xref: /linux/drivers/md/dm-integrity.c (revision ff9fbcafbaf13346c742c0d672a22f5ac20b9d92)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4  * Copyright (C) 2016-2017 Milan Broz
5  * Copyright (C) 2016-2017 Mikulas Patocka
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include "dm-bio-record.h"
11 
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <linux/async_tx.h>
25 #include <linux/dm-bufio.h>
26 
27 #include "dm-audit.h"
28 
29 #define DM_MSG_PREFIX "integrity"
30 
31 #define DEFAULT_INTERLEAVE_SECTORS	32768
32 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
33 #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
34 #define DEFAULT_BUFFER_SECTORS		128
35 #define DEFAULT_JOURNAL_WATERMARK	50
36 #define DEFAULT_SYNC_MSEC		10000
37 #define DEFAULT_MAX_JOURNAL_SECTORS	(IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
38 #define MIN_LOG2_INTERLEAVE_SECTORS	3
39 #define MAX_LOG2_INTERLEAVE_SECTORS	31
40 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
41 #define RECALC_SECTORS			(IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
42 #define RECALC_WRITE_SUPER		16
43 #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
44 #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
45 #define DISCARD_FILLER			0xf6
46 #define SALT_SIZE			16
47 
48 /*
49  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
50  * so it should not be enabled in the official kernel
51  */
52 //#define DEBUG_PRINT
53 //#define INTERNAL_VERIFY
54 
55 /*
56  * On disk structures
57  */
58 
59 #define SB_MAGIC			"integrt"
60 #define SB_VERSION_1			1
61 #define SB_VERSION_2			2
62 #define SB_VERSION_3			3
63 #define SB_VERSION_4			4
64 #define SB_VERSION_5			5
65 #define SB_SECTORS			8
66 #define MAX_SECTORS_PER_BLOCK		8
67 
68 struct superblock {
69 	__u8 magic[8];
70 	__u8 version;
71 	__u8 log2_interleave_sectors;
72 	__le16 integrity_tag_size;
73 	__le32 journal_sections;
74 	__le64 provided_data_sectors;	/* userspace uses this value */
75 	__le32 flags;
76 	__u8 log2_sectors_per_block;
77 	__u8 log2_blocks_per_bitmap_bit;
78 	__u8 pad[2];
79 	__le64 recalc_sector;
80 	__u8 pad2[8];
81 	__u8 salt[SALT_SIZE];
82 };
83 
84 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
85 #define SB_FLAG_RECALCULATING		0x2
86 #define SB_FLAG_DIRTY_BITMAP		0x4
87 #define SB_FLAG_FIXED_PADDING		0x8
88 #define SB_FLAG_FIXED_HMAC		0x10
89 
90 #define	JOURNAL_ENTRY_ROUNDUP		8
91 
92 typedef __le64 commit_id_t;
93 #define JOURNAL_MAC_PER_SECTOR		8
94 
95 struct journal_entry {
96 	union {
97 		struct {
98 			__le32 sector_lo;
99 			__le32 sector_hi;
100 		} s;
101 		__le64 sector;
102 	} u;
103 	commit_id_t last_bytes[];
104 	/* __u8 tag[0]; */
105 };
106 
107 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
108 
109 #if BITS_PER_LONG == 64
110 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
111 #else
112 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
113 #endif
114 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
115 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
116 #define journal_entry_set_unused(je)		((je)->u.s.sector_hi = cpu_to_le32(-1))
117 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
118 #define journal_entry_set_inprogress(je)	((je)->u.s.sector_hi = cpu_to_le32(-2))
119 
120 #define JOURNAL_BLOCK_SECTORS		8
121 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
122 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
123 
124 struct journal_sector {
125 	struct_group(sectors,
126 		__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
127 		__u8 mac[JOURNAL_MAC_PER_SECTOR];
128 	);
129 	commit_id_t commit_id;
130 };
131 
132 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
133 
134 #define METADATA_PADDING_SECTORS	8
135 
136 #define N_COMMIT_IDS			4
137 
138 static unsigned char prev_commit_seq(unsigned char seq)
139 {
140 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
141 }
142 
143 static unsigned char next_commit_seq(unsigned char seq)
144 {
145 	return (seq + 1) % N_COMMIT_IDS;
146 }
147 
148 /*
149  * In-memory structures
150  */
151 
152 struct journal_node {
153 	struct rb_node node;
154 	sector_t sector;
155 };
156 
157 struct alg_spec {
158 	char *alg_string;
159 	char *key_string;
160 	__u8 *key;
161 	unsigned int key_size;
162 };
163 
164 struct dm_integrity_c {
165 	struct dm_dev *dev;
166 	struct dm_dev *meta_dev;
167 	unsigned int tag_size;
168 	__s8 log2_tag_size;
169 	sector_t start;
170 	mempool_t journal_io_mempool;
171 	struct dm_io_client *io;
172 	struct dm_bufio_client *bufio;
173 	struct workqueue_struct *metadata_wq;
174 	struct superblock *sb;
175 	unsigned int journal_pages;
176 	unsigned int n_bitmap_blocks;
177 
178 	struct page_list *journal;
179 	struct page_list *journal_io;
180 	struct page_list *journal_xor;
181 	struct page_list *recalc_bitmap;
182 	struct page_list *may_write_bitmap;
183 	struct bitmap_block_status *bbs;
184 	unsigned int bitmap_flush_interval;
185 	int synchronous_mode;
186 	struct bio_list synchronous_bios;
187 	struct delayed_work bitmap_flush_work;
188 
189 	struct crypto_skcipher *journal_crypt;
190 	struct scatterlist **journal_scatterlist;
191 	struct scatterlist **journal_io_scatterlist;
192 	struct skcipher_request **sk_requests;
193 
194 	struct crypto_shash *journal_mac;
195 
196 	struct journal_node *journal_tree;
197 	struct rb_root journal_tree_root;
198 
199 	sector_t provided_data_sectors;
200 
201 	unsigned short journal_entry_size;
202 	unsigned char journal_entries_per_sector;
203 	unsigned char journal_section_entries;
204 	unsigned short journal_section_sectors;
205 	unsigned int journal_sections;
206 	unsigned int journal_entries;
207 	sector_t data_device_sectors;
208 	sector_t meta_device_sectors;
209 	unsigned int initial_sectors;
210 	unsigned int metadata_run;
211 	__s8 log2_metadata_run;
212 	__u8 log2_buffer_sectors;
213 	__u8 sectors_per_block;
214 	__u8 log2_blocks_per_bitmap_bit;
215 
216 	unsigned char mode;
217 
218 	int failed;
219 
220 	struct crypto_shash *internal_hash;
221 
222 	struct dm_target *ti;
223 
224 	/* these variables are locked with endio_wait.lock */
225 	struct rb_root in_progress;
226 	struct list_head wait_list;
227 	wait_queue_head_t endio_wait;
228 	struct workqueue_struct *wait_wq;
229 	struct workqueue_struct *offload_wq;
230 
231 	unsigned char commit_seq;
232 	commit_id_t commit_ids[N_COMMIT_IDS];
233 
234 	unsigned int committed_section;
235 	unsigned int n_committed_sections;
236 
237 	unsigned int uncommitted_section;
238 	unsigned int n_uncommitted_sections;
239 
240 	unsigned int free_section;
241 	unsigned char free_section_entry;
242 	unsigned int free_sectors;
243 
244 	unsigned int free_sectors_threshold;
245 
246 	struct workqueue_struct *commit_wq;
247 	struct work_struct commit_work;
248 
249 	struct workqueue_struct *writer_wq;
250 	struct work_struct writer_work;
251 
252 	struct workqueue_struct *recalc_wq;
253 	struct work_struct recalc_work;
254 
255 	struct bio_list flush_bio_list;
256 
257 	unsigned long autocommit_jiffies;
258 	struct timer_list autocommit_timer;
259 	unsigned int autocommit_msec;
260 
261 	wait_queue_head_t copy_to_journal_wait;
262 
263 	struct completion crypto_backoff;
264 
265 	bool wrote_to_journal;
266 	bool journal_uptodate;
267 	bool just_formatted;
268 	bool recalculate_flag;
269 	bool reset_recalculate_flag;
270 	bool discard;
271 	bool fix_padding;
272 	bool fix_hmac;
273 	bool legacy_recalculate;
274 
275 	struct alg_spec internal_hash_alg;
276 	struct alg_spec journal_crypt_alg;
277 	struct alg_spec journal_mac_alg;
278 
279 	atomic64_t number_of_mismatches;
280 
281 	mempool_t recheck_pool;
282 
283 	struct notifier_block reboot_notifier;
284 };
285 
286 struct dm_integrity_range {
287 	sector_t logical_sector;
288 	sector_t n_sectors;
289 	bool waiting;
290 	union {
291 		struct rb_node node;
292 		struct {
293 			struct task_struct *task;
294 			struct list_head wait_entry;
295 		};
296 	};
297 };
298 
299 struct dm_integrity_io {
300 	struct work_struct work;
301 
302 	struct dm_integrity_c *ic;
303 	enum req_op op;
304 	bool fua;
305 
306 	struct dm_integrity_range range;
307 
308 	sector_t metadata_block;
309 	unsigned int metadata_offset;
310 
311 	atomic_t in_flight;
312 	blk_status_t bi_status;
313 
314 	struct completion *completion;
315 
316 	struct dm_bio_details bio_details;
317 };
318 
319 struct journal_completion {
320 	struct dm_integrity_c *ic;
321 	atomic_t in_flight;
322 	struct completion comp;
323 };
324 
325 struct journal_io {
326 	struct dm_integrity_range range;
327 	struct journal_completion *comp;
328 };
329 
330 struct bitmap_block_status {
331 	struct work_struct work;
332 	struct dm_integrity_c *ic;
333 	unsigned int idx;
334 	unsigned long *bitmap;
335 	struct bio_list bio_queue;
336 	spinlock_t bio_queue_lock;
337 
338 };
339 
340 static struct kmem_cache *journal_io_cache;
341 
342 #define JOURNAL_IO_MEMPOOL	32
343 
344 #ifdef DEBUG_PRINT
345 #define DEBUG_print(x, ...)			printk(KERN_DEBUG x, ##__VA_ARGS__)
346 #define DEBUG_bytes(bytes, len, msg, ...)	printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
347 						       len ? ": " : "", len, bytes)
348 #else
349 #define DEBUG_print(x, ...)			do { } while (0)
350 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
351 #endif
352 
353 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
354 static void integrity_bio_wait(struct work_struct *w);
355 static void dm_integrity_dtr(struct dm_target *ti);
356 
357 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
358 {
359 	if (err == -EILSEQ)
360 		atomic64_inc(&ic->number_of_mismatches);
361 	if (!cmpxchg(&ic->failed, 0, err))
362 		DMERR("Error on %s: %d", msg, err);
363 }
364 
365 static int dm_integrity_failed(struct dm_integrity_c *ic)
366 {
367 	return READ_ONCE(ic->failed);
368 }
369 
370 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
371 {
372 	if (ic->legacy_recalculate)
373 		return false;
374 	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
375 	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
376 	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
377 		return true;
378 	return false;
379 }
380 
381 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
382 					  unsigned int j, unsigned char seq)
383 {
384 	/*
385 	 * Xor the number with section and sector, so that if a piece of
386 	 * journal is written at wrong place, it is detected.
387 	 */
388 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
389 }
390 
391 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
392 				sector_t *area, sector_t *offset)
393 {
394 	if (!ic->meta_dev) {
395 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
396 		*area = data_sector >> log2_interleave_sectors;
397 		*offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
398 	} else {
399 		*area = 0;
400 		*offset = data_sector;
401 	}
402 }
403 
404 #define sector_to_block(ic, n)						\
405 do {									\
406 	BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1));		\
407 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
408 } while (0)
409 
410 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
411 					    sector_t offset, unsigned int *metadata_offset)
412 {
413 	__u64 ms;
414 	unsigned int mo;
415 
416 	ms = area << ic->sb->log2_interleave_sectors;
417 	if (likely(ic->log2_metadata_run >= 0))
418 		ms += area << ic->log2_metadata_run;
419 	else
420 		ms += area * ic->metadata_run;
421 	ms >>= ic->log2_buffer_sectors;
422 
423 	sector_to_block(ic, offset);
424 
425 	if (likely(ic->log2_tag_size >= 0)) {
426 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
427 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
428 	} else {
429 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
430 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
431 	}
432 	*metadata_offset = mo;
433 	return ms;
434 }
435 
436 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
437 {
438 	sector_t result;
439 
440 	if (ic->meta_dev)
441 		return offset;
442 
443 	result = area << ic->sb->log2_interleave_sectors;
444 	if (likely(ic->log2_metadata_run >= 0))
445 		result += (area + 1) << ic->log2_metadata_run;
446 	else
447 		result += (area + 1) * ic->metadata_run;
448 
449 	result += (sector_t)ic->initial_sectors + offset;
450 	result += ic->start;
451 
452 	return result;
453 }
454 
455 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
456 {
457 	if (unlikely(*sec_ptr >= ic->journal_sections))
458 		*sec_ptr -= ic->journal_sections;
459 }
460 
461 static void sb_set_version(struct dm_integrity_c *ic)
462 {
463 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
464 		ic->sb->version = SB_VERSION_5;
465 	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
466 		ic->sb->version = SB_VERSION_4;
467 	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
468 		ic->sb->version = SB_VERSION_3;
469 	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
470 		ic->sb->version = SB_VERSION_2;
471 	else
472 		ic->sb->version = SB_VERSION_1;
473 }
474 
475 static int sb_mac(struct dm_integrity_c *ic, bool wr)
476 {
477 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
478 	int r;
479 	unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac);
480 	__u8 *sb = (__u8 *)ic->sb;
481 	__u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size;
482 
483 	if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT) {
484 		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
485 		return -EINVAL;
486 	}
487 
488 	desc->tfm = ic->journal_mac;
489 
490 	if (likely(wr)) {
491 		r = crypto_shash_digest(desc, sb, mac - sb, mac);
492 		if (unlikely(r < 0)) {
493 			dm_integrity_io_error(ic, "crypto_shash_digest", r);
494 			return r;
495 		}
496 	} else {
497 		__u8 actual_mac[HASH_MAX_DIGESTSIZE];
498 
499 		r = crypto_shash_digest(desc, sb, mac - sb, actual_mac);
500 		if (unlikely(r < 0)) {
501 			dm_integrity_io_error(ic, "crypto_shash_digest", r);
502 			return r;
503 		}
504 		if (memcmp(mac, actual_mac, mac_size)) {
505 			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
506 			dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
507 			return -EILSEQ;
508 		}
509 	}
510 
511 	return 0;
512 }
513 
514 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
515 {
516 	struct dm_io_request io_req;
517 	struct dm_io_region io_loc;
518 	const enum req_op op = opf & REQ_OP_MASK;
519 	int r;
520 
521 	io_req.bi_opf = opf;
522 	io_req.mem.type = DM_IO_KMEM;
523 	io_req.mem.ptr.addr = ic->sb;
524 	io_req.notify.fn = NULL;
525 	io_req.client = ic->io;
526 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
527 	io_loc.sector = ic->start;
528 	io_loc.count = SB_SECTORS;
529 
530 	if (op == REQ_OP_WRITE) {
531 		sb_set_version(ic);
532 		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
533 			r = sb_mac(ic, true);
534 			if (unlikely(r))
535 				return r;
536 		}
537 	}
538 
539 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
540 	if (unlikely(r))
541 		return r;
542 
543 	if (op == REQ_OP_READ) {
544 		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
545 			r = sb_mac(ic, false);
546 			if (unlikely(r))
547 				return r;
548 		}
549 	}
550 
551 	return 0;
552 }
553 
554 #define BITMAP_OP_TEST_ALL_SET		0
555 #define BITMAP_OP_TEST_ALL_CLEAR	1
556 #define BITMAP_OP_SET			2
557 #define BITMAP_OP_CLEAR			3
558 
559 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
560 			    sector_t sector, sector_t n_sectors, int mode)
561 {
562 	unsigned long bit, end_bit, this_end_bit, page, end_page;
563 	unsigned long *data;
564 
565 	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
566 		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
567 			sector,
568 			n_sectors,
569 			ic->sb->log2_sectors_per_block,
570 			ic->log2_blocks_per_bitmap_bit,
571 			mode);
572 		BUG();
573 	}
574 
575 	if (unlikely(!n_sectors))
576 		return true;
577 
578 	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
579 	end_bit = (sector + n_sectors - 1) >>
580 		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
581 
582 	page = bit / (PAGE_SIZE * 8);
583 	bit %= PAGE_SIZE * 8;
584 
585 	end_page = end_bit / (PAGE_SIZE * 8);
586 	end_bit %= PAGE_SIZE * 8;
587 
588 repeat:
589 	if (page < end_page)
590 		this_end_bit = PAGE_SIZE * 8 - 1;
591 	else
592 		this_end_bit = end_bit;
593 
594 	data = lowmem_page_address(bitmap[page].page);
595 
596 	if (mode == BITMAP_OP_TEST_ALL_SET) {
597 		while (bit <= this_end_bit) {
598 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
599 				do {
600 					if (data[bit / BITS_PER_LONG] != -1)
601 						return false;
602 					bit += BITS_PER_LONG;
603 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
604 				continue;
605 			}
606 			if (!test_bit(bit, data))
607 				return false;
608 			bit++;
609 		}
610 	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
611 		while (bit <= this_end_bit) {
612 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
613 				do {
614 					if (data[bit / BITS_PER_LONG] != 0)
615 						return false;
616 					bit += BITS_PER_LONG;
617 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
618 				continue;
619 			}
620 			if (test_bit(bit, data))
621 				return false;
622 			bit++;
623 		}
624 	} else if (mode == BITMAP_OP_SET) {
625 		while (bit <= this_end_bit) {
626 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
627 				do {
628 					data[bit / BITS_PER_LONG] = -1;
629 					bit += BITS_PER_LONG;
630 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
631 				continue;
632 			}
633 			__set_bit(bit, data);
634 			bit++;
635 		}
636 	} else if (mode == BITMAP_OP_CLEAR) {
637 		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
638 			clear_page(data);
639 		else {
640 			while (bit <= this_end_bit) {
641 				if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
642 					do {
643 						data[bit / BITS_PER_LONG] = 0;
644 						bit += BITS_PER_LONG;
645 					} while (this_end_bit >= bit + BITS_PER_LONG - 1);
646 					continue;
647 				}
648 				__clear_bit(bit, data);
649 				bit++;
650 			}
651 		}
652 	} else {
653 		BUG();
654 	}
655 
656 	if (unlikely(page < end_page)) {
657 		bit = 0;
658 		page++;
659 		goto repeat;
660 	}
661 
662 	return true;
663 }
664 
665 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
666 {
667 	unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
668 	unsigned int i;
669 
670 	for (i = 0; i < n_bitmap_pages; i++) {
671 		unsigned long *dst_data = lowmem_page_address(dst[i].page);
672 		unsigned long *src_data = lowmem_page_address(src[i].page);
673 
674 		copy_page(dst_data, src_data);
675 	}
676 }
677 
678 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
679 {
680 	unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
681 	unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
682 
683 	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
684 	return &ic->bbs[bitmap_block];
685 }
686 
687 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
688 				 bool e, const char *function)
689 {
690 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
691 	unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
692 
693 	if (unlikely(section >= ic->journal_sections) ||
694 	    unlikely(offset >= limit)) {
695 		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
696 		       function, section, offset, ic->journal_sections, limit);
697 		BUG();
698 	}
699 #endif
700 }
701 
702 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
703 			       unsigned int *pl_index, unsigned int *pl_offset)
704 {
705 	unsigned int sector;
706 
707 	access_journal_check(ic, section, offset, false, "page_list_location");
708 
709 	sector = section * ic->journal_section_sectors + offset;
710 
711 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
712 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
713 }
714 
715 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
716 					       unsigned int section, unsigned int offset, unsigned int *n_sectors)
717 {
718 	unsigned int pl_index, pl_offset;
719 	char *va;
720 
721 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
722 
723 	if (n_sectors)
724 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
725 
726 	va = lowmem_page_address(pl[pl_index].page);
727 
728 	return (struct journal_sector *)(va + pl_offset);
729 }
730 
731 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
732 {
733 	return access_page_list(ic, ic->journal, section, offset, NULL);
734 }
735 
736 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
737 {
738 	unsigned int rel_sector, offset;
739 	struct journal_sector *js;
740 
741 	access_journal_check(ic, section, n, true, "access_journal_entry");
742 
743 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
744 	offset = n / JOURNAL_BLOCK_SECTORS;
745 
746 	js = access_journal(ic, section, rel_sector);
747 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
748 }
749 
750 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
751 {
752 	n <<= ic->sb->log2_sectors_per_block;
753 
754 	n += JOURNAL_BLOCK_SECTORS;
755 
756 	access_journal_check(ic, section, n, false, "access_journal_data");
757 
758 	return access_journal(ic, section, n);
759 }
760 
761 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
762 {
763 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
764 	int r;
765 	unsigned int j, size;
766 
767 	desc->tfm = ic->journal_mac;
768 
769 	r = crypto_shash_init(desc);
770 	if (unlikely(r < 0)) {
771 		dm_integrity_io_error(ic, "crypto_shash_init", r);
772 		goto err;
773 	}
774 
775 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
776 		__le64 section_le;
777 
778 		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
779 		if (unlikely(r < 0)) {
780 			dm_integrity_io_error(ic, "crypto_shash_update", r);
781 			goto err;
782 		}
783 
784 		section_le = cpu_to_le64(section);
785 		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof(section_le));
786 		if (unlikely(r < 0)) {
787 			dm_integrity_io_error(ic, "crypto_shash_update", r);
788 			goto err;
789 		}
790 	}
791 
792 	for (j = 0; j < ic->journal_section_entries; j++) {
793 		struct journal_entry *je = access_journal_entry(ic, section, j);
794 
795 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
796 		if (unlikely(r < 0)) {
797 			dm_integrity_io_error(ic, "crypto_shash_update", r);
798 			goto err;
799 		}
800 	}
801 
802 	size = crypto_shash_digestsize(ic->journal_mac);
803 
804 	if (likely(size <= JOURNAL_MAC_SIZE)) {
805 		r = crypto_shash_final(desc, result);
806 		if (unlikely(r < 0)) {
807 			dm_integrity_io_error(ic, "crypto_shash_final", r);
808 			goto err;
809 		}
810 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
811 	} else {
812 		__u8 digest[HASH_MAX_DIGESTSIZE];
813 
814 		if (WARN_ON(size > sizeof(digest))) {
815 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
816 			goto err;
817 		}
818 		r = crypto_shash_final(desc, digest);
819 		if (unlikely(r < 0)) {
820 			dm_integrity_io_error(ic, "crypto_shash_final", r);
821 			goto err;
822 		}
823 		memcpy(result, digest, JOURNAL_MAC_SIZE);
824 	}
825 
826 	return;
827 err:
828 	memset(result, 0, JOURNAL_MAC_SIZE);
829 }
830 
831 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
832 {
833 	__u8 result[JOURNAL_MAC_SIZE];
834 	unsigned int j;
835 
836 	if (!ic->journal_mac)
837 		return;
838 
839 	section_mac(ic, section, result);
840 
841 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
842 		struct journal_sector *js = access_journal(ic, section, j);
843 
844 		if (likely(wr))
845 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
846 		else {
847 			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
848 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
849 				dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
850 			}
851 		}
852 	}
853 }
854 
855 static void complete_journal_op(void *context)
856 {
857 	struct journal_completion *comp = context;
858 
859 	BUG_ON(!atomic_read(&comp->in_flight));
860 	if (likely(atomic_dec_and_test(&comp->in_flight)))
861 		complete(&comp->comp);
862 }
863 
864 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
865 			unsigned int n_sections, struct journal_completion *comp)
866 {
867 	struct async_submit_ctl submit;
868 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
869 	unsigned int pl_index, pl_offset, section_index;
870 	struct page_list *source_pl, *target_pl;
871 
872 	if (likely(encrypt)) {
873 		source_pl = ic->journal;
874 		target_pl = ic->journal_io;
875 	} else {
876 		source_pl = ic->journal_io;
877 		target_pl = ic->journal;
878 	}
879 
880 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
881 
882 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
883 
884 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
885 
886 	section_index = pl_index;
887 
888 	do {
889 		size_t this_step;
890 		struct page *src_pages[2];
891 		struct page *dst_page;
892 
893 		while (unlikely(pl_index == section_index)) {
894 			unsigned int dummy;
895 
896 			if (likely(encrypt))
897 				rw_section_mac(ic, section, true);
898 			section++;
899 			n_sections--;
900 			if (!n_sections)
901 				break;
902 			page_list_location(ic, section, 0, &section_index, &dummy);
903 		}
904 
905 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
906 		dst_page = target_pl[pl_index].page;
907 		src_pages[0] = source_pl[pl_index].page;
908 		src_pages[1] = ic->journal_xor[pl_index].page;
909 
910 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
911 
912 		pl_index++;
913 		pl_offset = 0;
914 		n_bytes -= this_step;
915 	} while (n_bytes);
916 
917 	BUG_ON(n_sections);
918 
919 	async_tx_issue_pending_all();
920 }
921 
922 static void complete_journal_encrypt(void *data, int err)
923 {
924 	struct journal_completion *comp = data;
925 
926 	if (unlikely(err)) {
927 		if (likely(err == -EINPROGRESS)) {
928 			complete(&comp->ic->crypto_backoff);
929 			return;
930 		}
931 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
932 	}
933 	complete_journal_op(comp);
934 }
935 
936 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
937 {
938 	int r;
939 
940 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
941 				      complete_journal_encrypt, comp);
942 	if (likely(encrypt))
943 		r = crypto_skcipher_encrypt(req);
944 	else
945 		r = crypto_skcipher_decrypt(req);
946 	if (likely(!r))
947 		return false;
948 	if (likely(r == -EINPROGRESS))
949 		return true;
950 	if (likely(r == -EBUSY)) {
951 		wait_for_completion(&comp->ic->crypto_backoff);
952 		reinit_completion(&comp->ic->crypto_backoff);
953 		return true;
954 	}
955 	dm_integrity_io_error(comp->ic, "encrypt", r);
956 	return false;
957 }
958 
959 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
960 			  unsigned int n_sections, struct journal_completion *comp)
961 {
962 	struct scatterlist **source_sg;
963 	struct scatterlist **target_sg;
964 
965 	atomic_add(2, &comp->in_flight);
966 
967 	if (likely(encrypt)) {
968 		source_sg = ic->journal_scatterlist;
969 		target_sg = ic->journal_io_scatterlist;
970 	} else {
971 		source_sg = ic->journal_io_scatterlist;
972 		target_sg = ic->journal_scatterlist;
973 	}
974 
975 	do {
976 		struct skcipher_request *req;
977 		unsigned int ivsize;
978 		char *iv;
979 
980 		if (likely(encrypt))
981 			rw_section_mac(ic, section, true);
982 
983 		req = ic->sk_requests[section];
984 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
985 		iv = req->iv;
986 
987 		memcpy(iv, iv + ivsize, ivsize);
988 
989 		req->src = source_sg[section];
990 		req->dst = target_sg[section];
991 
992 		if (unlikely(do_crypt(encrypt, req, comp)))
993 			atomic_inc(&comp->in_flight);
994 
995 		section++;
996 		n_sections--;
997 	} while (n_sections);
998 
999 	atomic_dec(&comp->in_flight);
1000 	complete_journal_op(comp);
1001 }
1002 
1003 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1004 			    unsigned int n_sections, struct journal_completion *comp)
1005 {
1006 	if (ic->journal_xor)
1007 		return xor_journal(ic, encrypt, section, n_sections, comp);
1008 	else
1009 		return crypt_journal(ic, encrypt, section, n_sections, comp);
1010 }
1011 
1012 static void complete_journal_io(unsigned long error, void *context)
1013 {
1014 	struct journal_completion *comp = context;
1015 
1016 	if (unlikely(error != 0))
1017 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1018 	complete_journal_op(comp);
1019 }
1020 
1021 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1022 			       unsigned int sector, unsigned int n_sectors,
1023 			       struct journal_completion *comp)
1024 {
1025 	struct dm_io_request io_req;
1026 	struct dm_io_region io_loc;
1027 	unsigned int pl_index, pl_offset;
1028 	int r;
1029 
1030 	if (unlikely(dm_integrity_failed(ic))) {
1031 		if (comp)
1032 			complete_journal_io(-1UL, comp);
1033 		return;
1034 	}
1035 
1036 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1037 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1038 
1039 	io_req.bi_opf = opf;
1040 	io_req.mem.type = DM_IO_PAGE_LIST;
1041 	if (ic->journal_io)
1042 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1043 	else
1044 		io_req.mem.ptr.pl = &ic->journal[pl_index];
1045 	io_req.mem.offset = pl_offset;
1046 	if (likely(comp != NULL)) {
1047 		io_req.notify.fn = complete_journal_io;
1048 		io_req.notify.context = comp;
1049 	} else {
1050 		io_req.notify.fn = NULL;
1051 	}
1052 	io_req.client = ic->io;
1053 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1054 	io_loc.sector = ic->start + SB_SECTORS + sector;
1055 	io_loc.count = n_sectors;
1056 
1057 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1058 	if (unlikely(r)) {
1059 		dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1060 				      "reading journal" : "writing journal", r);
1061 		if (comp) {
1062 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1063 			complete_journal_io(-1UL, comp);
1064 		}
1065 	}
1066 }
1067 
1068 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1069 		       unsigned int section, unsigned int n_sections,
1070 		       struct journal_completion *comp)
1071 {
1072 	unsigned int sector, n_sectors;
1073 
1074 	sector = section * ic->journal_section_sectors;
1075 	n_sectors = n_sections * ic->journal_section_sectors;
1076 
1077 	rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1078 }
1079 
1080 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1081 {
1082 	struct journal_completion io_comp;
1083 	struct journal_completion crypt_comp_1;
1084 	struct journal_completion crypt_comp_2;
1085 	unsigned int i;
1086 
1087 	io_comp.ic = ic;
1088 	init_completion(&io_comp.comp);
1089 
1090 	if (commit_start + commit_sections <= ic->journal_sections) {
1091 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1092 		if (ic->journal_io) {
1093 			crypt_comp_1.ic = ic;
1094 			init_completion(&crypt_comp_1.comp);
1095 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1096 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1097 			wait_for_completion_io(&crypt_comp_1.comp);
1098 		} else {
1099 			for (i = 0; i < commit_sections; i++)
1100 				rw_section_mac(ic, commit_start + i, true);
1101 		}
1102 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1103 			   commit_sections, &io_comp);
1104 	} else {
1105 		unsigned int to_end;
1106 
1107 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1108 		to_end = ic->journal_sections - commit_start;
1109 		if (ic->journal_io) {
1110 			crypt_comp_1.ic = ic;
1111 			init_completion(&crypt_comp_1.comp);
1112 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1113 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1114 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1115 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1116 					   commit_start, to_end, &io_comp);
1117 				reinit_completion(&crypt_comp_1.comp);
1118 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1119 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1120 				wait_for_completion_io(&crypt_comp_1.comp);
1121 			} else {
1122 				crypt_comp_2.ic = ic;
1123 				init_completion(&crypt_comp_2.comp);
1124 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1125 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1126 				wait_for_completion_io(&crypt_comp_1.comp);
1127 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1128 				wait_for_completion_io(&crypt_comp_2.comp);
1129 			}
1130 		} else {
1131 			for (i = 0; i < to_end; i++)
1132 				rw_section_mac(ic, commit_start + i, true);
1133 			rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1134 			for (i = 0; i < commit_sections - to_end; i++)
1135 				rw_section_mac(ic, i, true);
1136 		}
1137 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1138 	}
1139 
1140 	wait_for_completion_io(&io_comp.comp);
1141 }
1142 
1143 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1144 			      unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1145 {
1146 	struct dm_io_request io_req;
1147 	struct dm_io_region io_loc;
1148 	int r;
1149 	unsigned int sector, pl_index, pl_offset;
1150 
1151 	BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1152 
1153 	if (unlikely(dm_integrity_failed(ic))) {
1154 		fn(-1UL, data);
1155 		return;
1156 	}
1157 
1158 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1159 
1160 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1161 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1162 
1163 	io_req.bi_opf = REQ_OP_WRITE;
1164 	io_req.mem.type = DM_IO_PAGE_LIST;
1165 	io_req.mem.ptr.pl = &ic->journal[pl_index];
1166 	io_req.mem.offset = pl_offset;
1167 	io_req.notify.fn = fn;
1168 	io_req.notify.context = data;
1169 	io_req.client = ic->io;
1170 	io_loc.bdev = ic->dev->bdev;
1171 	io_loc.sector = target;
1172 	io_loc.count = n_sectors;
1173 
1174 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1175 	if (unlikely(r)) {
1176 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1177 		fn(-1UL, data);
1178 	}
1179 }
1180 
1181 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1182 {
1183 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1184 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1185 }
1186 
1187 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1188 {
1189 	struct rb_node **n = &ic->in_progress.rb_node;
1190 	struct rb_node *parent;
1191 
1192 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1193 
1194 	if (likely(check_waiting)) {
1195 		struct dm_integrity_range *range;
1196 
1197 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1198 			if (unlikely(ranges_overlap(range, new_range)))
1199 				return false;
1200 		}
1201 	}
1202 
1203 	parent = NULL;
1204 
1205 	while (*n) {
1206 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1207 
1208 		parent = *n;
1209 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1210 			n = &range->node.rb_left;
1211 		else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1212 			n = &range->node.rb_right;
1213 		else
1214 			return false;
1215 	}
1216 
1217 	rb_link_node(&new_range->node, parent, n);
1218 	rb_insert_color(&new_range->node, &ic->in_progress);
1219 
1220 	return true;
1221 }
1222 
1223 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1224 {
1225 	rb_erase(&range->node, &ic->in_progress);
1226 	while (unlikely(!list_empty(&ic->wait_list))) {
1227 		struct dm_integrity_range *last_range =
1228 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1229 		struct task_struct *last_range_task;
1230 
1231 		last_range_task = last_range->task;
1232 		list_del(&last_range->wait_entry);
1233 		if (!add_new_range(ic, last_range, false)) {
1234 			last_range->task = last_range_task;
1235 			list_add(&last_range->wait_entry, &ic->wait_list);
1236 			break;
1237 		}
1238 		last_range->waiting = false;
1239 		wake_up_process(last_range_task);
1240 	}
1241 }
1242 
1243 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1244 {
1245 	unsigned long flags;
1246 
1247 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1248 	remove_range_unlocked(ic, range);
1249 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1250 }
1251 
1252 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1253 {
1254 	new_range->waiting = true;
1255 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1256 	new_range->task = current;
1257 	do {
1258 		__set_current_state(TASK_UNINTERRUPTIBLE);
1259 		spin_unlock_irq(&ic->endio_wait.lock);
1260 		io_schedule();
1261 		spin_lock_irq(&ic->endio_wait.lock);
1262 	} while (unlikely(new_range->waiting));
1263 }
1264 
1265 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1266 {
1267 	if (unlikely(!add_new_range(ic, new_range, true)))
1268 		wait_and_add_new_range(ic, new_range);
1269 }
1270 
1271 static void init_journal_node(struct journal_node *node)
1272 {
1273 	RB_CLEAR_NODE(&node->node);
1274 	node->sector = (sector_t)-1;
1275 }
1276 
1277 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1278 {
1279 	struct rb_node **link;
1280 	struct rb_node *parent;
1281 
1282 	node->sector = sector;
1283 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1284 
1285 	link = &ic->journal_tree_root.rb_node;
1286 	parent = NULL;
1287 
1288 	while (*link) {
1289 		struct journal_node *j;
1290 
1291 		parent = *link;
1292 		j = container_of(parent, struct journal_node, node);
1293 		if (sector < j->sector)
1294 			link = &j->node.rb_left;
1295 		else
1296 			link = &j->node.rb_right;
1297 	}
1298 
1299 	rb_link_node(&node->node, parent, link);
1300 	rb_insert_color(&node->node, &ic->journal_tree_root);
1301 }
1302 
1303 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1304 {
1305 	BUG_ON(RB_EMPTY_NODE(&node->node));
1306 	rb_erase(&node->node, &ic->journal_tree_root);
1307 	init_journal_node(node);
1308 }
1309 
1310 #define NOT_FOUND	(-1U)
1311 
1312 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1313 {
1314 	struct rb_node *n = ic->journal_tree_root.rb_node;
1315 	unsigned int found = NOT_FOUND;
1316 
1317 	*next_sector = (sector_t)-1;
1318 	while (n) {
1319 		struct journal_node *j = container_of(n, struct journal_node, node);
1320 
1321 		if (sector == j->sector)
1322 			found = j - ic->journal_tree;
1323 
1324 		if (sector < j->sector) {
1325 			*next_sector = j->sector;
1326 			n = j->node.rb_left;
1327 		} else
1328 			n = j->node.rb_right;
1329 	}
1330 
1331 	return found;
1332 }
1333 
1334 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1335 {
1336 	struct journal_node *node, *next_node;
1337 	struct rb_node *next;
1338 
1339 	if (unlikely(pos >= ic->journal_entries))
1340 		return false;
1341 	node = &ic->journal_tree[pos];
1342 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1343 		return false;
1344 	if (unlikely(node->sector != sector))
1345 		return false;
1346 
1347 	next = rb_next(&node->node);
1348 	if (unlikely(!next))
1349 		return true;
1350 
1351 	next_node = container_of(next, struct journal_node, node);
1352 	return next_node->sector != sector;
1353 }
1354 
1355 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1356 {
1357 	struct rb_node *next;
1358 	struct journal_node *next_node;
1359 	unsigned int next_section;
1360 
1361 	BUG_ON(RB_EMPTY_NODE(&node->node));
1362 
1363 	next = rb_next(&node->node);
1364 	if (unlikely(!next))
1365 		return false;
1366 
1367 	next_node = container_of(next, struct journal_node, node);
1368 
1369 	if (next_node->sector != node->sector)
1370 		return false;
1371 
1372 	next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1373 	if (next_section >= ic->committed_section &&
1374 	    next_section < ic->committed_section + ic->n_committed_sections)
1375 		return true;
1376 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1377 		return true;
1378 
1379 	return false;
1380 }
1381 
1382 #define TAG_READ	0
1383 #define TAG_WRITE	1
1384 #define TAG_CMP		2
1385 
1386 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1387 			       unsigned int *metadata_offset, unsigned int total_size, int op)
1388 {
1389 #define MAY_BE_FILLER		1
1390 #define MAY_BE_HASH		2
1391 	unsigned int hash_offset = 0;
1392 	unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1393 
1394 	do {
1395 		unsigned char *data, *dp;
1396 		struct dm_buffer *b;
1397 		unsigned int to_copy;
1398 		int r;
1399 
1400 		r = dm_integrity_failed(ic);
1401 		if (unlikely(r))
1402 			return r;
1403 
1404 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1405 		if (IS_ERR(data))
1406 			return PTR_ERR(data);
1407 
1408 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1409 		dp = data + *metadata_offset;
1410 		if (op == TAG_READ) {
1411 			memcpy(tag, dp, to_copy);
1412 		} else if (op == TAG_WRITE) {
1413 			if (memcmp(dp, tag, to_copy)) {
1414 				memcpy(dp, tag, to_copy);
1415 				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1416 			}
1417 		} else {
1418 			/* e.g.: op == TAG_CMP */
1419 
1420 			if (likely(is_power_of_2(ic->tag_size))) {
1421 				if (unlikely(memcmp(dp, tag, to_copy)))
1422 					if (unlikely(!ic->discard) ||
1423 					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1424 						goto thorough_test;
1425 				}
1426 			} else {
1427 				unsigned int i, ts;
1428 thorough_test:
1429 				ts = total_size;
1430 
1431 				for (i = 0; i < to_copy; i++, ts--) {
1432 					if (unlikely(dp[i] != tag[i]))
1433 						may_be &= ~MAY_BE_HASH;
1434 					if (likely(dp[i] != DISCARD_FILLER))
1435 						may_be &= ~MAY_BE_FILLER;
1436 					hash_offset++;
1437 					if (unlikely(hash_offset == ic->tag_size)) {
1438 						if (unlikely(!may_be)) {
1439 							dm_bufio_release(b);
1440 							return ts;
1441 						}
1442 						hash_offset = 0;
1443 						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1444 					}
1445 				}
1446 			}
1447 		}
1448 		dm_bufio_release(b);
1449 
1450 		tag += to_copy;
1451 		*metadata_offset += to_copy;
1452 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1453 			(*metadata_block)++;
1454 			*metadata_offset = 0;
1455 		}
1456 
1457 		if (unlikely(!is_power_of_2(ic->tag_size)))
1458 			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1459 
1460 		total_size -= to_copy;
1461 	} while (unlikely(total_size));
1462 
1463 	return 0;
1464 #undef MAY_BE_FILLER
1465 #undef MAY_BE_HASH
1466 }
1467 
1468 struct flush_request {
1469 	struct dm_io_request io_req;
1470 	struct dm_io_region io_reg;
1471 	struct dm_integrity_c *ic;
1472 	struct completion comp;
1473 };
1474 
1475 static void flush_notify(unsigned long error, void *fr_)
1476 {
1477 	struct flush_request *fr = fr_;
1478 
1479 	if (unlikely(error != 0))
1480 		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1481 	complete(&fr->comp);
1482 }
1483 
1484 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1485 {
1486 	int r;
1487 	struct flush_request fr;
1488 
1489 	if (!ic->meta_dev)
1490 		flush_data = false;
1491 	if (flush_data) {
1492 		fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1493 		fr.io_req.mem.type = DM_IO_KMEM,
1494 		fr.io_req.mem.ptr.addr = NULL,
1495 		fr.io_req.notify.fn = flush_notify,
1496 		fr.io_req.notify.context = &fr;
1497 		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1498 		fr.io_reg.bdev = ic->dev->bdev,
1499 		fr.io_reg.sector = 0,
1500 		fr.io_reg.count = 0,
1501 		fr.ic = ic;
1502 		init_completion(&fr.comp);
1503 		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL, IOPRIO_DEFAULT);
1504 		BUG_ON(r);
1505 	}
1506 
1507 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1508 	if (unlikely(r))
1509 		dm_integrity_io_error(ic, "writing tags", r);
1510 
1511 	if (flush_data)
1512 		wait_for_completion(&fr.comp);
1513 }
1514 
1515 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1516 {
1517 	DECLARE_WAITQUEUE(wait, current);
1518 
1519 	__add_wait_queue(&ic->endio_wait, &wait);
1520 	__set_current_state(TASK_UNINTERRUPTIBLE);
1521 	spin_unlock_irq(&ic->endio_wait.lock);
1522 	io_schedule();
1523 	spin_lock_irq(&ic->endio_wait.lock);
1524 	__remove_wait_queue(&ic->endio_wait, &wait);
1525 }
1526 
1527 static void autocommit_fn(struct timer_list *t)
1528 {
1529 	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1530 
1531 	if (likely(!dm_integrity_failed(ic)))
1532 		queue_work(ic->commit_wq, &ic->commit_work);
1533 }
1534 
1535 static void schedule_autocommit(struct dm_integrity_c *ic)
1536 {
1537 	if (!timer_pending(&ic->autocommit_timer))
1538 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1539 }
1540 
1541 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1542 {
1543 	struct bio *bio;
1544 	unsigned long flags;
1545 
1546 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1547 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1548 	bio_list_add(&ic->flush_bio_list, bio);
1549 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1550 
1551 	queue_work(ic->commit_wq, &ic->commit_work);
1552 }
1553 
1554 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1555 {
1556 	int r;
1557 
1558 	r = dm_integrity_failed(ic);
1559 	if (unlikely(r) && !bio->bi_status)
1560 		bio->bi_status = errno_to_blk_status(r);
1561 	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1562 		unsigned long flags;
1563 
1564 		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1565 		bio_list_add(&ic->synchronous_bios, bio);
1566 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1567 		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1568 		return;
1569 	}
1570 	bio_endio(bio);
1571 }
1572 
1573 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1574 {
1575 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1576 
1577 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1578 		submit_flush_bio(ic, dio);
1579 	else
1580 		do_endio(ic, bio);
1581 }
1582 
1583 static void dec_in_flight(struct dm_integrity_io *dio)
1584 {
1585 	if (atomic_dec_and_test(&dio->in_flight)) {
1586 		struct dm_integrity_c *ic = dio->ic;
1587 		struct bio *bio;
1588 
1589 		remove_range(ic, &dio->range);
1590 
1591 		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1592 			schedule_autocommit(ic);
1593 
1594 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1595 		if (unlikely(dio->bi_status) && !bio->bi_status)
1596 			bio->bi_status = dio->bi_status;
1597 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1598 			dio->range.logical_sector += dio->range.n_sectors;
1599 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1600 			INIT_WORK(&dio->work, integrity_bio_wait);
1601 			queue_work(ic->offload_wq, &dio->work);
1602 			return;
1603 		}
1604 		do_endio_flush(ic, dio);
1605 	}
1606 }
1607 
1608 static void integrity_end_io(struct bio *bio)
1609 {
1610 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1611 
1612 	dm_bio_restore(&dio->bio_details, bio);
1613 	if (bio->bi_integrity)
1614 		bio->bi_opf |= REQ_INTEGRITY;
1615 
1616 	if (dio->completion)
1617 		complete(dio->completion);
1618 
1619 	dec_in_flight(dio);
1620 }
1621 
1622 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1623 				      const char *data, char *result)
1624 {
1625 	__le64 sector_le = cpu_to_le64(sector);
1626 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1627 	int r;
1628 	unsigned int digest_size;
1629 
1630 	req->tfm = ic->internal_hash;
1631 
1632 	r = crypto_shash_init(req);
1633 	if (unlikely(r < 0)) {
1634 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1635 		goto failed;
1636 	}
1637 
1638 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1639 		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1640 		if (unlikely(r < 0)) {
1641 			dm_integrity_io_error(ic, "crypto_shash_update", r);
1642 			goto failed;
1643 		}
1644 	}
1645 
1646 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof(sector_le));
1647 	if (unlikely(r < 0)) {
1648 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1649 		goto failed;
1650 	}
1651 
1652 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1653 	if (unlikely(r < 0)) {
1654 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1655 		goto failed;
1656 	}
1657 
1658 	r = crypto_shash_final(req, result);
1659 	if (unlikely(r < 0)) {
1660 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1661 		goto failed;
1662 	}
1663 
1664 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1665 	if (unlikely(digest_size < ic->tag_size))
1666 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1667 
1668 	return;
1669 
1670 failed:
1671 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1672 	get_random_bytes(result, ic->tag_size);
1673 }
1674 
1675 static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum)
1676 {
1677 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1678 	struct dm_integrity_c *ic = dio->ic;
1679 	struct bvec_iter iter;
1680 	struct bio_vec bv;
1681 	sector_t sector, logical_sector, area, offset;
1682 	struct page *page;
1683 
1684 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1685 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset,
1686 							     &dio->metadata_offset);
1687 	sector = get_data_sector(ic, area, offset);
1688 	logical_sector = dio->range.logical_sector;
1689 
1690 	page = mempool_alloc(&ic->recheck_pool, GFP_NOIO);
1691 
1692 	__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1693 		unsigned pos = 0;
1694 
1695 		do {
1696 			sector_t alignment;
1697 			char *mem;
1698 			char *buffer = page_to_virt(page);
1699 			int r;
1700 			struct dm_io_request io_req;
1701 			struct dm_io_region io_loc;
1702 			io_req.bi_opf = REQ_OP_READ;
1703 			io_req.mem.type = DM_IO_KMEM;
1704 			io_req.mem.ptr.addr = buffer;
1705 			io_req.notify.fn = NULL;
1706 			io_req.client = ic->io;
1707 			io_loc.bdev = ic->dev->bdev;
1708 			io_loc.sector = sector;
1709 			io_loc.count = ic->sectors_per_block;
1710 
1711 			/* Align the bio to logical block size */
1712 			alignment = dio->range.logical_sector | bio_sectors(bio) | (PAGE_SIZE >> SECTOR_SHIFT);
1713 			alignment &= -alignment;
1714 			io_loc.sector = round_down(io_loc.sector, alignment);
1715 			io_loc.count += sector - io_loc.sector;
1716 			buffer += (sector - io_loc.sector) << SECTOR_SHIFT;
1717 			io_loc.count = round_up(io_loc.count, alignment);
1718 
1719 			r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1720 			if (unlikely(r)) {
1721 				dio->bi_status = errno_to_blk_status(r);
1722 				goto free_ret;
1723 			}
1724 
1725 			integrity_sector_checksum(ic, logical_sector, buffer, checksum);
1726 			r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block,
1727 						&dio->metadata_offset, ic->tag_size, TAG_CMP);
1728 			if (r) {
1729 				if (r > 0) {
1730 					DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1731 						    bio->bi_bdev, logical_sector);
1732 					atomic64_inc(&ic->number_of_mismatches);
1733 					dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1734 							 bio, logical_sector, 0);
1735 					r = -EILSEQ;
1736 				}
1737 				dio->bi_status = errno_to_blk_status(r);
1738 				goto free_ret;
1739 			}
1740 
1741 			mem = bvec_kmap_local(&bv);
1742 			memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT);
1743 			kunmap_local(mem);
1744 
1745 			pos += ic->sectors_per_block << SECTOR_SHIFT;
1746 			sector += ic->sectors_per_block;
1747 			logical_sector += ic->sectors_per_block;
1748 		} while (pos < bv.bv_len);
1749 	}
1750 free_ret:
1751 	mempool_free(page, &ic->recheck_pool);
1752 }
1753 
1754 static void integrity_metadata(struct work_struct *w)
1755 {
1756 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1757 	struct dm_integrity_c *ic = dio->ic;
1758 
1759 	int r;
1760 
1761 	if (ic->internal_hash) {
1762 		struct bvec_iter iter;
1763 		struct bio_vec bv;
1764 		unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1765 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1766 		char *checksums;
1767 		unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1768 		char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1769 		sector_t sector;
1770 		unsigned int sectors_to_process;
1771 
1772 		if (unlikely(ic->mode == 'R'))
1773 			goto skip_io;
1774 
1775 		if (likely(dio->op != REQ_OP_DISCARD))
1776 			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1777 					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1778 		else
1779 			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1780 		if (!checksums) {
1781 			checksums = checksums_onstack;
1782 			if (WARN_ON(extra_space &&
1783 				    digest_size > sizeof(checksums_onstack))) {
1784 				r = -EINVAL;
1785 				goto error;
1786 			}
1787 		}
1788 
1789 		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1790 			unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1791 			unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1792 			unsigned int max_blocks = max_size / ic->tag_size;
1793 
1794 			memset(checksums, DISCARD_FILLER, max_size);
1795 
1796 			while (bi_size) {
1797 				unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1798 
1799 				this_step_blocks = min(this_step_blocks, max_blocks);
1800 				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1801 							this_step_blocks * ic->tag_size, TAG_WRITE);
1802 				if (unlikely(r)) {
1803 					if (likely(checksums != checksums_onstack))
1804 						kfree(checksums);
1805 					goto error;
1806 				}
1807 
1808 				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1809 			}
1810 
1811 			if (likely(checksums != checksums_onstack))
1812 				kfree(checksums);
1813 			goto skip_io;
1814 		}
1815 
1816 		sector = dio->range.logical_sector;
1817 		sectors_to_process = dio->range.n_sectors;
1818 
1819 		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1820 			struct bio_vec bv_copy = bv;
1821 			unsigned int pos;
1822 			char *mem, *checksums_ptr;
1823 
1824 again:
1825 			mem = bvec_kmap_local(&bv_copy);
1826 			pos = 0;
1827 			checksums_ptr = checksums;
1828 			do {
1829 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1830 				checksums_ptr += ic->tag_size;
1831 				sectors_to_process -= ic->sectors_per_block;
1832 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1833 				sector += ic->sectors_per_block;
1834 			} while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1835 			kunmap_local(mem);
1836 
1837 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1838 						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1839 			if (unlikely(r)) {
1840 				if (likely(checksums != checksums_onstack))
1841 					kfree(checksums);
1842 				if (r > 0) {
1843 					integrity_recheck(dio, checksums_onstack);
1844 					goto skip_io;
1845 				}
1846 				goto error;
1847 			}
1848 
1849 			if (!sectors_to_process)
1850 				break;
1851 
1852 			if (unlikely(pos < bv_copy.bv_len)) {
1853 				bv_copy.bv_offset += pos;
1854 				bv_copy.bv_len -= pos;
1855 				goto again;
1856 			}
1857 		}
1858 
1859 		if (likely(checksums != checksums_onstack))
1860 			kfree(checksums);
1861 	} else {
1862 		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1863 
1864 		if (bip) {
1865 			struct bio_vec biv;
1866 			struct bvec_iter iter;
1867 			unsigned int data_to_process = dio->range.n_sectors;
1868 
1869 			sector_to_block(ic, data_to_process);
1870 			data_to_process *= ic->tag_size;
1871 
1872 			bip_for_each_vec(biv, bip, iter) {
1873 				unsigned char *tag;
1874 				unsigned int this_len;
1875 
1876 				BUG_ON(PageHighMem(biv.bv_page));
1877 				tag = bvec_virt(&biv);
1878 				this_len = min(biv.bv_len, data_to_process);
1879 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1880 							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1881 				if (unlikely(r))
1882 					goto error;
1883 				data_to_process -= this_len;
1884 				if (!data_to_process)
1885 					break;
1886 			}
1887 		}
1888 	}
1889 skip_io:
1890 	dec_in_flight(dio);
1891 	return;
1892 error:
1893 	dio->bi_status = errno_to_blk_status(r);
1894 	dec_in_flight(dio);
1895 }
1896 
1897 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1898 {
1899 	struct dm_integrity_c *ic = ti->private;
1900 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1901 	struct bio_integrity_payload *bip;
1902 
1903 	sector_t area, offset;
1904 
1905 	dio->ic = ic;
1906 	dio->bi_status = 0;
1907 	dio->op = bio_op(bio);
1908 
1909 	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1910 		if (ti->max_io_len) {
1911 			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1912 			unsigned int log2_max_io_len = __fls(ti->max_io_len);
1913 			sector_t start_boundary = sec >> log2_max_io_len;
1914 			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1915 
1916 			if (start_boundary < end_boundary) {
1917 				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1918 
1919 				dm_accept_partial_bio(bio, len);
1920 			}
1921 		}
1922 	}
1923 
1924 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1925 		submit_flush_bio(ic, dio);
1926 		return DM_MAPIO_SUBMITTED;
1927 	}
1928 
1929 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1930 	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1931 	if (unlikely(dio->fua)) {
1932 		/*
1933 		 * Don't pass down the FUA flag because we have to flush
1934 		 * disk cache anyway.
1935 		 */
1936 		bio->bi_opf &= ~REQ_FUA;
1937 	}
1938 	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1939 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1940 		      dio->range.logical_sector, bio_sectors(bio),
1941 		      ic->provided_data_sectors);
1942 		return DM_MAPIO_KILL;
1943 	}
1944 	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1945 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1946 		      ic->sectors_per_block,
1947 		      dio->range.logical_sector, bio_sectors(bio));
1948 		return DM_MAPIO_KILL;
1949 	}
1950 
1951 	if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1952 		struct bvec_iter iter;
1953 		struct bio_vec bv;
1954 
1955 		bio_for_each_segment(bv, bio, iter) {
1956 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1957 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1958 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1959 				return DM_MAPIO_KILL;
1960 			}
1961 		}
1962 	}
1963 
1964 	bip = bio_integrity(bio);
1965 	if (!ic->internal_hash) {
1966 		if (bip) {
1967 			unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1968 
1969 			if (ic->log2_tag_size >= 0)
1970 				wanted_tag_size <<= ic->log2_tag_size;
1971 			else
1972 				wanted_tag_size *= ic->tag_size;
1973 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1974 				DMERR("Invalid integrity data size %u, expected %u",
1975 				      bip->bip_iter.bi_size, wanted_tag_size);
1976 				return DM_MAPIO_KILL;
1977 			}
1978 		}
1979 	} else {
1980 		if (unlikely(bip != NULL)) {
1981 			DMERR("Unexpected integrity data when using internal hash");
1982 			return DM_MAPIO_KILL;
1983 		}
1984 	}
1985 
1986 	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1987 		return DM_MAPIO_KILL;
1988 
1989 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1990 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1991 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1992 
1993 	dm_integrity_map_continue(dio, true);
1994 	return DM_MAPIO_SUBMITTED;
1995 }
1996 
1997 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1998 				 unsigned int journal_section, unsigned int journal_entry)
1999 {
2000 	struct dm_integrity_c *ic = dio->ic;
2001 	sector_t logical_sector;
2002 	unsigned int n_sectors;
2003 
2004 	logical_sector = dio->range.logical_sector;
2005 	n_sectors = dio->range.n_sectors;
2006 	do {
2007 		struct bio_vec bv = bio_iovec(bio);
2008 		char *mem;
2009 
2010 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
2011 			bv.bv_len = n_sectors << SECTOR_SHIFT;
2012 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
2013 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
2014 retry_kmap:
2015 		mem = kmap_local_page(bv.bv_page);
2016 		if (likely(dio->op == REQ_OP_WRITE))
2017 			flush_dcache_page(bv.bv_page);
2018 
2019 		do {
2020 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
2021 
2022 			if (unlikely(dio->op == REQ_OP_READ)) {
2023 				struct journal_sector *js;
2024 				char *mem_ptr;
2025 				unsigned int s;
2026 
2027 				if (unlikely(journal_entry_is_inprogress(je))) {
2028 					flush_dcache_page(bv.bv_page);
2029 					kunmap_local(mem);
2030 
2031 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2032 					goto retry_kmap;
2033 				}
2034 				smp_rmb();
2035 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
2036 				js = access_journal_data(ic, journal_section, journal_entry);
2037 				mem_ptr = mem + bv.bv_offset;
2038 				s = 0;
2039 				do {
2040 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2041 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2042 					js++;
2043 					mem_ptr += 1 << SECTOR_SHIFT;
2044 				} while (++s < ic->sectors_per_block);
2045 #ifdef INTERNAL_VERIFY
2046 				if (ic->internal_hash) {
2047 					char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2048 
2049 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2050 					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2051 						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2052 							    logical_sector);
2053 						dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2054 								 bio, logical_sector, 0);
2055 					}
2056 				}
2057 #endif
2058 			}
2059 
2060 			if (!ic->internal_hash) {
2061 				struct bio_integrity_payload *bip = bio_integrity(bio);
2062 				unsigned int tag_todo = ic->tag_size;
2063 				char *tag_ptr = journal_entry_tag(ic, je);
2064 
2065 				if (bip) {
2066 					do {
2067 						struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2068 						unsigned int tag_now = min(biv.bv_len, tag_todo);
2069 						char *tag_addr;
2070 
2071 						BUG_ON(PageHighMem(biv.bv_page));
2072 						tag_addr = bvec_virt(&biv);
2073 						if (likely(dio->op == REQ_OP_WRITE))
2074 							memcpy(tag_ptr, tag_addr, tag_now);
2075 						else
2076 							memcpy(tag_addr, tag_ptr, tag_now);
2077 						bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2078 						tag_ptr += tag_now;
2079 						tag_todo -= tag_now;
2080 					} while (unlikely(tag_todo));
2081 				} else if (likely(dio->op == REQ_OP_WRITE))
2082 					memset(tag_ptr, 0, tag_todo);
2083 			}
2084 
2085 			if (likely(dio->op == REQ_OP_WRITE)) {
2086 				struct journal_sector *js;
2087 				unsigned int s;
2088 
2089 				js = access_journal_data(ic, journal_section, journal_entry);
2090 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2091 
2092 				s = 0;
2093 				do {
2094 					je->last_bytes[s] = js[s].commit_id;
2095 				} while (++s < ic->sectors_per_block);
2096 
2097 				if (ic->internal_hash) {
2098 					unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2099 
2100 					if (unlikely(digest_size > ic->tag_size)) {
2101 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2102 
2103 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2104 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2105 					} else
2106 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2107 				}
2108 
2109 				journal_entry_set_sector(je, logical_sector);
2110 			}
2111 			logical_sector += ic->sectors_per_block;
2112 
2113 			journal_entry++;
2114 			if (unlikely(journal_entry == ic->journal_section_entries)) {
2115 				journal_entry = 0;
2116 				journal_section++;
2117 				wraparound_section(ic, &journal_section);
2118 			}
2119 
2120 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2121 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2122 
2123 		if (unlikely(dio->op == REQ_OP_READ))
2124 			flush_dcache_page(bv.bv_page);
2125 		kunmap_local(mem);
2126 	} while (n_sectors);
2127 
2128 	if (likely(dio->op == REQ_OP_WRITE)) {
2129 		smp_mb();
2130 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2131 			wake_up(&ic->copy_to_journal_wait);
2132 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2133 			queue_work(ic->commit_wq, &ic->commit_work);
2134 		else
2135 			schedule_autocommit(ic);
2136 	} else
2137 		remove_range(ic, &dio->range);
2138 
2139 	if (unlikely(bio->bi_iter.bi_size)) {
2140 		sector_t area, offset;
2141 
2142 		dio->range.logical_sector = logical_sector;
2143 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2144 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2145 		return true;
2146 	}
2147 
2148 	return false;
2149 }
2150 
2151 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2152 {
2153 	struct dm_integrity_c *ic = dio->ic;
2154 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2155 	unsigned int journal_section, journal_entry;
2156 	unsigned int journal_read_pos;
2157 	struct completion read_comp;
2158 	bool discard_retried = false;
2159 	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2160 
2161 	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2162 		need_sync_io = true;
2163 
2164 	if (need_sync_io && from_map) {
2165 		INIT_WORK(&dio->work, integrity_bio_wait);
2166 		queue_work(ic->offload_wq, &dio->work);
2167 		return;
2168 	}
2169 
2170 lock_retry:
2171 	spin_lock_irq(&ic->endio_wait.lock);
2172 retry:
2173 	if (unlikely(dm_integrity_failed(ic))) {
2174 		spin_unlock_irq(&ic->endio_wait.lock);
2175 		do_endio(ic, bio);
2176 		return;
2177 	}
2178 	dio->range.n_sectors = bio_sectors(bio);
2179 	journal_read_pos = NOT_FOUND;
2180 	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2181 		if (dio->op == REQ_OP_WRITE) {
2182 			unsigned int next_entry, i, pos;
2183 			unsigned int ws, we, range_sectors;
2184 
2185 			dio->range.n_sectors = min(dio->range.n_sectors,
2186 						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2187 			if (unlikely(!dio->range.n_sectors)) {
2188 				if (from_map)
2189 					goto offload_to_thread;
2190 				sleep_on_endio_wait(ic);
2191 				goto retry;
2192 			}
2193 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2194 			ic->free_sectors -= range_sectors;
2195 			journal_section = ic->free_section;
2196 			journal_entry = ic->free_section_entry;
2197 
2198 			next_entry = ic->free_section_entry + range_sectors;
2199 			ic->free_section_entry = next_entry % ic->journal_section_entries;
2200 			ic->free_section += next_entry / ic->journal_section_entries;
2201 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2202 			wraparound_section(ic, &ic->free_section);
2203 
2204 			pos = journal_section * ic->journal_section_entries + journal_entry;
2205 			ws = journal_section;
2206 			we = journal_entry;
2207 			i = 0;
2208 			do {
2209 				struct journal_entry *je;
2210 
2211 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2212 				pos++;
2213 				if (unlikely(pos >= ic->journal_entries))
2214 					pos = 0;
2215 
2216 				je = access_journal_entry(ic, ws, we);
2217 				BUG_ON(!journal_entry_is_unused(je));
2218 				journal_entry_set_inprogress(je);
2219 				we++;
2220 				if (unlikely(we == ic->journal_section_entries)) {
2221 					we = 0;
2222 					ws++;
2223 					wraparound_section(ic, &ws);
2224 				}
2225 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2226 
2227 			spin_unlock_irq(&ic->endio_wait.lock);
2228 			goto journal_read_write;
2229 		} else {
2230 			sector_t next_sector;
2231 
2232 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2233 			if (likely(journal_read_pos == NOT_FOUND)) {
2234 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2235 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2236 			} else {
2237 				unsigned int i;
2238 				unsigned int jp = journal_read_pos + 1;
2239 
2240 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2241 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2242 						break;
2243 				}
2244 				dio->range.n_sectors = i;
2245 			}
2246 		}
2247 	}
2248 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2249 		/*
2250 		 * We must not sleep in the request routine because it could
2251 		 * stall bios on current->bio_list.
2252 		 * So, we offload the bio to a workqueue if we have to sleep.
2253 		 */
2254 		if (from_map) {
2255 offload_to_thread:
2256 			spin_unlock_irq(&ic->endio_wait.lock);
2257 			INIT_WORK(&dio->work, integrity_bio_wait);
2258 			queue_work(ic->wait_wq, &dio->work);
2259 			return;
2260 		}
2261 		if (journal_read_pos != NOT_FOUND)
2262 			dio->range.n_sectors = ic->sectors_per_block;
2263 		wait_and_add_new_range(ic, &dio->range);
2264 		/*
2265 		 * wait_and_add_new_range drops the spinlock, so the journal
2266 		 * may have been changed arbitrarily. We need to recheck.
2267 		 * To simplify the code, we restrict I/O size to just one block.
2268 		 */
2269 		if (journal_read_pos != NOT_FOUND) {
2270 			sector_t next_sector;
2271 			unsigned int new_pos;
2272 
2273 			new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2274 			if (unlikely(new_pos != journal_read_pos)) {
2275 				remove_range_unlocked(ic, &dio->range);
2276 				goto retry;
2277 			}
2278 		}
2279 	}
2280 	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2281 		sector_t next_sector;
2282 		unsigned int new_pos;
2283 
2284 		new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2285 		if (unlikely(new_pos != NOT_FOUND) ||
2286 		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2287 			remove_range_unlocked(ic, &dio->range);
2288 			spin_unlock_irq(&ic->endio_wait.lock);
2289 			queue_work(ic->commit_wq, &ic->commit_work);
2290 			flush_workqueue(ic->commit_wq);
2291 			queue_work(ic->writer_wq, &ic->writer_work);
2292 			flush_workqueue(ic->writer_wq);
2293 			discard_retried = true;
2294 			goto lock_retry;
2295 		}
2296 	}
2297 	spin_unlock_irq(&ic->endio_wait.lock);
2298 
2299 	if (unlikely(journal_read_pos != NOT_FOUND)) {
2300 		journal_section = journal_read_pos / ic->journal_section_entries;
2301 		journal_entry = journal_read_pos % ic->journal_section_entries;
2302 		goto journal_read_write;
2303 	}
2304 
2305 	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2306 		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2307 				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2308 			struct bitmap_block_status *bbs;
2309 
2310 			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2311 			spin_lock(&bbs->bio_queue_lock);
2312 			bio_list_add(&bbs->bio_queue, bio);
2313 			spin_unlock(&bbs->bio_queue_lock);
2314 			queue_work(ic->writer_wq, &bbs->work);
2315 			return;
2316 		}
2317 	}
2318 
2319 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2320 
2321 	if (need_sync_io) {
2322 		init_completion(&read_comp);
2323 		dio->completion = &read_comp;
2324 	} else
2325 		dio->completion = NULL;
2326 
2327 	dm_bio_record(&dio->bio_details, bio);
2328 	bio_set_dev(bio, ic->dev->bdev);
2329 	bio->bi_integrity = NULL;
2330 	bio->bi_opf &= ~REQ_INTEGRITY;
2331 	bio->bi_end_io = integrity_end_io;
2332 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2333 
2334 	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2335 		integrity_metadata(&dio->work);
2336 		dm_integrity_flush_buffers(ic, false);
2337 
2338 		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2339 		dio->completion = NULL;
2340 
2341 		submit_bio_noacct(bio);
2342 
2343 		return;
2344 	}
2345 
2346 	submit_bio_noacct(bio);
2347 
2348 	if (need_sync_io) {
2349 		wait_for_completion_io(&read_comp);
2350 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2351 		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2352 			goto skip_check;
2353 		if (ic->mode == 'B') {
2354 			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2355 					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2356 				goto skip_check;
2357 		}
2358 
2359 		if (likely(!bio->bi_status))
2360 			integrity_metadata(&dio->work);
2361 		else
2362 skip_check:
2363 			dec_in_flight(dio);
2364 	} else {
2365 		INIT_WORK(&dio->work, integrity_metadata);
2366 		queue_work(ic->metadata_wq, &dio->work);
2367 	}
2368 
2369 	return;
2370 
2371 journal_read_write:
2372 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2373 		goto lock_retry;
2374 
2375 	do_endio_flush(ic, dio);
2376 }
2377 
2378 
2379 static void integrity_bio_wait(struct work_struct *w)
2380 {
2381 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2382 
2383 	dm_integrity_map_continue(dio, false);
2384 }
2385 
2386 static void pad_uncommitted(struct dm_integrity_c *ic)
2387 {
2388 	if (ic->free_section_entry) {
2389 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2390 		ic->free_section_entry = 0;
2391 		ic->free_section++;
2392 		wraparound_section(ic, &ic->free_section);
2393 		ic->n_uncommitted_sections++;
2394 	}
2395 	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2396 		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2397 		    ic->journal_section_entries + ic->free_sectors)) {
2398 		DMCRIT("journal_sections %u, journal_section_entries %u, "
2399 		       "n_uncommitted_sections %u, n_committed_sections %u, "
2400 		       "journal_section_entries %u, free_sectors %u",
2401 		       ic->journal_sections, ic->journal_section_entries,
2402 		       ic->n_uncommitted_sections, ic->n_committed_sections,
2403 		       ic->journal_section_entries, ic->free_sectors);
2404 	}
2405 }
2406 
2407 static void integrity_commit(struct work_struct *w)
2408 {
2409 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2410 	unsigned int commit_start, commit_sections;
2411 	unsigned int i, j, n;
2412 	struct bio *flushes;
2413 
2414 	del_timer(&ic->autocommit_timer);
2415 
2416 	spin_lock_irq(&ic->endio_wait.lock);
2417 	flushes = bio_list_get(&ic->flush_bio_list);
2418 	if (unlikely(ic->mode != 'J')) {
2419 		spin_unlock_irq(&ic->endio_wait.lock);
2420 		dm_integrity_flush_buffers(ic, true);
2421 		goto release_flush_bios;
2422 	}
2423 
2424 	pad_uncommitted(ic);
2425 	commit_start = ic->uncommitted_section;
2426 	commit_sections = ic->n_uncommitted_sections;
2427 	spin_unlock_irq(&ic->endio_wait.lock);
2428 
2429 	if (!commit_sections)
2430 		goto release_flush_bios;
2431 
2432 	ic->wrote_to_journal = true;
2433 
2434 	i = commit_start;
2435 	for (n = 0; n < commit_sections; n++) {
2436 		for (j = 0; j < ic->journal_section_entries; j++) {
2437 			struct journal_entry *je;
2438 
2439 			je = access_journal_entry(ic, i, j);
2440 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2441 		}
2442 		for (j = 0; j < ic->journal_section_sectors; j++) {
2443 			struct journal_sector *js;
2444 
2445 			js = access_journal(ic, i, j);
2446 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2447 		}
2448 		i++;
2449 		if (unlikely(i >= ic->journal_sections))
2450 			ic->commit_seq = next_commit_seq(ic->commit_seq);
2451 		wraparound_section(ic, &i);
2452 	}
2453 	smp_rmb();
2454 
2455 	write_journal(ic, commit_start, commit_sections);
2456 
2457 	spin_lock_irq(&ic->endio_wait.lock);
2458 	ic->uncommitted_section += commit_sections;
2459 	wraparound_section(ic, &ic->uncommitted_section);
2460 	ic->n_uncommitted_sections -= commit_sections;
2461 	ic->n_committed_sections += commit_sections;
2462 	spin_unlock_irq(&ic->endio_wait.lock);
2463 
2464 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2465 		queue_work(ic->writer_wq, &ic->writer_work);
2466 
2467 release_flush_bios:
2468 	while (flushes) {
2469 		struct bio *next = flushes->bi_next;
2470 
2471 		flushes->bi_next = NULL;
2472 		do_endio(ic, flushes);
2473 		flushes = next;
2474 	}
2475 }
2476 
2477 static void complete_copy_from_journal(unsigned long error, void *context)
2478 {
2479 	struct journal_io *io = context;
2480 	struct journal_completion *comp = io->comp;
2481 	struct dm_integrity_c *ic = comp->ic;
2482 
2483 	remove_range(ic, &io->range);
2484 	mempool_free(io, &ic->journal_io_mempool);
2485 	if (unlikely(error != 0))
2486 		dm_integrity_io_error(ic, "copying from journal", -EIO);
2487 	complete_journal_op(comp);
2488 }
2489 
2490 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2491 			       struct journal_entry *je)
2492 {
2493 	unsigned int s = 0;
2494 
2495 	do {
2496 		js->commit_id = je->last_bytes[s];
2497 		js++;
2498 	} while (++s < ic->sectors_per_block);
2499 }
2500 
2501 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2502 			     unsigned int write_sections, bool from_replay)
2503 {
2504 	unsigned int i, j, n;
2505 	struct journal_completion comp;
2506 	struct blk_plug plug;
2507 
2508 	blk_start_plug(&plug);
2509 
2510 	comp.ic = ic;
2511 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2512 	init_completion(&comp.comp);
2513 
2514 	i = write_start;
2515 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2516 #ifndef INTERNAL_VERIFY
2517 		if (unlikely(from_replay))
2518 #endif
2519 			rw_section_mac(ic, i, false);
2520 		for (j = 0; j < ic->journal_section_entries; j++) {
2521 			struct journal_entry *je = access_journal_entry(ic, i, j);
2522 			sector_t sec, area, offset;
2523 			unsigned int k, l, next_loop;
2524 			sector_t metadata_block;
2525 			unsigned int metadata_offset;
2526 			struct journal_io *io;
2527 
2528 			if (journal_entry_is_unused(je))
2529 				continue;
2530 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2531 			sec = journal_entry_get_sector(je);
2532 			if (unlikely(from_replay)) {
2533 				if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2534 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2535 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2536 				}
2537 				if (unlikely(sec >= ic->provided_data_sectors)) {
2538 					journal_entry_set_unused(je);
2539 					continue;
2540 				}
2541 			}
2542 			get_area_and_offset(ic, sec, &area, &offset);
2543 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2544 			for (k = j + 1; k < ic->journal_section_entries; k++) {
2545 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2546 				sector_t sec2, area2, offset2;
2547 
2548 				if (journal_entry_is_unused(je2))
2549 					break;
2550 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2551 				sec2 = journal_entry_get_sector(je2);
2552 				if (unlikely(sec2 >= ic->provided_data_sectors))
2553 					break;
2554 				get_area_and_offset(ic, sec2, &area2, &offset2);
2555 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2556 					break;
2557 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2558 			}
2559 			next_loop = k - 1;
2560 
2561 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2562 			io->comp = &comp;
2563 			io->range.logical_sector = sec;
2564 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2565 
2566 			spin_lock_irq(&ic->endio_wait.lock);
2567 			add_new_range_and_wait(ic, &io->range);
2568 
2569 			if (likely(!from_replay)) {
2570 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2571 
2572 				/* don't write if there is newer committed sector */
2573 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2574 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2575 
2576 					journal_entry_set_unused(je2);
2577 					remove_journal_node(ic, &section_node[j]);
2578 					j++;
2579 					sec += ic->sectors_per_block;
2580 					offset += ic->sectors_per_block;
2581 				}
2582 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2583 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2584 
2585 					journal_entry_set_unused(je2);
2586 					remove_journal_node(ic, &section_node[k - 1]);
2587 					k--;
2588 				}
2589 				if (j == k) {
2590 					remove_range_unlocked(ic, &io->range);
2591 					spin_unlock_irq(&ic->endio_wait.lock);
2592 					mempool_free(io, &ic->journal_io_mempool);
2593 					goto skip_io;
2594 				}
2595 				for (l = j; l < k; l++)
2596 					remove_journal_node(ic, &section_node[l]);
2597 			}
2598 			spin_unlock_irq(&ic->endio_wait.lock);
2599 
2600 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2601 			for (l = j; l < k; l++) {
2602 				int r;
2603 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2604 
2605 				if (
2606 #ifndef INTERNAL_VERIFY
2607 				    unlikely(from_replay) &&
2608 #endif
2609 				    ic->internal_hash) {
2610 					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2611 
2612 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2613 								  (char *)access_journal_data(ic, i, l), test_tag);
2614 					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2615 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2616 						dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2617 					}
2618 				}
2619 
2620 				journal_entry_set_unused(je2);
2621 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2622 							ic->tag_size, TAG_WRITE);
2623 				if (unlikely(r))
2624 					dm_integrity_io_error(ic, "reading tags", r);
2625 			}
2626 
2627 			atomic_inc(&comp.in_flight);
2628 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2629 					  (k - j) << ic->sb->log2_sectors_per_block,
2630 					  get_data_sector(ic, area, offset),
2631 					  complete_copy_from_journal, io);
2632 skip_io:
2633 			j = next_loop;
2634 		}
2635 	}
2636 
2637 	dm_bufio_write_dirty_buffers_async(ic->bufio);
2638 
2639 	blk_finish_plug(&plug);
2640 
2641 	complete_journal_op(&comp);
2642 	wait_for_completion_io(&comp.comp);
2643 
2644 	dm_integrity_flush_buffers(ic, true);
2645 }
2646 
2647 static void integrity_writer(struct work_struct *w)
2648 {
2649 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2650 	unsigned int write_start, write_sections;
2651 	unsigned int prev_free_sectors;
2652 
2653 	spin_lock_irq(&ic->endio_wait.lock);
2654 	write_start = ic->committed_section;
2655 	write_sections = ic->n_committed_sections;
2656 	spin_unlock_irq(&ic->endio_wait.lock);
2657 
2658 	if (!write_sections)
2659 		return;
2660 
2661 	do_journal_write(ic, write_start, write_sections, false);
2662 
2663 	spin_lock_irq(&ic->endio_wait.lock);
2664 
2665 	ic->committed_section += write_sections;
2666 	wraparound_section(ic, &ic->committed_section);
2667 	ic->n_committed_sections -= write_sections;
2668 
2669 	prev_free_sectors = ic->free_sectors;
2670 	ic->free_sectors += write_sections * ic->journal_section_entries;
2671 	if (unlikely(!prev_free_sectors))
2672 		wake_up_locked(&ic->endio_wait);
2673 
2674 	spin_unlock_irq(&ic->endio_wait.lock);
2675 }
2676 
2677 static void recalc_write_super(struct dm_integrity_c *ic)
2678 {
2679 	int r;
2680 
2681 	dm_integrity_flush_buffers(ic, false);
2682 	if (dm_integrity_failed(ic))
2683 		return;
2684 
2685 	r = sync_rw_sb(ic, REQ_OP_WRITE);
2686 	if (unlikely(r))
2687 		dm_integrity_io_error(ic, "writing superblock", r);
2688 }
2689 
2690 static void integrity_recalc(struct work_struct *w)
2691 {
2692 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2693 	size_t recalc_tags_size;
2694 	u8 *recalc_buffer = NULL;
2695 	u8 *recalc_tags = NULL;
2696 	struct dm_integrity_range range;
2697 	struct dm_io_request io_req;
2698 	struct dm_io_region io_loc;
2699 	sector_t area, offset;
2700 	sector_t metadata_block;
2701 	unsigned int metadata_offset;
2702 	sector_t logical_sector, n_sectors;
2703 	__u8 *t;
2704 	unsigned int i;
2705 	int r;
2706 	unsigned int super_counter = 0;
2707 	unsigned recalc_sectors = RECALC_SECTORS;
2708 
2709 retry:
2710 	recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
2711 	if (!recalc_buffer) {
2712 oom:
2713 		recalc_sectors >>= 1;
2714 		if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
2715 			goto retry;
2716 		DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2717 		goto free_ret;
2718 	}
2719 	recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2720 	if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
2721 		recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
2722 	recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
2723 	if (!recalc_tags) {
2724 		vfree(recalc_buffer);
2725 		recalc_buffer = NULL;
2726 		goto oom;
2727 	}
2728 
2729 	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2730 
2731 	spin_lock_irq(&ic->endio_wait.lock);
2732 
2733 next_chunk:
2734 
2735 	if (unlikely(dm_post_suspending(ic->ti)))
2736 		goto unlock_ret;
2737 
2738 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2739 	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2740 		if (ic->mode == 'B') {
2741 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2742 			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2743 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2744 		}
2745 		goto unlock_ret;
2746 	}
2747 
2748 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2749 	range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
2750 	if (!ic->meta_dev)
2751 		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2752 
2753 	add_new_range_and_wait(ic, &range);
2754 	spin_unlock_irq(&ic->endio_wait.lock);
2755 	logical_sector = range.logical_sector;
2756 	n_sectors = range.n_sectors;
2757 
2758 	if (ic->mode == 'B') {
2759 		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2760 			goto advance_and_next;
2761 
2762 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2763 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2764 			logical_sector += ic->sectors_per_block;
2765 			n_sectors -= ic->sectors_per_block;
2766 			cond_resched();
2767 		}
2768 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2769 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2770 			n_sectors -= ic->sectors_per_block;
2771 			cond_resched();
2772 		}
2773 		get_area_and_offset(ic, logical_sector, &area, &offset);
2774 	}
2775 
2776 	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2777 
2778 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2779 		recalc_write_super(ic);
2780 		if (ic->mode == 'B')
2781 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2782 
2783 		super_counter = 0;
2784 	}
2785 
2786 	if (unlikely(dm_integrity_failed(ic)))
2787 		goto err;
2788 
2789 	io_req.bi_opf = REQ_OP_READ;
2790 	io_req.mem.type = DM_IO_VMA;
2791 	io_req.mem.ptr.addr = recalc_buffer;
2792 	io_req.notify.fn = NULL;
2793 	io_req.client = ic->io;
2794 	io_loc.bdev = ic->dev->bdev;
2795 	io_loc.sector = get_data_sector(ic, area, offset);
2796 	io_loc.count = n_sectors;
2797 
2798 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
2799 	if (unlikely(r)) {
2800 		dm_integrity_io_error(ic, "reading data", r);
2801 		goto err;
2802 	}
2803 
2804 	t = recalc_tags;
2805 	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2806 		integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
2807 		t += ic->tag_size;
2808 	}
2809 
2810 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2811 
2812 	r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
2813 	if (unlikely(r)) {
2814 		dm_integrity_io_error(ic, "writing tags", r);
2815 		goto err;
2816 	}
2817 
2818 	if (ic->mode == 'B') {
2819 		sector_t start, end;
2820 
2821 		start = (range.logical_sector >>
2822 			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2823 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2824 		end = ((range.logical_sector + range.n_sectors) >>
2825 		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2826 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2827 		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2828 	}
2829 
2830 advance_and_next:
2831 	cond_resched();
2832 
2833 	spin_lock_irq(&ic->endio_wait.lock);
2834 	remove_range_unlocked(ic, &range);
2835 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2836 	goto next_chunk;
2837 
2838 err:
2839 	remove_range(ic, &range);
2840 	goto free_ret;
2841 
2842 unlock_ret:
2843 	spin_unlock_irq(&ic->endio_wait.lock);
2844 
2845 	recalc_write_super(ic);
2846 
2847 free_ret:
2848 	vfree(recalc_buffer);
2849 	kvfree(recalc_tags);
2850 }
2851 
2852 static void bitmap_block_work(struct work_struct *w)
2853 {
2854 	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2855 	struct dm_integrity_c *ic = bbs->ic;
2856 	struct bio *bio;
2857 	struct bio_list bio_queue;
2858 	struct bio_list waiting;
2859 
2860 	bio_list_init(&waiting);
2861 
2862 	spin_lock(&bbs->bio_queue_lock);
2863 	bio_queue = bbs->bio_queue;
2864 	bio_list_init(&bbs->bio_queue);
2865 	spin_unlock(&bbs->bio_queue_lock);
2866 
2867 	while ((bio = bio_list_pop(&bio_queue))) {
2868 		struct dm_integrity_io *dio;
2869 
2870 		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2871 
2872 		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2873 				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2874 			remove_range(ic, &dio->range);
2875 			INIT_WORK(&dio->work, integrity_bio_wait);
2876 			queue_work(ic->offload_wq, &dio->work);
2877 		} else {
2878 			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2879 					dio->range.n_sectors, BITMAP_OP_SET);
2880 			bio_list_add(&waiting, bio);
2881 		}
2882 	}
2883 
2884 	if (bio_list_empty(&waiting))
2885 		return;
2886 
2887 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2888 			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2889 			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2890 
2891 	while ((bio = bio_list_pop(&waiting))) {
2892 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2893 
2894 		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2895 				dio->range.n_sectors, BITMAP_OP_SET);
2896 
2897 		remove_range(ic, &dio->range);
2898 		INIT_WORK(&dio->work, integrity_bio_wait);
2899 		queue_work(ic->offload_wq, &dio->work);
2900 	}
2901 
2902 	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2903 }
2904 
2905 static void bitmap_flush_work(struct work_struct *work)
2906 {
2907 	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2908 	struct dm_integrity_range range;
2909 	unsigned long limit;
2910 	struct bio *bio;
2911 
2912 	dm_integrity_flush_buffers(ic, false);
2913 
2914 	range.logical_sector = 0;
2915 	range.n_sectors = ic->provided_data_sectors;
2916 
2917 	spin_lock_irq(&ic->endio_wait.lock);
2918 	add_new_range_and_wait(ic, &range);
2919 	spin_unlock_irq(&ic->endio_wait.lock);
2920 
2921 	dm_integrity_flush_buffers(ic, true);
2922 
2923 	limit = ic->provided_data_sectors;
2924 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2925 		limit = le64_to_cpu(ic->sb->recalc_sector)
2926 			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2927 			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2928 	}
2929 	/*DEBUG_print("zeroing journal\n");*/
2930 	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2931 	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2932 
2933 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2934 			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2935 
2936 	spin_lock_irq(&ic->endio_wait.lock);
2937 	remove_range_unlocked(ic, &range);
2938 	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2939 		bio_endio(bio);
2940 		spin_unlock_irq(&ic->endio_wait.lock);
2941 		spin_lock_irq(&ic->endio_wait.lock);
2942 	}
2943 	spin_unlock_irq(&ic->endio_wait.lock);
2944 }
2945 
2946 
2947 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2948 			 unsigned int n_sections, unsigned char commit_seq)
2949 {
2950 	unsigned int i, j, n;
2951 
2952 	if (!n_sections)
2953 		return;
2954 
2955 	for (n = 0; n < n_sections; n++) {
2956 		i = start_section + n;
2957 		wraparound_section(ic, &i);
2958 		for (j = 0; j < ic->journal_section_sectors; j++) {
2959 			struct journal_sector *js = access_journal(ic, i, j);
2960 
2961 			BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2962 			memset(&js->sectors, 0, sizeof(js->sectors));
2963 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2964 		}
2965 		for (j = 0; j < ic->journal_section_entries; j++) {
2966 			struct journal_entry *je = access_journal_entry(ic, i, j);
2967 
2968 			journal_entry_set_unused(je);
2969 		}
2970 	}
2971 
2972 	write_journal(ic, start_section, n_sections);
2973 }
2974 
2975 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
2976 {
2977 	unsigned char k;
2978 
2979 	for (k = 0; k < N_COMMIT_IDS; k++) {
2980 		if (dm_integrity_commit_id(ic, i, j, k) == id)
2981 			return k;
2982 	}
2983 	dm_integrity_io_error(ic, "journal commit id", -EIO);
2984 	return -EIO;
2985 }
2986 
2987 static void replay_journal(struct dm_integrity_c *ic)
2988 {
2989 	unsigned int i, j;
2990 	bool used_commit_ids[N_COMMIT_IDS];
2991 	unsigned int max_commit_id_sections[N_COMMIT_IDS];
2992 	unsigned int write_start, write_sections;
2993 	unsigned int continue_section;
2994 	bool journal_empty;
2995 	unsigned char unused, last_used, want_commit_seq;
2996 
2997 	if (ic->mode == 'R')
2998 		return;
2999 
3000 	if (ic->journal_uptodate)
3001 		return;
3002 
3003 	last_used = 0;
3004 	write_start = 0;
3005 
3006 	if (!ic->just_formatted) {
3007 		DEBUG_print("reading journal\n");
3008 		rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
3009 		if (ic->journal_io)
3010 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
3011 		if (ic->journal_io) {
3012 			struct journal_completion crypt_comp;
3013 
3014 			crypt_comp.ic = ic;
3015 			init_completion(&crypt_comp.comp);
3016 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
3017 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
3018 			wait_for_completion(&crypt_comp.comp);
3019 		}
3020 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
3021 	}
3022 
3023 	if (dm_integrity_failed(ic))
3024 		goto clear_journal;
3025 
3026 	journal_empty = true;
3027 	memset(used_commit_ids, 0, sizeof(used_commit_ids));
3028 	memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
3029 	for (i = 0; i < ic->journal_sections; i++) {
3030 		for (j = 0; j < ic->journal_section_sectors; j++) {
3031 			int k;
3032 			struct journal_sector *js = access_journal(ic, i, j);
3033 
3034 			k = find_commit_seq(ic, i, j, js->commit_id);
3035 			if (k < 0)
3036 				goto clear_journal;
3037 			used_commit_ids[k] = true;
3038 			max_commit_id_sections[k] = i;
3039 		}
3040 		if (journal_empty) {
3041 			for (j = 0; j < ic->journal_section_entries; j++) {
3042 				struct journal_entry *je = access_journal_entry(ic, i, j);
3043 
3044 				if (!journal_entry_is_unused(je)) {
3045 					journal_empty = false;
3046 					break;
3047 				}
3048 			}
3049 		}
3050 	}
3051 
3052 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3053 		unused = N_COMMIT_IDS - 1;
3054 		while (unused && !used_commit_ids[unused - 1])
3055 			unused--;
3056 	} else {
3057 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
3058 			if (!used_commit_ids[unused])
3059 				break;
3060 		if (unused == N_COMMIT_IDS) {
3061 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
3062 			goto clear_journal;
3063 		}
3064 	}
3065 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3066 		    unused, used_commit_ids[0], used_commit_ids[1],
3067 		    used_commit_ids[2], used_commit_ids[3]);
3068 
3069 	last_used = prev_commit_seq(unused);
3070 	want_commit_seq = prev_commit_seq(last_used);
3071 
3072 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3073 		journal_empty = true;
3074 
3075 	write_start = max_commit_id_sections[last_used] + 1;
3076 	if (unlikely(write_start >= ic->journal_sections))
3077 		want_commit_seq = next_commit_seq(want_commit_seq);
3078 	wraparound_section(ic, &write_start);
3079 
3080 	i = write_start;
3081 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3082 		for (j = 0; j < ic->journal_section_sectors; j++) {
3083 			struct journal_sector *js = access_journal(ic, i, j);
3084 
3085 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3086 				/*
3087 				 * This could be caused by crash during writing.
3088 				 * We won't replay the inconsistent part of the
3089 				 * journal.
3090 				 */
3091 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3092 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3093 				goto brk;
3094 			}
3095 		}
3096 		i++;
3097 		if (unlikely(i >= ic->journal_sections))
3098 			want_commit_seq = next_commit_seq(want_commit_seq);
3099 		wraparound_section(ic, &i);
3100 	}
3101 brk:
3102 
3103 	if (!journal_empty) {
3104 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3105 			    write_sections, write_start, want_commit_seq);
3106 		do_journal_write(ic, write_start, write_sections, true);
3107 	}
3108 
3109 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3110 		continue_section = write_start;
3111 		ic->commit_seq = want_commit_seq;
3112 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3113 	} else {
3114 		unsigned int s;
3115 		unsigned char erase_seq;
3116 
3117 clear_journal:
3118 		DEBUG_print("clearing journal\n");
3119 
3120 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3121 		s = write_start;
3122 		init_journal(ic, s, 1, erase_seq);
3123 		s++;
3124 		wraparound_section(ic, &s);
3125 		if (ic->journal_sections >= 2) {
3126 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3127 			s += ic->journal_sections - 2;
3128 			wraparound_section(ic, &s);
3129 			init_journal(ic, s, 1, erase_seq);
3130 		}
3131 
3132 		continue_section = 0;
3133 		ic->commit_seq = next_commit_seq(erase_seq);
3134 	}
3135 
3136 	ic->committed_section = continue_section;
3137 	ic->n_committed_sections = 0;
3138 
3139 	ic->uncommitted_section = continue_section;
3140 	ic->n_uncommitted_sections = 0;
3141 
3142 	ic->free_section = continue_section;
3143 	ic->free_section_entry = 0;
3144 	ic->free_sectors = ic->journal_entries;
3145 
3146 	ic->journal_tree_root = RB_ROOT;
3147 	for (i = 0; i < ic->journal_entries; i++)
3148 		init_journal_node(&ic->journal_tree[i]);
3149 }
3150 
3151 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3152 {
3153 	DEBUG_print("%s\n", __func__);
3154 
3155 	if (ic->mode == 'B') {
3156 		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3157 		ic->synchronous_mode = 1;
3158 
3159 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3160 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3161 		flush_workqueue(ic->commit_wq);
3162 	}
3163 }
3164 
3165 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3166 {
3167 	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3168 
3169 	DEBUG_print("%s\n", __func__);
3170 
3171 	dm_integrity_enter_synchronous_mode(ic);
3172 
3173 	return NOTIFY_DONE;
3174 }
3175 
3176 static void dm_integrity_postsuspend(struct dm_target *ti)
3177 {
3178 	struct dm_integrity_c *ic = ti->private;
3179 	int r;
3180 
3181 	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3182 
3183 	del_timer_sync(&ic->autocommit_timer);
3184 
3185 	if (ic->recalc_wq)
3186 		drain_workqueue(ic->recalc_wq);
3187 
3188 	if (ic->mode == 'B')
3189 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3190 
3191 	queue_work(ic->commit_wq, &ic->commit_work);
3192 	drain_workqueue(ic->commit_wq);
3193 
3194 	if (ic->mode == 'J') {
3195 		queue_work(ic->writer_wq, &ic->writer_work);
3196 		drain_workqueue(ic->writer_wq);
3197 		dm_integrity_flush_buffers(ic, true);
3198 		if (ic->wrote_to_journal) {
3199 			init_journal(ic, ic->free_section,
3200 				     ic->journal_sections - ic->free_section, ic->commit_seq);
3201 			if (ic->free_section) {
3202 				init_journal(ic, 0, ic->free_section,
3203 					     next_commit_seq(ic->commit_seq));
3204 			}
3205 		}
3206 	}
3207 
3208 	if (ic->mode == 'B') {
3209 		dm_integrity_flush_buffers(ic, true);
3210 #if 1
3211 		/* set to 0 to test bitmap replay code */
3212 		init_journal(ic, 0, ic->journal_sections, 0);
3213 		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3214 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3215 		if (unlikely(r))
3216 			dm_integrity_io_error(ic, "writing superblock", r);
3217 #endif
3218 	}
3219 
3220 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3221 
3222 	ic->journal_uptodate = true;
3223 }
3224 
3225 static void dm_integrity_resume(struct dm_target *ti)
3226 {
3227 	struct dm_integrity_c *ic = ti->private;
3228 	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3229 	int r;
3230 
3231 	DEBUG_print("resume\n");
3232 
3233 	ic->wrote_to_journal = false;
3234 
3235 	if (ic->provided_data_sectors != old_provided_data_sectors) {
3236 		if (ic->provided_data_sectors > old_provided_data_sectors &&
3237 		    ic->mode == 'B' &&
3238 		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3239 			rw_journal_sectors(ic, REQ_OP_READ, 0,
3240 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3241 			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3242 					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3243 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3244 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3245 		}
3246 
3247 		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3248 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3249 		if (unlikely(r))
3250 			dm_integrity_io_error(ic, "writing superblock", r);
3251 	}
3252 
3253 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3254 		DEBUG_print("resume dirty_bitmap\n");
3255 		rw_journal_sectors(ic, REQ_OP_READ, 0,
3256 				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3257 		if (ic->mode == 'B') {
3258 			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3259 			    !ic->reset_recalculate_flag) {
3260 				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3261 				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3262 				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3263 						     BITMAP_OP_TEST_ALL_CLEAR)) {
3264 					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3265 					ic->sb->recalc_sector = cpu_to_le64(0);
3266 				}
3267 			} else {
3268 				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3269 					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3270 				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3271 				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3272 				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3273 				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3274 				rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3275 						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3276 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3277 				ic->sb->recalc_sector = cpu_to_le64(0);
3278 			}
3279 		} else {
3280 			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3281 			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3282 			    ic->reset_recalculate_flag) {
3283 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3284 				ic->sb->recalc_sector = cpu_to_le64(0);
3285 			}
3286 			init_journal(ic, 0, ic->journal_sections, 0);
3287 			replay_journal(ic);
3288 			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3289 		}
3290 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3291 		if (unlikely(r))
3292 			dm_integrity_io_error(ic, "writing superblock", r);
3293 	} else {
3294 		replay_journal(ic);
3295 		if (ic->reset_recalculate_flag) {
3296 			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3297 			ic->sb->recalc_sector = cpu_to_le64(0);
3298 		}
3299 		if (ic->mode == 'B') {
3300 			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3301 			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3302 			r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3303 			if (unlikely(r))
3304 				dm_integrity_io_error(ic, "writing superblock", r);
3305 
3306 			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3307 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3308 			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3309 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3310 			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3311 				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3312 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3313 				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3314 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3315 				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3316 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3317 			}
3318 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3319 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3320 		}
3321 	}
3322 
3323 	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3324 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3325 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3326 
3327 		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3328 		if (recalc_pos < ic->provided_data_sectors) {
3329 			queue_work(ic->recalc_wq, &ic->recalc_work);
3330 		} else if (recalc_pos > ic->provided_data_sectors) {
3331 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3332 			recalc_write_super(ic);
3333 		}
3334 	}
3335 
3336 	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3337 	ic->reboot_notifier.next = NULL;
3338 	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3339 	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3340 
3341 #if 0
3342 	/* set to 1 to stress test synchronous mode */
3343 	dm_integrity_enter_synchronous_mode(ic);
3344 #endif
3345 }
3346 
3347 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3348 				unsigned int status_flags, char *result, unsigned int maxlen)
3349 {
3350 	struct dm_integrity_c *ic = ti->private;
3351 	unsigned int arg_count;
3352 	size_t sz = 0;
3353 
3354 	switch (type) {
3355 	case STATUSTYPE_INFO:
3356 		DMEMIT("%llu %llu",
3357 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3358 			ic->provided_data_sectors);
3359 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3360 			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3361 		else
3362 			DMEMIT(" -");
3363 		break;
3364 
3365 	case STATUSTYPE_TABLE: {
3366 		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3367 
3368 		watermark_percentage += ic->journal_entries / 2;
3369 		do_div(watermark_percentage, ic->journal_entries);
3370 		arg_count = 3;
3371 		arg_count += !!ic->meta_dev;
3372 		arg_count += ic->sectors_per_block != 1;
3373 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3374 		arg_count += ic->reset_recalculate_flag;
3375 		arg_count += ic->discard;
3376 		arg_count += ic->mode == 'J';
3377 		arg_count += ic->mode == 'J';
3378 		arg_count += ic->mode == 'B';
3379 		arg_count += ic->mode == 'B';
3380 		arg_count += !!ic->internal_hash_alg.alg_string;
3381 		arg_count += !!ic->journal_crypt_alg.alg_string;
3382 		arg_count += !!ic->journal_mac_alg.alg_string;
3383 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3384 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3385 		arg_count += ic->legacy_recalculate;
3386 		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3387 		       ic->tag_size, ic->mode, arg_count);
3388 		if (ic->meta_dev)
3389 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3390 		if (ic->sectors_per_block != 1)
3391 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3392 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3393 			DMEMIT(" recalculate");
3394 		if (ic->reset_recalculate_flag)
3395 			DMEMIT(" reset_recalculate");
3396 		if (ic->discard)
3397 			DMEMIT(" allow_discards");
3398 		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3399 		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3400 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3401 		if (ic->mode == 'J') {
3402 			DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3403 			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3404 		}
3405 		if (ic->mode == 'B') {
3406 			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3407 			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3408 		}
3409 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3410 			DMEMIT(" fix_padding");
3411 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3412 			DMEMIT(" fix_hmac");
3413 		if (ic->legacy_recalculate)
3414 			DMEMIT(" legacy_recalculate");
3415 
3416 #define EMIT_ALG(a, n)							\
3417 		do {							\
3418 			if (ic->a.alg_string) {				\
3419 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3420 				if (ic->a.key_string)			\
3421 					DMEMIT(":%s", ic->a.key_string);\
3422 			}						\
3423 		} while (0)
3424 		EMIT_ALG(internal_hash_alg, "internal_hash");
3425 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3426 		EMIT_ALG(journal_mac_alg, "journal_mac");
3427 		break;
3428 	}
3429 	case STATUSTYPE_IMA:
3430 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3431 		DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3432 			ic->dev->name, ic->start, ic->tag_size, ic->mode);
3433 
3434 		if (ic->meta_dev)
3435 			DMEMIT(",meta_device=%s", ic->meta_dev->name);
3436 		if (ic->sectors_per_block != 1)
3437 			DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3438 
3439 		DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3440 		       'y' : 'n');
3441 		DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3442 		DMEMIT(",fix_padding=%c",
3443 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3444 		DMEMIT(",fix_hmac=%c",
3445 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3446 		DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3447 
3448 		DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3449 		DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3450 		DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3451 		DMEMIT(";");
3452 		break;
3453 	}
3454 }
3455 
3456 static int dm_integrity_iterate_devices(struct dm_target *ti,
3457 					iterate_devices_callout_fn fn, void *data)
3458 {
3459 	struct dm_integrity_c *ic = ti->private;
3460 
3461 	if (!ic->meta_dev)
3462 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3463 	else
3464 		return fn(ti, ic->dev, 0, ti->len, data);
3465 }
3466 
3467 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3468 {
3469 	struct dm_integrity_c *ic = ti->private;
3470 
3471 	if (ic->sectors_per_block > 1) {
3472 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3473 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3474 		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3475 		limits->dma_alignment = limits->logical_block_size - 1;
3476 		limits->discard_granularity = ic->sectors_per_block << SECTOR_SHIFT;
3477 	}
3478 
3479 	if (!ic->internal_hash) {
3480 		struct blk_integrity *bi = &limits->integrity;
3481 
3482 		memset(bi, 0, sizeof(*bi));
3483 		bi->tuple_size = ic->tag_size;
3484 		bi->tag_size = bi->tuple_size;
3485 		bi->interval_exp =
3486 			ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3487 	}
3488 
3489 	limits->max_integrity_segments = USHRT_MAX;
3490 }
3491 
3492 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3493 {
3494 	unsigned int sector_space = JOURNAL_SECTOR_DATA;
3495 
3496 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3497 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3498 					 JOURNAL_ENTRY_ROUNDUP);
3499 
3500 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3501 		sector_space -= JOURNAL_MAC_PER_SECTOR;
3502 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3503 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3504 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3505 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3506 }
3507 
3508 static int calculate_device_limits(struct dm_integrity_c *ic)
3509 {
3510 	__u64 initial_sectors;
3511 
3512 	calculate_journal_section_size(ic);
3513 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3514 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3515 		return -EINVAL;
3516 	ic->initial_sectors = initial_sectors;
3517 
3518 	if (!ic->meta_dev) {
3519 		sector_t last_sector, last_area, last_offset;
3520 
3521 		/* we have to maintain excessive padding for compatibility with existing volumes */
3522 		__u64 metadata_run_padding =
3523 			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3524 			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3525 			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3526 
3527 		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3528 					    metadata_run_padding) >> SECTOR_SHIFT;
3529 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3530 			ic->log2_metadata_run = __ffs(ic->metadata_run);
3531 		else
3532 			ic->log2_metadata_run = -1;
3533 
3534 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3535 		last_sector = get_data_sector(ic, last_area, last_offset);
3536 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3537 			return -EINVAL;
3538 	} else {
3539 		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3540 
3541 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3542 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3543 		meta_size <<= ic->log2_buffer_sectors;
3544 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3545 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3546 			return -EINVAL;
3547 		ic->metadata_run = 1;
3548 		ic->log2_metadata_run = 0;
3549 	}
3550 
3551 	return 0;
3552 }
3553 
3554 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3555 {
3556 	if (!ic->meta_dev) {
3557 		int test_bit;
3558 
3559 		ic->provided_data_sectors = 0;
3560 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3561 			__u64 prev_data_sectors = ic->provided_data_sectors;
3562 
3563 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3564 			if (calculate_device_limits(ic))
3565 				ic->provided_data_sectors = prev_data_sectors;
3566 		}
3567 	} else {
3568 		ic->provided_data_sectors = ic->data_device_sectors;
3569 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3570 	}
3571 }
3572 
3573 static int initialize_superblock(struct dm_integrity_c *ic,
3574 				 unsigned int journal_sectors, unsigned int interleave_sectors)
3575 {
3576 	unsigned int journal_sections;
3577 	int test_bit;
3578 
3579 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3580 	memcpy(ic->sb->magic, SB_MAGIC, 8);
3581 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3582 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3583 	if (ic->journal_mac_alg.alg_string)
3584 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3585 
3586 	calculate_journal_section_size(ic);
3587 	journal_sections = journal_sectors / ic->journal_section_sectors;
3588 	if (!journal_sections)
3589 		journal_sections = 1;
3590 
3591 	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3592 		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3593 		get_random_bytes(ic->sb->salt, SALT_SIZE);
3594 	}
3595 
3596 	if (!ic->meta_dev) {
3597 		if (ic->fix_padding)
3598 			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3599 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3600 		if (!interleave_sectors)
3601 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3602 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3603 		ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3604 		ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3605 
3606 		get_provided_data_sectors(ic);
3607 		if (!ic->provided_data_sectors)
3608 			return -EINVAL;
3609 	} else {
3610 		ic->sb->log2_interleave_sectors = 0;
3611 
3612 		get_provided_data_sectors(ic);
3613 		if (!ic->provided_data_sectors)
3614 			return -EINVAL;
3615 
3616 try_smaller_buffer:
3617 		ic->sb->journal_sections = cpu_to_le32(0);
3618 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3619 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3620 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3621 
3622 			if (test_journal_sections > journal_sections)
3623 				continue;
3624 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3625 			if (calculate_device_limits(ic))
3626 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3627 
3628 		}
3629 		if (!le32_to_cpu(ic->sb->journal_sections)) {
3630 			if (ic->log2_buffer_sectors > 3) {
3631 				ic->log2_buffer_sectors--;
3632 				goto try_smaller_buffer;
3633 			}
3634 			return -EINVAL;
3635 		}
3636 	}
3637 
3638 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3639 
3640 	sb_set_version(ic);
3641 
3642 	return 0;
3643 }
3644 
3645 static void dm_integrity_free_page_list(struct page_list *pl)
3646 {
3647 	unsigned int i;
3648 
3649 	if (!pl)
3650 		return;
3651 	for (i = 0; pl[i].page; i++)
3652 		__free_page(pl[i].page);
3653 	kvfree(pl);
3654 }
3655 
3656 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3657 {
3658 	struct page_list *pl;
3659 	unsigned int i;
3660 
3661 	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3662 	if (!pl)
3663 		return NULL;
3664 
3665 	for (i = 0; i < n_pages; i++) {
3666 		pl[i].page = alloc_page(GFP_KERNEL);
3667 		if (!pl[i].page) {
3668 			dm_integrity_free_page_list(pl);
3669 			return NULL;
3670 		}
3671 		if (i)
3672 			pl[i - 1].next = &pl[i];
3673 	}
3674 	pl[i].page = NULL;
3675 	pl[i].next = NULL;
3676 
3677 	return pl;
3678 }
3679 
3680 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3681 {
3682 	unsigned int i;
3683 
3684 	for (i = 0; i < ic->journal_sections; i++)
3685 		kvfree(sl[i]);
3686 	kvfree(sl);
3687 }
3688 
3689 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3690 								   struct page_list *pl)
3691 {
3692 	struct scatterlist **sl;
3693 	unsigned int i;
3694 
3695 	sl = kvmalloc_array(ic->journal_sections,
3696 			    sizeof(struct scatterlist *),
3697 			    GFP_KERNEL | __GFP_ZERO);
3698 	if (!sl)
3699 		return NULL;
3700 
3701 	for (i = 0; i < ic->journal_sections; i++) {
3702 		struct scatterlist *s;
3703 		unsigned int start_index, start_offset;
3704 		unsigned int end_index, end_offset;
3705 		unsigned int n_pages;
3706 		unsigned int idx;
3707 
3708 		page_list_location(ic, i, 0, &start_index, &start_offset);
3709 		page_list_location(ic, i, ic->journal_section_sectors - 1,
3710 				   &end_index, &end_offset);
3711 
3712 		n_pages = (end_index - start_index + 1);
3713 
3714 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3715 				   GFP_KERNEL);
3716 		if (!s) {
3717 			dm_integrity_free_journal_scatterlist(ic, sl);
3718 			return NULL;
3719 		}
3720 
3721 		sg_init_table(s, n_pages);
3722 		for (idx = start_index; idx <= end_index; idx++) {
3723 			char *va = lowmem_page_address(pl[idx].page);
3724 			unsigned int start = 0, end = PAGE_SIZE;
3725 
3726 			if (idx == start_index)
3727 				start = start_offset;
3728 			if (idx == end_index)
3729 				end = end_offset + (1 << SECTOR_SHIFT);
3730 			sg_set_buf(&s[idx - start_index], va + start, end - start);
3731 		}
3732 
3733 		sl[i] = s;
3734 	}
3735 
3736 	return sl;
3737 }
3738 
3739 static void free_alg(struct alg_spec *a)
3740 {
3741 	kfree_sensitive(a->alg_string);
3742 	kfree_sensitive(a->key);
3743 	memset(a, 0, sizeof(*a));
3744 }
3745 
3746 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3747 {
3748 	char *k;
3749 
3750 	free_alg(a);
3751 
3752 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3753 	if (!a->alg_string)
3754 		goto nomem;
3755 
3756 	k = strchr(a->alg_string, ':');
3757 	if (k) {
3758 		*k = 0;
3759 		a->key_string = k + 1;
3760 		if (strlen(a->key_string) & 1)
3761 			goto inval;
3762 
3763 		a->key_size = strlen(a->key_string) / 2;
3764 		a->key = kmalloc(a->key_size, GFP_KERNEL);
3765 		if (!a->key)
3766 			goto nomem;
3767 		if (hex2bin(a->key, a->key_string, a->key_size))
3768 			goto inval;
3769 	}
3770 
3771 	return 0;
3772 inval:
3773 	*error = error_inval;
3774 	return -EINVAL;
3775 nomem:
3776 	*error = "Out of memory for an argument";
3777 	return -ENOMEM;
3778 }
3779 
3780 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3781 		   char *error_alg, char *error_key)
3782 {
3783 	int r;
3784 
3785 	if (a->alg_string) {
3786 		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3787 		if (IS_ERR(*hash)) {
3788 			*error = error_alg;
3789 			r = PTR_ERR(*hash);
3790 			*hash = NULL;
3791 			return r;
3792 		}
3793 
3794 		if (a->key) {
3795 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3796 			if (r) {
3797 				*error = error_key;
3798 				return r;
3799 			}
3800 		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3801 			*error = error_key;
3802 			return -ENOKEY;
3803 		}
3804 	}
3805 
3806 	return 0;
3807 }
3808 
3809 static int create_journal(struct dm_integrity_c *ic, char **error)
3810 {
3811 	int r = 0;
3812 	unsigned int i;
3813 	__u64 journal_pages, journal_desc_size, journal_tree_size;
3814 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3815 	struct skcipher_request *req = NULL;
3816 
3817 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3818 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3819 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3820 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3821 
3822 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3823 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3824 	journal_desc_size = journal_pages * sizeof(struct page_list);
3825 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3826 		*error = "Journal doesn't fit into memory";
3827 		r = -ENOMEM;
3828 		goto bad;
3829 	}
3830 	ic->journal_pages = journal_pages;
3831 
3832 	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3833 	if (!ic->journal) {
3834 		*error = "Could not allocate memory for journal";
3835 		r = -ENOMEM;
3836 		goto bad;
3837 	}
3838 	if (ic->journal_crypt_alg.alg_string) {
3839 		unsigned int ivsize, blocksize;
3840 		struct journal_completion comp;
3841 
3842 		comp.ic = ic;
3843 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3844 		if (IS_ERR(ic->journal_crypt)) {
3845 			*error = "Invalid journal cipher";
3846 			r = PTR_ERR(ic->journal_crypt);
3847 			ic->journal_crypt = NULL;
3848 			goto bad;
3849 		}
3850 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3851 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3852 
3853 		if (ic->journal_crypt_alg.key) {
3854 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3855 						   ic->journal_crypt_alg.key_size);
3856 			if (r) {
3857 				*error = "Error setting encryption key";
3858 				goto bad;
3859 			}
3860 		}
3861 		DEBUG_print("cipher %s, block size %u iv size %u\n",
3862 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3863 
3864 		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3865 		if (!ic->journal_io) {
3866 			*error = "Could not allocate memory for journal io";
3867 			r = -ENOMEM;
3868 			goto bad;
3869 		}
3870 
3871 		if (blocksize == 1) {
3872 			struct scatterlist *sg;
3873 
3874 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3875 			if (!req) {
3876 				*error = "Could not allocate crypt request";
3877 				r = -ENOMEM;
3878 				goto bad;
3879 			}
3880 
3881 			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3882 			if (!crypt_iv) {
3883 				*error = "Could not allocate iv";
3884 				r = -ENOMEM;
3885 				goto bad;
3886 			}
3887 
3888 			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3889 			if (!ic->journal_xor) {
3890 				*error = "Could not allocate memory for journal xor";
3891 				r = -ENOMEM;
3892 				goto bad;
3893 			}
3894 
3895 			sg = kvmalloc_array(ic->journal_pages + 1,
3896 					    sizeof(struct scatterlist),
3897 					    GFP_KERNEL);
3898 			if (!sg) {
3899 				*error = "Unable to allocate sg list";
3900 				r = -ENOMEM;
3901 				goto bad;
3902 			}
3903 			sg_init_table(sg, ic->journal_pages + 1);
3904 			for (i = 0; i < ic->journal_pages; i++) {
3905 				char *va = lowmem_page_address(ic->journal_xor[i].page);
3906 
3907 				clear_page(va);
3908 				sg_set_buf(&sg[i], va, PAGE_SIZE);
3909 			}
3910 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
3911 
3912 			skcipher_request_set_crypt(req, sg, sg,
3913 						   PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
3914 			init_completion(&comp.comp);
3915 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3916 			if (do_crypt(true, req, &comp))
3917 				wait_for_completion(&comp.comp);
3918 			kvfree(sg);
3919 			r = dm_integrity_failed(ic);
3920 			if (r) {
3921 				*error = "Unable to encrypt journal";
3922 				goto bad;
3923 			}
3924 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3925 
3926 			crypto_free_skcipher(ic->journal_crypt);
3927 			ic->journal_crypt = NULL;
3928 		} else {
3929 			unsigned int crypt_len = roundup(ivsize, blocksize);
3930 
3931 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3932 			if (!req) {
3933 				*error = "Could not allocate crypt request";
3934 				r = -ENOMEM;
3935 				goto bad;
3936 			}
3937 
3938 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3939 			if (!crypt_iv) {
3940 				*error = "Could not allocate iv";
3941 				r = -ENOMEM;
3942 				goto bad;
3943 			}
3944 
3945 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3946 			if (!crypt_data) {
3947 				*error = "Unable to allocate crypt data";
3948 				r = -ENOMEM;
3949 				goto bad;
3950 			}
3951 
3952 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3953 			if (!ic->journal_scatterlist) {
3954 				*error = "Unable to allocate sg list";
3955 				r = -ENOMEM;
3956 				goto bad;
3957 			}
3958 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3959 			if (!ic->journal_io_scatterlist) {
3960 				*error = "Unable to allocate sg list";
3961 				r = -ENOMEM;
3962 				goto bad;
3963 			}
3964 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3965 							 sizeof(struct skcipher_request *),
3966 							 GFP_KERNEL | __GFP_ZERO);
3967 			if (!ic->sk_requests) {
3968 				*error = "Unable to allocate sk requests";
3969 				r = -ENOMEM;
3970 				goto bad;
3971 			}
3972 			for (i = 0; i < ic->journal_sections; i++) {
3973 				struct scatterlist sg;
3974 				struct skcipher_request *section_req;
3975 				__le32 section_le = cpu_to_le32(i);
3976 
3977 				memset(crypt_iv, 0x00, ivsize);
3978 				memset(crypt_data, 0x00, crypt_len);
3979 				memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
3980 
3981 				sg_init_one(&sg, crypt_data, crypt_len);
3982 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3983 				init_completion(&comp.comp);
3984 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3985 				if (do_crypt(true, req, &comp))
3986 					wait_for_completion(&comp.comp);
3987 
3988 				r = dm_integrity_failed(ic);
3989 				if (r) {
3990 					*error = "Unable to generate iv";
3991 					goto bad;
3992 				}
3993 
3994 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3995 				if (!section_req) {
3996 					*error = "Unable to allocate crypt request";
3997 					r = -ENOMEM;
3998 					goto bad;
3999 				}
4000 				section_req->iv = kmalloc_array(ivsize, 2,
4001 								GFP_KERNEL);
4002 				if (!section_req->iv) {
4003 					skcipher_request_free(section_req);
4004 					*error = "Unable to allocate iv";
4005 					r = -ENOMEM;
4006 					goto bad;
4007 				}
4008 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
4009 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
4010 				ic->sk_requests[i] = section_req;
4011 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
4012 			}
4013 		}
4014 	}
4015 
4016 	for (i = 0; i < N_COMMIT_IDS; i++) {
4017 		unsigned int j;
4018 
4019 retest_commit_id:
4020 		for (j = 0; j < i; j++) {
4021 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
4022 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
4023 				goto retest_commit_id;
4024 			}
4025 		}
4026 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
4027 	}
4028 
4029 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
4030 	if (journal_tree_size > ULONG_MAX) {
4031 		*error = "Journal doesn't fit into memory";
4032 		r = -ENOMEM;
4033 		goto bad;
4034 	}
4035 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
4036 	if (!ic->journal_tree) {
4037 		*error = "Could not allocate memory for journal tree";
4038 		r = -ENOMEM;
4039 	}
4040 bad:
4041 	kfree(crypt_data);
4042 	kfree(crypt_iv);
4043 	skcipher_request_free(req);
4044 
4045 	return r;
4046 }
4047 
4048 /*
4049  * Construct a integrity mapping
4050  *
4051  * Arguments:
4052  *	device
4053  *	offset from the start of the device
4054  *	tag size
4055  *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4056  *	number of optional arguments
4057  *	optional arguments:
4058  *		journal_sectors
4059  *		interleave_sectors
4060  *		buffer_sectors
4061  *		journal_watermark
4062  *		commit_time
4063  *		meta_device
4064  *		block_size
4065  *		sectors_per_bit
4066  *		bitmap_flush_interval
4067  *		internal_hash
4068  *		journal_crypt
4069  *		journal_mac
4070  *		recalculate
4071  */
4072 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4073 {
4074 	struct dm_integrity_c *ic;
4075 	char dummy;
4076 	int r;
4077 	unsigned int extra_args;
4078 	struct dm_arg_set as;
4079 	static const struct dm_arg _args[] = {
4080 		{0, 18, "Invalid number of feature args"},
4081 	};
4082 	unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4083 	bool should_write_sb;
4084 	__u64 threshold;
4085 	unsigned long long start;
4086 	__s8 log2_sectors_per_bitmap_bit = -1;
4087 	__s8 log2_blocks_per_bitmap_bit;
4088 	__u64 bits_in_journal;
4089 	__u64 n_bitmap_bits;
4090 
4091 #define DIRECT_ARGUMENTS	4
4092 
4093 	if (argc <= DIRECT_ARGUMENTS) {
4094 		ti->error = "Invalid argument count";
4095 		return -EINVAL;
4096 	}
4097 
4098 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4099 	if (!ic) {
4100 		ti->error = "Cannot allocate integrity context";
4101 		return -ENOMEM;
4102 	}
4103 	ti->private = ic;
4104 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
4105 	ic->ti = ti;
4106 
4107 	ic->in_progress = RB_ROOT;
4108 	INIT_LIST_HEAD(&ic->wait_list);
4109 	init_waitqueue_head(&ic->endio_wait);
4110 	bio_list_init(&ic->flush_bio_list);
4111 	init_waitqueue_head(&ic->copy_to_journal_wait);
4112 	init_completion(&ic->crypto_backoff);
4113 	atomic64_set(&ic->number_of_mismatches, 0);
4114 	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4115 
4116 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4117 	if (r) {
4118 		ti->error = "Device lookup failed";
4119 		goto bad;
4120 	}
4121 
4122 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4123 		ti->error = "Invalid starting offset";
4124 		r = -EINVAL;
4125 		goto bad;
4126 	}
4127 	ic->start = start;
4128 
4129 	if (strcmp(argv[2], "-")) {
4130 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4131 			ti->error = "Invalid tag size";
4132 			r = -EINVAL;
4133 			goto bad;
4134 		}
4135 	}
4136 
4137 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4138 	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4139 		ic->mode = argv[3][0];
4140 	} else {
4141 		ti->error = "Invalid mode (expecting J, B, D, R)";
4142 		r = -EINVAL;
4143 		goto bad;
4144 	}
4145 
4146 	journal_sectors = 0;
4147 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4148 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
4149 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4150 	sync_msec = DEFAULT_SYNC_MSEC;
4151 	ic->sectors_per_block = 1;
4152 
4153 	as.argc = argc - DIRECT_ARGUMENTS;
4154 	as.argv = argv + DIRECT_ARGUMENTS;
4155 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4156 	if (r)
4157 		goto bad;
4158 
4159 	while (extra_args--) {
4160 		const char *opt_string;
4161 		unsigned int val;
4162 		unsigned long long llval;
4163 
4164 		opt_string = dm_shift_arg(&as);
4165 		if (!opt_string) {
4166 			r = -EINVAL;
4167 			ti->error = "Not enough feature arguments";
4168 			goto bad;
4169 		}
4170 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4171 			journal_sectors = val ? val : 1;
4172 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4173 			interleave_sectors = val;
4174 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4175 			buffer_sectors = val;
4176 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4177 			journal_watermark = val;
4178 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4179 			sync_msec = val;
4180 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4181 			if (ic->meta_dev) {
4182 				dm_put_device(ti, ic->meta_dev);
4183 				ic->meta_dev = NULL;
4184 			}
4185 			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4186 					  dm_table_get_mode(ti->table), &ic->meta_dev);
4187 			if (r) {
4188 				ti->error = "Device lookup failed";
4189 				goto bad;
4190 			}
4191 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4192 			if (val < 1 << SECTOR_SHIFT ||
4193 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4194 			    (val & (val - 1))) {
4195 				r = -EINVAL;
4196 				ti->error = "Invalid block_size argument";
4197 				goto bad;
4198 			}
4199 			ic->sectors_per_block = val >> SECTOR_SHIFT;
4200 		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4201 			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4202 		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4203 			if ((uint64_t)val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4204 				r = -EINVAL;
4205 				ti->error = "Invalid bitmap_flush_interval argument";
4206 				goto bad;
4207 			}
4208 			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4209 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4210 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4211 					    "Invalid internal_hash argument");
4212 			if (r)
4213 				goto bad;
4214 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4215 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4216 					    "Invalid journal_crypt argument");
4217 			if (r)
4218 				goto bad;
4219 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4220 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4221 					    "Invalid journal_mac argument");
4222 			if (r)
4223 				goto bad;
4224 		} else if (!strcmp(opt_string, "recalculate")) {
4225 			ic->recalculate_flag = true;
4226 		} else if (!strcmp(opt_string, "reset_recalculate")) {
4227 			ic->recalculate_flag = true;
4228 			ic->reset_recalculate_flag = true;
4229 		} else if (!strcmp(opt_string, "allow_discards")) {
4230 			ic->discard = true;
4231 		} else if (!strcmp(opt_string, "fix_padding")) {
4232 			ic->fix_padding = true;
4233 		} else if (!strcmp(opt_string, "fix_hmac")) {
4234 			ic->fix_hmac = true;
4235 		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4236 			ic->legacy_recalculate = true;
4237 		} else {
4238 			r = -EINVAL;
4239 			ti->error = "Invalid argument";
4240 			goto bad;
4241 		}
4242 	}
4243 
4244 	ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4245 	if (!ic->meta_dev)
4246 		ic->meta_device_sectors = ic->data_device_sectors;
4247 	else
4248 		ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4249 
4250 	if (!journal_sectors) {
4251 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4252 				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4253 	}
4254 
4255 	if (!buffer_sectors)
4256 		buffer_sectors = 1;
4257 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4258 
4259 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4260 		    "Invalid internal hash", "Error setting internal hash key");
4261 	if (r)
4262 		goto bad;
4263 
4264 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4265 		    "Invalid journal mac", "Error setting journal mac key");
4266 	if (r)
4267 		goto bad;
4268 
4269 	if (!ic->tag_size) {
4270 		if (!ic->internal_hash) {
4271 			ti->error = "Unknown tag size";
4272 			r = -EINVAL;
4273 			goto bad;
4274 		}
4275 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4276 	}
4277 	if (ic->tag_size > MAX_TAG_SIZE) {
4278 		ti->error = "Too big tag size";
4279 		r = -EINVAL;
4280 		goto bad;
4281 	}
4282 	if (!(ic->tag_size & (ic->tag_size - 1)))
4283 		ic->log2_tag_size = __ffs(ic->tag_size);
4284 	else
4285 		ic->log2_tag_size = -1;
4286 
4287 	if (ic->mode == 'B' && !ic->internal_hash) {
4288 		r = -EINVAL;
4289 		ti->error = "Bitmap mode can be only used with internal hash";
4290 		goto bad;
4291 	}
4292 
4293 	if (ic->discard && !ic->internal_hash) {
4294 		r = -EINVAL;
4295 		ti->error = "Discard can be only used with internal hash";
4296 		goto bad;
4297 	}
4298 
4299 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4300 	ic->autocommit_msec = sync_msec;
4301 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4302 
4303 	ic->io = dm_io_client_create();
4304 	if (IS_ERR(ic->io)) {
4305 		r = PTR_ERR(ic->io);
4306 		ic->io = NULL;
4307 		ti->error = "Cannot allocate dm io";
4308 		goto bad;
4309 	}
4310 
4311 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4312 	if (r) {
4313 		ti->error = "Cannot allocate mempool";
4314 		goto bad;
4315 	}
4316 
4317 	r = mempool_init_page_pool(&ic->recheck_pool, 1, 0);
4318 	if (r) {
4319 		ti->error = "Cannot allocate mempool";
4320 		goto bad;
4321 	}
4322 
4323 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4324 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4325 	if (!ic->metadata_wq) {
4326 		ti->error = "Cannot allocate workqueue";
4327 		r = -ENOMEM;
4328 		goto bad;
4329 	}
4330 
4331 	/*
4332 	 * If this workqueue weren't ordered, it would cause bio reordering
4333 	 * and reduced performance.
4334 	 */
4335 	ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4336 	if (!ic->wait_wq) {
4337 		ti->error = "Cannot allocate workqueue";
4338 		r = -ENOMEM;
4339 		goto bad;
4340 	}
4341 
4342 	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4343 					  METADATA_WORKQUEUE_MAX_ACTIVE);
4344 	if (!ic->offload_wq) {
4345 		ti->error = "Cannot allocate workqueue";
4346 		r = -ENOMEM;
4347 		goto bad;
4348 	}
4349 
4350 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4351 	if (!ic->commit_wq) {
4352 		ti->error = "Cannot allocate workqueue";
4353 		r = -ENOMEM;
4354 		goto bad;
4355 	}
4356 	INIT_WORK(&ic->commit_work, integrity_commit);
4357 
4358 	if (ic->mode == 'J' || ic->mode == 'B') {
4359 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4360 		if (!ic->writer_wq) {
4361 			ti->error = "Cannot allocate workqueue";
4362 			r = -ENOMEM;
4363 			goto bad;
4364 		}
4365 		INIT_WORK(&ic->writer_work, integrity_writer);
4366 	}
4367 
4368 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4369 	if (!ic->sb) {
4370 		r = -ENOMEM;
4371 		ti->error = "Cannot allocate superblock area";
4372 		goto bad;
4373 	}
4374 
4375 	r = sync_rw_sb(ic, REQ_OP_READ);
4376 	if (r) {
4377 		ti->error = "Error reading superblock";
4378 		goto bad;
4379 	}
4380 	should_write_sb = false;
4381 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4382 		if (ic->mode != 'R') {
4383 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4384 				r = -EINVAL;
4385 				ti->error = "The device is not initialized";
4386 				goto bad;
4387 			}
4388 		}
4389 
4390 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4391 		if (r) {
4392 			ti->error = "Could not initialize superblock";
4393 			goto bad;
4394 		}
4395 		if (ic->mode != 'R')
4396 			should_write_sb = true;
4397 	}
4398 
4399 	if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4400 		r = -EINVAL;
4401 		ti->error = "Unknown version";
4402 		goto bad;
4403 	}
4404 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4405 		r = -EINVAL;
4406 		ti->error = "Tag size doesn't match the information in superblock";
4407 		goto bad;
4408 	}
4409 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4410 		r = -EINVAL;
4411 		ti->error = "Block size doesn't match the information in superblock";
4412 		goto bad;
4413 	}
4414 	if (!le32_to_cpu(ic->sb->journal_sections)) {
4415 		r = -EINVAL;
4416 		ti->error = "Corrupted superblock, journal_sections is 0";
4417 		goto bad;
4418 	}
4419 	/* make sure that ti->max_io_len doesn't overflow */
4420 	if (!ic->meta_dev) {
4421 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4422 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4423 			r = -EINVAL;
4424 			ti->error = "Invalid interleave_sectors in the superblock";
4425 			goto bad;
4426 		}
4427 	} else {
4428 		if (ic->sb->log2_interleave_sectors) {
4429 			r = -EINVAL;
4430 			ti->error = "Invalid interleave_sectors in the superblock";
4431 			goto bad;
4432 		}
4433 	}
4434 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4435 		r = -EINVAL;
4436 		ti->error = "Journal mac mismatch";
4437 		goto bad;
4438 	}
4439 
4440 	get_provided_data_sectors(ic);
4441 	if (!ic->provided_data_sectors) {
4442 		r = -EINVAL;
4443 		ti->error = "The device is too small";
4444 		goto bad;
4445 	}
4446 
4447 try_smaller_buffer:
4448 	r = calculate_device_limits(ic);
4449 	if (r) {
4450 		if (ic->meta_dev) {
4451 			if (ic->log2_buffer_sectors > 3) {
4452 				ic->log2_buffer_sectors--;
4453 				goto try_smaller_buffer;
4454 			}
4455 		}
4456 		ti->error = "The device is too small";
4457 		goto bad;
4458 	}
4459 
4460 	if (log2_sectors_per_bitmap_bit < 0)
4461 		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4462 	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4463 		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4464 
4465 	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4466 	if (bits_in_journal > UINT_MAX)
4467 		bits_in_journal = UINT_MAX;
4468 	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4469 		log2_sectors_per_bitmap_bit++;
4470 
4471 	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4472 	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4473 	if (should_write_sb)
4474 		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4475 
4476 	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4477 				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4478 	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4479 
4480 	if (!ic->meta_dev)
4481 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4482 
4483 	if (ti->len > ic->provided_data_sectors) {
4484 		r = -EINVAL;
4485 		ti->error = "Not enough provided sectors for requested mapping size";
4486 		goto bad;
4487 	}
4488 
4489 
4490 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4491 	threshold += 50;
4492 	do_div(threshold, 100);
4493 	ic->free_sectors_threshold = threshold;
4494 
4495 	DEBUG_print("initialized:\n");
4496 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4497 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4498 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4499 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4500 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4501 	DEBUG_print("	journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4502 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4503 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4504 	DEBUG_print("	data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4505 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4506 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4507 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4508 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4509 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4510 	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4511 
4512 	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4513 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4514 		ic->sb->recalc_sector = cpu_to_le64(0);
4515 	}
4516 
4517 	if (ic->internal_hash) {
4518 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4519 		if (!ic->recalc_wq) {
4520 			ti->error = "Cannot allocate workqueue";
4521 			r = -ENOMEM;
4522 			goto bad;
4523 		}
4524 		INIT_WORK(&ic->recalc_work, integrity_recalc);
4525 	} else {
4526 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4527 			ti->error = "Recalculate can only be specified with internal_hash";
4528 			r = -EINVAL;
4529 			goto bad;
4530 		}
4531 	}
4532 
4533 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4534 	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4535 	    dm_integrity_disable_recalculate(ic)) {
4536 		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4537 		r = -EOPNOTSUPP;
4538 		goto bad;
4539 	}
4540 
4541 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4542 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4543 	if (IS_ERR(ic->bufio)) {
4544 		r = PTR_ERR(ic->bufio);
4545 		ti->error = "Cannot initialize dm-bufio";
4546 		ic->bufio = NULL;
4547 		goto bad;
4548 	}
4549 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4550 
4551 	if (ic->mode != 'R') {
4552 		r = create_journal(ic, &ti->error);
4553 		if (r)
4554 			goto bad;
4555 
4556 	}
4557 
4558 	if (ic->mode == 'B') {
4559 		unsigned int i;
4560 		unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4561 
4562 		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4563 		if (!ic->recalc_bitmap) {
4564 			r = -ENOMEM;
4565 			goto bad;
4566 		}
4567 		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4568 		if (!ic->may_write_bitmap) {
4569 			r = -ENOMEM;
4570 			goto bad;
4571 		}
4572 		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4573 		if (!ic->bbs) {
4574 			r = -ENOMEM;
4575 			goto bad;
4576 		}
4577 		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4578 		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4579 			struct bitmap_block_status *bbs = &ic->bbs[i];
4580 			unsigned int sector, pl_index, pl_offset;
4581 
4582 			INIT_WORK(&bbs->work, bitmap_block_work);
4583 			bbs->ic = ic;
4584 			bbs->idx = i;
4585 			bio_list_init(&bbs->bio_queue);
4586 			spin_lock_init(&bbs->bio_queue_lock);
4587 
4588 			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4589 			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4590 			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4591 
4592 			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4593 		}
4594 	}
4595 
4596 	if (should_write_sb) {
4597 		init_journal(ic, 0, ic->journal_sections, 0);
4598 		r = dm_integrity_failed(ic);
4599 		if (unlikely(r)) {
4600 			ti->error = "Error initializing journal";
4601 			goto bad;
4602 		}
4603 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4604 		if (r) {
4605 			ti->error = "Error initializing superblock";
4606 			goto bad;
4607 		}
4608 		ic->just_formatted = true;
4609 	}
4610 
4611 	if (!ic->meta_dev) {
4612 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4613 		if (r)
4614 			goto bad;
4615 	}
4616 	if (ic->mode == 'B') {
4617 		unsigned int max_io_len;
4618 
4619 		max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4620 		if (!max_io_len)
4621 			max_io_len = 1U << 31;
4622 		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4623 		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4624 			r = dm_set_target_max_io_len(ti, max_io_len);
4625 			if (r)
4626 				goto bad;
4627 		}
4628 	}
4629 
4630 	ti->num_flush_bios = 1;
4631 	ti->flush_supported = true;
4632 	if (ic->discard)
4633 		ti->num_discard_bios = 1;
4634 
4635 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4636 	return 0;
4637 
4638 bad:
4639 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4640 	dm_integrity_dtr(ti);
4641 	return r;
4642 }
4643 
4644 static void dm_integrity_dtr(struct dm_target *ti)
4645 {
4646 	struct dm_integrity_c *ic = ti->private;
4647 
4648 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4649 	BUG_ON(!list_empty(&ic->wait_list));
4650 
4651 	if (ic->mode == 'B')
4652 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
4653 	if (ic->metadata_wq)
4654 		destroy_workqueue(ic->metadata_wq);
4655 	if (ic->wait_wq)
4656 		destroy_workqueue(ic->wait_wq);
4657 	if (ic->offload_wq)
4658 		destroy_workqueue(ic->offload_wq);
4659 	if (ic->commit_wq)
4660 		destroy_workqueue(ic->commit_wq);
4661 	if (ic->writer_wq)
4662 		destroy_workqueue(ic->writer_wq);
4663 	if (ic->recalc_wq)
4664 		destroy_workqueue(ic->recalc_wq);
4665 	kvfree(ic->bbs);
4666 	if (ic->bufio)
4667 		dm_bufio_client_destroy(ic->bufio);
4668 	mempool_exit(&ic->recheck_pool);
4669 	mempool_exit(&ic->journal_io_mempool);
4670 	if (ic->io)
4671 		dm_io_client_destroy(ic->io);
4672 	if (ic->dev)
4673 		dm_put_device(ti, ic->dev);
4674 	if (ic->meta_dev)
4675 		dm_put_device(ti, ic->meta_dev);
4676 	dm_integrity_free_page_list(ic->journal);
4677 	dm_integrity_free_page_list(ic->journal_io);
4678 	dm_integrity_free_page_list(ic->journal_xor);
4679 	dm_integrity_free_page_list(ic->recalc_bitmap);
4680 	dm_integrity_free_page_list(ic->may_write_bitmap);
4681 	if (ic->journal_scatterlist)
4682 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4683 	if (ic->journal_io_scatterlist)
4684 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4685 	if (ic->sk_requests) {
4686 		unsigned int i;
4687 
4688 		for (i = 0; i < ic->journal_sections; i++) {
4689 			struct skcipher_request *req;
4690 
4691 			req = ic->sk_requests[i];
4692 			if (req) {
4693 				kfree_sensitive(req->iv);
4694 				skcipher_request_free(req);
4695 			}
4696 		}
4697 		kvfree(ic->sk_requests);
4698 	}
4699 	kvfree(ic->journal_tree);
4700 	if (ic->sb)
4701 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4702 
4703 	if (ic->internal_hash)
4704 		crypto_free_shash(ic->internal_hash);
4705 	free_alg(&ic->internal_hash_alg);
4706 
4707 	if (ic->journal_crypt)
4708 		crypto_free_skcipher(ic->journal_crypt);
4709 	free_alg(&ic->journal_crypt_alg);
4710 
4711 	if (ic->journal_mac)
4712 		crypto_free_shash(ic->journal_mac);
4713 	free_alg(&ic->journal_mac_alg);
4714 
4715 	kfree(ic);
4716 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4717 }
4718 
4719 static struct target_type integrity_target = {
4720 	.name			= "integrity",
4721 	.version		= {1, 11, 0},
4722 	.module			= THIS_MODULE,
4723 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4724 	.ctr			= dm_integrity_ctr,
4725 	.dtr			= dm_integrity_dtr,
4726 	.map			= dm_integrity_map,
4727 	.postsuspend		= dm_integrity_postsuspend,
4728 	.resume			= dm_integrity_resume,
4729 	.status			= dm_integrity_status,
4730 	.iterate_devices	= dm_integrity_iterate_devices,
4731 	.io_hints		= dm_integrity_io_hints,
4732 };
4733 
4734 static int __init dm_integrity_init(void)
4735 {
4736 	int r;
4737 
4738 	journal_io_cache = kmem_cache_create("integrity_journal_io",
4739 					     sizeof(struct journal_io), 0, 0, NULL);
4740 	if (!journal_io_cache) {
4741 		DMERR("can't allocate journal io cache");
4742 		return -ENOMEM;
4743 	}
4744 
4745 	r = dm_register_target(&integrity_target);
4746 	if (r < 0) {
4747 		kmem_cache_destroy(journal_io_cache);
4748 		return r;
4749 	}
4750 
4751 	return 0;
4752 }
4753 
4754 static void __exit dm_integrity_exit(void)
4755 {
4756 	dm_unregister_target(&integrity_target);
4757 	kmem_cache_destroy(journal_io_cache);
4758 }
4759 
4760 module_init(dm_integrity_init);
4761 module_exit(dm_integrity_exit);
4762 
4763 MODULE_AUTHOR("Milan Broz");
4764 MODULE_AUTHOR("Mikulas Patocka");
4765 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4766 MODULE_LICENSE("GPL");
4767