xref: /linux/drivers/md/dm-mpath.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-rq.h"
11 #include "dm-bio-record.h"
12 #include "dm-path-selector.h"
13 #include "dm-uevent.h"
14 
15 #include <linux/blkdev.h>
16 #include <linux/ctype.h>
17 #include <linux/init.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/time.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <scsi/scsi_dh.h>
26 #include <linux/atomic.h>
27 #include <linux/blk-mq.h>
28 
29 #define DM_MSG_PREFIX "multipath"
30 #define DM_PG_INIT_DELAY_MSECS 2000
31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
32 
33 /* Path properties */
34 struct pgpath {
35 	struct list_head list;
36 
37 	struct priority_group *pg;	/* Owning PG */
38 	unsigned fail_count;		/* Cumulative failure count */
39 
40 	struct dm_path path;
41 	struct delayed_work activate_path;
42 
43 	bool is_active:1;		/* Path status */
44 };
45 
46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
47 
48 /*
49  * Paths are grouped into Priority Groups and numbered from 1 upwards.
50  * Each has a path selector which controls which path gets used.
51  */
52 struct priority_group {
53 	struct list_head list;
54 
55 	struct multipath *m;		/* Owning multipath instance */
56 	struct path_selector ps;
57 
58 	unsigned pg_num;		/* Reference number */
59 	unsigned nr_pgpaths;		/* Number of paths in PG */
60 	struct list_head pgpaths;
61 
62 	bool bypassed:1;		/* Temporarily bypass this PG? */
63 };
64 
65 /* Multipath context */
66 struct multipath {
67 	struct list_head list;
68 	struct dm_target *ti;
69 
70 	const char *hw_handler_name;
71 	char *hw_handler_params;
72 
73 	spinlock_t lock;
74 
75 	unsigned nr_priority_groups;
76 	struct list_head priority_groups;
77 
78 	wait_queue_head_t pg_init_wait;	/* Wait for pg_init completion */
79 
80 	struct pgpath *current_pgpath;
81 	struct priority_group *current_pg;
82 	struct priority_group *next_pg;	/* Switch to this PG if set */
83 
84 	unsigned long flags;		/* Multipath state flags */
85 
86 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
87 	unsigned pg_init_delay_msecs;	/* Number of msecs before pg_init retry */
88 
89 	atomic_t nr_valid_paths;	/* Total number of usable paths */
90 	atomic_t pg_init_in_progress;	/* Only one pg_init allowed at once */
91 	atomic_t pg_init_count;		/* Number of times pg_init called */
92 
93 	enum dm_queue_mode queue_mode;
94 
95 	struct mutex work_mutex;
96 	struct work_struct trigger_event;
97 
98 	struct work_struct process_queued_bios;
99 	struct bio_list queued_bios;
100 };
101 
102 /*
103  * Context information attached to each io we process.
104  */
105 struct dm_mpath_io {
106 	struct pgpath *pgpath;
107 	size_t nr_bytes;
108 };
109 
110 typedef int (*action_fn) (struct pgpath *pgpath);
111 
112 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
113 static void trigger_event(struct work_struct *work);
114 static void activate_or_offline_path(struct pgpath *pgpath);
115 static void activate_path_work(struct work_struct *work);
116 static void process_queued_bios(struct work_struct *work);
117 
118 /*-----------------------------------------------
119  * Multipath state flags.
120  *-----------------------------------------------*/
121 
122 #define MPATHF_QUEUE_IO 0			/* Must we queue all I/O? */
123 #define MPATHF_QUEUE_IF_NO_PATH 1		/* Queue I/O if last path fails? */
124 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2		/* Saved state during suspension */
125 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3	/* If there's already a hw_handler present, don't change it. */
126 #define MPATHF_PG_INIT_DISABLED 4		/* pg_init is not currently allowed */
127 #define MPATHF_PG_INIT_REQUIRED 5		/* pg_init needs calling? */
128 #define MPATHF_PG_INIT_DELAY_RETRY 6		/* Delay pg_init retry? */
129 
130 /*-----------------------------------------------
131  * Allocation routines
132  *-----------------------------------------------*/
133 
134 static struct pgpath *alloc_pgpath(void)
135 {
136 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
137 
138 	if (pgpath) {
139 		pgpath->is_active = true;
140 		INIT_DELAYED_WORK(&pgpath->activate_path, activate_path_work);
141 	}
142 
143 	return pgpath;
144 }
145 
146 static void free_pgpath(struct pgpath *pgpath)
147 {
148 	kfree(pgpath);
149 }
150 
151 static struct priority_group *alloc_priority_group(void)
152 {
153 	struct priority_group *pg;
154 
155 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
156 
157 	if (pg)
158 		INIT_LIST_HEAD(&pg->pgpaths);
159 
160 	return pg;
161 }
162 
163 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
164 {
165 	struct pgpath *pgpath, *tmp;
166 
167 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
168 		list_del(&pgpath->list);
169 		dm_put_device(ti, pgpath->path.dev);
170 		free_pgpath(pgpath);
171 	}
172 }
173 
174 static void free_priority_group(struct priority_group *pg,
175 				struct dm_target *ti)
176 {
177 	struct path_selector *ps = &pg->ps;
178 
179 	if (ps->type) {
180 		ps->type->destroy(ps);
181 		dm_put_path_selector(ps->type);
182 	}
183 
184 	free_pgpaths(&pg->pgpaths, ti);
185 	kfree(pg);
186 }
187 
188 static struct multipath *alloc_multipath(struct dm_target *ti)
189 {
190 	struct multipath *m;
191 
192 	m = kzalloc(sizeof(*m), GFP_KERNEL);
193 	if (m) {
194 		INIT_LIST_HEAD(&m->priority_groups);
195 		spin_lock_init(&m->lock);
196 		set_bit(MPATHF_QUEUE_IO, &m->flags);
197 		atomic_set(&m->nr_valid_paths, 0);
198 		atomic_set(&m->pg_init_in_progress, 0);
199 		atomic_set(&m->pg_init_count, 0);
200 		m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
201 		INIT_WORK(&m->trigger_event, trigger_event);
202 		init_waitqueue_head(&m->pg_init_wait);
203 		mutex_init(&m->work_mutex);
204 
205 		m->queue_mode = DM_TYPE_NONE;
206 
207 		m->ti = ti;
208 		ti->private = m;
209 	}
210 
211 	return m;
212 }
213 
214 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m)
215 {
216 	if (m->queue_mode == DM_TYPE_NONE) {
217 		/*
218 		 * Default to request-based.
219 		 */
220 		if (dm_use_blk_mq(dm_table_get_md(ti->table)))
221 			m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
222 		else
223 			m->queue_mode = DM_TYPE_REQUEST_BASED;
224 	} else if (m->queue_mode == DM_TYPE_BIO_BASED) {
225 		INIT_WORK(&m->process_queued_bios, process_queued_bios);
226 		/*
227 		 * bio-based doesn't support any direct scsi_dh management;
228 		 * it just discovers if a scsi_dh is attached.
229 		 */
230 		set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
231 	}
232 
233 	dm_table_set_type(ti->table, m->queue_mode);
234 
235 	return 0;
236 }
237 
238 static void free_multipath(struct multipath *m)
239 {
240 	struct priority_group *pg, *tmp;
241 
242 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
243 		list_del(&pg->list);
244 		free_priority_group(pg, m->ti);
245 	}
246 
247 	kfree(m->hw_handler_name);
248 	kfree(m->hw_handler_params);
249 	kfree(m);
250 }
251 
252 static struct dm_mpath_io *get_mpio(union map_info *info)
253 {
254 	return info->ptr;
255 }
256 
257 static size_t multipath_per_bio_data_size(void)
258 {
259 	return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details);
260 }
261 
262 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio)
263 {
264 	return dm_per_bio_data(bio, multipath_per_bio_data_size());
265 }
266 
267 static struct dm_bio_details *get_bio_details_from_bio(struct bio *bio)
268 {
269 	/* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */
270 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
271 	void *bio_details = mpio + 1;
272 
273 	return bio_details;
274 }
275 
276 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p,
277 					struct dm_bio_details **bio_details_p)
278 {
279 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
280 	struct dm_bio_details *bio_details = get_bio_details_from_bio(bio);
281 
282 	memset(mpio, 0, sizeof(*mpio));
283 	memset(bio_details, 0, sizeof(*bio_details));
284 	dm_bio_record(bio_details, bio);
285 
286 	if (mpio_p)
287 		*mpio_p = mpio;
288 	if (bio_details_p)
289 		*bio_details_p = bio_details;
290 }
291 
292 /*-----------------------------------------------
293  * Path selection
294  *-----------------------------------------------*/
295 
296 static int __pg_init_all_paths(struct multipath *m)
297 {
298 	struct pgpath *pgpath;
299 	unsigned long pg_init_delay = 0;
300 
301 	lockdep_assert_held(&m->lock);
302 
303 	if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
304 		return 0;
305 
306 	atomic_inc(&m->pg_init_count);
307 	clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
308 
309 	/* Check here to reset pg_init_required */
310 	if (!m->current_pg)
311 		return 0;
312 
313 	if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags))
314 		pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
315 						 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
316 	list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
317 		/* Skip failed paths */
318 		if (!pgpath->is_active)
319 			continue;
320 		if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
321 				       pg_init_delay))
322 			atomic_inc(&m->pg_init_in_progress);
323 	}
324 	return atomic_read(&m->pg_init_in_progress);
325 }
326 
327 static int pg_init_all_paths(struct multipath *m)
328 {
329 	int ret;
330 	unsigned long flags;
331 
332 	spin_lock_irqsave(&m->lock, flags);
333 	ret = __pg_init_all_paths(m);
334 	spin_unlock_irqrestore(&m->lock, flags);
335 
336 	return ret;
337 }
338 
339 static void __switch_pg(struct multipath *m, struct priority_group *pg)
340 {
341 	m->current_pg = pg;
342 
343 	/* Must we initialise the PG first, and queue I/O till it's ready? */
344 	if (m->hw_handler_name) {
345 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
346 		set_bit(MPATHF_QUEUE_IO, &m->flags);
347 	} else {
348 		clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
349 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
350 	}
351 
352 	atomic_set(&m->pg_init_count, 0);
353 }
354 
355 static struct pgpath *choose_path_in_pg(struct multipath *m,
356 					struct priority_group *pg,
357 					size_t nr_bytes)
358 {
359 	unsigned long flags;
360 	struct dm_path *path;
361 	struct pgpath *pgpath;
362 
363 	path = pg->ps.type->select_path(&pg->ps, nr_bytes);
364 	if (!path)
365 		return ERR_PTR(-ENXIO);
366 
367 	pgpath = path_to_pgpath(path);
368 
369 	if (unlikely(lockless_dereference(m->current_pg) != pg)) {
370 		/* Only update current_pgpath if pg changed */
371 		spin_lock_irqsave(&m->lock, flags);
372 		m->current_pgpath = pgpath;
373 		__switch_pg(m, pg);
374 		spin_unlock_irqrestore(&m->lock, flags);
375 	}
376 
377 	return pgpath;
378 }
379 
380 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes)
381 {
382 	unsigned long flags;
383 	struct priority_group *pg;
384 	struct pgpath *pgpath;
385 	unsigned bypassed = 1;
386 
387 	if (!atomic_read(&m->nr_valid_paths)) {
388 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
389 		goto failed;
390 	}
391 
392 	/* Were we instructed to switch PG? */
393 	if (lockless_dereference(m->next_pg)) {
394 		spin_lock_irqsave(&m->lock, flags);
395 		pg = m->next_pg;
396 		if (!pg) {
397 			spin_unlock_irqrestore(&m->lock, flags);
398 			goto check_current_pg;
399 		}
400 		m->next_pg = NULL;
401 		spin_unlock_irqrestore(&m->lock, flags);
402 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
403 		if (!IS_ERR_OR_NULL(pgpath))
404 			return pgpath;
405 	}
406 
407 	/* Don't change PG until it has no remaining paths */
408 check_current_pg:
409 	pg = lockless_dereference(m->current_pg);
410 	if (pg) {
411 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
412 		if (!IS_ERR_OR_NULL(pgpath))
413 			return pgpath;
414 	}
415 
416 	/*
417 	 * Loop through priority groups until we find a valid path.
418 	 * First time we skip PGs marked 'bypassed'.
419 	 * Second time we only try the ones we skipped, but set
420 	 * pg_init_delay_retry so we do not hammer controllers.
421 	 */
422 	do {
423 		list_for_each_entry(pg, &m->priority_groups, list) {
424 			if (pg->bypassed == !!bypassed)
425 				continue;
426 			pgpath = choose_path_in_pg(m, pg, nr_bytes);
427 			if (!IS_ERR_OR_NULL(pgpath)) {
428 				if (!bypassed)
429 					set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
430 				return pgpath;
431 			}
432 		}
433 	} while (bypassed--);
434 
435 failed:
436 	spin_lock_irqsave(&m->lock, flags);
437 	m->current_pgpath = NULL;
438 	m->current_pg = NULL;
439 	spin_unlock_irqrestore(&m->lock, flags);
440 
441 	return NULL;
442 }
443 
444 /*
445  * dm_report_EIO() is a macro instead of a function to make pr_debug()
446  * report the function name and line number of the function from which
447  * it has been invoked.
448  */
449 #define dm_report_EIO(m)						\
450 do {									\
451 	struct mapped_device *md = dm_table_get_md((m)->ti->table);	\
452 									\
453 	pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \
454 		 dm_device_name(md),					\
455 		 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags),	\
456 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags),	\
457 		 dm_noflush_suspending((m)->ti));			\
458 } while (0)
459 
460 /*
461  * Map cloned requests (request-based multipath)
462  */
463 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq,
464 				   union map_info *map_context,
465 				   struct request **__clone)
466 {
467 	struct multipath *m = ti->private;
468 	size_t nr_bytes = blk_rq_bytes(rq);
469 	struct pgpath *pgpath;
470 	struct block_device *bdev;
471 	struct dm_mpath_io *mpio = get_mpio(map_context);
472 	struct request_queue *q;
473 	struct request *clone;
474 
475 	/* Do we need to select a new pgpath? */
476 	pgpath = lockless_dereference(m->current_pgpath);
477 	if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags))
478 		pgpath = choose_pgpath(m, nr_bytes);
479 
480 	if (!pgpath) {
481 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
482 			return DM_MAPIO_DELAY_REQUEUE;
483 		dm_report_EIO(m);	/* Failed */
484 		return DM_MAPIO_KILL;
485 	} else if (test_bit(MPATHF_QUEUE_IO, &m->flags) ||
486 		   test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
487 		if (pg_init_all_paths(m))
488 			return DM_MAPIO_DELAY_REQUEUE;
489 		return DM_MAPIO_REQUEUE;
490 	}
491 
492 	memset(mpio, 0, sizeof(*mpio));
493 	mpio->pgpath = pgpath;
494 	mpio->nr_bytes = nr_bytes;
495 
496 	bdev = pgpath->path.dev->bdev;
497 	q = bdev_get_queue(bdev);
498 	clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE, GFP_ATOMIC);
499 	if (IS_ERR(clone)) {
500 		/* EBUSY, ENODEV or EWOULDBLOCK: requeue */
501 		bool queue_dying = blk_queue_dying(q);
502 		DMERR_LIMIT("blk_get_request() returned %ld%s - requeuing",
503 			    PTR_ERR(clone), queue_dying ? " (path offline)" : "");
504 		if (queue_dying) {
505 			atomic_inc(&m->pg_init_in_progress);
506 			activate_or_offline_path(pgpath);
507 			return DM_MAPIO_REQUEUE;
508 		}
509 		return DM_MAPIO_DELAY_REQUEUE;
510 	}
511 	clone->bio = clone->biotail = NULL;
512 	clone->rq_disk = bdev->bd_disk;
513 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
514 	*__clone = clone;
515 
516 	if (pgpath->pg->ps.type->start_io)
517 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
518 					      &pgpath->path,
519 					      nr_bytes);
520 	return DM_MAPIO_REMAPPED;
521 }
522 
523 static void multipath_release_clone(struct request *clone)
524 {
525 	blk_put_request(clone);
526 }
527 
528 /*
529  * Map cloned bios (bio-based multipath)
530  */
531 static int __multipath_map_bio(struct multipath *m, struct bio *bio, struct dm_mpath_io *mpio)
532 {
533 	size_t nr_bytes = bio->bi_iter.bi_size;
534 	struct pgpath *pgpath;
535 	unsigned long flags;
536 	bool queue_io;
537 
538 	/* Do we need to select a new pgpath? */
539 	pgpath = lockless_dereference(m->current_pgpath);
540 	queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags);
541 	if (!pgpath || !queue_io)
542 		pgpath = choose_pgpath(m, nr_bytes);
543 
544 	if ((pgpath && queue_io) ||
545 	    (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) {
546 		/* Queue for the daemon to resubmit */
547 		spin_lock_irqsave(&m->lock, flags);
548 		bio_list_add(&m->queued_bios, bio);
549 		spin_unlock_irqrestore(&m->lock, flags);
550 		/* PG_INIT_REQUIRED cannot be set without QUEUE_IO */
551 		if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
552 			pg_init_all_paths(m);
553 		else if (!queue_io)
554 			queue_work(kmultipathd, &m->process_queued_bios);
555 		return DM_MAPIO_SUBMITTED;
556 	}
557 
558 	if (!pgpath) {
559 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
560 			return DM_MAPIO_REQUEUE;
561 		dm_report_EIO(m);
562 		return -EIO;
563 	}
564 
565 	mpio->pgpath = pgpath;
566 	mpio->nr_bytes = nr_bytes;
567 
568 	bio->bi_error = 0;
569 	bio->bi_bdev = pgpath->path.dev->bdev;
570 	bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
571 
572 	if (pgpath->pg->ps.type->start_io)
573 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
574 					      &pgpath->path,
575 					      nr_bytes);
576 	return DM_MAPIO_REMAPPED;
577 }
578 
579 static int multipath_map_bio(struct dm_target *ti, struct bio *bio)
580 {
581 	struct multipath *m = ti->private;
582 	struct dm_mpath_io *mpio = NULL;
583 
584 	multipath_init_per_bio_data(bio, &mpio, NULL);
585 
586 	return __multipath_map_bio(m, bio, mpio);
587 }
588 
589 static void process_queued_io_list(struct multipath *m)
590 {
591 	if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED)
592 		dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table));
593 	else if (m->queue_mode == DM_TYPE_BIO_BASED)
594 		queue_work(kmultipathd, &m->process_queued_bios);
595 }
596 
597 static void process_queued_bios(struct work_struct *work)
598 {
599 	int r;
600 	unsigned long flags;
601 	struct bio *bio;
602 	struct bio_list bios;
603 	struct blk_plug plug;
604 	struct multipath *m =
605 		container_of(work, struct multipath, process_queued_bios);
606 
607 	bio_list_init(&bios);
608 
609 	spin_lock_irqsave(&m->lock, flags);
610 
611 	if (bio_list_empty(&m->queued_bios)) {
612 		spin_unlock_irqrestore(&m->lock, flags);
613 		return;
614 	}
615 
616 	bio_list_merge(&bios, &m->queued_bios);
617 	bio_list_init(&m->queued_bios);
618 
619 	spin_unlock_irqrestore(&m->lock, flags);
620 
621 	blk_start_plug(&plug);
622 	while ((bio = bio_list_pop(&bios))) {
623 		r = __multipath_map_bio(m, bio, get_mpio_from_bio(bio));
624 		if (r < 0 || r == DM_MAPIO_REQUEUE) {
625 			bio->bi_error = r;
626 			bio_endio(bio);
627 		} else if (r == DM_MAPIO_REMAPPED)
628 			generic_make_request(bio);
629 	}
630 	blk_finish_plug(&plug);
631 }
632 
633 static void assign_bit(bool value, long nr, unsigned long *addr)
634 {
635 	if (value)
636 		set_bit(nr, addr);
637 	else
638 		clear_bit(nr, addr);
639 }
640 
641 /*
642  * If we run out of usable paths, should we queue I/O or error it?
643  */
644 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path,
645 			    bool save_old_value)
646 {
647 	unsigned long flags;
648 
649 	spin_lock_irqsave(&m->lock, flags);
650 	assign_bit((save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) ||
651 		   (!save_old_value && queue_if_no_path),
652 		   MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags);
653 	assign_bit(queue_if_no_path || dm_noflush_suspending(m->ti),
654 		   MPATHF_QUEUE_IF_NO_PATH, &m->flags);
655 	spin_unlock_irqrestore(&m->lock, flags);
656 
657 	if (!queue_if_no_path) {
658 		dm_table_run_md_queue_async(m->ti->table);
659 		process_queued_io_list(m);
660 	}
661 
662 	return 0;
663 }
664 
665 /*
666  * An event is triggered whenever a path is taken out of use.
667  * Includes path failure and PG bypass.
668  */
669 static void trigger_event(struct work_struct *work)
670 {
671 	struct multipath *m =
672 		container_of(work, struct multipath, trigger_event);
673 
674 	dm_table_event(m->ti->table);
675 }
676 
677 /*-----------------------------------------------------------------
678  * Constructor/argument parsing:
679  * <#multipath feature args> [<arg>]*
680  * <#hw_handler args> [hw_handler [<arg>]*]
681  * <#priority groups>
682  * <initial priority group>
683  *     [<selector> <#selector args> [<arg>]*
684  *      <#paths> <#per-path selector args>
685  *         [<path> [<arg>]* ]+ ]+
686  *---------------------------------------------------------------*/
687 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
688 			       struct dm_target *ti)
689 {
690 	int r;
691 	struct path_selector_type *pst;
692 	unsigned ps_argc;
693 
694 	static struct dm_arg _args[] = {
695 		{0, 1024, "invalid number of path selector args"},
696 	};
697 
698 	pst = dm_get_path_selector(dm_shift_arg(as));
699 	if (!pst) {
700 		ti->error = "unknown path selector type";
701 		return -EINVAL;
702 	}
703 
704 	r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
705 	if (r) {
706 		dm_put_path_selector(pst);
707 		return -EINVAL;
708 	}
709 
710 	r = pst->create(&pg->ps, ps_argc, as->argv);
711 	if (r) {
712 		dm_put_path_selector(pst);
713 		ti->error = "path selector constructor failed";
714 		return r;
715 	}
716 
717 	pg->ps.type = pst;
718 	dm_consume_args(as, ps_argc);
719 
720 	return 0;
721 }
722 
723 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
724 			       struct dm_target *ti)
725 {
726 	int r;
727 	struct pgpath *p;
728 	struct multipath *m = ti->private;
729 	struct request_queue *q = NULL;
730 	const char *attached_handler_name;
731 
732 	/* we need at least a path arg */
733 	if (as->argc < 1) {
734 		ti->error = "no device given";
735 		return ERR_PTR(-EINVAL);
736 	}
737 
738 	p = alloc_pgpath();
739 	if (!p)
740 		return ERR_PTR(-ENOMEM);
741 
742 	r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
743 			  &p->path.dev);
744 	if (r) {
745 		ti->error = "error getting device";
746 		goto bad;
747 	}
748 
749 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) || m->hw_handler_name)
750 		q = bdev_get_queue(p->path.dev->bdev);
751 
752 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) {
753 retain:
754 		attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
755 		if (attached_handler_name) {
756 			/*
757 			 * Clear any hw_handler_params associated with a
758 			 * handler that isn't already attached.
759 			 */
760 			if (m->hw_handler_name && strcmp(attached_handler_name, m->hw_handler_name)) {
761 				kfree(m->hw_handler_params);
762 				m->hw_handler_params = NULL;
763 			}
764 
765 			/*
766 			 * Reset hw_handler_name to match the attached handler
767 			 *
768 			 * NB. This modifies the table line to show the actual
769 			 * handler instead of the original table passed in.
770 			 */
771 			kfree(m->hw_handler_name);
772 			m->hw_handler_name = attached_handler_name;
773 		}
774 	}
775 
776 	if (m->hw_handler_name) {
777 		r = scsi_dh_attach(q, m->hw_handler_name);
778 		if (r == -EBUSY) {
779 			char b[BDEVNAME_SIZE];
780 
781 			printk(KERN_INFO "dm-mpath: retaining handler on device %s\n",
782 				bdevname(p->path.dev->bdev, b));
783 			goto retain;
784 		}
785 		if (r < 0) {
786 			ti->error = "error attaching hardware handler";
787 			dm_put_device(ti, p->path.dev);
788 			goto bad;
789 		}
790 
791 		if (m->hw_handler_params) {
792 			r = scsi_dh_set_params(q, m->hw_handler_params);
793 			if (r < 0) {
794 				ti->error = "unable to set hardware "
795 							"handler parameters";
796 				dm_put_device(ti, p->path.dev);
797 				goto bad;
798 			}
799 		}
800 	}
801 
802 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
803 	if (r) {
804 		dm_put_device(ti, p->path.dev);
805 		goto bad;
806 	}
807 
808 	return p;
809 
810  bad:
811 	free_pgpath(p);
812 	return ERR_PTR(r);
813 }
814 
815 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
816 						   struct multipath *m)
817 {
818 	static struct dm_arg _args[] = {
819 		{1, 1024, "invalid number of paths"},
820 		{0, 1024, "invalid number of selector args"}
821 	};
822 
823 	int r;
824 	unsigned i, nr_selector_args, nr_args;
825 	struct priority_group *pg;
826 	struct dm_target *ti = m->ti;
827 
828 	if (as->argc < 2) {
829 		as->argc = 0;
830 		ti->error = "not enough priority group arguments";
831 		return ERR_PTR(-EINVAL);
832 	}
833 
834 	pg = alloc_priority_group();
835 	if (!pg) {
836 		ti->error = "couldn't allocate priority group";
837 		return ERR_PTR(-ENOMEM);
838 	}
839 	pg->m = m;
840 
841 	r = parse_path_selector(as, pg, ti);
842 	if (r)
843 		goto bad;
844 
845 	/*
846 	 * read the paths
847 	 */
848 	r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
849 	if (r)
850 		goto bad;
851 
852 	r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
853 	if (r)
854 		goto bad;
855 
856 	nr_args = 1 + nr_selector_args;
857 	for (i = 0; i < pg->nr_pgpaths; i++) {
858 		struct pgpath *pgpath;
859 		struct dm_arg_set path_args;
860 
861 		if (as->argc < nr_args) {
862 			ti->error = "not enough path parameters";
863 			r = -EINVAL;
864 			goto bad;
865 		}
866 
867 		path_args.argc = nr_args;
868 		path_args.argv = as->argv;
869 
870 		pgpath = parse_path(&path_args, &pg->ps, ti);
871 		if (IS_ERR(pgpath)) {
872 			r = PTR_ERR(pgpath);
873 			goto bad;
874 		}
875 
876 		pgpath->pg = pg;
877 		list_add_tail(&pgpath->list, &pg->pgpaths);
878 		dm_consume_args(as, nr_args);
879 	}
880 
881 	return pg;
882 
883  bad:
884 	free_priority_group(pg, ti);
885 	return ERR_PTR(r);
886 }
887 
888 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
889 {
890 	unsigned hw_argc;
891 	int ret;
892 	struct dm_target *ti = m->ti;
893 
894 	static struct dm_arg _args[] = {
895 		{0, 1024, "invalid number of hardware handler args"},
896 	};
897 
898 	if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
899 		return -EINVAL;
900 
901 	if (!hw_argc)
902 		return 0;
903 
904 	if (m->queue_mode == DM_TYPE_BIO_BASED) {
905 		dm_consume_args(as, hw_argc);
906 		DMERR("bio-based multipath doesn't allow hardware handler args");
907 		return 0;
908 	}
909 
910 	m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
911 	if (!m->hw_handler_name)
912 		return -EINVAL;
913 
914 	if (hw_argc > 1) {
915 		char *p;
916 		int i, j, len = 4;
917 
918 		for (i = 0; i <= hw_argc - 2; i++)
919 			len += strlen(as->argv[i]) + 1;
920 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
921 		if (!p) {
922 			ti->error = "memory allocation failed";
923 			ret = -ENOMEM;
924 			goto fail;
925 		}
926 		j = sprintf(p, "%d", hw_argc - 1);
927 		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
928 			j = sprintf(p, "%s", as->argv[i]);
929 	}
930 	dm_consume_args(as, hw_argc - 1);
931 
932 	return 0;
933 fail:
934 	kfree(m->hw_handler_name);
935 	m->hw_handler_name = NULL;
936 	return ret;
937 }
938 
939 static int parse_features(struct dm_arg_set *as, struct multipath *m)
940 {
941 	int r;
942 	unsigned argc;
943 	struct dm_target *ti = m->ti;
944 	const char *arg_name;
945 
946 	static struct dm_arg _args[] = {
947 		{0, 8, "invalid number of feature args"},
948 		{1, 50, "pg_init_retries must be between 1 and 50"},
949 		{0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
950 	};
951 
952 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
953 	if (r)
954 		return -EINVAL;
955 
956 	if (!argc)
957 		return 0;
958 
959 	do {
960 		arg_name = dm_shift_arg(as);
961 		argc--;
962 
963 		if (!strcasecmp(arg_name, "queue_if_no_path")) {
964 			r = queue_if_no_path(m, true, false);
965 			continue;
966 		}
967 
968 		if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
969 			set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
970 			continue;
971 		}
972 
973 		if (!strcasecmp(arg_name, "pg_init_retries") &&
974 		    (argc >= 1)) {
975 			r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
976 			argc--;
977 			continue;
978 		}
979 
980 		if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
981 		    (argc >= 1)) {
982 			r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
983 			argc--;
984 			continue;
985 		}
986 
987 		if (!strcasecmp(arg_name, "queue_mode") &&
988 		    (argc >= 1)) {
989 			const char *queue_mode_name = dm_shift_arg(as);
990 
991 			if (!strcasecmp(queue_mode_name, "bio"))
992 				m->queue_mode = DM_TYPE_BIO_BASED;
993 			else if (!strcasecmp(queue_mode_name, "rq"))
994 				m->queue_mode = DM_TYPE_REQUEST_BASED;
995 			else if (!strcasecmp(queue_mode_name, "mq"))
996 				m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
997 			else {
998 				ti->error = "Unknown 'queue_mode' requested";
999 				r = -EINVAL;
1000 			}
1001 			argc--;
1002 			continue;
1003 		}
1004 
1005 		ti->error = "Unrecognised multipath feature request";
1006 		r = -EINVAL;
1007 	} while (argc && !r);
1008 
1009 	return r;
1010 }
1011 
1012 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv)
1013 {
1014 	/* target arguments */
1015 	static struct dm_arg _args[] = {
1016 		{0, 1024, "invalid number of priority groups"},
1017 		{0, 1024, "invalid initial priority group number"},
1018 	};
1019 
1020 	int r;
1021 	struct multipath *m;
1022 	struct dm_arg_set as;
1023 	unsigned pg_count = 0;
1024 	unsigned next_pg_num;
1025 
1026 	as.argc = argc;
1027 	as.argv = argv;
1028 
1029 	m = alloc_multipath(ti);
1030 	if (!m) {
1031 		ti->error = "can't allocate multipath";
1032 		return -EINVAL;
1033 	}
1034 
1035 	r = parse_features(&as, m);
1036 	if (r)
1037 		goto bad;
1038 
1039 	r = alloc_multipath_stage2(ti, m);
1040 	if (r)
1041 		goto bad;
1042 
1043 	r = parse_hw_handler(&as, m);
1044 	if (r)
1045 		goto bad;
1046 
1047 	r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
1048 	if (r)
1049 		goto bad;
1050 
1051 	r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
1052 	if (r)
1053 		goto bad;
1054 
1055 	if ((!m->nr_priority_groups && next_pg_num) ||
1056 	    (m->nr_priority_groups && !next_pg_num)) {
1057 		ti->error = "invalid initial priority group";
1058 		r = -EINVAL;
1059 		goto bad;
1060 	}
1061 
1062 	/* parse the priority groups */
1063 	while (as.argc) {
1064 		struct priority_group *pg;
1065 		unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths);
1066 
1067 		pg = parse_priority_group(&as, m);
1068 		if (IS_ERR(pg)) {
1069 			r = PTR_ERR(pg);
1070 			goto bad;
1071 		}
1072 
1073 		nr_valid_paths += pg->nr_pgpaths;
1074 		atomic_set(&m->nr_valid_paths, nr_valid_paths);
1075 
1076 		list_add_tail(&pg->list, &m->priority_groups);
1077 		pg_count++;
1078 		pg->pg_num = pg_count;
1079 		if (!--next_pg_num)
1080 			m->next_pg = pg;
1081 	}
1082 
1083 	if (pg_count != m->nr_priority_groups) {
1084 		ti->error = "priority group count mismatch";
1085 		r = -EINVAL;
1086 		goto bad;
1087 	}
1088 
1089 	ti->num_flush_bios = 1;
1090 	ti->num_discard_bios = 1;
1091 	ti->num_write_same_bios = 1;
1092 	ti->num_write_zeroes_bios = 1;
1093 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1094 		ti->per_io_data_size = multipath_per_bio_data_size();
1095 	else
1096 		ti->per_io_data_size = sizeof(struct dm_mpath_io);
1097 
1098 	return 0;
1099 
1100  bad:
1101 	free_multipath(m);
1102 	return r;
1103 }
1104 
1105 static void multipath_wait_for_pg_init_completion(struct multipath *m)
1106 {
1107 	DEFINE_WAIT(wait);
1108 
1109 	while (1) {
1110 		prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE);
1111 
1112 		if (!atomic_read(&m->pg_init_in_progress))
1113 			break;
1114 
1115 		io_schedule();
1116 	}
1117 	finish_wait(&m->pg_init_wait, &wait);
1118 }
1119 
1120 static void flush_multipath_work(struct multipath *m)
1121 {
1122 	set_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1123 	smp_mb__after_atomic();
1124 
1125 	flush_workqueue(kmpath_handlerd);
1126 	multipath_wait_for_pg_init_completion(m);
1127 	flush_workqueue(kmultipathd);
1128 	flush_work(&m->trigger_event);
1129 
1130 	clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1131 	smp_mb__after_atomic();
1132 }
1133 
1134 static void multipath_dtr(struct dm_target *ti)
1135 {
1136 	struct multipath *m = ti->private;
1137 
1138 	flush_multipath_work(m);
1139 	free_multipath(m);
1140 }
1141 
1142 /*
1143  * Take a path out of use.
1144  */
1145 static int fail_path(struct pgpath *pgpath)
1146 {
1147 	unsigned long flags;
1148 	struct multipath *m = pgpath->pg->m;
1149 
1150 	spin_lock_irqsave(&m->lock, flags);
1151 
1152 	if (!pgpath->is_active)
1153 		goto out;
1154 
1155 	DMWARN("Failing path %s.", pgpath->path.dev->name);
1156 
1157 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
1158 	pgpath->is_active = false;
1159 	pgpath->fail_count++;
1160 
1161 	atomic_dec(&m->nr_valid_paths);
1162 
1163 	if (pgpath == m->current_pgpath)
1164 		m->current_pgpath = NULL;
1165 
1166 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1167 		       pgpath->path.dev->name, atomic_read(&m->nr_valid_paths));
1168 
1169 	schedule_work(&m->trigger_event);
1170 
1171 out:
1172 	spin_unlock_irqrestore(&m->lock, flags);
1173 
1174 	return 0;
1175 }
1176 
1177 /*
1178  * Reinstate a previously-failed path
1179  */
1180 static int reinstate_path(struct pgpath *pgpath)
1181 {
1182 	int r = 0, run_queue = 0;
1183 	unsigned long flags;
1184 	struct multipath *m = pgpath->pg->m;
1185 	unsigned nr_valid_paths;
1186 
1187 	spin_lock_irqsave(&m->lock, flags);
1188 
1189 	if (pgpath->is_active)
1190 		goto out;
1191 
1192 	DMWARN("Reinstating path %s.", pgpath->path.dev->name);
1193 
1194 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1195 	if (r)
1196 		goto out;
1197 
1198 	pgpath->is_active = true;
1199 
1200 	nr_valid_paths = atomic_inc_return(&m->nr_valid_paths);
1201 	if (nr_valid_paths == 1) {
1202 		m->current_pgpath = NULL;
1203 		run_queue = 1;
1204 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1205 		if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1206 			atomic_inc(&m->pg_init_in_progress);
1207 	}
1208 
1209 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1210 		       pgpath->path.dev->name, nr_valid_paths);
1211 
1212 	schedule_work(&m->trigger_event);
1213 
1214 out:
1215 	spin_unlock_irqrestore(&m->lock, flags);
1216 	if (run_queue) {
1217 		dm_table_run_md_queue_async(m->ti->table);
1218 		process_queued_io_list(m);
1219 	}
1220 
1221 	return r;
1222 }
1223 
1224 /*
1225  * Fail or reinstate all paths that match the provided struct dm_dev.
1226  */
1227 static int action_dev(struct multipath *m, struct dm_dev *dev,
1228 		      action_fn action)
1229 {
1230 	int r = -EINVAL;
1231 	struct pgpath *pgpath;
1232 	struct priority_group *pg;
1233 
1234 	list_for_each_entry(pg, &m->priority_groups, list) {
1235 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1236 			if (pgpath->path.dev == dev)
1237 				r = action(pgpath);
1238 		}
1239 	}
1240 
1241 	return r;
1242 }
1243 
1244 /*
1245  * Temporarily try to avoid having to use the specified PG
1246  */
1247 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1248 		      bool bypassed)
1249 {
1250 	unsigned long flags;
1251 
1252 	spin_lock_irqsave(&m->lock, flags);
1253 
1254 	pg->bypassed = bypassed;
1255 	m->current_pgpath = NULL;
1256 	m->current_pg = NULL;
1257 
1258 	spin_unlock_irqrestore(&m->lock, flags);
1259 
1260 	schedule_work(&m->trigger_event);
1261 }
1262 
1263 /*
1264  * Switch to using the specified PG from the next I/O that gets mapped
1265  */
1266 static int switch_pg_num(struct multipath *m, const char *pgstr)
1267 {
1268 	struct priority_group *pg;
1269 	unsigned pgnum;
1270 	unsigned long flags;
1271 	char dummy;
1272 
1273 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1274 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1275 		DMWARN("invalid PG number supplied to switch_pg_num");
1276 		return -EINVAL;
1277 	}
1278 
1279 	spin_lock_irqsave(&m->lock, flags);
1280 	list_for_each_entry(pg, &m->priority_groups, list) {
1281 		pg->bypassed = false;
1282 		if (--pgnum)
1283 			continue;
1284 
1285 		m->current_pgpath = NULL;
1286 		m->current_pg = NULL;
1287 		m->next_pg = pg;
1288 	}
1289 	spin_unlock_irqrestore(&m->lock, flags);
1290 
1291 	schedule_work(&m->trigger_event);
1292 	return 0;
1293 }
1294 
1295 /*
1296  * Set/clear bypassed status of a PG.
1297  * PGs are numbered upwards from 1 in the order they were declared.
1298  */
1299 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed)
1300 {
1301 	struct priority_group *pg;
1302 	unsigned pgnum;
1303 	char dummy;
1304 
1305 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1306 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1307 		DMWARN("invalid PG number supplied to bypass_pg");
1308 		return -EINVAL;
1309 	}
1310 
1311 	list_for_each_entry(pg, &m->priority_groups, list) {
1312 		if (!--pgnum)
1313 			break;
1314 	}
1315 
1316 	bypass_pg(m, pg, bypassed);
1317 	return 0;
1318 }
1319 
1320 /*
1321  * Should we retry pg_init immediately?
1322  */
1323 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1324 {
1325 	unsigned long flags;
1326 	bool limit_reached = false;
1327 
1328 	spin_lock_irqsave(&m->lock, flags);
1329 
1330 	if (atomic_read(&m->pg_init_count) <= m->pg_init_retries &&
1331 	    !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
1332 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
1333 	else
1334 		limit_reached = true;
1335 
1336 	spin_unlock_irqrestore(&m->lock, flags);
1337 
1338 	return limit_reached;
1339 }
1340 
1341 static void pg_init_done(void *data, int errors)
1342 {
1343 	struct pgpath *pgpath = data;
1344 	struct priority_group *pg = pgpath->pg;
1345 	struct multipath *m = pg->m;
1346 	unsigned long flags;
1347 	bool delay_retry = false;
1348 
1349 	/* device or driver problems */
1350 	switch (errors) {
1351 	case SCSI_DH_OK:
1352 		break;
1353 	case SCSI_DH_NOSYS:
1354 		if (!m->hw_handler_name) {
1355 			errors = 0;
1356 			break;
1357 		}
1358 		DMERR("Could not failover the device: Handler scsi_dh_%s "
1359 		      "Error %d.", m->hw_handler_name, errors);
1360 		/*
1361 		 * Fail path for now, so we do not ping pong
1362 		 */
1363 		fail_path(pgpath);
1364 		break;
1365 	case SCSI_DH_DEV_TEMP_BUSY:
1366 		/*
1367 		 * Probably doing something like FW upgrade on the
1368 		 * controller so try the other pg.
1369 		 */
1370 		bypass_pg(m, pg, true);
1371 		break;
1372 	case SCSI_DH_RETRY:
1373 		/* Wait before retrying. */
1374 		delay_retry = 1;
1375 	case SCSI_DH_IMM_RETRY:
1376 	case SCSI_DH_RES_TEMP_UNAVAIL:
1377 		if (pg_init_limit_reached(m, pgpath))
1378 			fail_path(pgpath);
1379 		errors = 0;
1380 		break;
1381 	case SCSI_DH_DEV_OFFLINED:
1382 	default:
1383 		/*
1384 		 * We probably do not want to fail the path for a device
1385 		 * error, but this is what the old dm did. In future
1386 		 * patches we can do more advanced handling.
1387 		 */
1388 		fail_path(pgpath);
1389 	}
1390 
1391 	spin_lock_irqsave(&m->lock, flags);
1392 	if (errors) {
1393 		if (pgpath == m->current_pgpath) {
1394 			DMERR("Could not failover device. Error %d.", errors);
1395 			m->current_pgpath = NULL;
1396 			m->current_pg = NULL;
1397 		}
1398 	} else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1399 		pg->bypassed = false;
1400 
1401 	if (atomic_dec_return(&m->pg_init_in_progress) > 0)
1402 		/* Activations of other paths are still on going */
1403 		goto out;
1404 
1405 	if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
1406 		if (delay_retry)
1407 			set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1408 		else
1409 			clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1410 
1411 		if (__pg_init_all_paths(m))
1412 			goto out;
1413 	}
1414 	clear_bit(MPATHF_QUEUE_IO, &m->flags);
1415 
1416 	process_queued_io_list(m);
1417 
1418 	/*
1419 	 * Wake up any thread waiting to suspend.
1420 	 */
1421 	wake_up(&m->pg_init_wait);
1422 
1423 out:
1424 	spin_unlock_irqrestore(&m->lock, flags);
1425 }
1426 
1427 static void activate_or_offline_path(struct pgpath *pgpath)
1428 {
1429 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1430 
1431 	if (pgpath->is_active && !blk_queue_dying(q))
1432 		scsi_dh_activate(q, pg_init_done, pgpath);
1433 	else
1434 		pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED);
1435 }
1436 
1437 static void activate_path_work(struct work_struct *work)
1438 {
1439 	struct pgpath *pgpath =
1440 		container_of(work, struct pgpath, activate_path.work);
1441 
1442 	activate_or_offline_path(pgpath);
1443 }
1444 
1445 static int noretry_error(int error)
1446 {
1447 	switch (error) {
1448 	case -EBADE:
1449 		/*
1450 		 * EBADE signals an reservation conflict.
1451 		 * We shouldn't fail the path here as we can communicate with
1452 		 * the target.  We should failover to the next path, but in
1453 		 * doing so we might be causing a ping-pong between paths.
1454 		 * So just return the reservation conflict error.
1455 		 */
1456 	case -EOPNOTSUPP:
1457 	case -EREMOTEIO:
1458 	case -EILSEQ:
1459 	case -ENODATA:
1460 	case -ENOSPC:
1461 		return 1;
1462 	}
1463 
1464 	/* Anything else could be a path failure, so should be retried */
1465 	return 0;
1466 }
1467 
1468 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1469 			    int error, union map_info *map_context)
1470 {
1471 	struct dm_mpath_io *mpio = get_mpio(map_context);
1472 	struct pgpath *pgpath = mpio->pgpath;
1473 	int r = DM_ENDIO_DONE;
1474 
1475 	/*
1476 	 * We don't queue any clone request inside the multipath target
1477 	 * during end I/O handling, since those clone requests don't have
1478 	 * bio clones.  If we queue them inside the multipath target,
1479 	 * we need to make bio clones, that requires memory allocation.
1480 	 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests
1481 	 *  don't have bio clones.)
1482 	 * Instead of queueing the clone request here, we queue the original
1483 	 * request into dm core, which will remake a clone request and
1484 	 * clone bios for it and resubmit it later.
1485 	 */
1486 	if (error && !noretry_error(error)) {
1487 		struct multipath *m = ti->private;
1488 
1489 		r = DM_ENDIO_REQUEUE;
1490 
1491 		if (pgpath)
1492 			fail_path(pgpath);
1493 
1494 		if (atomic_read(&m->nr_valid_paths) == 0 &&
1495 		    !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1496 			if (error == -EIO)
1497 				dm_report_EIO(m);
1498 			/* complete with the original error */
1499 			r = DM_ENDIO_DONE;
1500 		}
1501 	}
1502 
1503 	if (pgpath) {
1504 		struct path_selector *ps = &pgpath->pg->ps;
1505 
1506 		if (ps->type->end_io)
1507 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1508 	}
1509 
1510 	return r;
1511 }
1512 
1513 static int do_end_io_bio(struct multipath *m, struct bio *clone,
1514 			 int error, struct dm_mpath_io *mpio)
1515 {
1516 	unsigned long flags;
1517 
1518 	if (!error)
1519 		return 0;	/* I/O complete */
1520 
1521 	if (noretry_error(error))
1522 		return error;
1523 
1524 	if (mpio->pgpath)
1525 		fail_path(mpio->pgpath);
1526 
1527 	if (atomic_read(&m->nr_valid_paths) == 0 &&
1528 	    !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1529 		dm_report_EIO(m);
1530 		return -EIO;
1531 	}
1532 
1533 	/* Queue for the daemon to resubmit */
1534 	dm_bio_restore(get_bio_details_from_bio(clone), clone);
1535 
1536 	spin_lock_irqsave(&m->lock, flags);
1537 	bio_list_add(&m->queued_bios, clone);
1538 	spin_unlock_irqrestore(&m->lock, flags);
1539 	if (!test_bit(MPATHF_QUEUE_IO, &m->flags))
1540 		queue_work(kmultipathd, &m->process_queued_bios);
1541 
1542 	return DM_ENDIO_INCOMPLETE;
1543 }
1544 
1545 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone, int error)
1546 {
1547 	struct multipath *m = ti->private;
1548 	struct dm_mpath_io *mpio = get_mpio_from_bio(clone);
1549 	struct pgpath *pgpath;
1550 	struct path_selector *ps;
1551 	int r;
1552 
1553 	BUG_ON(!mpio);
1554 
1555 	r = do_end_io_bio(m, clone, error, mpio);
1556 	pgpath = mpio->pgpath;
1557 	if (pgpath) {
1558 		ps = &pgpath->pg->ps;
1559 		if (ps->type->end_io)
1560 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1561 	}
1562 
1563 	return r;
1564 }
1565 
1566 /*
1567  * Suspend can't complete until all the I/O is processed so if
1568  * the last path fails we must error any remaining I/O.
1569  * Note that if the freeze_bdev fails while suspending, the
1570  * queue_if_no_path state is lost - userspace should reset it.
1571  */
1572 static void multipath_presuspend(struct dm_target *ti)
1573 {
1574 	struct multipath *m = ti->private;
1575 
1576 	queue_if_no_path(m, false, true);
1577 }
1578 
1579 static void multipath_postsuspend(struct dm_target *ti)
1580 {
1581 	struct multipath *m = ti->private;
1582 
1583 	mutex_lock(&m->work_mutex);
1584 	flush_multipath_work(m);
1585 	mutex_unlock(&m->work_mutex);
1586 }
1587 
1588 /*
1589  * Restore the queue_if_no_path setting.
1590  */
1591 static void multipath_resume(struct dm_target *ti)
1592 {
1593 	struct multipath *m = ti->private;
1594 	unsigned long flags;
1595 
1596 	spin_lock_irqsave(&m->lock, flags);
1597 	assign_bit(test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags),
1598 		   MPATHF_QUEUE_IF_NO_PATH, &m->flags);
1599 	spin_unlock_irqrestore(&m->lock, flags);
1600 }
1601 
1602 /*
1603  * Info output has the following format:
1604  * num_multipath_feature_args [multipath_feature_args]*
1605  * num_handler_status_args [handler_status_args]*
1606  * num_groups init_group_number
1607  *            [A|D|E num_ps_status_args [ps_status_args]*
1608  *             num_paths num_selector_args
1609  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1610  *
1611  * Table output has the following format (identical to the constructor string):
1612  * num_feature_args [features_args]*
1613  * num_handler_args hw_handler [hw_handler_args]*
1614  * num_groups init_group_number
1615  *     [priority selector-name num_ps_args [ps_args]*
1616  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1617  */
1618 static void multipath_status(struct dm_target *ti, status_type_t type,
1619 			     unsigned status_flags, char *result, unsigned maxlen)
1620 {
1621 	int sz = 0;
1622 	unsigned long flags;
1623 	struct multipath *m = ti->private;
1624 	struct priority_group *pg;
1625 	struct pgpath *p;
1626 	unsigned pg_num;
1627 	char state;
1628 
1629 	spin_lock_irqsave(&m->lock, flags);
1630 
1631 	/* Features */
1632 	if (type == STATUSTYPE_INFO)
1633 		DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags),
1634 		       atomic_read(&m->pg_init_count));
1635 	else {
1636 		DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) +
1637 			      (m->pg_init_retries > 0) * 2 +
1638 			      (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
1639 			      test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) +
1640 			      (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2);
1641 
1642 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1643 			DMEMIT("queue_if_no_path ");
1644 		if (m->pg_init_retries)
1645 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1646 		if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1647 			DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1648 		if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags))
1649 			DMEMIT("retain_attached_hw_handler ");
1650 		if (m->queue_mode != DM_TYPE_REQUEST_BASED) {
1651 			switch(m->queue_mode) {
1652 			case DM_TYPE_BIO_BASED:
1653 				DMEMIT("queue_mode bio ");
1654 				break;
1655 			case DM_TYPE_MQ_REQUEST_BASED:
1656 				DMEMIT("queue_mode mq ");
1657 				break;
1658 			default:
1659 				WARN_ON_ONCE(true);
1660 				break;
1661 			}
1662 		}
1663 	}
1664 
1665 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1666 		DMEMIT("0 ");
1667 	else
1668 		DMEMIT("1 %s ", m->hw_handler_name);
1669 
1670 	DMEMIT("%u ", m->nr_priority_groups);
1671 
1672 	if (m->next_pg)
1673 		pg_num = m->next_pg->pg_num;
1674 	else if (m->current_pg)
1675 		pg_num = m->current_pg->pg_num;
1676 	else
1677 		pg_num = (m->nr_priority_groups ? 1 : 0);
1678 
1679 	DMEMIT("%u ", pg_num);
1680 
1681 	switch (type) {
1682 	case STATUSTYPE_INFO:
1683 		list_for_each_entry(pg, &m->priority_groups, list) {
1684 			if (pg->bypassed)
1685 				state = 'D';	/* Disabled */
1686 			else if (pg == m->current_pg)
1687 				state = 'A';	/* Currently Active */
1688 			else
1689 				state = 'E';	/* Enabled */
1690 
1691 			DMEMIT("%c ", state);
1692 
1693 			if (pg->ps.type->status)
1694 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1695 							  result + sz,
1696 							  maxlen - sz);
1697 			else
1698 				DMEMIT("0 ");
1699 
1700 			DMEMIT("%u %u ", pg->nr_pgpaths,
1701 			       pg->ps.type->info_args);
1702 
1703 			list_for_each_entry(p, &pg->pgpaths, list) {
1704 				DMEMIT("%s %s %u ", p->path.dev->name,
1705 				       p->is_active ? "A" : "F",
1706 				       p->fail_count);
1707 				if (pg->ps.type->status)
1708 					sz += pg->ps.type->status(&pg->ps,
1709 					      &p->path, type, result + sz,
1710 					      maxlen - sz);
1711 			}
1712 		}
1713 		break;
1714 
1715 	case STATUSTYPE_TABLE:
1716 		list_for_each_entry(pg, &m->priority_groups, list) {
1717 			DMEMIT("%s ", pg->ps.type->name);
1718 
1719 			if (pg->ps.type->status)
1720 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1721 							  result + sz,
1722 							  maxlen - sz);
1723 			else
1724 				DMEMIT("0 ");
1725 
1726 			DMEMIT("%u %u ", pg->nr_pgpaths,
1727 			       pg->ps.type->table_args);
1728 
1729 			list_for_each_entry(p, &pg->pgpaths, list) {
1730 				DMEMIT("%s ", p->path.dev->name);
1731 				if (pg->ps.type->status)
1732 					sz += pg->ps.type->status(&pg->ps,
1733 					      &p->path, type, result + sz,
1734 					      maxlen - sz);
1735 			}
1736 		}
1737 		break;
1738 	}
1739 
1740 	spin_unlock_irqrestore(&m->lock, flags);
1741 }
1742 
1743 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv)
1744 {
1745 	int r = -EINVAL;
1746 	struct dm_dev *dev;
1747 	struct multipath *m = ti->private;
1748 	action_fn action;
1749 
1750 	mutex_lock(&m->work_mutex);
1751 
1752 	if (dm_suspended(ti)) {
1753 		r = -EBUSY;
1754 		goto out;
1755 	}
1756 
1757 	if (argc == 1) {
1758 		if (!strcasecmp(argv[0], "queue_if_no_path")) {
1759 			r = queue_if_no_path(m, true, false);
1760 			goto out;
1761 		} else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1762 			r = queue_if_no_path(m, false, false);
1763 			goto out;
1764 		}
1765 	}
1766 
1767 	if (argc != 2) {
1768 		DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc);
1769 		goto out;
1770 	}
1771 
1772 	if (!strcasecmp(argv[0], "disable_group")) {
1773 		r = bypass_pg_num(m, argv[1], true);
1774 		goto out;
1775 	} else if (!strcasecmp(argv[0], "enable_group")) {
1776 		r = bypass_pg_num(m, argv[1], false);
1777 		goto out;
1778 	} else if (!strcasecmp(argv[0], "switch_group")) {
1779 		r = switch_pg_num(m, argv[1]);
1780 		goto out;
1781 	} else if (!strcasecmp(argv[0], "reinstate_path"))
1782 		action = reinstate_path;
1783 	else if (!strcasecmp(argv[0], "fail_path"))
1784 		action = fail_path;
1785 	else {
1786 		DMWARN("Unrecognised multipath message received: %s", argv[0]);
1787 		goto out;
1788 	}
1789 
1790 	r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
1791 	if (r) {
1792 		DMWARN("message: error getting device %s",
1793 		       argv[1]);
1794 		goto out;
1795 	}
1796 
1797 	r = action_dev(m, dev, action);
1798 
1799 	dm_put_device(ti, dev);
1800 
1801 out:
1802 	mutex_unlock(&m->work_mutex);
1803 	return r;
1804 }
1805 
1806 static int multipath_prepare_ioctl(struct dm_target *ti,
1807 		struct block_device **bdev, fmode_t *mode)
1808 {
1809 	struct multipath *m = ti->private;
1810 	struct pgpath *current_pgpath;
1811 	int r;
1812 
1813 	current_pgpath = lockless_dereference(m->current_pgpath);
1814 	if (!current_pgpath)
1815 		current_pgpath = choose_pgpath(m, 0);
1816 
1817 	if (current_pgpath) {
1818 		if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) {
1819 			*bdev = current_pgpath->path.dev->bdev;
1820 			*mode = current_pgpath->path.dev->mode;
1821 			r = 0;
1822 		} else {
1823 			/* pg_init has not started or completed */
1824 			r = -ENOTCONN;
1825 		}
1826 	} else {
1827 		/* No path is available */
1828 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1829 			r = -ENOTCONN;
1830 		else
1831 			r = -EIO;
1832 	}
1833 
1834 	if (r == -ENOTCONN) {
1835 		if (!lockless_dereference(m->current_pg)) {
1836 			/* Path status changed, redo selection */
1837 			(void) choose_pgpath(m, 0);
1838 		}
1839 		if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1840 			pg_init_all_paths(m);
1841 		dm_table_run_md_queue_async(m->ti->table);
1842 		process_queued_io_list(m);
1843 	}
1844 
1845 	/*
1846 	 * Only pass ioctls through if the device sizes match exactly.
1847 	 */
1848 	if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT)
1849 		return 1;
1850 	return r;
1851 }
1852 
1853 static int multipath_iterate_devices(struct dm_target *ti,
1854 				     iterate_devices_callout_fn fn, void *data)
1855 {
1856 	struct multipath *m = ti->private;
1857 	struct priority_group *pg;
1858 	struct pgpath *p;
1859 	int ret = 0;
1860 
1861 	list_for_each_entry(pg, &m->priority_groups, list) {
1862 		list_for_each_entry(p, &pg->pgpaths, list) {
1863 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1864 			if (ret)
1865 				goto out;
1866 		}
1867 	}
1868 
1869 out:
1870 	return ret;
1871 }
1872 
1873 static int pgpath_busy(struct pgpath *pgpath)
1874 {
1875 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1876 
1877 	return blk_lld_busy(q);
1878 }
1879 
1880 /*
1881  * We return "busy", only when we can map I/Os but underlying devices
1882  * are busy (so even if we map I/Os now, the I/Os will wait on
1883  * the underlying queue).
1884  * In other words, if we want to kill I/Os or queue them inside us
1885  * due to map unavailability, we don't return "busy".  Otherwise,
1886  * dm core won't give us the I/Os and we can't do what we want.
1887  */
1888 static int multipath_busy(struct dm_target *ti)
1889 {
1890 	bool busy = false, has_active = false;
1891 	struct multipath *m = ti->private;
1892 	struct priority_group *pg, *next_pg;
1893 	struct pgpath *pgpath;
1894 
1895 	/* pg_init in progress */
1896 	if (atomic_read(&m->pg_init_in_progress))
1897 		return true;
1898 
1899 	/* no paths available, for blk-mq: rely on IO mapping to delay requeue */
1900 	if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1901 		return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED);
1902 
1903 	/* Guess which priority_group will be used at next mapping time */
1904 	pg = lockless_dereference(m->current_pg);
1905 	next_pg = lockless_dereference(m->next_pg);
1906 	if (unlikely(!lockless_dereference(m->current_pgpath) && next_pg))
1907 		pg = next_pg;
1908 
1909 	if (!pg) {
1910 		/*
1911 		 * We don't know which pg will be used at next mapping time.
1912 		 * We don't call choose_pgpath() here to avoid to trigger
1913 		 * pg_init just by busy checking.
1914 		 * So we don't know whether underlying devices we will be using
1915 		 * at next mapping time are busy or not. Just try mapping.
1916 		 */
1917 		return busy;
1918 	}
1919 
1920 	/*
1921 	 * If there is one non-busy active path at least, the path selector
1922 	 * will be able to select it. So we consider such a pg as not busy.
1923 	 */
1924 	busy = true;
1925 	list_for_each_entry(pgpath, &pg->pgpaths, list) {
1926 		if (pgpath->is_active) {
1927 			has_active = true;
1928 			if (!pgpath_busy(pgpath)) {
1929 				busy = false;
1930 				break;
1931 			}
1932 		}
1933 	}
1934 
1935 	if (!has_active) {
1936 		/*
1937 		 * No active path in this pg, so this pg won't be used and
1938 		 * the current_pg will be changed at next mapping time.
1939 		 * We need to try mapping to determine it.
1940 		 */
1941 		busy = false;
1942 	}
1943 
1944 	return busy;
1945 }
1946 
1947 /*-----------------------------------------------------------------
1948  * Module setup
1949  *---------------------------------------------------------------*/
1950 static struct target_type multipath_target = {
1951 	.name = "multipath",
1952 	.version = {1, 12, 0},
1953 	.features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE,
1954 	.module = THIS_MODULE,
1955 	.ctr = multipath_ctr,
1956 	.dtr = multipath_dtr,
1957 	.clone_and_map_rq = multipath_clone_and_map,
1958 	.release_clone_rq = multipath_release_clone,
1959 	.rq_end_io = multipath_end_io,
1960 	.map = multipath_map_bio,
1961 	.end_io = multipath_end_io_bio,
1962 	.presuspend = multipath_presuspend,
1963 	.postsuspend = multipath_postsuspend,
1964 	.resume = multipath_resume,
1965 	.status = multipath_status,
1966 	.message = multipath_message,
1967 	.prepare_ioctl = multipath_prepare_ioctl,
1968 	.iterate_devices = multipath_iterate_devices,
1969 	.busy = multipath_busy,
1970 };
1971 
1972 static int __init dm_multipath_init(void)
1973 {
1974 	int r;
1975 
1976 	r = dm_register_target(&multipath_target);
1977 	if (r < 0) {
1978 		DMERR("request-based register failed %d", r);
1979 		r = -EINVAL;
1980 		goto bad_register_target;
1981 	}
1982 
1983 	kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
1984 	if (!kmultipathd) {
1985 		DMERR("failed to create workqueue kmpathd");
1986 		r = -ENOMEM;
1987 		goto bad_alloc_kmultipathd;
1988 	}
1989 
1990 	/*
1991 	 * A separate workqueue is used to handle the device handlers
1992 	 * to avoid overloading existing workqueue. Overloading the
1993 	 * old workqueue would also create a bottleneck in the
1994 	 * path of the storage hardware device activation.
1995 	 */
1996 	kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
1997 						  WQ_MEM_RECLAIM);
1998 	if (!kmpath_handlerd) {
1999 		DMERR("failed to create workqueue kmpath_handlerd");
2000 		r = -ENOMEM;
2001 		goto bad_alloc_kmpath_handlerd;
2002 	}
2003 
2004 	return 0;
2005 
2006 bad_alloc_kmpath_handlerd:
2007 	destroy_workqueue(kmultipathd);
2008 bad_alloc_kmultipathd:
2009 	dm_unregister_target(&multipath_target);
2010 bad_register_target:
2011 	return r;
2012 }
2013 
2014 static void __exit dm_multipath_exit(void)
2015 {
2016 	destroy_workqueue(kmpath_handlerd);
2017 	destroy_workqueue(kmultipathd);
2018 
2019 	dm_unregister_target(&multipath_target);
2020 }
2021 
2022 module_init(dm_multipath_init);
2023 module_exit(dm_multipath_exit);
2024 
2025 MODULE_DESCRIPTION(DM_NAME " multipath target");
2026 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
2027 MODULE_LICENSE("GPL");
2028