xref: /linux/drivers/md/dm-log-writes.c (revision ba0ad6ed89fd5dada3b7b65ef2b08e95d449d4ab)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2014 Facebook. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/blkdev.h>
13 #include <linux/bio.h>
14 #include <linux/dax.h>
15 #include <linux/slab.h>
16 #include <linux/kthread.h>
17 #include <linux/freezer.h>
18 #include <linux/uio.h>
19 
20 #define DM_MSG_PREFIX "log-writes"
21 
22 /*
23  * This target will sequentially log all writes to the target device onto the
24  * log device.  This is helpful for replaying writes to check for fs consistency
25  * at all times.  This target provides a mechanism to mark specific events to
26  * check data at a later time.  So for example you would:
27  *
28  * write data
29  * fsync
30  * dmsetup message /dev/whatever mark mymark
31  * unmount /mnt/test
32  *
33  * Then replay the log up to mymark and check the contents of the replay to
34  * verify it matches what was written.
35  *
36  * We log writes only after they have been flushed, this makes the log describe
37  * close to the order in which the data hits the actual disk, not its cache.  So
38  * for example the following sequence (W means write, C means complete)
39  *
40  * Wa,Wb,Wc,Cc,Ca,FLUSH,FUAd,Cb,CFLUSH,CFUAd
41  *
42  * Would result in the log looking like this:
43  *
44  * c,a,b,flush,fuad,<other writes>,<next flush>
45  *
46  * This is meant to help expose problems where file systems do not properly wait
47  * on data being written before invoking a FLUSH.  FUA bypasses cache so once it
48  * completes it is added to the log as it should be on disk.
49  *
50  * We treat DISCARDs as if they don't bypass cache so that they are logged in
51  * order of completion along with the normal writes.  If we didn't do it this
52  * way we would process all the discards first and then write all the data, when
53  * in fact we want to do the data and the discard in the order that they
54  * completed.
55  */
56 #define LOG_FLUSH_FLAG		(1 << 0)
57 #define LOG_FUA_FLAG		(1 << 1)
58 #define LOG_DISCARD_FLAG	(1 << 2)
59 #define LOG_MARK_FLAG		(1 << 3)
60 #define LOG_METADATA_FLAG	(1 << 4)
61 
62 #define WRITE_LOG_VERSION 1ULL
63 #define WRITE_LOG_MAGIC 0x6a736677736872ULL
64 #define WRITE_LOG_SUPER_SECTOR 0
65 
66 /*
67  * The disk format for this is braindead simple.
68  *
69  * At byte 0 we have our super, followed by the following sequence for
70  * nr_entries:
71  *
72  * [   1 sector    ][  entry->nr_sectors ]
73  * [log_write_entry][    data written    ]
74  *
75  * The log_write_entry takes up a full sector so we can have arbitrary length
76  * marks and it leaves us room for extra content in the future.
77  */
78 
79 /*
80  * Basic info about the log for userspace.
81  */
82 struct log_write_super {
83 	__le64 magic;
84 	__le64 version;
85 	__le64 nr_entries;
86 	__le32 sectorsize;
87 };
88 
89 /*
90  * sector - the sector we wrote.
91  * nr_sectors - the number of sectors we wrote.
92  * flags - flags for this log entry.
93  * data_len - the size of the data in this log entry, this is for private log
94  * entry stuff, the MARK data provided by userspace for example.
95  */
96 struct log_write_entry {
97 	__le64 sector;
98 	__le64 nr_sectors;
99 	__le64 flags;
100 	__le64 data_len;
101 };
102 
103 struct log_writes_c {
104 	struct dm_dev *dev;
105 	struct dm_dev *logdev;
106 	u64 logged_entries;
107 	u32 sectorsize;
108 	u32 sectorshift;
109 	atomic_t io_blocks;
110 	atomic_t pending_blocks;
111 	sector_t next_sector;
112 	sector_t end_sector;
113 	bool logging_enabled;
114 	bool device_supports_discard;
115 	spinlock_t blocks_lock;
116 	struct list_head unflushed_blocks;
117 	struct list_head logging_blocks;
118 	wait_queue_head_t wait;
119 	struct task_struct *log_kthread;
120 	struct completion super_done;
121 };
122 
123 struct pending_block {
124 	int vec_cnt;
125 	u64 flags;
126 	sector_t sector;
127 	sector_t nr_sectors;
128 	char *data;
129 	u32 datalen;
130 	struct list_head list;
131 	struct bio_vec vecs[];
132 };
133 
134 struct per_bio_data {
135 	struct pending_block *block;
136 };
137 
138 static inline sector_t bio_to_dev_sectors(struct log_writes_c *lc,
139 					  sector_t sectors)
140 {
141 	return sectors >> (lc->sectorshift - SECTOR_SHIFT);
142 }
143 
144 static inline sector_t dev_to_bio_sectors(struct log_writes_c *lc,
145 					  sector_t sectors)
146 {
147 	return sectors << (lc->sectorshift - SECTOR_SHIFT);
148 }
149 
150 static void put_pending_block(struct log_writes_c *lc)
151 {
152 	if (atomic_dec_and_test(&lc->pending_blocks)) {
153 		smp_mb__after_atomic();
154 		if (waitqueue_active(&lc->wait))
155 			wake_up(&lc->wait);
156 	}
157 }
158 
159 static void put_io_block(struct log_writes_c *lc)
160 {
161 	if (atomic_dec_and_test(&lc->io_blocks)) {
162 		smp_mb__after_atomic();
163 		if (waitqueue_active(&lc->wait))
164 			wake_up(&lc->wait);
165 	}
166 }
167 
168 static void log_end_io(struct bio *bio)
169 {
170 	struct log_writes_c *lc = bio->bi_private;
171 
172 	if (bio->bi_status) {
173 		unsigned long flags;
174 
175 		DMERR("Error writing log block, error=%d", bio->bi_status);
176 		spin_lock_irqsave(&lc->blocks_lock, flags);
177 		lc->logging_enabled = false;
178 		spin_unlock_irqrestore(&lc->blocks_lock, flags);
179 	}
180 
181 	bio_free_pages(bio);
182 	put_io_block(lc);
183 	bio_put(bio);
184 }
185 
186 static void log_end_super(struct bio *bio)
187 {
188 	struct log_writes_c *lc = bio->bi_private;
189 
190 	complete(&lc->super_done);
191 	log_end_io(bio);
192 }
193 
194 /*
195  * Meant to be called if there is an error, it will free all the pages
196  * associated with the block.
197  */
198 static void free_pending_block(struct log_writes_c *lc,
199 			       struct pending_block *block)
200 {
201 	int i;
202 
203 	for (i = 0; i < block->vec_cnt; i++) {
204 		if (block->vecs[i].bv_page)
205 			__free_page(block->vecs[i].bv_page);
206 	}
207 	kfree(block->data);
208 	kfree(block);
209 	put_pending_block(lc);
210 }
211 
212 static int write_metadata(struct log_writes_c *lc, void *entry,
213 			  size_t entrylen, void *data, size_t datalen,
214 			  sector_t sector)
215 {
216 	struct bio *bio;
217 	struct page *page;
218 	void *ptr;
219 	size_t ret;
220 
221 	bio = bio_alloc(lc->logdev->bdev, 1, REQ_OP_WRITE, GFP_KERNEL);
222 	bio->bi_iter.bi_size = 0;
223 	bio->bi_iter.bi_sector = sector;
224 	bio->bi_end_io = (sector == WRITE_LOG_SUPER_SECTOR) ?
225 			  log_end_super : log_end_io;
226 	bio->bi_private = lc;
227 
228 	page = alloc_page(GFP_KERNEL);
229 	if (!page) {
230 		DMERR("Couldn't alloc log page");
231 		bio_put(bio);
232 		goto error;
233 	}
234 
235 	ptr = kmap_local_page(page);
236 	memcpy(ptr, entry, entrylen);
237 	if (datalen)
238 		memcpy(ptr + entrylen, data, datalen);
239 	memset(ptr + entrylen + datalen, 0,
240 	       lc->sectorsize - entrylen - datalen);
241 	kunmap_local(ptr);
242 
243 	ret = bio_add_page(bio, page, lc->sectorsize, 0);
244 	if (ret != lc->sectorsize) {
245 		DMERR("Couldn't add page to the log block");
246 		goto error_bio;
247 	}
248 	submit_bio(bio);
249 	return 0;
250 error_bio:
251 	bio_put(bio);
252 	__free_page(page);
253 error:
254 	put_io_block(lc);
255 	return -1;
256 }
257 
258 static int write_inline_data(struct log_writes_c *lc, void *entry,
259 			     size_t entrylen, void *data, size_t datalen,
260 			     sector_t sector)
261 {
262 	int bio_pages, pg_datalen, pg_sectorlen, i;
263 	struct page *page;
264 	struct bio *bio;
265 	size_t ret;
266 	void *ptr;
267 
268 	while (datalen) {
269 		bio_pages = bio_max_segs(DIV_ROUND_UP(datalen, PAGE_SIZE));
270 
271 		atomic_inc(&lc->io_blocks);
272 
273 		bio = bio_alloc(lc->logdev->bdev, bio_pages, REQ_OP_WRITE,
274 				GFP_KERNEL);
275 		bio->bi_iter.bi_size = 0;
276 		bio->bi_iter.bi_sector = sector;
277 		bio->bi_end_io = log_end_io;
278 		bio->bi_private = lc;
279 
280 		for (i = 0; i < bio_pages; i++) {
281 			pg_datalen = min_t(int, datalen, PAGE_SIZE);
282 			pg_sectorlen = ALIGN(pg_datalen, lc->sectorsize);
283 
284 			page = alloc_page(GFP_KERNEL);
285 			if (!page) {
286 				DMERR("Couldn't alloc inline data page");
287 				goto error_bio;
288 			}
289 
290 			ptr = kmap_local_page(page);
291 			memcpy(ptr, data, pg_datalen);
292 			if (pg_sectorlen > pg_datalen)
293 				memset(ptr + pg_datalen, 0, pg_sectorlen - pg_datalen);
294 			kunmap_local(ptr);
295 
296 			ret = bio_add_page(bio, page, pg_sectorlen, 0);
297 			if (ret != pg_sectorlen) {
298 				DMERR("Couldn't add page of inline data");
299 				__free_page(page);
300 				goto error_bio;
301 			}
302 
303 			datalen -= pg_datalen;
304 			data	+= pg_datalen;
305 		}
306 		submit_bio(bio);
307 
308 		sector += bio_pages * PAGE_SECTORS;
309 	}
310 	return 0;
311 error_bio:
312 	bio_free_pages(bio);
313 	bio_put(bio);
314 	put_io_block(lc);
315 	return -1;
316 }
317 
318 static int log_one_block(struct log_writes_c *lc,
319 			 struct pending_block *block, sector_t sector)
320 {
321 	struct bio *bio;
322 	struct log_write_entry entry;
323 	size_t metadatalen, ret;
324 	int i;
325 
326 	entry.sector = cpu_to_le64(block->sector);
327 	entry.nr_sectors = cpu_to_le64(block->nr_sectors);
328 	entry.flags = cpu_to_le64(block->flags);
329 	entry.data_len = cpu_to_le64(block->datalen);
330 
331 	metadatalen = (block->flags & LOG_MARK_FLAG) ? block->datalen : 0;
332 	if (write_metadata(lc, &entry, sizeof(entry), block->data,
333 			   metadatalen, sector)) {
334 		free_pending_block(lc, block);
335 		return -1;
336 	}
337 
338 	sector += dev_to_bio_sectors(lc, 1);
339 
340 	if (block->datalen && metadatalen == 0) {
341 		if (write_inline_data(lc, &entry, sizeof(entry), block->data,
342 				      block->datalen, sector)) {
343 			free_pending_block(lc, block);
344 			return -1;
345 		}
346 		/* we don't support both inline data & bio data */
347 		goto out;
348 	}
349 
350 	if (!block->vec_cnt)
351 		goto out;
352 
353 	atomic_inc(&lc->io_blocks);
354 	bio = bio_alloc(lc->logdev->bdev, bio_max_segs(block->vec_cnt),
355 			REQ_OP_WRITE, GFP_KERNEL);
356 	bio->bi_iter.bi_size = 0;
357 	bio->bi_iter.bi_sector = sector;
358 	bio->bi_end_io = log_end_io;
359 	bio->bi_private = lc;
360 
361 	for (i = 0; i < block->vec_cnt; i++) {
362 		/*
363 		 * The page offset is always 0 because we allocate a new page
364 		 * for every bvec in the original bio for simplicity sake.
365 		 */
366 		ret = bio_add_page(bio, block->vecs[i].bv_page,
367 				   block->vecs[i].bv_len, 0);
368 		if (ret != block->vecs[i].bv_len) {
369 			atomic_inc(&lc->io_blocks);
370 			submit_bio(bio);
371 			bio = bio_alloc(lc->logdev->bdev,
372 					bio_max_segs(block->vec_cnt - i),
373 					REQ_OP_WRITE, GFP_KERNEL);
374 			bio->bi_iter.bi_size = 0;
375 			bio->bi_iter.bi_sector = sector;
376 			bio->bi_end_io = log_end_io;
377 			bio->bi_private = lc;
378 
379 			ret = bio_add_page(bio, block->vecs[i].bv_page,
380 					   block->vecs[i].bv_len, 0);
381 			if (ret != block->vecs[i].bv_len) {
382 				DMERR("Couldn't add page on new bio?");
383 				bio_put(bio);
384 				goto error;
385 			}
386 		}
387 		sector += block->vecs[i].bv_len >> SECTOR_SHIFT;
388 	}
389 	submit_bio(bio);
390 out:
391 	kfree(block->data);
392 	kfree(block);
393 	put_pending_block(lc);
394 	return 0;
395 error:
396 	free_pending_block(lc, block);
397 	put_io_block(lc);
398 	return -1;
399 }
400 
401 static int log_super(struct log_writes_c *lc)
402 {
403 	struct log_write_super super;
404 
405 	super.magic = cpu_to_le64(WRITE_LOG_MAGIC);
406 	super.version = cpu_to_le64(WRITE_LOG_VERSION);
407 	super.nr_entries = cpu_to_le64(lc->logged_entries);
408 	super.sectorsize = cpu_to_le32(lc->sectorsize);
409 
410 	if (write_metadata(lc, &super, sizeof(super), NULL, 0,
411 			   WRITE_LOG_SUPER_SECTOR)) {
412 		DMERR("Couldn't write super");
413 		return -1;
414 	}
415 
416 	/*
417 	 * Super sector should be writen in-order, otherwise the
418 	 * nr_entries could be rewritten incorrectly by an old bio.
419 	 */
420 	wait_for_completion_io(&lc->super_done);
421 
422 	return 0;
423 }
424 
425 static inline sector_t logdev_last_sector(struct log_writes_c *lc)
426 {
427 	return bdev_nr_sectors(lc->logdev->bdev);
428 }
429 
430 static int log_writes_kthread(void *arg)
431 {
432 	struct log_writes_c *lc = arg;
433 	sector_t sector = 0;
434 
435 	while (!kthread_should_stop()) {
436 		bool super = false;
437 		bool logging_enabled;
438 		struct pending_block *block = NULL;
439 		int ret;
440 
441 		spin_lock_irq(&lc->blocks_lock);
442 		if (!list_empty(&lc->logging_blocks)) {
443 			block = list_first_entry(&lc->logging_blocks,
444 						 struct pending_block, list);
445 			list_del_init(&block->list);
446 			if (!lc->logging_enabled)
447 				goto next;
448 
449 			sector = lc->next_sector;
450 			if (!(block->flags & LOG_DISCARD_FLAG))
451 				lc->next_sector += dev_to_bio_sectors(lc, block->nr_sectors);
452 			lc->next_sector += dev_to_bio_sectors(lc, 1);
453 
454 			/*
455 			 * Apparently the size of the device may not be known
456 			 * right away, so handle this properly.
457 			 */
458 			if (!lc->end_sector)
459 				lc->end_sector = logdev_last_sector(lc);
460 			if (lc->end_sector &&
461 			    lc->next_sector >= lc->end_sector) {
462 				DMERR("Ran out of space on the logdev");
463 				lc->logging_enabled = false;
464 				goto next;
465 			}
466 			lc->logged_entries++;
467 			atomic_inc(&lc->io_blocks);
468 
469 			super = (block->flags & (LOG_FUA_FLAG | LOG_MARK_FLAG));
470 			if (super)
471 				atomic_inc(&lc->io_blocks);
472 		}
473 next:
474 		logging_enabled = lc->logging_enabled;
475 		spin_unlock_irq(&lc->blocks_lock);
476 		if (block) {
477 			if (logging_enabled) {
478 				ret = log_one_block(lc, block, sector);
479 				if (!ret && super)
480 					ret = log_super(lc);
481 				if (ret) {
482 					spin_lock_irq(&lc->blocks_lock);
483 					lc->logging_enabled = false;
484 					spin_unlock_irq(&lc->blocks_lock);
485 				}
486 			} else
487 				free_pending_block(lc, block);
488 			continue;
489 		}
490 
491 		if (!try_to_freeze()) {
492 			set_current_state(TASK_INTERRUPTIBLE);
493 			if (!kthread_should_stop() &&
494 			    list_empty(&lc->logging_blocks))
495 				schedule();
496 			__set_current_state(TASK_RUNNING);
497 		}
498 	}
499 	return 0;
500 }
501 
502 /*
503  * Construct a log-writes mapping:
504  * log-writes <dev_path> <log_dev_path>
505  */
506 static int log_writes_ctr(struct dm_target *ti, unsigned int argc, char **argv)
507 {
508 	struct log_writes_c *lc;
509 	struct dm_arg_set as;
510 	const char *devname, *logdevname;
511 	int ret;
512 
513 	as.argc = argc;
514 	as.argv = argv;
515 
516 	if (argc < 2) {
517 		ti->error = "Invalid argument count";
518 		return -EINVAL;
519 	}
520 
521 	lc = kzalloc(sizeof(struct log_writes_c), GFP_KERNEL);
522 	if (!lc) {
523 		ti->error = "Cannot allocate context";
524 		return -ENOMEM;
525 	}
526 	spin_lock_init(&lc->blocks_lock);
527 	INIT_LIST_HEAD(&lc->unflushed_blocks);
528 	INIT_LIST_HEAD(&lc->logging_blocks);
529 	init_waitqueue_head(&lc->wait);
530 	init_completion(&lc->super_done);
531 	atomic_set(&lc->io_blocks, 0);
532 	atomic_set(&lc->pending_blocks, 0);
533 
534 	devname = dm_shift_arg(&as);
535 	ret = dm_get_device(ti, devname, dm_table_get_mode(ti->table), &lc->dev);
536 	if (ret) {
537 		ti->error = "Device lookup failed";
538 		goto bad;
539 	}
540 
541 	logdevname = dm_shift_arg(&as);
542 	ret = dm_get_device(ti, logdevname, dm_table_get_mode(ti->table),
543 			    &lc->logdev);
544 	if (ret) {
545 		ti->error = "Log device lookup failed";
546 		dm_put_device(ti, lc->dev);
547 		goto bad;
548 	}
549 
550 	lc->sectorsize = bdev_logical_block_size(lc->dev->bdev);
551 	lc->sectorshift = ilog2(lc->sectorsize);
552 	lc->log_kthread = kthread_run(log_writes_kthread, lc, "log-write");
553 	if (IS_ERR(lc->log_kthread)) {
554 		ret = PTR_ERR(lc->log_kthread);
555 		ti->error = "Couldn't alloc kthread";
556 		dm_put_device(ti, lc->dev);
557 		dm_put_device(ti, lc->logdev);
558 		goto bad;
559 	}
560 
561 	/*
562 	 * next_sector is in 512b sectors to correspond to what bi_sector expects.
563 	 * The super starts at sector 0, and the next_sector is the next logical
564 	 * one based on the sectorsize of the device.
565 	 */
566 	lc->next_sector = lc->sectorsize >> SECTOR_SHIFT;
567 	lc->logging_enabled = true;
568 	lc->end_sector = logdev_last_sector(lc);
569 	lc->device_supports_discard = true;
570 
571 	ti->num_flush_bios = 1;
572 	ti->flush_supported = true;
573 	ti->num_discard_bios = 1;
574 	ti->discards_supported = true;
575 	ti->per_io_data_size = sizeof(struct per_bio_data);
576 	ti->private = lc;
577 	return 0;
578 
579 bad:
580 	kfree(lc);
581 	return ret;
582 }
583 
584 static int log_mark(struct log_writes_c *lc, char *data)
585 {
586 	struct pending_block *block;
587 	size_t maxsize = lc->sectorsize - sizeof(struct log_write_entry);
588 
589 	block = kzalloc(sizeof(struct pending_block), GFP_KERNEL);
590 	if (!block) {
591 		DMERR("Error allocating pending block");
592 		return -ENOMEM;
593 	}
594 
595 	block->data = kstrndup(data, maxsize - 1, GFP_KERNEL);
596 	if (!block->data) {
597 		DMERR("Error copying mark data");
598 		kfree(block);
599 		return -ENOMEM;
600 	}
601 	atomic_inc(&lc->pending_blocks);
602 	block->datalen = strlen(block->data);
603 	block->flags |= LOG_MARK_FLAG;
604 	spin_lock_irq(&lc->blocks_lock);
605 	list_add_tail(&block->list, &lc->logging_blocks);
606 	spin_unlock_irq(&lc->blocks_lock);
607 	wake_up_process(lc->log_kthread);
608 	return 0;
609 }
610 
611 static void log_writes_dtr(struct dm_target *ti)
612 {
613 	struct log_writes_c *lc = ti->private;
614 
615 	spin_lock_irq(&lc->blocks_lock);
616 	list_splice_init(&lc->unflushed_blocks, &lc->logging_blocks);
617 	spin_unlock_irq(&lc->blocks_lock);
618 
619 	/*
620 	 * This is just nice to have since it'll update the super to include the
621 	 * unflushed blocks, if it fails we don't really care.
622 	 */
623 	log_mark(lc, "dm-log-writes-end");
624 	wake_up_process(lc->log_kthread);
625 	wait_event(lc->wait, !atomic_read(&lc->io_blocks) &&
626 		   !atomic_read(&lc->pending_blocks));
627 	kthread_stop(lc->log_kthread);
628 
629 	WARN_ON(!list_empty(&lc->logging_blocks));
630 	WARN_ON(!list_empty(&lc->unflushed_blocks));
631 	dm_put_device(ti, lc->dev);
632 	dm_put_device(ti, lc->logdev);
633 	kfree(lc);
634 }
635 
636 static void normal_map_bio(struct dm_target *ti, struct bio *bio)
637 {
638 	struct log_writes_c *lc = ti->private;
639 
640 	bio_set_dev(bio, lc->dev->bdev);
641 }
642 
643 static int log_writes_map(struct dm_target *ti, struct bio *bio)
644 {
645 	struct log_writes_c *lc = ti->private;
646 	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
647 	struct pending_block *block;
648 	struct bvec_iter iter;
649 	struct bio_vec bv;
650 	size_t alloc_size;
651 	int i = 0;
652 	bool flush_bio = (bio->bi_opf & REQ_PREFLUSH);
653 	bool fua_bio = (bio->bi_opf & REQ_FUA);
654 	bool discard_bio = (bio_op(bio) == REQ_OP_DISCARD);
655 	bool meta_bio = (bio->bi_opf & REQ_META);
656 
657 	pb->block = NULL;
658 
659 	/* Don't bother doing anything if logging has been disabled */
660 	if (!lc->logging_enabled)
661 		goto map_bio;
662 
663 	/*
664 	 * Map reads as normal.
665 	 */
666 	if (bio_data_dir(bio) == READ)
667 		goto map_bio;
668 
669 	/* No sectors and not a flush?  Don't care */
670 	if (!bio_sectors(bio) && !flush_bio)
671 		goto map_bio;
672 
673 	/*
674 	 * Discards will have bi_size set but there's no actual data, so just
675 	 * allocate the size of the pending block.
676 	 */
677 	if (discard_bio)
678 		alloc_size = sizeof(struct pending_block);
679 	else
680 		alloc_size = struct_size(block, vecs, bio_segments(bio));
681 
682 	block = kzalloc(alloc_size, GFP_NOIO);
683 	if (!block) {
684 		DMERR("Error allocating pending block");
685 		spin_lock_irq(&lc->blocks_lock);
686 		lc->logging_enabled = false;
687 		spin_unlock_irq(&lc->blocks_lock);
688 		return DM_MAPIO_KILL;
689 	}
690 	INIT_LIST_HEAD(&block->list);
691 	pb->block = block;
692 	atomic_inc(&lc->pending_blocks);
693 
694 	if (flush_bio)
695 		block->flags |= LOG_FLUSH_FLAG;
696 	if (fua_bio)
697 		block->flags |= LOG_FUA_FLAG;
698 	if (discard_bio)
699 		block->flags |= LOG_DISCARD_FLAG;
700 	if (meta_bio)
701 		block->flags |= LOG_METADATA_FLAG;
702 
703 	block->sector = bio_to_dev_sectors(lc, bio->bi_iter.bi_sector);
704 	block->nr_sectors = bio_to_dev_sectors(lc, bio_sectors(bio));
705 
706 	/* We don't need the data, just submit */
707 	if (discard_bio) {
708 		WARN_ON(flush_bio || fua_bio);
709 		if (lc->device_supports_discard)
710 			goto map_bio;
711 		bio_endio(bio);
712 		return DM_MAPIO_SUBMITTED;
713 	}
714 
715 	/* Flush bio, splice the unflushed blocks onto this list and submit */
716 	if (flush_bio && !bio_sectors(bio)) {
717 		spin_lock_irq(&lc->blocks_lock);
718 		list_splice_init(&lc->unflushed_blocks, &block->list);
719 		spin_unlock_irq(&lc->blocks_lock);
720 		goto map_bio;
721 	}
722 
723 	/*
724 	 * We will write this bio somewhere else way later so we need to copy
725 	 * the actual contents into new pages so we know the data will always be
726 	 * there.
727 	 *
728 	 * We do this because this could be a bio from O_DIRECT in which case we
729 	 * can't just hold onto the page until some later point, we have to
730 	 * manually copy the contents.
731 	 */
732 	bio_for_each_segment(bv, bio, iter) {
733 		struct page *page;
734 		void *dst;
735 
736 		page = alloc_page(GFP_NOIO);
737 		if (!page) {
738 			DMERR("Error allocing page");
739 			free_pending_block(lc, block);
740 			spin_lock_irq(&lc->blocks_lock);
741 			lc->logging_enabled = false;
742 			spin_unlock_irq(&lc->blocks_lock);
743 			return DM_MAPIO_KILL;
744 		}
745 
746 		dst = kmap_local_page(page);
747 		memcpy_from_bvec(dst, &bv);
748 		kunmap_local(dst);
749 		block->vecs[i].bv_page = page;
750 		block->vecs[i].bv_len = bv.bv_len;
751 		block->vec_cnt++;
752 		i++;
753 	}
754 
755 	/* Had a flush with data in it, weird */
756 	if (flush_bio) {
757 		spin_lock_irq(&lc->blocks_lock);
758 		list_splice_init(&lc->unflushed_blocks, &block->list);
759 		spin_unlock_irq(&lc->blocks_lock);
760 	}
761 map_bio:
762 	normal_map_bio(ti, bio);
763 	return DM_MAPIO_REMAPPED;
764 }
765 
766 static int normal_end_io(struct dm_target *ti, struct bio *bio,
767 		blk_status_t *error)
768 {
769 	struct log_writes_c *lc = ti->private;
770 	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
771 
772 	if (bio_data_dir(bio) == WRITE && pb->block) {
773 		struct pending_block *block = pb->block;
774 		unsigned long flags;
775 
776 		spin_lock_irqsave(&lc->blocks_lock, flags);
777 		if (block->flags & LOG_FLUSH_FLAG) {
778 			list_splice_tail_init(&block->list, &lc->logging_blocks);
779 			list_add_tail(&block->list, &lc->logging_blocks);
780 			wake_up_process(lc->log_kthread);
781 		} else if (block->flags & LOG_FUA_FLAG) {
782 			list_add_tail(&block->list, &lc->logging_blocks);
783 			wake_up_process(lc->log_kthread);
784 		} else
785 			list_add_tail(&block->list, &lc->unflushed_blocks);
786 		spin_unlock_irqrestore(&lc->blocks_lock, flags);
787 	}
788 
789 	return DM_ENDIO_DONE;
790 }
791 
792 /*
793  * INFO format: <logged entries> <highest allocated sector>
794  */
795 static void log_writes_status(struct dm_target *ti, status_type_t type,
796 			      unsigned int status_flags, char *result,
797 			      unsigned int maxlen)
798 {
799 	unsigned int sz = 0;
800 	struct log_writes_c *lc = ti->private;
801 
802 	switch (type) {
803 	case STATUSTYPE_INFO:
804 		DMEMIT("%llu %llu", lc->logged_entries,
805 		       (unsigned long long)lc->next_sector - 1);
806 		if (!lc->logging_enabled)
807 			DMEMIT(" logging_disabled");
808 		break;
809 
810 	case STATUSTYPE_TABLE:
811 		DMEMIT("%s %s", lc->dev->name, lc->logdev->name);
812 		break;
813 
814 	case STATUSTYPE_IMA:
815 		*result = '\0';
816 		break;
817 	}
818 }
819 
820 static int log_writes_prepare_ioctl(struct dm_target *ti,
821 				    struct block_device **bdev)
822 {
823 	struct log_writes_c *lc = ti->private;
824 	struct dm_dev *dev = lc->dev;
825 
826 	*bdev = dev->bdev;
827 	/*
828 	 * Only pass ioctls through if the device sizes match exactly.
829 	 */
830 	if (ti->len != bdev_nr_sectors(dev->bdev))
831 		return 1;
832 	return 0;
833 }
834 
835 static int log_writes_iterate_devices(struct dm_target *ti,
836 				      iterate_devices_callout_fn fn,
837 				      void *data)
838 {
839 	struct log_writes_c *lc = ti->private;
840 
841 	return fn(ti, lc->dev, 0, ti->len, data);
842 }
843 
844 /*
845  * Messages supported:
846  *   mark <mark data> - specify the marked data.
847  */
848 static int log_writes_message(struct dm_target *ti, unsigned int argc, char **argv,
849 			      char *result, unsigned int maxlen)
850 {
851 	int r = -EINVAL;
852 	struct log_writes_c *lc = ti->private;
853 
854 	if (argc != 2) {
855 		DMWARN("Invalid log-writes message arguments, expect 2 arguments, got %d", argc);
856 		return r;
857 	}
858 
859 	if (!strcasecmp(argv[0], "mark"))
860 		r = log_mark(lc, argv[1]);
861 	else
862 		DMWARN("Unrecognised log writes target message received: %s", argv[0]);
863 
864 	return r;
865 }
866 
867 static void log_writes_io_hints(struct dm_target *ti, struct queue_limits *limits)
868 {
869 	struct log_writes_c *lc = ti->private;
870 
871 	if (!bdev_max_discard_sectors(lc->dev->bdev)) {
872 		lc->device_supports_discard = false;
873 		limits->discard_granularity = lc->sectorsize;
874 		limits->max_discard_sectors = (UINT_MAX >> SECTOR_SHIFT);
875 	}
876 	limits->logical_block_size = bdev_logical_block_size(lc->dev->bdev);
877 	limits->physical_block_size = bdev_physical_block_size(lc->dev->bdev);
878 	limits->io_min = limits->physical_block_size;
879 	limits->dma_alignment = limits->logical_block_size - 1;
880 }
881 
882 #if IS_ENABLED(CONFIG_FS_DAX)
883 static struct dax_device *log_writes_dax_pgoff(struct dm_target *ti,
884 		pgoff_t *pgoff)
885 {
886 	struct log_writes_c *lc = ti->private;
887 
888 	*pgoff += (get_start_sect(lc->dev->bdev) >> PAGE_SECTORS_SHIFT);
889 	return lc->dev->dax_dev;
890 }
891 
892 static long log_writes_dax_direct_access(struct dm_target *ti, pgoff_t pgoff,
893 		long nr_pages, enum dax_access_mode mode, void **kaddr,
894 		pfn_t *pfn)
895 {
896 	struct dax_device *dax_dev = log_writes_dax_pgoff(ti, &pgoff);
897 
898 	return dax_direct_access(dax_dev, pgoff, nr_pages, mode, kaddr, pfn);
899 }
900 
901 static int log_writes_dax_zero_page_range(struct dm_target *ti, pgoff_t pgoff,
902 					  size_t nr_pages)
903 {
904 	struct dax_device *dax_dev = log_writes_dax_pgoff(ti, &pgoff);
905 
906 	return dax_zero_page_range(dax_dev, pgoff, nr_pages << PAGE_SHIFT);
907 }
908 
909 static size_t log_writes_dax_recovery_write(struct dm_target *ti,
910 		pgoff_t pgoff, void *addr, size_t bytes, struct iov_iter *i)
911 {
912 	struct dax_device *dax_dev = log_writes_dax_pgoff(ti, &pgoff);
913 
914 	return dax_recovery_write(dax_dev, pgoff, addr, bytes, i);
915 }
916 
917 #else
918 #define log_writes_dax_direct_access NULL
919 #define log_writes_dax_zero_page_range NULL
920 #define log_writes_dax_recovery_write NULL
921 #endif
922 
923 static struct target_type log_writes_target = {
924 	.name   = "log-writes",
925 	.version = {1, 1, 0},
926 	.module = THIS_MODULE,
927 	.ctr    = log_writes_ctr,
928 	.dtr    = log_writes_dtr,
929 	.map    = log_writes_map,
930 	.end_io = normal_end_io,
931 	.status = log_writes_status,
932 	.prepare_ioctl = log_writes_prepare_ioctl,
933 	.message = log_writes_message,
934 	.iterate_devices = log_writes_iterate_devices,
935 	.io_hints = log_writes_io_hints,
936 	.direct_access = log_writes_dax_direct_access,
937 	.dax_zero_page_range = log_writes_dax_zero_page_range,
938 	.dax_recovery_write = log_writes_dax_recovery_write,
939 };
940 module_dm(log_writes);
941 
942 MODULE_DESCRIPTION(DM_NAME " log writes target");
943 MODULE_AUTHOR("Josef Bacik <jbacik@fb.com>");
944 MODULE_LICENSE("GPL");
945