xref: /linux/drivers/md/dm-log-writes.c (revision f68f2ff91512c199ec24883001245912afc17873)
1 /*
2  * Copyright (C) 2014 Facebook. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include <linux/device-mapper.h>
8 
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/blkdev.h>
12 #include <linux/bio.h>
13 #include <linux/dax.h>
14 #include <linux/slab.h>
15 #include <linux/kthread.h>
16 #include <linux/freezer.h>
17 #include <linux/uio.h>
18 
19 #define DM_MSG_PREFIX "log-writes"
20 
21 /*
22  * This target will sequentially log all writes to the target device onto the
23  * log device.  This is helpful for replaying writes to check for fs consistency
24  * at all times.  This target provides a mechanism to mark specific events to
25  * check data at a later time.  So for example you would:
26  *
27  * write data
28  * fsync
29  * dmsetup message /dev/whatever mark mymark
30  * unmount /mnt/test
31  *
32  * Then replay the log up to mymark and check the contents of the replay to
33  * verify it matches what was written.
34  *
35  * We log writes only after they have been flushed, this makes the log describe
36  * close to the order in which the data hits the actual disk, not its cache.  So
37  * for example the following sequence (W means write, C means complete)
38  *
39  * Wa,Wb,Wc,Cc,Ca,FLUSH,FUAd,Cb,CFLUSH,CFUAd
40  *
41  * Would result in the log looking like this:
42  *
43  * c,a,b,flush,fuad,<other writes>,<next flush>
44  *
45  * This is meant to help expose problems where file systems do not properly wait
46  * on data being written before invoking a FLUSH.  FUA bypasses cache so once it
47  * completes it is added to the log as it should be on disk.
48  *
49  * We treat DISCARDs as if they don't bypass cache so that they are logged in
50  * order of completion along with the normal writes.  If we didn't do it this
51  * way we would process all the discards first and then write all the data, when
52  * in fact we want to do the data and the discard in the order that they
53  * completed.
54  */
55 #define LOG_FLUSH_FLAG		(1 << 0)
56 #define LOG_FUA_FLAG		(1 << 1)
57 #define LOG_DISCARD_FLAG	(1 << 2)
58 #define LOG_MARK_FLAG		(1 << 3)
59 #define LOG_METADATA_FLAG	(1 << 4)
60 
61 #define WRITE_LOG_VERSION 1ULL
62 #define WRITE_LOG_MAGIC 0x6a736677736872ULL
63 #define WRITE_LOG_SUPER_SECTOR 0
64 
65 /*
66  * The disk format for this is braindead simple.
67  *
68  * At byte 0 we have our super, followed by the following sequence for
69  * nr_entries:
70  *
71  * [   1 sector    ][  entry->nr_sectors ]
72  * [log_write_entry][    data written    ]
73  *
74  * The log_write_entry takes up a full sector so we can have arbitrary length
75  * marks and it leaves us room for extra content in the future.
76  */
77 
78 /*
79  * Basic info about the log for userspace.
80  */
81 struct log_write_super {
82 	__le64 magic;
83 	__le64 version;
84 	__le64 nr_entries;
85 	__le32 sectorsize;
86 };
87 
88 /*
89  * sector - the sector we wrote.
90  * nr_sectors - the number of sectors we wrote.
91  * flags - flags for this log entry.
92  * data_len - the size of the data in this log entry, this is for private log
93  * entry stuff, the MARK data provided by userspace for example.
94  */
95 struct log_write_entry {
96 	__le64 sector;
97 	__le64 nr_sectors;
98 	__le64 flags;
99 	__le64 data_len;
100 };
101 
102 struct log_writes_c {
103 	struct dm_dev *dev;
104 	struct dm_dev *logdev;
105 	u64 logged_entries;
106 	u32 sectorsize;
107 	u32 sectorshift;
108 	atomic_t io_blocks;
109 	atomic_t pending_blocks;
110 	sector_t next_sector;
111 	sector_t end_sector;
112 	bool logging_enabled;
113 	bool device_supports_discard;
114 	spinlock_t blocks_lock;
115 	struct list_head unflushed_blocks;
116 	struct list_head logging_blocks;
117 	wait_queue_head_t wait;
118 	struct task_struct *log_kthread;
119 	struct completion super_done;
120 };
121 
122 struct pending_block {
123 	int vec_cnt;
124 	u64 flags;
125 	sector_t sector;
126 	sector_t nr_sectors;
127 	char *data;
128 	u32 datalen;
129 	struct list_head list;
130 	struct bio_vec vecs[];
131 };
132 
133 struct per_bio_data {
134 	struct pending_block *block;
135 };
136 
137 static inline sector_t bio_to_dev_sectors(struct log_writes_c *lc,
138 					  sector_t sectors)
139 {
140 	return sectors >> (lc->sectorshift - SECTOR_SHIFT);
141 }
142 
143 static inline sector_t dev_to_bio_sectors(struct log_writes_c *lc,
144 					  sector_t sectors)
145 {
146 	return sectors << (lc->sectorshift - SECTOR_SHIFT);
147 }
148 
149 static void put_pending_block(struct log_writes_c *lc)
150 {
151 	if (atomic_dec_and_test(&lc->pending_blocks)) {
152 		smp_mb__after_atomic();
153 		if (waitqueue_active(&lc->wait))
154 			wake_up(&lc->wait);
155 	}
156 }
157 
158 static void put_io_block(struct log_writes_c *lc)
159 {
160 	if (atomic_dec_and_test(&lc->io_blocks)) {
161 		smp_mb__after_atomic();
162 		if (waitqueue_active(&lc->wait))
163 			wake_up(&lc->wait);
164 	}
165 }
166 
167 static void log_end_io(struct bio *bio)
168 {
169 	struct log_writes_c *lc = bio->bi_private;
170 
171 	if (bio->bi_status) {
172 		unsigned long flags;
173 
174 		DMERR("Error writing log block, error=%d", bio->bi_status);
175 		spin_lock_irqsave(&lc->blocks_lock, flags);
176 		lc->logging_enabled = false;
177 		spin_unlock_irqrestore(&lc->blocks_lock, flags);
178 	}
179 
180 	bio_free_pages(bio);
181 	put_io_block(lc);
182 	bio_put(bio);
183 }
184 
185 static void log_end_super(struct bio *bio)
186 {
187 	struct log_writes_c *lc = bio->bi_private;
188 
189 	complete(&lc->super_done);
190 	log_end_io(bio);
191 }
192 
193 /*
194  * Meant to be called if there is an error, it will free all the pages
195  * associated with the block.
196  */
197 static void free_pending_block(struct log_writes_c *lc,
198 			       struct pending_block *block)
199 {
200 	int i;
201 
202 	for (i = 0; i < block->vec_cnt; i++) {
203 		if (block->vecs[i].bv_page)
204 			__free_page(block->vecs[i].bv_page);
205 	}
206 	kfree(block->data);
207 	kfree(block);
208 	put_pending_block(lc);
209 }
210 
211 static int write_metadata(struct log_writes_c *lc, void *entry,
212 			  size_t entrylen, void *data, size_t datalen,
213 			  sector_t sector)
214 {
215 	struct bio *bio;
216 	struct page *page;
217 	void *ptr;
218 	size_t ret;
219 
220 	bio = bio_alloc(GFP_KERNEL, 1);
221 	if (!bio) {
222 		DMERR("Couldn't alloc log bio");
223 		goto error;
224 	}
225 	bio->bi_iter.bi_size = 0;
226 	bio->bi_iter.bi_sector = sector;
227 	bio_set_dev(bio, lc->logdev->bdev);
228 	bio->bi_end_io = (sector == WRITE_LOG_SUPER_SECTOR) ?
229 			  log_end_super : log_end_io;
230 	bio->bi_private = lc;
231 	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
232 
233 	page = alloc_page(GFP_KERNEL);
234 	if (!page) {
235 		DMERR("Couldn't alloc log page");
236 		bio_put(bio);
237 		goto error;
238 	}
239 
240 	ptr = kmap_atomic(page);
241 	memcpy(ptr, entry, entrylen);
242 	if (datalen)
243 		memcpy(ptr + entrylen, data, datalen);
244 	memset(ptr + entrylen + datalen, 0,
245 	       lc->sectorsize - entrylen - datalen);
246 	kunmap_atomic(ptr);
247 
248 	ret = bio_add_page(bio, page, lc->sectorsize, 0);
249 	if (ret != lc->sectorsize) {
250 		DMERR("Couldn't add page to the log block");
251 		goto error_bio;
252 	}
253 	submit_bio(bio);
254 	return 0;
255 error_bio:
256 	bio_put(bio);
257 	__free_page(page);
258 error:
259 	put_io_block(lc);
260 	return -1;
261 }
262 
263 static int write_inline_data(struct log_writes_c *lc, void *entry,
264 			     size_t entrylen, void *data, size_t datalen,
265 			     sector_t sector)
266 {
267 	int bio_pages, pg_datalen, pg_sectorlen, i;
268 	struct page *page;
269 	struct bio *bio;
270 	size_t ret;
271 	void *ptr;
272 
273 	while (datalen) {
274 		bio_pages = bio_max_segs(DIV_ROUND_UP(datalen, PAGE_SIZE));
275 
276 		atomic_inc(&lc->io_blocks);
277 
278 		bio = bio_alloc(GFP_KERNEL, bio_pages);
279 		if (!bio) {
280 			DMERR("Couldn't alloc inline data bio");
281 			goto error;
282 		}
283 
284 		bio->bi_iter.bi_size = 0;
285 		bio->bi_iter.bi_sector = sector;
286 		bio_set_dev(bio, lc->logdev->bdev);
287 		bio->bi_end_io = log_end_io;
288 		bio->bi_private = lc;
289 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
290 
291 		for (i = 0; i < bio_pages; i++) {
292 			pg_datalen = min_t(int, datalen, PAGE_SIZE);
293 			pg_sectorlen = ALIGN(pg_datalen, lc->sectorsize);
294 
295 			page = alloc_page(GFP_KERNEL);
296 			if (!page) {
297 				DMERR("Couldn't alloc inline data page");
298 				goto error_bio;
299 			}
300 
301 			ptr = kmap_atomic(page);
302 			memcpy(ptr, data, pg_datalen);
303 			if (pg_sectorlen > pg_datalen)
304 				memset(ptr + pg_datalen, 0, pg_sectorlen - pg_datalen);
305 			kunmap_atomic(ptr);
306 
307 			ret = bio_add_page(bio, page, pg_sectorlen, 0);
308 			if (ret != pg_sectorlen) {
309 				DMERR("Couldn't add page of inline data");
310 				__free_page(page);
311 				goto error_bio;
312 			}
313 
314 			datalen -= pg_datalen;
315 			data	+= pg_datalen;
316 		}
317 		submit_bio(bio);
318 
319 		sector += bio_pages * PAGE_SECTORS;
320 	}
321 	return 0;
322 error_bio:
323 	bio_free_pages(bio);
324 	bio_put(bio);
325 error:
326 	put_io_block(lc);
327 	return -1;
328 }
329 
330 static int log_one_block(struct log_writes_c *lc,
331 			 struct pending_block *block, sector_t sector)
332 {
333 	struct bio *bio;
334 	struct log_write_entry entry;
335 	size_t metadatalen, ret;
336 	int i;
337 
338 	entry.sector = cpu_to_le64(block->sector);
339 	entry.nr_sectors = cpu_to_le64(block->nr_sectors);
340 	entry.flags = cpu_to_le64(block->flags);
341 	entry.data_len = cpu_to_le64(block->datalen);
342 
343 	metadatalen = (block->flags & LOG_MARK_FLAG) ? block->datalen : 0;
344 	if (write_metadata(lc, &entry, sizeof(entry), block->data,
345 			   metadatalen, sector)) {
346 		free_pending_block(lc, block);
347 		return -1;
348 	}
349 
350 	sector += dev_to_bio_sectors(lc, 1);
351 
352 	if (block->datalen && metadatalen == 0) {
353 		if (write_inline_data(lc, &entry, sizeof(entry), block->data,
354 				      block->datalen, sector)) {
355 			free_pending_block(lc, block);
356 			return -1;
357 		}
358 		/* we don't support both inline data & bio data */
359 		goto out;
360 	}
361 
362 	if (!block->vec_cnt)
363 		goto out;
364 
365 	atomic_inc(&lc->io_blocks);
366 	bio = bio_alloc(GFP_KERNEL, bio_max_segs(block->vec_cnt));
367 	if (!bio) {
368 		DMERR("Couldn't alloc log bio");
369 		goto error;
370 	}
371 	bio->bi_iter.bi_size = 0;
372 	bio->bi_iter.bi_sector = sector;
373 	bio_set_dev(bio, lc->logdev->bdev);
374 	bio->bi_end_io = log_end_io;
375 	bio->bi_private = lc;
376 	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
377 
378 	for (i = 0; i < block->vec_cnt; i++) {
379 		/*
380 		 * The page offset is always 0 because we allocate a new page
381 		 * for every bvec in the original bio for simplicity sake.
382 		 */
383 		ret = bio_add_page(bio, block->vecs[i].bv_page,
384 				   block->vecs[i].bv_len, 0);
385 		if (ret != block->vecs[i].bv_len) {
386 			atomic_inc(&lc->io_blocks);
387 			submit_bio(bio);
388 			bio = bio_alloc(GFP_KERNEL,
389 					bio_max_segs(block->vec_cnt - i));
390 			if (!bio) {
391 				DMERR("Couldn't alloc log bio");
392 				goto error;
393 			}
394 			bio->bi_iter.bi_size = 0;
395 			bio->bi_iter.bi_sector = sector;
396 			bio_set_dev(bio, lc->logdev->bdev);
397 			bio->bi_end_io = log_end_io;
398 			bio->bi_private = lc;
399 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
400 
401 			ret = bio_add_page(bio, block->vecs[i].bv_page,
402 					   block->vecs[i].bv_len, 0);
403 			if (ret != block->vecs[i].bv_len) {
404 				DMERR("Couldn't add page on new bio?");
405 				bio_put(bio);
406 				goto error;
407 			}
408 		}
409 		sector += block->vecs[i].bv_len >> SECTOR_SHIFT;
410 	}
411 	submit_bio(bio);
412 out:
413 	kfree(block->data);
414 	kfree(block);
415 	put_pending_block(lc);
416 	return 0;
417 error:
418 	free_pending_block(lc, block);
419 	put_io_block(lc);
420 	return -1;
421 }
422 
423 static int log_super(struct log_writes_c *lc)
424 {
425 	struct log_write_super super;
426 
427 	super.magic = cpu_to_le64(WRITE_LOG_MAGIC);
428 	super.version = cpu_to_le64(WRITE_LOG_VERSION);
429 	super.nr_entries = cpu_to_le64(lc->logged_entries);
430 	super.sectorsize = cpu_to_le32(lc->sectorsize);
431 
432 	if (write_metadata(lc, &super, sizeof(super), NULL, 0,
433 			   WRITE_LOG_SUPER_SECTOR)) {
434 		DMERR("Couldn't write super");
435 		return -1;
436 	}
437 
438 	/*
439 	 * Super sector should be writen in-order, otherwise the
440 	 * nr_entries could be rewritten incorrectly by an old bio.
441 	 */
442 	wait_for_completion_io(&lc->super_done);
443 
444 	return 0;
445 }
446 
447 static inline sector_t logdev_last_sector(struct log_writes_c *lc)
448 {
449 	return bdev_nr_sectors(lc->logdev->bdev);
450 }
451 
452 static int log_writes_kthread(void *arg)
453 {
454 	struct log_writes_c *lc = (struct log_writes_c *)arg;
455 	sector_t sector = 0;
456 
457 	while (!kthread_should_stop()) {
458 		bool super = false;
459 		bool logging_enabled;
460 		struct pending_block *block = NULL;
461 		int ret;
462 
463 		spin_lock_irq(&lc->blocks_lock);
464 		if (!list_empty(&lc->logging_blocks)) {
465 			block = list_first_entry(&lc->logging_blocks,
466 						 struct pending_block, list);
467 			list_del_init(&block->list);
468 			if (!lc->logging_enabled)
469 				goto next;
470 
471 			sector = lc->next_sector;
472 			if (!(block->flags & LOG_DISCARD_FLAG))
473 				lc->next_sector += dev_to_bio_sectors(lc, block->nr_sectors);
474 			lc->next_sector += dev_to_bio_sectors(lc, 1);
475 
476 			/*
477 			 * Apparently the size of the device may not be known
478 			 * right away, so handle this properly.
479 			 */
480 			if (!lc->end_sector)
481 				lc->end_sector = logdev_last_sector(lc);
482 			if (lc->end_sector &&
483 			    lc->next_sector >= lc->end_sector) {
484 				DMERR("Ran out of space on the logdev");
485 				lc->logging_enabled = false;
486 				goto next;
487 			}
488 			lc->logged_entries++;
489 			atomic_inc(&lc->io_blocks);
490 
491 			super = (block->flags & (LOG_FUA_FLAG | LOG_MARK_FLAG));
492 			if (super)
493 				atomic_inc(&lc->io_blocks);
494 		}
495 next:
496 		logging_enabled = lc->logging_enabled;
497 		spin_unlock_irq(&lc->blocks_lock);
498 		if (block) {
499 			if (logging_enabled) {
500 				ret = log_one_block(lc, block, sector);
501 				if (!ret && super)
502 					ret = log_super(lc);
503 				if (ret) {
504 					spin_lock_irq(&lc->blocks_lock);
505 					lc->logging_enabled = false;
506 					spin_unlock_irq(&lc->blocks_lock);
507 				}
508 			} else
509 				free_pending_block(lc, block);
510 			continue;
511 		}
512 
513 		if (!try_to_freeze()) {
514 			set_current_state(TASK_INTERRUPTIBLE);
515 			if (!kthread_should_stop() &&
516 			    list_empty(&lc->logging_blocks))
517 				schedule();
518 			__set_current_state(TASK_RUNNING);
519 		}
520 	}
521 	return 0;
522 }
523 
524 /*
525  * Construct a log-writes mapping:
526  * log-writes <dev_path> <log_dev_path>
527  */
528 static int log_writes_ctr(struct dm_target *ti, unsigned int argc, char **argv)
529 {
530 	struct log_writes_c *lc;
531 	struct dm_arg_set as;
532 	const char *devname, *logdevname;
533 	int ret;
534 
535 	as.argc = argc;
536 	as.argv = argv;
537 
538 	if (argc < 2) {
539 		ti->error = "Invalid argument count";
540 		return -EINVAL;
541 	}
542 
543 	lc = kzalloc(sizeof(struct log_writes_c), GFP_KERNEL);
544 	if (!lc) {
545 		ti->error = "Cannot allocate context";
546 		return -ENOMEM;
547 	}
548 	spin_lock_init(&lc->blocks_lock);
549 	INIT_LIST_HEAD(&lc->unflushed_blocks);
550 	INIT_LIST_HEAD(&lc->logging_blocks);
551 	init_waitqueue_head(&lc->wait);
552 	init_completion(&lc->super_done);
553 	atomic_set(&lc->io_blocks, 0);
554 	atomic_set(&lc->pending_blocks, 0);
555 
556 	devname = dm_shift_arg(&as);
557 	ret = dm_get_device(ti, devname, dm_table_get_mode(ti->table), &lc->dev);
558 	if (ret) {
559 		ti->error = "Device lookup failed";
560 		goto bad;
561 	}
562 
563 	logdevname = dm_shift_arg(&as);
564 	ret = dm_get_device(ti, logdevname, dm_table_get_mode(ti->table),
565 			    &lc->logdev);
566 	if (ret) {
567 		ti->error = "Log device lookup failed";
568 		dm_put_device(ti, lc->dev);
569 		goto bad;
570 	}
571 
572 	lc->sectorsize = bdev_logical_block_size(lc->dev->bdev);
573 	lc->sectorshift = ilog2(lc->sectorsize);
574 	lc->log_kthread = kthread_run(log_writes_kthread, lc, "log-write");
575 	if (IS_ERR(lc->log_kthread)) {
576 		ret = PTR_ERR(lc->log_kthread);
577 		ti->error = "Couldn't alloc kthread";
578 		dm_put_device(ti, lc->dev);
579 		dm_put_device(ti, lc->logdev);
580 		goto bad;
581 	}
582 
583 	/*
584 	 * next_sector is in 512b sectors to correspond to what bi_sector expects.
585 	 * The super starts at sector 0, and the next_sector is the next logical
586 	 * one based on the sectorsize of the device.
587 	 */
588 	lc->next_sector = lc->sectorsize >> SECTOR_SHIFT;
589 	lc->logging_enabled = true;
590 	lc->end_sector = logdev_last_sector(lc);
591 	lc->device_supports_discard = true;
592 
593 	ti->num_flush_bios = 1;
594 	ti->flush_supported = true;
595 	ti->num_discard_bios = 1;
596 	ti->discards_supported = true;
597 	ti->per_io_data_size = sizeof(struct per_bio_data);
598 	ti->private = lc;
599 	return 0;
600 
601 bad:
602 	kfree(lc);
603 	return ret;
604 }
605 
606 static int log_mark(struct log_writes_c *lc, char *data)
607 {
608 	struct pending_block *block;
609 	size_t maxsize = lc->sectorsize - sizeof(struct log_write_entry);
610 
611 	block = kzalloc(sizeof(struct pending_block), GFP_KERNEL);
612 	if (!block) {
613 		DMERR("Error allocating pending block");
614 		return -ENOMEM;
615 	}
616 
617 	block->data = kstrndup(data, maxsize - 1, GFP_KERNEL);
618 	if (!block->data) {
619 		DMERR("Error copying mark data");
620 		kfree(block);
621 		return -ENOMEM;
622 	}
623 	atomic_inc(&lc->pending_blocks);
624 	block->datalen = strlen(block->data);
625 	block->flags |= LOG_MARK_FLAG;
626 	spin_lock_irq(&lc->blocks_lock);
627 	list_add_tail(&block->list, &lc->logging_blocks);
628 	spin_unlock_irq(&lc->blocks_lock);
629 	wake_up_process(lc->log_kthread);
630 	return 0;
631 }
632 
633 static void log_writes_dtr(struct dm_target *ti)
634 {
635 	struct log_writes_c *lc = ti->private;
636 
637 	spin_lock_irq(&lc->blocks_lock);
638 	list_splice_init(&lc->unflushed_blocks, &lc->logging_blocks);
639 	spin_unlock_irq(&lc->blocks_lock);
640 
641 	/*
642 	 * This is just nice to have since it'll update the super to include the
643 	 * unflushed blocks, if it fails we don't really care.
644 	 */
645 	log_mark(lc, "dm-log-writes-end");
646 	wake_up_process(lc->log_kthread);
647 	wait_event(lc->wait, !atomic_read(&lc->io_blocks) &&
648 		   !atomic_read(&lc->pending_blocks));
649 	kthread_stop(lc->log_kthread);
650 
651 	WARN_ON(!list_empty(&lc->logging_blocks));
652 	WARN_ON(!list_empty(&lc->unflushed_blocks));
653 	dm_put_device(ti, lc->dev);
654 	dm_put_device(ti, lc->logdev);
655 	kfree(lc);
656 }
657 
658 static void normal_map_bio(struct dm_target *ti, struct bio *bio)
659 {
660 	struct log_writes_c *lc = ti->private;
661 
662 	bio_set_dev(bio, lc->dev->bdev);
663 }
664 
665 static int log_writes_map(struct dm_target *ti, struct bio *bio)
666 {
667 	struct log_writes_c *lc = ti->private;
668 	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
669 	struct pending_block *block;
670 	struct bvec_iter iter;
671 	struct bio_vec bv;
672 	size_t alloc_size;
673 	int i = 0;
674 	bool flush_bio = (bio->bi_opf & REQ_PREFLUSH);
675 	bool fua_bio = (bio->bi_opf & REQ_FUA);
676 	bool discard_bio = (bio_op(bio) == REQ_OP_DISCARD);
677 	bool meta_bio = (bio->bi_opf & REQ_META);
678 
679 	pb->block = NULL;
680 
681 	/* Don't bother doing anything if logging has been disabled */
682 	if (!lc->logging_enabled)
683 		goto map_bio;
684 
685 	/*
686 	 * Map reads as normal.
687 	 */
688 	if (bio_data_dir(bio) == READ)
689 		goto map_bio;
690 
691 	/* No sectors and not a flush?  Don't care */
692 	if (!bio_sectors(bio) && !flush_bio)
693 		goto map_bio;
694 
695 	/*
696 	 * Discards will have bi_size set but there's no actual data, so just
697 	 * allocate the size of the pending block.
698 	 */
699 	if (discard_bio)
700 		alloc_size = sizeof(struct pending_block);
701 	else
702 		alloc_size = struct_size(block, vecs, bio_segments(bio));
703 
704 	block = kzalloc(alloc_size, GFP_NOIO);
705 	if (!block) {
706 		DMERR("Error allocating pending block");
707 		spin_lock_irq(&lc->blocks_lock);
708 		lc->logging_enabled = false;
709 		spin_unlock_irq(&lc->blocks_lock);
710 		return DM_MAPIO_KILL;
711 	}
712 	INIT_LIST_HEAD(&block->list);
713 	pb->block = block;
714 	atomic_inc(&lc->pending_blocks);
715 
716 	if (flush_bio)
717 		block->flags |= LOG_FLUSH_FLAG;
718 	if (fua_bio)
719 		block->flags |= LOG_FUA_FLAG;
720 	if (discard_bio)
721 		block->flags |= LOG_DISCARD_FLAG;
722 	if (meta_bio)
723 		block->flags |= LOG_METADATA_FLAG;
724 
725 	block->sector = bio_to_dev_sectors(lc, bio->bi_iter.bi_sector);
726 	block->nr_sectors = bio_to_dev_sectors(lc, bio_sectors(bio));
727 
728 	/* We don't need the data, just submit */
729 	if (discard_bio) {
730 		WARN_ON(flush_bio || fua_bio);
731 		if (lc->device_supports_discard)
732 			goto map_bio;
733 		bio_endio(bio);
734 		return DM_MAPIO_SUBMITTED;
735 	}
736 
737 	/* Flush bio, splice the unflushed blocks onto this list and submit */
738 	if (flush_bio && !bio_sectors(bio)) {
739 		spin_lock_irq(&lc->blocks_lock);
740 		list_splice_init(&lc->unflushed_blocks, &block->list);
741 		spin_unlock_irq(&lc->blocks_lock);
742 		goto map_bio;
743 	}
744 
745 	/*
746 	 * We will write this bio somewhere else way later so we need to copy
747 	 * the actual contents into new pages so we know the data will always be
748 	 * there.
749 	 *
750 	 * We do this because this could be a bio from O_DIRECT in which case we
751 	 * can't just hold onto the page until some later point, we have to
752 	 * manually copy the contents.
753 	 */
754 	bio_for_each_segment(bv, bio, iter) {
755 		struct page *page;
756 		void *dst;
757 
758 		page = alloc_page(GFP_NOIO);
759 		if (!page) {
760 			DMERR("Error allocing page");
761 			free_pending_block(lc, block);
762 			spin_lock_irq(&lc->blocks_lock);
763 			lc->logging_enabled = false;
764 			spin_unlock_irq(&lc->blocks_lock);
765 			return DM_MAPIO_KILL;
766 		}
767 
768 		dst = kmap_atomic(page);
769 		memcpy_from_bvec(dst, &bv);
770 		kunmap_atomic(dst);
771 		block->vecs[i].bv_page = page;
772 		block->vecs[i].bv_len = bv.bv_len;
773 		block->vec_cnt++;
774 		i++;
775 	}
776 
777 	/* Had a flush with data in it, weird */
778 	if (flush_bio) {
779 		spin_lock_irq(&lc->blocks_lock);
780 		list_splice_init(&lc->unflushed_blocks, &block->list);
781 		spin_unlock_irq(&lc->blocks_lock);
782 	}
783 map_bio:
784 	normal_map_bio(ti, bio);
785 	return DM_MAPIO_REMAPPED;
786 }
787 
788 static int normal_end_io(struct dm_target *ti, struct bio *bio,
789 		blk_status_t *error)
790 {
791 	struct log_writes_c *lc = ti->private;
792 	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
793 
794 	if (bio_data_dir(bio) == WRITE && pb->block) {
795 		struct pending_block *block = pb->block;
796 		unsigned long flags;
797 
798 		spin_lock_irqsave(&lc->blocks_lock, flags);
799 		if (block->flags & LOG_FLUSH_FLAG) {
800 			list_splice_tail_init(&block->list, &lc->logging_blocks);
801 			list_add_tail(&block->list, &lc->logging_blocks);
802 			wake_up_process(lc->log_kthread);
803 		} else if (block->flags & LOG_FUA_FLAG) {
804 			list_add_tail(&block->list, &lc->logging_blocks);
805 			wake_up_process(lc->log_kthread);
806 		} else
807 			list_add_tail(&block->list, &lc->unflushed_blocks);
808 		spin_unlock_irqrestore(&lc->blocks_lock, flags);
809 	}
810 
811 	return DM_ENDIO_DONE;
812 }
813 
814 /*
815  * INFO format: <logged entries> <highest allocated sector>
816  */
817 static void log_writes_status(struct dm_target *ti, status_type_t type,
818 			      unsigned status_flags, char *result,
819 			      unsigned maxlen)
820 {
821 	unsigned sz = 0;
822 	struct log_writes_c *lc = ti->private;
823 
824 	switch (type) {
825 	case STATUSTYPE_INFO:
826 		DMEMIT("%llu %llu", lc->logged_entries,
827 		       (unsigned long long)lc->next_sector - 1);
828 		if (!lc->logging_enabled)
829 			DMEMIT(" logging_disabled");
830 		break;
831 
832 	case STATUSTYPE_TABLE:
833 		DMEMIT("%s %s", lc->dev->name, lc->logdev->name);
834 		break;
835 
836 	case STATUSTYPE_IMA:
837 		*result = '\0';
838 		break;
839 	}
840 }
841 
842 static int log_writes_prepare_ioctl(struct dm_target *ti,
843 				    struct block_device **bdev)
844 {
845 	struct log_writes_c *lc = ti->private;
846 	struct dm_dev *dev = lc->dev;
847 
848 	*bdev = dev->bdev;
849 	/*
850 	 * Only pass ioctls through if the device sizes match exactly.
851 	 */
852 	if (ti->len != bdev_nr_sectors(dev->bdev))
853 		return 1;
854 	return 0;
855 }
856 
857 static int log_writes_iterate_devices(struct dm_target *ti,
858 				      iterate_devices_callout_fn fn,
859 				      void *data)
860 {
861 	struct log_writes_c *lc = ti->private;
862 
863 	return fn(ti, lc->dev, 0, ti->len, data);
864 }
865 
866 /*
867  * Messages supported:
868  *   mark <mark data> - specify the marked data.
869  */
870 static int log_writes_message(struct dm_target *ti, unsigned argc, char **argv,
871 			      char *result, unsigned maxlen)
872 {
873 	int r = -EINVAL;
874 	struct log_writes_c *lc = ti->private;
875 
876 	if (argc != 2) {
877 		DMWARN("Invalid log-writes message arguments, expect 2 arguments, got %d", argc);
878 		return r;
879 	}
880 
881 	if (!strcasecmp(argv[0], "mark"))
882 		r = log_mark(lc, argv[1]);
883 	else
884 		DMWARN("Unrecognised log writes target message received: %s", argv[0]);
885 
886 	return r;
887 }
888 
889 static void log_writes_io_hints(struct dm_target *ti, struct queue_limits *limits)
890 {
891 	struct log_writes_c *lc = ti->private;
892 	struct request_queue *q = bdev_get_queue(lc->dev->bdev);
893 
894 	if (!q || !blk_queue_discard(q)) {
895 		lc->device_supports_discard = false;
896 		limits->discard_granularity = lc->sectorsize;
897 		limits->max_discard_sectors = (UINT_MAX >> SECTOR_SHIFT);
898 	}
899 	limits->logical_block_size = bdev_logical_block_size(lc->dev->bdev);
900 	limits->physical_block_size = bdev_physical_block_size(lc->dev->bdev);
901 	limits->io_min = limits->physical_block_size;
902 }
903 
904 #if IS_ENABLED(CONFIG_FS_DAX)
905 static struct dax_device *log_writes_dax_pgoff(struct dm_target *ti,
906 		pgoff_t *pgoff)
907 {
908 	struct log_writes_c *lc = ti->private;
909 
910 	*pgoff += (get_start_sect(lc->dev->bdev) >> PAGE_SECTORS_SHIFT);
911 	return lc->dev->dax_dev;
912 }
913 
914 static long log_writes_dax_direct_access(struct dm_target *ti, pgoff_t pgoff,
915 					 long nr_pages, void **kaddr, pfn_t *pfn)
916 {
917 	struct dax_device *dax_dev = log_writes_dax_pgoff(ti, &pgoff);
918 
919 	return dax_direct_access(dax_dev, pgoff, nr_pages, kaddr, pfn);
920 }
921 
922 static int log_writes_dax_zero_page_range(struct dm_target *ti, pgoff_t pgoff,
923 					  size_t nr_pages)
924 {
925 	struct dax_device *dax_dev = log_writes_dax_pgoff(ti, &pgoff);
926 
927 	return dax_zero_page_range(dax_dev, pgoff, nr_pages << PAGE_SHIFT);
928 }
929 
930 #else
931 #define log_writes_dax_direct_access NULL
932 #define log_writes_dax_zero_page_range NULL
933 #endif
934 
935 static struct target_type log_writes_target = {
936 	.name   = "log-writes",
937 	.version = {1, 1, 0},
938 	.module = THIS_MODULE,
939 	.ctr    = log_writes_ctr,
940 	.dtr    = log_writes_dtr,
941 	.map    = log_writes_map,
942 	.end_io = normal_end_io,
943 	.status = log_writes_status,
944 	.prepare_ioctl = log_writes_prepare_ioctl,
945 	.message = log_writes_message,
946 	.iterate_devices = log_writes_iterate_devices,
947 	.io_hints = log_writes_io_hints,
948 	.direct_access = log_writes_dax_direct_access,
949 	.dax_zero_page_range = log_writes_dax_zero_page_range,
950 };
951 
952 static int __init dm_log_writes_init(void)
953 {
954 	int r = dm_register_target(&log_writes_target);
955 
956 	if (r < 0)
957 		DMERR("register failed %d", r);
958 
959 	return r;
960 }
961 
962 static void __exit dm_log_writes_exit(void)
963 {
964 	dm_unregister_target(&log_writes_target);
965 }
966 
967 module_init(dm_log_writes_init);
968 module_exit(dm_log_writes_exit);
969 
970 MODULE_DESCRIPTION(DM_NAME " log writes target");
971 MODULE_AUTHOR("Josef Bacik <jbacik@fb.com>");
972 MODULE_LICENSE("GPL");
973