1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2003 Sistina Software Limited. 4 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include <linux/device-mapper.h> 10 11 #include "dm-rq.h" 12 #include "dm-bio-record.h" 13 #include "dm-path-selector.h" 14 #include "dm-uevent.h" 15 16 #include <linux/blkdev.h> 17 #include <linux/ctype.h> 18 #include <linux/init.h> 19 #include <linux/mempool.h> 20 #include <linux/module.h> 21 #include <linux/pagemap.h> 22 #include <linux/slab.h> 23 #include <linux/time.h> 24 #include <linux/timer.h> 25 #include <linux/workqueue.h> 26 #include <linux/delay.h> 27 #include <scsi/scsi_dh.h> 28 #include <linux/atomic.h> 29 #include <linux/blk-mq.h> 30 31 static struct workqueue_struct *dm_mpath_wq; 32 33 #define DM_MSG_PREFIX "multipath" 34 #define DM_PG_INIT_DELAY_MSECS 2000 35 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned int) -1) 36 #define QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT 0 37 38 static unsigned long queue_if_no_path_timeout_secs = QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT; 39 40 /* Path properties */ 41 struct pgpath { 42 struct list_head list; 43 44 struct priority_group *pg; /* Owning PG */ 45 unsigned int fail_count; /* Cumulative failure count */ 46 47 struct dm_path path; 48 struct delayed_work activate_path; 49 50 bool is_active:1; /* Path status */ 51 }; 52 53 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path) 54 55 /* 56 * Paths are grouped into Priority Groups and numbered from 1 upwards. 57 * Each has a path selector which controls which path gets used. 58 */ 59 struct priority_group { 60 struct list_head list; 61 62 struct multipath *m; /* Owning multipath instance */ 63 struct path_selector ps; 64 65 unsigned int pg_num; /* Reference number */ 66 unsigned int nr_pgpaths; /* Number of paths in PG */ 67 struct list_head pgpaths; 68 69 bool bypassed:1; /* Temporarily bypass this PG? */ 70 }; 71 72 /* Multipath context */ 73 struct multipath { 74 unsigned long flags; /* Multipath state flags */ 75 76 spinlock_t lock; 77 enum dm_queue_mode queue_mode; 78 79 struct pgpath *current_pgpath; 80 struct priority_group *current_pg; 81 struct priority_group *next_pg; /* Switch to this PG if set */ 82 struct priority_group *last_probed_pg; 83 84 atomic_t nr_valid_paths; /* Total number of usable paths */ 85 unsigned int nr_priority_groups; 86 struct list_head priority_groups; 87 88 const char *hw_handler_name; 89 char *hw_handler_params; 90 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */ 91 wait_queue_head_t probe_wait; /* Wait for probing paths */ 92 unsigned int pg_init_retries; /* Number of times to retry pg_init */ 93 unsigned int pg_init_delay_msecs; /* Number of msecs before pg_init retry */ 94 atomic_t pg_init_in_progress; /* Only one pg_init allowed at once */ 95 atomic_t pg_init_count; /* Number of times pg_init called */ 96 97 struct mutex work_mutex; 98 struct work_struct trigger_event; 99 struct dm_target *ti; 100 101 struct work_struct process_queued_bios; 102 struct bio_list queued_bios; 103 104 struct timer_list nopath_timer; /* Timeout for queue_if_no_path */ 105 bool is_suspending; 106 }; 107 108 /* 109 * Context information attached to each io we process. 110 */ 111 struct dm_mpath_io { 112 struct pgpath *pgpath; 113 size_t nr_bytes; 114 u64 start_time_ns; 115 }; 116 117 typedef int (*action_fn) (struct pgpath *pgpath); 118 119 static struct workqueue_struct *kmultipathd, *kmpath_handlerd; 120 static void trigger_event(struct work_struct *work); 121 static void activate_or_offline_path(struct pgpath *pgpath); 122 static void activate_path_work(struct work_struct *work); 123 static void process_queued_bios(struct work_struct *work); 124 static void queue_if_no_path_timeout_work(struct timer_list *t); 125 126 /* 127 *----------------------------------------------- 128 * Multipath state flags. 129 *----------------------------------------------- 130 */ 131 #define MPATHF_QUEUE_IO 0 /* Must we queue all I/O? */ 132 #define MPATHF_QUEUE_IF_NO_PATH 1 /* Queue I/O if last path fails? */ 133 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2 /* Saved state during suspension */ 134 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3 /* If there's already a hw_handler present, don't change it. */ 135 #define MPATHF_PG_INIT_DISABLED 4 /* pg_init is not currently allowed */ 136 #define MPATHF_PG_INIT_REQUIRED 5 /* pg_init needs calling? */ 137 #define MPATHF_PG_INIT_DELAY_RETRY 6 /* Delay pg_init retry? */ 138 #define MPATHF_DELAY_PG_SWITCH 7 /* Delay switching pg if it still has paths */ 139 #define MPATHF_NEED_PG_SWITCH 8 /* Need to switch pgs after the delay has ended */ 140 141 static bool mpath_double_check_test_bit(int MPATHF_bit, struct multipath *m) 142 { 143 bool r = test_bit(MPATHF_bit, &m->flags); 144 145 if (r) { 146 unsigned long flags; 147 148 spin_lock_irqsave(&m->lock, flags); 149 r = test_bit(MPATHF_bit, &m->flags); 150 spin_unlock_irqrestore(&m->lock, flags); 151 } 152 153 return r; 154 } 155 156 /* 157 *----------------------------------------------- 158 * Allocation routines 159 *----------------------------------------------- 160 */ 161 static struct pgpath *alloc_pgpath(void) 162 { 163 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL); 164 165 if (!pgpath) 166 return NULL; 167 168 pgpath->is_active = true; 169 170 return pgpath; 171 } 172 173 static void free_pgpath(struct pgpath *pgpath) 174 { 175 kfree(pgpath); 176 } 177 178 static struct priority_group *alloc_priority_group(void) 179 { 180 struct priority_group *pg; 181 182 pg = kzalloc(sizeof(*pg), GFP_KERNEL); 183 184 if (pg) 185 INIT_LIST_HEAD(&pg->pgpaths); 186 187 return pg; 188 } 189 190 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti) 191 { 192 struct pgpath *pgpath, *tmp; 193 194 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) { 195 list_del(&pgpath->list); 196 dm_put_device(ti, pgpath->path.dev); 197 free_pgpath(pgpath); 198 } 199 } 200 201 static void free_priority_group(struct priority_group *pg, 202 struct dm_target *ti) 203 { 204 struct path_selector *ps = &pg->ps; 205 206 if (ps->type) { 207 ps->type->destroy(ps); 208 dm_put_path_selector(ps->type); 209 } 210 211 free_pgpaths(&pg->pgpaths, ti); 212 kfree(pg); 213 } 214 215 static struct multipath *alloc_multipath(struct dm_target *ti) 216 { 217 struct multipath *m; 218 219 m = kzalloc(sizeof(*m), GFP_KERNEL); 220 if (m) { 221 INIT_LIST_HEAD(&m->priority_groups); 222 spin_lock_init(&m->lock); 223 atomic_set(&m->nr_valid_paths, 0); 224 INIT_WORK(&m->trigger_event, trigger_event); 225 mutex_init(&m->work_mutex); 226 227 m->queue_mode = DM_TYPE_NONE; 228 229 m->ti = ti; 230 ti->private = m; 231 232 timer_setup(&m->nopath_timer, queue_if_no_path_timeout_work, 0); 233 } 234 235 return m; 236 } 237 238 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m) 239 { 240 if (m->queue_mode == DM_TYPE_NONE) { 241 m->queue_mode = DM_TYPE_REQUEST_BASED; 242 } else if (m->queue_mode == DM_TYPE_BIO_BASED) { 243 INIT_WORK(&m->process_queued_bios, process_queued_bios); 244 /* 245 * bio-based doesn't support any direct scsi_dh management; 246 * it just discovers if a scsi_dh is attached. 247 */ 248 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 249 } 250 251 dm_table_set_type(ti->table, m->queue_mode); 252 253 /* 254 * Init fields that are only used when a scsi_dh is attached 255 * - must do this unconditionally (really doesn't hurt non-SCSI uses) 256 */ 257 set_bit(MPATHF_QUEUE_IO, &m->flags); 258 atomic_set(&m->pg_init_in_progress, 0); 259 atomic_set(&m->pg_init_count, 0); 260 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; 261 init_waitqueue_head(&m->pg_init_wait); 262 init_waitqueue_head(&m->probe_wait); 263 264 return 0; 265 } 266 267 static void free_multipath(struct multipath *m) 268 { 269 struct priority_group *pg, *tmp; 270 271 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) { 272 list_del(&pg->list); 273 free_priority_group(pg, m->ti); 274 } 275 276 kfree(m->hw_handler_name); 277 kfree(m->hw_handler_params); 278 mutex_destroy(&m->work_mutex); 279 kfree(m); 280 } 281 282 static struct dm_mpath_io *get_mpio(union map_info *info) 283 { 284 return info->ptr; 285 } 286 287 static size_t multipath_per_bio_data_size(void) 288 { 289 return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details); 290 } 291 292 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio) 293 { 294 return dm_per_bio_data(bio, multipath_per_bio_data_size()); 295 } 296 297 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio) 298 { 299 /* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */ 300 void *bio_details = mpio + 1; 301 return bio_details; 302 } 303 304 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p) 305 { 306 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 307 struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio); 308 309 mpio->nr_bytes = bio->bi_iter.bi_size; 310 mpio->pgpath = NULL; 311 mpio->start_time_ns = 0; 312 *mpio_p = mpio; 313 314 dm_bio_record(bio_details, bio); 315 } 316 317 /* 318 *----------------------------------------------- 319 * Path selection 320 *----------------------------------------------- 321 */ 322 static int __pg_init_all_paths(struct multipath *m) 323 { 324 struct pgpath *pgpath; 325 unsigned long pg_init_delay = 0; 326 327 lockdep_assert_held(&m->lock); 328 329 if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 330 return 0; 331 332 atomic_inc(&m->pg_init_count); 333 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 334 335 /* Check here to reset pg_init_required */ 336 if (!m->current_pg) 337 return 0; 338 339 if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags)) 340 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? 341 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); 342 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) { 343 /* Skip failed paths */ 344 if (!pgpath->is_active) 345 continue; 346 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path, 347 pg_init_delay)) 348 atomic_inc(&m->pg_init_in_progress); 349 } 350 return atomic_read(&m->pg_init_in_progress); 351 } 352 353 static int pg_init_all_paths(struct multipath *m) 354 { 355 int ret; 356 unsigned long flags; 357 358 spin_lock_irqsave(&m->lock, flags); 359 ret = __pg_init_all_paths(m); 360 spin_unlock_irqrestore(&m->lock, flags); 361 362 return ret; 363 } 364 365 static void __switch_pg(struct multipath *m, struct priority_group *pg) 366 { 367 lockdep_assert_held(&m->lock); 368 369 m->current_pg = pg; 370 371 /* Must we initialise the PG first, and queue I/O till it's ready? */ 372 if (m->hw_handler_name) { 373 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 374 set_bit(MPATHF_QUEUE_IO, &m->flags); 375 } else { 376 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 377 clear_bit(MPATHF_QUEUE_IO, &m->flags); 378 } 379 380 atomic_set(&m->pg_init_count, 0); 381 } 382 383 static struct pgpath *choose_path_in_pg(struct multipath *m, 384 struct priority_group *pg, 385 size_t nr_bytes) 386 { 387 unsigned long flags; 388 struct dm_path *path; 389 struct pgpath *pgpath; 390 391 path = pg->ps.type->select_path(&pg->ps, nr_bytes); 392 if (!path) 393 return ERR_PTR(-ENXIO); 394 395 pgpath = path_to_pgpath(path); 396 397 if (unlikely(READ_ONCE(m->current_pg) != pg)) { 398 /* Only update current_pgpath if pg changed */ 399 spin_lock_irqsave(&m->lock, flags); 400 m->current_pgpath = pgpath; 401 __switch_pg(m, pg); 402 spin_unlock_irqrestore(&m->lock, flags); 403 } 404 405 return pgpath; 406 } 407 408 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes) 409 { 410 unsigned long flags; 411 struct priority_group *pg; 412 struct pgpath *pgpath; 413 unsigned int bypassed = 1; 414 415 if (!atomic_read(&m->nr_valid_paths)) { 416 spin_lock_irqsave(&m->lock, flags); 417 clear_bit(MPATHF_QUEUE_IO, &m->flags); 418 spin_unlock_irqrestore(&m->lock, flags); 419 goto failed; 420 } 421 422 /* Don't change PG until it has no remaining paths */ 423 pg = READ_ONCE(m->current_pg); 424 if (pg) { 425 pgpath = choose_path_in_pg(m, pg, nr_bytes); 426 if (!IS_ERR_OR_NULL(pgpath)) 427 return pgpath; 428 } 429 430 /* Were we instructed to switch PG? */ 431 if (READ_ONCE(m->next_pg)) { 432 spin_lock_irqsave(&m->lock, flags); 433 pg = m->next_pg; 434 if (!pg) { 435 spin_unlock_irqrestore(&m->lock, flags); 436 goto check_all_pgs; 437 } 438 m->next_pg = NULL; 439 spin_unlock_irqrestore(&m->lock, flags); 440 pgpath = choose_path_in_pg(m, pg, nr_bytes); 441 if (!IS_ERR_OR_NULL(pgpath)) 442 return pgpath; 443 } 444 check_all_pgs: 445 /* 446 * Loop through priority groups until we find a valid path. 447 * First time we skip PGs marked 'bypassed'. 448 * Second time we only try the ones we skipped, but set 449 * pg_init_delay_retry so we do not hammer controllers. 450 */ 451 do { 452 list_for_each_entry(pg, &m->priority_groups, list) { 453 if (pg->bypassed == !!bypassed) 454 continue; 455 pgpath = choose_path_in_pg(m, pg, nr_bytes); 456 if (!IS_ERR_OR_NULL(pgpath)) { 457 if (!bypassed) { 458 spin_lock_irqsave(&m->lock, flags); 459 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 460 spin_unlock_irqrestore(&m->lock, flags); 461 } 462 return pgpath; 463 } 464 } 465 } while (bypassed--); 466 467 failed: 468 spin_lock_irqsave(&m->lock, flags); 469 m->current_pgpath = NULL; 470 m->current_pg = NULL; 471 spin_unlock_irqrestore(&m->lock, flags); 472 473 return NULL; 474 } 475 476 /* 477 * dm_report_EIO() is a macro instead of a function to make pr_debug_ratelimited() 478 * report the function name and line number of the function from which 479 * it has been invoked. 480 */ 481 #define dm_report_EIO(m) \ 482 DMDEBUG_LIMIT("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d", \ 483 dm_table_device_name((m)->ti->table), \ 484 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags), \ 485 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags), \ 486 dm_noflush_suspending((m)->ti)) 487 488 /* 489 * Check whether bios must be queued in the device-mapper core rather 490 * than here in the target. 491 */ 492 static bool __must_push_back(struct multipath *m) 493 { 494 return dm_noflush_suspending(m->ti); 495 } 496 497 static bool must_push_back_rq(struct multipath *m) 498 { 499 unsigned long flags; 500 bool ret; 501 502 spin_lock_irqsave(&m->lock, flags); 503 ret = (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) || __must_push_back(m)); 504 spin_unlock_irqrestore(&m->lock, flags); 505 506 return ret; 507 } 508 509 /* 510 * Map cloned requests (request-based multipath) 511 */ 512 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq, 513 union map_info *map_context, 514 struct request **__clone) 515 { 516 struct multipath *m = ti->private; 517 size_t nr_bytes = blk_rq_bytes(rq); 518 struct pgpath *pgpath; 519 struct block_device *bdev; 520 struct dm_mpath_io *mpio = get_mpio(map_context); 521 struct request_queue *q; 522 struct request *clone; 523 524 /* Do we need to select a new pgpath? */ 525 pgpath = READ_ONCE(m->current_pgpath); 526 if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m)) 527 pgpath = choose_pgpath(m, nr_bytes); 528 529 if (!pgpath) { 530 if (must_push_back_rq(m)) 531 return DM_MAPIO_DELAY_REQUEUE; 532 dm_report_EIO(m); /* Failed */ 533 return DM_MAPIO_KILL; 534 } else if (mpath_double_check_test_bit(MPATHF_QUEUE_IO, m) || 535 mpath_double_check_test_bit(MPATHF_PG_INIT_REQUIRED, m)) { 536 pg_init_all_paths(m); 537 return DM_MAPIO_DELAY_REQUEUE; 538 } 539 540 mpio->pgpath = pgpath; 541 mpio->nr_bytes = nr_bytes; 542 543 bdev = pgpath->path.dev->bdev; 544 q = bdev_get_queue(bdev); 545 clone = blk_mq_alloc_request(q, rq->cmd_flags | REQ_NOMERGE, 546 BLK_MQ_REQ_NOWAIT); 547 if (IS_ERR(clone)) { 548 /* EBUSY, ENODEV or EWOULDBLOCK: requeue */ 549 if (blk_queue_dying(q)) { 550 atomic_inc(&m->pg_init_in_progress); 551 activate_or_offline_path(pgpath); 552 return DM_MAPIO_DELAY_REQUEUE; 553 } 554 555 /* 556 * blk-mq's SCHED_RESTART can cover this requeue, so we 557 * needn't deal with it by DELAY_REQUEUE. More importantly, 558 * we have to return DM_MAPIO_REQUEUE so that blk-mq can 559 * get the queue busy feedback (via BLK_STS_RESOURCE), 560 * otherwise I/O merging can suffer. 561 */ 562 return DM_MAPIO_REQUEUE; 563 } 564 clone->bio = clone->biotail = NULL; 565 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; 566 *__clone = clone; 567 568 if (pgpath->pg->ps.type->start_io) 569 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 570 &pgpath->path, 571 nr_bytes); 572 return DM_MAPIO_REMAPPED; 573 } 574 575 static void multipath_release_clone(struct request *clone, 576 union map_info *map_context) 577 { 578 if (unlikely(map_context)) { 579 /* 580 * non-NULL map_context means caller is still map 581 * method; must undo multipath_clone_and_map() 582 */ 583 struct dm_mpath_io *mpio = get_mpio(map_context); 584 struct pgpath *pgpath = mpio->pgpath; 585 586 if (pgpath && pgpath->pg->ps.type->end_io) 587 pgpath->pg->ps.type->end_io(&pgpath->pg->ps, 588 &pgpath->path, 589 mpio->nr_bytes, 590 clone->io_start_time_ns); 591 } 592 593 blk_mq_free_request(clone); 594 } 595 596 /* 597 * Map cloned bios (bio-based multipath) 598 */ 599 600 static void __multipath_queue_bio(struct multipath *m, struct bio *bio) 601 { 602 /* Queue for the daemon to resubmit */ 603 bio_list_add(&m->queued_bios, bio); 604 if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) 605 queue_work(kmultipathd, &m->process_queued_bios); 606 } 607 608 static void multipath_queue_bio(struct multipath *m, struct bio *bio) 609 { 610 unsigned long flags; 611 612 spin_lock_irqsave(&m->lock, flags); 613 __multipath_queue_bio(m, bio); 614 spin_unlock_irqrestore(&m->lock, flags); 615 } 616 617 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio) 618 { 619 struct pgpath *pgpath; 620 621 /* Do we need to select a new pgpath? */ 622 pgpath = READ_ONCE(m->current_pgpath); 623 if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m)) 624 pgpath = choose_pgpath(m, bio->bi_iter.bi_size); 625 626 if (!pgpath) { 627 spin_lock_irq(&m->lock); 628 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 629 __multipath_queue_bio(m, bio); 630 pgpath = ERR_PTR(-EAGAIN); 631 } 632 spin_unlock_irq(&m->lock); 633 634 } else if (mpath_double_check_test_bit(MPATHF_QUEUE_IO, m) || 635 mpath_double_check_test_bit(MPATHF_PG_INIT_REQUIRED, m)) { 636 multipath_queue_bio(m, bio); 637 pg_init_all_paths(m); 638 return ERR_PTR(-EAGAIN); 639 } 640 641 return pgpath; 642 } 643 644 static int __multipath_map_bio(struct multipath *m, struct bio *bio, 645 struct dm_mpath_io *mpio) 646 { 647 struct pgpath *pgpath = __map_bio(m, bio); 648 649 if (IS_ERR(pgpath)) 650 return DM_MAPIO_SUBMITTED; 651 652 if (!pgpath) { 653 if (__must_push_back(m)) 654 return DM_MAPIO_REQUEUE; 655 dm_report_EIO(m); 656 return DM_MAPIO_KILL; 657 } 658 659 mpio->pgpath = pgpath; 660 661 if (dm_ps_use_hr_timer(pgpath->pg->ps.type)) 662 mpio->start_time_ns = ktime_get_ns(); 663 664 bio->bi_status = 0; 665 bio_set_dev(bio, pgpath->path.dev->bdev); 666 bio->bi_opf |= REQ_FAILFAST_TRANSPORT; 667 668 if (pgpath->pg->ps.type->start_io) 669 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, 670 &pgpath->path, 671 mpio->nr_bytes); 672 return DM_MAPIO_REMAPPED; 673 } 674 675 static int multipath_map_bio(struct dm_target *ti, struct bio *bio) 676 { 677 struct multipath *m = ti->private; 678 struct dm_mpath_io *mpio = NULL; 679 680 multipath_init_per_bio_data(bio, &mpio); 681 return __multipath_map_bio(m, bio, mpio); 682 } 683 684 static void process_queued_io_list(struct multipath *m) 685 { 686 if (m->queue_mode == DM_TYPE_REQUEST_BASED) 687 dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table)); 688 else if (m->queue_mode == DM_TYPE_BIO_BASED) 689 queue_work(kmultipathd, &m->process_queued_bios); 690 } 691 692 static void process_queued_bios(struct work_struct *work) 693 { 694 int r; 695 struct bio *bio; 696 struct bio_list bios; 697 struct blk_plug plug; 698 struct multipath *m = 699 container_of(work, struct multipath, process_queued_bios); 700 701 bio_list_init(&bios); 702 703 spin_lock_irq(&m->lock); 704 705 if (bio_list_empty(&m->queued_bios)) { 706 spin_unlock_irq(&m->lock); 707 return; 708 } 709 710 bio_list_merge_init(&bios, &m->queued_bios); 711 712 spin_unlock_irq(&m->lock); 713 714 blk_start_plug(&plug); 715 while ((bio = bio_list_pop(&bios))) { 716 struct dm_mpath_io *mpio = get_mpio_from_bio(bio); 717 718 dm_bio_restore(get_bio_details_from_mpio(mpio), bio); 719 r = __multipath_map_bio(m, bio, mpio); 720 switch (r) { 721 case DM_MAPIO_KILL: 722 bio->bi_status = BLK_STS_IOERR; 723 bio_endio(bio); 724 break; 725 case DM_MAPIO_REQUEUE: 726 bio->bi_status = BLK_STS_DM_REQUEUE; 727 bio_endio(bio); 728 break; 729 case DM_MAPIO_REMAPPED: 730 submit_bio_noacct(bio); 731 break; 732 case DM_MAPIO_SUBMITTED: 733 break; 734 default: 735 WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r); 736 } 737 } 738 blk_finish_plug(&plug); 739 } 740 741 /* 742 * If we run out of usable paths, should we queue I/O or error it? 743 */ 744 static int queue_if_no_path(struct multipath *m, bool f_queue_if_no_path, 745 bool save_old_value, const char *caller) 746 { 747 unsigned long flags; 748 bool queue_if_no_path_bit, saved_queue_if_no_path_bit; 749 const char *dm_dev_name = dm_table_device_name(m->ti->table); 750 751 DMDEBUG("%s: %s caller=%s f_queue_if_no_path=%d save_old_value=%d", 752 dm_dev_name, __func__, caller, f_queue_if_no_path, save_old_value); 753 754 spin_lock_irqsave(&m->lock, flags); 755 756 queue_if_no_path_bit = test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags); 757 saved_queue_if_no_path_bit = test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 758 759 if (save_old_value) { 760 if (unlikely(!queue_if_no_path_bit && saved_queue_if_no_path_bit)) { 761 DMERR("%s: QIFNP disabled but saved as enabled, saving again loses state, not saving!", 762 dm_dev_name); 763 } else 764 assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path_bit); 765 } else if (!f_queue_if_no_path && saved_queue_if_no_path_bit) { 766 /* due to "fail_if_no_path" message, need to honor it. */ 767 clear_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 768 } 769 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, f_queue_if_no_path); 770 771 DMDEBUG("%s: after %s changes; QIFNP = %d; SQIFNP = %d; DNFS = %d", 772 dm_dev_name, __func__, 773 test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags), 774 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags), 775 dm_noflush_suspending(m->ti)); 776 777 spin_unlock_irqrestore(&m->lock, flags); 778 779 if (!f_queue_if_no_path) { 780 dm_table_run_md_queue_async(m->ti->table); 781 process_queued_io_list(m); 782 } 783 784 return 0; 785 } 786 787 /* 788 * If the queue_if_no_path timeout fires, turn off queue_if_no_path and 789 * process any queued I/O. 790 */ 791 static void queue_if_no_path_timeout_work(struct timer_list *t) 792 { 793 struct multipath *m = timer_container_of(m, t, nopath_timer); 794 795 DMWARN("queue_if_no_path timeout on %s, failing queued IO", 796 dm_table_device_name(m->ti->table)); 797 queue_if_no_path(m, false, false, __func__); 798 } 799 800 /* 801 * Enable the queue_if_no_path timeout if necessary. 802 * Called with m->lock held. 803 */ 804 static void enable_nopath_timeout(struct multipath *m) 805 { 806 unsigned long queue_if_no_path_timeout = 807 READ_ONCE(queue_if_no_path_timeout_secs) * HZ; 808 809 lockdep_assert_held(&m->lock); 810 811 if (queue_if_no_path_timeout > 0 && 812 atomic_read(&m->nr_valid_paths) == 0 && 813 test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 814 mod_timer(&m->nopath_timer, 815 jiffies + queue_if_no_path_timeout); 816 } 817 } 818 819 static void disable_nopath_timeout(struct multipath *m) 820 { 821 timer_delete_sync(&m->nopath_timer); 822 } 823 824 /* 825 * An event is triggered whenever a path is taken out of use. 826 * Includes path failure and PG bypass. 827 */ 828 static void trigger_event(struct work_struct *work) 829 { 830 struct multipath *m = 831 container_of(work, struct multipath, trigger_event); 832 833 dm_table_event(m->ti->table); 834 } 835 836 /* 837 *--------------------------------------------------------------- 838 * Constructor/argument parsing: 839 * <#multipath feature args> [<arg>]* 840 * <#hw_handler args> [hw_handler [<arg>]*] 841 * <#priority groups> 842 * <initial priority group> 843 * [<selector> <#selector args> [<arg>]* 844 * <#paths> <#per-path selector args> 845 * [<path> [<arg>]* ]+ ]+ 846 *--------------------------------------------------------------- 847 */ 848 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg, 849 struct dm_target *ti) 850 { 851 int r; 852 struct path_selector_type *pst; 853 unsigned int ps_argc; 854 855 static const struct dm_arg _args[] = { 856 {0, 1024, "invalid number of path selector args"}, 857 }; 858 859 pst = dm_get_path_selector(dm_shift_arg(as)); 860 if (!pst) { 861 ti->error = "unknown path selector type"; 862 return -EINVAL; 863 } 864 865 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error); 866 if (r) { 867 dm_put_path_selector(pst); 868 return -EINVAL; 869 } 870 871 r = pst->create(&pg->ps, ps_argc, as->argv); 872 if (r) { 873 dm_put_path_selector(pst); 874 ti->error = "path selector constructor failed"; 875 return r; 876 } 877 878 pg->ps.type = pst; 879 dm_consume_args(as, ps_argc); 880 881 return 0; 882 } 883 884 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m, 885 const char **attached_handler_name, char **error) 886 { 887 struct request_queue *q = bdev_get_queue(bdev); 888 int r; 889 890 if (mpath_double_check_test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, m)) { 891 retain: 892 if (*attached_handler_name) { 893 /* 894 * Clear any hw_handler_params associated with a 895 * handler that isn't already attached. 896 */ 897 if (m->hw_handler_name && strcmp(*attached_handler_name, m->hw_handler_name)) { 898 kfree(m->hw_handler_params); 899 m->hw_handler_params = NULL; 900 } 901 902 /* 903 * Reset hw_handler_name to match the attached handler 904 * 905 * NB. This modifies the table line to show the actual 906 * handler instead of the original table passed in. 907 */ 908 kfree(m->hw_handler_name); 909 m->hw_handler_name = *attached_handler_name; 910 *attached_handler_name = NULL; 911 } 912 } 913 914 if (m->hw_handler_name) { 915 r = scsi_dh_attach(q, m->hw_handler_name); 916 if (r == -EBUSY) { 917 DMINFO("retaining handler on device %pg", bdev); 918 goto retain; 919 } 920 if (r < 0) { 921 *error = "error attaching hardware handler"; 922 return r; 923 } 924 925 if (m->hw_handler_params) { 926 r = scsi_dh_set_params(q, m->hw_handler_params); 927 if (r < 0) { 928 *error = "unable to set hardware handler parameters"; 929 return r; 930 } 931 } 932 } 933 934 return 0; 935 } 936 937 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps, 938 struct dm_target *ti) 939 { 940 int r; 941 struct pgpath *p; 942 struct multipath *m = ti->private; 943 struct request_queue *q; 944 const char *attached_handler_name = NULL; 945 946 /* we need at least a path arg */ 947 if (as->argc < 1) { 948 ti->error = "no device given"; 949 return ERR_PTR(-EINVAL); 950 } 951 952 p = alloc_pgpath(); 953 if (!p) 954 return ERR_PTR(-ENOMEM); 955 956 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table), 957 &p->path.dev); 958 if (r) { 959 ti->error = "error getting device"; 960 goto bad; 961 } 962 963 q = bdev_get_queue(p->path.dev->bdev); 964 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL); 965 if (attached_handler_name || m->hw_handler_name) { 966 INIT_DELAYED_WORK(&p->activate_path, activate_path_work); 967 r = setup_scsi_dh(p->path.dev->bdev, m, &attached_handler_name, &ti->error); 968 kfree(attached_handler_name); 969 if (r) { 970 dm_put_device(ti, p->path.dev); 971 goto bad; 972 } 973 } 974 975 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error); 976 if (r) { 977 dm_put_device(ti, p->path.dev); 978 goto bad; 979 } 980 981 return p; 982 bad: 983 free_pgpath(p); 984 return ERR_PTR(r); 985 } 986 987 static struct priority_group *parse_priority_group(struct dm_arg_set *as, 988 struct multipath *m) 989 { 990 static const struct dm_arg _args[] = { 991 {1, 1024, "invalid number of paths"}, 992 {0, 1024, "invalid number of selector args"} 993 }; 994 995 int r; 996 unsigned int i, nr_selector_args, nr_args; 997 struct priority_group *pg; 998 struct dm_target *ti = m->ti; 999 1000 if (as->argc < 2) { 1001 as->argc = 0; 1002 ti->error = "not enough priority group arguments"; 1003 return ERR_PTR(-EINVAL); 1004 } 1005 1006 pg = alloc_priority_group(); 1007 if (!pg) { 1008 ti->error = "couldn't allocate priority group"; 1009 return ERR_PTR(-ENOMEM); 1010 } 1011 pg->m = m; 1012 1013 r = parse_path_selector(as, pg, ti); 1014 if (r) 1015 goto bad; 1016 1017 /* 1018 * read the paths 1019 */ 1020 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error); 1021 if (r) 1022 goto bad; 1023 1024 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error); 1025 if (r) 1026 goto bad; 1027 1028 nr_args = 1 + nr_selector_args; 1029 for (i = 0; i < pg->nr_pgpaths; i++) { 1030 struct pgpath *pgpath; 1031 struct dm_arg_set path_args; 1032 1033 if (as->argc < nr_args) { 1034 ti->error = "not enough path parameters"; 1035 r = -EINVAL; 1036 goto bad; 1037 } 1038 1039 path_args.argc = nr_args; 1040 path_args.argv = as->argv; 1041 1042 pgpath = parse_path(&path_args, &pg->ps, ti); 1043 if (IS_ERR(pgpath)) { 1044 r = PTR_ERR(pgpath); 1045 goto bad; 1046 } 1047 1048 pgpath->pg = pg; 1049 list_add_tail(&pgpath->list, &pg->pgpaths); 1050 dm_consume_args(as, nr_args); 1051 } 1052 1053 return pg; 1054 1055 bad: 1056 free_priority_group(pg, ti); 1057 return ERR_PTR(r); 1058 } 1059 1060 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m) 1061 { 1062 unsigned int hw_argc; 1063 int ret; 1064 struct dm_target *ti = m->ti; 1065 1066 static const struct dm_arg _args[] = { 1067 {0, 1024, "invalid number of hardware handler args"}, 1068 }; 1069 1070 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error)) 1071 return -EINVAL; 1072 1073 if (!hw_argc) 1074 return 0; 1075 1076 if (m->queue_mode == DM_TYPE_BIO_BASED) { 1077 dm_consume_args(as, hw_argc); 1078 DMERR("bio-based multipath doesn't allow hardware handler args"); 1079 return 0; 1080 } 1081 1082 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL); 1083 if (!m->hw_handler_name) 1084 return -EINVAL; 1085 1086 if (hw_argc > 1) { 1087 char *p; 1088 int i, j, len = 4; 1089 1090 for (i = 0; i <= hw_argc - 2; i++) 1091 len += strlen(as->argv[i]) + 1; 1092 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL); 1093 if (!p) { 1094 ti->error = "memory allocation failed"; 1095 ret = -ENOMEM; 1096 goto fail; 1097 } 1098 j = sprintf(p, "%d", hw_argc - 1); 1099 for (i = 0, p += j + 1; i <= hw_argc - 2; i++, p += j + 1) 1100 j = sprintf(p, "%s", as->argv[i]); 1101 } 1102 dm_consume_args(as, hw_argc - 1); 1103 1104 return 0; 1105 fail: 1106 kfree(m->hw_handler_name); 1107 m->hw_handler_name = NULL; 1108 return ret; 1109 } 1110 1111 static int parse_features(struct dm_arg_set *as, struct multipath *m) 1112 { 1113 int r; 1114 unsigned int argc; 1115 struct dm_target *ti = m->ti; 1116 const char *arg_name; 1117 1118 static const struct dm_arg _args[] = { 1119 {0, 8, "invalid number of feature args"}, 1120 {1, 50, "pg_init_retries must be between 1 and 50"}, 1121 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"}, 1122 }; 1123 1124 r = dm_read_arg_group(_args, as, &argc, &ti->error); 1125 if (r) 1126 return -EINVAL; 1127 1128 if (!argc) 1129 return 0; 1130 1131 do { 1132 arg_name = dm_shift_arg(as); 1133 argc--; 1134 1135 if (!strcasecmp(arg_name, "queue_if_no_path")) { 1136 r = queue_if_no_path(m, true, false, __func__); 1137 continue; 1138 } 1139 1140 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) { 1141 set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags); 1142 continue; 1143 } 1144 1145 if (!strcasecmp(arg_name, "pg_init_retries") && 1146 (argc >= 1)) { 1147 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error); 1148 argc--; 1149 continue; 1150 } 1151 1152 if (!strcasecmp(arg_name, "pg_init_delay_msecs") && 1153 (argc >= 1)) { 1154 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error); 1155 argc--; 1156 continue; 1157 } 1158 1159 if (!strcasecmp(arg_name, "queue_mode") && 1160 (argc >= 1)) { 1161 const char *queue_mode_name = dm_shift_arg(as); 1162 1163 if (!strcasecmp(queue_mode_name, "bio")) 1164 m->queue_mode = DM_TYPE_BIO_BASED; 1165 else if (!strcasecmp(queue_mode_name, "rq") || 1166 !strcasecmp(queue_mode_name, "mq")) 1167 m->queue_mode = DM_TYPE_REQUEST_BASED; 1168 else { 1169 ti->error = "Unknown 'queue_mode' requested"; 1170 r = -EINVAL; 1171 } 1172 argc--; 1173 continue; 1174 } 1175 1176 ti->error = "Unrecognised multipath feature request"; 1177 r = -EINVAL; 1178 } while (argc && !r); 1179 1180 return r; 1181 } 1182 1183 static int multipath_ctr(struct dm_target *ti, unsigned int argc, char **argv) 1184 { 1185 /* target arguments */ 1186 static const struct dm_arg _args[] = { 1187 {0, 1024, "invalid number of priority groups"}, 1188 {0, 1024, "invalid initial priority group number"}, 1189 }; 1190 1191 int r; 1192 struct multipath *m; 1193 struct dm_arg_set as; 1194 unsigned int pg_count = 0; 1195 unsigned int next_pg_num; 1196 1197 as.argc = argc; 1198 as.argv = argv; 1199 1200 m = alloc_multipath(ti); 1201 if (!m) { 1202 ti->error = "can't allocate multipath"; 1203 return -EINVAL; 1204 } 1205 1206 r = parse_features(&as, m); 1207 if (r) 1208 goto bad; 1209 1210 r = alloc_multipath_stage2(ti, m); 1211 if (r) 1212 goto bad; 1213 1214 r = parse_hw_handler(&as, m); 1215 if (r) 1216 goto bad; 1217 1218 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error); 1219 if (r) 1220 goto bad; 1221 1222 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error); 1223 if (r) 1224 goto bad; 1225 1226 if ((!m->nr_priority_groups && next_pg_num) || 1227 (m->nr_priority_groups && !next_pg_num)) { 1228 ti->error = "invalid initial priority group"; 1229 r = -EINVAL; 1230 goto bad; 1231 } 1232 1233 /* parse the priority groups */ 1234 while (as.argc) { 1235 struct priority_group *pg; 1236 unsigned int nr_valid_paths = atomic_read(&m->nr_valid_paths); 1237 1238 pg = parse_priority_group(&as, m); 1239 if (IS_ERR(pg)) { 1240 r = PTR_ERR(pg); 1241 goto bad; 1242 } 1243 1244 nr_valid_paths += pg->nr_pgpaths; 1245 atomic_set(&m->nr_valid_paths, nr_valid_paths); 1246 1247 list_add_tail(&pg->list, &m->priority_groups); 1248 pg_count++; 1249 pg->pg_num = pg_count; 1250 if (!--next_pg_num) 1251 m->next_pg = pg; 1252 } 1253 1254 if (pg_count != m->nr_priority_groups) { 1255 ti->error = "priority group count mismatch"; 1256 r = -EINVAL; 1257 goto bad; 1258 } 1259 1260 spin_lock_irq(&m->lock); 1261 enable_nopath_timeout(m); 1262 spin_unlock_irq(&m->lock); 1263 1264 ti->num_flush_bios = 1; 1265 ti->num_discard_bios = 1; 1266 ti->num_write_zeroes_bios = 1; 1267 if (m->queue_mode == DM_TYPE_BIO_BASED) 1268 ti->per_io_data_size = multipath_per_bio_data_size(); 1269 else 1270 ti->per_io_data_size = sizeof(struct dm_mpath_io); 1271 1272 return 0; 1273 1274 bad: 1275 free_multipath(m); 1276 return r; 1277 } 1278 1279 static void multipath_wait_for_pg_init_completion(struct multipath *m) 1280 { 1281 DEFINE_WAIT(wait); 1282 1283 while (1) { 1284 prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE); 1285 1286 if (!atomic_read(&m->pg_init_in_progress)) 1287 break; 1288 1289 io_schedule(); 1290 } 1291 finish_wait(&m->pg_init_wait, &wait); 1292 } 1293 1294 static void flush_multipath_work(struct multipath *m) 1295 { 1296 if (m->hw_handler_name) { 1297 if (!atomic_read(&m->pg_init_in_progress)) 1298 goto skip; 1299 1300 spin_lock_irq(&m->lock); 1301 if (atomic_read(&m->pg_init_in_progress) && 1302 !test_and_set_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) { 1303 spin_unlock_irq(&m->lock); 1304 1305 flush_workqueue(kmpath_handlerd); 1306 multipath_wait_for_pg_init_completion(m); 1307 1308 spin_lock_irq(&m->lock); 1309 clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags); 1310 } 1311 spin_unlock_irq(&m->lock); 1312 } 1313 skip: 1314 if (m->queue_mode == DM_TYPE_BIO_BASED) 1315 flush_work(&m->process_queued_bios); 1316 flush_work(&m->trigger_event); 1317 } 1318 1319 static void multipath_dtr(struct dm_target *ti) 1320 { 1321 struct multipath *m = ti->private; 1322 1323 disable_nopath_timeout(m); 1324 flush_multipath_work(m); 1325 free_multipath(m); 1326 } 1327 1328 /* 1329 * Take a path out of use. 1330 */ 1331 static int fail_path(struct pgpath *pgpath) 1332 { 1333 unsigned long flags; 1334 struct multipath *m = pgpath->pg->m; 1335 1336 spin_lock_irqsave(&m->lock, flags); 1337 1338 if (!pgpath->is_active) 1339 goto out; 1340 1341 DMWARN("%s: Failing path %s.", 1342 dm_table_device_name(m->ti->table), 1343 pgpath->path.dev->name); 1344 1345 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path); 1346 pgpath->is_active = false; 1347 pgpath->fail_count++; 1348 1349 atomic_dec(&m->nr_valid_paths); 1350 1351 if (pgpath == m->current_pgpath) 1352 m->current_pgpath = NULL; 1353 1354 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti, 1355 pgpath->path.dev->name, atomic_read(&m->nr_valid_paths)); 1356 1357 queue_work(dm_mpath_wq, &m->trigger_event); 1358 1359 enable_nopath_timeout(m); 1360 1361 out: 1362 spin_unlock_irqrestore(&m->lock, flags); 1363 1364 return 0; 1365 } 1366 1367 /* 1368 * Reinstate a previously-failed path 1369 */ 1370 static int reinstate_path(struct pgpath *pgpath) 1371 { 1372 int r = 0, run_queue = 0; 1373 struct multipath *m = pgpath->pg->m; 1374 unsigned int nr_valid_paths; 1375 1376 spin_lock_irq(&m->lock); 1377 1378 if (pgpath->is_active) 1379 goto out; 1380 1381 DMWARN("%s: Reinstating path %s.", 1382 dm_table_device_name(m->ti->table), 1383 pgpath->path.dev->name); 1384 1385 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path); 1386 if (r) 1387 goto out; 1388 1389 pgpath->is_active = true; 1390 1391 nr_valid_paths = atomic_inc_return(&m->nr_valid_paths); 1392 if (nr_valid_paths == 1) { 1393 m->current_pgpath = NULL; 1394 run_queue = 1; 1395 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { 1396 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) 1397 atomic_inc(&m->pg_init_in_progress); 1398 } 1399 1400 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti, 1401 pgpath->path.dev->name, nr_valid_paths); 1402 1403 schedule_work(&m->trigger_event); 1404 1405 out: 1406 spin_unlock_irq(&m->lock); 1407 if (run_queue) { 1408 dm_table_run_md_queue_async(m->ti->table); 1409 process_queued_io_list(m); 1410 } 1411 1412 if (pgpath->is_active) 1413 disable_nopath_timeout(m); 1414 1415 return r; 1416 } 1417 1418 /* 1419 * Fail or reinstate all paths that match the provided struct dm_dev. 1420 */ 1421 static int action_dev(struct multipath *m, dev_t dev, action_fn action) 1422 { 1423 int r = -EINVAL; 1424 struct pgpath *pgpath; 1425 struct priority_group *pg; 1426 1427 list_for_each_entry(pg, &m->priority_groups, list) { 1428 list_for_each_entry(pgpath, &pg->pgpaths, list) { 1429 if (pgpath->path.dev->bdev->bd_dev == dev) 1430 r = action(pgpath); 1431 } 1432 } 1433 1434 return r; 1435 } 1436 1437 /* 1438 * Temporarily try to avoid having to use the specified PG 1439 */ 1440 static void bypass_pg(struct multipath *m, struct priority_group *pg, 1441 bool bypassed, bool can_be_delayed) 1442 { 1443 unsigned long flags; 1444 1445 spin_lock_irqsave(&m->lock, flags); 1446 1447 pg->bypassed = bypassed; 1448 if (can_be_delayed && test_bit(MPATHF_DELAY_PG_SWITCH, &m->flags)) 1449 set_bit(MPATHF_NEED_PG_SWITCH, &m->flags); 1450 else { 1451 m->current_pgpath = NULL; 1452 m->current_pg = NULL; 1453 } 1454 1455 spin_unlock_irqrestore(&m->lock, flags); 1456 1457 schedule_work(&m->trigger_event); 1458 } 1459 1460 /* 1461 * Switch to using the specified PG from the next I/O that gets mapped 1462 */ 1463 static int switch_pg_num(struct multipath *m, const char *pgstr) 1464 { 1465 struct priority_group *pg; 1466 unsigned int pgnum; 1467 char dummy; 1468 1469 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1470 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1471 DMWARN("invalid PG number supplied to %s", __func__); 1472 return -EINVAL; 1473 } 1474 1475 spin_lock_irq(&m->lock); 1476 list_for_each_entry(pg, &m->priority_groups, list) { 1477 pg->bypassed = false; 1478 if (--pgnum) 1479 continue; 1480 1481 if (test_bit(MPATHF_DELAY_PG_SWITCH, &m->flags)) 1482 set_bit(MPATHF_NEED_PG_SWITCH, &m->flags); 1483 else { 1484 m->current_pgpath = NULL; 1485 m->current_pg = NULL; 1486 } 1487 m->next_pg = pg; 1488 } 1489 spin_unlock_irq(&m->lock); 1490 1491 schedule_work(&m->trigger_event); 1492 return 0; 1493 } 1494 1495 /* 1496 * Set/clear bypassed status of a PG. 1497 * PGs are numbered upwards from 1 in the order they were declared. 1498 */ 1499 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed) 1500 { 1501 struct priority_group *pg; 1502 unsigned int pgnum; 1503 char dummy; 1504 1505 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum || 1506 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) { 1507 DMWARN("invalid PG number supplied to bypass_pg"); 1508 return -EINVAL; 1509 } 1510 1511 list_for_each_entry(pg, &m->priority_groups, list) { 1512 if (!--pgnum) 1513 break; 1514 } 1515 1516 bypass_pg(m, pg, bypassed, true); 1517 return 0; 1518 } 1519 1520 /* 1521 * Should we retry pg_init immediately? 1522 */ 1523 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) 1524 { 1525 unsigned long flags; 1526 bool limit_reached = false; 1527 1528 spin_lock_irqsave(&m->lock, flags); 1529 1530 if (atomic_read(&m->pg_init_count) <= m->pg_init_retries && 1531 !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) 1532 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags); 1533 else 1534 limit_reached = true; 1535 1536 spin_unlock_irqrestore(&m->lock, flags); 1537 1538 return limit_reached; 1539 } 1540 1541 static void pg_init_done(void *data, int errors) 1542 { 1543 struct pgpath *pgpath = data; 1544 struct priority_group *pg = pgpath->pg; 1545 struct multipath *m = pg->m; 1546 unsigned long flags; 1547 bool delay_retry = false; 1548 1549 /* device or driver problems */ 1550 switch (errors) { 1551 case SCSI_DH_OK: 1552 break; 1553 case SCSI_DH_NOSYS: 1554 if (!m->hw_handler_name) { 1555 errors = 0; 1556 break; 1557 } 1558 DMERR("Could not failover the device: Handler scsi_dh_%s " 1559 "Error %d.", m->hw_handler_name, errors); 1560 /* 1561 * Fail path for now, so we do not ping pong 1562 */ 1563 fail_path(pgpath); 1564 break; 1565 case SCSI_DH_DEV_TEMP_BUSY: 1566 /* 1567 * Probably doing something like FW upgrade on the 1568 * controller so try the other pg. 1569 */ 1570 bypass_pg(m, pg, true, false); 1571 break; 1572 case SCSI_DH_RETRY: 1573 /* Wait before retrying. */ 1574 delay_retry = true; 1575 fallthrough; 1576 case SCSI_DH_IMM_RETRY: 1577 case SCSI_DH_RES_TEMP_UNAVAIL: 1578 if (pg_init_limit_reached(m, pgpath)) 1579 fail_path(pgpath); 1580 errors = 0; 1581 break; 1582 case SCSI_DH_DEV_OFFLINED: 1583 default: 1584 /* 1585 * We probably do not want to fail the path for a device 1586 * error, but this is what the old dm did. In future 1587 * patches we can do more advanced handling. 1588 */ 1589 fail_path(pgpath); 1590 } 1591 1592 spin_lock_irqsave(&m->lock, flags); 1593 if (errors) { 1594 if (pgpath == m->current_pgpath) { 1595 DMERR("Could not failover device. Error %d.", errors); 1596 m->current_pgpath = NULL; 1597 m->current_pg = NULL; 1598 } 1599 } else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 1600 pg->bypassed = false; 1601 1602 if (atomic_dec_return(&m->pg_init_in_progress) > 0) 1603 /* Activations of other paths are still on going */ 1604 goto out; 1605 1606 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) { 1607 if (delay_retry) 1608 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1609 else 1610 clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags); 1611 1612 if (__pg_init_all_paths(m)) 1613 goto out; 1614 } 1615 clear_bit(MPATHF_QUEUE_IO, &m->flags); 1616 1617 process_queued_io_list(m); 1618 1619 /* 1620 * Wake up any thread waiting to suspend. 1621 */ 1622 wake_up(&m->pg_init_wait); 1623 1624 out: 1625 spin_unlock_irqrestore(&m->lock, flags); 1626 } 1627 1628 static void activate_or_offline_path(struct pgpath *pgpath) 1629 { 1630 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 1631 1632 if (pgpath->is_active && !blk_queue_dying(q)) 1633 scsi_dh_activate(q, pg_init_done, pgpath); 1634 else 1635 pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED); 1636 } 1637 1638 static void activate_path_work(struct work_struct *work) 1639 { 1640 struct pgpath *pgpath = 1641 container_of(work, struct pgpath, activate_path.work); 1642 1643 activate_or_offline_path(pgpath); 1644 } 1645 1646 static int multipath_end_io(struct dm_target *ti, struct request *clone, 1647 blk_status_t error, union map_info *map_context) 1648 { 1649 struct dm_mpath_io *mpio = get_mpio(map_context); 1650 struct pgpath *pgpath = mpio->pgpath; 1651 int r = DM_ENDIO_DONE; 1652 1653 /* 1654 * We don't queue any clone request inside the multipath target 1655 * during end I/O handling, since those clone requests don't have 1656 * bio clones. If we queue them inside the multipath target, 1657 * we need to make bio clones, that requires memory allocation. 1658 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests 1659 * don't have bio clones.) 1660 * Instead of queueing the clone request here, we queue the original 1661 * request into dm core, which will remake a clone request and 1662 * clone bios for it and resubmit it later. 1663 */ 1664 if (error && blk_path_error(error)) { 1665 struct multipath *m = ti->private; 1666 1667 if (error == BLK_STS_RESOURCE) 1668 r = DM_ENDIO_DELAY_REQUEUE; 1669 else 1670 r = DM_ENDIO_REQUEUE; 1671 1672 if (pgpath) 1673 fail_path(pgpath); 1674 1675 if (!atomic_read(&m->nr_valid_paths) && 1676 !must_push_back_rq(m)) { 1677 if (error == BLK_STS_IOERR) 1678 dm_report_EIO(m); 1679 /* complete with the original error */ 1680 r = DM_ENDIO_DONE; 1681 } 1682 } 1683 1684 if (pgpath) { 1685 struct path_selector *ps = &pgpath->pg->ps; 1686 1687 if (ps->type->end_io) 1688 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes, 1689 clone->io_start_time_ns); 1690 } 1691 1692 return r; 1693 } 1694 1695 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone, 1696 blk_status_t *error) 1697 { 1698 struct multipath *m = ti->private; 1699 struct dm_mpath_io *mpio = get_mpio_from_bio(clone); 1700 struct pgpath *pgpath = mpio->pgpath; 1701 unsigned long flags; 1702 int r = DM_ENDIO_DONE; 1703 1704 if (!*error || !blk_path_error(*error)) 1705 goto done; 1706 1707 if (pgpath) 1708 fail_path(pgpath); 1709 1710 if (!atomic_read(&m->nr_valid_paths)) { 1711 spin_lock_irqsave(&m->lock, flags); 1712 if (!test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 1713 if (__must_push_back(m)) { 1714 r = DM_ENDIO_REQUEUE; 1715 } else { 1716 dm_report_EIO(m); 1717 *error = BLK_STS_IOERR; 1718 } 1719 spin_unlock_irqrestore(&m->lock, flags); 1720 goto done; 1721 } 1722 spin_unlock_irqrestore(&m->lock, flags); 1723 } 1724 1725 multipath_queue_bio(m, clone); 1726 r = DM_ENDIO_INCOMPLETE; 1727 done: 1728 if (pgpath) { 1729 struct path_selector *ps = &pgpath->pg->ps; 1730 1731 if (ps->type->end_io) 1732 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes, 1733 (mpio->start_time_ns ?: 1734 dm_start_time_ns_from_clone(clone))); 1735 } 1736 1737 return r; 1738 } 1739 1740 /* 1741 * Suspend with flush can't complete until all the I/O is processed 1742 * so if the last path fails we must error any remaining I/O. 1743 * - Note that if the freeze_bdev fails while suspending, the 1744 * queue_if_no_path state is lost - userspace should reset it. 1745 * Otherwise, during noflush suspend, queue_if_no_path will not change. 1746 */ 1747 static void multipath_presuspend(struct dm_target *ti) 1748 { 1749 struct multipath *m = ti->private; 1750 1751 spin_lock_irq(&m->lock); 1752 m->is_suspending = true; 1753 spin_unlock_irq(&m->lock); 1754 /* FIXME: bio-based shouldn't need to always disable queue_if_no_path */ 1755 if (m->queue_mode == DM_TYPE_BIO_BASED || !dm_noflush_suspending(m->ti)) 1756 queue_if_no_path(m, false, true, __func__); 1757 } 1758 1759 static void multipath_postsuspend(struct dm_target *ti) 1760 { 1761 struct multipath *m = ti->private; 1762 1763 mutex_lock(&m->work_mutex); 1764 flush_multipath_work(m); 1765 mutex_unlock(&m->work_mutex); 1766 } 1767 1768 /* 1769 * Restore the queue_if_no_path setting. 1770 */ 1771 static void multipath_resume(struct dm_target *ti) 1772 { 1773 struct multipath *m = ti->private; 1774 1775 spin_lock_irq(&m->lock); 1776 m->is_suspending = false; 1777 if (test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)) { 1778 set_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags); 1779 clear_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags); 1780 } 1781 1782 DMDEBUG("%s: %s finished; QIFNP = %d; SQIFNP = %d", 1783 dm_table_device_name(m->ti->table), __func__, 1784 test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags), 1785 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)); 1786 1787 spin_unlock_irq(&m->lock); 1788 } 1789 1790 /* 1791 * Info output has the following format: 1792 * num_multipath_feature_args [multipath_feature_args]* 1793 * num_handler_status_args [handler_status_args]* 1794 * num_groups init_group_number 1795 * [A|D|E num_ps_status_args [ps_status_args]* 1796 * num_paths num_selector_args 1797 * [path_dev A|F fail_count [selector_args]* ]+ ]+ 1798 * 1799 * Table output has the following format (identical to the constructor string): 1800 * num_feature_args [features_args]* 1801 * num_handler_args hw_handler [hw_handler_args]* 1802 * num_groups init_group_number 1803 * [priority selector-name num_ps_args [ps_args]* 1804 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ 1805 */ 1806 static void multipath_status(struct dm_target *ti, status_type_t type, 1807 unsigned int status_flags, char *result, unsigned int maxlen) 1808 { 1809 int sz = 0, pg_counter, pgpath_counter; 1810 struct multipath *m = ti->private; 1811 struct priority_group *pg; 1812 struct pgpath *p; 1813 unsigned int pg_num; 1814 char state; 1815 1816 spin_lock_irq(&m->lock); 1817 1818 /* Features */ 1819 if (type == STATUSTYPE_INFO) 1820 DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags), 1821 atomic_read(&m->pg_init_count)); 1822 else { 1823 DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) + 1824 (m->pg_init_retries > 0) * 2 + 1825 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 + 1826 test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) + 1827 (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2); 1828 1829 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 1830 DMEMIT("queue_if_no_path "); 1831 if (m->pg_init_retries) 1832 DMEMIT("pg_init_retries %u ", m->pg_init_retries); 1833 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) 1834 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs); 1835 if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) 1836 DMEMIT("retain_attached_hw_handler "); 1837 if (m->queue_mode != DM_TYPE_REQUEST_BASED) { 1838 switch (m->queue_mode) { 1839 case DM_TYPE_BIO_BASED: 1840 DMEMIT("queue_mode bio "); 1841 break; 1842 default: 1843 WARN_ON_ONCE(true); 1844 break; 1845 } 1846 } 1847 } 1848 1849 if (!m->hw_handler_name || type == STATUSTYPE_INFO) 1850 DMEMIT("0 "); 1851 else 1852 DMEMIT("1 %s ", m->hw_handler_name); 1853 1854 DMEMIT("%u ", m->nr_priority_groups); 1855 1856 if (m->current_pg) 1857 pg_num = m->current_pg->pg_num; 1858 else if (m->next_pg) 1859 pg_num = m->next_pg->pg_num; 1860 else 1861 pg_num = (m->nr_priority_groups ? 1 : 0); 1862 1863 DMEMIT("%u ", pg_num); 1864 1865 switch (type) { 1866 case STATUSTYPE_INFO: 1867 list_for_each_entry(pg, &m->priority_groups, list) { 1868 if (pg->bypassed) 1869 state = 'D'; /* Disabled */ 1870 else if (pg == m->current_pg) 1871 state = 'A'; /* Currently Active */ 1872 else 1873 state = 'E'; /* Enabled */ 1874 1875 DMEMIT("%c ", state); 1876 1877 if (pg->ps.type->status) 1878 sz += pg->ps.type->status(&pg->ps, NULL, type, 1879 result + sz, 1880 maxlen - sz); 1881 else 1882 DMEMIT("0 "); 1883 1884 DMEMIT("%u %u ", pg->nr_pgpaths, 1885 pg->ps.type->info_args); 1886 1887 list_for_each_entry(p, &pg->pgpaths, list) { 1888 DMEMIT("%s %s %u ", p->path.dev->name, 1889 p->is_active ? "A" : "F", 1890 p->fail_count); 1891 if (pg->ps.type->status) 1892 sz += pg->ps.type->status(&pg->ps, 1893 &p->path, type, result + sz, 1894 maxlen - sz); 1895 } 1896 } 1897 break; 1898 1899 case STATUSTYPE_TABLE: 1900 list_for_each_entry(pg, &m->priority_groups, list) { 1901 DMEMIT("%s ", pg->ps.type->name); 1902 1903 if (pg->ps.type->status) 1904 sz += pg->ps.type->status(&pg->ps, NULL, type, 1905 result + sz, 1906 maxlen - sz); 1907 else 1908 DMEMIT("0 "); 1909 1910 DMEMIT("%u %u ", pg->nr_pgpaths, 1911 pg->ps.type->table_args); 1912 1913 list_for_each_entry(p, &pg->pgpaths, list) { 1914 DMEMIT("%s ", p->path.dev->name); 1915 if (pg->ps.type->status) 1916 sz += pg->ps.type->status(&pg->ps, 1917 &p->path, type, result + sz, 1918 maxlen - sz); 1919 } 1920 } 1921 break; 1922 1923 case STATUSTYPE_IMA: 1924 sz = 0; /*reset the result pointer*/ 1925 1926 DMEMIT_TARGET_NAME_VERSION(ti->type); 1927 DMEMIT(",nr_priority_groups=%u", m->nr_priority_groups); 1928 1929 pg_counter = 0; 1930 list_for_each_entry(pg, &m->priority_groups, list) { 1931 if (pg->bypassed) 1932 state = 'D'; /* Disabled */ 1933 else if (pg == m->current_pg) 1934 state = 'A'; /* Currently Active */ 1935 else 1936 state = 'E'; /* Enabled */ 1937 DMEMIT(",pg_state_%d=%c", pg_counter, state); 1938 DMEMIT(",nr_pgpaths_%d=%u", pg_counter, pg->nr_pgpaths); 1939 DMEMIT(",path_selector_name_%d=%s", pg_counter, pg->ps.type->name); 1940 1941 pgpath_counter = 0; 1942 list_for_each_entry(p, &pg->pgpaths, list) { 1943 DMEMIT(",path_name_%d_%d=%s,is_active_%d_%d=%c,fail_count_%d_%d=%u", 1944 pg_counter, pgpath_counter, p->path.dev->name, 1945 pg_counter, pgpath_counter, p->is_active ? 'A' : 'F', 1946 pg_counter, pgpath_counter, p->fail_count); 1947 if (pg->ps.type->status) { 1948 DMEMIT(",path_selector_status_%d_%d=", 1949 pg_counter, pgpath_counter); 1950 sz += pg->ps.type->status(&pg->ps, &p->path, 1951 type, result + sz, 1952 maxlen - sz); 1953 } 1954 pgpath_counter++; 1955 } 1956 pg_counter++; 1957 } 1958 DMEMIT(";"); 1959 break; 1960 } 1961 1962 spin_unlock_irq(&m->lock); 1963 } 1964 1965 static int multipath_message(struct dm_target *ti, unsigned int argc, char **argv, 1966 char *result, unsigned int maxlen) 1967 { 1968 int r = -EINVAL; 1969 dev_t dev; 1970 struct multipath *m = ti->private; 1971 action_fn action; 1972 1973 mutex_lock(&m->work_mutex); 1974 1975 if (dm_suspended(ti)) { 1976 r = -EBUSY; 1977 goto out; 1978 } 1979 1980 if (argc == 1) { 1981 if (!strcasecmp(argv[0], "queue_if_no_path")) { 1982 r = queue_if_no_path(m, true, false, __func__); 1983 spin_lock_irq(&m->lock); 1984 enable_nopath_timeout(m); 1985 spin_unlock_irq(&m->lock); 1986 goto out; 1987 } else if (!strcasecmp(argv[0], "fail_if_no_path")) { 1988 r = queue_if_no_path(m, false, false, __func__); 1989 disable_nopath_timeout(m); 1990 goto out; 1991 } 1992 } 1993 1994 if (argc != 2) { 1995 DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc); 1996 goto out; 1997 } 1998 1999 if (!strcasecmp(argv[0], "disable_group")) { 2000 r = bypass_pg_num(m, argv[1], true); 2001 goto out; 2002 } else if (!strcasecmp(argv[0], "enable_group")) { 2003 r = bypass_pg_num(m, argv[1], false); 2004 goto out; 2005 } else if (!strcasecmp(argv[0], "switch_group")) { 2006 r = switch_pg_num(m, argv[1]); 2007 goto out; 2008 } else if (!strcasecmp(argv[0], "reinstate_path")) 2009 action = reinstate_path; 2010 else if (!strcasecmp(argv[0], "fail_path")) 2011 action = fail_path; 2012 else { 2013 DMWARN("Unrecognised multipath message received: %s", argv[0]); 2014 goto out; 2015 } 2016 2017 r = dm_devt_from_path(argv[1], &dev); 2018 if (r) { 2019 DMWARN("message: error getting device %s", 2020 argv[1]); 2021 goto out; 2022 } 2023 2024 r = action_dev(m, dev, action); 2025 2026 out: 2027 mutex_unlock(&m->work_mutex); 2028 return r; 2029 } 2030 2031 /* 2032 * Perform a minimal read from the given path to find out whether the 2033 * path still works. If a path error occurs, fail it. 2034 */ 2035 static int probe_path(struct pgpath *pgpath) 2036 { 2037 struct block_device *bdev = pgpath->path.dev->bdev; 2038 unsigned int read_size = bdev_logical_block_size(bdev); 2039 struct page *page; 2040 struct bio *bio; 2041 blk_status_t status; 2042 int r = 0; 2043 2044 if (WARN_ON_ONCE(read_size > PAGE_SIZE)) 2045 return -EINVAL; 2046 2047 page = alloc_page(GFP_KERNEL); 2048 if (!page) 2049 return -ENOMEM; 2050 2051 /* Perform a minimal read: Sector 0, length read_size */ 2052 bio = bio_alloc(bdev, 1, REQ_OP_READ, GFP_KERNEL); 2053 if (!bio) { 2054 r = -ENOMEM; 2055 goto out; 2056 } 2057 2058 bio->bi_iter.bi_sector = 0; 2059 __bio_add_page(bio, page, read_size, 0); 2060 submit_bio_wait(bio); 2061 status = bio->bi_status; 2062 bio_put(bio); 2063 2064 if (status && blk_path_error(status)) 2065 fail_path(pgpath); 2066 2067 out: 2068 __free_page(page); 2069 return r; 2070 } 2071 2072 /* 2073 * Probe all active paths in current_pg to find out whether they still work. 2074 * Fail all paths that do not work. 2075 * 2076 * Return -ENOTCONN if no valid path is left (even outside of current_pg). We 2077 * cannot probe paths in other pgs without switching current_pg, so if valid 2078 * paths are only in different pgs, they may or may not work. Additionally 2079 * we should not probe paths in a pathgroup that is in the process of 2080 * Initializing. Userspace can submit a request and we'll switch and wait 2081 * for the pathgroup to be initialized. If the request fails, it may need to 2082 * probe again. 2083 */ 2084 static int probe_active_paths(struct multipath *m) 2085 { 2086 struct pgpath *pgpath; 2087 struct priority_group *pg = NULL; 2088 int r = 0; 2089 2090 spin_lock_irq(&m->lock); 2091 if (test_bit(MPATHF_DELAY_PG_SWITCH, &m->flags)) { 2092 wait_event_lock_irq(m->probe_wait, 2093 !test_bit(MPATHF_DELAY_PG_SWITCH, &m->flags), 2094 m->lock); 2095 /* 2096 * if we waited because a probe was already in progress, 2097 * and it probed the current active pathgroup, don't 2098 * reprobe. Just return the number of valid paths 2099 */ 2100 if (m->current_pg == m->last_probed_pg) 2101 goto skip_probe; 2102 } 2103 if (!m->current_pg || m->is_suspending || 2104 test_bit(MPATHF_QUEUE_IO, &m->flags)) 2105 goto skip_probe; 2106 set_bit(MPATHF_DELAY_PG_SWITCH, &m->flags); 2107 pg = m->last_probed_pg = m->current_pg; 2108 spin_unlock_irq(&m->lock); 2109 2110 list_for_each_entry(pgpath, &pg->pgpaths, list) { 2111 if (pg != READ_ONCE(m->current_pg) || 2112 READ_ONCE(m->is_suspending)) 2113 goto out; 2114 if (!pgpath->is_active) 2115 continue; 2116 2117 r = probe_path(pgpath); 2118 if (r < 0) 2119 goto out; 2120 } 2121 2122 out: 2123 spin_lock_irq(&m->lock); 2124 clear_bit(MPATHF_DELAY_PG_SWITCH, &m->flags); 2125 if (test_and_clear_bit(MPATHF_NEED_PG_SWITCH, &m->flags)) { 2126 m->current_pgpath = NULL; 2127 m->current_pg = NULL; 2128 } 2129 skip_probe: 2130 if (r == 0 && !atomic_read(&m->nr_valid_paths)) 2131 r = -ENOTCONN; 2132 spin_unlock_irq(&m->lock); 2133 if (pg) 2134 wake_up(&m->probe_wait); 2135 return r; 2136 } 2137 2138 static int multipath_prepare_ioctl(struct dm_target *ti, 2139 struct block_device **bdev, 2140 unsigned int cmd, unsigned long arg, 2141 bool *forward) 2142 { 2143 struct multipath *m = ti->private; 2144 struct pgpath *pgpath; 2145 int r; 2146 2147 if (_IOC_TYPE(cmd) == DM_IOCTL) { 2148 *forward = false; 2149 switch (cmd) { 2150 case DM_MPATH_PROBE_PATHS: 2151 return probe_active_paths(m); 2152 default: 2153 return -ENOTTY; 2154 } 2155 } 2156 2157 pgpath = READ_ONCE(m->current_pgpath); 2158 if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m)) 2159 pgpath = choose_pgpath(m, 0); 2160 2161 if (pgpath) { 2162 if (!mpath_double_check_test_bit(MPATHF_QUEUE_IO, m)) { 2163 *bdev = pgpath->path.dev->bdev; 2164 r = 0; 2165 } else { 2166 /* pg_init has not started or completed */ 2167 r = -ENOTCONN; 2168 } 2169 } else { 2170 /* No path is available */ 2171 r = -EIO; 2172 spin_lock_irq(&m->lock); 2173 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) 2174 r = -ENOTCONN; 2175 spin_unlock_irq(&m->lock); 2176 } 2177 2178 if (r == -ENOTCONN) { 2179 if (!READ_ONCE(m->current_pg)) { 2180 /* Path status changed, redo selection */ 2181 (void) choose_pgpath(m, 0); 2182 } 2183 spin_lock_irq(&m->lock); 2184 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) 2185 (void) __pg_init_all_paths(m); 2186 spin_unlock_irq(&m->lock); 2187 dm_table_run_md_queue_async(m->ti->table); 2188 process_queued_io_list(m); 2189 } 2190 2191 /* 2192 * Only pass ioctls through if the device sizes match exactly. 2193 */ 2194 if (!r && ti->len != bdev_nr_sectors((*bdev))) 2195 return 1; 2196 return r; 2197 } 2198 2199 static int multipath_iterate_devices(struct dm_target *ti, 2200 iterate_devices_callout_fn fn, void *data) 2201 { 2202 struct multipath *m = ti->private; 2203 struct priority_group *pg; 2204 struct pgpath *p; 2205 int ret = 0; 2206 2207 list_for_each_entry(pg, &m->priority_groups, list) { 2208 list_for_each_entry(p, &pg->pgpaths, list) { 2209 ret = fn(ti, p->path.dev, ti->begin, ti->len, data); 2210 if (ret) 2211 goto out; 2212 } 2213 } 2214 2215 out: 2216 return ret; 2217 } 2218 2219 static int pgpath_busy(struct pgpath *pgpath) 2220 { 2221 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev); 2222 2223 return blk_lld_busy(q); 2224 } 2225 2226 /* 2227 * We return "busy", only when we can map I/Os but underlying devices 2228 * are busy (so even if we map I/Os now, the I/Os will wait on 2229 * the underlying queue). 2230 * In other words, if we want to kill I/Os or queue them inside us 2231 * due to map unavailability, we don't return "busy". Otherwise, 2232 * dm core won't give us the I/Os and we can't do what we want. 2233 */ 2234 static int multipath_busy(struct dm_target *ti) 2235 { 2236 bool busy = false, has_active = false; 2237 struct multipath *m = ti->private; 2238 struct priority_group *pg, *next_pg; 2239 struct pgpath *pgpath; 2240 2241 /* pg_init in progress */ 2242 if (atomic_read(&m->pg_init_in_progress)) 2243 return true; 2244 2245 /* no paths available, for blk-mq: rely on IO mapping to delay requeue */ 2246 if (!atomic_read(&m->nr_valid_paths)) { 2247 unsigned long flags; 2248 2249 spin_lock_irqsave(&m->lock, flags); 2250 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) { 2251 spin_unlock_irqrestore(&m->lock, flags); 2252 return (m->queue_mode != DM_TYPE_REQUEST_BASED); 2253 } 2254 spin_unlock_irqrestore(&m->lock, flags); 2255 } 2256 2257 /* Guess which priority_group will be used at next mapping time */ 2258 pg = READ_ONCE(m->current_pg); 2259 next_pg = READ_ONCE(m->next_pg); 2260 if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg)) 2261 pg = next_pg; 2262 2263 if (!pg) { 2264 /* 2265 * We don't know which pg will be used at next mapping time. 2266 * We don't call choose_pgpath() here to avoid to trigger 2267 * pg_init just by busy checking. 2268 * So we don't know whether underlying devices we will be using 2269 * at next mapping time are busy or not. Just try mapping. 2270 */ 2271 return busy; 2272 } 2273 2274 /* 2275 * If there is one non-busy active path at least, the path selector 2276 * will be able to select it. So we consider such a pg as not busy. 2277 */ 2278 busy = true; 2279 list_for_each_entry(pgpath, &pg->pgpaths, list) { 2280 if (pgpath->is_active) { 2281 has_active = true; 2282 if (!pgpath_busy(pgpath)) { 2283 busy = false; 2284 break; 2285 } 2286 } 2287 } 2288 2289 if (!has_active) { 2290 /* 2291 * No active path in this pg, so this pg won't be used and 2292 * the current_pg will be changed at next mapping time. 2293 * We need to try mapping to determine it. 2294 */ 2295 busy = false; 2296 } 2297 2298 return busy; 2299 } 2300 2301 /* 2302 *--------------------------------------------------------------- 2303 * Module setup 2304 *--------------------------------------------------------------- 2305 */ 2306 static struct target_type multipath_target = { 2307 .name = "multipath", 2308 .version = {1, 15, 0}, 2309 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE | 2310 DM_TARGET_PASSES_INTEGRITY, 2311 .module = THIS_MODULE, 2312 .ctr = multipath_ctr, 2313 .dtr = multipath_dtr, 2314 .clone_and_map_rq = multipath_clone_and_map, 2315 .release_clone_rq = multipath_release_clone, 2316 .rq_end_io = multipath_end_io, 2317 .map = multipath_map_bio, 2318 .end_io = multipath_end_io_bio, 2319 .presuspend = multipath_presuspend, 2320 .postsuspend = multipath_postsuspend, 2321 .resume = multipath_resume, 2322 .status = multipath_status, 2323 .message = multipath_message, 2324 .prepare_ioctl = multipath_prepare_ioctl, 2325 .iterate_devices = multipath_iterate_devices, 2326 .busy = multipath_busy, 2327 }; 2328 2329 static int __init dm_multipath_init(void) 2330 { 2331 int r = -ENOMEM; 2332 2333 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0); 2334 if (!kmultipathd) { 2335 DMERR("failed to create workqueue kmpathd"); 2336 goto bad_alloc_kmultipathd; 2337 } 2338 2339 /* 2340 * A separate workqueue is used to handle the device handlers 2341 * to avoid overloading existing workqueue. Overloading the 2342 * old workqueue would also create a bottleneck in the 2343 * path of the storage hardware device activation. 2344 */ 2345 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd", 2346 WQ_MEM_RECLAIM); 2347 if (!kmpath_handlerd) { 2348 DMERR("failed to create workqueue kmpath_handlerd"); 2349 goto bad_alloc_kmpath_handlerd; 2350 } 2351 2352 dm_mpath_wq = alloc_workqueue("dm_mpath_wq", 0, 0); 2353 if (!dm_mpath_wq) { 2354 DMERR("failed to create workqueue dm_mpath_wq"); 2355 goto bad_alloc_dm_mpath_wq; 2356 } 2357 2358 r = dm_register_target(&multipath_target); 2359 if (r < 0) 2360 goto bad_register_target; 2361 2362 return 0; 2363 2364 bad_register_target: 2365 destroy_workqueue(dm_mpath_wq); 2366 bad_alloc_dm_mpath_wq: 2367 destroy_workqueue(kmpath_handlerd); 2368 bad_alloc_kmpath_handlerd: 2369 destroy_workqueue(kmultipathd); 2370 bad_alloc_kmultipathd: 2371 return r; 2372 } 2373 2374 static void __exit dm_multipath_exit(void) 2375 { 2376 destroy_workqueue(dm_mpath_wq); 2377 destroy_workqueue(kmpath_handlerd); 2378 destroy_workqueue(kmultipathd); 2379 2380 dm_unregister_target(&multipath_target); 2381 } 2382 2383 module_init(dm_multipath_init); 2384 module_exit(dm_multipath_exit); 2385 2386 module_param_named(queue_if_no_path_timeout_secs, queue_if_no_path_timeout_secs, ulong, 0644); 2387 MODULE_PARM_DESC(queue_if_no_path_timeout_secs, "No available paths queue IO timeout in seconds"); 2388 2389 MODULE_DESCRIPTION(DM_NAME " multipath target"); 2390 MODULE_AUTHOR("Sistina Software <dm-devel@lists.linux.dev>"); 2391 MODULE_LICENSE("GPL"); 2392