1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 10 #include "dm-rq.h" 11 #include "dm-bio-record.h" 12 #include "dm-path-selector.h" 13 #include "dm-uevent.h" 14 15 #include <linux/blkdev.h> 16 #include <linux/ctype.h> 17 #include <linux/init.h> 18 #include <linux/mempool.h> 19 #include <linux/module.h> 20 #include <linux/pagemap.h> 21 #include <linux/slab.h> 22 #include <linux/time.h> 23 #include <linux/workqueue.h> 24 #include <linux/delay.h> 25 #include <scsi/scsi_dh.h> 26 #include <linux/atomic.h> 27 #include <linux/blk-mq.h> 28 29 #define DM_MSG_PREFIX "multipath" 30 #define DM_PG_INIT_DELAY_MSECS 2000 31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1) 32 33 /* Path properties */ 34 struct pgpath { 35 struct list_head list; 36 37 struct priority_group *pg; /* Owning PG */ 38 unsigned fail_count; /* Cumulative failure count */ 39 40 struct dm_path path; 41 struct delayed_work activate_path; 42 43 bool is_active:1; /* Path status */ 44 }; 45 46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 47 48 /* 49 * Paths are grouped into Priority Groups and numbered from 1 upwards. 50 * Each has a path selector which controls which path gets used. 51 */ 52 struct priority_group { 53 struct list_head list; 54 55 struct multipath *m; /* Owning multipath instance */ 56 struct path_selector ps; 57 58 unsigned pg_num; /* Reference number */ 59 unsigned nr_pgpaths; /* Number of paths in PG */ 60 struct list_head pgpaths; 61 62 bool bypassed:1; /* Temporarily bypass this PG? */ 63 }; 64 65 /* Multipath context */ 66 struct multipath { 67 struct list_head list; 68 struct dm_target *ti; 69 70 const char *hw_handler_name; 71 char *hw_handler_params; 72 73 spinlock_t lock; 74 75 unsigned nr_priority_groups; 76 struct list_head priority_groups; 77 78 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 79 80 struct pgpath *current_pgpath; 81 struct priority_group *current_pg; 82 struct priority_group *next_pg; /* Switch to this PG if set */ 83 84 unsigned long flags; /* Multipath state flags */ 85 86 unsigned pg_init_retries; /* Number of times to retry pg_init */ 87 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */ 88 89 atomic_t nr_valid_paths; /* Total number of usable paths */ 90 atomic_t pg_init_in_progress; /* Only one pg_init allowed at once */ 91 atomic_t pg_init_count; /* Number of times pg_init called */ 92 93 enum dm_queue_mode queue_mode; 94 95 struct mutex work_mutex; 96 struct work_struct trigger_event; 97 98 struct work_struct process_queued_bios; 99 struct bio_list queued_bios; 100 }; 101 102 /* 103 * Context information attached to each io we process. 104 */ 105 struct dm_mpath_io { 106 struct pgpath *pgpath; 107 size_t nr_bytes; 108 }; 109 110 typedef int (*action_fn) (struct pgpath *pgpath); 111 112 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 113 static void trigger_event(struct work_struct *work); 114 static void activate_or_offline_path(struct pgpath *pgpath); 115 static void activate_path_work(struct work_struct *work); 116 static void process_queued_bios(struct work_struct *work); 117 118 /*----------------------------------------------- 119 * Multipath state flags. 120 *-----------------------------------------------*/ 121 122 #define MPATHF_QUEUE_IO 0 /* Must we queue all I/O? */ 123 #define MPATHF_QUEUE_IF_NO_PATH 1 /* Queue I/O if last path fails? */ 124 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2 /* Saved state during suspension */ 125 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3 /* If there's already a hw_handler present, don't change it. */ 126 #define MPATHF_PG_INIT_DISABLED 4 /* pg_init is not currently allowed */ 127 #define MPATHF_PG_INIT_REQUIRED 5 /* pg_init needs calling? */ 128 #define MPATHF_PG_INIT_DELAY_RETRY 6 /* Delay pg_init retry? */ 129 130 /*----------------------------------------------- 131 * Allocation routines 132 *-----------------------------------------------*/ 133 134 static struct pgpath *alloc_pgpath(void) 135 { 136 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 137 138 if (pgpath) { 139 pgpath->is_active = true; 140 INIT_DELAYED_WORK(&pgpath->activate_path, activate_path_work); 141 } 142 143 return pgpath; 144 } 145 146 static void free_pgpath(struct pgpath *pgpath) 147 { 148 kfree(pgpath); 149 } 150 151 static struct priority_group *alloc_priority_group(void) 152 { 153 struct priority_group *pg; 154 155 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 156 157 if (pg) 158 INIT_LIST_HEAD(&pg->pgpaths); 159 160 return pg; 161 } 162 163 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 164 { 165 struct pgpath *pgpath, *tmp; 166 167 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 168 list_del(&pgpath->list); 169 dm_put_device(ti, pgpath->path.dev); 170 free_pgpath(pgpath); 171 } 172 } 173 174 static void free_priority_group(struct priority_group *pg, 175 struct dm_target *ti) 176 { 177 struct path_selector *ps = &pg->ps; 178 179 if (ps->type) { 180 ps->type->destroy(ps); 181 dm_put_path_selector(ps->type); 182 } 183 184 free_pgpaths(&pg->pgpaths, ti); 185 kfree(pg); 186 } 187 188 static struct multipath *alloc_multipath(struct dm_target *ti) 189 { 190 struct multipath *m; 191 192 m = kzalloc(sizeof(*m), GFP_KERNEL); 193 if (m) { 194 INIT_LIST_HEAD(&m->priority_groups); 195 spin_lock_init(&m->lock); 196 set_bit(MPATHF_QUEUE_IO, &m->flags); 197 atomic_set(&m->nr_valid_paths, 0); 198 atomic_set(&m->pg_init_in_progress, 0); 199 atomic_set(&m->pg_init_count, 0); 200 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; 201 INIT_WORK(&m->trigger_event, trigger_event); 202 init_waitqueue_head(&m->pg_init_wait); 203 mutex_init(&m->work_mutex); 204 205 m->queue_mode = DM_TYPE_NONE; 206 207 m->ti = ti; 208 ti->private = m; 209 } 210 211 return m; 212 } 213 214 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m) 215 { 216 if (m->queue_mode == DM_TYPE_NONE) { 217 /* 218 * Default to request-based. 219 */ 220 if (dm_use_blk_mq(dm_table_get_md(ti->table))) 221 m->queue_mode = DM_TYPE_MQ_REQUEST_BASED; 222 else 223 m->queue_mode = DM_TYPE_REQUEST_BASED; 224 } else if (m->queue_mode == DM_TYPE_BIO_BASED) { 225 INIT_WORK(&m->process_queued_bios, process_queued_bios); 226 /* 227 * bio-based doesn't support any direct scsi_dh management; 228 * it just discovers if a scsi_dh is attached. 229 */ 230 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 231 } 232 233 dm_table_set_type(ti->table, m->queue_mode); 234 235 return 0; 236 } 237 238 static void free_multipath(struct multipath *m) 239 { 240 struct priority_group *pg, *tmp; 241 242 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 243 list_del(&pg->list); 244 free_priority_group(pg, m->ti); 245 } 246 247 kfree(m->hw_handler_name); 248 kfree(m->hw_handler_params); 249 kfree(m); 250 } 251 252 static struct dm_mpath_io *get_mpio(union map_info *info) 253 { 254 return info->ptr; 255 } 256 257 static size_t multipath_per_bio_data_size(void) 258 { 259 return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details); 260 } 261 262 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio) 263 { 264 return dm_per_bio_data(bio, multipath_per_bio_data_size()); 265 } 266 267 static struct dm_bio_details *get_bio_details_from_bio(struct bio *bio) 268 { 269 /* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */ 270 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 271 void *bio_details = mpio + 1; 272 273 return bio_details; 274 } 275 276 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p, 277 struct dm_bio_details **bio_details_p) 278 { 279 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 280 struct dm_bio_details *bio_details = get_bio_details_from_bio(bio); 281 282 memset(mpio, 0, sizeof(*mpio)); 283 memset(bio_details, 0, sizeof(*bio_details)); 284 dm_bio_record(bio_details, bio); 285 286 if (mpio_p) 287 *mpio_p = mpio; 288 if (bio_details_p) 289 *bio_details_p = bio_details; 290 } 291 292 /*----------------------------------------------- 293 * Path selection 294 *-----------------------------------------------*/ 295 296 static int __pg_init_all_paths(struct multipath *m) 297 { 298 struct pgpath *pgpath; 299 unsigned long pg_init_delay = 0; 300 301 lockdep_assert_held(&m->lock); 302 303 if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 304 return 0; 305 306 atomic_inc(&m->pg_init_count); 307 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 308 309 /* Check here to reset pg_init_required */ 310 if (!m->current_pg) 311 return 0; 312 313 if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags)) 314 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? 315 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); 316 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) { 317 /* Skip failed paths */ 318 if (!pgpath->is_active) 319 continue; 320 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path, 321 pg_init_delay)) 322 atomic_inc(&m->pg_init_in_progress); 323 } 324 return atomic_read(&m->pg_init_in_progress); 325 } 326 327 static int pg_init_all_paths(struct multipath *m) 328 { 329 int ret; 330 unsigned long flags; 331 332 spin_lock_irqsave(&m->lock, flags); 333 ret = __pg_init_all_paths(m); 334 spin_unlock_irqrestore(&m->lock, flags); 335 336 return ret; 337 } 338 339 static void __switch_pg(struct multipath *m, struct priority_group *pg) 340 { 341 m->current_pg = pg; 342 343 /* Must we initialise the PG first, and queue I/O till it's ready? */ 344 if (m->hw_handler_name) { 345 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 346 set_bit(MPATHF_QUEUE_IO, &m->flags); 347 } else { 348 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 349 clear_bit(MPATHF_QUEUE_IO, &m->flags); 350 } 351 352 atomic_set(&m->pg_init_count, 0); 353 } 354 355 static struct pgpath *choose_path_in_pg(struct multipath *m, 356 struct priority_group *pg, 357 size_t nr_bytes) 358 { 359 unsigned long flags; 360 struct dm_path *path; 361 struct pgpath *pgpath; 362 363 path = pg->ps.type->select_path(&pg->ps, nr_bytes); 364 if (!path) 365 return ERR_PTR(-ENXIO); 366 367 pgpath = path_to_pgpath(path); 368 369 if (unlikely(READ_ONCE(m->current_pg) != pg)) { 370 /* Only update current_pgpath if pg changed */ 371 spin_lock_irqsave(&m->lock, flags); 372 m->current_pgpath = pgpath; 373 __switch_pg(m, pg); 374 spin_unlock_irqrestore(&m->lock, flags); 375 } 376 377 return pgpath; 378 } 379 380 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes) 381 { 382 unsigned long flags; 383 struct priority_group *pg; 384 struct pgpath *pgpath; 385 unsigned bypassed = 1; 386 387 if (!atomic_read(&m->nr_valid_paths)) { 388 clear_bit(MPATHF_QUEUE_IO, &m->flags); 389 goto failed; 390 } 391 392 /* Were we instructed to switch PG? */ 393 if (READ_ONCE(m->next_pg)) { 394 spin_lock_irqsave(&m->lock, flags); 395 pg = m->next_pg; 396 if (!pg) { 397 spin_unlock_irqrestore(&m->lock, flags); 398 goto check_current_pg; 399 } 400 m->next_pg = NULL; 401 spin_unlock_irqrestore(&m->lock, flags); 402 pgpath = choose_path_in_pg(m, pg, nr_bytes); 403 if (!IS_ERR_OR_NULL(pgpath)) 404 return pgpath; 405 } 406 407 /* Don't change PG until it has no remaining paths */ 408 check_current_pg: 409 pg = READ_ONCE(m->current_pg); 410 if (pg) { 411 pgpath = choose_path_in_pg(m, pg, nr_bytes); 412 if (!IS_ERR_OR_NULL(pgpath)) 413 return pgpath; 414 } 415 416 /* 417 * Loop through priority groups until we find a valid path. 418 * First time we skip PGs marked 'bypassed'. 419 * Second time we only try the ones we skipped, but set 420 * pg_init_delay_retry so we do not hammer controllers. 421 */ 422 do { 423 list_for_each_entry(pg, &m->priority_groups, list) { 424 if (pg->bypassed == !!bypassed) 425 continue; 426 pgpath = choose_path_in_pg(m, pg, nr_bytes); 427 if (!IS_ERR_OR_NULL(pgpath)) { 428 if (!bypassed) 429 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 430 return pgpath; 431 } 432 } 433 } while (bypassed--); 434 435 failed: 436 spin_lock_irqsave(&m->lock, flags); 437 m->current_pgpath = NULL; 438 m->current_pg = NULL; 439 spin_unlock_irqrestore(&m->lock, flags); 440 441 return NULL; 442 } 443 444 /* 445 * dm_report_EIO() is a macro instead of a function to make pr_debug() 446 * report the function name and line number of the function from which 447 * it has been invoked. 448 */ 449 #define dm_report_EIO(m) \ 450 do { \ 451 struct mapped_device *md = dm_table_get_md((m)->ti->table); \ 452 \ 453 pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \ 454 dm_device_name(md), \ 455 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags), \ 456 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags), \ 457 dm_noflush_suspending((m)->ti)); \ 458 } while (0) 459 460 /* 461 * Check whether bios must be queued in the device-mapper core rather 462 * than here in the target. 463 * 464 * If MPATHF_QUEUE_IF_NO_PATH and MPATHF_SAVED_QUEUE_IF_NO_PATH hold 465 * the same value then we are not between multipath_presuspend() 466 * and multipath_resume() calls and we have no need to check 467 * for the DMF_NOFLUSH_SUSPENDING flag. 468 */ 469 static bool __must_push_back(struct multipath *m, unsigned long flags) 470 { 471 return ((test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) != 472 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &flags)) && 473 dm_noflush_suspending(m->ti)); 474 } 475 476 /* 477 * Following functions use READ_ONCE to get atomic access to 478 * all m->flags to avoid taking spinlock 479 */ 480 static bool must_push_back_rq(struct multipath *m) 481 { 482 unsigned long flags = READ_ONCE(m->flags); 483 return test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) || __must_push_back(m, flags); 484 } 485 486 static bool must_push_back_bio(struct multipath *m) 487 { 488 unsigned long flags = READ_ONCE(m->flags); 489 return __must_push_back(m, flags); 490 } 491 492 /* 493 * Map cloned requests (request-based multipath) 494 */ 495 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq, 496 union map_info *map_context, 497 struct request **__clone) 498 { 499 struct multipath *m = ti->private; 500 size_t nr_bytes = blk_rq_bytes(rq); 501 struct pgpath *pgpath; 502 struct block_device *bdev; 503 struct dm_mpath_io *mpio = get_mpio(map_context); 504 struct request_queue *q; 505 struct request *clone; 506 507 /* Do we need to select a new pgpath? */ 508 pgpath = READ_ONCE(m->current_pgpath); 509 if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags)) 510 pgpath = choose_pgpath(m, nr_bytes); 511 512 if (!pgpath) { 513 if (must_push_back_rq(m)) 514 return DM_MAPIO_DELAY_REQUEUE; 515 dm_report_EIO(m); /* Failed */ 516 return DM_MAPIO_KILL; 517 } else if (test_bit(MPATHF_QUEUE_IO, &m->flags) || 518 test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 519 if (pg_init_all_paths(m)) 520 return DM_MAPIO_DELAY_REQUEUE; 521 return DM_MAPIO_REQUEUE; 522 } 523 524 memset(mpio, 0, sizeof(*mpio)); 525 mpio->pgpath = pgpath; 526 mpio->nr_bytes = nr_bytes; 527 528 bdev = pgpath->path.dev->bdev; 529 q = bdev_get_queue(bdev); 530 clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE, GFP_ATOMIC); 531 if (IS_ERR(clone)) { 532 /* EBUSY, ENODEV or EWOULDBLOCK: requeue */ 533 bool queue_dying = blk_queue_dying(q); 534 if (queue_dying) { 535 atomic_inc(&m->pg_init_in_progress); 536 activate_or_offline_path(pgpath); 537 } 538 return DM_MAPIO_DELAY_REQUEUE; 539 } 540 clone->bio = clone->biotail = NULL; 541 clone->rq_disk = bdev->bd_disk; 542 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 543 *__clone = clone; 544 545 if (pgpath->pg->ps.type->start_io) 546 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 547 &pgpath->path, 548 nr_bytes); 549 return DM_MAPIO_REMAPPED; 550 } 551 552 static void multipath_release_clone(struct request *clone) 553 { 554 blk_put_request(clone); 555 } 556 557 /* 558 * Map cloned bios (bio-based multipath) 559 */ 560 static int __multipath_map_bio(struct multipath *m, struct bio *bio, struct dm_mpath_io *mpio) 561 { 562 size_t nr_bytes = bio->bi_iter.bi_size; 563 struct pgpath *pgpath; 564 unsigned long flags; 565 bool queue_io; 566 567 /* Do we need to select a new pgpath? */ 568 pgpath = READ_ONCE(m->current_pgpath); 569 queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags); 570 if (!pgpath || !queue_io) 571 pgpath = choose_pgpath(m, nr_bytes); 572 573 if ((pgpath && queue_io) || 574 (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) { 575 /* Queue for the daemon to resubmit */ 576 spin_lock_irqsave(&m->lock, flags); 577 bio_list_add(&m->queued_bios, bio); 578 spin_unlock_irqrestore(&m->lock, flags); 579 /* PG_INIT_REQUIRED cannot be set without QUEUE_IO */ 580 if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 581 pg_init_all_paths(m); 582 else if (!queue_io) 583 queue_work(kmultipathd, &m->process_queued_bios); 584 return DM_MAPIO_SUBMITTED; 585 } 586 587 if (!pgpath) { 588 if (must_push_back_bio(m)) 589 return DM_MAPIO_REQUEUE; 590 dm_report_EIO(m); 591 return DM_MAPIO_KILL; 592 } 593 594 mpio->pgpath = pgpath; 595 mpio->nr_bytes = nr_bytes; 596 597 bio->bi_status = 0; 598 bio_set_dev(bio, pgpath->path.dev->bdev); 599 bio->bi_opf |= REQ_FAILFAST_TRANSPORT; 600 601 if (pgpath->pg->ps.type->start_io) 602 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 603 &pgpath->path, 604 nr_bytes); 605 return DM_MAPIO_REMAPPED; 606 } 607 608 static int multipath_map_bio(struct dm_target *ti, struct bio *bio) 609 { 610 struct multipath *m = ti->private; 611 struct dm_mpath_io *mpio = NULL; 612 613 multipath_init_per_bio_data(bio, &mpio, NULL); 614 615 return __multipath_map_bio(m, bio, mpio); 616 } 617 618 static void process_queued_io_list(struct multipath *m) 619 { 620 if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED) 621 dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table)); 622 else if (m->queue_mode == DM_TYPE_BIO_BASED) 623 queue_work(kmultipathd, &m->process_queued_bios); 624 } 625 626 static void process_queued_bios(struct work_struct *work) 627 { 628 int r; 629 unsigned long flags; 630 struct bio *bio; 631 struct bio_list bios; 632 struct blk_plug plug; 633 struct multipath *m = 634 container_of(work, struct multipath, process_queued_bios); 635 636 bio_list_init(&bios); 637 638 spin_lock_irqsave(&m->lock, flags); 639 640 if (bio_list_empty(&m->queued_bios)) { 641 spin_unlock_irqrestore(&m->lock, flags); 642 return; 643 } 644 645 bio_list_merge(&bios, &m->queued_bios); 646 bio_list_init(&m->queued_bios); 647 648 spin_unlock_irqrestore(&m->lock, flags); 649 650 blk_start_plug(&plug); 651 while ((bio = bio_list_pop(&bios))) { 652 r = __multipath_map_bio(m, bio, get_mpio_from_bio(bio)); 653 switch (r) { 654 case DM_MAPIO_KILL: 655 bio->bi_status = BLK_STS_IOERR; 656 bio_endio(bio); 657 break; 658 case DM_MAPIO_REQUEUE: 659 bio->bi_status = BLK_STS_DM_REQUEUE; 660 bio_endio(bio); 661 break; 662 case DM_MAPIO_REMAPPED: 663 generic_make_request(bio); 664 break; 665 case 0: 666 break; 667 default: 668 WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r); 669 } 670 } 671 blk_finish_plug(&plug); 672 } 673 674 /* 675 * If we run out of usable paths, should we queue I/O or error it? 676 */ 677 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path, 678 bool save_old_value) 679 { 680 unsigned long flags; 681 682 spin_lock_irqsave(&m->lock, flags); 683 assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags, 684 (save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) || 685 (!save_old_value && queue_if_no_path)); 686 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path); 687 spin_unlock_irqrestore(&m->lock, flags); 688 689 if (!queue_if_no_path) { 690 dm_table_run_md_queue_async(m->ti->table); 691 process_queued_io_list(m); 692 } 693 694 return 0; 695 } 696 697 /* 698 * An event is triggered whenever a path is taken out of use. 699 * Includes path failure and PG bypass. 700 */ 701 static void trigger_event(struct work_struct *work) 702 { 703 struct multipath *m = 704 container_of(work, struct multipath, trigger_event); 705 706 dm_table_event(m->ti->table); 707 } 708 709 /*----------------------------------------------------------------- 710 * Constructor/argument parsing: 711 * <#multipath feature args> [<arg>]* 712 * <#hw_handler args> [hw_handler [<arg>]*] 713 * <#priority groups> 714 * <initial priority group> 715 * [<selector> <#selector args> [<arg>]* 716 * <#paths> <#per-path selector args> 717 * [<path> [<arg>]* ]+ ]+ 718 *---------------------------------------------------------------*/ 719 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg, 720 struct dm_target *ti) 721 { 722 int r; 723 struct path_selector_type *pst; 724 unsigned ps_argc; 725 726 static const struct dm_arg _args[] = { 727 {0, 1024, "invalid number of path selector args"}, 728 }; 729 730 pst = dm_get_path_selector(dm_shift_arg(as)); 731 if (!pst) { 732 ti->error = "unknown path selector type"; 733 return -EINVAL; 734 } 735 736 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error); 737 if (r) { 738 dm_put_path_selector(pst); 739 return -EINVAL; 740 } 741 742 r = pst->create(&pg->ps, ps_argc, as->argv); 743 if (r) { 744 dm_put_path_selector(pst); 745 ti->error = "path selector constructor failed"; 746 return r; 747 } 748 749 pg->ps.type = pst; 750 dm_consume_args(as, ps_argc); 751 752 return 0; 753 } 754 755 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps, 756 struct dm_target *ti) 757 { 758 int r; 759 struct pgpath *p; 760 struct multipath *m = ti->private; 761 struct request_queue *q = NULL; 762 const char *attached_handler_name; 763 764 /* we need at least a path arg */ 765 if (as->argc < 1) { 766 ti->error = "no device given"; 767 return ERR_PTR(-EINVAL); 768 } 769 770 p = alloc_pgpath(); 771 if (!p) 772 return ERR_PTR(-ENOMEM); 773 774 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table), 775 &p->path.dev); 776 if (r) { 777 ti->error = "error getting device"; 778 goto bad; 779 } 780 781 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) || m->hw_handler_name) 782 q = bdev_get_queue(p->path.dev->bdev); 783 784 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) { 785 retain: 786 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL); 787 if (attached_handler_name) { 788 /* 789 * Clear any hw_handler_params associated with a 790 * handler that isn't already attached. 791 */ 792 if (m->hw_handler_name && strcmp(attached_handler_name, m->hw_handler_name)) { 793 kfree(m->hw_handler_params); 794 m->hw_handler_params = NULL; 795 } 796 797 /* 798 * Reset hw_handler_name to match the attached handler 799 * 800 * NB. This modifies the table line to show the actual 801 * handler instead of the original table passed in. 802 */ 803 kfree(m->hw_handler_name); 804 m->hw_handler_name = attached_handler_name; 805 } 806 } 807 808 if (m->hw_handler_name) { 809 r = scsi_dh_attach(q, m->hw_handler_name); 810 if (r == -EBUSY) { 811 char b[BDEVNAME_SIZE]; 812 813 printk(KERN_INFO "dm-mpath: retaining handler on device %s\n", 814 bdevname(p->path.dev->bdev, b)); 815 goto retain; 816 } 817 if (r < 0) { 818 ti->error = "error attaching hardware handler"; 819 dm_put_device(ti, p->path.dev); 820 goto bad; 821 } 822 823 if (m->hw_handler_params) { 824 r = scsi_dh_set_params(q, m->hw_handler_params); 825 if (r < 0) { 826 ti->error = "unable to set hardware " 827 "handler parameters"; 828 dm_put_device(ti, p->path.dev); 829 goto bad; 830 } 831 } 832 } 833 834 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 835 if (r) { 836 dm_put_device(ti, p->path.dev); 837 goto bad; 838 } 839 840 return p; 841 842 bad: 843 free_pgpath(p); 844 return ERR_PTR(r); 845 } 846 847 static struct priority_group *parse_priority_group(struct dm_arg_set *as, 848 struct multipath *m) 849 { 850 static const struct dm_arg _args[] = { 851 {1, 1024, "invalid number of paths"}, 852 {0, 1024, "invalid number of selector args"} 853 }; 854 855 int r; 856 unsigned i, nr_selector_args, nr_args; 857 struct priority_group *pg; 858 struct dm_target *ti = m->ti; 859 860 if (as->argc < 2) { 861 as->argc = 0; 862 ti->error = "not enough priority group arguments"; 863 return ERR_PTR(-EINVAL); 864 } 865 866 pg = alloc_priority_group(); 867 if (!pg) { 868 ti->error = "couldn't allocate priority group"; 869 return ERR_PTR(-ENOMEM); 870 } 871 pg->m = m; 872 873 r = parse_path_selector(as, pg, ti); 874 if (r) 875 goto bad; 876 877 /* 878 * read the paths 879 */ 880 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error); 881 if (r) 882 goto bad; 883 884 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error); 885 if (r) 886 goto bad; 887 888 nr_args = 1 + nr_selector_args; 889 for (i = 0; i < pg->nr_pgpaths; i++) { 890 struct pgpath *pgpath; 891 struct dm_arg_set path_args; 892 893 if (as->argc < nr_args) { 894 ti->error = "not enough path parameters"; 895 r = -EINVAL; 896 goto bad; 897 } 898 899 path_args.argc = nr_args; 900 path_args.argv = as->argv; 901 902 pgpath = parse_path(&path_args, &pg->ps, ti); 903 if (IS_ERR(pgpath)) { 904 r = PTR_ERR(pgpath); 905 goto bad; 906 } 907 908 pgpath->pg = pg; 909 list_add_tail(&pgpath->list, &pg->pgpaths); 910 dm_consume_args(as, nr_args); 911 } 912 913 return pg; 914 915 bad: 916 free_priority_group(pg, ti); 917 return ERR_PTR(r); 918 } 919 920 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m) 921 { 922 unsigned hw_argc; 923 int ret; 924 struct dm_target *ti = m->ti; 925 926 static const struct dm_arg _args[] = { 927 {0, 1024, "invalid number of hardware handler args"}, 928 }; 929 930 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error)) 931 return -EINVAL; 932 933 if (!hw_argc) 934 return 0; 935 936 if (m->queue_mode == DM_TYPE_BIO_BASED) { 937 dm_consume_args(as, hw_argc); 938 DMERR("bio-based multipath doesn't allow hardware handler args"); 939 return 0; 940 } 941 942 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL); 943 if (!m->hw_handler_name) 944 return -EINVAL; 945 946 if (hw_argc > 1) { 947 char *p; 948 int i, j, len = 4; 949 950 for (i = 0; i <= hw_argc - 2; i++) 951 len += strlen(as->argv[i]) + 1; 952 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 953 if (!p) { 954 ti->error = "memory allocation failed"; 955 ret = -ENOMEM; 956 goto fail; 957 } 958 j = sprintf(p, "%d", hw_argc - 1); 959 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1) 960 j = sprintf(p, "%s", as->argv[i]); 961 } 962 dm_consume_args(as, hw_argc - 1); 963 964 return 0; 965 fail: 966 kfree(m->hw_handler_name); 967 m->hw_handler_name = NULL; 968 return ret; 969 } 970 971 static int parse_features(struct dm_arg_set *as, struct multipath *m) 972 { 973 int r; 974 unsigned argc; 975 struct dm_target *ti = m->ti; 976 const char *arg_name; 977 978 static const struct dm_arg _args[] = { 979 {0, 8, "invalid number of feature args"}, 980 {1, 50, "pg_init_retries must be between 1 and 50"}, 981 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"}, 982 }; 983 984 r = dm_read_arg_group(_args, as, &argc, &ti->error); 985 if (r) 986 return -EINVAL; 987 988 if (!argc) 989 return 0; 990 991 do { 992 arg_name = dm_shift_arg(as); 993 argc--; 994 995 if (!strcasecmp(arg_name, "queue_if_no_path")) { 996 r = queue_if_no_path(m, true, false); 997 continue; 998 } 999 1000 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) { 1001 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 1002 continue; 1003 } 1004 1005 if (!strcasecmp(arg_name, "pg_init_retries") && 1006 (argc >= 1)) { 1007 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error); 1008 argc--; 1009 continue; 1010 } 1011 1012 if (!strcasecmp(arg_name, "pg_init_delay_msecs") && 1013 (argc >= 1)) { 1014 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error); 1015 argc--; 1016 continue; 1017 } 1018 1019 if (!strcasecmp(arg_name, "queue_mode") && 1020 (argc >= 1)) { 1021 const char *queue_mode_name = dm_shift_arg(as); 1022 1023 if (!strcasecmp(queue_mode_name, "bio")) 1024 m->queue_mode = DM_TYPE_BIO_BASED; 1025 else if (!strcasecmp(queue_mode_name, "rq")) 1026 m->queue_mode = DM_TYPE_REQUEST_BASED; 1027 else if (!strcasecmp(queue_mode_name, "mq")) 1028 m->queue_mode = DM_TYPE_MQ_REQUEST_BASED; 1029 else { 1030 ti->error = "Unknown 'queue_mode' requested"; 1031 r = -EINVAL; 1032 } 1033 argc--; 1034 continue; 1035 } 1036 1037 ti->error = "Unrecognised multipath feature request"; 1038 r = -EINVAL; 1039 } while (argc && !r); 1040 1041 return r; 1042 } 1043 1044 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv) 1045 { 1046 /* target arguments */ 1047 static const struct dm_arg _args[] = { 1048 {0, 1024, "invalid number of priority groups"}, 1049 {0, 1024, "invalid initial priority group number"}, 1050 }; 1051 1052 int r; 1053 struct multipath *m; 1054 struct dm_arg_set as; 1055 unsigned pg_count = 0; 1056 unsigned next_pg_num; 1057 1058 as.argc = argc; 1059 as.argv = argv; 1060 1061 m = alloc_multipath(ti); 1062 if (!m) { 1063 ti->error = "can't allocate multipath"; 1064 return -EINVAL; 1065 } 1066 1067 r = parse_features(&as, m); 1068 if (r) 1069 goto bad; 1070 1071 r = alloc_multipath_stage2(ti, m); 1072 if (r) 1073 goto bad; 1074 1075 r = parse_hw_handler(&as, m); 1076 if (r) 1077 goto bad; 1078 1079 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error); 1080 if (r) 1081 goto bad; 1082 1083 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error); 1084 if (r) 1085 goto bad; 1086 1087 if ((!m->nr_priority_groups && next_pg_num) || 1088 (m->nr_priority_groups && !next_pg_num)) { 1089 ti->error = "invalid initial priority group"; 1090 r = -EINVAL; 1091 goto bad; 1092 } 1093 1094 /* parse the priority groups */ 1095 while (as.argc) { 1096 struct priority_group *pg; 1097 unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths); 1098 1099 pg = parse_priority_group(&as, m); 1100 if (IS_ERR(pg)) { 1101 r = PTR_ERR(pg); 1102 goto bad; 1103 } 1104 1105 nr_valid_paths += pg->nr_pgpaths; 1106 atomic_set(&m->nr_valid_paths, nr_valid_paths); 1107 1108 list_add_tail(&pg->list, &m->priority_groups); 1109 pg_count++; 1110 pg->pg_num = pg_count; 1111 if (!--next_pg_num) 1112 m->next_pg = pg; 1113 } 1114 1115 if (pg_count != m->nr_priority_groups) { 1116 ti->error = "priority group count mismatch"; 1117 r = -EINVAL; 1118 goto bad; 1119 } 1120 1121 ti->num_flush_bios = 1; 1122 ti->num_discard_bios = 1; 1123 ti->num_write_same_bios = 1; 1124 ti->num_write_zeroes_bios = 1; 1125 if (m->queue_mode == DM_TYPE_BIO_BASED) 1126 ti->per_io_data_size = multipath_per_bio_data_size(); 1127 else 1128 ti->per_io_data_size = sizeof(struct dm_mpath_io); 1129 1130 return 0; 1131 1132 bad: 1133 free_multipath(m); 1134 return r; 1135 } 1136 1137 static void multipath_wait_for_pg_init_completion(struct multipath *m) 1138 { 1139 DEFINE_WAIT(wait); 1140 1141 while (1) { 1142 prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE); 1143 1144 if (!atomic_read(&m->pg_init_in_progress)) 1145 break; 1146 1147 io_schedule(); 1148 } 1149 finish_wait(&m->pg_init_wait, &wait); 1150 } 1151 1152 static void flush_multipath_work(struct multipath *m) 1153 { 1154 set_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1155 smp_mb__after_atomic(); 1156 1157 flush_workqueue(kmpath_handlerd); 1158 multipath_wait_for_pg_init_completion(m); 1159 flush_workqueue(kmultipathd); 1160 flush_work(&m->trigger_event); 1161 1162 clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1163 smp_mb__after_atomic(); 1164 } 1165 1166 static void multipath_dtr(struct dm_target *ti) 1167 { 1168 struct multipath *m = ti->private; 1169 1170 flush_multipath_work(m); 1171 free_multipath(m); 1172 } 1173 1174 /* 1175 * Take a path out of use. 1176 */ 1177 static int fail_path(struct pgpath *pgpath) 1178 { 1179 unsigned long flags; 1180 struct multipath *m = pgpath->pg->m; 1181 1182 spin_lock_irqsave(&m->lock, flags); 1183 1184 if (!pgpath->is_active) 1185 goto out; 1186 1187 DMWARN("Failing path %s.", pgpath->path.dev->name); 1188 1189 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 1190 pgpath->is_active = false; 1191 pgpath->fail_count++; 1192 1193 atomic_dec(&m->nr_valid_paths); 1194 1195 if (pgpath == m->current_pgpath) 1196 m->current_pgpath = NULL; 1197 1198 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 1199 pgpath->path.dev->name, atomic_read(&m->nr_valid_paths)); 1200 1201 schedule_work(&m->trigger_event); 1202 1203 out: 1204 spin_unlock_irqrestore(&m->lock, flags); 1205 1206 return 0; 1207 } 1208 1209 /* 1210 * Reinstate a previously-failed path 1211 */ 1212 static int reinstate_path(struct pgpath *pgpath) 1213 { 1214 int r = 0, run_queue = 0; 1215 unsigned long flags; 1216 struct multipath *m = pgpath->pg->m; 1217 unsigned nr_valid_paths; 1218 1219 spin_lock_irqsave(&m->lock, flags); 1220 1221 if (pgpath->is_active) 1222 goto out; 1223 1224 DMWARN("Reinstating path %s.", pgpath->path.dev->name); 1225 1226 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 1227 if (r) 1228 goto out; 1229 1230 pgpath->is_active = true; 1231 1232 nr_valid_paths = atomic_inc_return(&m->nr_valid_paths); 1233 if (nr_valid_paths == 1) { 1234 m->current_pgpath = NULL; 1235 run_queue = 1; 1236 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 1237 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) 1238 atomic_inc(&m->pg_init_in_progress); 1239 } 1240 1241 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 1242 pgpath->path.dev->name, nr_valid_paths); 1243 1244 schedule_work(&m->trigger_event); 1245 1246 out: 1247 spin_unlock_irqrestore(&m->lock, flags); 1248 if (run_queue) { 1249 dm_table_run_md_queue_async(m->ti->table); 1250 process_queued_io_list(m); 1251 } 1252 1253 return r; 1254 } 1255 1256 /* 1257 * Fail or reinstate all paths that match the provided struct dm_dev. 1258 */ 1259 static int action_dev(struct multipath *m, struct dm_dev *dev, 1260 action_fn action) 1261 { 1262 int r = -EINVAL; 1263 struct pgpath *pgpath; 1264 struct priority_group *pg; 1265 1266 list_for_each_entry(pg, &m->priority_groups, list) { 1267 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1268 if (pgpath->path.dev == dev) 1269 r = action(pgpath); 1270 } 1271 } 1272 1273 return r; 1274 } 1275 1276 /* 1277 * Temporarily try to avoid having to use the specified PG 1278 */ 1279 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1280 bool bypassed) 1281 { 1282 unsigned long flags; 1283 1284 spin_lock_irqsave(&m->lock, flags); 1285 1286 pg->bypassed = bypassed; 1287 m->current_pgpath = NULL; 1288 m->current_pg = NULL; 1289 1290 spin_unlock_irqrestore(&m->lock, flags); 1291 1292 schedule_work(&m->trigger_event); 1293 } 1294 1295 /* 1296 * Switch to using the specified PG from the next I/O that gets mapped 1297 */ 1298 static int switch_pg_num(struct multipath *m, const char *pgstr) 1299 { 1300 struct priority_group *pg; 1301 unsigned pgnum; 1302 unsigned long flags; 1303 char dummy; 1304 1305 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1306 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1307 DMWARN("invalid PG number supplied to switch_pg_num"); 1308 return -EINVAL; 1309 } 1310 1311 spin_lock_irqsave(&m->lock, flags); 1312 list_for_each_entry(pg, &m->priority_groups, list) { 1313 pg->bypassed = false; 1314 if (--pgnum) 1315 continue; 1316 1317 m->current_pgpath = NULL; 1318 m->current_pg = NULL; 1319 m->next_pg = pg; 1320 } 1321 spin_unlock_irqrestore(&m->lock, flags); 1322 1323 schedule_work(&m->trigger_event); 1324 return 0; 1325 } 1326 1327 /* 1328 * Set/clear bypassed status of a PG. 1329 * PGs are numbered upwards from 1 in the order they were declared. 1330 */ 1331 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed) 1332 { 1333 struct priority_group *pg; 1334 unsigned pgnum; 1335 char dummy; 1336 1337 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1338 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1339 DMWARN("invalid PG number supplied to bypass_pg"); 1340 return -EINVAL; 1341 } 1342 1343 list_for_each_entry(pg, &m->priority_groups, list) { 1344 if (!--pgnum) 1345 break; 1346 } 1347 1348 bypass_pg(m, pg, bypassed); 1349 return 0; 1350 } 1351 1352 /* 1353 * Should we retry pg_init immediately? 1354 */ 1355 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1356 { 1357 unsigned long flags; 1358 bool limit_reached = false; 1359 1360 spin_lock_irqsave(&m->lock, flags); 1361 1362 if (atomic_read(&m->pg_init_count) <= m->pg_init_retries && 1363 !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 1364 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 1365 else 1366 limit_reached = true; 1367 1368 spin_unlock_irqrestore(&m->lock, flags); 1369 1370 return limit_reached; 1371 } 1372 1373 static void pg_init_done(void *data, int errors) 1374 { 1375 struct pgpath *pgpath = data; 1376 struct priority_group *pg = pgpath->pg; 1377 struct multipath *m = pg->m; 1378 unsigned long flags; 1379 bool delay_retry = false; 1380 1381 /* device or driver problems */ 1382 switch (errors) { 1383 case SCSI_DH_OK: 1384 break; 1385 case SCSI_DH_NOSYS: 1386 if (!m->hw_handler_name) { 1387 errors = 0; 1388 break; 1389 } 1390 DMERR("Could not failover the device: Handler scsi_dh_%s " 1391 "Error %d.", m->hw_handler_name, errors); 1392 /* 1393 * Fail path for now, so we do not ping pong 1394 */ 1395 fail_path(pgpath); 1396 break; 1397 case SCSI_DH_DEV_TEMP_BUSY: 1398 /* 1399 * Probably doing something like FW upgrade on the 1400 * controller so try the other pg. 1401 */ 1402 bypass_pg(m, pg, true); 1403 break; 1404 case SCSI_DH_RETRY: 1405 /* Wait before retrying. */ 1406 delay_retry = 1; 1407 /* fall through */ 1408 case SCSI_DH_IMM_RETRY: 1409 case SCSI_DH_RES_TEMP_UNAVAIL: 1410 if (pg_init_limit_reached(m, pgpath)) 1411 fail_path(pgpath); 1412 errors = 0; 1413 break; 1414 case SCSI_DH_DEV_OFFLINED: 1415 default: 1416 /* 1417 * We probably do not want to fail the path for a device 1418 * error, but this is what the old dm did. In future 1419 * patches we can do more advanced handling. 1420 */ 1421 fail_path(pgpath); 1422 } 1423 1424 spin_lock_irqsave(&m->lock, flags); 1425 if (errors) { 1426 if (pgpath == m->current_pgpath) { 1427 DMERR("Could not failover device. Error %d.", errors); 1428 m->current_pgpath = NULL; 1429 m->current_pg = NULL; 1430 } 1431 } else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1432 pg->bypassed = false; 1433 1434 if (atomic_dec_return(&m->pg_init_in_progress) > 0) 1435 /* Activations of other paths are still on going */ 1436 goto out; 1437 1438 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 1439 if (delay_retry) 1440 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1441 else 1442 clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1443 1444 if (__pg_init_all_paths(m)) 1445 goto out; 1446 } 1447 clear_bit(MPATHF_QUEUE_IO, &m->flags); 1448 1449 process_queued_io_list(m); 1450 1451 /* 1452 * Wake up any thread waiting to suspend. 1453 */ 1454 wake_up(&m->pg_init_wait); 1455 1456 out: 1457 spin_unlock_irqrestore(&m->lock, flags); 1458 } 1459 1460 static void activate_or_offline_path(struct pgpath *pgpath) 1461 { 1462 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1463 1464 if (pgpath->is_active && !blk_queue_dying(q)) 1465 scsi_dh_activate(q, pg_init_done, pgpath); 1466 else 1467 pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED); 1468 } 1469 1470 static void activate_path_work(struct work_struct *work) 1471 { 1472 struct pgpath *pgpath = 1473 container_of(work, struct pgpath, activate_path.work); 1474 1475 activate_or_offline_path(pgpath); 1476 } 1477 1478 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1479 blk_status_t error, union map_info *map_context) 1480 { 1481 struct dm_mpath_io *mpio = get_mpio(map_context); 1482 struct pgpath *pgpath = mpio->pgpath; 1483 int r = DM_ENDIO_DONE; 1484 1485 /* 1486 * We don't queue any clone request inside the multipath target 1487 * during end I/O handling, since those clone requests don't have 1488 * bio clones. If we queue them inside the multipath target, 1489 * we need to make bio clones, that requires memory allocation. 1490 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests 1491 * don't have bio clones.) 1492 * Instead of queueing the clone request here, we queue the original 1493 * request into dm core, which will remake a clone request and 1494 * clone bios for it and resubmit it later. 1495 */ 1496 if (error && blk_path_error(error)) { 1497 struct multipath *m = ti->private; 1498 1499 r = DM_ENDIO_REQUEUE; 1500 1501 if (pgpath) 1502 fail_path(pgpath); 1503 1504 if (atomic_read(&m->nr_valid_paths) == 0 && 1505 !must_push_back_rq(m)) { 1506 if (error == BLK_STS_IOERR) 1507 dm_report_EIO(m); 1508 /* complete with the original error */ 1509 r = DM_ENDIO_DONE; 1510 } 1511 } 1512 1513 if (pgpath) { 1514 struct path_selector *ps = &pgpath->pg->ps; 1515 1516 if (ps->type->end_io) 1517 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1518 } 1519 1520 return r; 1521 } 1522 1523 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone, 1524 blk_status_t *error) 1525 { 1526 struct multipath *m = ti->private; 1527 struct dm_mpath_io *mpio = get_mpio_from_bio(clone); 1528 struct pgpath *pgpath = mpio->pgpath; 1529 unsigned long flags; 1530 int r = DM_ENDIO_DONE; 1531 1532 if (!*error || !blk_path_error(*error)) 1533 goto done; 1534 1535 if (pgpath) 1536 fail_path(pgpath); 1537 1538 if (atomic_read(&m->nr_valid_paths) == 0 && 1539 !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 1540 if (must_push_back_bio(m)) { 1541 r = DM_ENDIO_REQUEUE; 1542 } else { 1543 dm_report_EIO(m); 1544 *error = BLK_STS_IOERR; 1545 } 1546 goto done; 1547 } 1548 1549 /* Queue for the daemon to resubmit */ 1550 dm_bio_restore(get_bio_details_from_bio(clone), clone); 1551 1552 spin_lock_irqsave(&m->lock, flags); 1553 bio_list_add(&m->queued_bios, clone); 1554 spin_unlock_irqrestore(&m->lock, flags); 1555 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) 1556 queue_work(kmultipathd, &m->process_queued_bios); 1557 1558 r = DM_ENDIO_INCOMPLETE; 1559 done: 1560 if (pgpath) { 1561 struct path_selector *ps = &pgpath->pg->ps; 1562 1563 if (ps->type->end_io) 1564 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1565 } 1566 1567 return r; 1568 } 1569 1570 /* 1571 * Suspend can't complete until all the I/O is processed so if 1572 * the last path fails we must error any remaining I/O. 1573 * Note that if the freeze_bdev fails while suspending, the 1574 * queue_if_no_path state is lost - userspace should reset it. 1575 */ 1576 static void multipath_presuspend(struct dm_target *ti) 1577 { 1578 struct multipath *m = ti->private; 1579 1580 queue_if_no_path(m, false, true); 1581 } 1582 1583 static void multipath_postsuspend(struct dm_target *ti) 1584 { 1585 struct multipath *m = ti->private; 1586 1587 mutex_lock(&m->work_mutex); 1588 flush_multipath_work(m); 1589 mutex_unlock(&m->work_mutex); 1590 } 1591 1592 /* 1593 * Restore the queue_if_no_path setting. 1594 */ 1595 static void multipath_resume(struct dm_target *ti) 1596 { 1597 struct multipath *m = ti->private; 1598 unsigned long flags; 1599 1600 spin_lock_irqsave(&m->lock, flags); 1601 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, 1602 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)); 1603 spin_unlock_irqrestore(&m->lock, flags); 1604 } 1605 1606 /* 1607 * Info output has the following format: 1608 * num_multipath_feature_args [multipath_feature_args]* 1609 * num_handler_status_args [handler_status_args]* 1610 * num_groups init_group_number 1611 * [A|D|E num_ps_status_args [ps_status_args]* 1612 * num_paths num_selector_args 1613 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1614 * 1615 * Table output has the following format (identical to the constructor string): 1616 * num_feature_args [features_args]* 1617 * num_handler_args hw_handler [hw_handler_args]* 1618 * num_groups init_group_number 1619 * [priority selector-name num_ps_args [ps_args]* 1620 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1621 */ 1622 static void multipath_status(struct dm_target *ti, status_type_t type, 1623 unsigned status_flags, char *result, unsigned maxlen) 1624 { 1625 int sz = 0; 1626 unsigned long flags; 1627 struct multipath *m = ti->private; 1628 struct priority_group *pg; 1629 struct pgpath *p; 1630 unsigned pg_num; 1631 char state; 1632 1633 spin_lock_irqsave(&m->lock, flags); 1634 1635 /* Features */ 1636 if (type == STATUSTYPE_INFO) 1637 DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags), 1638 atomic_read(&m->pg_init_count)); 1639 else { 1640 DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) + 1641 (m->pg_init_retries > 0) * 2 + 1642 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 + 1643 test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) + 1644 (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2); 1645 1646 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1647 DMEMIT("queue_if_no_path "); 1648 if (m->pg_init_retries) 1649 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1650 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) 1651 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs); 1652 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) 1653 DMEMIT("retain_attached_hw_handler "); 1654 if (m->queue_mode != DM_TYPE_REQUEST_BASED) { 1655 switch(m->queue_mode) { 1656 case DM_TYPE_BIO_BASED: 1657 DMEMIT("queue_mode bio "); 1658 break; 1659 case DM_TYPE_MQ_REQUEST_BASED: 1660 DMEMIT("queue_mode mq "); 1661 break; 1662 default: 1663 WARN_ON_ONCE(true); 1664 break; 1665 } 1666 } 1667 } 1668 1669 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1670 DMEMIT("0 "); 1671 else 1672 DMEMIT("1 %s ", m->hw_handler_name); 1673 1674 DMEMIT("%u ", m->nr_priority_groups); 1675 1676 if (m->next_pg) 1677 pg_num = m->next_pg->pg_num; 1678 else if (m->current_pg) 1679 pg_num = m->current_pg->pg_num; 1680 else 1681 pg_num = (m->nr_priority_groups ? 1 : 0); 1682 1683 DMEMIT("%u ", pg_num); 1684 1685 switch (type) { 1686 case STATUSTYPE_INFO: 1687 list_for_each_entry(pg, &m->priority_groups, list) { 1688 if (pg->bypassed) 1689 state = 'D'; /* Disabled */ 1690 else if (pg == m->current_pg) 1691 state = 'A'; /* Currently Active */ 1692 else 1693 state = 'E'; /* Enabled */ 1694 1695 DMEMIT("%c ", state); 1696 1697 if (pg->ps.type->status) 1698 sz += pg->ps.type->status(&pg->ps, NULL, type, 1699 result + sz, 1700 maxlen - sz); 1701 else 1702 DMEMIT("0 "); 1703 1704 DMEMIT("%u %u ", pg->nr_pgpaths, 1705 pg->ps.type->info_args); 1706 1707 list_for_each_entry(p, &pg->pgpaths, list) { 1708 DMEMIT("%s %s %u ", p->path.dev->name, 1709 p->is_active ? "A" : "F", 1710 p->fail_count); 1711 if (pg->ps.type->status) 1712 sz += pg->ps.type->status(&pg->ps, 1713 &p->path, type, result + sz, 1714 maxlen - sz); 1715 } 1716 } 1717 break; 1718 1719 case STATUSTYPE_TABLE: 1720 list_for_each_entry(pg, &m->priority_groups, list) { 1721 DMEMIT("%s ", pg->ps.type->name); 1722 1723 if (pg->ps.type->status) 1724 sz += pg->ps.type->status(&pg->ps, NULL, type, 1725 result + sz, 1726 maxlen - sz); 1727 else 1728 DMEMIT("0 "); 1729 1730 DMEMIT("%u %u ", pg->nr_pgpaths, 1731 pg->ps.type->table_args); 1732 1733 list_for_each_entry(p, &pg->pgpaths, list) { 1734 DMEMIT("%s ", p->path.dev->name); 1735 if (pg->ps.type->status) 1736 sz += pg->ps.type->status(&pg->ps, 1737 &p->path, type, result + sz, 1738 maxlen - sz); 1739 } 1740 } 1741 break; 1742 } 1743 1744 spin_unlock_irqrestore(&m->lock, flags); 1745 } 1746 1747 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv) 1748 { 1749 int r = -EINVAL; 1750 struct dm_dev *dev; 1751 struct multipath *m = ti->private; 1752 action_fn action; 1753 1754 mutex_lock(&m->work_mutex); 1755 1756 if (dm_suspended(ti)) { 1757 r = -EBUSY; 1758 goto out; 1759 } 1760 1761 if (argc == 1) { 1762 if (!strcasecmp(argv[0], "queue_if_no_path")) { 1763 r = queue_if_no_path(m, true, false); 1764 goto out; 1765 } else if (!strcasecmp(argv[0], "fail_if_no_path")) { 1766 r = queue_if_no_path(m, false, false); 1767 goto out; 1768 } 1769 } 1770 1771 if (argc != 2) { 1772 DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc); 1773 goto out; 1774 } 1775 1776 if (!strcasecmp(argv[0], "disable_group")) { 1777 r = bypass_pg_num(m, argv[1], true); 1778 goto out; 1779 } else if (!strcasecmp(argv[0], "enable_group")) { 1780 r = bypass_pg_num(m, argv[1], false); 1781 goto out; 1782 } else if (!strcasecmp(argv[0], "switch_group")) { 1783 r = switch_pg_num(m, argv[1]); 1784 goto out; 1785 } else if (!strcasecmp(argv[0], "reinstate_path")) 1786 action = reinstate_path; 1787 else if (!strcasecmp(argv[0], "fail_path")) 1788 action = fail_path; 1789 else { 1790 DMWARN("Unrecognised multipath message received: %s", argv[0]); 1791 goto out; 1792 } 1793 1794 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev); 1795 if (r) { 1796 DMWARN("message: error getting device %s", 1797 argv[1]); 1798 goto out; 1799 } 1800 1801 r = action_dev(m, dev, action); 1802 1803 dm_put_device(ti, dev); 1804 1805 out: 1806 mutex_unlock(&m->work_mutex); 1807 return r; 1808 } 1809 1810 static int multipath_prepare_ioctl(struct dm_target *ti, 1811 struct block_device **bdev, fmode_t *mode) 1812 { 1813 struct multipath *m = ti->private; 1814 struct pgpath *current_pgpath; 1815 int r; 1816 1817 current_pgpath = READ_ONCE(m->current_pgpath); 1818 if (!current_pgpath) 1819 current_pgpath = choose_pgpath(m, 0); 1820 1821 if (current_pgpath) { 1822 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) { 1823 *bdev = current_pgpath->path.dev->bdev; 1824 *mode = current_pgpath->path.dev->mode; 1825 r = 0; 1826 } else { 1827 /* pg_init has not started or completed */ 1828 r = -ENOTCONN; 1829 } 1830 } else { 1831 /* No path is available */ 1832 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1833 r = -ENOTCONN; 1834 else 1835 r = -EIO; 1836 } 1837 1838 if (r == -ENOTCONN) { 1839 if (!READ_ONCE(m->current_pg)) { 1840 /* Path status changed, redo selection */ 1841 (void) choose_pgpath(m, 0); 1842 } 1843 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1844 pg_init_all_paths(m); 1845 dm_table_run_md_queue_async(m->ti->table); 1846 process_queued_io_list(m); 1847 } 1848 1849 /* 1850 * Only pass ioctls through if the device sizes match exactly. 1851 */ 1852 if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT) 1853 return 1; 1854 return r; 1855 } 1856 1857 static int multipath_iterate_devices(struct dm_target *ti, 1858 iterate_devices_callout_fn fn, void *data) 1859 { 1860 struct multipath *m = ti->private; 1861 struct priority_group *pg; 1862 struct pgpath *p; 1863 int ret = 0; 1864 1865 list_for_each_entry(pg, &m->priority_groups, list) { 1866 list_for_each_entry(p, &pg->pgpaths, list) { 1867 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 1868 if (ret) 1869 goto out; 1870 } 1871 } 1872 1873 out: 1874 return ret; 1875 } 1876 1877 static int pgpath_busy(struct pgpath *pgpath) 1878 { 1879 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1880 1881 return blk_lld_busy(q); 1882 } 1883 1884 /* 1885 * We return "busy", only when we can map I/Os but underlying devices 1886 * are busy (so even if we map I/Os now, the I/Os will wait on 1887 * the underlying queue). 1888 * In other words, if we want to kill I/Os or queue them inside us 1889 * due to map unavailability, we don't return "busy". Otherwise, 1890 * dm core won't give us the I/Os and we can't do what we want. 1891 */ 1892 static int multipath_busy(struct dm_target *ti) 1893 { 1894 bool busy = false, has_active = false; 1895 struct multipath *m = ti->private; 1896 struct priority_group *pg, *next_pg; 1897 struct pgpath *pgpath; 1898 1899 /* pg_init in progress */ 1900 if (atomic_read(&m->pg_init_in_progress)) 1901 return true; 1902 1903 /* no paths available, for blk-mq: rely on IO mapping to delay requeue */ 1904 if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1905 return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED); 1906 1907 /* Guess which priority_group will be used at next mapping time */ 1908 pg = READ_ONCE(m->current_pg); 1909 next_pg = READ_ONCE(m->next_pg); 1910 if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg)) 1911 pg = next_pg; 1912 1913 if (!pg) { 1914 /* 1915 * We don't know which pg will be used at next mapping time. 1916 * We don't call choose_pgpath() here to avoid to trigger 1917 * pg_init just by busy checking. 1918 * So we don't know whether underlying devices we will be using 1919 * at next mapping time are busy or not. Just try mapping. 1920 */ 1921 return busy; 1922 } 1923 1924 /* 1925 * If there is one non-busy active path at least, the path selector 1926 * will be able to select it. So we consider such a pg as not busy. 1927 */ 1928 busy = true; 1929 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1930 if (pgpath->is_active) { 1931 has_active = true; 1932 if (!pgpath_busy(pgpath)) { 1933 busy = false; 1934 break; 1935 } 1936 } 1937 } 1938 1939 if (!has_active) { 1940 /* 1941 * No active path in this pg, so this pg won't be used and 1942 * the current_pg will be changed at next mapping time. 1943 * We need to try mapping to determine it. 1944 */ 1945 busy = false; 1946 } 1947 1948 return busy; 1949 } 1950 1951 /*----------------------------------------------------------------- 1952 * Module setup 1953 *---------------------------------------------------------------*/ 1954 static struct target_type multipath_target = { 1955 .name = "multipath", 1956 .version = {1, 12, 0}, 1957 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE, 1958 .module = THIS_MODULE, 1959 .ctr = multipath_ctr, 1960 .dtr = multipath_dtr, 1961 .clone_and_map_rq = multipath_clone_and_map, 1962 .release_clone_rq = multipath_release_clone, 1963 .rq_end_io = multipath_end_io, 1964 .map = multipath_map_bio, 1965 .end_io = multipath_end_io_bio, 1966 .presuspend = multipath_presuspend, 1967 .postsuspend = multipath_postsuspend, 1968 .resume = multipath_resume, 1969 .status = multipath_status, 1970 .message = multipath_message, 1971 .prepare_ioctl = multipath_prepare_ioctl, 1972 .iterate_devices = multipath_iterate_devices, 1973 .busy = multipath_busy, 1974 }; 1975 1976 static int __init dm_multipath_init(void) 1977 { 1978 int r; 1979 1980 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0); 1981 if (!kmultipathd) { 1982 DMERR("failed to create workqueue kmpathd"); 1983 r = -ENOMEM; 1984 goto bad_alloc_kmultipathd; 1985 } 1986 1987 /* 1988 * A separate workqueue is used to handle the device handlers 1989 * to avoid overloading existing workqueue. Overloading the 1990 * old workqueue would also create a bottleneck in the 1991 * path of the storage hardware device activation. 1992 */ 1993 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd", 1994 WQ_MEM_RECLAIM); 1995 if (!kmpath_handlerd) { 1996 DMERR("failed to create workqueue kmpath_handlerd"); 1997 r = -ENOMEM; 1998 goto bad_alloc_kmpath_handlerd; 1999 } 2000 2001 r = dm_register_target(&multipath_target); 2002 if (r < 0) { 2003 DMERR("request-based register failed %d", r); 2004 r = -EINVAL; 2005 goto bad_register_target; 2006 } 2007 2008 return 0; 2009 2010 bad_register_target: 2011 destroy_workqueue(kmpath_handlerd); 2012 bad_alloc_kmpath_handlerd: 2013 destroy_workqueue(kmultipathd); 2014 bad_alloc_kmultipathd: 2015 return r; 2016 } 2017 2018 static void __exit dm_multipath_exit(void) 2019 { 2020 destroy_workqueue(kmpath_handlerd); 2021 destroy_workqueue(kmultipathd); 2022 2023 dm_unregister_target(&multipath_target); 2024 } 2025 2026 module_init(dm_multipath_init); 2027 module_exit(dm_multipath_exit); 2028 2029 MODULE_DESCRIPTION(DM_NAME " multipath target"); 2030 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>"); 2031 MODULE_LICENSE("GPL"); 2032