	/* parse the priority groups */
1066 	while (as.argc) {
1067 		struct priority_group *pg;
1068 		unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths);
1069 
1070 		pg = parse_priority_group(&as, m);
1071 		if (IS_ERR(pg)) {
1072 			r = PTR_ERR(pg);
1073 			goto bad;
1074 		}
1075 
1076 		nr_valid_paths += pg->nr_pgpaths;
1077 		atomic_set(&m->nr_valid_paths, nr_valid_paths);
1078 
1079 		list_add_tail(&pg->list, &m->priority_groups);
1080 		pg_count++;
1081 		pg->pg_num = pg_count;
1082 		if (!--next_pg_num)
1083 			m->next_pg = pg;
1084 	}
1085 
1086 	if (pg_count != m->nr_priority_groups) {
1087 		ti->error = "priority group count mismatch";
1088 		r = -EINVAL;
1089 		goto bad;
1090 	}
1091 
1092 	ti->num_flush_bios = 1;
1093 	ti->num_discard_bios = 1;
1094 	ti->num_write_same_bios = 1;
1095 	ti->num_write_zeroes_bios = 1;
1096 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1097 		ti->per_io_data_size = multipath_per_bio_data_size();
1098 	else
1099 		ti->per_io_data_size = sizeof(struct dm_mpath_io);
1100 
1101 	return 0;
1102 
1103  bad:
1104 	free_multipath(m);
1105 	return r;
1106 }
1107 
1108 static void multipath_wait_for_pg_init_completion(struct multipath *m)
1109 {
1110 	DEFINE_WAIT(wait);
1111 
1112 	while (1) {
1113 		prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE);
1114 
1115 		if (!atomic_read(&m->pg_init_in_progress))
1116 			break;
1117 
1118 		io_schedule();
1119 	}
1120 	finish_wait(&m->pg_init_wait, &wait);
1121 }
1122 
1123 static void flush_multipath_work(struct multipath *m)
1124 {
1125 	set_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1126 	smp_mb__after_atomic();
1127 
1128 	flush_workqueue(kmpath_handlerd);
1129 	multipath_wait_for_pg_init_completion(m);
1130 	flush_workqueue(kmultipathd);
1131 	flush_work(&m->trigger_event);
1132 
1133 	clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1134 	smp_mb__after_atomic();
1135 }
1136 
1137 static void multipath_dtr(struct dm_target *ti)
1138 {
1139 	struct multipath *m = ti->private;
1140 
1141 	flush_multipath_work(m);
1142 	free_multipath(m);
1143 }
1144 
1145 /*
1146  * Take a path out of use.
1147  */
1148 static int fail_path(struct pgpath *pgpath)
1149 {
1150 	unsigned long flags;
1151 	struct multipath *m = pgpath->pg->m;
1152 
1153 	spin_lock_irqsave(&m->lock, flags);
1154 
1155 	if (!pgpath->is_active)
1156 		goto out;
1157 
1158 	DMWARN("Failing path %s.", pgpath->path.dev->name);
1159 
1160 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
1161 	pgpath->is_active = false;
1162 	pgpath->fail_count++;
1163 
1164 	atomic_dec(&m->nr_valid_paths);
1165 
1166 	if (pgpath == m->current_pgpath)
1167 		m->current_pgpath = NULL;
1168 
1169 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1170 		       pgpath->path.dev->name, atomic_read(&m->nr_valid_paths));
1171 
1172 	schedule_work(&m->trigger_event);
1173 
1174 out:
1175 	spin_unlock_irqrestore(&m->lock, flags);
1176 
1177 	return 0;
1178 }
1179 
1180 /*
1181  * Reinstate a previously-failed path
1182  */
1183 static int reinstate_path(struct pgpath *pgpath)
1184 {
1185 	int r = 0, run_queue = 0;
1186 	unsigned long flags;
1187 	struct multipath *m = pgpath->pg->m;
1188 	unsigned nr_valid_paths;
1189 
1190 	spin_lock_irqsave(&m->lock, flags);
1191 
1192 	if (pgpath->is_active)
1193 		goto out;
1194 
1195 	DMWARN("Reinstating path %s.", pgpath->path.dev->name);
1196 
1197 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1198 	if (r)
1199 		goto out;
1200 
1201 	pgpath->is_active = true;
1202 
1203 	nr_valid_paths = atomic_inc_return(&m->nr_valid_paths);
1204 	if (nr_valid_paths == 1) {
1205 		m->current_pgpath = NULL;
1206 		run_queue = 1;
1207 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1208 		if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1209 			atomic_inc(&m->pg_init_in_progress);
1210 	}
1211 
1212 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1213 		       pgpath->path.dev->name, nr_valid_paths);
1214 
1215 	schedule_work(&m->trigger_event);
1216 
1217 out:
1218 	spin_unlock_irqrestore(&m->lock, flags);
1219 	if (run_queue) {
1220 		dm_table_run_md_queue_async(m->ti->table);
1221 		process_queued_io_list(m);
1222 	}
1223 
1224 	return r;
1225 }
1226 
1227 /*
1228  * Fail or reinstate all paths that match the provided struct dm_dev.
1229  */
1230 static int action_dev(struct multipath *m, struct dm_dev *dev,
1231 		      action_fn action)
1232 {
1233 	int r = -EINVAL;
1234 	struct pgpath *pgpath;
1235 	struct priority_group *pg;
1236 
1237 	list_for_each_entry(pg, &m->priority_groups, list) {
1238 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1239 			if (pgpath->path.dev == dev)
1240 				r = action(pgpath);
1241 		}
1242 	}
1243 
1244 	return r;
1245 }
1246 
1247 /*
1248  * Temporarily try to avoid having to use the specified PG
1249  */
1250 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1251 		      bool bypassed)
1252 {
1253 	unsigned long flags;
1254 
1255 	spin_lock_irqsave(&m->lock, flags);
1256 
1257 	pg->bypassed = bypassed;
1258 	m->current_pgpath = NULL;
1259 	m->current_pg = NULL;
1260 
1261 	spin_unlock_irqrestore(&m->lock, flags);
1262 
1263 	schedule_work(&m->trigger_event);
1264 }
1265 
1266 /*
1267  * Switch to using the specified PG from the next I/O that gets mapped
1268  */
1269 static int switch_pg_num(struct multipath *m, const char *pgstr)
1270 {
1271 	struct priority_group *pg;
1272 	unsigned pgnum;
1273 	unsigned long flags;
1274 	char dummy;
1275 
1276 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1277 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1278 		DMWARN("invalid PG number supplied to switch_pg_num");
1279 		return -EINVAL;
1280 	}
1281 
1282 	spin_lock_irqsave(&m->lock, flags);
1283 	list_for_each_entry(pg, &m->priority_groups, list) {
1284 		pg->bypassed = false;
1285 		if (--pgnum)
1286 			continue;
1287 
1288 		m->current_pgpath = NULL;
1289 		m->current_pg = NULL;
1290 		m->next_pg = pg;
1291 	}
1292 	spin_unlock_irqrestore(&m->lock, flags);
1293 
1294 	schedule_work(&m->trigger_event);
1295 	return 0;
1296 }
1297 
1298 /*
1299  * Set/clear bypassed status of a PG.
1300  * PGs are numbered upwards from 1 in the order they were declared.
1301  */
1302 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed)
1303 {
1304 	struct priority_group *pg;
1305 	unsigned pgnum;
1306 	char dummy;
1307 
1308 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1309 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1310 		DMWARN("invalid PG number supplied to bypass_pg");
1311 		return -EINVAL;
1312 	}
1313 
1314 	list_for_each_entry(pg, &m->priority_groups, list) {
1315 		if (!--pgnum)
1316 			break;
1317 	}
1318 
1319 	bypass_pg(m, pg, bypassed);
1320 	return 0;
1321 }
1322 
1323 /*
1324  * Should we retry pg_init immediately?
1325  */
1326 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1327 {
1328 	unsigned long flags;
1329 	bool limit_reached = false;
1330 
1331 	spin_lock_irqsave(&m->lock, flags);
1332 
1333 	if (atomic_read(&m->pg_init_count) <= m->pg_init_retries &&
1334 	    !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
1335 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
1336 	else
1337 		limit_reached = true;
1338 
1339 	spin_unlock_irqrestore(&m->lock, flags);
1340 
1341 	return limit_reached;
1342 }
1343 
1344 static void pg_init_done(void *data, int errors)
1345 {
1346 	struct pgpath *pgpath = data;
1347 	struct priority_group *pg = pgpath->pg;
1348 	struct multipath *m = pg->m;
1349 	unsigned long flags;
1350 	bool delay_retry = false;
1351 
1352 	/* device or driver problems */
1353 	switch (errors) {
1354 	case SCSI_DH_OK:
1355 		break;
1356 	case SCSI_DH_NOSYS:
1357 		if (!m->hw_handler_name) {
1358 			errors = 0;
1359 			break;
1360 		}
1361 		DMERR("Could not failover the device: Handler scsi_dh_%s "
1362 		      "Error %d.", m->hw_handler_name, errors);
1363 		/*
1364 		 * Fail path for now, so we do not ping pong
1365 		 */
1366 		fail_path(pgpath);
1367 		break;
1368 	case SCSI_DH_DEV_TEMP_BUSY:
1369 		/*
1370 		 * Probably doing something like FW upgrade on the
1371 		 * controller so try the other pg.
1372 		 */
1373 		bypass_pg(m, pg, true);
1374 		break;
1375 	case SCSI_DH_RETRY:
1376 		/* Wait before retrying. */
1377 		delay_retry = 1;
1378 		/* fall through */
1379 	case SCSI_DH_IMM_RETRY:
1380 	case SCSI_DH_RES_TEMP_UNAVAIL:
1381 		if (pg_init_limit_reached(m, pgpath))
1382 			fail_path(pgpath);
1383 		errors = 0;
1384 		break;
1385 	case SCSI_DH_DEV_OFFLINED:
1386 	default:
1387 		/*
1388 		 * We probably do not want to fail the path for a device
1389 		 * error, but this is what the old dm did. In future
1390 		 * patches we can do more advanced handling.
1391 		 */
1392 		fail_path(pgpath);
1393 	}
1394 
1395 	spin_lock_irqsave(&m->lock, flags);
1396 	if (errors) {
1397 		if (pgpath == m->current_pgpath) {
1398 			DMERR("Could not failover device. Error %d.", errors);
1399 			m->current_pgpath = NULL;
1400 			m->current_pg = NULL;
1401 		}
1402 	} else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1403 		pg->bypassed = false;
1404 
1405 	if (atomic_dec_return(&m->pg_init_in_progress) > 0)
1406 		/* Activations of other paths are still on going */
1407 		goto out;
1408 
1409 	if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
1410 		if (delay_retry)
1411 			set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1412 		else
1413 			clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1414 
1415 		if (__pg_init_all_paths(m))
1416 			goto out;
1417 	}
1418 	clear_bit(MPATHF_QUEUE_IO, &m->flags);
1419 
1420 	process_queued_io_list(m);
1421 
1422 	/*
1423 	 * Wake up any thread waiting to suspend.
1424 	 */
1425 	wake_up(&m->pg_init_wait);
1426 
1427 out:
1428 	spin_unlock_irqrestore(&m->lock, flags);
1429 }
1430 
1431 static void activate_or_offline_path(struct pgpath *pgpath)
1432 {
1433 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1434 
1435 	if (pgpath->is_active && !blk_queue_dying(q))
1436 		scsi_dh_activate(q, pg_init_done, pgpath);
1437 	else
1438 		pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED);
1439 }
1440 
1441 static void activate_path_work(struct work_struct *work)
1442 {
1443 	struct pgpath *pgpath =
1444 		container_of(work, struct pgpath, activate_path.work);
1445 
1446 	activate_or_offline_path(pgpath);
1447 }
1448 
1449 static int noretry_error(blk_status_t error)
1450 {
1451 	switch (error) {
1452 	case BLK_STS_NOTSUPP:
1453 	case BLK_STS_NOSPC:
1454 	case BLK_STS_TARGET:
1455 	case BLK_STS_NEXUS:
1456 	case BLK_STS_MEDIUM:
1457 		return 1;
1458 	}
1459 
1460 	/* Anything else could be a path failure, so should be retried */
1461 	return 0;
1462 }
1463 
1464 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1465 			    blk_status_t error, union map_info *map_context)
1466 {
1467 	struct dm_mpath_io *mpio = get_mpio(map_context);
1468 	struct pgpath *pgpath = mpio->pgpath;
1469 	int r = DM_ENDIO_DONE;
1470 
1471 	/*
1472 	 * We don't queue any clone request inside the multipath target
1473 	 * during end I/O handling, since those clone requests don't have
1474 	 * bio clones.  If we queue them inside the multipath target,
1475 	 * we need to make bio clones, that requires memory allocation.
1476 	 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests
1477 	 *  don't have bio clones.)
1478 	 * Instead of queueing the clone request here, we queue the original
1479 	 * request into dm core, which will remake a clone request and
1480 	 * clone bios for it and resubmit it later.
1481 	 */
1482 	if (error && !noretry_error(error)) {
1483 		struct multipath *m = ti->private;
1484 
1485 		r = DM_ENDIO_REQUEUE;
1486 
1487 		if (pgpath)
1488 			fail_path(pgpath);
1489 
1490 		if (atomic_read(&m->nr_valid_paths) == 0 &&
1491 		    !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1492 			if (error == BLK_STS_IOERR)
1493 				dm_report_EIO(m);
1494 			/* complete with the original error */
1495 			r = DM_ENDIO_DONE;
1496 		}
1497 	}
1498 
1499 	if (pgpath) {
1500 		struct path_selector *ps = &pgpath->pg->ps;
1501 
1502 		if (ps->type->end_io)
1503 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1504 	}
1505 
1506 	return r;
1507 }
1508 
1509 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone,
1510 		blk_status_t *error)
1511 {
1512 	struct multipath *m = ti->private;
1513 	struct dm_mpath_io *mpio = get_mpio_from_bio(clone);
1514 	struct pgpath *pgpath = mpio->pgpath;
1515 	unsigned long flags;
1516 	int r = DM_ENDIO_DONE;
1517 
1518 	if (!*error || noretry_error(*error))
1519 		goto done;
1520 
1521 	if (pgpath)
1522 		fail_path(pgpath);
1523 
1524 	if (atomic_read(&m->nr_valid_paths) == 0 &&
1525 	    !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1526 		dm_report_EIO(m);
1527 		*error = BLK_STS_IOERR;
1528 		goto done;
1529 	}
1530 
1531 	/* Queue for the daemon to resubmit */
1532 	dm_bio_restore(get_bio_details_from_bio(clone), clone);
1533 
1534 	spin_lock_irqsave(&m->lock, flags);
1535 	bio_list_add(&m->queued_bios, clone);
1536 	spin_unlock_irqrestore(&m->lock, flags);
1537 	if (!test_bit(MPATHF_QUEUE_IO, &m->flags))
1538 		queue_work(kmultipathd, &m->process_queued_bios);
1539 
1540 	r = DM_ENDIO_INCOMPLETE;
1541 done:
1542 	if (pgpath) {
1543 		struct path_selector *ps = &pgpath->pg->ps;
1544 
1545 		if (ps->type->end_io)
1546 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1547 	}
1548 
1549 	return r;
1550 }
1551 
1552 /*
1553  * Suspend can't complete until all the I/O is processed so if
1554  * the last path fails we must error any remaining I/O.
1555  * Note that if the freeze_bdev fails while suspending, the
1556  * queue_if_no_path state is lost - userspace should reset it.
1557  */
1558 static void multipath_presuspend(struct dm_target *ti)
1559 {
1560 	struct multipath *m = ti->private;
1561 
1562 	queue_if_no_path(m, false, true);
1563 }
1564 
1565 static void multipath_postsuspend(struct dm_target *ti)
1566 {
1567 	struct multipath *m = ti->private;
1568 
1569 	mutex_lock(&m->work_mutex);
1570 	flush_multipath_work(m);
1571 	mutex_unlock(&m->work_mutex);
1572 }
1573 
1574 /*
1575  * Restore the queue_if_no_path setting.
1576  */
1577 static void multipath_resume(struct dm_target *ti)
1578 {
1579 	struct multipath *m = ti->private;
1580 	unsigned long flags;
1581 
1582 	spin_lock_irqsave(&m->lock, flags);
1583 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags,
1584 		   test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags));
1585 	spin_unlock_irqrestore(&m->lock, flags);
1586 }
1587 
1588 /*
1589  * Info output has the following format:
1590  * num_multipath_feature_args [multipath_feature_args]*
1591  * num_handler_status_args [handler_status_args]*
1592  * num_groups init_group_number
1593  *            [A|D|E num_ps_status_args [ps_status_args]*
1594  *             num_paths num_selector_args
1595  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1596  *
1597  * Table output has the following format (identical to the constructor string):
1598  * num_feature_args [features_args]*
1599  * num_handler_args hw_handler [hw_handler_args]*
1600  * num_groups init_group_number
1601  *     [priority selector-name num_ps_args [ps_args]*
1602  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1603  */
1604 static void multipath_status(struct dm_target *ti, status_type_t type,
1605 			     unsigned status_flags, char *result, unsigned maxlen)
1606 {
1607 	int sz = 0;
1608 	unsigned long flags;
1609 	struct multipath *m = ti->private;
1610 	struct priority_group *pg;
1611 	struct pgpath *p;
1612 	unsigned pg_num;
1613 	char state;
1614 
1615 	spin_lock_irqsave(&m->lock, flags);
1616 
1617 	/* Features */
1618 	if (type == STATUSTYPE_INFO)
1619 		DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags),
1620 		       atomic_read(&m->pg_init_count));
1621 	else {
1622 		DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) +
1623 			      (m->pg_init_retries > 0) * 2 +
1624 			      (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
1625 			      test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) +
1626 			      (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2);
1627 
1628 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1629 			DMEMIT("queue_if_no_path ");
1630 		if (m->pg_init_retries)
1631 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1632 		if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1633 			DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1634 		if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags))
1635 			DMEMIT("retain_attached_hw_handler ");
1636 		if (m->queue_mode != DM_TYPE_REQUEST_BASED) {
1637 			switch(m->queue_mode) {
1638 			case DM_TYPE_BIO_BASED:
1639 				DMEMIT("queue_mode bio ");
1640 				break;
1641 			case DM_TYPE_MQ_REQUEST_BASED:
1642 				DMEMIT("queue_mode mq ");
1643 				break;
1644 			default:
1645 				WARN_ON_ONCE(true);
1646 				break;
1647 			}
1648 		}
1649 	}
1650 
1651 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1652 		DMEMIT("0 ");
1653 	else
1654 		DMEMIT("1 %s ", m->hw_handler_name);
1655 
1656 	DMEMIT("%u ", m->nr_priority_groups);
1657 
1658 	if (m->next_pg)
1659 		pg_num = m->next_pg->pg_num;
1660 	else if (m->current_pg)
1661 		pg_num = m->current_pg->pg_num;
1662 	else
1663 		pg_num = (m->nr_priority_groups ? 1 : 0);
1664 
1665 	DMEMIT("%u ", pg_num);
1666 
1667 	switch (type) {
1668 	case STATUSTYPE_INFO:
1669 		list_for_each_entry(pg, &m->priority_groups, list) {
1670 			if (pg->bypassed)
1671 				state = 'D';	/* Disabled */
1672 			else if (pg == m->current_pg)
1673 				state = 'A';	/* Currently Active */
1674 			else
1675 				state = 'E';	/* Enabled */
1676 
1677 			DMEMIT("%c ", state);
1678 
1679 			if (pg->ps.type->status)
1680 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1681 							  result + sz,
1682 							  maxlen - sz);
1683 			else
1684 				DMEMIT("0 ");
1685 
1686 			DMEMIT("%u %u ", pg->nr_pgpaths,
1687 			       pg->ps.type->info_args);
1688 
1689 			list_for_each_entry(p, &pg->pgpaths, list) {
1690 				DMEMIT("%s %s %u ", p->path.dev->name,
1691 				       p->is_active ? "A" : "F",
1692 				       p->fail_count);
1693 				if (pg->ps.type->status)
1694 					sz += pg->ps.type->status(&pg->ps,
1695 					      &p->path, type, result + sz,
1696 					      maxlen - sz);
1697 			}
1698 		}
1699 		break;
1700 
1701 	case STATUSTYPE_TABLE:
1702 		list_for_each_entry(pg, &m->priority_groups, list) {
1703 			DMEMIT("%s ", pg->ps.type->name);
1704 
1705 			if (pg->ps.type->status)
1706 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1707 							  result + sz,
1708 							  maxlen - sz);
1709 			else
1710 				DMEMIT("0 ");
1711 
1712 			DMEMIT("%u %u ", pg->nr_pgpaths,
1713 			       pg->ps.type->table_args);
1714 
1715 			list_for_each_entry(p, &pg->pgpaths, list) {
1716 				DMEMIT("%s ", p->path.dev->name);
1717 				if (pg->ps.type->status)
1718 					sz += pg->ps.type->status(&pg->ps,
1719 					      &p->path, type, result + sz,
1720 					      maxlen - sz);
1721 			}
1722 		}
1723 		break;
1724 	}
1725 
1726 	spin_unlock_irqrestore(&m->lock, flags);
1727 }
1728 
1729 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv)
1730 {
1731 	int r = -EINVAL;
1732 	struct dm_dev *dev;
1733 	struct multipath *m = ti->private;
1734 	action_fn action;
1735 
1736 	mutex_lock(&m->work_mutex);
1737 
1738 	if (dm_suspended(ti)) {
1739 		r = -EBUSY;
1740 		goto out;
1741 	}
1742 
1743 	if (argc == 1) {
1744 		if (!strcasecmp(argv[0], "queue_if_no_path")) {
1745 			r = queue_if_no_path(m, true, false);
1746 			goto out;
1747 		} else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1748 			r = queue_if_no_path(m, false, false);
1749 			goto out;
1750 		}
1751 	}
1752 
1753 	if (argc != 2) {
1754 		DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc);
1755 		goto out;
1756 	}
1757 
1758 	if (!strcasecmp(argv[0], "disable_group")) {
1759 		r = bypass_pg_num(m, argv[1], true);
1760 		goto out;
1761 	} else if (!strcasecmp(argv[0], "enable_group")) {
1762 		r = bypass_pg_num(m, argv[1], false);
1763 		goto out;
1764 	} else if (!strcasecmp(argv[0], "switch_group")) {
1765 		r = switch_pg_num(m, argv[1]);
1766 		goto out;
1767 	} else if (!strcasecmp(argv[0], "reinstate_path"))
1768 		action = reinstate_path;
1769 	else if (!strcasecmp(argv[0], "fail_path"))
1770 		action = fail_path;
1771 	else {
1772 		DMWARN("Unrecognised multipath message received: %s", argv[0]);
1773 		goto out;
1774 	}
1775 
1776 	r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
1777 	if (r) {
1778 		DMWARN("message: error getting device %s",
1779 		       argv[1]);
1780 		goto out;
1781 	}
1782 
1783 	r = action_dev(m, dev, action);
1784 
1785 	dm_put_device(ti, dev);
1786 
1787 out:
1788 	mutex_unlock(&m->work_mutex);
1789 	return r;
1790 }
1791 
1792 static int multipath_prepare_ioctl(struct dm_target *ti,
1793 		struct block_device **bdev, fmode_t *mode)
1794 {
1795 	struct multipath *m = ti->private;
1796 	struct pgpath *current_pgpath;
1797 	int r;
1798 
1799 	current_pgpath = READ_ONCE(m->current_pgpath);
1800 	if (!current_pgpath)
1801 		current_pgpath = choose_pgpath(m, 0);
1802 
1803 	if (current_pgpath) {
1804 		if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) {
1805 			*bdev = current_pgpath->path.dev->bdev;
1806 			*mode = current_pgpath->path.dev->mode;
1807 			r = 0;
1808 		} else {
1809 			/* pg_init has not started or completed */
1810 			r = -ENOTCONN;
1811 		}
1812 	} else {
1813 		/* No path is available */
1814 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1815 			r = -ENOTCONN;
1816 		else
1817 			r = -EIO;
1818 	}
1819 
1820 	if (r == -ENOTCONN) {
1821 		if (!READ_ONCE(m->current_pg)) {
1822 			/* Path status changed, redo selection */
1823 			(void) choose_pgpath(m, 0);
1824 		}
1825 		if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1826 			pg_init_all_paths(m);
1827 		dm_table_run_md_queue_async(m->ti->table);
1828 		process_queued_io_list(m);
1829 	}
1830 
1831 	/*
1832 	 * Only pass ioctls through if the device sizes match exactly.
1833 	 */
1834 	if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT)
1835 		return 1;
1836 	return r;
1837 }
1838 
1839 static int multipath_iterate_devices(struct dm_target *ti,
1840 				     iterate_devices_callout_fn fn, void *data)
1841 {
1842 	struct multipath *m = ti->private;
1843 	struct priority_group *pg;
1844 	struct pgpath *p;
1845 	int ret = 0;
1846 
1847 	list_for_each_entry(pg, &m->priority_groups, list) {
1848 		list_for_each_entry(p, &pg->pgpaths, list) {
1849 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1850 			if (ret)
1851 				goto out;
1852 		}
1853 	}
1854 
1855 out:
1856 	return ret;
1857 }
1858 
1859 static int pgpath_busy(struct pgpath *pgpath)
1860 {
1861 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1862 
1863 	return blk_lld_busy(q);
1864 }
1865 
1866 /*
1867  * We return "busy", only when we can map I/Os but underlying devices
1868  * are busy (so even if we map I/Os now, the I/Os will wait on
1869  * the underlying queue).
1870  * In other words, if we want to kill I/Os or queue them inside us
1871  * due to map unavailability, we don't return "busy".  Otherwise,
1872  * dm core won't give us the I/Os and we can't do what we want.
1873  */
1874 static int multipath_busy(struct dm_target *ti)
1875 {
1876 	bool busy = false, has_active = false;
1877 	struct multipath *m = ti->private;
1878 	struct priority_group *pg, *next_pg;
1879 	struct pgpath *pgpath;
1880 
1881 	/* pg_init in progress */
1882 	if (atomic_read(&m->pg_init_in_progress))
1883 		return true;
1884 
1885 	/* no paths available, for blk-mq: rely on IO mapping to delay requeue */
1886 	if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1887 		return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED);
1888 
1889 	/* Guess which priority_group will be used at next mapping time */
1890 	pg = READ_ONCE(m->current_pg);
1891 	next_pg = READ_ONCE(m->next_pg);
1892 	if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg))
1893 		pg = next_pg;
1894 
1895 	if (!pg) {
1896 		/*
1897 		 * We don't know which pg will be used at next mapping time.
1898 		 * We don't call choose_pgpath() here to avoid to trigger
1899 		 * pg_init just by busy checking.
1900 		 * So we don't know whether underlying devices we will be using
1901 		 * at next mapping time are busy or not. Just try mapping.
1902 		 */
1903 		return busy;
1904 	}
1905 
1906 	/*
1907 	 * If there is one non-busy active path at least, the path selector
1908 	 * will be able to select it. So we consider such a pg as not busy.
1909 	 */
1910 	busy = true;
1911 	list_for_each_entry(pgpath, &pg->pgpaths, list) {
1912 		if (pgpath->is_active) {
1913 			has_active = true;
1914 			if (!pgpath_busy(pgpath)) {
1915 				busy = false;
1916 				break;
1917 			}
1918 		}
1919 	}
1920 
1921 	if (!has_active) {
1922 		/*
1923 		 * No active path in this pg, so this pg won't be used and
1924 		 * the current_pg will be changed at next mapping time.
1925 		 * We need to try mapping to determine it.
1926 		 */
1927 		busy = false;
1928 	}
1929 
1930 	return busy;
1931 }
1932 
1933 /*-----------------------------------------------------------------
1934  * Module setup
1935  *---------------------------------------------------------------*/
1936 static struct target_type multipath_target = {
1937 	.name = "multipath",
1938 	.version = {1, 12, 0},
1939 	.features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE,
1940 	.module = THIS_MODULE,
1941 	.ctr = multipath_ctr,
1942 	.dtr = multipath_dtr,
1943 	.clone_and_map_rq = multipath_clone_and_map,
1944 	.release_clone_rq = multipath_release_clone,
1945 	.rq_end_io = multipath_end_io,
1946 	.map = multipath_map_bio,
1947 	.end_io = multipath_end_io_bio,
1948 	.presuspend = multipath_presuspend,
1949 	.postsuspend = multipath_postsuspend,
1950 	.resume = multipath_resume,
1951 	.status = multipath_status,
1952 	.message = multipath_message,
1953 	.prepare_ioctl = multipath_prepare_ioctl,
1954 	.iterate_devices = multipath_iterate_devices,
1955 	.busy = multipath_busy,
1956 };
1957 
1958 static int __init dm_multipath_init(void)
1959 {
1960 	int r;
1961 
1962 	r = dm_register_target(&multipath_target);
1963 	if (r < 0) {
1964 		DMERR("request-based register failed %d", r);
1965 		r = -EINVAL;
1966 		goto bad_register_target;
1967 	}
1968 
1969 	kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
1970 	if (!kmultipathd) {
1971 		DMERR("failed to create workqueue kmpathd");
1972 		r = -ENOMEM;
1973 		goto bad_alloc_kmultipathd;
1974 	}
1975 
1976 	/*
1977 	 * A separate workqueue is used to handle the device handlers
1978 	 * to avoid overloading existing workqueue. Overloading the
1979 	 * old workqueue would also create a bottleneck in the
1980 	 * path of the storage hardware device activation.
1981 	 */
1982 	kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
1983 						  WQ_MEM_RECLAIM);
1984 	if (!kmpath_handlerd) {
1985 		DMERR("failed to create workqueue kmpath_handlerd");
1986 		r = -ENOMEM;
1987 		goto bad_alloc_kmpath_handlerd;
1988 	}
1989 
1990 	return 0;
1991 
1992 bad_alloc_kmpath_handlerd:
1993 	destroy_workqueue(kmultipathd);
1994 bad_alloc_kmultipathd:
1995 	dm_unregister_target(&multipath_target);
1996 bad_register_target:
1997 	return r;
1998 }
1999 
2000 static void __exit dm_multipath_exit(void)
2001 {
2002 	destroy_workqueue(kmpath_handlerd);
2003 	destroy_workqueue(kmultipathd);
2004 
2005 	dm_unregister_target(&multipath_target);
2006 }
2007 
2008 module_init(dm_multipath_init);
2009 module_exit(dm_multipath_exit);
2010 
2011 MODULE_DESCRIPTION(DM_NAME " multipath target");
2012 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
2013 MODULE_LICENSE("GPL");
2014