1 /* 2 * Copyright (C) 2014 Facebook. All rights reserved. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include <linux/device-mapper.h> 8 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/blkdev.h> 12 #include <linux/bio.h> 13 #include <linux/dax.h> 14 #include <linux/slab.h> 15 #include <linux/kthread.h> 16 #include <linux/freezer.h> 17 #include <linux/uio.h> 18 19 #define DM_MSG_PREFIX "log-writes" 20 21 /* 22 * This target will sequentially log all writes to the target device onto the 23 * log device. This is helpful for replaying writes to check for fs consistency 24 * at all times. This target provides a mechanism to mark specific events to 25 * check data at a later time. So for example you would: 26 * 27 * write data 28 * fsync 29 * dmsetup message /dev/whatever mark mymark 30 * unmount /mnt/test 31 * 32 * Then replay the log up to mymark and check the contents of the replay to 33 * verify it matches what was written. 34 * 35 * We log writes only after they have been flushed, this makes the log describe 36 * close to the order in which the data hits the actual disk, not its cache. So 37 * for example the following sequence (W means write, C means complete) 38 * 39 * Wa,Wb,Wc,Cc,Ca,FLUSH,FUAd,Cb,CFLUSH,CFUAd 40 * 41 * Would result in the log looking like this: 42 * 43 * c,a,b,flush,fuad,<other writes>,<next flush> 44 * 45 * This is meant to help expose problems where file systems do not properly wait 46 * on data being written before invoking a FLUSH. FUA bypasses cache so once it 47 * completes it is added to the log as it should be on disk. 48 * 49 * We treat DISCARDs as if they don't bypass cache so that they are logged in 50 * order of completion along with the normal writes. If we didn't do it this 51 * way we would process all the discards first and then write all the data, when 52 * in fact we want to do the data and the discard in the order that they 53 * completed. 54 */ 55 #define LOG_FLUSH_FLAG (1 << 0) 56 #define LOG_FUA_FLAG (1 << 1) 57 #define LOG_DISCARD_FLAG (1 << 2) 58 #define LOG_MARK_FLAG (1 << 3) 59 #define LOG_METADATA_FLAG (1 << 4) 60 61 #define WRITE_LOG_VERSION 1ULL 62 #define WRITE_LOG_MAGIC 0x6a736677736872ULL 63 #define WRITE_LOG_SUPER_SECTOR 0 64 65 /* 66 * The disk format for this is braindead simple. 67 * 68 * At byte 0 we have our super, followed by the following sequence for 69 * nr_entries: 70 * 71 * [ 1 sector ][ entry->nr_sectors ] 72 * [log_write_entry][ data written ] 73 * 74 * The log_write_entry takes up a full sector so we can have arbitrary length 75 * marks and it leaves us room for extra content in the future. 76 */ 77 78 /* 79 * Basic info about the log for userspace. 80 */ 81 struct log_write_super { 82 __le64 magic; 83 __le64 version; 84 __le64 nr_entries; 85 __le32 sectorsize; 86 }; 87 88 /* 89 * sector - the sector we wrote. 90 * nr_sectors - the number of sectors we wrote. 91 * flags - flags for this log entry. 92 * data_len - the size of the data in this log entry, this is for private log 93 * entry stuff, the MARK data provided by userspace for example. 94 */ 95 struct log_write_entry { 96 __le64 sector; 97 __le64 nr_sectors; 98 __le64 flags; 99 __le64 data_len; 100 }; 101 102 struct log_writes_c { 103 struct dm_dev *dev; 104 struct dm_dev *logdev; 105 u64 logged_entries; 106 u32 sectorsize; 107 u32 sectorshift; 108 atomic_t io_blocks; 109 atomic_t pending_blocks; 110 sector_t next_sector; 111 sector_t end_sector; 112 bool logging_enabled; 113 bool device_supports_discard; 114 spinlock_t blocks_lock; 115 struct list_head unflushed_blocks; 116 struct list_head logging_blocks; 117 wait_queue_head_t wait; 118 struct task_struct *log_kthread; 119 struct completion super_done; 120 }; 121 122 struct pending_block { 123 int vec_cnt; 124 u64 flags; 125 sector_t sector; 126 sector_t nr_sectors; 127 char *data; 128 u32 datalen; 129 struct list_head list; 130 struct bio_vec vecs[]; 131 }; 132 133 struct per_bio_data { 134 struct pending_block *block; 135 }; 136 137 static inline sector_t bio_to_dev_sectors(struct log_writes_c *lc, 138 sector_t sectors) 139 { 140 return sectors >> (lc->sectorshift - SECTOR_SHIFT); 141 } 142 143 static inline sector_t dev_to_bio_sectors(struct log_writes_c *lc, 144 sector_t sectors) 145 { 146 return sectors << (lc->sectorshift - SECTOR_SHIFT); 147 } 148 149 static void put_pending_block(struct log_writes_c *lc) 150 { 151 if (atomic_dec_and_test(&lc->pending_blocks)) { 152 smp_mb__after_atomic(); 153 if (waitqueue_active(&lc->wait)) 154 wake_up(&lc->wait); 155 } 156 } 157 158 static void put_io_block(struct log_writes_c *lc) 159 { 160 if (atomic_dec_and_test(&lc->io_blocks)) { 161 smp_mb__after_atomic(); 162 if (waitqueue_active(&lc->wait)) 163 wake_up(&lc->wait); 164 } 165 } 166 167 static void log_end_io(struct bio *bio) 168 { 169 struct log_writes_c *lc = bio->bi_private; 170 171 if (bio->bi_status) { 172 unsigned long flags; 173 174 DMERR("Error writing log block, error=%d", bio->bi_status); 175 spin_lock_irqsave(&lc->blocks_lock, flags); 176 lc->logging_enabled = false; 177 spin_unlock_irqrestore(&lc->blocks_lock, flags); 178 } 179 180 bio_free_pages(bio); 181 put_io_block(lc); 182 bio_put(bio); 183 } 184 185 static void log_end_super(struct bio *bio) 186 { 187 struct log_writes_c *lc = bio->bi_private; 188 189 complete(&lc->super_done); 190 log_end_io(bio); 191 } 192 193 /* 194 * Meant to be called if there is an error, it will free all the pages 195 * associated with the block. 196 */ 197 static void free_pending_block(struct log_writes_c *lc, 198 struct pending_block *block) 199 { 200 int i; 201 202 for (i = 0; i < block->vec_cnt; i++) { 203 if (block->vecs[i].bv_page) 204 __free_page(block->vecs[i].bv_page); 205 } 206 kfree(block->data); 207 kfree(block); 208 put_pending_block(lc); 209 } 210 211 static int write_metadata(struct log_writes_c *lc, void *entry, 212 size_t entrylen, void *data, size_t datalen, 213 sector_t sector) 214 { 215 struct bio *bio; 216 struct page *page; 217 void *ptr; 218 size_t ret; 219 220 bio = bio_alloc(lc->logdev->bdev, 1, REQ_OP_WRITE, GFP_KERNEL); 221 bio->bi_iter.bi_size = 0; 222 bio->bi_iter.bi_sector = sector; 223 bio->bi_end_io = (sector == WRITE_LOG_SUPER_SECTOR) ? 224 log_end_super : log_end_io; 225 bio->bi_private = lc; 226 227 page = alloc_page(GFP_KERNEL); 228 if (!page) { 229 DMERR("Couldn't alloc log page"); 230 bio_put(bio); 231 goto error; 232 } 233 234 ptr = kmap_atomic(page); 235 memcpy(ptr, entry, entrylen); 236 if (datalen) 237 memcpy(ptr + entrylen, data, datalen); 238 memset(ptr + entrylen + datalen, 0, 239 lc->sectorsize - entrylen - datalen); 240 kunmap_atomic(ptr); 241 242 ret = bio_add_page(bio, page, lc->sectorsize, 0); 243 if (ret != lc->sectorsize) { 244 DMERR("Couldn't add page to the log block"); 245 goto error_bio; 246 } 247 submit_bio(bio); 248 return 0; 249 error_bio: 250 bio_put(bio); 251 __free_page(page); 252 error: 253 put_io_block(lc); 254 return -1; 255 } 256 257 static int write_inline_data(struct log_writes_c *lc, void *entry, 258 size_t entrylen, void *data, size_t datalen, 259 sector_t sector) 260 { 261 int bio_pages, pg_datalen, pg_sectorlen, i; 262 struct page *page; 263 struct bio *bio; 264 size_t ret; 265 void *ptr; 266 267 while (datalen) { 268 bio_pages = bio_max_segs(DIV_ROUND_UP(datalen, PAGE_SIZE)); 269 270 atomic_inc(&lc->io_blocks); 271 272 bio = bio_alloc(lc->logdev->bdev, bio_pages, REQ_OP_WRITE, 273 GFP_KERNEL); 274 bio->bi_iter.bi_size = 0; 275 bio->bi_iter.bi_sector = sector; 276 bio->bi_end_io = log_end_io; 277 bio->bi_private = lc; 278 279 for (i = 0; i < bio_pages; i++) { 280 pg_datalen = min_t(int, datalen, PAGE_SIZE); 281 pg_sectorlen = ALIGN(pg_datalen, lc->sectorsize); 282 283 page = alloc_page(GFP_KERNEL); 284 if (!page) { 285 DMERR("Couldn't alloc inline data page"); 286 goto error_bio; 287 } 288 289 ptr = kmap_atomic(page); 290 memcpy(ptr, data, pg_datalen); 291 if (pg_sectorlen > pg_datalen) 292 memset(ptr + pg_datalen, 0, pg_sectorlen - pg_datalen); 293 kunmap_atomic(ptr); 294 295 ret = bio_add_page(bio, page, pg_sectorlen, 0); 296 if (ret != pg_sectorlen) { 297 DMERR("Couldn't add page of inline data"); 298 __free_page(page); 299 goto error_bio; 300 } 301 302 datalen -= pg_datalen; 303 data += pg_datalen; 304 } 305 submit_bio(bio); 306 307 sector += bio_pages * PAGE_SECTORS; 308 } 309 return 0; 310 error_bio: 311 bio_free_pages(bio); 312 bio_put(bio); 313 put_io_block(lc); 314 return -1; 315 } 316 317 static int log_one_block(struct log_writes_c *lc, 318 struct pending_block *block, sector_t sector) 319 { 320 struct bio *bio; 321 struct log_write_entry entry; 322 size_t metadatalen, ret; 323 int i; 324 325 entry.sector = cpu_to_le64(block->sector); 326 entry.nr_sectors = cpu_to_le64(block->nr_sectors); 327 entry.flags = cpu_to_le64(block->flags); 328 entry.data_len = cpu_to_le64(block->datalen); 329 330 metadatalen = (block->flags & LOG_MARK_FLAG) ? block->datalen : 0; 331 if (write_metadata(lc, &entry, sizeof(entry), block->data, 332 metadatalen, sector)) { 333 free_pending_block(lc, block); 334 return -1; 335 } 336 337 sector += dev_to_bio_sectors(lc, 1); 338 339 if (block->datalen && metadatalen == 0) { 340 if (write_inline_data(lc, &entry, sizeof(entry), block->data, 341 block->datalen, sector)) { 342 free_pending_block(lc, block); 343 return -1; 344 } 345 /* we don't support both inline data & bio data */ 346 goto out; 347 } 348 349 if (!block->vec_cnt) 350 goto out; 351 352 atomic_inc(&lc->io_blocks); 353 bio = bio_alloc(lc->logdev->bdev, bio_max_segs(block->vec_cnt), 354 REQ_OP_WRITE, GFP_KERNEL); 355 bio->bi_iter.bi_size = 0; 356 bio->bi_iter.bi_sector = sector; 357 bio->bi_end_io = log_end_io; 358 bio->bi_private = lc; 359 360 for (i = 0; i < block->vec_cnt; i++) { 361 /* 362 * The page offset is always 0 because we allocate a new page 363 * for every bvec in the original bio for simplicity sake. 364 */ 365 ret = bio_add_page(bio, block->vecs[i].bv_page, 366 block->vecs[i].bv_len, 0); 367 if (ret != block->vecs[i].bv_len) { 368 atomic_inc(&lc->io_blocks); 369 submit_bio(bio); 370 bio = bio_alloc(lc->logdev->bdev, 371 bio_max_segs(block->vec_cnt - i), 372 REQ_OP_WRITE, GFP_KERNEL); 373 bio->bi_iter.bi_size = 0; 374 bio->bi_iter.bi_sector = sector; 375 bio->bi_end_io = log_end_io; 376 bio->bi_private = lc; 377 378 ret = bio_add_page(bio, block->vecs[i].bv_page, 379 block->vecs[i].bv_len, 0); 380 if (ret != block->vecs[i].bv_len) { 381 DMERR("Couldn't add page on new bio?"); 382 bio_put(bio); 383 goto error; 384 } 385 } 386 sector += block->vecs[i].bv_len >> SECTOR_SHIFT; 387 } 388 submit_bio(bio); 389 out: 390 kfree(block->data); 391 kfree(block); 392 put_pending_block(lc); 393 return 0; 394 error: 395 free_pending_block(lc, block); 396 put_io_block(lc); 397 return -1; 398 } 399 400 static int log_super(struct log_writes_c *lc) 401 { 402 struct log_write_super super; 403 404 super.magic = cpu_to_le64(WRITE_LOG_MAGIC); 405 super.version = cpu_to_le64(WRITE_LOG_VERSION); 406 super.nr_entries = cpu_to_le64(lc->logged_entries); 407 super.sectorsize = cpu_to_le32(lc->sectorsize); 408 409 if (write_metadata(lc, &super, sizeof(super), NULL, 0, 410 WRITE_LOG_SUPER_SECTOR)) { 411 DMERR("Couldn't write super"); 412 return -1; 413 } 414 415 /* 416 * Super sector should be writen in-order, otherwise the 417 * nr_entries could be rewritten incorrectly by an old bio. 418 */ 419 wait_for_completion_io(&lc->super_done); 420 421 return 0; 422 } 423 424 static inline sector_t logdev_last_sector(struct log_writes_c *lc) 425 { 426 return bdev_nr_sectors(lc->logdev->bdev); 427 } 428 429 static int log_writes_kthread(void *arg) 430 { 431 struct log_writes_c *lc = (struct log_writes_c *)arg; 432 sector_t sector = 0; 433 434 while (!kthread_should_stop()) { 435 bool super = false; 436 bool logging_enabled; 437 struct pending_block *block = NULL; 438 int ret; 439 440 spin_lock_irq(&lc->blocks_lock); 441 if (!list_empty(&lc->logging_blocks)) { 442 block = list_first_entry(&lc->logging_blocks, 443 struct pending_block, list); 444 list_del_init(&block->list); 445 if (!lc->logging_enabled) 446 goto next; 447 448 sector = lc->next_sector; 449 if (!(block->flags & LOG_DISCARD_FLAG)) 450 lc->next_sector += dev_to_bio_sectors(lc, block->nr_sectors); 451 lc->next_sector += dev_to_bio_sectors(lc, 1); 452 453 /* 454 * Apparently the size of the device may not be known 455 * right away, so handle this properly. 456 */ 457 if (!lc->end_sector) 458 lc->end_sector = logdev_last_sector(lc); 459 if (lc->end_sector && 460 lc->next_sector >= lc->end_sector) { 461 DMERR("Ran out of space on the logdev"); 462 lc->logging_enabled = false; 463 goto next; 464 } 465 lc->logged_entries++; 466 atomic_inc(&lc->io_blocks); 467 468 super = (block->flags & (LOG_FUA_FLAG | LOG_MARK_FLAG)); 469 if (super) 470 atomic_inc(&lc->io_blocks); 471 } 472 next: 473 logging_enabled = lc->logging_enabled; 474 spin_unlock_irq(&lc->blocks_lock); 475 if (block) { 476 if (logging_enabled) { 477 ret = log_one_block(lc, block, sector); 478 if (!ret && super) 479 ret = log_super(lc); 480 if (ret) { 481 spin_lock_irq(&lc->blocks_lock); 482 lc->logging_enabled = false; 483 spin_unlock_irq(&lc->blocks_lock); 484 } 485 } else 486 free_pending_block(lc, block); 487 continue; 488 } 489 490 if (!try_to_freeze()) { 491 set_current_state(TASK_INTERRUPTIBLE); 492 if (!kthread_should_stop() && 493 list_empty(&lc->logging_blocks)) 494 schedule(); 495 __set_current_state(TASK_RUNNING); 496 } 497 } 498 return 0; 499 } 500 501 /* 502 * Construct a log-writes mapping: 503 * log-writes <dev_path> <log_dev_path> 504 */ 505 static int log_writes_ctr(struct dm_target *ti, unsigned int argc, char **argv) 506 { 507 struct log_writes_c *lc; 508 struct dm_arg_set as; 509 const char *devname, *logdevname; 510 int ret; 511 512 as.argc = argc; 513 as.argv = argv; 514 515 if (argc < 2) { 516 ti->error = "Invalid argument count"; 517 return -EINVAL; 518 } 519 520 lc = kzalloc(sizeof(struct log_writes_c), GFP_KERNEL); 521 if (!lc) { 522 ti->error = "Cannot allocate context"; 523 return -ENOMEM; 524 } 525 spin_lock_init(&lc->blocks_lock); 526 INIT_LIST_HEAD(&lc->unflushed_blocks); 527 INIT_LIST_HEAD(&lc->logging_blocks); 528 init_waitqueue_head(&lc->wait); 529 init_completion(&lc->super_done); 530 atomic_set(&lc->io_blocks, 0); 531 atomic_set(&lc->pending_blocks, 0); 532 533 devname = dm_shift_arg(&as); 534 ret = dm_get_device(ti, devname, dm_table_get_mode(ti->table), &lc->dev); 535 if (ret) { 536 ti->error = "Device lookup failed"; 537 goto bad; 538 } 539 540 logdevname = dm_shift_arg(&as); 541 ret = dm_get_device(ti, logdevname, dm_table_get_mode(ti->table), 542 &lc->logdev); 543 if (ret) { 544 ti->error = "Log device lookup failed"; 545 dm_put_device(ti, lc->dev); 546 goto bad; 547 } 548 549 lc->sectorsize = bdev_logical_block_size(lc->dev->bdev); 550 lc->sectorshift = ilog2(lc->sectorsize); 551 lc->log_kthread = kthread_run(log_writes_kthread, lc, "log-write"); 552 if (IS_ERR(lc->log_kthread)) { 553 ret = PTR_ERR(lc->log_kthread); 554 ti->error = "Couldn't alloc kthread"; 555 dm_put_device(ti, lc->dev); 556 dm_put_device(ti, lc->logdev); 557 goto bad; 558 } 559 560 /* 561 * next_sector is in 512b sectors to correspond to what bi_sector expects. 562 * The super starts at sector 0, and the next_sector is the next logical 563 * one based on the sectorsize of the device. 564 */ 565 lc->next_sector = lc->sectorsize >> SECTOR_SHIFT; 566 lc->logging_enabled = true; 567 lc->end_sector = logdev_last_sector(lc); 568 lc->device_supports_discard = true; 569 570 ti->num_flush_bios = 1; 571 ti->flush_supported = true; 572 ti->num_discard_bios = 1; 573 ti->discards_supported = true; 574 ti->per_io_data_size = sizeof(struct per_bio_data); 575 ti->private = lc; 576 return 0; 577 578 bad: 579 kfree(lc); 580 return ret; 581 } 582 583 static int log_mark(struct log_writes_c *lc, char *data) 584 { 585 struct pending_block *block; 586 size_t maxsize = lc->sectorsize - sizeof(struct log_write_entry); 587 588 block = kzalloc(sizeof(struct pending_block), GFP_KERNEL); 589 if (!block) { 590 DMERR("Error allocating pending block"); 591 return -ENOMEM; 592 } 593 594 block->data = kstrndup(data, maxsize - 1, GFP_KERNEL); 595 if (!block->data) { 596 DMERR("Error copying mark data"); 597 kfree(block); 598 return -ENOMEM; 599 } 600 atomic_inc(&lc->pending_blocks); 601 block->datalen = strlen(block->data); 602 block->flags |= LOG_MARK_FLAG; 603 spin_lock_irq(&lc->blocks_lock); 604 list_add_tail(&block->list, &lc->logging_blocks); 605 spin_unlock_irq(&lc->blocks_lock); 606 wake_up_process(lc->log_kthread); 607 return 0; 608 } 609 610 static void log_writes_dtr(struct dm_target *ti) 611 { 612 struct log_writes_c *lc = ti->private; 613 614 spin_lock_irq(&lc->blocks_lock); 615 list_splice_init(&lc->unflushed_blocks, &lc->logging_blocks); 616 spin_unlock_irq(&lc->blocks_lock); 617 618 /* 619 * This is just nice to have since it'll update the super to include the 620 * unflushed blocks, if it fails we don't really care. 621 */ 622 log_mark(lc, "dm-log-writes-end"); 623 wake_up_process(lc->log_kthread); 624 wait_event(lc->wait, !atomic_read(&lc->io_blocks) && 625 !atomic_read(&lc->pending_blocks)); 626 kthread_stop(lc->log_kthread); 627 628 WARN_ON(!list_empty(&lc->logging_blocks)); 629 WARN_ON(!list_empty(&lc->unflushed_blocks)); 630 dm_put_device(ti, lc->dev); 631 dm_put_device(ti, lc->logdev); 632 kfree(lc); 633 } 634 635 static void normal_map_bio(struct dm_target *ti, struct bio *bio) 636 { 637 struct log_writes_c *lc = ti->private; 638 639 bio_set_dev(bio, lc->dev->bdev); 640 } 641 642 static int log_writes_map(struct dm_target *ti, struct bio *bio) 643 { 644 struct log_writes_c *lc = ti->private; 645 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data)); 646 struct pending_block *block; 647 struct bvec_iter iter; 648 struct bio_vec bv; 649 size_t alloc_size; 650 int i = 0; 651 bool flush_bio = (bio->bi_opf & REQ_PREFLUSH); 652 bool fua_bio = (bio->bi_opf & REQ_FUA); 653 bool discard_bio = (bio_op(bio) == REQ_OP_DISCARD); 654 bool meta_bio = (bio->bi_opf & REQ_META); 655 656 pb->block = NULL; 657 658 /* Don't bother doing anything if logging has been disabled */ 659 if (!lc->logging_enabled) 660 goto map_bio; 661 662 /* 663 * Map reads as normal. 664 */ 665 if (bio_data_dir(bio) == READ) 666 goto map_bio; 667 668 /* No sectors and not a flush? Don't care */ 669 if (!bio_sectors(bio) && !flush_bio) 670 goto map_bio; 671 672 /* 673 * Discards will have bi_size set but there's no actual data, so just 674 * allocate the size of the pending block. 675 */ 676 if (discard_bio) 677 alloc_size = sizeof(struct pending_block); 678 else 679 alloc_size = struct_size(block, vecs, bio_segments(bio)); 680 681 block = kzalloc(alloc_size, GFP_NOIO); 682 if (!block) { 683 DMERR("Error allocating pending block"); 684 spin_lock_irq(&lc->blocks_lock); 685 lc->logging_enabled = false; 686 spin_unlock_irq(&lc->blocks_lock); 687 return DM_MAPIO_KILL; 688 } 689 INIT_LIST_HEAD(&block->list); 690 pb->block = block; 691 atomic_inc(&lc->pending_blocks); 692 693 if (flush_bio) 694 block->flags |= LOG_FLUSH_FLAG; 695 if (fua_bio) 696 block->flags |= LOG_FUA_FLAG; 697 if (discard_bio) 698 block->flags |= LOG_DISCARD_FLAG; 699 if (meta_bio) 700 block->flags |= LOG_METADATA_FLAG; 701 702 block->sector = bio_to_dev_sectors(lc, bio->bi_iter.bi_sector); 703 block->nr_sectors = bio_to_dev_sectors(lc, bio_sectors(bio)); 704 705 /* We don't need the data, just submit */ 706 if (discard_bio) { 707 WARN_ON(flush_bio || fua_bio); 708 if (lc->device_supports_discard) 709 goto map_bio; 710 bio_endio(bio); 711 return DM_MAPIO_SUBMITTED; 712 } 713 714 /* Flush bio, splice the unflushed blocks onto this list and submit */ 715 if (flush_bio && !bio_sectors(bio)) { 716 spin_lock_irq(&lc->blocks_lock); 717 list_splice_init(&lc->unflushed_blocks, &block->list); 718 spin_unlock_irq(&lc->blocks_lock); 719 goto map_bio; 720 } 721 722 /* 723 * We will write this bio somewhere else way later so we need to copy 724 * the actual contents into new pages so we know the data will always be 725 * there. 726 * 727 * We do this because this could be a bio from O_DIRECT in which case we 728 * can't just hold onto the page until some later point, we have to 729 * manually copy the contents. 730 */ 731 bio_for_each_segment(bv, bio, iter) { 732 struct page *page; 733 void *dst; 734 735 page = alloc_page(GFP_NOIO); 736 if (!page) { 737 DMERR("Error allocing page"); 738 free_pending_block(lc, block); 739 spin_lock_irq(&lc->blocks_lock); 740 lc->logging_enabled = false; 741 spin_unlock_irq(&lc->blocks_lock); 742 return DM_MAPIO_KILL; 743 } 744 745 dst = kmap_atomic(page); 746 memcpy_from_bvec(dst, &bv); 747 kunmap_atomic(dst); 748 block->vecs[i].bv_page = page; 749 block->vecs[i].bv_len = bv.bv_len; 750 block->vec_cnt++; 751 i++; 752 } 753 754 /* Had a flush with data in it, weird */ 755 if (flush_bio) { 756 spin_lock_irq(&lc->blocks_lock); 757 list_splice_init(&lc->unflushed_blocks, &block->list); 758 spin_unlock_irq(&lc->blocks_lock); 759 } 760 map_bio: 761 normal_map_bio(ti, bio); 762 return DM_MAPIO_REMAPPED; 763 } 764 765 static int normal_end_io(struct dm_target *ti, struct bio *bio, 766 blk_status_t *error) 767 { 768 struct log_writes_c *lc = ti->private; 769 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data)); 770 771 if (bio_data_dir(bio) == WRITE && pb->block) { 772 struct pending_block *block = pb->block; 773 unsigned long flags; 774 775 spin_lock_irqsave(&lc->blocks_lock, flags); 776 if (block->flags & LOG_FLUSH_FLAG) { 777 list_splice_tail_init(&block->list, &lc->logging_blocks); 778 list_add_tail(&block->list, &lc->logging_blocks); 779 wake_up_process(lc->log_kthread); 780 } else if (block->flags & LOG_FUA_FLAG) { 781 list_add_tail(&block->list, &lc->logging_blocks); 782 wake_up_process(lc->log_kthread); 783 } else 784 list_add_tail(&block->list, &lc->unflushed_blocks); 785 spin_unlock_irqrestore(&lc->blocks_lock, flags); 786 } 787 788 return DM_ENDIO_DONE; 789 } 790 791 /* 792 * INFO format: <logged entries> <highest allocated sector> 793 */ 794 static void log_writes_status(struct dm_target *ti, status_type_t type, 795 unsigned status_flags, char *result, 796 unsigned maxlen) 797 { 798 unsigned sz = 0; 799 struct log_writes_c *lc = ti->private; 800 801 switch (type) { 802 case STATUSTYPE_INFO: 803 DMEMIT("%llu %llu", lc->logged_entries, 804 (unsigned long long)lc->next_sector - 1); 805 if (!lc->logging_enabled) 806 DMEMIT(" logging_disabled"); 807 break; 808 809 case STATUSTYPE_TABLE: 810 DMEMIT("%s %s", lc->dev->name, lc->logdev->name); 811 break; 812 813 case STATUSTYPE_IMA: 814 *result = '\0'; 815 break; 816 } 817 } 818 819 static int log_writes_prepare_ioctl(struct dm_target *ti, 820 struct block_device **bdev) 821 { 822 struct log_writes_c *lc = ti->private; 823 struct dm_dev *dev = lc->dev; 824 825 *bdev = dev->bdev; 826 /* 827 * Only pass ioctls through if the device sizes match exactly. 828 */ 829 if (ti->len != bdev_nr_sectors(dev->bdev)) 830 return 1; 831 return 0; 832 } 833 834 static int log_writes_iterate_devices(struct dm_target *ti, 835 iterate_devices_callout_fn fn, 836 void *data) 837 { 838 struct log_writes_c *lc = ti->private; 839 840 return fn(ti, lc->dev, 0, ti->len, data); 841 } 842 843 /* 844 * Messages supported: 845 * mark <mark data> - specify the marked data. 846 */ 847 static int log_writes_message(struct dm_target *ti, unsigned argc, char **argv, 848 char *result, unsigned maxlen) 849 { 850 int r = -EINVAL; 851 struct log_writes_c *lc = ti->private; 852 853 if (argc != 2) { 854 DMWARN("Invalid log-writes message arguments, expect 2 arguments, got %d", argc); 855 return r; 856 } 857 858 if (!strcasecmp(argv[0], "mark")) 859 r = log_mark(lc, argv[1]); 860 else 861 DMWARN("Unrecognised log writes target message received: %s", argv[0]); 862 863 return r; 864 } 865 866 static void log_writes_io_hints(struct dm_target *ti, struct queue_limits *limits) 867 { 868 struct log_writes_c *lc = ti->private; 869 struct request_queue *q = bdev_get_queue(lc->dev->bdev); 870 871 if (!q || !blk_queue_discard(q)) { 872 lc->device_supports_discard = false; 873 limits->discard_granularity = lc->sectorsize; 874 limits->max_discard_sectors = (UINT_MAX >> SECTOR_SHIFT); 875 } 876 limits->logical_block_size = bdev_logical_block_size(lc->dev->bdev); 877 limits->physical_block_size = bdev_physical_block_size(lc->dev->bdev); 878 limits->io_min = limits->physical_block_size; 879 } 880 881 #if IS_ENABLED(CONFIG_FS_DAX) 882 static struct dax_device *log_writes_dax_pgoff(struct dm_target *ti, 883 pgoff_t *pgoff) 884 { 885 struct log_writes_c *lc = ti->private; 886 887 *pgoff += (get_start_sect(lc->dev->bdev) >> PAGE_SECTORS_SHIFT); 888 return lc->dev->dax_dev; 889 } 890 891 static long log_writes_dax_direct_access(struct dm_target *ti, pgoff_t pgoff, 892 long nr_pages, void **kaddr, pfn_t *pfn) 893 { 894 struct dax_device *dax_dev = log_writes_dax_pgoff(ti, &pgoff); 895 896 return dax_direct_access(dax_dev, pgoff, nr_pages, kaddr, pfn); 897 } 898 899 static int log_writes_dax_zero_page_range(struct dm_target *ti, pgoff_t pgoff, 900 size_t nr_pages) 901 { 902 struct dax_device *dax_dev = log_writes_dax_pgoff(ti, &pgoff); 903 904 return dax_zero_page_range(dax_dev, pgoff, nr_pages << PAGE_SHIFT); 905 } 906 907 #else 908 #define log_writes_dax_direct_access NULL 909 #define log_writes_dax_zero_page_range NULL 910 #endif 911 912 static struct target_type log_writes_target = { 913 .name = "log-writes", 914 .version = {1, 1, 0}, 915 .module = THIS_MODULE, 916 .ctr = log_writes_ctr, 917 .dtr = log_writes_dtr, 918 .map = log_writes_map, 919 .end_io = normal_end_io, 920 .status = log_writes_status, 921 .prepare_ioctl = log_writes_prepare_ioctl, 922 .message = log_writes_message, 923 .iterate_devices = log_writes_iterate_devices, 924 .io_hints = log_writes_io_hints, 925 .direct_access = log_writes_dax_direct_access, 926 .dax_zero_page_range = log_writes_dax_zero_page_range, 927 }; 928 929 static int __init dm_log_writes_init(void) 930 { 931 int r = dm_register_target(&log_writes_target); 932 933 if (r < 0) 934 DMERR("register failed %d", r); 935 936 return r; 937 } 938 939 static void __exit dm_log_writes_exit(void) 940 { 941 dm_unregister_target(&log_writes_target); 942 } 943 944 module_init(dm_log_writes_init); 945 module_exit(dm_log_writes_exit); 946 947 MODULE_DESCRIPTION(DM_NAME " log writes target"); 948 MODULE_AUTHOR("Josef Bacik <jbacik@fb.com>"); 949 MODULE_LICENSE("GPL"); 950