xref: /linux/drivers/md/dm-mpath.c (revision 2277ab4a1df50e05bc732fe9488d4e902bb8399a)
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-path-selector.h"
11 #include "dm-uevent.h"
12 
13 #include <linux/ctype.h>
14 #include <linux/init.h>
15 #include <linux/mempool.h>
16 #include <linux/module.h>
17 #include <linux/pagemap.h>
18 #include <linux/slab.h>
19 #include <linux/time.h>
20 #include <linux/workqueue.h>
21 #include <scsi/scsi_dh.h>
22 #include <asm/atomic.h>
23 
24 #define DM_MSG_PREFIX "multipath"
25 #define MESG_STR(x) x, sizeof(x)
26 
27 /* Path properties */
28 struct pgpath {
29 	struct list_head list;
30 
31 	struct priority_group *pg;	/* Owning PG */
32 	unsigned is_active;		/* Path status */
33 	unsigned fail_count;		/* Cumulative failure count */
34 
35 	struct dm_path path;
36 	struct work_struct deactivate_path;
37 	struct work_struct activate_path;
38 };
39 
40 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
41 
42 /*
43  * Paths are grouped into Priority Groups and numbered from 1 upwards.
44  * Each has a path selector which controls which path gets used.
45  */
46 struct priority_group {
47 	struct list_head list;
48 
49 	struct multipath *m;		/* Owning multipath instance */
50 	struct path_selector ps;
51 
52 	unsigned pg_num;		/* Reference number */
53 	unsigned bypassed;		/* Temporarily bypass this PG? */
54 
55 	unsigned nr_pgpaths;		/* Number of paths in PG */
56 	struct list_head pgpaths;
57 };
58 
59 /* Multipath context */
60 struct multipath {
61 	struct list_head list;
62 	struct dm_target *ti;
63 
64 	spinlock_t lock;
65 
66 	const char *hw_handler_name;
67 	unsigned nr_priority_groups;
68 	struct list_head priority_groups;
69 	unsigned pg_init_required;	/* pg_init needs calling? */
70 	unsigned pg_init_in_progress;	/* Only one pg_init allowed at once */
71 
72 	unsigned nr_valid_paths;	/* Total number of usable paths */
73 	struct pgpath *current_pgpath;
74 	struct priority_group *current_pg;
75 	struct priority_group *next_pg;	/* Switch to this PG if set */
76 	unsigned repeat_count;		/* I/Os left before calling PS again */
77 
78 	unsigned queue_io;		/* Must we queue all I/O? */
79 	unsigned queue_if_no_path;	/* Queue I/O if last path fails? */
80 	unsigned saved_queue_if_no_path;/* Saved state during suspension */
81 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
82 	unsigned pg_init_count;		/* Number of times pg_init called */
83 
84 	struct work_struct process_queued_ios;
85 	struct list_head queued_ios;
86 	unsigned queue_size;
87 
88 	struct work_struct trigger_event;
89 
90 	/*
91 	 * We must use a mempool of dm_mpath_io structs so that we
92 	 * can resubmit bios on error.
93 	 */
94 	mempool_t *mpio_pool;
95 };
96 
97 /*
98  * Context information attached to each bio we process.
99  */
100 struct dm_mpath_io {
101 	struct pgpath *pgpath;
102 	size_t nr_bytes;
103 };
104 
105 typedef int (*action_fn) (struct pgpath *pgpath);
106 
107 #define MIN_IOS 256	/* Mempool size */
108 
109 static struct kmem_cache *_mpio_cache;
110 
111 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
112 static void process_queued_ios(struct work_struct *work);
113 static void trigger_event(struct work_struct *work);
114 static void activate_path(struct work_struct *work);
115 static void deactivate_path(struct work_struct *work);
116 
117 
118 /*-----------------------------------------------
119  * Allocation routines
120  *-----------------------------------------------*/
121 
122 static struct pgpath *alloc_pgpath(void)
123 {
124 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
125 
126 	if (pgpath) {
127 		pgpath->is_active = 1;
128 		INIT_WORK(&pgpath->deactivate_path, deactivate_path);
129 		INIT_WORK(&pgpath->activate_path, activate_path);
130 	}
131 
132 	return pgpath;
133 }
134 
135 static void free_pgpath(struct pgpath *pgpath)
136 {
137 	kfree(pgpath);
138 }
139 
140 static void deactivate_path(struct work_struct *work)
141 {
142 	struct pgpath *pgpath =
143 		container_of(work, struct pgpath, deactivate_path);
144 
145 	blk_abort_queue(pgpath->path.dev->bdev->bd_disk->queue);
146 }
147 
148 static struct priority_group *alloc_priority_group(void)
149 {
150 	struct priority_group *pg;
151 
152 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
153 
154 	if (pg)
155 		INIT_LIST_HEAD(&pg->pgpaths);
156 
157 	return pg;
158 }
159 
160 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
161 {
162 	struct pgpath *pgpath, *tmp;
163 	struct multipath *m = ti->private;
164 
165 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
166 		list_del(&pgpath->list);
167 		if (m->hw_handler_name)
168 			scsi_dh_detach(bdev_get_queue(pgpath->path.dev->bdev));
169 		dm_put_device(ti, pgpath->path.dev);
170 		free_pgpath(pgpath);
171 	}
172 }
173 
174 static void free_priority_group(struct priority_group *pg,
175 				struct dm_target *ti)
176 {
177 	struct path_selector *ps = &pg->ps;
178 
179 	if (ps->type) {
180 		ps->type->destroy(ps);
181 		dm_put_path_selector(ps->type);
182 	}
183 
184 	free_pgpaths(&pg->pgpaths, ti);
185 	kfree(pg);
186 }
187 
188 static struct multipath *alloc_multipath(struct dm_target *ti)
189 {
190 	struct multipath *m;
191 
192 	m = kzalloc(sizeof(*m), GFP_KERNEL);
193 	if (m) {
194 		INIT_LIST_HEAD(&m->priority_groups);
195 		INIT_LIST_HEAD(&m->queued_ios);
196 		spin_lock_init(&m->lock);
197 		m->queue_io = 1;
198 		INIT_WORK(&m->process_queued_ios, process_queued_ios);
199 		INIT_WORK(&m->trigger_event, trigger_event);
200 		m->mpio_pool = mempool_create_slab_pool(MIN_IOS, _mpio_cache);
201 		if (!m->mpio_pool) {
202 			kfree(m);
203 			return NULL;
204 		}
205 		m->ti = ti;
206 		ti->private = m;
207 	}
208 
209 	return m;
210 }
211 
212 static void free_multipath(struct multipath *m)
213 {
214 	struct priority_group *pg, *tmp;
215 
216 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
217 		list_del(&pg->list);
218 		free_priority_group(pg, m->ti);
219 	}
220 
221 	kfree(m->hw_handler_name);
222 	mempool_destroy(m->mpio_pool);
223 	kfree(m);
224 }
225 
226 
227 /*-----------------------------------------------
228  * Path selection
229  *-----------------------------------------------*/
230 
231 static void __switch_pg(struct multipath *m, struct pgpath *pgpath)
232 {
233 	m->current_pg = pgpath->pg;
234 
235 	/* Must we initialise the PG first, and queue I/O till it's ready? */
236 	if (m->hw_handler_name) {
237 		m->pg_init_required = 1;
238 		m->queue_io = 1;
239 	} else {
240 		m->pg_init_required = 0;
241 		m->queue_io = 0;
242 	}
243 
244 	m->pg_init_count = 0;
245 }
246 
247 static int __choose_path_in_pg(struct multipath *m, struct priority_group *pg,
248 			       size_t nr_bytes)
249 {
250 	struct dm_path *path;
251 
252 	path = pg->ps.type->select_path(&pg->ps, &m->repeat_count, nr_bytes);
253 	if (!path)
254 		return -ENXIO;
255 
256 	m->current_pgpath = path_to_pgpath(path);
257 
258 	if (m->current_pg != pg)
259 		__switch_pg(m, m->current_pgpath);
260 
261 	return 0;
262 }
263 
264 static void __choose_pgpath(struct multipath *m, size_t nr_bytes)
265 {
266 	struct priority_group *pg;
267 	unsigned bypassed = 1;
268 
269 	if (!m->nr_valid_paths)
270 		goto failed;
271 
272 	/* Were we instructed to switch PG? */
273 	if (m->next_pg) {
274 		pg = m->next_pg;
275 		m->next_pg = NULL;
276 		if (!__choose_path_in_pg(m, pg, nr_bytes))
277 			return;
278 	}
279 
280 	/* Don't change PG until it has no remaining paths */
281 	if (m->current_pg && !__choose_path_in_pg(m, m->current_pg, nr_bytes))
282 		return;
283 
284 	/*
285 	 * Loop through priority groups until we find a valid path.
286 	 * First time we skip PGs marked 'bypassed'.
287 	 * Second time we only try the ones we skipped.
288 	 */
289 	do {
290 		list_for_each_entry(pg, &m->priority_groups, list) {
291 			if (pg->bypassed == bypassed)
292 				continue;
293 			if (!__choose_path_in_pg(m, pg, nr_bytes))
294 				return;
295 		}
296 	} while (bypassed--);
297 
298 failed:
299 	m->current_pgpath = NULL;
300 	m->current_pg = NULL;
301 }
302 
303 /*
304  * Check whether bios must be queued in the device-mapper core rather
305  * than here in the target.
306  *
307  * m->lock must be held on entry.
308  *
309  * If m->queue_if_no_path and m->saved_queue_if_no_path hold the
310  * same value then we are not between multipath_presuspend()
311  * and multipath_resume() calls and we have no need to check
312  * for the DMF_NOFLUSH_SUSPENDING flag.
313  */
314 static int __must_push_back(struct multipath *m)
315 {
316 	return (m->queue_if_no_path != m->saved_queue_if_no_path &&
317 		dm_noflush_suspending(m->ti));
318 }
319 
320 static int map_io(struct multipath *m, struct request *clone,
321 		  struct dm_mpath_io *mpio, unsigned was_queued)
322 {
323 	int r = DM_MAPIO_REMAPPED;
324 	size_t nr_bytes = blk_rq_bytes(clone);
325 	unsigned long flags;
326 	struct pgpath *pgpath;
327 	struct block_device *bdev;
328 
329 	spin_lock_irqsave(&m->lock, flags);
330 
331 	/* Do we need to select a new pgpath? */
332 	if (!m->current_pgpath ||
333 	    (!m->queue_io && (m->repeat_count && --m->repeat_count == 0)))
334 		__choose_pgpath(m, nr_bytes);
335 
336 	pgpath = m->current_pgpath;
337 
338 	if (was_queued)
339 		m->queue_size--;
340 
341 	if ((pgpath && m->queue_io) ||
342 	    (!pgpath && m->queue_if_no_path)) {
343 		/* Queue for the daemon to resubmit */
344 		list_add_tail(&clone->queuelist, &m->queued_ios);
345 		m->queue_size++;
346 		if ((m->pg_init_required && !m->pg_init_in_progress) ||
347 		    !m->queue_io)
348 			queue_work(kmultipathd, &m->process_queued_ios);
349 		pgpath = NULL;
350 		r = DM_MAPIO_SUBMITTED;
351 	} else if (pgpath) {
352 		bdev = pgpath->path.dev->bdev;
353 		clone->q = bdev_get_queue(bdev);
354 		clone->rq_disk = bdev->bd_disk;
355 	} else if (__must_push_back(m))
356 		r = DM_MAPIO_REQUEUE;
357 	else
358 		r = -EIO;	/* Failed */
359 
360 	mpio->pgpath = pgpath;
361 	mpio->nr_bytes = nr_bytes;
362 
363 	if (r == DM_MAPIO_REMAPPED && pgpath->pg->ps.type->start_io)
364 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps, &pgpath->path,
365 					      nr_bytes);
366 
367 	spin_unlock_irqrestore(&m->lock, flags);
368 
369 	return r;
370 }
371 
372 /*
373  * If we run out of usable paths, should we queue I/O or error it?
374  */
375 static int queue_if_no_path(struct multipath *m, unsigned queue_if_no_path,
376 			    unsigned save_old_value)
377 {
378 	unsigned long flags;
379 
380 	spin_lock_irqsave(&m->lock, flags);
381 
382 	if (save_old_value)
383 		m->saved_queue_if_no_path = m->queue_if_no_path;
384 	else
385 		m->saved_queue_if_no_path = queue_if_no_path;
386 	m->queue_if_no_path = queue_if_no_path;
387 	if (!m->queue_if_no_path && m->queue_size)
388 		queue_work(kmultipathd, &m->process_queued_ios);
389 
390 	spin_unlock_irqrestore(&m->lock, flags);
391 
392 	return 0;
393 }
394 
395 /*-----------------------------------------------------------------
396  * The multipath daemon is responsible for resubmitting queued ios.
397  *---------------------------------------------------------------*/
398 
399 static void dispatch_queued_ios(struct multipath *m)
400 {
401 	int r;
402 	unsigned long flags;
403 	struct dm_mpath_io *mpio;
404 	union map_info *info;
405 	struct request *clone, *n;
406 	LIST_HEAD(cl);
407 
408 	spin_lock_irqsave(&m->lock, flags);
409 	list_splice_init(&m->queued_ios, &cl);
410 	spin_unlock_irqrestore(&m->lock, flags);
411 
412 	list_for_each_entry_safe(clone, n, &cl, queuelist) {
413 		list_del_init(&clone->queuelist);
414 
415 		info = dm_get_rq_mapinfo(clone);
416 		mpio = info->ptr;
417 
418 		r = map_io(m, clone, mpio, 1);
419 		if (r < 0) {
420 			mempool_free(mpio, m->mpio_pool);
421 			dm_kill_unmapped_request(clone, r);
422 		} else if (r == DM_MAPIO_REMAPPED)
423 			dm_dispatch_request(clone);
424 		else if (r == DM_MAPIO_REQUEUE) {
425 			mempool_free(mpio, m->mpio_pool);
426 			dm_requeue_unmapped_request(clone);
427 		}
428 	}
429 }
430 
431 static void process_queued_ios(struct work_struct *work)
432 {
433 	struct multipath *m =
434 		container_of(work, struct multipath, process_queued_ios);
435 	struct pgpath *pgpath = NULL, *tmp;
436 	unsigned must_queue = 1;
437 	unsigned long flags;
438 
439 	spin_lock_irqsave(&m->lock, flags);
440 
441 	if (!m->queue_size)
442 		goto out;
443 
444 	if (!m->current_pgpath)
445 		__choose_pgpath(m, 0);
446 
447 	pgpath = m->current_pgpath;
448 
449 	if ((pgpath && !m->queue_io) ||
450 	    (!pgpath && !m->queue_if_no_path))
451 		must_queue = 0;
452 
453 	if (m->pg_init_required && !m->pg_init_in_progress && pgpath) {
454 		m->pg_init_count++;
455 		m->pg_init_required = 0;
456 		list_for_each_entry(tmp, &pgpath->pg->pgpaths, list) {
457 			if (queue_work(kmpath_handlerd, &tmp->activate_path))
458 				m->pg_init_in_progress++;
459 		}
460 	}
461 out:
462 	spin_unlock_irqrestore(&m->lock, flags);
463 	if (!must_queue)
464 		dispatch_queued_ios(m);
465 }
466 
467 /*
468  * An event is triggered whenever a path is taken out of use.
469  * Includes path failure and PG bypass.
470  */
471 static void trigger_event(struct work_struct *work)
472 {
473 	struct multipath *m =
474 		container_of(work, struct multipath, trigger_event);
475 
476 	dm_table_event(m->ti->table);
477 }
478 
479 /*-----------------------------------------------------------------
480  * Constructor/argument parsing:
481  * <#multipath feature args> [<arg>]*
482  * <#hw_handler args> [hw_handler [<arg>]*]
483  * <#priority groups>
484  * <initial priority group>
485  *     [<selector> <#selector args> [<arg>]*
486  *      <#paths> <#per-path selector args>
487  *         [<path> [<arg>]* ]+ ]+
488  *---------------------------------------------------------------*/
489 struct param {
490 	unsigned min;
491 	unsigned max;
492 	char *error;
493 };
494 
495 static int read_param(struct param *param, char *str, unsigned *v, char **error)
496 {
497 	if (!str ||
498 	    (sscanf(str, "%u", v) != 1) ||
499 	    (*v < param->min) ||
500 	    (*v > param->max)) {
501 		*error = param->error;
502 		return -EINVAL;
503 	}
504 
505 	return 0;
506 }
507 
508 struct arg_set {
509 	unsigned argc;
510 	char **argv;
511 };
512 
513 static char *shift(struct arg_set *as)
514 {
515 	char *r;
516 
517 	if (as->argc) {
518 		as->argc--;
519 		r = *as->argv;
520 		as->argv++;
521 		return r;
522 	}
523 
524 	return NULL;
525 }
526 
527 static void consume(struct arg_set *as, unsigned n)
528 {
529 	BUG_ON (as->argc < n);
530 	as->argc -= n;
531 	as->argv += n;
532 }
533 
534 static int parse_path_selector(struct arg_set *as, struct priority_group *pg,
535 			       struct dm_target *ti)
536 {
537 	int r;
538 	struct path_selector_type *pst;
539 	unsigned ps_argc;
540 
541 	static struct param _params[] = {
542 		{0, 1024, "invalid number of path selector args"},
543 	};
544 
545 	pst = dm_get_path_selector(shift(as));
546 	if (!pst) {
547 		ti->error = "unknown path selector type";
548 		return -EINVAL;
549 	}
550 
551 	r = read_param(_params, shift(as), &ps_argc, &ti->error);
552 	if (r) {
553 		dm_put_path_selector(pst);
554 		return -EINVAL;
555 	}
556 
557 	if (ps_argc > as->argc) {
558 		dm_put_path_selector(pst);
559 		ti->error = "not enough arguments for path selector";
560 		return -EINVAL;
561 	}
562 
563 	r = pst->create(&pg->ps, ps_argc, as->argv);
564 	if (r) {
565 		dm_put_path_selector(pst);
566 		ti->error = "path selector constructor failed";
567 		return r;
568 	}
569 
570 	pg->ps.type = pst;
571 	consume(as, ps_argc);
572 
573 	return 0;
574 }
575 
576 static struct pgpath *parse_path(struct arg_set *as, struct path_selector *ps,
577 			       struct dm_target *ti)
578 {
579 	int r;
580 	struct pgpath *p;
581 	struct multipath *m = ti->private;
582 
583 	/* we need at least a path arg */
584 	if (as->argc < 1) {
585 		ti->error = "no device given";
586 		return ERR_PTR(-EINVAL);
587 	}
588 
589 	p = alloc_pgpath();
590 	if (!p)
591 		return ERR_PTR(-ENOMEM);
592 
593 	r = dm_get_device(ti, shift(as), ti->begin, ti->len,
594 			  dm_table_get_mode(ti->table), &p->path.dev);
595 	if (r) {
596 		ti->error = "error getting device";
597 		goto bad;
598 	}
599 
600 	if (m->hw_handler_name) {
601 		struct request_queue *q = bdev_get_queue(p->path.dev->bdev);
602 
603 		r = scsi_dh_attach(q, m->hw_handler_name);
604 		if (r == -EBUSY) {
605 			/*
606 			 * Already attached to different hw_handler,
607 			 * try to reattach with correct one.
608 			 */
609 			scsi_dh_detach(q);
610 			r = scsi_dh_attach(q, m->hw_handler_name);
611 		}
612 
613 		if (r < 0) {
614 			ti->error = "error attaching hardware handler";
615 			dm_put_device(ti, p->path.dev);
616 			goto bad;
617 		}
618 	}
619 
620 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
621 	if (r) {
622 		dm_put_device(ti, p->path.dev);
623 		goto bad;
624 	}
625 
626 	return p;
627 
628  bad:
629 	free_pgpath(p);
630 	return ERR_PTR(r);
631 }
632 
633 static struct priority_group *parse_priority_group(struct arg_set *as,
634 						   struct multipath *m)
635 {
636 	static struct param _params[] = {
637 		{1, 1024, "invalid number of paths"},
638 		{0, 1024, "invalid number of selector args"}
639 	};
640 
641 	int r;
642 	unsigned i, nr_selector_args, nr_params;
643 	struct priority_group *pg;
644 	struct dm_target *ti = m->ti;
645 
646 	if (as->argc < 2) {
647 		as->argc = 0;
648 		ti->error = "not enough priority group arguments";
649 		return ERR_PTR(-EINVAL);
650 	}
651 
652 	pg = alloc_priority_group();
653 	if (!pg) {
654 		ti->error = "couldn't allocate priority group";
655 		return ERR_PTR(-ENOMEM);
656 	}
657 	pg->m = m;
658 
659 	r = parse_path_selector(as, pg, ti);
660 	if (r)
661 		goto bad;
662 
663 	/*
664 	 * read the paths
665 	 */
666 	r = read_param(_params, shift(as), &pg->nr_pgpaths, &ti->error);
667 	if (r)
668 		goto bad;
669 
670 	r = read_param(_params + 1, shift(as), &nr_selector_args, &ti->error);
671 	if (r)
672 		goto bad;
673 
674 	nr_params = 1 + nr_selector_args;
675 	for (i = 0; i < pg->nr_pgpaths; i++) {
676 		struct pgpath *pgpath;
677 		struct arg_set path_args;
678 
679 		if (as->argc < nr_params) {
680 			ti->error = "not enough path parameters";
681 			goto bad;
682 		}
683 
684 		path_args.argc = nr_params;
685 		path_args.argv = as->argv;
686 
687 		pgpath = parse_path(&path_args, &pg->ps, ti);
688 		if (IS_ERR(pgpath)) {
689 			r = PTR_ERR(pgpath);
690 			goto bad;
691 		}
692 
693 		pgpath->pg = pg;
694 		list_add_tail(&pgpath->list, &pg->pgpaths);
695 		consume(as, nr_params);
696 	}
697 
698 	return pg;
699 
700  bad:
701 	free_priority_group(pg, ti);
702 	return ERR_PTR(r);
703 }
704 
705 static int parse_hw_handler(struct arg_set *as, struct multipath *m)
706 {
707 	unsigned hw_argc;
708 	struct dm_target *ti = m->ti;
709 
710 	static struct param _params[] = {
711 		{0, 1024, "invalid number of hardware handler args"},
712 	};
713 
714 	if (read_param(_params, shift(as), &hw_argc, &ti->error))
715 		return -EINVAL;
716 
717 	if (!hw_argc)
718 		return 0;
719 
720 	if (hw_argc > as->argc) {
721 		ti->error = "not enough arguments for hardware handler";
722 		return -EINVAL;
723 	}
724 
725 	m->hw_handler_name = kstrdup(shift(as), GFP_KERNEL);
726 	request_module("scsi_dh_%s", m->hw_handler_name);
727 	if (scsi_dh_handler_exist(m->hw_handler_name) == 0) {
728 		ti->error = "unknown hardware handler type";
729 		kfree(m->hw_handler_name);
730 		m->hw_handler_name = NULL;
731 		return -EINVAL;
732 	}
733 
734 	if (hw_argc > 1)
735 		DMWARN("Ignoring user-specified arguments for "
736 		       "hardware handler \"%s\"", m->hw_handler_name);
737 	consume(as, hw_argc - 1);
738 
739 	return 0;
740 }
741 
742 static int parse_features(struct arg_set *as, struct multipath *m)
743 {
744 	int r;
745 	unsigned argc;
746 	struct dm_target *ti = m->ti;
747 	const char *param_name;
748 
749 	static struct param _params[] = {
750 		{0, 3, "invalid number of feature args"},
751 		{1, 50, "pg_init_retries must be between 1 and 50"},
752 	};
753 
754 	r = read_param(_params, shift(as), &argc, &ti->error);
755 	if (r)
756 		return -EINVAL;
757 
758 	if (!argc)
759 		return 0;
760 
761 	do {
762 		param_name = shift(as);
763 		argc--;
764 
765 		if (!strnicmp(param_name, MESG_STR("queue_if_no_path"))) {
766 			r = queue_if_no_path(m, 1, 0);
767 			continue;
768 		}
769 
770 		if (!strnicmp(param_name, MESG_STR("pg_init_retries")) &&
771 		    (argc >= 1)) {
772 			r = read_param(_params + 1, shift(as),
773 				       &m->pg_init_retries, &ti->error);
774 			argc--;
775 			continue;
776 		}
777 
778 		ti->error = "Unrecognised multipath feature request";
779 		r = -EINVAL;
780 	} while (argc && !r);
781 
782 	return r;
783 }
784 
785 static int multipath_ctr(struct dm_target *ti, unsigned int argc,
786 			 char **argv)
787 {
788 	/* target parameters */
789 	static struct param _params[] = {
790 		{1, 1024, "invalid number of priority groups"},
791 		{1, 1024, "invalid initial priority group number"},
792 	};
793 
794 	int r;
795 	struct multipath *m;
796 	struct arg_set as;
797 	unsigned pg_count = 0;
798 	unsigned next_pg_num;
799 
800 	as.argc = argc;
801 	as.argv = argv;
802 
803 	m = alloc_multipath(ti);
804 	if (!m) {
805 		ti->error = "can't allocate multipath";
806 		return -EINVAL;
807 	}
808 
809 	r = parse_features(&as, m);
810 	if (r)
811 		goto bad;
812 
813 	r = parse_hw_handler(&as, m);
814 	if (r)
815 		goto bad;
816 
817 	r = read_param(_params, shift(&as), &m->nr_priority_groups, &ti->error);
818 	if (r)
819 		goto bad;
820 
821 	r = read_param(_params + 1, shift(&as), &next_pg_num, &ti->error);
822 	if (r)
823 		goto bad;
824 
825 	/* parse the priority groups */
826 	while (as.argc) {
827 		struct priority_group *pg;
828 
829 		pg = parse_priority_group(&as, m);
830 		if (IS_ERR(pg)) {
831 			r = PTR_ERR(pg);
832 			goto bad;
833 		}
834 
835 		m->nr_valid_paths += pg->nr_pgpaths;
836 		list_add_tail(&pg->list, &m->priority_groups);
837 		pg_count++;
838 		pg->pg_num = pg_count;
839 		if (!--next_pg_num)
840 			m->next_pg = pg;
841 	}
842 
843 	if (pg_count != m->nr_priority_groups) {
844 		ti->error = "priority group count mismatch";
845 		r = -EINVAL;
846 		goto bad;
847 	}
848 
849 	ti->num_flush_requests = 1;
850 
851 	return 0;
852 
853  bad:
854 	free_multipath(m);
855 	return r;
856 }
857 
858 static void multipath_dtr(struct dm_target *ti)
859 {
860 	struct multipath *m = (struct multipath *) ti->private;
861 
862 	flush_workqueue(kmpath_handlerd);
863 	flush_workqueue(kmultipathd);
864 	flush_scheduled_work();
865 	free_multipath(m);
866 }
867 
868 /*
869  * Map cloned requests
870  */
871 static int multipath_map(struct dm_target *ti, struct request *clone,
872 			 union map_info *map_context)
873 {
874 	int r;
875 	struct dm_mpath_io *mpio;
876 	struct multipath *m = (struct multipath *) ti->private;
877 
878 	mpio = mempool_alloc(m->mpio_pool, GFP_ATOMIC);
879 	if (!mpio)
880 		/* ENOMEM, requeue */
881 		return DM_MAPIO_REQUEUE;
882 	memset(mpio, 0, sizeof(*mpio));
883 
884 	map_context->ptr = mpio;
885 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
886 	r = map_io(m, clone, mpio, 0);
887 	if (r < 0 || r == DM_MAPIO_REQUEUE)
888 		mempool_free(mpio, m->mpio_pool);
889 
890 	return r;
891 }
892 
893 /*
894  * Take a path out of use.
895  */
896 static int fail_path(struct pgpath *pgpath)
897 {
898 	unsigned long flags;
899 	struct multipath *m = pgpath->pg->m;
900 
901 	spin_lock_irqsave(&m->lock, flags);
902 
903 	if (!pgpath->is_active)
904 		goto out;
905 
906 	DMWARN("Failing path %s.", pgpath->path.dev->name);
907 
908 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
909 	pgpath->is_active = 0;
910 	pgpath->fail_count++;
911 
912 	m->nr_valid_paths--;
913 
914 	if (pgpath == m->current_pgpath)
915 		m->current_pgpath = NULL;
916 
917 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
918 		      pgpath->path.dev->name, m->nr_valid_paths);
919 
920 	schedule_work(&m->trigger_event);
921 	queue_work(kmultipathd, &pgpath->deactivate_path);
922 
923 out:
924 	spin_unlock_irqrestore(&m->lock, flags);
925 
926 	return 0;
927 }
928 
929 /*
930  * Reinstate a previously-failed path
931  */
932 static int reinstate_path(struct pgpath *pgpath)
933 {
934 	int r = 0;
935 	unsigned long flags;
936 	struct multipath *m = pgpath->pg->m;
937 
938 	spin_lock_irqsave(&m->lock, flags);
939 
940 	if (pgpath->is_active)
941 		goto out;
942 
943 	if (!pgpath->pg->ps.type->reinstate_path) {
944 		DMWARN("Reinstate path not supported by path selector %s",
945 		       pgpath->pg->ps.type->name);
946 		r = -EINVAL;
947 		goto out;
948 	}
949 
950 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
951 	if (r)
952 		goto out;
953 
954 	pgpath->is_active = 1;
955 
956 	if (!m->nr_valid_paths++ && m->queue_size) {
957 		m->current_pgpath = NULL;
958 		queue_work(kmultipathd, &m->process_queued_ios);
959 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
960 		if (queue_work(kmpath_handlerd, &pgpath->activate_path))
961 			m->pg_init_in_progress++;
962 	}
963 
964 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
965 		      pgpath->path.dev->name, m->nr_valid_paths);
966 
967 	schedule_work(&m->trigger_event);
968 
969 out:
970 	spin_unlock_irqrestore(&m->lock, flags);
971 
972 	return r;
973 }
974 
975 /*
976  * Fail or reinstate all paths that match the provided struct dm_dev.
977  */
978 static int action_dev(struct multipath *m, struct dm_dev *dev,
979 		      action_fn action)
980 {
981 	int r = 0;
982 	struct pgpath *pgpath;
983 	struct priority_group *pg;
984 
985 	list_for_each_entry(pg, &m->priority_groups, list) {
986 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
987 			if (pgpath->path.dev == dev)
988 				r = action(pgpath);
989 		}
990 	}
991 
992 	return r;
993 }
994 
995 /*
996  * Temporarily try to avoid having to use the specified PG
997  */
998 static void bypass_pg(struct multipath *m, struct priority_group *pg,
999 		      int bypassed)
1000 {
1001 	unsigned long flags;
1002 
1003 	spin_lock_irqsave(&m->lock, flags);
1004 
1005 	pg->bypassed = bypassed;
1006 	m->current_pgpath = NULL;
1007 	m->current_pg = NULL;
1008 
1009 	spin_unlock_irqrestore(&m->lock, flags);
1010 
1011 	schedule_work(&m->trigger_event);
1012 }
1013 
1014 /*
1015  * Switch to using the specified PG from the next I/O that gets mapped
1016  */
1017 static int switch_pg_num(struct multipath *m, const char *pgstr)
1018 {
1019 	struct priority_group *pg;
1020 	unsigned pgnum;
1021 	unsigned long flags;
1022 
1023 	if (!pgstr || (sscanf(pgstr, "%u", &pgnum) != 1) || !pgnum ||
1024 	    (pgnum > m->nr_priority_groups)) {
1025 		DMWARN("invalid PG number supplied to switch_pg_num");
1026 		return -EINVAL;
1027 	}
1028 
1029 	spin_lock_irqsave(&m->lock, flags);
1030 	list_for_each_entry(pg, &m->priority_groups, list) {
1031 		pg->bypassed = 0;
1032 		if (--pgnum)
1033 			continue;
1034 
1035 		m->current_pgpath = NULL;
1036 		m->current_pg = NULL;
1037 		m->next_pg = pg;
1038 	}
1039 	spin_unlock_irqrestore(&m->lock, flags);
1040 
1041 	schedule_work(&m->trigger_event);
1042 	return 0;
1043 }
1044 
1045 /*
1046  * Set/clear bypassed status of a PG.
1047  * PGs are numbered upwards from 1 in the order they were declared.
1048  */
1049 static int bypass_pg_num(struct multipath *m, const char *pgstr, int bypassed)
1050 {
1051 	struct priority_group *pg;
1052 	unsigned pgnum;
1053 
1054 	if (!pgstr || (sscanf(pgstr, "%u", &pgnum) != 1) || !pgnum ||
1055 	    (pgnum > m->nr_priority_groups)) {
1056 		DMWARN("invalid PG number supplied to bypass_pg");
1057 		return -EINVAL;
1058 	}
1059 
1060 	list_for_each_entry(pg, &m->priority_groups, list) {
1061 		if (!--pgnum)
1062 			break;
1063 	}
1064 
1065 	bypass_pg(m, pg, bypassed);
1066 	return 0;
1067 }
1068 
1069 /*
1070  * Should we retry pg_init immediately?
1071  */
1072 static int pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1073 {
1074 	unsigned long flags;
1075 	int limit_reached = 0;
1076 
1077 	spin_lock_irqsave(&m->lock, flags);
1078 
1079 	if (m->pg_init_count <= m->pg_init_retries)
1080 		m->pg_init_required = 1;
1081 	else
1082 		limit_reached = 1;
1083 
1084 	spin_unlock_irqrestore(&m->lock, flags);
1085 
1086 	return limit_reached;
1087 }
1088 
1089 static void pg_init_done(struct dm_path *path, int errors)
1090 {
1091 	struct pgpath *pgpath = path_to_pgpath(path);
1092 	struct priority_group *pg = pgpath->pg;
1093 	struct multipath *m = pg->m;
1094 	unsigned long flags;
1095 
1096 	/* device or driver problems */
1097 	switch (errors) {
1098 	case SCSI_DH_OK:
1099 		break;
1100 	case SCSI_DH_NOSYS:
1101 		if (!m->hw_handler_name) {
1102 			errors = 0;
1103 			break;
1104 		}
1105 		DMERR("Cannot failover device because scsi_dh_%s was not "
1106 		      "loaded.", m->hw_handler_name);
1107 		/*
1108 		 * Fail path for now, so we do not ping pong
1109 		 */
1110 		fail_path(pgpath);
1111 		break;
1112 	case SCSI_DH_DEV_TEMP_BUSY:
1113 		/*
1114 		 * Probably doing something like FW upgrade on the
1115 		 * controller so try the other pg.
1116 		 */
1117 		bypass_pg(m, pg, 1);
1118 		break;
1119 	/* TODO: For SCSI_DH_RETRY we should wait a couple seconds */
1120 	case SCSI_DH_RETRY:
1121 	case SCSI_DH_IMM_RETRY:
1122 	case SCSI_DH_RES_TEMP_UNAVAIL:
1123 		if (pg_init_limit_reached(m, pgpath))
1124 			fail_path(pgpath);
1125 		errors = 0;
1126 		break;
1127 	default:
1128 		/*
1129 		 * We probably do not want to fail the path for a device
1130 		 * error, but this is what the old dm did. In future
1131 		 * patches we can do more advanced handling.
1132 		 */
1133 		fail_path(pgpath);
1134 	}
1135 
1136 	spin_lock_irqsave(&m->lock, flags);
1137 	if (errors) {
1138 		if (pgpath == m->current_pgpath) {
1139 			DMERR("Could not failover device. Error %d.", errors);
1140 			m->current_pgpath = NULL;
1141 			m->current_pg = NULL;
1142 		}
1143 	} else if (!m->pg_init_required) {
1144 		m->queue_io = 0;
1145 		pg->bypassed = 0;
1146 	}
1147 
1148 	m->pg_init_in_progress--;
1149 	if (!m->pg_init_in_progress)
1150 		queue_work(kmultipathd, &m->process_queued_ios);
1151 	spin_unlock_irqrestore(&m->lock, flags);
1152 }
1153 
1154 static void activate_path(struct work_struct *work)
1155 {
1156 	int ret;
1157 	struct pgpath *pgpath =
1158 		container_of(work, struct pgpath, activate_path);
1159 
1160 	ret = scsi_dh_activate(bdev_get_queue(pgpath->path.dev->bdev));
1161 	pg_init_done(&pgpath->path, ret);
1162 }
1163 
1164 /*
1165  * end_io handling
1166  */
1167 static int do_end_io(struct multipath *m, struct request *clone,
1168 		     int error, struct dm_mpath_io *mpio)
1169 {
1170 	/*
1171 	 * We don't queue any clone request inside the multipath target
1172 	 * during end I/O handling, since those clone requests don't have
1173 	 * bio clones.  If we queue them inside the multipath target,
1174 	 * we need to make bio clones, that requires memory allocation.
1175 	 * (See drivers/md/dm.c:end_clone_bio() about why the clone requests
1176 	 *  don't have bio clones.)
1177 	 * Instead of queueing the clone request here, we queue the original
1178 	 * request into dm core, which will remake a clone request and
1179 	 * clone bios for it and resubmit it later.
1180 	 */
1181 	int r = DM_ENDIO_REQUEUE;
1182 	unsigned long flags;
1183 
1184 	if (!error && !clone->errors)
1185 		return 0;	/* I/O complete */
1186 
1187 	if (error == -EOPNOTSUPP)
1188 		return error;
1189 
1190 	if (mpio->pgpath)
1191 		fail_path(mpio->pgpath);
1192 
1193 	spin_lock_irqsave(&m->lock, flags);
1194 	if (!m->nr_valid_paths && !m->queue_if_no_path && !__must_push_back(m))
1195 		r = -EIO;
1196 	spin_unlock_irqrestore(&m->lock, flags);
1197 
1198 	return r;
1199 }
1200 
1201 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1202 			    int error, union map_info *map_context)
1203 {
1204 	struct multipath *m = ti->private;
1205 	struct dm_mpath_io *mpio = map_context->ptr;
1206 	struct pgpath *pgpath = mpio->pgpath;
1207 	struct path_selector *ps;
1208 	int r;
1209 
1210 	r  = do_end_io(m, clone, error, mpio);
1211 	if (pgpath) {
1212 		ps = &pgpath->pg->ps;
1213 		if (ps->type->end_io)
1214 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1215 	}
1216 	mempool_free(mpio, m->mpio_pool);
1217 
1218 	return r;
1219 }
1220 
1221 /*
1222  * Suspend can't complete until all the I/O is processed so if
1223  * the last path fails we must error any remaining I/O.
1224  * Note that if the freeze_bdev fails while suspending, the
1225  * queue_if_no_path state is lost - userspace should reset it.
1226  */
1227 static void multipath_presuspend(struct dm_target *ti)
1228 {
1229 	struct multipath *m = (struct multipath *) ti->private;
1230 
1231 	queue_if_no_path(m, 0, 1);
1232 }
1233 
1234 /*
1235  * Restore the queue_if_no_path setting.
1236  */
1237 static void multipath_resume(struct dm_target *ti)
1238 {
1239 	struct multipath *m = (struct multipath *) ti->private;
1240 	unsigned long flags;
1241 
1242 	spin_lock_irqsave(&m->lock, flags);
1243 	m->queue_if_no_path = m->saved_queue_if_no_path;
1244 	spin_unlock_irqrestore(&m->lock, flags);
1245 }
1246 
1247 /*
1248  * Info output has the following format:
1249  * num_multipath_feature_args [multipath_feature_args]*
1250  * num_handler_status_args [handler_status_args]*
1251  * num_groups init_group_number
1252  *            [A|D|E num_ps_status_args [ps_status_args]*
1253  *             num_paths num_selector_args
1254  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1255  *
1256  * Table output has the following format (identical to the constructor string):
1257  * num_feature_args [features_args]*
1258  * num_handler_args hw_handler [hw_handler_args]*
1259  * num_groups init_group_number
1260  *     [priority selector-name num_ps_args [ps_args]*
1261  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1262  */
1263 static int multipath_status(struct dm_target *ti, status_type_t type,
1264 			    char *result, unsigned int maxlen)
1265 {
1266 	int sz = 0;
1267 	unsigned long flags;
1268 	struct multipath *m = (struct multipath *) ti->private;
1269 	struct priority_group *pg;
1270 	struct pgpath *p;
1271 	unsigned pg_num;
1272 	char state;
1273 
1274 	spin_lock_irqsave(&m->lock, flags);
1275 
1276 	/* Features */
1277 	if (type == STATUSTYPE_INFO)
1278 		DMEMIT("2 %u %u ", m->queue_size, m->pg_init_count);
1279 	else {
1280 		DMEMIT("%u ", m->queue_if_no_path +
1281 			      (m->pg_init_retries > 0) * 2);
1282 		if (m->queue_if_no_path)
1283 			DMEMIT("queue_if_no_path ");
1284 		if (m->pg_init_retries)
1285 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1286 	}
1287 
1288 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1289 		DMEMIT("0 ");
1290 	else
1291 		DMEMIT("1 %s ", m->hw_handler_name);
1292 
1293 	DMEMIT("%u ", m->nr_priority_groups);
1294 
1295 	if (m->next_pg)
1296 		pg_num = m->next_pg->pg_num;
1297 	else if (m->current_pg)
1298 		pg_num = m->current_pg->pg_num;
1299 	else
1300 			pg_num = 1;
1301 
1302 	DMEMIT("%u ", pg_num);
1303 
1304 	switch (type) {
1305 	case STATUSTYPE_INFO:
1306 		list_for_each_entry(pg, &m->priority_groups, list) {
1307 			if (pg->bypassed)
1308 				state = 'D';	/* Disabled */
1309 			else if (pg == m->current_pg)
1310 				state = 'A';	/* Currently Active */
1311 			else
1312 				state = 'E';	/* Enabled */
1313 
1314 			DMEMIT("%c ", state);
1315 
1316 			if (pg->ps.type->status)
1317 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1318 							  result + sz,
1319 							  maxlen - sz);
1320 			else
1321 				DMEMIT("0 ");
1322 
1323 			DMEMIT("%u %u ", pg->nr_pgpaths,
1324 			       pg->ps.type->info_args);
1325 
1326 			list_for_each_entry(p, &pg->pgpaths, list) {
1327 				DMEMIT("%s %s %u ", p->path.dev->name,
1328 				       p->is_active ? "A" : "F",
1329 				       p->fail_count);
1330 				if (pg->ps.type->status)
1331 					sz += pg->ps.type->status(&pg->ps,
1332 					      &p->path, type, result + sz,
1333 					      maxlen - sz);
1334 			}
1335 		}
1336 		break;
1337 
1338 	case STATUSTYPE_TABLE:
1339 		list_for_each_entry(pg, &m->priority_groups, list) {
1340 			DMEMIT("%s ", pg->ps.type->name);
1341 
1342 			if (pg->ps.type->status)
1343 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1344 							  result + sz,
1345 							  maxlen - sz);
1346 			else
1347 				DMEMIT("0 ");
1348 
1349 			DMEMIT("%u %u ", pg->nr_pgpaths,
1350 			       pg->ps.type->table_args);
1351 
1352 			list_for_each_entry(p, &pg->pgpaths, list) {
1353 				DMEMIT("%s ", p->path.dev->name);
1354 				if (pg->ps.type->status)
1355 					sz += pg->ps.type->status(&pg->ps,
1356 					      &p->path, type, result + sz,
1357 					      maxlen - sz);
1358 			}
1359 		}
1360 		break;
1361 	}
1362 
1363 	spin_unlock_irqrestore(&m->lock, flags);
1364 
1365 	return 0;
1366 }
1367 
1368 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv)
1369 {
1370 	int r;
1371 	struct dm_dev *dev;
1372 	struct multipath *m = (struct multipath *) ti->private;
1373 	action_fn action;
1374 
1375 	if (argc == 1) {
1376 		if (!strnicmp(argv[0], MESG_STR("queue_if_no_path")))
1377 			return queue_if_no_path(m, 1, 0);
1378 		else if (!strnicmp(argv[0], MESG_STR("fail_if_no_path")))
1379 			return queue_if_no_path(m, 0, 0);
1380 	}
1381 
1382 	if (argc != 2)
1383 		goto error;
1384 
1385 	if (!strnicmp(argv[0], MESG_STR("disable_group")))
1386 		return bypass_pg_num(m, argv[1], 1);
1387 	else if (!strnicmp(argv[0], MESG_STR("enable_group")))
1388 		return bypass_pg_num(m, argv[1], 0);
1389 	else if (!strnicmp(argv[0], MESG_STR("switch_group")))
1390 		return switch_pg_num(m, argv[1]);
1391 	else if (!strnicmp(argv[0], MESG_STR("reinstate_path")))
1392 		action = reinstate_path;
1393 	else if (!strnicmp(argv[0], MESG_STR("fail_path")))
1394 		action = fail_path;
1395 	else
1396 		goto error;
1397 
1398 	r = dm_get_device(ti, argv[1], ti->begin, ti->len,
1399 			  dm_table_get_mode(ti->table), &dev);
1400 	if (r) {
1401 		DMWARN("message: error getting device %s",
1402 		       argv[1]);
1403 		return -EINVAL;
1404 	}
1405 
1406 	r = action_dev(m, dev, action);
1407 
1408 	dm_put_device(ti, dev);
1409 
1410 	return r;
1411 
1412 error:
1413 	DMWARN("Unrecognised multipath message received.");
1414 	return -EINVAL;
1415 }
1416 
1417 static int multipath_ioctl(struct dm_target *ti, unsigned int cmd,
1418 			   unsigned long arg)
1419 {
1420 	struct multipath *m = (struct multipath *) ti->private;
1421 	struct block_device *bdev = NULL;
1422 	fmode_t mode = 0;
1423 	unsigned long flags;
1424 	int r = 0;
1425 
1426 	spin_lock_irqsave(&m->lock, flags);
1427 
1428 	if (!m->current_pgpath)
1429 		__choose_pgpath(m, 0);
1430 
1431 	if (m->current_pgpath) {
1432 		bdev = m->current_pgpath->path.dev->bdev;
1433 		mode = m->current_pgpath->path.dev->mode;
1434 	}
1435 
1436 	if (m->queue_io)
1437 		r = -EAGAIN;
1438 	else if (!bdev)
1439 		r = -EIO;
1440 
1441 	spin_unlock_irqrestore(&m->lock, flags);
1442 
1443 	return r ? : __blkdev_driver_ioctl(bdev, mode, cmd, arg);
1444 }
1445 
1446 static int multipath_iterate_devices(struct dm_target *ti,
1447 				     iterate_devices_callout_fn fn, void *data)
1448 {
1449 	struct multipath *m = ti->private;
1450 	struct priority_group *pg;
1451 	struct pgpath *p;
1452 	int ret = 0;
1453 
1454 	list_for_each_entry(pg, &m->priority_groups, list) {
1455 		list_for_each_entry(p, &pg->pgpaths, list) {
1456 			ret = fn(ti, p->path.dev, ti->begin, data);
1457 			if (ret)
1458 				goto out;
1459 		}
1460 	}
1461 
1462 out:
1463 	return ret;
1464 }
1465 
1466 static int __pgpath_busy(struct pgpath *pgpath)
1467 {
1468 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1469 
1470 	return dm_underlying_device_busy(q);
1471 }
1472 
1473 /*
1474  * We return "busy", only when we can map I/Os but underlying devices
1475  * are busy (so even if we map I/Os now, the I/Os will wait on
1476  * the underlying queue).
1477  * In other words, if we want to kill I/Os or queue them inside us
1478  * due to map unavailability, we don't return "busy".  Otherwise,
1479  * dm core won't give us the I/Os and we can't do what we want.
1480  */
1481 static int multipath_busy(struct dm_target *ti)
1482 {
1483 	int busy = 0, has_active = 0;
1484 	struct multipath *m = ti->private;
1485 	struct priority_group *pg;
1486 	struct pgpath *pgpath;
1487 	unsigned long flags;
1488 
1489 	spin_lock_irqsave(&m->lock, flags);
1490 
1491 	/* Guess which priority_group will be used at next mapping time */
1492 	if (unlikely(!m->current_pgpath && m->next_pg))
1493 		pg = m->next_pg;
1494 	else if (likely(m->current_pg))
1495 		pg = m->current_pg;
1496 	else
1497 		/*
1498 		 * We don't know which pg will be used at next mapping time.
1499 		 * We don't call __choose_pgpath() here to avoid to trigger
1500 		 * pg_init just by busy checking.
1501 		 * So we don't know whether underlying devices we will be using
1502 		 * at next mapping time are busy or not. Just try mapping.
1503 		 */
1504 		goto out;
1505 
1506 	/*
1507 	 * If there is one non-busy active path at least, the path selector
1508 	 * will be able to select it. So we consider such a pg as not busy.
1509 	 */
1510 	busy = 1;
1511 	list_for_each_entry(pgpath, &pg->pgpaths, list)
1512 		if (pgpath->is_active) {
1513 			has_active = 1;
1514 
1515 			if (!__pgpath_busy(pgpath)) {
1516 				busy = 0;
1517 				break;
1518 			}
1519 		}
1520 
1521 	if (!has_active)
1522 		/*
1523 		 * No active path in this pg, so this pg won't be used and
1524 		 * the current_pg will be changed at next mapping time.
1525 		 * We need to try mapping to determine it.
1526 		 */
1527 		busy = 0;
1528 
1529 out:
1530 	spin_unlock_irqrestore(&m->lock, flags);
1531 
1532 	return busy;
1533 }
1534 
1535 /*-----------------------------------------------------------------
1536  * Module setup
1537  *---------------------------------------------------------------*/
1538 static struct target_type multipath_target = {
1539 	.name = "multipath",
1540 	.version = {1, 1, 0},
1541 	.module = THIS_MODULE,
1542 	.ctr = multipath_ctr,
1543 	.dtr = multipath_dtr,
1544 	.map_rq = multipath_map,
1545 	.rq_end_io = multipath_end_io,
1546 	.presuspend = multipath_presuspend,
1547 	.resume = multipath_resume,
1548 	.status = multipath_status,
1549 	.message = multipath_message,
1550 	.ioctl  = multipath_ioctl,
1551 	.iterate_devices = multipath_iterate_devices,
1552 	.busy = multipath_busy,
1553 };
1554 
1555 static int __init dm_multipath_init(void)
1556 {
1557 	int r;
1558 
1559 	/* allocate a slab for the dm_ios */
1560 	_mpio_cache = KMEM_CACHE(dm_mpath_io, 0);
1561 	if (!_mpio_cache)
1562 		return -ENOMEM;
1563 
1564 	r = dm_register_target(&multipath_target);
1565 	if (r < 0) {
1566 		DMERR("register failed %d", r);
1567 		kmem_cache_destroy(_mpio_cache);
1568 		return -EINVAL;
1569 	}
1570 
1571 	kmultipathd = create_workqueue("kmpathd");
1572 	if (!kmultipathd) {
1573 		DMERR("failed to create workqueue kmpathd");
1574 		dm_unregister_target(&multipath_target);
1575 		kmem_cache_destroy(_mpio_cache);
1576 		return -ENOMEM;
1577 	}
1578 
1579 	/*
1580 	 * A separate workqueue is used to handle the device handlers
1581 	 * to avoid overloading existing workqueue. Overloading the
1582 	 * old workqueue would also create a bottleneck in the
1583 	 * path of the storage hardware device activation.
1584 	 */
1585 	kmpath_handlerd = create_singlethread_workqueue("kmpath_handlerd");
1586 	if (!kmpath_handlerd) {
1587 		DMERR("failed to create workqueue kmpath_handlerd");
1588 		destroy_workqueue(kmultipathd);
1589 		dm_unregister_target(&multipath_target);
1590 		kmem_cache_destroy(_mpio_cache);
1591 		return -ENOMEM;
1592 	}
1593 
1594 	DMINFO("version %u.%u.%u loaded",
1595 	       multipath_target.version[0], multipath_target.version[1],
1596 	       multipath_target.version[2]);
1597 
1598 	return r;
1599 }
1600 
1601 static void __exit dm_multipath_exit(void)
1602 {
1603 	destroy_workqueue(kmpath_handlerd);
1604 	destroy_workqueue(kmultipathd);
1605 
1606 	dm_unregister_target(&multipath_target);
1607 	kmem_cache_destroy(_mpio_cache);
1608 }
1609 
1610 module_init(dm_multipath_init);
1611 module_exit(dm_multipath_exit);
1612 
1613 MODULE_DESCRIPTION(DM_NAME " multipath target");
1614 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
1615 MODULE_LICENSE("GPL");
1616