1 /* 2 * Copyright (C) 2003 Sistina Software Limited. 3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include <linux/device-mapper.h> 9 10 #include "dm-rq.h" 11 #include "dm-bio-record.h" 12 #include "dm-path-selector.h" 13 #include "dm-uevent.h" 14 15 #include <linux/blkdev.h> 16 #include <linux/ctype.h> 17 #include <linux/init.h> 18 #include <linux/mempool.h> 19 #include <linux/module.h> 20 #include <linux/pagemap.h> 21 #include <linux/slab.h> 22 #include <linux/time.h> 23 #include <linux/workqueue.h> 24 #include <linux/delay.h> 25 #include <scsi/scsi_dh.h> 26 #include <linux/atomic.h> 27 #include <linux/blk-mq.h> 28 29 #define DM_MSG_PREFIX "multipath" 30 #define DM_PG_INIT_DELAY_MSECS 2000 31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1) 32 33 /* Path properties */ 34 struct pgpath { 35 struct list_head list; 36 37 struct priority_group *pg; /* Owning PG */ 38 unsigned fail_count; /* Cumulative failure count */ 39 40 struct dm_path path; 41 struct delayed_work activate_path; 42 43 bool is_active:1; /* Path status */ 44 }; 45 46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 47 48 /* 49 * Paths are grouped into Priority Groups and numbered from 1 upwards. 50 * Each has a path selector which controls which path gets used. 51 */ 52 struct priority_group { 53 struct list_head list; 54 55 struct multipath *m; /* Owning multipath instance */ 56 struct path_selector ps; 57 58 unsigned pg_num; /* Reference number */ 59 unsigned nr_pgpaths; /* Number of paths in PG */ 60 struct list_head pgpaths; 61 62 bool bypassed:1; /* Temporarily bypass this PG? */ 63 }; 64 65 /* Multipath context */ 66 struct multipath { 67 struct list_head list; 68 struct dm_target *ti; 69 70 const char *hw_handler_name; 71 char *hw_handler_params; 72 73 spinlock_t lock; 74 75 unsigned nr_priority_groups; 76 struct list_head priority_groups; 77 78 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 79 80 struct pgpath *current_pgpath; 81 struct priority_group *current_pg; 82 struct priority_group *next_pg; /* Switch to this PG if set */ 83 84 unsigned long flags; /* Multipath state flags */ 85 86 unsigned pg_init_retries; /* Number of times to retry pg_init */ 87 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */ 88 89 atomic_t nr_valid_paths; /* Total number of usable paths */ 90 atomic_t pg_init_in_progress; /* Only one pg_init allowed at once */ 91 atomic_t pg_init_count; /* Number of times pg_init called */ 92 93 unsigned queue_mode; 94 95 /* 96 * We must use a mempool of dm_mpath_io structs so that we 97 * can resubmit bios on error. 98 */ 99 mempool_t *mpio_pool; 100 101 struct mutex work_mutex; 102 struct work_struct trigger_event; 103 104 struct work_struct process_queued_bios; 105 struct bio_list queued_bios; 106 }; 107 108 /* 109 * Context information attached to each io we process. 110 */ 111 struct dm_mpath_io { 112 struct pgpath *pgpath; 113 size_t nr_bytes; 114 }; 115 116 typedef int (*action_fn) (struct pgpath *pgpath); 117 118 static struct kmem_cache *_mpio_cache; 119 120 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 121 static void trigger_event(struct work_struct *work); 122 static void activate_path(struct work_struct *work); 123 static void process_queued_bios(struct work_struct *work); 124 125 /*----------------------------------------------- 126 * Multipath state flags. 127 *-----------------------------------------------*/ 128 129 #define MPATHF_QUEUE_IO 0 /* Must we queue all I/O? */ 130 #define MPATHF_QUEUE_IF_NO_PATH 1 /* Queue I/O if last path fails? */ 131 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2 /* Saved state during suspension */ 132 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3 /* If there's already a hw_handler present, don't change it. */ 133 #define MPATHF_PG_INIT_DISABLED 4 /* pg_init is not currently allowed */ 134 #define MPATHF_PG_INIT_REQUIRED 5 /* pg_init needs calling? */ 135 #define MPATHF_PG_INIT_DELAY_RETRY 6 /* Delay pg_init retry? */ 136 137 /*----------------------------------------------- 138 * Allocation routines 139 *-----------------------------------------------*/ 140 141 static struct pgpath *alloc_pgpath(void) 142 { 143 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 144 145 if (pgpath) { 146 pgpath->is_active = true; 147 INIT_DELAYED_WORK(&pgpath->activate_path, activate_path); 148 } 149 150 return pgpath; 151 } 152 153 static void free_pgpath(struct pgpath *pgpath) 154 { 155 kfree(pgpath); 156 } 157 158 static struct priority_group *alloc_priority_group(void) 159 { 160 struct priority_group *pg; 161 162 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 163 164 if (pg) 165 INIT_LIST_HEAD(&pg->pgpaths); 166 167 return pg; 168 } 169 170 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 171 { 172 struct pgpath *pgpath, *tmp; 173 174 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 175 list_del(&pgpath->list); 176 dm_put_device(ti, pgpath->path.dev); 177 free_pgpath(pgpath); 178 } 179 } 180 181 static void free_priority_group(struct priority_group *pg, 182 struct dm_target *ti) 183 { 184 struct path_selector *ps = &pg->ps; 185 186 if (ps->type) { 187 ps->type->destroy(ps); 188 dm_put_path_selector(ps->type); 189 } 190 191 free_pgpaths(&pg->pgpaths, ti); 192 kfree(pg); 193 } 194 195 static struct multipath *alloc_multipath(struct dm_target *ti) 196 { 197 struct multipath *m; 198 199 m = kzalloc(sizeof(*m), GFP_KERNEL); 200 if (m) { 201 INIT_LIST_HEAD(&m->priority_groups); 202 spin_lock_init(&m->lock); 203 set_bit(MPATHF_QUEUE_IO, &m->flags); 204 atomic_set(&m->nr_valid_paths, 0); 205 atomic_set(&m->pg_init_in_progress, 0); 206 atomic_set(&m->pg_init_count, 0); 207 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; 208 INIT_WORK(&m->trigger_event, trigger_event); 209 init_waitqueue_head(&m->pg_init_wait); 210 mutex_init(&m->work_mutex); 211 212 m->mpio_pool = NULL; 213 m->queue_mode = DM_TYPE_NONE; 214 215 m->ti = ti; 216 ti->private = m; 217 } 218 219 return m; 220 } 221 222 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m) 223 { 224 if (m->queue_mode == DM_TYPE_NONE) { 225 /* 226 * Default to request-based. 227 */ 228 if (dm_use_blk_mq(dm_table_get_md(ti->table))) 229 m->queue_mode = DM_TYPE_MQ_REQUEST_BASED; 230 else 231 m->queue_mode = DM_TYPE_REQUEST_BASED; 232 } 233 234 if (m->queue_mode == DM_TYPE_REQUEST_BASED) { 235 unsigned min_ios = dm_get_reserved_rq_based_ios(); 236 237 m->mpio_pool = mempool_create_slab_pool(min_ios, _mpio_cache); 238 if (!m->mpio_pool) 239 return -ENOMEM; 240 } 241 else if (m->queue_mode == DM_TYPE_BIO_BASED) { 242 INIT_WORK(&m->process_queued_bios, process_queued_bios); 243 /* 244 * bio-based doesn't support any direct scsi_dh management; 245 * it just discovers if a scsi_dh is attached. 246 */ 247 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 248 } 249 250 dm_table_set_type(ti->table, m->queue_mode); 251 252 return 0; 253 } 254 255 static void free_multipath(struct multipath *m) 256 { 257 struct priority_group *pg, *tmp; 258 259 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 260 list_del(&pg->list); 261 free_priority_group(pg, m->ti); 262 } 263 264 kfree(m->hw_handler_name); 265 kfree(m->hw_handler_params); 266 mempool_destroy(m->mpio_pool); 267 kfree(m); 268 } 269 270 static struct dm_mpath_io *get_mpio(union map_info *info) 271 { 272 return info->ptr; 273 } 274 275 static struct dm_mpath_io *set_mpio(struct multipath *m, union map_info *info) 276 { 277 struct dm_mpath_io *mpio; 278 279 if (!m->mpio_pool) { 280 /* Use blk-mq pdu memory requested via per_io_data_size */ 281 mpio = get_mpio(info); 282 memset(mpio, 0, sizeof(*mpio)); 283 return mpio; 284 } 285 286 mpio = mempool_alloc(m->mpio_pool, GFP_ATOMIC); 287 if (!mpio) 288 return NULL; 289 290 memset(mpio, 0, sizeof(*mpio)); 291 info->ptr = mpio; 292 293 return mpio; 294 } 295 296 static void clear_request_fn_mpio(struct multipath *m, union map_info *info) 297 { 298 /* Only needed for non blk-mq (.request_fn) multipath */ 299 if (m->mpio_pool) { 300 struct dm_mpath_io *mpio = info->ptr; 301 302 info->ptr = NULL; 303 mempool_free(mpio, m->mpio_pool); 304 } 305 } 306 307 static size_t multipath_per_bio_data_size(void) 308 { 309 return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details); 310 } 311 312 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio) 313 { 314 return dm_per_bio_data(bio, multipath_per_bio_data_size()); 315 } 316 317 static struct dm_bio_details *get_bio_details_from_bio(struct bio *bio) 318 { 319 /* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */ 320 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 321 void *bio_details = mpio + 1; 322 323 return bio_details; 324 } 325 326 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p, 327 struct dm_bio_details **bio_details_p) 328 { 329 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 330 struct dm_bio_details *bio_details = get_bio_details_from_bio(bio); 331 332 memset(mpio, 0, sizeof(*mpio)); 333 memset(bio_details, 0, sizeof(*bio_details)); 334 dm_bio_record(bio_details, bio); 335 336 if (mpio_p) 337 *mpio_p = mpio; 338 if (bio_details_p) 339 *bio_details_p = bio_details; 340 } 341 342 /*----------------------------------------------- 343 * Path selection 344 *-----------------------------------------------*/ 345 346 static int __pg_init_all_paths(struct multipath *m) 347 { 348 struct pgpath *pgpath; 349 unsigned long pg_init_delay = 0; 350 351 if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 352 return 0; 353 354 atomic_inc(&m->pg_init_count); 355 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 356 357 /* Check here to reset pg_init_required */ 358 if (!m->current_pg) 359 return 0; 360 361 if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags)) 362 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? 363 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); 364 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) { 365 /* Skip failed paths */ 366 if (!pgpath->is_active) 367 continue; 368 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path, 369 pg_init_delay)) 370 atomic_inc(&m->pg_init_in_progress); 371 } 372 return atomic_read(&m->pg_init_in_progress); 373 } 374 375 static void pg_init_all_paths(struct multipath *m) 376 { 377 unsigned long flags; 378 379 spin_lock_irqsave(&m->lock, flags); 380 __pg_init_all_paths(m); 381 spin_unlock_irqrestore(&m->lock, flags); 382 } 383 384 static void __switch_pg(struct multipath *m, struct priority_group *pg) 385 { 386 m->current_pg = pg; 387 388 /* Must we initialise the PG first, and queue I/O till it's ready? */ 389 if (m->hw_handler_name) { 390 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 391 set_bit(MPATHF_QUEUE_IO, &m->flags); 392 } else { 393 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 394 clear_bit(MPATHF_QUEUE_IO, &m->flags); 395 } 396 397 atomic_set(&m->pg_init_count, 0); 398 } 399 400 static struct pgpath *choose_path_in_pg(struct multipath *m, 401 struct priority_group *pg, 402 size_t nr_bytes) 403 { 404 unsigned long flags; 405 struct dm_path *path; 406 struct pgpath *pgpath; 407 408 path = pg->ps.type->select_path(&pg->ps, nr_bytes); 409 if (!path) 410 return ERR_PTR(-ENXIO); 411 412 pgpath = path_to_pgpath(path); 413 414 if (unlikely(lockless_dereference(m->current_pg) != pg)) { 415 /* Only update current_pgpath if pg changed */ 416 spin_lock_irqsave(&m->lock, flags); 417 m->current_pgpath = pgpath; 418 __switch_pg(m, pg); 419 spin_unlock_irqrestore(&m->lock, flags); 420 } 421 422 return pgpath; 423 } 424 425 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes) 426 { 427 unsigned long flags; 428 struct priority_group *pg; 429 struct pgpath *pgpath; 430 bool bypassed = true; 431 432 if (!atomic_read(&m->nr_valid_paths)) { 433 clear_bit(MPATHF_QUEUE_IO, &m->flags); 434 goto failed; 435 } 436 437 /* Were we instructed to switch PG? */ 438 if (lockless_dereference(m->next_pg)) { 439 spin_lock_irqsave(&m->lock, flags); 440 pg = m->next_pg; 441 if (!pg) { 442 spin_unlock_irqrestore(&m->lock, flags); 443 goto check_current_pg; 444 } 445 m->next_pg = NULL; 446 spin_unlock_irqrestore(&m->lock, flags); 447 pgpath = choose_path_in_pg(m, pg, nr_bytes); 448 if (!IS_ERR_OR_NULL(pgpath)) 449 return pgpath; 450 } 451 452 /* Don't change PG until it has no remaining paths */ 453 check_current_pg: 454 pg = lockless_dereference(m->current_pg); 455 if (pg) { 456 pgpath = choose_path_in_pg(m, pg, nr_bytes); 457 if (!IS_ERR_OR_NULL(pgpath)) 458 return pgpath; 459 } 460 461 /* 462 * Loop through priority groups until we find a valid path. 463 * First time we skip PGs marked 'bypassed'. 464 * Second time we only try the ones we skipped, but set 465 * pg_init_delay_retry so we do not hammer controllers. 466 */ 467 do { 468 list_for_each_entry(pg, &m->priority_groups, list) { 469 if (pg->bypassed == bypassed) 470 continue; 471 pgpath = choose_path_in_pg(m, pg, nr_bytes); 472 if (!IS_ERR_OR_NULL(pgpath)) { 473 if (!bypassed) 474 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 475 return pgpath; 476 } 477 } 478 } while (bypassed--); 479 480 failed: 481 spin_lock_irqsave(&m->lock, flags); 482 m->current_pgpath = NULL; 483 m->current_pg = NULL; 484 spin_unlock_irqrestore(&m->lock, flags); 485 486 return NULL; 487 } 488 489 /* 490 * Check whether bios must be queued in the device-mapper core rather 491 * than here in the target. 492 * 493 * If m->queue_if_no_path and m->saved_queue_if_no_path hold the 494 * same value then we are not between multipath_presuspend() 495 * and multipath_resume() calls and we have no need to check 496 * for the DMF_NOFLUSH_SUSPENDING flag. 497 */ 498 static bool __must_push_back(struct multipath *m) 499 { 500 return ((test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) != 501 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)) && 502 dm_noflush_suspending(m->ti)); 503 } 504 505 static bool must_push_back_rq(struct multipath *m) 506 { 507 bool r; 508 unsigned long flags; 509 510 spin_lock_irqsave(&m->lock, flags); 511 r = (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) || 512 __must_push_back(m)); 513 spin_unlock_irqrestore(&m->lock, flags); 514 515 return r; 516 } 517 518 static bool must_push_back_bio(struct multipath *m) 519 { 520 bool r; 521 unsigned long flags; 522 523 spin_lock_irqsave(&m->lock, flags); 524 r = __must_push_back(m); 525 spin_unlock_irqrestore(&m->lock, flags); 526 527 return r; 528 } 529 530 /* 531 * Map cloned requests (request-based multipath) 532 */ 533 static int __multipath_map(struct dm_target *ti, struct request *clone, 534 union map_info *map_context, 535 struct request *rq, struct request **__clone) 536 { 537 struct multipath *m = ti->private; 538 int r = DM_MAPIO_REQUEUE; 539 size_t nr_bytes = clone ? blk_rq_bytes(clone) : blk_rq_bytes(rq); 540 struct pgpath *pgpath; 541 struct block_device *bdev; 542 struct dm_mpath_io *mpio; 543 544 /* Do we need to select a new pgpath? */ 545 pgpath = lockless_dereference(m->current_pgpath); 546 if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags)) 547 pgpath = choose_pgpath(m, nr_bytes); 548 549 if (!pgpath) { 550 if (must_push_back_rq(m)) 551 return DM_MAPIO_DELAY_REQUEUE; 552 return -EIO; /* Failed */ 553 } else if (test_bit(MPATHF_QUEUE_IO, &m->flags) || 554 test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 555 pg_init_all_paths(m); 556 return r; 557 } 558 559 mpio = set_mpio(m, map_context); 560 if (!mpio) 561 /* ENOMEM, requeue */ 562 return r; 563 564 mpio->pgpath = pgpath; 565 mpio->nr_bytes = nr_bytes; 566 567 bdev = pgpath->path.dev->bdev; 568 569 if (clone) { 570 /* 571 * Old request-based interface: allocated clone is passed in. 572 * Used by: .request_fn stacked on .request_fn path(s). 573 */ 574 clone->q = bdev_get_queue(bdev); 575 clone->rq_disk = bdev->bd_disk; 576 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 577 } else { 578 /* 579 * blk-mq request-based interface; used by both: 580 * .request_fn stacked on blk-mq path(s) and 581 * blk-mq stacked on blk-mq path(s). 582 */ 583 clone = blk_mq_alloc_request(bdev_get_queue(bdev), 584 rq_data_dir(rq), BLK_MQ_REQ_NOWAIT); 585 if (IS_ERR(clone)) { 586 /* EBUSY, ENODEV or EWOULDBLOCK: requeue */ 587 clear_request_fn_mpio(m, map_context); 588 return r; 589 } 590 clone->bio = clone->biotail = NULL; 591 clone->rq_disk = bdev->bd_disk; 592 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 593 *__clone = clone; 594 } 595 596 if (pgpath->pg->ps.type->start_io) 597 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 598 &pgpath->path, 599 nr_bytes); 600 return DM_MAPIO_REMAPPED; 601 } 602 603 static int multipath_map(struct dm_target *ti, struct request *clone, 604 union map_info *map_context) 605 { 606 return __multipath_map(ti, clone, map_context, NULL, NULL); 607 } 608 609 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq, 610 union map_info *map_context, 611 struct request **clone) 612 { 613 return __multipath_map(ti, NULL, map_context, rq, clone); 614 } 615 616 static void multipath_release_clone(struct request *clone) 617 { 618 blk_mq_free_request(clone); 619 } 620 621 /* 622 * Map cloned bios (bio-based multipath) 623 */ 624 static int __multipath_map_bio(struct multipath *m, struct bio *bio, struct dm_mpath_io *mpio) 625 { 626 size_t nr_bytes = bio->bi_iter.bi_size; 627 struct pgpath *pgpath; 628 unsigned long flags; 629 bool queue_io; 630 631 /* Do we need to select a new pgpath? */ 632 pgpath = lockless_dereference(m->current_pgpath); 633 queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags); 634 if (!pgpath || !queue_io) 635 pgpath = choose_pgpath(m, nr_bytes); 636 637 if ((pgpath && queue_io) || 638 (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) { 639 /* Queue for the daemon to resubmit */ 640 spin_lock_irqsave(&m->lock, flags); 641 bio_list_add(&m->queued_bios, bio); 642 spin_unlock_irqrestore(&m->lock, flags); 643 /* PG_INIT_REQUIRED cannot be set without QUEUE_IO */ 644 if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 645 pg_init_all_paths(m); 646 else if (!queue_io) 647 queue_work(kmultipathd, &m->process_queued_bios); 648 return DM_MAPIO_SUBMITTED; 649 } 650 651 if (!pgpath) { 652 if (!must_push_back_bio(m)) 653 return -EIO; 654 return DM_MAPIO_REQUEUE; 655 } 656 657 mpio->pgpath = pgpath; 658 mpio->nr_bytes = nr_bytes; 659 660 bio->bi_error = 0; 661 bio->bi_bdev = pgpath->path.dev->bdev; 662 bio->bi_opf |= REQ_FAILFAST_TRANSPORT; 663 664 if (pgpath->pg->ps.type->start_io) 665 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 666 &pgpath->path, 667 nr_bytes); 668 return DM_MAPIO_REMAPPED; 669 } 670 671 static int multipath_map_bio(struct dm_target *ti, struct bio *bio) 672 { 673 struct multipath *m = ti->private; 674 struct dm_mpath_io *mpio = NULL; 675 676 multipath_init_per_bio_data(bio, &mpio, NULL); 677 678 return __multipath_map_bio(m, bio, mpio); 679 } 680 681 static void process_queued_io_list(struct multipath *m) 682 { 683 if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED) 684 dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table)); 685 else if (m->queue_mode == DM_TYPE_BIO_BASED) 686 queue_work(kmultipathd, &m->process_queued_bios); 687 } 688 689 static void process_queued_bios(struct work_struct *work) 690 { 691 int r; 692 unsigned long flags; 693 struct bio *bio; 694 struct bio_list bios; 695 struct blk_plug plug; 696 struct multipath *m = 697 container_of(work, struct multipath, process_queued_bios); 698 699 bio_list_init(&bios); 700 701 spin_lock_irqsave(&m->lock, flags); 702 703 if (bio_list_empty(&m->queued_bios)) { 704 spin_unlock_irqrestore(&m->lock, flags); 705 return; 706 } 707 708 bio_list_merge(&bios, &m->queued_bios); 709 bio_list_init(&m->queued_bios); 710 711 spin_unlock_irqrestore(&m->lock, flags); 712 713 blk_start_plug(&plug); 714 while ((bio = bio_list_pop(&bios))) { 715 r = __multipath_map_bio(m, bio, get_mpio_from_bio(bio)); 716 if (r < 0 || r == DM_MAPIO_REQUEUE) { 717 bio->bi_error = r; 718 bio_endio(bio); 719 } else if (r == DM_MAPIO_REMAPPED) 720 generic_make_request(bio); 721 } 722 blk_finish_plug(&plug); 723 } 724 725 /* 726 * If we run out of usable paths, should we queue I/O or error it? 727 */ 728 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path, 729 bool save_old_value) 730 { 731 unsigned long flags; 732 733 spin_lock_irqsave(&m->lock, flags); 734 735 if (save_old_value) { 736 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 737 set_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 738 else 739 clear_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 740 } else { 741 if (queue_if_no_path) 742 set_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 743 else 744 clear_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 745 } 746 if (queue_if_no_path) 747 set_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags); 748 else 749 clear_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags); 750 751 spin_unlock_irqrestore(&m->lock, flags); 752 753 if (!queue_if_no_path) { 754 dm_table_run_md_queue_async(m->ti->table); 755 process_queued_io_list(m); 756 } 757 758 return 0; 759 } 760 761 /* 762 * An event is triggered whenever a path is taken out of use. 763 * Includes path failure and PG bypass. 764 */ 765 static void trigger_event(struct work_struct *work) 766 { 767 struct multipath *m = 768 container_of(work, struct multipath, trigger_event); 769 770 dm_table_event(m->ti->table); 771 } 772 773 /*----------------------------------------------------------------- 774 * Constructor/argument parsing: 775 * <#multipath feature args> [<arg>]* 776 * <#hw_handler args> [hw_handler [<arg>]*] 777 * <#priority groups> 778 * <initial priority group> 779 * [<selector> <#selector args> [<arg>]* 780 * <#paths> <#per-path selector args> 781 * [<path> [<arg>]* ]+ ]+ 782 *---------------------------------------------------------------*/ 783 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg, 784 struct dm_target *ti) 785 { 786 int r; 787 struct path_selector_type *pst; 788 unsigned ps_argc; 789 790 static struct dm_arg _args[] = { 791 {0, 1024, "invalid number of path selector args"}, 792 }; 793 794 pst = dm_get_path_selector(dm_shift_arg(as)); 795 if (!pst) { 796 ti->error = "unknown path selector type"; 797 return -EINVAL; 798 } 799 800 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error); 801 if (r) { 802 dm_put_path_selector(pst); 803 return -EINVAL; 804 } 805 806 r = pst->create(&pg->ps, ps_argc, as->argv); 807 if (r) { 808 dm_put_path_selector(pst); 809 ti->error = "path selector constructor failed"; 810 return r; 811 } 812 813 pg->ps.type = pst; 814 dm_consume_args(as, ps_argc); 815 816 return 0; 817 } 818 819 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps, 820 struct dm_target *ti) 821 { 822 int r; 823 struct pgpath *p; 824 struct multipath *m = ti->private; 825 struct request_queue *q = NULL; 826 const char *attached_handler_name; 827 828 /* we need at least a path arg */ 829 if (as->argc < 1) { 830 ti->error = "no device given"; 831 return ERR_PTR(-EINVAL); 832 } 833 834 p = alloc_pgpath(); 835 if (!p) 836 return ERR_PTR(-ENOMEM); 837 838 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table), 839 &p->path.dev); 840 if (r) { 841 ti->error = "error getting device"; 842 goto bad; 843 } 844 845 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) || m->hw_handler_name) 846 q = bdev_get_queue(p->path.dev->bdev); 847 848 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) { 849 retain: 850 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL); 851 if (attached_handler_name) { 852 /* 853 * Clear any hw_handler_params associated with a 854 * handler that isn't already attached. 855 */ 856 if (m->hw_handler_name && strcmp(attached_handler_name, m->hw_handler_name)) { 857 kfree(m->hw_handler_params); 858 m->hw_handler_params = NULL; 859 } 860 861 /* 862 * Reset hw_handler_name to match the attached handler 863 * 864 * NB. This modifies the table line to show the actual 865 * handler instead of the original table passed in. 866 */ 867 kfree(m->hw_handler_name); 868 m->hw_handler_name = attached_handler_name; 869 } 870 } 871 872 if (m->hw_handler_name) { 873 r = scsi_dh_attach(q, m->hw_handler_name); 874 if (r == -EBUSY) { 875 char b[BDEVNAME_SIZE]; 876 877 printk(KERN_INFO "dm-mpath: retaining handler on device %s\n", 878 bdevname(p->path.dev->bdev, b)); 879 goto retain; 880 } 881 if (r < 0) { 882 ti->error = "error attaching hardware handler"; 883 dm_put_device(ti, p->path.dev); 884 goto bad; 885 } 886 887 if (m->hw_handler_params) { 888 r = scsi_dh_set_params(q, m->hw_handler_params); 889 if (r < 0) { 890 ti->error = "unable to set hardware " 891 "handler parameters"; 892 dm_put_device(ti, p->path.dev); 893 goto bad; 894 } 895 } 896 } 897 898 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 899 if (r) { 900 dm_put_device(ti, p->path.dev); 901 goto bad; 902 } 903 904 return p; 905 906 bad: 907 free_pgpath(p); 908 return ERR_PTR(r); 909 } 910 911 static struct priority_group *parse_priority_group(struct dm_arg_set *as, 912 struct multipath *m) 913 { 914 static struct dm_arg _args[] = { 915 {1, 1024, "invalid number of paths"}, 916 {0, 1024, "invalid number of selector args"} 917 }; 918 919 int r; 920 unsigned i, nr_selector_args, nr_args; 921 struct priority_group *pg; 922 struct dm_target *ti = m->ti; 923 924 if (as->argc < 2) { 925 as->argc = 0; 926 ti->error = "not enough priority group arguments"; 927 return ERR_PTR(-EINVAL); 928 } 929 930 pg = alloc_priority_group(); 931 if (!pg) { 932 ti->error = "couldn't allocate priority group"; 933 return ERR_PTR(-ENOMEM); 934 } 935 pg->m = m; 936 937 r = parse_path_selector(as, pg, ti); 938 if (r) 939 goto bad; 940 941 /* 942 * read the paths 943 */ 944 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error); 945 if (r) 946 goto bad; 947 948 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error); 949 if (r) 950 goto bad; 951 952 nr_args = 1 + nr_selector_args; 953 for (i = 0; i < pg->nr_pgpaths; i++) { 954 struct pgpath *pgpath; 955 struct dm_arg_set path_args; 956 957 if (as->argc < nr_args) { 958 ti->error = "not enough path parameters"; 959 r = -EINVAL; 960 goto bad; 961 } 962 963 path_args.argc = nr_args; 964 path_args.argv = as->argv; 965 966 pgpath = parse_path(&path_args, &pg->ps, ti); 967 if (IS_ERR(pgpath)) { 968 r = PTR_ERR(pgpath); 969 goto bad; 970 } 971 972 pgpath->pg = pg; 973 list_add_tail(&pgpath->list, &pg->pgpaths); 974 dm_consume_args(as, nr_args); 975 } 976 977 return pg; 978 979 bad: 980 free_priority_group(pg, ti); 981 return ERR_PTR(r); 982 } 983 984 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m) 985 { 986 unsigned hw_argc; 987 int ret; 988 struct dm_target *ti = m->ti; 989 990 static struct dm_arg _args[] = { 991 {0, 1024, "invalid number of hardware handler args"}, 992 }; 993 994 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error)) 995 return -EINVAL; 996 997 if (!hw_argc) 998 return 0; 999 1000 if (m->queue_mode == DM_TYPE_BIO_BASED) { 1001 dm_consume_args(as, hw_argc); 1002 DMERR("bio-based multipath doesn't allow hardware handler args"); 1003 return 0; 1004 } 1005 1006 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL); 1007 if (!m->hw_handler_name) 1008 return -EINVAL; 1009 1010 if (hw_argc > 1) { 1011 char *p; 1012 int i, j, len = 4; 1013 1014 for (i = 0; i <= hw_argc - 2; i++) 1015 len += strlen(as->argv[i]) + 1; 1016 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 1017 if (!p) { 1018 ti->error = "memory allocation failed"; 1019 ret = -ENOMEM; 1020 goto fail; 1021 } 1022 j = sprintf(p, "%d", hw_argc - 1); 1023 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1) 1024 j = sprintf(p, "%s", as->argv[i]); 1025 } 1026 dm_consume_args(as, hw_argc - 1); 1027 1028 return 0; 1029 fail: 1030 kfree(m->hw_handler_name); 1031 m->hw_handler_name = NULL; 1032 return ret; 1033 } 1034 1035 static int parse_features(struct dm_arg_set *as, struct multipath *m) 1036 { 1037 int r; 1038 unsigned argc; 1039 struct dm_target *ti = m->ti; 1040 const char *arg_name; 1041 1042 static struct dm_arg _args[] = { 1043 {0, 8, "invalid number of feature args"}, 1044 {1, 50, "pg_init_retries must be between 1 and 50"}, 1045 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"}, 1046 }; 1047 1048 r = dm_read_arg_group(_args, as, &argc, &ti->error); 1049 if (r) 1050 return -EINVAL; 1051 1052 if (!argc) 1053 return 0; 1054 1055 do { 1056 arg_name = dm_shift_arg(as); 1057 argc--; 1058 1059 if (!strcasecmp(arg_name, "queue_if_no_path")) { 1060 r = queue_if_no_path(m, true, false); 1061 continue; 1062 } 1063 1064 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) { 1065 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 1066 continue; 1067 } 1068 1069 if (!strcasecmp(arg_name, "pg_init_retries") && 1070 (argc >= 1)) { 1071 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error); 1072 argc--; 1073 continue; 1074 } 1075 1076 if (!strcasecmp(arg_name, "pg_init_delay_msecs") && 1077 (argc >= 1)) { 1078 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error); 1079 argc--; 1080 continue; 1081 } 1082 1083 if (!strcasecmp(arg_name, "queue_mode") && 1084 (argc >= 1)) { 1085 const char *queue_mode_name = dm_shift_arg(as); 1086 1087 if (!strcasecmp(queue_mode_name, "bio")) 1088 m->queue_mode = DM_TYPE_BIO_BASED; 1089 else if (!strcasecmp(queue_mode_name, "rq")) 1090 m->queue_mode = DM_TYPE_REQUEST_BASED; 1091 else if (!strcasecmp(queue_mode_name, "mq")) 1092 m->queue_mode = DM_TYPE_MQ_REQUEST_BASED; 1093 else { 1094 ti->error = "Unknown 'queue_mode' requested"; 1095 r = -EINVAL; 1096 } 1097 argc--; 1098 continue; 1099 } 1100 1101 ti->error = "Unrecognised multipath feature request"; 1102 r = -EINVAL; 1103 } while (argc && !r); 1104 1105 return r; 1106 } 1107 1108 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv) 1109 { 1110 /* target arguments */ 1111 static struct dm_arg _args[] = { 1112 {0, 1024, "invalid number of priority groups"}, 1113 {0, 1024, "invalid initial priority group number"}, 1114 }; 1115 1116 int r; 1117 struct multipath *m; 1118 struct dm_arg_set as; 1119 unsigned pg_count = 0; 1120 unsigned next_pg_num; 1121 1122 as.argc = argc; 1123 as.argv = argv; 1124 1125 m = alloc_multipath(ti); 1126 if (!m) { 1127 ti->error = "can't allocate multipath"; 1128 return -EINVAL; 1129 } 1130 1131 r = parse_features(&as, m); 1132 if (r) 1133 goto bad; 1134 1135 r = alloc_multipath_stage2(ti, m); 1136 if (r) 1137 goto bad; 1138 1139 r = parse_hw_handler(&as, m); 1140 if (r) 1141 goto bad; 1142 1143 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error); 1144 if (r) 1145 goto bad; 1146 1147 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error); 1148 if (r) 1149 goto bad; 1150 1151 if ((!m->nr_priority_groups && next_pg_num) || 1152 (m->nr_priority_groups && !next_pg_num)) { 1153 ti->error = "invalid initial priority group"; 1154 r = -EINVAL; 1155 goto bad; 1156 } 1157 1158 /* parse the priority groups */ 1159 while (as.argc) { 1160 struct priority_group *pg; 1161 unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths); 1162 1163 pg = parse_priority_group(&as, m); 1164 if (IS_ERR(pg)) { 1165 r = PTR_ERR(pg); 1166 goto bad; 1167 } 1168 1169 nr_valid_paths += pg->nr_pgpaths; 1170 atomic_set(&m->nr_valid_paths, nr_valid_paths); 1171 1172 list_add_tail(&pg->list, &m->priority_groups); 1173 pg_count++; 1174 pg->pg_num = pg_count; 1175 if (!--next_pg_num) 1176 m->next_pg = pg; 1177 } 1178 1179 if (pg_count != m->nr_priority_groups) { 1180 ti->error = "priority group count mismatch"; 1181 r = -EINVAL; 1182 goto bad; 1183 } 1184 1185 ti->num_flush_bios = 1; 1186 ti->num_discard_bios = 1; 1187 ti->num_write_same_bios = 1; 1188 if (m->queue_mode == DM_TYPE_BIO_BASED) 1189 ti->per_io_data_size = multipath_per_bio_data_size(); 1190 else if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED) 1191 ti->per_io_data_size = sizeof(struct dm_mpath_io); 1192 1193 return 0; 1194 1195 bad: 1196 free_multipath(m); 1197 return r; 1198 } 1199 1200 static void multipath_wait_for_pg_init_completion(struct multipath *m) 1201 { 1202 DEFINE_WAIT(wait); 1203 1204 while (1) { 1205 prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE); 1206 1207 if (!atomic_read(&m->pg_init_in_progress)) 1208 break; 1209 1210 io_schedule(); 1211 } 1212 finish_wait(&m->pg_init_wait, &wait); 1213 } 1214 1215 static void flush_multipath_work(struct multipath *m) 1216 { 1217 set_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1218 smp_mb__after_atomic(); 1219 1220 flush_workqueue(kmpath_handlerd); 1221 multipath_wait_for_pg_init_completion(m); 1222 flush_workqueue(kmultipathd); 1223 flush_work(&m->trigger_event); 1224 1225 clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1226 smp_mb__after_atomic(); 1227 } 1228 1229 static void multipath_dtr(struct dm_target *ti) 1230 { 1231 struct multipath *m = ti->private; 1232 1233 flush_multipath_work(m); 1234 free_multipath(m); 1235 } 1236 1237 /* 1238 * Take a path out of use. 1239 */ 1240 static int fail_path(struct pgpath *pgpath) 1241 { 1242 unsigned long flags; 1243 struct multipath *m = pgpath->pg->m; 1244 1245 spin_lock_irqsave(&m->lock, flags); 1246 1247 if (!pgpath->is_active) 1248 goto out; 1249 1250 DMWARN("Failing path %s.", pgpath->path.dev->name); 1251 1252 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 1253 pgpath->is_active = false; 1254 pgpath->fail_count++; 1255 1256 atomic_dec(&m->nr_valid_paths); 1257 1258 if (pgpath == m->current_pgpath) 1259 m->current_pgpath = NULL; 1260 1261 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 1262 pgpath->path.dev->name, atomic_read(&m->nr_valid_paths)); 1263 1264 schedule_work(&m->trigger_event); 1265 1266 out: 1267 spin_unlock_irqrestore(&m->lock, flags); 1268 1269 return 0; 1270 } 1271 1272 /* 1273 * Reinstate a previously-failed path 1274 */ 1275 static int reinstate_path(struct pgpath *pgpath) 1276 { 1277 int r = 0, run_queue = 0; 1278 unsigned long flags; 1279 struct multipath *m = pgpath->pg->m; 1280 unsigned nr_valid_paths; 1281 1282 spin_lock_irqsave(&m->lock, flags); 1283 1284 if (pgpath->is_active) 1285 goto out; 1286 1287 DMWARN("Reinstating path %s.", pgpath->path.dev->name); 1288 1289 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 1290 if (r) 1291 goto out; 1292 1293 pgpath->is_active = true; 1294 1295 nr_valid_paths = atomic_inc_return(&m->nr_valid_paths); 1296 if (nr_valid_paths == 1) { 1297 m->current_pgpath = NULL; 1298 run_queue = 1; 1299 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 1300 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) 1301 atomic_inc(&m->pg_init_in_progress); 1302 } 1303 1304 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 1305 pgpath->path.dev->name, nr_valid_paths); 1306 1307 schedule_work(&m->trigger_event); 1308 1309 out: 1310 spin_unlock_irqrestore(&m->lock, flags); 1311 if (run_queue) { 1312 dm_table_run_md_queue_async(m->ti->table); 1313 process_queued_io_list(m); 1314 } 1315 1316 return r; 1317 } 1318 1319 /* 1320 * Fail or reinstate all paths that match the provided struct dm_dev. 1321 */ 1322 static int action_dev(struct multipath *m, struct dm_dev *dev, 1323 action_fn action) 1324 { 1325 int r = -EINVAL; 1326 struct pgpath *pgpath; 1327 struct priority_group *pg; 1328 1329 list_for_each_entry(pg, &m->priority_groups, list) { 1330 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1331 if (pgpath->path.dev == dev) 1332 r = action(pgpath); 1333 } 1334 } 1335 1336 return r; 1337 } 1338 1339 /* 1340 * Temporarily try to avoid having to use the specified PG 1341 */ 1342 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1343 bool bypassed) 1344 { 1345 unsigned long flags; 1346 1347 spin_lock_irqsave(&m->lock, flags); 1348 1349 pg->bypassed = bypassed; 1350 m->current_pgpath = NULL; 1351 m->current_pg = NULL; 1352 1353 spin_unlock_irqrestore(&m->lock, flags); 1354 1355 schedule_work(&m->trigger_event); 1356 } 1357 1358 /* 1359 * Switch to using the specified PG from the next I/O that gets mapped 1360 */ 1361 static int switch_pg_num(struct multipath *m, const char *pgstr) 1362 { 1363 struct priority_group *pg; 1364 unsigned pgnum; 1365 unsigned long flags; 1366 char dummy; 1367 1368 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1369 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1370 DMWARN("invalid PG number supplied to switch_pg_num"); 1371 return -EINVAL; 1372 } 1373 1374 spin_lock_irqsave(&m->lock, flags); 1375 list_for_each_entry(pg, &m->priority_groups, list) { 1376 pg->bypassed = false; 1377 if (--pgnum) 1378 continue; 1379 1380 m->current_pgpath = NULL; 1381 m->current_pg = NULL; 1382 m->next_pg = pg; 1383 } 1384 spin_unlock_irqrestore(&m->lock, flags); 1385 1386 schedule_work(&m->trigger_event); 1387 return 0; 1388 } 1389 1390 /* 1391 * Set/clear bypassed status of a PG. 1392 * PGs are numbered upwards from 1 in the order they were declared. 1393 */ 1394 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed) 1395 { 1396 struct priority_group *pg; 1397 unsigned pgnum; 1398 char dummy; 1399 1400 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1401 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1402 DMWARN("invalid PG number supplied to bypass_pg"); 1403 return -EINVAL; 1404 } 1405 1406 list_for_each_entry(pg, &m->priority_groups, list) { 1407 if (!--pgnum) 1408 break; 1409 } 1410 1411 bypass_pg(m, pg, bypassed); 1412 return 0; 1413 } 1414 1415 /* 1416 * Should we retry pg_init immediately? 1417 */ 1418 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1419 { 1420 unsigned long flags; 1421 bool limit_reached = false; 1422 1423 spin_lock_irqsave(&m->lock, flags); 1424 1425 if (atomic_read(&m->pg_init_count) <= m->pg_init_retries && 1426 !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 1427 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 1428 else 1429 limit_reached = true; 1430 1431 spin_unlock_irqrestore(&m->lock, flags); 1432 1433 return limit_reached; 1434 } 1435 1436 static void pg_init_done(void *data, int errors) 1437 { 1438 struct pgpath *pgpath = data; 1439 struct priority_group *pg = pgpath->pg; 1440 struct multipath *m = pg->m; 1441 unsigned long flags; 1442 bool delay_retry = false; 1443 1444 /* device or driver problems */ 1445 switch (errors) { 1446 case SCSI_DH_OK: 1447 break; 1448 case SCSI_DH_NOSYS: 1449 if (!m->hw_handler_name) { 1450 errors = 0; 1451 break; 1452 } 1453 DMERR("Could not failover the device: Handler scsi_dh_%s " 1454 "Error %d.", m->hw_handler_name, errors); 1455 /* 1456 * Fail path for now, so we do not ping pong 1457 */ 1458 fail_path(pgpath); 1459 break; 1460 case SCSI_DH_DEV_TEMP_BUSY: 1461 /* 1462 * Probably doing something like FW upgrade on the 1463 * controller so try the other pg. 1464 */ 1465 bypass_pg(m, pg, true); 1466 break; 1467 case SCSI_DH_RETRY: 1468 /* Wait before retrying. */ 1469 delay_retry = 1; 1470 case SCSI_DH_IMM_RETRY: 1471 case SCSI_DH_RES_TEMP_UNAVAIL: 1472 if (pg_init_limit_reached(m, pgpath)) 1473 fail_path(pgpath); 1474 errors = 0; 1475 break; 1476 case SCSI_DH_DEV_OFFLINED: 1477 default: 1478 /* 1479 * We probably do not want to fail the path for a device 1480 * error, but this is what the old dm did. In future 1481 * patches we can do more advanced handling. 1482 */ 1483 fail_path(pgpath); 1484 } 1485 1486 spin_lock_irqsave(&m->lock, flags); 1487 if (errors) { 1488 if (pgpath == m->current_pgpath) { 1489 DMERR("Could not failover device. Error %d.", errors); 1490 m->current_pgpath = NULL; 1491 m->current_pg = NULL; 1492 } 1493 } else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1494 pg->bypassed = false; 1495 1496 if (atomic_dec_return(&m->pg_init_in_progress) > 0) 1497 /* Activations of other paths are still on going */ 1498 goto out; 1499 1500 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 1501 if (delay_retry) 1502 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1503 else 1504 clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1505 1506 if (__pg_init_all_paths(m)) 1507 goto out; 1508 } 1509 clear_bit(MPATHF_QUEUE_IO, &m->flags); 1510 1511 process_queued_io_list(m); 1512 1513 /* 1514 * Wake up any thread waiting to suspend. 1515 */ 1516 wake_up(&m->pg_init_wait); 1517 1518 out: 1519 spin_unlock_irqrestore(&m->lock, flags); 1520 } 1521 1522 static void activate_path(struct work_struct *work) 1523 { 1524 struct pgpath *pgpath = 1525 container_of(work, struct pgpath, activate_path.work); 1526 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1527 1528 if (pgpath->is_active && !blk_queue_dying(q)) 1529 scsi_dh_activate(q, pg_init_done, pgpath); 1530 else 1531 pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED); 1532 } 1533 1534 static int noretry_error(int error) 1535 { 1536 switch (error) { 1537 case -EBADE: 1538 /* 1539 * EBADE signals an reservation conflict. 1540 * We shouldn't fail the path here as we can communicate with 1541 * the target. We should failover to the next path, but in 1542 * doing so we might be causing a ping-pong between paths. 1543 * So just return the reservation conflict error. 1544 */ 1545 case -EOPNOTSUPP: 1546 case -EREMOTEIO: 1547 case -EILSEQ: 1548 case -ENODATA: 1549 case -ENOSPC: 1550 return 1; 1551 } 1552 1553 /* Anything else could be a path failure, so should be retried */ 1554 return 0; 1555 } 1556 1557 /* 1558 * end_io handling 1559 */ 1560 static int do_end_io(struct multipath *m, struct request *clone, 1561 int error, struct dm_mpath_io *mpio) 1562 { 1563 /* 1564 * We don't queue any clone request inside the multipath target 1565 * during end I/O handling, since those clone requests don't have 1566 * bio clones. If we queue them inside the multipath target, 1567 * we need to make bio clones, that requires memory allocation. 1568 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests 1569 * don't have bio clones.) 1570 * Instead of queueing the clone request here, we queue the original 1571 * request into dm core, which will remake a clone request and 1572 * clone bios for it and resubmit it later. 1573 */ 1574 int r = DM_ENDIO_REQUEUE; 1575 1576 if (!error && !clone->errors) 1577 return 0; /* I/O complete */ 1578 1579 if (noretry_error(error)) 1580 return error; 1581 1582 if (mpio->pgpath) 1583 fail_path(mpio->pgpath); 1584 1585 if (!atomic_read(&m->nr_valid_paths)) { 1586 if (!test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 1587 if (!must_push_back_rq(m)) 1588 r = -EIO; 1589 } 1590 } 1591 1592 return r; 1593 } 1594 1595 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1596 int error, union map_info *map_context) 1597 { 1598 struct multipath *m = ti->private; 1599 struct dm_mpath_io *mpio = get_mpio(map_context); 1600 struct pgpath *pgpath; 1601 struct path_selector *ps; 1602 int r; 1603 1604 BUG_ON(!mpio); 1605 1606 r = do_end_io(m, clone, error, mpio); 1607 pgpath = mpio->pgpath; 1608 if (pgpath) { 1609 ps = &pgpath->pg->ps; 1610 if (ps->type->end_io) 1611 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1612 } 1613 clear_request_fn_mpio(m, map_context); 1614 1615 return r; 1616 } 1617 1618 static int do_end_io_bio(struct multipath *m, struct bio *clone, 1619 int error, struct dm_mpath_io *mpio) 1620 { 1621 unsigned long flags; 1622 1623 if (!error) 1624 return 0; /* I/O complete */ 1625 1626 if (noretry_error(error)) 1627 return error; 1628 1629 if (mpio->pgpath) 1630 fail_path(mpio->pgpath); 1631 1632 if (!atomic_read(&m->nr_valid_paths)) { 1633 if (!test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 1634 if (!must_push_back_bio(m)) 1635 return -EIO; 1636 return DM_ENDIO_REQUEUE; 1637 } 1638 } 1639 1640 /* Queue for the daemon to resubmit */ 1641 dm_bio_restore(get_bio_details_from_bio(clone), clone); 1642 1643 spin_lock_irqsave(&m->lock, flags); 1644 bio_list_add(&m->queued_bios, clone); 1645 spin_unlock_irqrestore(&m->lock, flags); 1646 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) 1647 queue_work(kmultipathd, &m->process_queued_bios); 1648 1649 return DM_ENDIO_INCOMPLETE; 1650 } 1651 1652 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone, int error) 1653 { 1654 struct multipath *m = ti->private; 1655 struct dm_mpath_io *mpio = get_mpio_from_bio(clone); 1656 struct pgpath *pgpath; 1657 struct path_selector *ps; 1658 int r; 1659 1660 BUG_ON(!mpio); 1661 1662 r = do_end_io_bio(m, clone, error, mpio); 1663 pgpath = mpio->pgpath; 1664 if (pgpath) { 1665 ps = &pgpath->pg->ps; 1666 if (ps->type->end_io) 1667 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes); 1668 } 1669 1670 return r; 1671 } 1672 1673 /* 1674 * Suspend can't complete until all the I/O is processed so if 1675 * the last path fails we must error any remaining I/O. 1676 * Note that if the freeze_bdev fails while suspending, the 1677 * queue_if_no_path state is lost - userspace should reset it. 1678 */ 1679 static void multipath_presuspend(struct dm_target *ti) 1680 { 1681 struct multipath *m = ti->private; 1682 1683 queue_if_no_path(m, false, true); 1684 } 1685 1686 static void multipath_postsuspend(struct dm_target *ti) 1687 { 1688 struct multipath *m = ti->private; 1689 1690 mutex_lock(&m->work_mutex); 1691 flush_multipath_work(m); 1692 mutex_unlock(&m->work_mutex); 1693 } 1694 1695 /* 1696 * Restore the queue_if_no_path setting. 1697 */ 1698 static void multipath_resume(struct dm_target *ti) 1699 { 1700 struct multipath *m = ti->private; 1701 unsigned long flags; 1702 1703 spin_lock_irqsave(&m->lock, flags); 1704 if (test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)) 1705 set_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags); 1706 else 1707 clear_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags); 1708 spin_unlock_irqrestore(&m->lock, flags); 1709 } 1710 1711 /* 1712 * Info output has the following format: 1713 * num_multipath_feature_args [multipath_feature_args]* 1714 * num_handler_status_args [handler_status_args]* 1715 * num_groups init_group_number 1716 * [A|D|E num_ps_status_args [ps_status_args]* 1717 * num_paths num_selector_args 1718 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1719 * 1720 * Table output has the following format (identical to the constructor string): 1721 * num_feature_args [features_args]* 1722 * num_handler_args hw_handler [hw_handler_args]* 1723 * num_groups init_group_number 1724 * [priority selector-name num_ps_args [ps_args]* 1725 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1726 */ 1727 static void multipath_status(struct dm_target *ti, status_type_t type, 1728 unsigned status_flags, char *result, unsigned maxlen) 1729 { 1730 int sz = 0; 1731 unsigned long flags; 1732 struct multipath *m = ti->private; 1733 struct priority_group *pg; 1734 struct pgpath *p; 1735 unsigned pg_num; 1736 char state; 1737 1738 spin_lock_irqsave(&m->lock, flags); 1739 1740 /* Features */ 1741 if (type == STATUSTYPE_INFO) 1742 DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags), 1743 atomic_read(&m->pg_init_count)); 1744 else { 1745 DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) + 1746 (m->pg_init_retries > 0) * 2 + 1747 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 + 1748 test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) + 1749 (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2); 1750 1751 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1752 DMEMIT("queue_if_no_path "); 1753 if (m->pg_init_retries) 1754 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1755 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) 1756 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs); 1757 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) 1758 DMEMIT("retain_attached_hw_handler "); 1759 if (m->queue_mode != DM_TYPE_REQUEST_BASED) { 1760 switch(m->queue_mode) { 1761 case DM_TYPE_BIO_BASED: 1762 DMEMIT("queue_mode bio "); 1763 break; 1764 case DM_TYPE_MQ_REQUEST_BASED: 1765 DMEMIT("queue_mode mq "); 1766 break; 1767 } 1768 } 1769 } 1770 1771 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1772 DMEMIT("0 "); 1773 else 1774 DMEMIT("1 %s ", m->hw_handler_name); 1775 1776 DMEMIT("%u ", m->nr_priority_groups); 1777 1778 if (m->next_pg) 1779 pg_num = m->next_pg->pg_num; 1780 else if (m->current_pg) 1781 pg_num = m->current_pg->pg_num; 1782 else 1783 pg_num = (m->nr_priority_groups ? 1 : 0); 1784 1785 DMEMIT("%u ", pg_num); 1786 1787 switch (type) { 1788 case STATUSTYPE_INFO: 1789 list_for_each_entry(pg, &m->priority_groups, list) { 1790 if (pg->bypassed) 1791 state = 'D'; /* Disabled */ 1792 else if (pg == m->current_pg) 1793 state = 'A'; /* Currently Active */ 1794 else 1795 state = 'E'; /* Enabled */ 1796 1797 DMEMIT("%c ", state); 1798 1799 if (pg->ps.type->status) 1800 sz += pg->ps.type->status(&pg->ps, NULL, type, 1801 result + sz, 1802 maxlen - sz); 1803 else 1804 DMEMIT("0 "); 1805 1806 DMEMIT("%u %u ", pg->nr_pgpaths, 1807 pg->ps.type->info_args); 1808 1809 list_for_each_entry(p, &pg->pgpaths, list) { 1810 DMEMIT("%s %s %u ", p->path.dev->name, 1811 p->is_active ? "A" : "F", 1812 p->fail_count); 1813 if (pg->ps.type->status) 1814 sz += pg->ps.type->status(&pg->ps, 1815 &p->path, type, result + sz, 1816 maxlen - sz); 1817 } 1818 } 1819 break; 1820 1821 case STATUSTYPE_TABLE: 1822 list_for_each_entry(pg, &m->priority_groups, list) { 1823 DMEMIT("%s ", pg->ps.type->name); 1824 1825 if (pg->ps.type->status) 1826 sz += pg->ps.type->status(&pg->ps, NULL, type, 1827 result + sz, 1828 maxlen - sz); 1829 else 1830 DMEMIT("0 "); 1831 1832 DMEMIT("%u %u ", pg->nr_pgpaths, 1833 pg->ps.type->table_args); 1834 1835 list_for_each_entry(p, &pg->pgpaths, list) { 1836 DMEMIT("%s ", p->path.dev->name); 1837 if (pg->ps.type->status) 1838 sz += pg->ps.type->status(&pg->ps, 1839 &p->path, type, result + sz, 1840 maxlen - sz); 1841 } 1842 } 1843 break; 1844 } 1845 1846 spin_unlock_irqrestore(&m->lock, flags); 1847 } 1848 1849 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv) 1850 { 1851 int r = -EINVAL; 1852 struct dm_dev *dev; 1853 struct multipath *m = ti->private; 1854 action_fn action; 1855 1856 mutex_lock(&m->work_mutex); 1857 1858 if (dm_suspended(ti)) { 1859 r = -EBUSY; 1860 goto out; 1861 } 1862 1863 if (argc == 1) { 1864 if (!strcasecmp(argv[0], "queue_if_no_path")) { 1865 r = queue_if_no_path(m, true, false); 1866 goto out; 1867 } else if (!strcasecmp(argv[0], "fail_if_no_path")) { 1868 r = queue_if_no_path(m, false, false); 1869 goto out; 1870 } 1871 } 1872 1873 if (argc != 2) { 1874 DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc); 1875 goto out; 1876 } 1877 1878 if (!strcasecmp(argv[0], "disable_group")) { 1879 r = bypass_pg_num(m, argv[1], true); 1880 goto out; 1881 } else if (!strcasecmp(argv[0], "enable_group")) { 1882 r = bypass_pg_num(m, argv[1], false); 1883 goto out; 1884 } else if (!strcasecmp(argv[0], "switch_group")) { 1885 r = switch_pg_num(m, argv[1]); 1886 goto out; 1887 } else if (!strcasecmp(argv[0], "reinstate_path")) 1888 action = reinstate_path; 1889 else if (!strcasecmp(argv[0], "fail_path")) 1890 action = fail_path; 1891 else { 1892 DMWARN("Unrecognised multipath message received: %s", argv[0]); 1893 goto out; 1894 } 1895 1896 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev); 1897 if (r) { 1898 DMWARN("message: error getting device %s", 1899 argv[1]); 1900 goto out; 1901 } 1902 1903 r = action_dev(m, dev, action); 1904 1905 dm_put_device(ti, dev); 1906 1907 out: 1908 mutex_unlock(&m->work_mutex); 1909 return r; 1910 } 1911 1912 static int multipath_prepare_ioctl(struct dm_target *ti, 1913 struct block_device **bdev, fmode_t *mode) 1914 { 1915 struct multipath *m = ti->private; 1916 struct pgpath *current_pgpath; 1917 int r; 1918 1919 current_pgpath = lockless_dereference(m->current_pgpath); 1920 if (!current_pgpath) 1921 current_pgpath = choose_pgpath(m, 0); 1922 1923 if (current_pgpath) { 1924 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) { 1925 *bdev = current_pgpath->path.dev->bdev; 1926 *mode = current_pgpath->path.dev->mode; 1927 r = 0; 1928 } else { 1929 /* pg_init has not started or completed */ 1930 r = -ENOTCONN; 1931 } 1932 } else { 1933 /* No path is available */ 1934 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1935 r = -ENOTCONN; 1936 else 1937 r = -EIO; 1938 } 1939 1940 if (r == -ENOTCONN) { 1941 if (!lockless_dereference(m->current_pg)) { 1942 /* Path status changed, redo selection */ 1943 (void) choose_pgpath(m, 0); 1944 } 1945 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1946 pg_init_all_paths(m); 1947 dm_table_run_md_queue_async(m->ti->table); 1948 process_queued_io_list(m); 1949 } 1950 1951 /* 1952 * Only pass ioctls through if the device sizes match exactly. 1953 */ 1954 if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT) 1955 return 1; 1956 return r; 1957 } 1958 1959 static int multipath_iterate_devices(struct dm_target *ti, 1960 iterate_devices_callout_fn fn, void *data) 1961 { 1962 struct multipath *m = ti->private; 1963 struct priority_group *pg; 1964 struct pgpath *p; 1965 int ret = 0; 1966 1967 list_for_each_entry(pg, &m->priority_groups, list) { 1968 list_for_each_entry(p, &pg->pgpaths, list) { 1969 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 1970 if (ret) 1971 goto out; 1972 } 1973 } 1974 1975 out: 1976 return ret; 1977 } 1978 1979 static int pgpath_busy(struct pgpath *pgpath) 1980 { 1981 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1982 1983 return blk_lld_busy(q); 1984 } 1985 1986 /* 1987 * We return "busy", only when we can map I/Os but underlying devices 1988 * are busy (so even if we map I/Os now, the I/Os will wait on 1989 * the underlying queue). 1990 * In other words, if we want to kill I/Os or queue them inside us 1991 * due to map unavailability, we don't return "busy". Otherwise, 1992 * dm core won't give us the I/Os and we can't do what we want. 1993 */ 1994 static int multipath_busy(struct dm_target *ti) 1995 { 1996 bool busy = false, has_active = false; 1997 struct multipath *m = ti->private; 1998 struct priority_group *pg, *next_pg; 1999 struct pgpath *pgpath; 2000 2001 /* pg_init in progress */ 2002 if (atomic_read(&m->pg_init_in_progress)) 2003 return true; 2004 2005 /* no paths available, for blk-mq: rely on IO mapping to delay requeue */ 2006 if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 2007 return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED); 2008 2009 /* Guess which priority_group will be used at next mapping time */ 2010 pg = lockless_dereference(m->current_pg); 2011 next_pg = lockless_dereference(m->next_pg); 2012 if (unlikely(!lockless_dereference(m->current_pgpath) && next_pg)) 2013 pg = next_pg; 2014 2015 if (!pg) { 2016 /* 2017 * We don't know which pg will be used at next mapping time. 2018 * We don't call choose_pgpath() here to avoid to trigger 2019 * pg_init just by busy checking. 2020 * So we don't know whether underlying devices we will be using 2021 * at next mapping time are busy or not. Just try mapping. 2022 */ 2023 return busy; 2024 } 2025 2026 /* 2027 * If there is one non-busy active path at least, the path selector 2028 * will be able to select it. So we consider such a pg as not busy. 2029 */ 2030 busy = true; 2031 list_for_each_entry(pgpath, &pg->pgpaths, list) { 2032 if (pgpath->is_active) { 2033 has_active = true; 2034 if (!pgpath_busy(pgpath)) { 2035 busy = false; 2036 break; 2037 } 2038 } 2039 } 2040 2041 if (!has_active) { 2042 /* 2043 * No active path in this pg, so this pg won't be used and 2044 * the current_pg will be changed at next mapping time. 2045 * We need to try mapping to determine it. 2046 */ 2047 busy = false; 2048 } 2049 2050 return busy; 2051 } 2052 2053 /*----------------------------------------------------------------- 2054 * Module setup 2055 *---------------------------------------------------------------*/ 2056 static struct target_type multipath_target = { 2057 .name = "multipath", 2058 .version = {1, 12, 0}, 2059 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE, 2060 .module = THIS_MODULE, 2061 .ctr = multipath_ctr, 2062 .dtr = multipath_dtr, 2063 .map_rq = multipath_map, 2064 .clone_and_map_rq = multipath_clone_and_map, 2065 .release_clone_rq = multipath_release_clone, 2066 .rq_end_io = multipath_end_io, 2067 .map = multipath_map_bio, 2068 .end_io = multipath_end_io_bio, 2069 .presuspend = multipath_presuspend, 2070 .postsuspend = multipath_postsuspend, 2071 .resume = multipath_resume, 2072 .status = multipath_status, 2073 .message = multipath_message, 2074 .prepare_ioctl = multipath_prepare_ioctl, 2075 .iterate_devices = multipath_iterate_devices, 2076 .busy = multipath_busy, 2077 }; 2078 2079 static int __init dm_multipath_init(void) 2080 { 2081 int r; 2082 2083 /* allocate a slab for the dm_mpath_ios */ 2084 _mpio_cache = KMEM_CACHE(dm_mpath_io, 0); 2085 if (!_mpio_cache) 2086 return -ENOMEM; 2087 2088 r = dm_register_target(&multipath_target); 2089 if (r < 0) { 2090 DMERR("request-based register failed %d", r); 2091 r = -EINVAL; 2092 goto bad_register_target; 2093 } 2094 2095 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0); 2096 if (!kmultipathd) { 2097 DMERR("failed to create workqueue kmpathd"); 2098 r = -ENOMEM; 2099 goto bad_alloc_kmultipathd; 2100 } 2101 2102 /* 2103 * A separate workqueue is used to handle the device handlers 2104 * to avoid overloading existing workqueue. Overloading the 2105 * old workqueue would also create a bottleneck in the 2106 * path of the storage hardware device activation. 2107 */ 2108 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd", 2109 WQ_MEM_RECLAIM); 2110 if (!kmpath_handlerd) { 2111 DMERR("failed to create workqueue kmpath_handlerd"); 2112 r = -ENOMEM; 2113 goto bad_alloc_kmpath_handlerd; 2114 } 2115 2116 return 0; 2117 2118 bad_alloc_kmpath_handlerd: 2119 destroy_workqueue(kmultipathd); 2120 bad_alloc_kmultipathd: 2121 dm_unregister_target(&multipath_target); 2122 bad_register_target: 2123 kmem_cache_destroy(_mpio_cache); 2124 2125 return r; 2126 } 2127 2128 static void __exit dm_multipath_exit(void) 2129 { 2130 destroy_workqueue(kmpath_handlerd); 2131 destroy_workqueue(kmultipathd); 2132 2133 dm_unregister_target(&multipath_target); 2134 kmem_cache_destroy(_mpio_cache); 2135 } 2136 2137 module_init(dm_multipath_init); 2138 module_exit(dm_multipath_exit); 2139 2140 MODULE_DESCRIPTION(DM_NAME " multipath target"); 2141 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>"); 2142 MODULE_LICENSE("GPL"); 2143