xref: /linux/drivers/md/dm-mpath.c (revision 26b433d0da062d6e19d75350c0171d3cf8ff560d)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-rq.h"
11 #include "dm-bio-record.h"
12 #include "dm-path-selector.h"
13 #include "dm-uevent.h"
14 
15 #include <linux/blkdev.h>
16 #include <linux/ctype.h>
17 #include <linux/init.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/time.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <scsi/scsi_dh.h>
26 #include <linux/atomic.h>
27 #include <linux/blk-mq.h>
28 
29 #define DM_MSG_PREFIX "multipath"
30 #define DM_PG_INIT_DELAY_MSECS 2000
31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
32 
33 /* Path properties */
34 struct pgpath {
35 	struct list_head list;
36 
37 	struct priority_group *pg;	/* Owning PG */
38 	unsigned fail_count;		/* Cumulative failure count */
39 
40 	struct dm_path path;
41 	struct delayed_work activate_path;
42 
43 	bool is_active:1;		/* Path status */
44 };
45 
46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
47 
48 /*
49  * Paths are grouped into Priority Groups and numbered from 1 upwards.
50  * Each has a path selector which controls which path gets used.
51  */
52 struct priority_group {
53 	struct list_head list;
54 
55 	struct multipath *m;		/* Owning multipath instance */
56 	struct path_selector ps;
57 
58 	unsigned pg_num;		/* Reference number */
59 	unsigned nr_pgpaths;		/* Number of paths in PG */
60 	struct list_head pgpaths;
61 
62 	bool bypassed:1;		/* Temporarily bypass this PG? */
63 };
64 
65 /* Multipath context */
66 struct multipath {
67 	struct list_head list;
68 	struct dm_target *ti;
69 
70 	const char *hw_handler_name;
71 	char *hw_handler_params;
72 
73 	spinlock_t lock;
74 
75 	unsigned nr_priority_groups;
76 	struct list_head priority_groups;
77 
78 	wait_queue_head_t pg_init_wait;	/* Wait for pg_init completion */
79 
80 	struct pgpath *current_pgpath;
81 	struct priority_group *current_pg;
82 	struct priority_group *next_pg;	/* Switch to this PG if set */
83 
84 	unsigned long flags;		/* Multipath state flags */
85 
86 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
87 	unsigned pg_init_delay_msecs;	/* Number of msecs before pg_init retry */
88 
89 	atomic_t nr_valid_paths;	/* Total number of usable paths */
90 	atomic_t pg_init_in_progress;	/* Only one pg_init allowed at once */
91 	atomic_t pg_init_count;		/* Number of times pg_init called */
92 
93 	enum dm_queue_mode queue_mode;
94 
95 	struct mutex work_mutex;
96 	struct work_struct trigger_event;
97 
98 	struct work_struct process_queued_bios;
99 	struct bio_list queued_bios;
100 };
101 
102 /*
103  * Context information attached to each io we process.
104  */
105 struct dm_mpath_io {
106 	struct pgpath *pgpath;
107 	size_t nr_bytes;
108 };
109 
110 typedef int (*action_fn) (struct pgpath *pgpath);
111 
112 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
113 static void trigger_event(struct work_struct *work);
114 static void activate_or_offline_path(struct pgpath *pgpath);
115 static void activate_path_work(struct work_struct *work);
116 static void process_queued_bios(struct work_struct *work);
117 
118 /*-----------------------------------------------
119  * Multipath state flags.
120  *-----------------------------------------------*/
121 
122 #define MPATHF_QUEUE_IO 0			/* Must we queue all I/O? */
123 #define MPATHF_QUEUE_IF_NO_PATH 1		/* Queue I/O if last path fails? */
124 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2		/* Saved state during suspension */
125 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3	/* If there's already a hw_handler present, don't change it. */
126 #define MPATHF_PG_INIT_DISABLED 4		/* pg_init is not currently allowed */
127 #define MPATHF_PG_INIT_REQUIRED 5		/* pg_init needs calling? */
128 #define MPATHF_PG_INIT_DELAY_RETRY 6		/* Delay pg_init retry? */
129 
130 /*-----------------------------------------------
131  * Allocation routines
132  *-----------------------------------------------*/
133 
134 static struct pgpath *alloc_pgpath(void)
135 {
136 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
137 
138 	if (pgpath) {
139 		pgpath->is_active = true;
140 		INIT_DELAYED_WORK(&pgpath->activate_path, activate_path_work);
141 	}
142 
143 	return pgpath;
144 }
145 
146 static void free_pgpath(struct pgpath *pgpath)
147 {
148 	kfree(pgpath);
149 }
150 
151 static struct priority_group *alloc_priority_group(void)
152 {
153 	struct priority_group *pg;
154 
155 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
156 
157 	if (pg)
158 		INIT_LIST_HEAD(&pg->pgpaths);
159 
160 	return pg;
161 }
162 
163 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
164 {
165 	struct pgpath *pgpath, *tmp;
166 
167 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
168 		list_del(&pgpath->list);
169 		dm_put_device(ti, pgpath->path.dev);
170 		free_pgpath(pgpath);
171 	}
172 }
173 
174 static void free_priority_group(struct priority_group *pg,
175 				struct dm_target *ti)
176 {
177 	struct path_selector *ps = &pg->ps;
178 
179 	if (ps->type) {
180 		ps->type->destroy(ps);
181 		dm_put_path_selector(ps->type);
182 	}
183 
184 	free_pgpaths(&pg->pgpaths, ti);
185 	kfree(pg);
186 }
187 
188 static struct multipath *alloc_multipath(struct dm_target *ti)
189 {
190 	struct multipath *m;
191 
192 	m = kzalloc(sizeof(*m), GFP_KERNEL);
193 	if (m) {
194 		INIT_LIST_HEAD(&m->priority_groups);
195 		spin_lock_init(&m->lock);
196 		set_bit(MPATHF_QUEUE_IO, &m->flags);
197 		atomic_set(&m->nr_valid_paths, 0);
198 		atomic_set(&m->pg_init_in_progress, 0);
199 		atomic_set(&m->pg_init_count, 0);
200 		m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
201 		INIT_WORK(&m->trigger_event, trigger_event);
202 		init_waitqueue_head(&m->pg_init_wait);
203 		mutex_init(&m->work_mutex);
204 
205 		m->queue_mode = DM_TYPE_NONE;
206 
207 		m->ti = ti;
208 		ti->private = m;
209 	}
210 
211 	return m;
212 }
213 
214 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m)
215 {
216 	if (m->queue_mode == DM_TYPE_NONE) {
217 		/*
218 		 * Default to request-based.
219 		 */
220 		if (dm_use_blk_mq(dm_table_get_md(ti->table)))
221 			m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
222 		else
223 			m->queue_mode = DM_TYPE_REQUEST_BASED;
224 	} else if (m->queue_mode == DM_TYPE_BIO_BASED) {
225 		INIT_WORK(&m->process_queued_bios, process_queued_bios);
226 		/*
227 		 * bio-based doesn't support any direct scsi_dh management;
228 		 * it just discovers if a scsi_dh is attached.
229 		 */
230 		set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
231 	}
232 
233 	dm_table_set_type(ti->table, m->queue_mode);
234 
235 	return 0;
236 }
237 
238 static void free_multipath(struct multipath *m)
239 {
240 	struct priority_group *pg, *tmp;
241 
242 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
243 		list_del(&pg->list);
244 		free_priority_group(pg, m->ti);
245 	}
246 
247 	kfree(m->hw_handler_name);
248 	kfree(m->hw_handler_params);
249 	kfree(m);
250 }
251 
252 static struct dm_mpath_io *get_mpio(union map_info *info)
253 {
254 	return info->ptr;
255 }
256 
257 static size_t multipath_per_bio_data_size(void)
258 {
259 	return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details);
260 }
261 
262 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio)
263 {
264 	return dm_per_bio_data(bio, multipath_per_bio_data_size());
265 }
266 
267 static struct dm_bio_details *get_bio_details_from_bio(struct bio *bio)
268 {
269 	/* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */
270 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
271 	void *bio_details = mpio + 1;
272 
273 	return bio_details;
274 }
275 
276 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p,
277 					struct dm_bio_details **bio_details_p)
278 {
279 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
280 	struct dm_bio_details *bio_details = get_bio_details_from_bio(bio);
281 
282 	memset(mpio, 0, sizeof(*mpio));
283 	memset(bio_details, 0, sizeof(*bio_details));
284 	dm_bio_record(bio_details, bio);
285 
286 	if (mpio_p)
287 		*mpio_p = mpio;
288 	if (bio_details_p)
289 		*bio_details_p = bio_details;
290 }
291 
292 /*-----------------------------------------------
293  * Path selection
294  *-----------------------------------------------*/
295 
296 static int __pg_init_all_paths(struct multipath *m)
297 {
298 	struct pgpath *pgpath;
299 	unsigned long pg_init_delay = 0;
300 
301 	lockdep_assert_held(&m->lock);
302 
303 	if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
304 		return 0;
305 
306 	atomic_inc(&m->pg_init_count);
307 	clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
308 
309 	/* Check here to reset pg_init_required */
310 	if (!m->current_pg)
311 		return 0;
312 
313 	if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags))
314 		pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
315 						 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
316 	list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
317 		/* Skip failed paths */
318 		if (!pgpath->is_active)
319 			continue;
320 		if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
321 				       pg_init_delay))
322 			atomic_inc(&m->pg_init_in_progress);
323 	}
324 	return atomic_read(&m->pg_init_in_progress);
325 }
326 
327 static int pg_init_all_paths(struct multipath *m)
328 {
329 	int ret;
330 	unsigned long flags;
331 
332 	spin_lock_irqsave(&m->lock, flags);
333 	ret = __pg_init_all_paths(m);
334 	spin_unlock_irqrestore(&m->lock, flags);
335 
336 	return ret;
337 }
338 
339 static void __switch_pg(struct multipath *m, struct priority_group *pg)
340 {
341 	m->current_pg = pg;
342 
343 	/* Must we initialise the PG first, and queue I/O till it's ready? */
344 	if (m->hw_handler_name) {
345 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
346 		set_bit(MPATHF_QUEUE_IO, &m->flags);
347 	} else {
348 		clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
349 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
350 	}
351 
352 	atomic_set(&m->pg_init_count, 0);
353 }
354 
355 static struct pgpath *choose_path_in_pg(struct multipath *m,
356 					struct priority_group *pg,
357 					size_t nr_bytes)
358 {
359 	unsigned long flags;
360 	struct dm_path *path;
361 	struct pgpath *pgpath;
362 
363 	path = pg->ps.type->select_path(&pg->ps, nr_bytes);
364 	if (!path)
365 		return ERR_PTR(-ENXIO);
366 
367 	pgpath = path_to_pgpath(path);
368 
369 	if (unlikely(lockless_dereference(m->current_pg) != pg)) {
370 		/* Only update current_pgpath if pg changed */
371 		spin_lock_irqsave(&m->lock, flags);
372 		m->current_pgpath = pgpath;
373 		__switch_pg(m, pg);
374 		spin_unlock_irqrestore(&m->lock, flags);
375 	}
376 
377 	return pgpath;
378 }
379 
380 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes)
381 {
382 	unsigned long flags;
383 	struct priority_group *pg;
384 	struct pgpath *pgpath;
385 	unsigned bypassed = 1;
386 
387 	if (!atomic_read(&m->nr_valid_paths)) {
388 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
389 		goto failed;
390 	}
391 
392 	/* Were we instructed to switch PG? */
393 	if (lockless_dereference(m->next_pg)) {
394 		spin_lock_irqsave(&m->lock, flags);
395 		pg = m->next_pg;
396 		if (!pg) {
397 			spin_unlock_irqrestore(&m->lock, flags);
398 			goto check_current_pg;
399 		}
400 		m->next_pg = NULL;
401 		spin_unlock_irqrestore(&m->lock, flags);
402 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
403 		if (!IS_ERR_OR_NULL(pgpath))
404 			return pgpath;
405 	}
406 
407 	/* Don't change PG until it has no remaining paths */
408 check_current_pg:
409 	pg = lockless_dereference(m->current_pg);
410 	if (pg) {
411 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
412 		if (!IS_ERR_OR_NULL(pgpath))
413 			return pgpath;
414 	}
415 
416 	/*
417 	 * Loop through priority groups until we find a valid path.
418 	 * First time we skip PGs marked 'bypassed'.
419 	 * Second time we only try the ones we skipped, but set
420 	 * pg_init_delay_retry so we do not hammer controllers.
421 	 */
422 	do {
423 		list_for_each_entry(pg, &m->priority_groups, list) {
424 			if (pg->bypassed == !!bypassed)
425 				continue;
426 			pgpath = choose_path_in_pg(m, pg, nr_bytes);
427 			if (!IS_ERR_OR_NULL(pgpath)) {
428 				if (!bypassed)
429 					set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
430 				return pgpath;
431 			}
432 		}
433 	} while (bypassed--);
434 
435 failed:
436 	spin_lock_irqsave(&m->lock, flags);
437 	m->current_pgpath = NULL;
438 	m->current_pg = NULL;
439 	spin_unlock_irqrestore(&m->lock, flags);
440 
441 	return NULL;
442 }
443 
444 /*
445  * dm_report_EIO() is a macro instead of a function to make pr_debug()
446  * report the function name and line number of the function from which
447  * it has been invoked.
448  */
449 #define dm_report_EIO(m)						\
450 do {									\
451 	struct mapped_device *md = dm_table_get_md((m)->ti->table);	\
452 									\
453 	pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \
454 		 dm_device_name(md),					\
455 		 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags),	\
456 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags),	\
457 		 dm_noflush_suspending((m)->ti));			\
458 } while (0)
459 
460 /*
461  * Map cloned requests (request-based multipath)
462  */
463 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq,
464 				   union map_info *map_context,
465 				   struct request **__clone)
466 {
467 	struct multipath *m = ti->private;
468 	size_t nr_bytes = blk_rq_bytes(rq);
469 	struct pgpath *pgpath;
470 	struct block_device *bdev;
471 	struct dm_mpath_io *mpio = get_mpio(map_context);
472 	struct request_queue *q;
473 	struct request *clone;
474 
475 	/* Do we need to select a new pgpath? */
476 	pgpath = lockless_dereference(m->current_pgpath);
477 	if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags))
478 		pgpath = choose_pgpath(m, nr_bytes);
479 
480 	if (!pgpath) {
481 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
482 			return DM_MAPIO_DELAY_REQUEUE;
483 		dm_report_EIO(m);	/* Failed */
484 		return DM_MAPIO_KILL;
485 	} else if (test_bit(MPATHF_QUEUE_IO, &m->flags) ||
486 		   test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
487 		if (pg_init_all_paths(m))
488 			return DM_MAPIO_DELAY_REQUEUE;
489 		return DM_MAPIO_REQUEUE;
490 	}
491 
492 	memset(mpio, 0, sizeof(*mpio));
493 	mpio->pgpath = pgpath;
494 	mpio->nr_bytes = nr_bytes;
495 
496 	bdev = pgpath->path.dev->bdev;
497 	q = bdev_get_queue(bdev);
498 	clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE, GFP_ATOMIC);
499 	if (IS_ERR(clone)) {
500 		/* EBUSY, ENODEV or EWOULDBLOCK: requeue */
501 		bool queue_dying = blk_queue_dying(q);
502 		DMERR_LIMIT("blk_get_request() returned %ld%s - requeuing",
503 			    PTR_ERR(clone), queue_dying ? " (path offline)" : "");
504 		if (queue_dying) {
505 			atomic_inc(&m->pg_init_in_progress);
506 			activate_or_offline_path(pgpath);
507 		}
508 		return DM_MAPIO_DELAY_REQUEUE;
509 	}
510 	clone->bio = clone->biotail = NULL;
511 	clone->rq_disk = bdev->bd_disk;
512 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
513 	*__clone = clone;
514 
515 	if (pgpath->pg->ps.type->start_io)
516 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
517 					      &pgpath->path,
518 					      nr_bytes);
519 	return DM_MAPIO_REMAPPED;
520 }
521 
522 static void multipath_release_clone(struct request *clone)
523 {
524 	blk_put_request(clone);
525 }
526 
527 /*
528  * Map cloned bios (bio-based multipath)
529  */
530 static int __multipath_map_bio(struct multipath *m, struct bio *bio, struct dm_mpath_io *mpio)
531 {
532 	size_t nr_bytes = bio->bi_iter.bi_size;
533 	struct pgpath *pgpath;
534 	unsigned long flags;
535 	bool queue_io;
536 
537 	/* Do we need to select a new pgpath? */
538 	pgpath = lockless_dereference(m->current_pgpath);
539 	queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags);
540 	if (!pgpath || !queue_io)
541 		pgpath = choose_pgpath(m, nr_bytes);
542 
543 	if ((pgpath && queue_io) ||
544 	    (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) {
545 		/* Queue for the daemon to resubmit */
546 		spin_lock_irqsave(&m->lock, flags);
547 		bio_list_add(&m->queued_bios, bio);
548 		spin_unlock_irqrestore(&m->lock, flags);
549 		/* PG_INIT_REQUIRED cannot be set without QUEUE_IO */
550 		if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
551 			pg_init_all_paths(m);
552 		else if (!queue_io)
553 			queue_work(kmultipathd, &m->process_queued_bios);
554 		return DM_MAPIO_SUBMITTED;
555 	}
556 
557 	if (!pgpath) {
558 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
559 			return DM_MAPIO_REQUEUE;
560 		dm_report_EIO(m);
561 		return DM_MAPIO_KILL;
562 	}
563 
564 	mpio->pgpath = pgpath;
565 	mpio->nr_bytes = nr_bytes;
566 
567 	bio->bi_status = 0;
568 	bio->bi_bdev = pgpath->path.dev->bdev;
569 	bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
570 
571 	if (pgpath->pg->ps.type->start_io)
572 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
573 					      &pgpath->path,
574 					      nr_bytes);
575 	return DM_MAPIO_REMAPPED;
576 }
577 
578 static int multipath_map_bio(struct dm_target *ti, struct bio *bio)
579 {
580 	struct multipath *m = ti->private;
581 	struct dm_mpath_io *mpio = NULL;
582 
583 	multipath_init_per_bio_data(bio, &mpio, NULL);
584 
585 	return __multipath_map_bio(m, bio, mpio);
586 }
587 
588 static void process_queued_io_list(struct multipath *m)
589 {
590 	if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED)
591 		dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table));
592 	else if (m->queue_mode == DM_TYPE_BIO_BASED)
593 		queue_work(kmultipathd, &m->process_queued_bios);
594 }
595 
596 static void process_queued_bios(struct work_struct *work)
597 {
598 	int r;
599 	unsigned long flags;
600 	struct bio *bio;
601 	struct bio_list bios;
602 	struct blk_plug plug;
603 	struct multipath *m =
604 		container_of(work, struct multipath, process_queued_bios);
605 
606 	bio_list_init(&bios);
607 
608 	spin_lock_irqsave(&m->lock, flags);
609 
610 	if (bio_list_empty(&m->queued_bios)) {
611 		spin_unlock_irqrestore(&m->lock, flags);
612 		return;
613 	}
614 
615 	bio_list_merge(&bios, &m->queued_bios);
616 	bio_list_init(&m->queued_bios);
617 
618 	spin_unlock_irqrestore(&m->lock, flags);
619 
620 	blk_start_plug(&plug);
621 	while ((bio = bio_list_pop(&bios))) {
622 		r = __multipath_map_bio(m, bio, get_mpio_from_bio(bio));
623 		switch (r) {
624 		case DM_MAPIO_KILL:
625 			bio->bi_status = BLK_STS_IOERR;
626 			bio_endio(bio);
627 			break;
628 		case DM_MAPIO_REQUEUE:
629 			bio->bi_status = BLK_STS_DM_REQUEUE;
630 			bio_endio(bio);
631 			break;
632 		case DM_MAPIO_REMAPPED:
633 			generic_make_request(bio);
634 			break;
635 		}
636 	}
637 	blk_finish_plug(&plug);
638 }
639 
640 static void assign_bit(bool value, long nr, unsigned long *addr)
641 {
642 	if (value)
643 		set_bit(nr, addr);
644 	else
645 		clear_bit(nr, addr);
646 }
647 
648 /*
649  * If we run out of usable paths, should we queue I/O or error it?
650  */
651 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path,
652 			    bool save_old_value)
653 {
654 	unsigned long flags;
655 
656 	spin_lock_irqsave(&m->lock, flags);
657 	assign_bit((save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) ||
658 		   (!save_old_value && queue_if_no_path),
659 		   MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags);
660 	assign_bit(queue_if_no_path || dm_noflush_suspending(m->ti),
661 		   MPATHF_QUEUE_IF_NO_PATH, &m->flags);
662 	spin_unlock_irqrestore(&m->lock, flags);
663 
664 	if (!queue_if_no_path) {
665 		dm_table_run_md_queue_async(m->ti->table);
666 		process_queued_io_list(m);
667 	}
668 
669 	return 0;
670 }
671 
672 /*
673  * An event is triggered whenever a path is taken out of use.
674  * Includes path failure and PG bypass.
675  */
676 static void trigger_event(struct work_struct *work)
677 {
678 	struct multipath *m =
679 		container_of(work, struct multipath, trigger_event);
680 
681 	dm_table_event(m->ti->table);
682 }
683 
684 /*-----------------------------------------------------------------
685  * Constructor/argument parsing:
686  * <#multipath feature args> [<arg>]*
687  * <#hw_handler args> [hw_handler [<arg>]*]
688  * <#priority groups>
689  * <initial priority group>
690  *     [<selector> <#selector args> [<arg>]*
691  *      <#paths> <#per-path selector args>
692  *         [<path> [<arg>]* ]+ ]+
693  *---------------------------------------------------------------*/
694 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
695 			       struct dm_target *ti)
696 {
697 	int r;
698 	struct path_selector_type *pst;
699 	unsigned ps_argc;
700 
701 	static struct dm_arg _args[] = {
702 		{0, 1024, "invalid number of path selector args"},
703 	};
704 
705 	pst = dm_get_path_selector(dm_shift_arg(as));
706 	if (!pst) {
707 		ti->error = "unknown path selector type";
708 		return -EINVAL;
709 	}
710 
711 	r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
712 	if (r) {
713 		dm_put_path_selector(pst);
714 		return -EINVAL;
715 	}
716 
717 	r = pst->create(&pg->ps, ps_argc, as->argv);
718 	if (r) {
719 		dm_put_path_selector(pst);
720 		ti->error = "path selector constructor failed";
721 		return r;
722 	}
723 
724 	pg->ps.type = pst;
725 	dm_consume_args(as, ps_argc);
726 
727 	return 0;
728 }
729 
730 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
731 			       struct dm_target *ti)
732 {
733 	int r;
734 	struct pgpath *p;
735 	struct multipath *m = ti->private;
736 	struct request_queue *q = NULL;
737 	const char *attached_handler_name;
738 
739 	/* we need at least a path arg */
740 	if (as->argc < 1) {
741 		ti->error = "no device given";
742 		return ERR_PTR(-EINVAL);
743 	}
744 
745 	p = alloc_pgpath();
746 	if (!p)
747 		return ERR_PTR(-ENOMEM);
748 
749 	r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
750 			  &p->path.dev);
751 	if (r) {
752 		ti->error = "error getting device";
753 		goto bad;
754 	}
755 
756 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) || m->hw_handler_name)
757 		q = bdev_get_queue(p->path.dev->bdev);
758 
759 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) {
760 retain:
761 		attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
762 		if (attached_handler_name) {
763 			/*
764 			 * Clear any hw_handler_params associated with a
765 			 * handler that isn't already attached.
766 			 */
767 			if (m->hw_handler_name && strcmp(attached_handler_name, m->hw_handler_name)) {
768 				kfree(m->hw_handler_params);
769 				m->hw_handler_params = NULL;
770 			}
771 
772 			/*
773 			 * Reset hw_handler_name to match the attached handler
774 			 *
775 			 * NB. This modifies the table line to show the actual
776 			 * handler instead of the original table passed in.
777 			 */
778 			kfree(m->hw_handler_name);
779 			m->hw_handler_name = attached_handler_name;
780 		}
781 	}
782 
783 	if (m->hw_handler_name) {
784 		r = scsi_dh_attach(q, m->hw_handler_name);
785 		if (r == -EBUSY) {
786 			char b[BDEVNAME_SIZE];
787 
788 			printk(KERN_INFO "dm-mpath: retaining handler on device %s\n",
789 				bdevname(p->path.dev->bdev, b));
790 			goto retain;
791 		}
792 		if (r < 0) {
793 			ti->error = "error attaching hardware handler";
794 			dm_put_device(ti, p->path.dev);
795 			goto bad;
796 		}
797 
798 		if (m->hw_handler_params) {
799 			r = scsi_dh_set_params(q, m->hw_handler_params);
800 			if (r < 0) {
801 				ti->error = "unable to set hardware "
802 							"handler parameters";
803 				dm_put_device(ti, p->path.dev);
804 				goto bad;
805 			}
806 		}
807 	}
808 
809 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
810 	if (r) {
811 		dm_put_device(ti, p->path.dev);
812 		goto bad;
813 	}
814 
815 	return p;
816 
817  bad:
818 	free_pgpath(p);
819 	return ERR_PTR(r);
820 }
821 
822 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
823 						   struct multipath *m)
824 {
825 	static struct dm_arg _args[] = {
826 		{1, 1024, "invalid number of paths"},
827 		{0, 1024, "invalid number of selector args"}
828 	};
829 
830 	int r;
831 	unsigned i, nr_selector_args, nr_args;
832 	struct priority_group *pg;
833 	struct dm_target *ti = m->ti;
834 
835 	if (as->argc < 2) {
836 		as->argc = 0;
837 		ti->error = "not enough priority group arguments";
838 		return ERR_PTR(-EINVAL);
839 	}
840 
841 	pg = alloc_priority_group();
842 	if (!pg) {
843 		ti->error = "couldn't allocate priority group";
844 		return ERR_PTR(-ENOMEM);
845 	}
846 	pg->m = m;
847 
848 	r = parse_path_selector(as, pg, ti);
849 	if (r)
850 		goto bad;
851 
852 	/*
853 	 * read the paths
854 	 */
855 	r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
856 	if (r)
857 		goto bad;
858 
859 	r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
860 	if (r)
861 		goto bad;
862 
863 	nr_args = 1 + nr_selector_args;
864 	for (i = 0; i < pg->nr_pgpaths; i++) {
865 		struct pgpath *pgpath;
866 		struct dm_arg_set path_args;
867 
868 		if (as->argc < nr_args) {
869 			ti->error = "not enough path parameters";
870 			r = -EINVAL;
871 			goto bad;
872 		}
873 
874 		path_args.argc = nr_args;
875 		path_args.argv = as->argv;
876 
877 		pgpath = parse_path(&path_args, &pg->ps, ti);
878 		if (IS_ERR(pgpath)) {
879 			r = PTR_ERR(pgpath);
880 			goto bad;
881 		}
882 
883 		pgpath->pg = pg;
884 		list_add_tail(&pgpath->list, &pg->pgpaths);
885 		dm_consume_args(as, nr_args);
886 	}
887 
888 	return pg;
889 
890  bad:
891 	free_priority_group(pg, ti);
892 	return ERR_PTR(r);
893 }
894 
895 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
896 {
897 	unsigned hw_argc;
898 	int ret;
899 	struct dm_target *ti = m->ti;
900 
901 	static struct dm_arg _args[] = {
902 		{0, 1024, "invalid number of hardware handler args"},
903 	};
904 
905 	if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
906 		return -EINVAL;
907 
908 	if (!hw_argc)
909 		return 0;
910 
911 	if (m->queue_mode == DM_TYPE_BIO_BASED) {
912 		dm_consume_args(as, hw_argc);
913 		DMERR("bio-based multipath doesn't allow hardware handler args");
914 		return 0;
915 	}
916 
917 	m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
918 	if (!m->hw_handler_name)
919 		return -EINVAL;
920 
921 	if (hw_argc > 1) {
922 		char *p;
923 		int i, j, len = 4;
924 
925 		for (i = 0; i <= hw_argc - 2; i++)
926 			len += strlen(as->argv[i]) + 1;
927 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
928 		if (!p) {
929 			ti->error = "memory allocation failed";
930 			ret = -ENOMEM;
931 			goto fail;
932 		}
933 		j = sprintf(p, "%d", hw_argc - 1);
934 		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
935 			j = sprintf(p, "%s", as->argv[i]);
936 	}
937 	dm_consume_args(as, hw_argc - 1);
938 
939 	return 0;
940 fail:
941 	kfree(m->hw_handler_name);
942 	m->hw_handler_name = NULL;
943 	return ret;
944 }
945 
946 static int parse_features(struct dm_arg_set *as, struct multipath *m)
947 {
948 	int r;
949 	unsigned argc;
950 	struct dm_target *ti = m->ti;
951 	const char *arg_name;
952 
953 	static struct dm_arg _args[] = {
954 		{0, 8, "invalid number of feature args"},
955 		{1, 50, "pg_init_retries must be between 1 and 50"},
956 		{0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
957 	};
958 
959 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
960 	if (r)
961 		return -EINVAL;
962 
963 	if (!argc)
964 		return 0;
965 
966 	do {
967 		arg_name = dm_shift_arg(as);
968 		argc--;
969 
970 		if (!strcasecmp(arg_name, "queue_if_no_path")) {
971 			r = queue_if_no_path(m, true, false);
972 			continue;
973 		}
974 
975 		if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
976 			set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
977 			continue;
978 		}
979 
980 		if (!strcasecmp(arg_name, "pg_init_retries") &&
981 		    (argc >= 1)) {
982 			r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
983 			argc--;
984 			continue;
985 		}
986 
987 		if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
988 		    (argc >= 1)) {
989 			r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
990 			argc--;
991 			continue;
992 		}
993 
994 		if (!strcasecmp(arg_name, "queue_mode") &&
995 		    (argc >= 1)) {
996 			const char *queue_mode_name = dm_shift_arg(as);
997 
998 			if (!strcasecmp(queue_mode_name, "bio"))
999 				m->queue_mode = DM_TYPE_BIO_BASED;
1000 			else if (!strcasecmp(queue_mode_name, "rq"))
1001 				m->queue_mode = DM_TYPE_REQUEST_BASED;
1002 			else if (!strcasecmp(queue_mode_name, "mq"))
1003 				m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
1004 			else {
1005 				ti->error = "Unknown 'queue_mode' requested";
1006 				r = -EINVAL;
1007 			}
1008 			argc--;
1009 			continue;
1010 		}
1011 
1012 		ti->error = "Unrecognised multipath feature request";
1013 		r = -EINVAL;
1014 	} while (argc && !r);
1015 
1016 	return r;
1017 }
1018 
1019 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv)
1020 {
1021 	/* target arguments */
1022 	static struct dm_arg _args[] = {
1023 		{0, 1024, "invalid number of priority groups"},
1024 		{0, 1024, "invalid initial priority group number"},
1025 	};
1026 
1027 	int r;
1028 	struct multipath *m;
1029 	struct dm_arg_set as;
1030 	unsigned pg_count = 0;
1031 	unsigned next_pg_num;
1032 
1033 	as.argc = argc;
1034 	as.argv = argv;
1035 
1036 	m = alloc_multipath(ti);
1037 	if (!m) {
1038 		ti->error = "can't allocate multipath";
1039 		return -EINVAL;
1040 	}
1041 
1042 	r = parse_features(&as, m);
1043 	if (r)
1044 		goto bad;
1045 
1046 	r = alloc_multipath_stage2(ti, m);
1047 	if (r)
1048 		goto bad;
1049 
1050 	r = parse_hw_handler(&as, m);
1051 	if (r)
1052 		goto bad;
1053 
1054 	r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
1055 	if (r)
1056 		goto bad;
1057 
1058 	r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
1059 	if (r)
1060 		goto bad;
1061 
1062 	if ((!m->nr_priority_groups && next_pg_num) ||
1063 	    (m->nr_priority_groups && !next_pg_num)) {
1064 		ti->error = "invalid initial priority group";
1065 		r = -EINVAL;
1066 		goto bad;
1067 	}
1068 
1069 	/* parse the priority groups */
1070 	while (as.argc) {
1071 		struct priority_group *pg;
1072 		unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths);
1073 
1074 		pg = parse_priority_group(&as, m);
1075 		if (IS_ERR(pg)) {
1076 			r = PTR_ERR(pg);
1077 			goto bad;
1078 		}
1079 
1080 		nr_valid_paths += pg->nr_pgpaths;
1081 		atomic_set(&m->nr_valid_paths, nr_valid_paths);
1082 
1083 		list_add_tail(&pg->list, &m->priority_groups);
1084 		pg_count++;
1085 		pg->pg_num = pg_count;
1086 		if (!--next_pg_num)
1087 			m->next_pg = pg;
1088 	}
1089 
1090 	if (pg_count != m->nr_priority_groups) {
1091 		ti->error = "priority group count mismatch";
1092 		r = -EINVAL;
1093 		goto bad;
1094 	}
1095 
1096 	ti->num_flush_bios = 1;
1097 	ti->num_discard_bios = 1;
1098 	ti->num_write_same_bios = 1;
1099 	ti->num_write_zeroes_bios = 1;
1100 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1101 		ti->per_io_data_size = multipath_per_bio_data_size();
1102 	else
1103 		ti->per_io_data_size = sizeof(struct dm_mpath_io);
1104 
1105 	return 0;
1106 
1107  bad:
1108 	free_multipath(m);
1109 	return r;
1110 }
1111 
1112 static void multipath_wait_for_pg_init_completion(struct multipath *m)
1113 {
1114 	DEFINE_WAIT(wait);
1115 
1116 	while (1) {
1117 		prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE);
1118 
1119 		if (!atomic_read(&m->pg_init_in_progress))
1120 			break;
1121 
1122 		io_schedule();
1123 	}
1124 	finish_wait(&m->pg_init_wait, &wait);
1125 }
1126 
1127 static void flush_multipath_work(struct multipath *m)
1128 {
1129 	set_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1130 	smp_mb__after_atomic();
1131 
1132 	flush_workqueue(kmpath_handlerd);
1133 	multipath_wait_for_pg_init_completion(m);
1134 	flush_workqueue(kmultipathd);
1135 	flush_work(&m->trigger_event);
1136 
1137 	clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1138 	smp_mb__after_atomic();
1139 }
1140 
1141 static void multipath_dtr(struct dm_target *ti)
1142 {
1143 	struct multipath *m = ti->private;
1144 
1145 	flush_multipath_work(m);
1146 	free_multipath(m);
1147 }
1148 
1149 /*
1150  * Take a path out of use.
1151  */
1152 static int fail_path(struct pgpath *pgpath)
1153 {
1154 	unsigned long flags;
1155 	struct multipath *m = pgpath->pg->m;
1156 
1157 	spin_lock_irqsave(&m->lock, flags);
1158 
1159 	if (!pgpath->is_active)
1160 		goto out;
1161 
1162 	DMWARN("Failing path %s.", pgpath->path.dev->name);
1163 
1164 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
1165 	pgpath->is_active = false;
1166 	pgpath->fail_count++;
1167 
1168 	atomic_dec(&m->nr_valid_paths);
1169 
1170 	if (pgpath == m->current_pgpath)
1171 		m->current_pgpath = NULL;
1172 
1173 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1174 		       pgpath->path.dev->name, atomic_read(&m->nr_valid_paths));
1175 
1176 	schedule_work(&m->trigger_event);
1177 
1178 out:
1179 	spin_unlock_irqrestore(&m->lock, flags);
1180 
1181 	return 0;
1182 }
1183 
1184 /*
1185  * Reinstate a previously-failed path
1186  */
1187 static int reinstate_path(struct pgpath *pgpath)
1188 {
1189 	int r = 0, run_queue = 0;
1190 	unsigned long flags;
1191 	struct multipath *m = pgpath->pg->m;
1192 	unsigned nr_valid_paths;
1193 
1194 	spin_lock_irqsave(&m->lock, flags);
1195 
1196 	if (pgpath->is_active)
1197 		goto out;
1198 
1199 	DMWARN("Reinstating path %s.", pgpath->path.dev->name);
1200 
1201 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1202 	if (r)
1203 		goto out;
1204 
1205 	pgpath->is_active = true;
1206 
1207 	nr_valid_paths = atomic_inc_return(&m->nr_valid_paths);
1208 	if (nr_valid_paths == 1) {
1209 		m->current_pgpath = NULL;
1210 		run_queue = 1;
1211 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1212 		if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1213 			atomic_inc(&m->pg_init_in_progress);
1214 	}
1215 
1216 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1217 		       pgpath->path.dev->name, nr_valid_paths);
1218 
1219 	schedule_work(&m->trigger_event);
1220 
1221 out:
1222 	spin_unlock_irqrestore(&m->lock, flags);
1223 	if (run_queue) {
1224 		dm_table_run_md_queue_async(m->ti->table);
1225 		process_queued_io_list(m);
1226 	}
1227 
1228 	return r;
1229 }
1230 
1231 /*
1232  * Fail or reinstate all paths that match the provided struct dm_dev.
1233  */
1234 static int action_dev(struct multipath *m, struct dm_dev *dev,
1235 		      action_fn action)
1236 {
1237 	int r = -EINVAL;
1238 	struct pgpath *pgpath;
1239 	struct priority_group *pg;
1240 
1241 	list_for_each_entry(pg, &m->priority_groups, list) {
1242 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1243 			if (pgpath->path.dev == dev)
1244 				r = action(pgpath);
1245 		}
1246 	}
1247 
1248 	return r;
1249 }
1250 
1251 /*
1252  * Temporarily try to avoid having to use the specified PG
1253  */
1254 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1255 		      bool bypassed)
1256 {
1257 	unsigned long flags;
1258 
1259 	spin_lock_irqsave(&m->lock, flags);
1260 
1261 	pg->bypassed = bypassed;
1262 	m->current_pgpath = NULL;
1263 	m->current_pg = NULL;
1264 
1265 	spin_unlock_irqrestore(&m->lock, flags);
1266 
1267 	schedule_work(&m->trigger_event);
1268 }
1269 
1270 /*
1271  * Switch to using the specified PG from the next I/O that gets mapped
1272  */
1273 static int switch_pg_num(struct multipath *m, const char *pgstr)
1274 {
1275 	struct priority_group *pg;
1276 	unsigned pgnum;
1277 	unsigned long flags;
1278 	char dummy;
1279 
1280 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1281 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1282 		DMWARN("invalid PG number supplied to switch_pg_num");
1283 		return -EINVAL;
1284 	}
1285 
1286 	spin_lock_irqsave(&m->lock, flags);
1287 	list_for_each_entry(pg, &m->priority_groups, list) {
1288 		pg->bypassed = false;
1289 		if (--pgnum)
1290 			continue;
1291 
1292 		m->current_pgpath = NULL;
1293 		m->current_pg = NULL;
1294 		m->next_pg = pg;
1295 	}
1296 	spin_unlock_irqrestore(&m->lock, flags);
1297 
1298 	schedule_work(&m->trigger_event);
1299 	return 0;
1300 }
1301 
1302 /*
1303  * Set/clear bypassed status of a PG.
1304  * PGs are numbered upwards from 1 in the order they were declared.
1305  */
1306 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed)
1307 {
1308 	struct priority_group *pg;
1309 	unsigned pgnum;
1310 	char dummy;
1311 
1312 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1313 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1314 		DMWARN("invalid PG number supplied to bypass_pg");
1315 		return -EINVAL;
1316 	}
1317 
1318 	list_for_each_entry(pg, &m->priority_groups, list) {
1319 		if (!--pgnum)
1320 			break;
1321 	}
1322 
1323 	bypass_pg(m, pg, bypassed);
1324 	return 0;
1325 }
1326 
1327 /*
1328  * Should we retry pg_init immediately?
1329  */
1330 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1331 {
1332 	unsigned long flags;
1333 	bool limit_reached = false;
1334 
1335 	spin_lock_irqsave(&m->lock, flags);
1336 
1337 	if (atomic_read(&m->pg_init_count) <= m->pg_init_retries &&
1338 	    !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
1339 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
1340 	else
1341 		limit_reached = true;
1342 
1343 	spin_unlock_irqrestore(&m->lock, flags);
1344 
1345 	return limit_reached;
1346 }
1347 
1348 static void pg_init_done(void *data, int errors)
1349 {
1350 	struct pgpath *pgpath = data;
1351 	struct priority_group *pg = pgpath->pg;
1352 	struct multipath *m = pg->m;
1353 	unsigned long flags;
1354 	bool delay_retry = false;
1355 
1356 	/* device or driver problems */
1357 	switch (errors) {
1358 	case SCSI_DH_OK:
1359 		break;
1360 	case SCSI_DH_NOSYS:
1361 		if (!m->hw_handler_name) {
1362 			errors = 0;
1363 			break;
1364 		}
1365 		DMERR("Could not failover the device: Handler scsi_dh_%s "
1366 		      "Error %d.", m->hw_handler_name, errors);
1367 		/*
1368 		 * Fail path for now, so we do not ping pong
1369 		 */
1370 		fail_path(pgpath);
1371 		break;
1372 	case SCSI_DH_DEV_TEMP_BUSY:
1373 		/*
1374 		 * Probably doing something like FW upgrade on the
1375 		 * controller so try the other pg.
1376 		 */
1377 		bypass_pg(m, pg, true);
1378 		break;
1379 	case SCSI_DH_RETRY:
1380 		/* Wait before retrying. */
1381 		delay_retry = 1;
1382 	case SCSI_DH_IMM_RETRY:
1383 	case SCSI_DH_RES_TEMP_UNAVAIL:
1384 		if (pg_init_limit_reached(m, pgpath))
1385 			fail_path(pgpath);
1386 		errors = 0;
1387 		break;
1388 	case SCSI_DH_DEV_OFFLINED:
1389 	default:
1390 		/*
1391 		 * We probably do not want to fail the path for a device
1392 		 * error, but this is what the old dm did. In future
1393 		 * patches we can do more advanced handling.
1394 		 */
1395 		fail_path(pgpath);
1396 	}
1397 
1398 	spin_lock_irqsave(&m->lock, flags);
1399 	if (errors) {
1400 		if (pgpath == m->current_pgpath) {
1401 			DMERR("Could not failover device. Error %d.", errors);
1402 			m->current_pgpath = NULL;
1403 			m->current_pg = NULL;
1404 		}
1405 	} else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1406 		pg->bypassed = false;
1407 
1408 	if (atomic_dec_return(&m->pg_init_in_progress) > 0)
1409 		/* Activations of other paths are still on going */
1410 		goto out;
1411 
1412 	if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
1413 		if (delay_retry)
1414 			set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1415 		else
1416 			clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1417 
1418 		if (__pg_init_all_paths(m))
1419 			goto out;
1420 	}
1421 	clear_bit(MPATHF_QUEUE_IO, &m->flags);
1422 
1423 	process_queued_io_list(m);
1424 
1425 	/*
1426 	 * Wake up any thread waiting to suspend.
1427 	 */
1428 	wake_up(&m->pg_init_wait);
1429 
1430 out:
1431 	spin_unlock_irqrestore(&m->lock, flags);
1432 }
1433 
1434 static void activate_or_offline_path(struct pgpath *pgpath)
1435 {
1436 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1437 
1438 	if (pgpath->is_active && !blk_queue_dying(q))
1439 		scsi_dh_activate(q, pg_init_done, pgpath);
1440 	else
1441 		pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED);
1442 }
1443 
1444 static void activate_path_work(struct work_struct *work)
1445 {
1446 	struct pgpath *pgpath =
1447 		container_of(work, struct pgpath, activate_path.work);
1448 
1449 	activate_or_offline_path(pgpath);
1450 }
1451 
1452 static int noretry_error(blk_status_t error)
1453 {
1454 	switch (error) {
1455 	case BLK_STS_NOTSUPP:
1456 	case BLK_STS_NOSPC:
1457 	case BLK_STS_TARGET:
1458 	case BLK_STS_NEXUS:
1459 	case BLK_STS_MEDIUM:
1460 		return 1;
1461 	}
1462 
1463 	/* Anything else could be a path failure, so should be retried */
1464 	return 0;
1465 }
1466 
1467 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1468 			    blk_status_t error, union map_info *map_context)
1469 {
1470 	struct dm_mpath_io *mpio = get_mpio(map_context);
1471 	struct pgpath *pgpath = mpio->pgpath;
1472 	int r = DM_ENDIO_DONE;
1473 
1474 	/*
1475 	 * We don't queue any clone request inside the multipath target
1476 	 * during end I/O handling, since those clone requests don't have
1477 	 * bio clones.  If we queue them inside the multipath target,
1478 	 * we need to make bio clones, that requires memory allocation.
1479 	 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests
1480 	 *  don't have bio clones.)
1481 	 * Instead of queueing the clone request here, we queue the original
1482 	 * request into dm core, which will remake a clone request and
1483 	 * clone bios for it and resubmit it later.
1484 	 */
1485 	if (error && !noretry_error(error)) {
1486 		struct multipath *m = ti->private;
1487 
1488 		r = DM_ENDIO_REQUEUE;
1489 
1490 		if (pgpath)
1491 			fail_path(pgpath);
1492 
1493 		if (atomic_read(&m->nr_valid_paths) == 0 &&
1494 		    !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1495 			if (error == BLK_STS_IOERR)
1496 				dm_report_EIO(m);
1497 			/* complete with the original error */
1498 			r = DM_ENDIO_DONE;
1499 		}
1500 	}
1501 
1502 	if (pgpath) {
1503 		struct path_selector *ps = &pgpath->pg->ps;
1504 
1505 		if (ps->type->end_io)
1506 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1507 	}
1508 
1509 	return r;
1510 }
1511 
1512 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone,
1513 		blk_status_t *error)
1514 {
1515 	struct multipath *m = ti->private;
1516 	struct dm_mpath_io *mpio = get_mpio_from_bio(clone);
1517 	struct pgpath *pgpath = mpio->pgpath;
1518 	unsigned long flags;
1519 	int r = DM_ENDIO_DONE;
1520 
1521 	if (!*error || noretry_error(*error))
1522 		goto done;
1523 
1524 	if (pgpath)
1525 		fail_path(pgpath);
1526 
1527 	if (atomic_read(&m->nr_valid_paths) == 0 &&
1528 	    !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1529 		dm_report_EIO(m);
1530 		*error = BLK_STS_IOERR;
1531 		goto done;
1532 	}
1533 
1534 	/* Queue for the daemon to resubmit */
1535 	dm_bio_restore(get_bio_details_from_bio(clone), clone);
1536 
1537 	spin_lock_irqsave(&m->lock, flags);
1538 	bio_list_add(&m->queued_bios, clone);
1539 	spin_unlock_irqrestore(&m->lock, flags);
1540 	if (!test_bit(MPATHF_QUEUE_IO, &m->flags))
1541 		queue_work(kmultipathd, &m->process_queued_bios);
1542 
1543 	r = DM_ENDIO_INCOMPLETE;
1544 done:
1545 	if (pgpath) {
1546 		struct path_selector *ps = &pgpath->pg->ps;
1547 
1548 		if (ps->type->end_io)
1549 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1550 	}
1551 
1552 	return r;
1553 }
1554 
1555 /*
1556  * Suspend can't complete until all the I/O is processed so if
1557  * the last path fails we must error any remaining I/O.
1558  * Note that if the freeze_bdev fails while suspending, the
1559  * queue_if_no_path state is lost - userspace should reset it.
1560  */
1561 static void multipath_presuspend(struct dm_target *ti)
1562 {
1563 	struct multipath *m = ti->private;
1564 
1565 	queue_if_no_path(m, false, true);
1566 }
1567 
1568 static void multipath_postsuspend(struct dm_target *ti)
1569 {
1570 	struct multipath *m = ti->private;
1571 
1572 	mutex_lock(&m->work_mutex);
1573 	flush_multipath_work(m);
1574 	mutex_unlock(&m->work_mutex);
1575 }
1576 
1577 /*
1578  * Restore the queue_if_no_path setting.
1579  */
1580 static void multipath_resume(struct dm_target *ti)
1581 {
1582 	struct multipath *m = ti->private;
1583 	unsigned long flags;
1584 
1585 	spin_lock_irqsave(&m->lock, flags);
1586 	assign_bit(test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags),
1587 		   MPATHF_QUEUE_IF_NO_PATH, &m->flags);
1588 	spin_unlock_irqrestore(&m->lock, flags);
1589 }
1590 
1591 /*
1592  * Info output has the following format:
1593  * num_multipath_feature_args [multipath_feature_args]*
1594  * num_handler_status_args [handler_status_args]*
1595  * num_groups init_group_number
1596  *            [A|D|E num_ps_status_args [ps_status_args]*
1597  *             num_paths num_selector_args
1598  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1599  *
1600  * Table output has the following format (identical to the constructor string):
1601  * num_feature_args [features_args]*
1602  * num_handler_args hw_handler [hw_handler_args]*
1603  * num_groups init_group_number
1604  *     [priority selector-name num_ps_args [ps_args]*
1605  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1606  */
1607 static void multipath_status(struct dm_target *ti, status_type_t type,
1608 			     unsigned status_flags, char *result, unsigned maxlen)
1609 {
1610 	int sz = 0;
1611 	unsigned long flags;
1612 	struct multipath *m = ti->private;
1613 	struct priority_group *pg;
1614 	struct pgpath *p;
1615 	unsigned pg_num;
1616 	char state;
1617 
1618 	spin_lock_irqsave(&m->lock, flags);
1619 
1620 	/* Features */
1621 	if (type == STATUSTYPE_INFO)
1622 		DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags),
1623 		       atomic_read(&m->pg_init_count));
1624 	else {
1625 		DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) +
1626 			      (m->pg_init_retries > 0) * 2 +
1627 			      (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
1628 			      test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) +
1629 			      (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2);
1630 
1631 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1632 			DMEMIT("queue_if_no_path ");
1633 		if (m->pg_init_retries)
1634 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1635 		if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1636 			DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1637 		if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags))
1638 			DMEMIT("retain_attached_hw_handler ");
1639 		if (m->queue_mode != DM_TYPE_REQUEST_BASED) {
1640 			switch(m->queue_mode) {
1641 			case DM_TYPE_BIO_BASED:
1642 				DMEMIT("queue_mode bio ");
1643 				break;
1644 			case DM_TYPE_MQ_REQUEST_BASED:
1645 				DMEMIT("queue_mode mq ");
1646 				break;
1647 			default:
1648 				WARN_ON_ONCE(true);
1649 				break;
1650 			}
1651 		}
1652 	}
1653 
1654 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1655 		DMEMIT("0 ");
1656 	else
1657 		DMEMIT("1 %s ", m->hw_handler_name);
1658 
1659 	DMEMIT("%u ", m->nr_priority_groups);
1660 
1661 	if (m->next_pg)
1662 		pg_num = m->next_pg->pg_num;
1663 	else if (m->current_pg)
1664 		pg_num = m->current_pg->pg_num;
1665 	else
1666 		pg_num = (m->nr_priority_groups ? 1 : 0);
1667 
1668 	DMEMIT("%u ", pg_num);
1669 
1670 	switch (type) {
1671 	case STATUSTYPE_INFO:
1672 		list_for_each_entry(pg, &m->priority_groups, list) {
1673 			if (pg->bypassed)
1674 				state = 'D';	/* Disabled */
1675 			else if (pg == m->current_pg)
1676 				state = 'A';	/* Currently Active */
1677 			else
1678 				state = 'E';	/* Enabled */
1679 
1680 			DMEMIT("%c ", state);
1681 
1682 			if (pg->ps.type->status)
1683 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1684 							  result + sz,
1685 							  maxlen - sz);
1686 			else
1687 				DMEMIT("0 ");
1688 
1689 			DMEMIT("%u %u ", pg->nr_pgpaths,
1690 			       pg->ps.type->info_args);
1691 
1692 			list_for_each_entry(p, &pg->pgpaths, list) {
1693 				DMEMIT("%s %s %u ", p->path.dev->name,
1694 				       p->is_active ? "A" : "F",
1695 				       p->fail_count);
1696 				if (pg->ps.type->status)
1697 					sz += pg->ps.type->status(&pg->ps,
1698 					      &p->path, type, result + sz,
1699 					      maxlen - sz);
1700 			}
1701 		}
1702 		break;
1703 
1704 	case STATUSTYPE_TABLE:
1705 		list_for_each_entry(pg, &m->priority_groups, list) {
1706 			DMEMIT("%s ", pg->ps.type->name);
1707 
1708 			if (pg->ps.type->status)
1709 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1710 							  result + sz,
1711 							  maxlen - sz);
1712 			else
1713 				DMEMIT("0 ");
1714 
1715 			DMEMIT("%u %u ", pg->nr_pgpaths,
1716 			       pg->ps.type->table_args);
1717 
1718 			list_for_each_entry(p, &pg->pgpaths, list) {
1719 				DMEMIT("%s ", p->path.dev->name);
1720 				if (pg->ps.type->status)
1721 					sz += pg->ps.type->status(&pg->ps,
1722 					      &p->path, type, result + sz,
1723 					      maxlen - sz);
1724 			}
1725 		}
1726 		break;
1727 	}
1728 
1729 	spin_unlock_irqrestore(&m->lock, flags);
1730 }
1731 
1732 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv)
1733 {
1734 	int r = -EINVAL;
1735 	struct dm_dev *dev;
1736 	struct multipath *m = ti->private;
1737 	action_fn action;
1738 
1739 	mutex_lock(&m->work_mutex);
1740 
1741 	if (dm_suspended(ti)) {
1742 		r = -EBUSY;
1743 		goto out;
1744 	}
1745 
1746 	if (argc == 1) {
1747 		if (!strcasecmp(argv[0], "queue_if_no_path")) {
1748 			r = queue_if_no_path(m, true, false);
1749 			goto out;
1750 		} else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1751 			r = queue_if_no_path(m, false, false);
1752 			goto out;
1753 		}
1754 	}
1755 
1756 	if (argc != 2) {
1757 		DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc);
1758 		goto out;
1759 	}
1760 
1761 	if (!strcasecmp(argv[0], "disable_group")) {
1762 		r = bypass_pg_num(m, argv[1], true);
1763 		goto out;
1764 	} else if (!strcasecmp(argv[0], "enable_group")) {
1765 		r = bypass_pg_num(m, argv[1], false);
1766 		goto out;
1767 	} else if (!strcasecmp(argv[0], "switch_group")) {
1768 		r = switch_pg_num(m, argv[1]);
1769 		goto out;
1770 	} else if (!strcasecmp(argv[0], "reinstate_path"))
1771 		action = reinstate_path;
1772 	else if (!strcasecmp(argv[0], "fail_path"))
1773 		action = fail_path;
1774 	else {
1775 		DMWARN("Unrecognised multipath message received: %s", argv[0]);
1776 		goto out;
1777 	}
1778 
1779 	r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
1780 	if (r) {
1781 		DMWARN("message: error getting device %s",
1782 		       argv[1]);
1783 		goto out;
1784 	}
1785 
1786 	r = action_dev(m, dev, action);
1787 
1788 	dm_put_device(ti, dev);
1789 
1790 out:
1791 	mutex_unlock(&m->work_mutex);
1792 	return r;
1793 }
1794 
1795 static int multipath_prepare_ioctl(struct dm_target *ti,
1796 		struct block_device **bdev, fmode_t *mode)
1797 {
1798 	struct multipath *m = ti->private;
1799 	struct pgpath *current_pgpath;
1800 	int r;
1801 
1802 	current_pgpath = lockless_dereference(m->current_pgpath);
1803 	if (!current_pgpath)
1804 		current_pgpath = choose_pgpath(m, 0);
1805 
1806 	if (current_pgpath) {
1807 		if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) {
1808 			*bdev = current_pgpath->path.dev->bdev;
1809 			*mode = current_pgpath->path.dev->mode;
1810 			r = 0;
1811 		} else {
1812 			/* pg_init has not started or completed */
1813 			r = -ENOTCONN;
1814 		}
1815 	} else {
1816 		/* No path is available */
1817 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1818 			r = -ENOTCONN;
1819 		else
1820 			r = -EIO;
1821 	}
1822 
1823 	if (r == -ENOTCONN) {
1824 		if (!lockless_dereference(m->current_pg)) {
1825 			/* Path status changed, redo selection */
1826 			(void) choose_pgpath(m, 0);
1827 		}
1828 		if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1829 			pg_init_all_paths(m);
1830 		dm_table_run_md_queue_async(m->ti->table);
1831 		process_queued_io_list(m);
1832 	}
1833 
1834 	/*
1835 	 * Only pass ioctls through if the device sizes match exactly.
1836 	 */
1837 	if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT)
1838 		return 1;
1839 	return r;
1840 }
1841 
1842 static int multipath_iterate_devices(struct dm_target *ti,
1843 				     iterate_devices_callout_fn fn, void *data)
1844 {
1845 	struct multipath *m = ti->private;
1846 	struct priority_group *pg;
1847 	struct pgpath *p;
1848 	int ret = 0;
1849 
1850 	list_for_each_entry(pg, &m->priority_groups, list) {
1851 		list_for_each_entry(p, &pg->pgpaths, list) {
1852 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1853 			if (ret)
1854 				goto out;
1855 		}
1856 	}
1857 
1858 out:
1859 	return ret;
1860 }
1861 
1862 static int pgpath_busy(struct pgpath *pgpath)
1863 {
1864 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1865 
1866 	return blk_lld_busy(q);
1867 }
1868 
1869 /*
1870  * We return "busy", only when we can map I/Os but underlying devices
1871  * are busy (so even if we map I/Os now, the I/Os will wait on
1872  * the underlying queue).
1873  * In other words, if we want to kill I/Os or queue them inside us
1874  * due to map unavailability, we don't return "busy".  Otherwise,
1875  * dm core won't give us the I/Os and we can't do what we want.
1876  */
1877 static int multipath_busy(struct dm_target *ti)
1878 {
1879 	bool busy = false, has_active = false;
1880 	struct multipath *m = ti->private;
1881 	struct priority_group *pg, *next_pg;
1882 	struct pgpath *pgpath;
1883 
1884 	/* pg_init in progress */
1885 	if (atomic_read(&m->pg_init_in_progress))
1886 		return true;
1887 
1888 	/* no paths available, for blk-mq: rely on IO mapping to delay requeue */
1889 	if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1890 		return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED);
1891 
1892 	/* Guess which priority_group will be used at next mapping time */
1893 	pg = lockless_dereference(m->current_pg);
1894 	next_pg = lockless_dereference(m->next_pg);
1895 	if (unlikely(!lockless_dereference(m->current_pgpath) && next_pg))
1896 		pg = next_pg;
1897 
1898 	if (!pg) {
1899 		/*
1900 		 * We don't know which pg will be used at next mapping time.
1901 		 * We don't call choose_pgpath() here to avoid to trigger
1902 		 * pg_init just by busy checking.
1903 		 * So we don't know whether underlying devices we will be using
1904 		 * at next mapping time are busy or not. Just try mapping.
1905 		 */
1906 		return busy;
1907 	}
1908 
1909 	/*
1910 	 * If there is one non-busy active path at least, the path selector
1911 	 * will be able to select it. So we consider such a pg as not busy.
1912 	 */
1913 	busy = true;
1914 	list_for_each_entry(pgpath, &pg->pgpaths, list) {
1915 		if (pgpath->is_active) {
1916 			has_active = true;
1917 			if (!pgpath_busy(pgpath)) {
1918 				busy = false;
1919 				break;
1920 			}
1921 		}
1922 	}
1923 
1924 	if (!has_active) {
1925 		/*
1926 		 * No active path in this pg, so this pg won't be used and
1927 		 * the current_pg will be changed at next mapping time.
1928 		 * We need to try mapping to determine it.
1929 		 */
1930 		busy = false;
1931 	}
1932 
1933 	return busy;
1934 }
1935 
1936 /*-----------------------------------------------------------------
1937  * Module setup
1938  *---------------------------------------------------------------*/
1939 static struct target_type multipath_target = {
1940 	.name = "multipath",
1941 	.version = {1, 12, 0},
1942 	.features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE,
1943 	.module = THIS_MODULE,
1944 	.ctr = multipath_ctr,
1945 	.dtr = multipath_dtr,
1946 	.clone_and_map_rq = multipath_clone_and_map,
1947 	.release_clone_rq = multipath_release_clone,
1948 	.rq_end_io = multipath_end_io,
1949 	.map = multipath_map_bio,
1950 	.end_io = multipath_end_io_bio,
1951 	.presuspend = multipath_presuspend,
1952 	.postsuspend = multipath_postsuspend,
1953 	.resume = multipath_resume,
1954 	.status = multipath_status,
1955 	.message = multipath_message,
1956 	.prepare_ioctl = multipath_prepare_ioctl,
1957 	.iterate_devices = multipath_iterate_devices,
1958 	.busy = multipath_busy,
1959 };
1960 
1961 static int __init dm_multipath_init(void)
1962 {
1963 	int r;
1964 
1965 	r = dm_register_target(&multipath_target);
1966 	if (r < 0) {
1967 		DMERR("request-based register failed %d", r);
1968 		r = -EINVAL;
1969 		goto bad_register_target;
1970 	}
1971 
1972 	kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
1973 	if (!kmultipathd) {
1974 		DMERR("failed to create workqueue kmpathd");
1975 		r = -ENOMEM;
1976 		goto bad_alloc_kmultipathd;
1977 	}
1978 
1979 	/*
1980 	 * A separate workqueue is used to handle the device handlers
1981 	 * to avoid overloading existing workqueue. Overloading the
1982 	 * old workqueue would also create a bottleneck in the
1983 	 * path of the storage hardware device activation.
1984 	 */
1985 	kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
1986 						  WQ_MEM_RECLAIM);
1987 	if (!kmpath_handlerd) {
1988 		DMERR("failed to create workqueue kmpath_handlerd");
1989 		r = -ENOMEM;
1990 		goto bad_alloc_kmpath_handlerd;
1991 	}
1992 
1993 	return 0;
1994 
1995 bad_alloc_kmpath_handlerd:
1996 	destroy_workqueue(kmultipathd);
1997 bad_alloc_kmultipathd:
1998 	dm_unregister_target(&multipath_target);
1999 bad_register_target:
2000 	return r;
2001 }
2002 
2003 static void __exit dm_multipath_exit(void)
2004 {
2005 	destroy_workqueue(kmpath_handlerd);
2006 	destroy_workqueue(kmultipathd);
2007 
2008 	dm_unregister_target(&multipath_target);
2009 }
2010 
2011 module_init(dm_multipath_init);
2012 module_exit(dm_multipath_exit);
2013 
2014 MODULE_DESCRIPTION(DM_NAME " multipath target");
2015 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
2016 MODULE_LICENSE("GPL");
2017