1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 4 * Copyright (C) 2016-2017 Milan Broz 5 * Copyright (C) 2016-2017 Mikulas Patocka 6 * 7 * This file is released under the GPL. 8 */ 9 10 #include "dm-bio-record.h" 11 12 #include <linux/compiler.h> 13 #include <linux/module.h> 14 #include <linux/device-mapper.h> 15 #include <linux/dm-io.h> 16 #include <linux/vmalloc.h> 17 #include <linux/sort.h> 18 #include <linux/rbtree.h> 19 #include <linux/delay.h> 20 #include <linux/random.h> 21 #include <linux/reboot.h> 22 #include <crypto/hash.h> 23 #include <crypto/skcipher.h> 24 #include <linux/async_tx.h> 25 #include <linux/dm-bufio.h> 26 27 #include "dm-audit.h" 28 29 #define DM_MSG_PREFIX "integrity" 30 31 #define DEFAULT_INTERLEAVE_SECTORS 32768 32 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 33 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768 34 #define DEFAULT_BUFFER_SECTORS 128 35 #define DEFAULT_JOURNAL_WATERMARK 50 36 #define DEFAULT_SYNC_MSEC 10000 37 #define DEFAULT_MAX_JOURNAL_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192) 38 #define MIN_LOG2_INTERLEAVE_SECTORS 3 39 #define MAX_LOG2_INTERLEAVE_SECTORS 31 40 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 41 #define RECALC_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048) 42 #define RECALC_WRITE_SUPER 16 43 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */ 44 #define BITMAP_FLUSH_INTERVAL (10 * HZ) 45 #define DISCARD_FILLER 0xf6 46 #define SALT_SIZE 16 47 48 /* 49 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 50 * so it should not be enabled in the official kernel 51 */ 52 //#define DEBUG_PRINT 53 //#define INTERNAL_VERIFY 54 55 /* 56 * On disk structures 57 */ 58 59 #define SB_MAGIC "integrt" 60 #define SB_VERSION_1 1 61 #define SB_VERSION_2 2 62 #define SB_VERSION_3 3 63 #define SB_VERSION_4 4 64 #define SB_VERSION_5 5 65 #define SB_SECTORS 8 66 #define MAX_SECTORS_PER_BLOCK 8 67 68 struct superblock { 69 __u8 magic[8]; 70 __u8 version; 71 __u8 log2_interleave_sectors; 72 __le16 integrity_tag_size; 73 __le32 journal_sections; 74 __le64 provided_data_sectors; /* userspace uses this value */ 75 __le32 flags; 76 __u8 log2_sectors_per_block; 77 __u8 log2_blocks_per_bitmap_bit; 78 __u8 pad[2]; 79 __le64 recalc_sector; 80 __u8 pad2[8]; 81 __u8 salt[SALT_SIZE]; 82 }; 83 84 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 85 #define SB_FLAG_RECALCULATING 0x2 86 #define SB_FLAG_DIRTY_BITMAP 0x4 87 #define SB_FLAG_FIXED_PADDING 0x8 88 #define SB_FLAG_FIXED_HMAC 0x10 89 90 #define JOURNAL_ENTRY_ROUNDUP 8 91 92 typedef __le64 commit_id_t; 93 #define JOURNAL_MAC_PER_SECTOR 8 94 95 struct journal_entry { 96 union { 97 struct { 98 __le32 sector_lo; 99 __le32 sector_hi; 100 } s; 101 __le64 sector; 102 } u; 103 commit_id_t last_bytes[]; 104 /* __u8 tag[0]; */ 105 }; 106 107 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 108 109 #if BITS_PER_LONG == 64 110 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) 111 #else 112 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) 113 #endif 114 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 115 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 116 #define journal_entry_set_unused(je) ((je)->u.s.sector_hi = cpu_to_le32(-1)) 117 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 118 #define journal_entry_set_inprogress(je) ((je)->u.s.sector_hi = cpu_to_le32(-2)) 119 120 #define JOURNAL_BLOCK_SECTORS 8 121 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 122 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 123 124 struct journal_sector { 125 struct_group(sectors, 126 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 127 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 128 ); 129 commit_id_t commit_id; 130 }; 131 132 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 133 134 #define METADATA_PADDING_SECTORS 8 135 136 #define N_COMMIT_IDS 4 137 138 static unsigned char prev_commit_seq(unsigned char seq) 139 { 140 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 141 } 142 143 static unsigned char next_commit_seq(unsigned char seq) 144 { 145 return (seq + 1) % N_COMMIT_IDS; 146 } 147 148 /* 149 * In-memory structures 150 */ 151 152 struct journal_node { 153 struct rb_node node; 154 sector_t sector; 155 }; 156 157 struct alg_spec { 158 char *alg_string; 159 char *key_string; 160 __u8 *key; 161 unsigned int key_size; 162 }; 163 164 struct dm_integrity_c { 165 struct dm_dev *dev; 166 struct dm_dev *meta_dev; 167 unsigned int tag_size; 168 __s8 log2_tag_size; 169 sector_t start; 170 mempool_t journal_io_mempool; 171 struct dm_io_client *io; 172 struct dm_bufio_client *bufio; 173 struct workqueue_struct *metadata_wq; 174 struct superblock *sb; 175 unsigned int journal_pages; 176 unsigned int n_bitmap_blocks; 177 178 struct page_list *journal; 179 struct page_list *journal_io; 180 struct page_list *journal_xor; 181 struct page_list *recalc_bitmap; 182 struct page_list *may_write_bitmap; 183 struct bitmap_block_status *bbs; 184 unsigned int bitmap_flush_interval; 185 int synchronous_mode; 186 struct bio_list synchronous_bios; 187 struct delayed_work bitmap_flush_work; 188 189 struct crypto_skcipher *journal_crypt; 190 struct scatterlist **journal_scatterlist; 191 struct scatterlist **journal_io_scatterlist; 192 struct skcipher_request **sk_requests; 193 194 struct crypto_shash *journal_mac; 195 196 struct journal_node *journal_tree; 197 struct rb_root journal_tree_root; 198 199 sector_t provided_data_sectors; 200 201 unsigned short journal_entry_size; 202 unsigned char journal_entries_per_sector; 203 unsigned char journal_section_entries; 204 unsigned short journal_section_sectors; 205 unsigned int journal_sections; 206 unsigned int journal_entries; 207 sector_t data_device_sectors; 208 sector_t meta_device_sectors; 209 unsigned int initial_sectors; 210 unsigned int metadata_run; 211 __s8 log2_metadata_run; 212 __u8 log2_buffer_sectors; 213 __u8 sectors_per_block; 214 __u8 log2_blocks_per_bitmap_bit; 215 216 unsigned char mode; 217 218 int failed; 219 220 struct crypto_shash *internal_hash; 221 222 struct dm_target *ti; 223 224 /* these variables are locked with endio_wait.lock */ 225 struct rb_root in_progress; 226 struct list_head wait_list; 227 wait_queue_head_t endio_wait; 228 struct workqueue_struct *wait_wq; 229 struct workqueue_struct *offload_wq; 230 231 unsigned char commit_seq; 232 commit_id_t commit_ids[N_COMMIT_IDS]; 233 234 unsigned int committed_section; 235 unsigned int n_committed_sections; 236 237 unsigned int uncommitted_section; 238 unsigned int n_uncommitted_sections; 239 240 unsigned int free_section; 241 unsigned char free_section_entry; 242 unsigned int free_sectors; 243 244 unsigned int free_sectors_threshold; 245 246 struct workqueue_struct *commit_wq; 247 struct work_struct commit_work; 248 249 struct workqueue_struct *writer_wq; 250 struct work_struct writer_work; 251 252 struct workqueue_struct *recalc_wq; 253 struct work_struct recalc_work; 254 255 struct bio_list flush_bio_list; 256 257 unsigned long autocommit_jiffies; 258 struct timer_list autocommit_timer; 259 unsigned int autocommit_msec; 260 261 wait_queue_head_t copy_to_journal_wait; 262 263 struct completion crypto_backoff; 264 265 bool wrote_to_journal; 266 bool journal_uptodate; 267 bool just_formatted; 268 bool recalculate_flag; 269 bool reset_recalculate_flag; 270 bool discard; 271 bool fix_padding; 272 bool fix_hmac; 273 bool legacy_recalculate; 274 275 struct alg_spec internal_hash_alg; 276 struct alg_spec journal_crypt_alg; 277 struct alg_spec journal_mac_alg; 278 279 atomic64_t number_of_mismatches; 280 281 mempool_t recheck_pool; 282 283 struct notifier_block reboot_notifier; 284 }; 285 286 struct dm_integrity_range { 287 sector_t logical_sector; 288 sector_t n_sectors; 289 bool waiting; 290 union { 291 struct rb_node node; 292 struct { 293 struct task_struct *task; 294 struct list_head wait_entry; 295 }; 296 }; 297 }; 298 299 struct dm_integrity_io { 300 struct work_struct work; 301 302 struct dm_integrity_c *ic; 303 enum req_op op; 304 bool fua; 305 306 struct dm_integrity_range range; 307 308 sector_t metadata_block; 309 unsigned int metadata_offset; 310 311 atomic_t in_flight; 312 blk_status_t bi_status; 313 314 struct completion *completion; 315 316 struct dm_bio_details bio_details; 317 }; 318 319 struct journal_completion { 320 struct dm_integrity_c *ic; 321 atomic_t in_flight; 322 struct completion comp; 323 }; 324 325 struct journal_io { 326 struct dm_integrity_range range; 327 struct journal_completion *comp; 328 }; 329 330 struct bitmap_block_status { 331 struct work_struct work; 332 struct dm_integrity_c *ic; 333 unsigned int idx; 334 unsigned long *bitmap; 335 struct bio_list bio_queue; 336 spinlock_t bio_queue_lock; 337 338 }; 339 340 static struct kmem_cache *journal_io_cache; 341 342 #define JOURNAL_IO_MEMPOOL 32 343 344 #ifdef DEBUG_PRINT 345 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 346 #define DEBUG_bytes(bytes, len, msg, ...) printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \ 347 len ? ": " : "", len, bytes) 348 #else 349 #define DEBUG_print(x, ...) do { } while (0) 350 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 351 #endif 352 353 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 354 static void integrity_bio_wait(struct work_struct *w); 355 static void dm_integrity_dtr(struct dm_target *ti); 356 357 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 358 { 359 if (err == -EILSEQ) 360 atomic64_inc(&ic->number_of_mismatches); 361 if (!cmpxchg(&ic->failed, 0, err)) 362 DMERR("Error on %s: %d", msg, err); 363 } 364 365 static int dm_integrity_failed(struct dm_integrity_c *ic) 366 { 367 return READ_ONCE(ic->failed); 368 } 369 370 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic) 371 { 372 if (ic->legacy_recalculate) 373 return false; 374 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ? 375 ic->internal_hash_alg.key || ic->journal_mac_alg.key : 376 ic->internal_hash_alg.key && !ic->journal_mac_alg.key) 377 return true; 378 return false; 379 } 380 381 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i, 382 unsigned int j, unsigned char seq) 383 { 384 /* 385 * Xor the number with section and sector, so that if a piece of 386 * journal is written at wrong place, it is detected. 387 */ 388 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 389 } 390 391 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 392 sector_t *area, sector_t *offset) 393 { 394 if (!ic->meta_dev) { 395 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 396 *area = data_sector >> log2_interleave_sectors; 397 *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1); 398 } else { 399 *area = 0; 400 *offset = data_sector; 401 } 402 } 403 404 #define sector_to_block(ic, n) \ 405 do { \ 406 BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1)); \ 407 (n) >>= (ic)->sb->log2_sectors_per_block; \ 408 } while (0) 409 410 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 411 sector_t offset, unsigned int *metadata_offset) 412 { 413 __u64 ms; 414 unsigned int mo; 415 416 ms = area << ic->sb->log2_interleave_sectors; 417 if (likely(ic->log2_metadata_run >= 0)) 418 ms += area << ic->log2_metadata_run; 419 else 420 ms += area * ic->metadata_run; 421 ms >>= ic->log2_buffer_sectors; 422 423 sector_to_block(ic, offset); 424 425 if (likely(ic->log2_tag_size >= 0)) { 426 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 427 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 428 } else { 429 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 430 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 431 } 432 *metadata_offset = mo; 433 return ms; 434 } 435 436 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 437 { 438 sector_t result; 439 440 if (ic->meta_dev) 441 return offset; 442 443 result = area << ic->sb->log2_interleave_sectors; 444 if (likely(ic->log2_metadata_run >= 0)) 445 result += (area + 1) << ic->log2_metadata_run; 446 else 447 result += (area + 1) * ic->metadata_run; 448 449 result += (sector_t)ic->initial_sectors + offset; 450 result += ic->start; 451 452 return result; 453 } 454 455 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr) 456 { 457 if (unlikely(*sec_ptr >= ic->journal_sections)) 458 *sec_ptr -= ic->journal_sections; 459 } 460 461 static void sb_set_version(struct dm_integrity_c *ic) 462 { 463 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) 464 ic->sb->version = SB_VERSION_5; 465 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) 466 ic->sb->version = SB_VERSION_4; 467 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) 468 ic->sb->version = SB_VERSION_3; 469 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 470 ic->sb->version = SB_VERSION_2; 471 else 472 ic->sb->version = SB_VERSION_1; 473 } 474 475 static int sb_mac(struct dm_integrity_c *ic, bool wr) 476 { 477 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 478 int r; 479 unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac); 480 __u8 *sb = (__u8 *)ic->sb; 481 __u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size; 482 483 if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT) { 484 dm_integrity_io_error(ic, "digest is too long", -EINVAL); 485 return -EINVAL; 486 } 487 488 desc->tfm = ic->journal_mac; 489 490 if (likely(wr)) { 491 r = crypto_shash_digest(desc, sb, mac - sb, mac); 492 if (unlikely(r < 0)) { 493 dm_integrity_io_error(ic, "crypto_shash_digest", r); 494 return r; 495 } 496 } else { 497 __u8 actual_mac[HASH_MAX_DIGESTSIZE]; 498 499 r = crypto_shash_digest(desc, sb, mac - sb, actual_mac); 500 if (unlikely(r < 0)) { 501 dm_integrity_io_error(ic, "crypto_shash_digest", r); 502 return r; 503 } 504 if (memcmp(mac, actual_mac, mac_size)) { 505 dm_integrity_io_error(ic, "superblock mac", -EILSEQ); 506 dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0); 507 return -EILSEQ; 508 } 509 } 510 511 return 0; 512 } 513 514 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf) 515 { 516 struct dm_io_request io_req; 517 struct dm_io_region io_loc; 518 const enum req_op op = opf & REQ_OP_MASK; 519 int r; 520 521 io_req.bi_opf = opf; 522 io_req.mem.type = DM_IO_KMEM; 523 io_req.mem.ptr.addr = ic->sb; 524 io_req.notify.fn = NULL; 525 io_req.client = ic->io; 526 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 527 io_loc.sector = ic->start; 528 io_loc.count = SB_SECTORS; 529 530 if (op == REQ_OP_WRITE) { 531 sb_set_version(ic); 532 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 533 r = sb_mac(ic, true); 534 if (unlikely(r)) 535 return r; 536 } 537 } 538 539 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 540 if (unlikely(r)) 541 return r; 542 543 if (op == REQ_OP_READ) { 544 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 545 r = sb_mac(ic, false); 546 if (unlikely(r)) 547 return r; 548 } 549 } 550 551 return 0; 552 } 553 554 #define BITMAP_OP_TEST_ALL_SET 0 555 #define BITMAP_OP_TEST_ALL_CLEAR 1 556 #define BITMAP_OP_SET 2 557 #define BITMAP_OP_CLEAR 3 558 559 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap, 560 sector_t sector, sector_t n_sectors, int mode) 561 { 562 unsigned long bit, end_bit, this_end_bit, page, end_page; 563 unsigned long *data; 564 565 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) { 566 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)", 567 sector, 568 n_sectors, 569 ic->sb->log2_sectors_per_block, 570 ic->log2_blocks_per_bitmap_bit, 571 mode); 572 BUG(); 573 } 574 575 if (unlikely(!n_sectors)) 576 return true; 577 578 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 579 end_bit = (sector + n_sectors - 1) >> 580 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 581 582 page = bit / (PAGE_SIZE * 8); 583 bit %= PAGE_SIZE * 8; 584 585 end_page = end_bit / (PAGE_SIZE * 8); 586 end_bit %= PAGE_SIZE * 8; 587 588 repeat: 589 if (page < end_page) 590 this_end_bit = PAGE_SIZE * 8 - 1; 591 else 592 this_end_bit = end_bit; 593 594 data = lowmem_page_address(bitmap[page].page); 595 596 if (mode == BITMAP_OP_TEST_ALL_SET) { 597 while (bit <= this_end_bit) { 598 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 599 do { 600 if (data[bit / BITS_PER_LONG] != -1) 601 return false; 602 bit += BITS_PER_LONG; 603 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 604 continue; 605 } 606 if (!test_bit(bit, data)) 607 return false; 608 bit++; 609 } 610 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) { 611 while (bit <= this_end_bit) { 612 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 613 do { 614 if (data[bit / BITS_PER_LONG] != 0) 615 return false; 616 bit += BITS_PER_LONG; 617 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 618 continue; 619 } 620 if (test_bit(bit, data)) 621 return false; 622 bit++; 623 } 624 } else if (mode == BITMAP_OP_SET) { 625 while (bit <= this_end_bit) { 626 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 627 do { 628 data[bit / BITS_PER_LONG] = -1; 629 bit += BITS_PER_LONG; 630 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 631 continue; 632 } 633 __set_bit(bit, data); 634 bit++; 635 } 636 } else if (mode == BITMAP_OP_CLEAR) { 637 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1) 638 clear_page(data); 639 else { 640 while (bit <= this_end_bit) { 641 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 642 do { 643 data[bit / BITS_PER_LONG] = 0; 644 bit += BITS_PER_LONG; 645 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 646 continue; 647 } 648 __clear_bit(bit, data); 649 bit++; 650 } 651 } 652 } else { 653 BUG(); 654 } 655 656 if (unlikely(page < end_page)) { 657 bit = 0; 658 page++; 659 goto repeat; 660 } 661 662 return true; 663 } 664 665 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src) 666 { 667 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 668 unsigned int i; 669 670 for (i = 0; i < n_bitmap_pages; i++) { 671 unsigned long *dst_data = lowmem_page_address(dst[i].page); 672 unsigned long *src_data = lowmem_page_address(src[i].page); 673 674 copy_page(dst_data, src_data); 675 } 676 } 677 678 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector) 679 { 680 unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 681 unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8); 682 683 BUG_ON(bitmap_block >= ic->n_bitmap_blocks); 684 return &ic->bbs[bitmap_block]; 685 } 686 687 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset, 688 bool e, const char *function) 689 { 690 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 691 unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 692 693 if (unlikely(section >= ic->journal_sections) || 694 unlikely(offset >= limit)) { 695 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)", 696 function, section, offset, ic->journal_sections, limit); 697 BUG(); 698 } 699 #endif 700 } 701 702 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset, 703 unsigned int *pl_index, unsigned int *pl_offset) 704 { 705 unsigned int sector; 706 707 access_journal_check(ic, section, offset, false, "page_list_location"); 708 709 sector = section * ic->journal_section_sectors + offset; 710 711 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 712 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 713 } 714 715 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 716 unsigned int section, unsigned int offset, unsigned int *n_sectors) 717 { 718 unsigned int pl_index, pl_offset; 719 char *va; 720 721 page_list_location(ic, section, offset, &pl_index, &pl_offset); 722 723 if (n_sectors) 724 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 725 726 va = lowmem_page_address(pl[pl_index].page); 727 728 return (struct journal_sector *)(va + pl_offset); 729 } 730 731 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset) 732 { 733 return access_page_list(ic, ic->journal, section, offset, NULL); 734 } 735 736 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n) 737 { 738 unsigned int rel_sector, offset; 739 struct journal_sector *js; 740 741 access_journal_check(ic, section, n, true, "access_journal_entry"); 742 743 rel_sector = n % JOURNAL_BLOCK_SECTORS; 744 offset = n / JOURNAL_BLOCK_SECTORS; 745 746 js = access_journal(ic, section, rel_sector); 747 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 748 } 749 750 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n) 751 { 752 n <<= ic->sb->log2_sectors_per_block; 753 754 n += JOURNAL_BLOCK_SECTORS; 755 756 access_journal_check(ic, section, n, false, "access_journal_data"); 757 758 return access_journal(ic, section, n); 759 } 760 761 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE]) 762 { 763 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 764 int r; 765 unsigned int j, size; 766 767 desc->tfm = ic->journal_mac; 768 769 r = crypto_shash_init(desc); 770 if (unlikely(r < 0)) { 771 dm_integrity_io_error(ic, "crypto_shash_init", r); 772 goto err; 773 } 774 775 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 776 __le64 section_le; 777 778 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE); 779 if (unlikely(r < 0)) { 780 dm_integrity_io_error(ic, "crypto_shash_update", r); 781 goto err; 782 } 783 784 section_le = cpu_to_le64(section); 785 r = crypto_shash_update(desc, (__u8 *)§ion_le, sizeof(section_le)); 786 if (unlikely(r < 0)) { 787 dm_integrity_io_error(ic, "crypto_shash_update", r); 788 goto err; 789 } 790 } 791 792 for (j = 0; j < ic->journal_section_entries; j++) { 793 struct journal_entry *je = access_journal_entry(ic, section, j); 794 795 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector)); 796 if (unlikely(r < 0)) { 797 dm_integrity_io_error(ic, "crypto_shash_update", r); 798 goto err; 799 } 800 } 801 802 size = crypto_shash_digestsize(ic->journal_mac); 803 804 if (likely(size <= JOURNAL_MAC_SIZE)) { 805 r = crypto_shash_final(desc, result); 806 if (unlikely(r < 0)) { 807 dm_integrity_io_error(ic, "crypto_shash_final", r); 808 goto err; 809 } 810 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 811 } else { 812 __u8 digest[HASH_MAX_DIGESTSIZE]; 813 814 if (WARN_ON(size > sizeof(digest))) { 815 dm_integrity_io_error(ic, "digest_size", -EINVAL); 816 goto err; 817 } 818 r = crypto_shash_final(desc, digest); 819 if (unlikely(r < 0)) { 820 dm_integrity_io_error(ic, "crypto_shash_final", r); 821 goto err; 822 } 823 memcpy(result, digest, JOURNAL_MAC_SIZE); 824 } 825 826 return; 827 err: 828 memset(result, 0, JOURNAL_MAC_SIZE); 829 } 830 831 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr) 832 { 833 __u8 result[JOURNAL_MAC_SIZE]; 834 unsigned int j; 835 836 if (!ic->journal_mac) 837 return; 838 839 section_mac(ic, section, result); 840 841 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 842 struct journal_sector *js = access_journal(ic, section, j); 843 844 if (likely(wr)) 845 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 846 else { 847 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) { 848 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 849 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0); 850 } 851 } 852 } 853 } 854 855 static void complete_journal_op(void *context) 856 { 857 struct journal_completion *comp = context; 858 859 BUG_ON(!atomic_read(&comp->in_flight)); 860 if (likely(atomic_dec_and_test(&comp->in_flight))) 861 complete(&comp->comp); 862 } 863 864 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section, 865 unsigned int n_sections, struct journal_completion *comp) 866 { 867 struct async_submit_ctl submit; 868 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 869 unsigned int pl_index, pl_offset, section_index; 870 struct page_list *source_pl, *target_pl; 871 872 if (likely(encrypt)) { 873 source_pl = ic->journal; 874 target_pl = ic->journal_io; 875 } else { 876 source_pl = ic->journal_io; 877 target_pl = ic->journal; 878 } 879 880 page_list_location(ic, section, 0, &pl_index, &pl_offset); 881 882 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 883 884 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 885 886 section_index = pl_index; 887 888 do { 889 size_t this_step; 890 struct page *src_pages[2]; 891 struct page *dst_page; 892 893 while (unlikely(pl_index == section_index)) { 894 unsigned int dummy; 895 896 if (likely(encrypt)) 897 rw_section_mac(ic, section, true); 898 section++; 899 n_sections--; 900 if (!n_sections) 901 break; 902 page_list_location(ic, section, 0, §ion_index, &dummy); 903 } 904 905 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 906 dst_page = target_pl[pl_index].page; 907 src_pages[0] = source_pl[pl_index].page; 908 src_pages[1] = ic->journal_xor[pl_index].page; 909 910 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 911 912 pl_index++; 913 pl_offset = 0; 914 n_bytes -= this_step; 915 } while (n_bytes); 916 917 BUG_ON(n_sections); 918 919 async_tx_issue_pending_all(); 920 } 921 922 static void complete_journal_encrypt(void *data, int err) 923 { 924 struct journal_completion *comp = data; 925 926 if (unlikely(err)) { 927 if (likely(err == -EINPROGRESS)) { 928 complete(&comp->ic->crypto_backoff); 929 return; 930 } 931 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 932 } 933 complete_journal_op(comp); 934 } 935 936 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 937 { 938 int r; 939 940 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 941 complete_journal_encrypt, comp); 942 if (likely(encrypt)) 943 r = crypto_skcipher_encrypt(req); 944 else 945 r = crypto_skcipher_decrypt(req); 946 if (likely(!r)) 947 return false; 948 if (likely(r == -EINPROGRESS)) 949 return true; 950 if (likely(r == -EBUSY)) { 951 wait_for_completion(&comp->ic->crypto_backoff); 952 reinit_completion(&comp->ic->crypto_backoff); 953 return true; 954 } 955 dm_integrity_io_error(comp->ic, "encrypt", r); 956 return false; 957 } 958 959 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section, 960 unsigned int n_sections, struct journal_completion *comp) 961 { 962 struct scatterlist **source_sg; 963 struct scatterlist **target_sg; 964 965 atomic_add(2, &comp->in_flight); 966 967 if (likely(encrypt)) { 968 source_sg = ic->journal_scatterlist; 969 target_sg = ic->journal_io_scatterlist; 970 } else { 971 source_sg = ic->journal_io_scatterlist; 972 target_sg = ic->journal_scatterlist; 973 } 974 975 do { 976 struct skcipher_request *req; 977 unsigned int ivsize; 978 char *iv; 979 980 if (likely(encrypt)) 981 rw_section_mac(ic, section, true); 982 983 req = ic->sk_requests[section]; 984 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 985 iv = req->iv; 986 987 memcpy(iv, iv + ivsize, ivsize); 988 989 req->src = source_sg[section]; 990 req->dst = target_sg[section]; 991 992 if (unlikely(do_crypt(encrypt, req, comp))) 993 atomic_inc(&comp->in_flight); 994 995 section++; 996 n_sections--; 997 } while (n_sections); 998 999 atomic_dec(&comp->in_flight); 1000 complete_journal_op(comp); 1001 } 1002 1003 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section, 1004 unsigned int n_sections, struct journal_completion *comp) 1005 { 1006 if (ic->journal_xor) 1007 return xor_journal(ic, encrypt, section, n_sections, comp); 1008 else 1009 return crypt_journal(ic, encrypt, section, n_sections, comp); 1010 } 1011 1012 static void complete_journal_io(unsigned long error, void *context) 1013 { 1014 struct journal_completion *comp = context; 1015 1016 if (unlikely(error != 0)) 1017 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 1018 complete_journal_op(comp); 1019 } 1020 1021 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf, 1022 unsigned int sector, unsigned int n_sectors, 1023 struct journal_completion *comp) 1024 { 1025 struct dm_io_request io_req; 1026 struct dm_io_region io_loc; 1027 unsigned int pl_index, pl_offset; 1028 int r; 1029 1030 if (unlikely(dm_integrity_failed(ic))) { 1031 if (comp) 1032 complete_journal_io(-1UL, comp); 1033 return; 1034 } 1035 1036 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1037 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1038 1039 io_req.bi_opf = opf; 1040 io_req.mem.type = DM_IO_PAGE_LIST; 1041 if (ic->journal_io) 1042 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 1043 else 1044 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1045 io_req.mem.offset = pl_offset; 1046 if (likely(comp != NULL)) { 1047 io_req.notify.fn = complete_journal_io; 1048 io_req.notify.context = comp; 1049 } else { 1050 io_req.notify.fn = NULL; 1051 } 1052 io_req.client = ic->io; 1053 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 1054 io_loc.sector = ic->start + SB_SECTORS + sector; 1055 io_loc.count = n_sectors; 1056 1057 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 1058 if (unlikely(r)) { 1059 dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ? 1060 "reading journal" : "writing journal", r); 1061 if (comp) { 1062 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1063 complete_journal_io(-1UL, comp); 1064 } 1065 } 1066 } 1067 1068 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf, 1069 unsigned int section, unsigned int n_sections, 1070 struct journal_completion *comp) 1071 { 1072 unsigned int sector, n_sectors; 1073 1074 sector = section * ic->journal_section_sectors; 1075 n_sectors = n_sections * ic->journal_section_sectors; 1076 1077 rw_journal_sectors(ic, opf, sector, n_sectors, comp); 1078 } 1079 1080 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections) 1081 { 1082 struct journal_completion io_comp; 1083 struct journal_completion crypt_comp_1; 1084 struct journal_completion crypt_comp_2; 1085 unsigned int i; 1086 1087 io_comp.ic = ic; 1088 init_completion(&io_comp.comp); 1089 1090 if (commit_start + commit_sections <= ic->journal_sections) { 1091 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 1092 if (ic->journal_io) { 1093 crypt_comp_1.ic = ic; 1094 init_completion(&crypt_comp_1.comp); 1095 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1096 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 1097 wait_for_completion_io(&crypt_comp_1.comp); 1098 } else { 1099 for (i = 0; i < commit_sections; i++) 1100 rw_section_mac(ic, commit_start + i, true); 1101 } 1102 rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start, 1103 commit_sections, &io_comp); 1104 } else { 1105 unsigned int to_end; 1106 1107 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 1108 to_end = ic->journal_sections - commit_start; 1109 if (ic->journal_io) { 1110 crypt_comp_1.ic = ic; 1111 init_completion(&crypt_comp_1.comp); 1112 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1113 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 1114 if (try_wait_for_completion(&crypt_comp_1.comp)) { 1115 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 1116 commit_start, to_end, &io_comp); 1117 reinit_completion(&crypt_comp_1.comp); 1118 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1119 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 1120 wait_for_completion_io(&crypt_comp_1.comp); 1121 } else { 1122 crypt_comp_2.ic = ic; 1123 init_completion(&crypt_comp_2.comp); 1124 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 1125 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 1126 wait_for_completion_io(&crypt_comp_1.comp); 1127 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp); 1128 wait_for_completion_io(&crypt_comp_2.comp); 1129 } 1130 } else { 1131 for (i = 0; i < to_end; i++) 1132 rw_section_mac(ic, commit_start + i, true); 1133 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp); 1134 for (i = 0; i < commit_sections - to_end; i++) 1135 rw_section_mac(ic, i, true); 1136 } 1137 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp); 1138 } 1139 1140 wait_for_completion_io(&io_comp.comp); 1141 } 1142 1143 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset, 1144 unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data) 1145 { 1146 struct dm_io_request io_req; 1147 struct dm_io_region io_loc; 1148 int r; 1149 unsigned int sector, pl_index, pl_offset; 1150 1151 BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1)); 1152 1153 if (unlikely(dm_integrity_failed(ic))) { 1154 fn(-1UL, data); 1155 return; 1156 } 1157 1158 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 1159 1160 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1161 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1162 1163 io_req.bi_opf = REQ_OP_WRITE; 1164 io_req.mem.type = DM_IO_PAGE_LIST; 1165 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1166 io_req.mem.offset = pl_offset; 1167 io_req.notify.fn = fn; 1168 io_req.notify.context = data; 1169 io_req.client = ic->io; 1170 io_loc.bdev = ic->dev->bdev; 1171 io_loc.sector = target; 1172 io_loc.count = n_sectors; 1173 1174 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 1175 if (unlikely(r)) { 1176 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1177 fn(-1UL, data); 1178 } 1179 } 1180 1181 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2) 1182 { 1183 return range1->logical_sector < range2->logical_sector + range2->n_sectors && 1184 range1->logical_sector + range1->n_sectors > range2->logical_sector; 1185 } 1186 1187 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting) 1188 { 1189 struct rb_node **n = &ic->in_progress.rb_node; 1190 struct rb_node *parent; 1191 1192 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1)); 1193 1194 if (likely(check_waiting)) { 1195 struct dm_integrity_range *range; 1196 1197 list_for_each_entry(range, &ic->wait_list, wait_entry) { 1198 if (unlikely(ranges_overlap(range, new_range))) 1199 return false; 1200 } 1201 } 1202 1203 parent = NULL; 1204 1205 while (*n) { 1206 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 1207 1208 parent = *n; 1209 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) 1210 n = &range->node.rb_left; 1211 else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) 1212 n = &range->node.rb_right; 1213 else 1214 return false; 1215 } 1216 1217 rb_link_node(&new_range->node, parent, n); 1218 rb_insert_color(&new_range->node, &ic->in_progress); 1219 1220 return true; 1221 } 1222 1223 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1224 { 1225 rb_erase(&range->node, &ic->in_progress); 1226 while (unlikely(!list_empty(&ic->wait_list))) { 1227 struct dm_integrity_range *last_range = 1228 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry); 1229 struct task_struct *last_range_task; 1230 1231 last_range_task = last_range->task; 1232 list_del(&last_range->wait_entry); 1233 if (!add_new_range(ic, last_range, false)) { 1234 last_range->task = last_range_task; 1235 list_add(&last_range->wait_entry, &ic->wait_list); 1236 break; 1237 } 1238 last_range->waiting = false; 1239 wake_up_process(last_range_task); 1240 } 1241 } 1242 1243 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1244 { 1245 unsigned long flags; 1246 1247 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1248 remove_range_unlocked(ic, range); 1249 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1250 } 1251 1252 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1253 { 1254 new_range->waiting = true; 1255 list_add_tail(&new_range->wait_entry, &ic->wait_list); 1256 new_range->task = current; 1257 do { 1258 __set_current_state(TASK_UNINTERRUPTIBLE); 1259 spin_unlock_irq(&ic->endio_wait.lock); 1260 io_schedule(); 1261 spin_lock_irq(&ic->endio_wait.lock); 1262 } while (unlikely(new_range->waiting)); 1263 } 1264 1265 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1266 { 1267 if (unlikely(!add_new_range(ic, new_range, true))) 1268 wait_and_add_new_range(ic, new_range); 1269 } 1270 1271 static void init_journal_node(struct journal_node *node) 1272 { 1273 RB_CLEAR_NODE(&node->node); 1274 node->sector = (sector_t)-1; 1275 } 1276 1277 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 1278 { 1279 struct rb_node **link; 1280 struct rb_node *parent; 1281 1282 node->sector = sector; 1283 BUG_ON(!RB_EMPTY_NODE(&node->node)); 1284 1285 link = &ic->journal_tree_root.rb_node; 1286 parent = NULL; 1287 1288 while (*link) { 1289 struct journal_node *j; 1290 1291 parent = *link; 1292 j = container_of(parent, struct journal_node, node); 1293 if (sector < j->sector) 1294 link = &j->node.rb_left; 1295 else 1296 link = &j->node.rb_right; 1297 } 1298 1299 rb_link_node(&node->node, parent, link); 1300 rb_insert_color(&node->node, &ic->journal_tree_root); 1301 } 1302 1303 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 1304 { 1305 BUG_ON(RB_EMPTY_NODE(&node->node)); 1306 rb_erase(&node->node, &ic->journal_tree_root); 1307 init_journal_node(node); 1308 } 1309 1310 #define NOT_FOUND (-1U) 1311 1312 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 1313 { 1314 struct rb_node *n = ic->journal_tree_root.rb_node; 1315 unsigned int found = NOT_FOUND; 1316 1317 *next_sector = (sector_t)-1; 1318 while (n) { 1319 struct journal_node *j = container_of(n, struct journal_node, node); 1320 1321 if (sector == j->sector) 1322 found = j - ic->journal_tree; 1323 1324 if (sector < j->sector) { 1325 *next_sector = j->sector; 1326 n = j->node.rb_left; 1327 } else 1328 n = j->node.rb_right; 1329 } 1330 1331 return found; 1332 } 1333 1334 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector) 1335 { 1336 struct journal_node *node, *next_node; 1337 struct rb_node *next; 1338 1339 if (unlikely(pos >= ic->journal_entries)) 1340 return false; 1341 node = &ic->journal_tree[pos]; 1342 if (unlikely(RB_EMPTY_NODE(&node->node))) 1343 return false; 1344 if (unlikely(node->sector != sector)) 1345 return false; 1346 1347 next = rb_next(&node->node); 1348 if (unlikely(!next)) 1349 return true; 1350 1351 next_node = container_of(next, struct journal_node, node); 1352 return next_node->sector != sector; 1353 } 1354 1355 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 1356 { 1357 struct rb_node *next; 1358 struct journal_node *next_node; 1359 unsigned int next_section; 1360 1361 BUG_ON(RB_EMPTY_NODE(&node->node)); 1362 1363 next = rb_next(&node->node); 1364 if (unlikely(!next)) 1365 return false; 1366 1367 next_node = container_of(next, struct journal_node, node); 1368 1369 if (next_node->sector != node->sector) 1370 return false; 1371 1372 next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries; 1373 if (next_section >= ic->committed_section && 1374 next_section < ic->committed_section + ic->n_committed_sections) 1375 return true; 1376 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1377 return true; 1378 1379 return false; 1380 } 1381 1382 #define TAG_READ 0 1383 #define TAG_WRITE 1 1384 #define TAG_CMP 2 1385 1386 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1387 unsigned int *metadata_offset, unsigned int total_size, int op) 1388 { 1389 #define MAY_BE_FILLER 1 1390 #define MAY_BE_HASH 2 1391 unsigned int hash_offset = 0; 1392 unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1393 1394 do { 1395 unsigned char *data, *dp; 1396 struct dm_buffer *b; 1397 unsigned int to_copy; 1398 int r; 1399 1400 r = dm_integrity_failed(ic); 1401 if (unlikely(r)) 1402 return r; 1403 1404 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1405 if (IS_ERR(data)) 1406 return PTR_ERR(data); 1407 1408 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1409 dp = data + *metadata_offset; 1410 if (op == TAG_READ) { 1411 memcpy(tag, dp, to_copy); 1412 } else if (op == TAG_WRITE) { 1413 if (memcmp(dp, tag, to_copy)) { 1414 memcpy(dp, tag, to_copy); 1415 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); 1416 } 1417 } else { 1418 /* e.g.: op == TAG_CMP */ 1419 1420 if (likely(is_power_of_2(ic->tag_size))) { 1421 if (unlikely(memcmp(dp, tag, to_copy))) 1422 if (unlikely(!ic->discard) || 1423 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) { 1424 goto thorough_test; 1425 } 1426 } else { 1427 unsigned int i, ts; 1428 thorough_test: 1429 ts = total_size; 1430 1431 for (i = 0; i < to_copy; i++, ts--) { 1432 if (unlikely(dp[i] != tag[i])) 1433 may_be &= ~MAY_BE_HASH; 1434 if (likely(dp[i] != DISCARD_FILLER)) 1435 may_be &= ~MAY_BE_FILLER; 1436 hash_offset++; 1437 if (unlikely(hash_offset == ic->tag_size)) { 1438 if (unlikely(!may_be)) { 1439 dm_bufio_release(b); 1440 return ts; 1441 } 1442 hash_offset = 0; 1443 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1444 } 1445 } 1446 } 1447 } 1448 dm_bufio_release(b); 1449 1450 tag += to_copy; 1451 *metadata_offset += to_copy; 1452 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1453 (*metadata_block)++; 1454 *metadata_offset = 0; 1455 } 1456 1457 if (unlikely(!is_power_of_2(ic->tag_size))) 1458 hash_offset = (hash_offset + to_copy) % ic->tag_size; 1459 1460 total_size -= to_copy; 1461 } while (unlikely(total_size)); 1462 1463 return 0; 1464 #undef MAY_BE_FILLER 1465 #undef MAY_BE_HASH 1466 } 1467 1468 struct flush_request { 1469 struct dm_io_request io_req; 1470 struct dm_io_region io_reg; 1471 struct dm_integrity_c *ic; 1472 struct completion comp; 1473 }; 1474 1475 static void flush_notify(unsigned long error, void *fr_) 1476 { 1477 struct flush_request *fr = fr_; 1478 1479 if (unlikely(error != 0)) 1480 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO); 1481 complete(&fr->comp); 1482 } 1483 1484 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data) 1485 { 1486 int r; 1487 struct flush_request fr; 1488 1489 if (!ic->meta_dev) 1490 flush_data = false; 1491 if (flush_data) { 1492 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC, 1493 fr.io_req.mem.type = DM_IO_KMEM, 1494 fr.io_req.mem.ptr.addr = NULL, 1495 fr.io_req.notify.fn = flush_notify, 1496 fr.io_req.notify.context = &fr; 1497 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio), 1498 fr.io_reg.bdev = ic->dev->bdev, 1499 fr.io_reg.sector = 0, 1500 fr.io_reg.count = 0, 1501 fr.ic = ic; 1502 init_completion(&fr.comp); 1503 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL, IOPRIO_DEFAULT); 1504 BUG_ON(r); 1505 } 1506 1507 r = dm_bufio_write_dirty_buffers(ic->bufio); 1508 if (unlikely(r)) 1509 dm_integrity_io_error(ic, "writing tags", r); 1510 1511 if (flush_data) 1512 wait_for_completion(&fr.comp); 1513 } 1514 1515 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1516 { 1517 DECLARE_WAITQUEUE(wait, current); 1518 1519 __add_wait_queue(&ic->endio_wait, &wait); 1520 __set_current_state(TASK_UNINTERRUPTIBLE); 1521 spin_unlock_irq(&ic->endio_wait.lock); 1522 io_schedule(); 1523 spin_lock_irq(&ic->endio_wait.lock); 1524 __remove_wait_queue(&ic->endio_wait, &wait); 1525 } 1526 1527 static void autocommit_fn(struct timer_list *t) 1528 { 1529 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer); 1530 1531 if (likely(!dm_integrity_failed(ic))) 1532 queue_work(ic->commit_wq, &ic->commit_work); 1533 } 1534 1535 static void schedule_autocommit(struct dm_integrity_c *ic) 1536 { 1537 if (!timer_pending(&ic->autocommit_timer)) 1538 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1539 } 1540 1541 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1542 { 1543 struct bio *bio; 1544 unsigned long flags; 1545 1546 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1547 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1548 bio_list_add(&ic->flush_bio_list, bio); 1549 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1550 1551 queue_work(ic->commit_wq, &ic->commit_work); 1552 } 1553 1554 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1555 { 1556 int r; 1557 1558 r = dm_integrity_failed(ic); 1559 if (unlikely(r) && !bio->bi_status) 1560 bio->bi_status = errno_to_blk_status(r); 1561 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) { 1562 unsigned long flags; 1563 1564 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1565 bio_list_add(&ic->synchronous_bios, bio); 1566 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 1567 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1568 return; 1569 } 1570 bio_endio(bio); 1571 } 1572 1573 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1574 { 1575 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1576 1577 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1578 submit_flush_bio(ic, dio); 1579 else 1580 do_endio(ic, bio); 1581 } 1582 1583 static void dec_in_flight(struct dm_integrity_io *dio) 1584 { 1585 if (atomic_dec_and_test(&dio->in_flight)) { 1586 struct dm_integrity_c *ic = dio->ic; 1587 struct bio *bio; 1588 1589 remove_range(ic, &dio->range); 1590 1591 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD)) 1592 schedule_autocommit(ic); 1593 1594 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1595 if (unlikely(dio->bi_status) && !bio->bi_status) 1596 bio->bi_status = dio->bi_status; 1597 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1598 dio->range.logical_sector += dio->range.n_sectors; 1599 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1600 INIT_WORK(&dio->work, integrity_bio_wait); 1601 queue_work(ic->offload_wq, &dio->work); 1602 return; 1603 } 1604 do_endio_flush(ic, dio); 1605 } 1606 } 1607 1608 static void integrity_end_io(struct bio *bio) 1609 { 1610 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1611 1612 dm_bio_restore(&dio->bio_details, bio); 1613 if (bio->bi_integrity) 1614 bio->bi_opf |= REQ_INTEGRITY; 1615 1616 if (dio->completion) 1617 complete(dio->completion); 1618 1619 dec_in_flight(dio); 1620 } 1621 1622 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1623 const char *data, char *result) 1624 { 1625 __le64 sector_le = cpu_to_le64(sector); 1626 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1627 int r; 1628 unsigned int digest_size; 1629 1630 req->tfm = ic->internal_hash; 1631 1632 r = crypto_shash_init(req); 1633 if (unlikely(r < 0)) { 1634 dm_integrity_io_error(ic, "crypto_shash_init", r); 1635 goto failed; 1636 } 1637 1638 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 1639 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE); 1640 if (unlikely(r < 0)) { 1641 dm_integrity_io_error(ic, "crypto_shash_update", r); 1642 goto failed; 1643 } 1644 } 1645 1646 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof(sector_le)); 1647 if (unlikely(r < 0)) { 1648 dm_integrity_io_error(ic, "crypto_shash_update", r); 1649 goto failed; 1650 } 1651 1652 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1653 if (unlikely(r < 0)) { 1654 dm_integrity_io_error(ic, "crypto_shash_update", r); 1655 goto failed; 1656 } 1657 1658 r = crypto_shash_final(req, result); 1659 if (unlikely(r < 0)) { 1660 dm_integrity_io_error(ic, "crypto_shash_final", r); 1661 goto failed; 1662 } 1663 1664 digest_size = crypto_shash_digestsize(ic->internal_hash); 1665 if (unlikely(digest_size < ic->tag_size)) 1666 memset(result + digest_size, 0, ic->tag_size - digest_size); 1667 1668 return; 1669 1670 failed: 1671 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1672 get_random_bytes(result, ic->tag_size); 1673 } 1674 1675 static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum) 1676 { 1677 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1678 struct dm_integrity_c *ic = dio->ic; 1679 struct bvec_iter iter; 1680 struct bio_vec bv; 1681 sector_t sector, logical_sector, area, offset; 1682 struct page *page; 1683 1684 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1685 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, 1686 &dio->metadata_offset); 1687 sector = get_data_sector(ic, area, offset); 1688 logical_sector = dio->range.logical_sector; 1689 1690 page = mempool_alloc(&ic->recheck_pool, GFP_NOIO); 1691 1692 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) { 1693 unsigned pos = 0; 1694 1695 do { 1696 sector_t alignment; 1697 char *mem; 1698 char *buffer = page_to_virt(page); 1699 int r; 1700 struct dm_io_request io_req; 1701 struct dm_io_region io_loc; 1702 io_req.bi_opf = REQ_OP_READ; 1703 io_req.mem.type = DM_IO_KMEM; 1704 io_req.mem.ptr.addr = buffer; 1705 io_req.notify.fn = NULL; 1706 io_req.client = ic->io; 1707 io_loc.bdev = ic->dev->bdev; 1708 io_loc.sector = sector; 1709 io_loc.count = ic->sectors_per_block; 1710 1711 /* Align the bio to logical block size */ 1712 alignment = dio->range.logical_sector | bio_sectors(bio) | (PAGE_SIZE >> SECTOR_SHIFT); 1713 alignment &= -alignment; 1714 io_loc.sector = round_down(io_loc.sector, alignment); 1715 io_loc.count += sector - io_loc.sector; 1716 buffer += (sector - io_loc.sector) << SECTOR_SHIFT; 1717 io_loc.count = round_up(io_loc.count, alignment); 1718 1719 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 1720 if (unlikely(r)) { 1721 dio->bi_status = errno_to_blk_status(r); 1722 goto free_ret; 1723 } 1724 1725 integrity_sector_checksum(ic, logical_sector, buffer, checksum); 1726 r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block, 1727 &dio->metadata_offset, ic->tag_size, TAG_CMP); 1728 if (r) { 1729 if (r > 0) { 1730 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx", 1731 bio->bi_bdev, logical_sector); 1732 atomic64_inc(&ic->number_of_mismatches); 1733 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum", 1734 bio, logical_sector, 0); 1735 r = -EILSEQ; 1736 } 1737 dio->bi_status = errno_to_blk_status(r); 1738 goto free_ret; 1739 } 1740 1741 mem = bvec_kmap_local(&bv); 1742 memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT); 1743 kunmap_local(mem); 1744 1745 pos += ic->sectors_per_block << SECTOR_SHIFT; 1746 sector += ic->sectors_per_block; 1747 logical_sector += ic->sectors_per_block; 1748 } while (pos < bv.bv_len); 1749 } 1750 free_ret: 1751 mempool_free(page, &ic->recheck_pool); 1752 } 1753 1754 static void integrity_metadata(struct work_struct *w) 1755 { 1756 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1757 struct dm_integrity_c *ic = dio->ic; 1758 1759 int r; 1760 1761 if (ic->internal_hash) { 1762 struct bvec_iter iter; 1763 struct bio_vec bv; 1764 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash); 1765 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1766 char *checksums; 1767 unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1768 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1769 sector_t sector; 1770 unsigned int sectors_to_process; 1771 1772 if (unlikely(ic->mode == 'R')) 1773 goto skip_io; 1774 1775 if (likely(dio->op != REQ_OP_DISCARD)) 1776 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1777 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1778 else 1779 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1780 if (!checksums) { 1781 checksums = checksums_onstack; 1782 if (WARN_ON(extra_space && 1783 digest_size > sizeof(checksums_onstack))) { 1784 r = -EINVAL; 1785 goto error; 1786 } 1787 } 1788 1789 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1790 unsigned int bi_size = dio->bio_details.bi_iter.bi_size; 1791 unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE; 1792 unsigned int max_blocks = max_size / ic->tag_size; 1793 1794 memset(checksums, DISCARD_FILLER, max_size); 1795 1796 while (bi_size) { 1797 unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1798 1799 this_step_blocks = min(this_step_blocks, max_blocks); 1800 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1801 this_step_blocks * ic->tag_size, TAG_WRITE); 1802 if (unlikely(r)) { 1803 if (likely(checksums != checksums_onstack)) 1804 kfree(checksums); 1805 goto error; 1806 } 1807 1808 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1809 } 1810 1811 if (likely(checksums != checksums_onstack)) 1812 kfree(checksums); 1813 goto skip_io; 1814 } 1815 1816 sector = dio->range.logical_sector; 1817 sectors_to_process = dio->range.n_sectors; 1818 1819 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) { 1820 struct bio_vec bv_copy = bv; 1821 unsigned int pos; 1822 char *mem, *checksums_ptr; 1823 1824 again: 1825 mem = bvec_kmap_local(&bv_copy); 1826 pos = 0; 1827 checksums_ptr = checksums; 1828 do { 1829 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1830 checksums_ptr += ic->tag_size; 1831 sectors_to_process -= ic->sectors_per_block; 1832 pos += ic->sectors_per_block << SECTOR_SHIFT; 1833 sector += ic->sectors_per_block; 1834 } while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack); 1835 kunmap_local(mem); 1836 1837 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1838 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE); 1839 if (unlikely(r)) { 1840 if (likely(checksums != checksums_onstack)) 1841 kfree(checksums); 1842 if (r > 0) { 1843 integrity_recheck(dio, checksums_onstack); 1844 goto skip_io; 1845 } 1846 goto error; 1847 } 1848 1849 if (!sectors_to_process) 1850 break; 1851 1852 if (unlikely(pos < bv_copy.bv_len)) { 1853 bv_copy.bv_offset += pos; 1854 bv_copy.bv_len -= pos; 1855 goto again; 1856 } 1857 } 1858 1859 if (likely(checksums != checksums_onstack)) 1860 kfree(checksums); 1861 } else { 1862 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity; 1863 1864 if (bip) { 1865 struct bio_vec biv; 1866 struct bvec_iter iter; 1867 unsigned int data_to_process = dio->range.n_sectors; 1868 1869 sector_to_block(ic, data_to_process); 1870 data_to_process *= ic->tag_size; 1871 1872 bip_for_each_vec(biv, bip, iter) { 1873 unsigned char *tag; 1874 unsigned int this_len; 1875 1876 BUG_ON(PageHighMem(biv.bv_page)); 1877 tag = bvec_virt(&biv); 1878 this_len = min(biv.bv_len, data_to_process); 1879 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1880 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE); 1881 if (unlikely(r)) 1882 goto error; 1883 data_to_process -= this_len; 1884 if (!data_to_process) 1885 break; 1886 } 1887 } 1888 } 1889 skip_io: 1890 dec_in_flight(dio); 1891 return; 1892 error: 1893 dio->bi_status = errno_to_blk_status(r); 1894 dec_in_flight(dio); 1895 } 1896 1897 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1898 { 1899 struct dm_integrity_c *ic = ti->private; 1900 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1901 struct bio_integrity_payload *bip; 1902 1903 sector_t area, offset; 1904 1905 dio->ic = ic; 1906 dio->bi_status = 0; 1907 dio->op = bio_op(bio); 1908 1909 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1910 if (ti->max_io_len) { 1911 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector); 1912 unsigned int log2_max_io_len = __fls(ti->max_io_len); 1913 sector_t start_boundary = sec >> log2_max_io_len; 1914 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len; 1915 1916 if (start_boundary < end_boundary) { 1917 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1)); 1918 1919 dm_accept_partial_bio(bio, len); 1920 } 1921 } 1922 } 1923 1924 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1925 submit_flush_bio(ic, dio); 1926 return DM_MAPIO_SUBMITTED; 1927 } 1928 1929 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1930 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA; 1931 if (unlikely(dio->fua)) { 1932 /* 1933 * Don't pass down the FUA flag because we have to flush 1934 * disk cache anyway. 1935 */ 1936 bio->bi_opf &= ~REQ_FUA; 1937 } 1938 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1939 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1940 dio->range.logical_sector, bio_sectors(bio), 1941 ic->provided_data_sectors); 1942 return DM_MAPIO_KILL; 1943 } 1944 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) { 1945 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1946 ic->sectors_per_block, 1947 dio->range.logical_sector, bio_sectors(bio)); 1948 return DM_MAPIO_KILL; 1949 } 1950 1951 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) { 1952 struct bvec_iter iter; 1953 struct bio_vec bv; 1954 1955 bio_for_each_segment(bv, bio, iter) { 1956 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1957 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1958 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1959 return DM_MAPIO_KILL; 1960 } 1961 } 1962 } 1963 1964 bip = bio_integrity(bio); 1965 if (!ic->internal_hash) { 1966 if (bip) { 1967 unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1968 1969 if (ic->log2_tag_size >= 0) 1970 wanted_tag_size <<= ic->log2_tag_size; 1971 else 1972 wanted_tag_size *= ic->tag_size; 1973 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 1974 DMERR("Invalid integrity data size %u, expected %u", 1975 bip->bip_iter.bi_size, wanted_tag_size); 1976 return DM_MAPIO_KILL; 1977 } 1978 } 1979 } else { 1980 if (unlikely(bip != NULL)) { 1981 DMERR("Unexpected integrity data when using internal hash"); 1982 return DM_MAPIO_KILL; 1983 } 1984 } 1985 1986 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ)) 1987 return DM_MAPIO_KILL; 1988 1989 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1990 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1991 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 1992 1993 dm_integrity_map_continue(dio, true); 1994 return DM_MAPIO_SUBMITTED; 1995 } 1996 1997 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 1998 unsigned int journal_section, unsigned int journal_entry) 1999 { 2000 struct dm_integrity_c *ic = dio->ic; 2001 sector_t logical_sector; 2002 unsigned int n_sectors; 2003 2004 logical_sector = dio->range.logical_sector; 2005 n_sectors = dio->range.n_sectors; 2006 do { 2007 struct bio_vec bv = bio_iovec(bio); 2008 char *mem; 2009 2010 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 2011 bv.bv_len = n_sectors << SECTOR_SHIFT; 2012 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 2013 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 2014 retry_kmap: 2015 mem = kmap_local_page(bv.bv_page); 2016 if (likely(dio->op == REQ_OP_WRITE)) 2017 flush_dcache_page(bv.bv_page); 2018 2019 do { 2020 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 2021 2022 if (unlikely(dio->op == REQ_OP_READ)) { 2023 struct journal_sector *js; 2024 char *mem_ptr; 2025 unsigned int s; 2026 2027 if (unlikely(journal_entry_is_inprogress(je))) { 2028 flush_dcache_page(bv.bv_page); 2029 kunmap_local(mem); 2030 2031 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2032 goto retry_kmap; 2033 } 2034 smp_rmb(); 2035 BUG_ON(journal_entry_get_sector(je) != logical_sector); 2036 js = access_journal_data(ic, journal_section, journal_entry); 2037 mem_ptr = mem + bv.bv_offset; 2038 s = 0; 2039 do { 2040 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 2041 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 2042 js++; 2043 mem_ptr += 1 << SECTOR_SHIFT; 2044 } while (++s < ic->sectors_per_block); 2045 #ifdef INTERNAL_VERIFY 2046 if (ic->internal_hash) { 2047 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2048 2049 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 2050 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 2051 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx", 2052 logical_sector); 2053 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum", 2054 bio, logical_sector, 0); 2055 } 2056 } 2057 #endif 2058 } 2059 2060 if (!ic->internal_hash) { 2061 struct bio_integrity_payload *bip = bio_integrity(bio); 2062 unsigned int tag_todo = ic->tag_size; 2063 char *tag_ptr = journal_entry_tag(ic, je); 2064 2065 if (bip) { 2066 do { 2067 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 2068 unsigned int tag_now = min(biv.bv_len, tag_todo); 2069 char *tag_addr; 2070 2071 BUG_ON(PageHighMem(biv.bv_page)); 2072 tag_addr = bvec_virt(&biv); 2073 if (likely(dio->op == REQ_OP_WRITE)) 2074 memcpy(tag_ptr, tag_addr, tag_now); 2075 else 2076 memcpy(tag_addr, tag_ptr, tag_now); 2077 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 2078 tag_ptr += tag_now; 2079 tag_todo -= tag_now; 2080 } while (unlikely(tag_todo)); 2081 } else if (likely(dio->op == REQ_OP_WRITE)) 2082 memset(tag_ptr, 0, tag_todo); 2083 } 2084 2085 if (likely(dio->op == REQ_OP_WRITE)) { 2086 struct journal_sector *js; 2087 unsigned int s; 2088 2089 js = access_journal_data(ic, journal_section, journal_entry); 2090 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 2091 2092 s = 0; 2093 do { 2094 je->last_bytes[s] = js[s].commit_id; 2095 } while (++s < ic->sectors_per_block); 2096 2097 if (ic->internal_hash) { 2098 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash); 2099 2100 if (unlikely(digest_size > ic->tag_size)) { 2101 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 2102 2103 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 2104 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 2105 } else 2106 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 2107 } 2108 2109 journal_entry_set_sector(je, logical_sector); 2110 } 2111 logical_sector += ic->sectors_per_block; 2112 2113 journal_entry++; 2114 if (unlikely(journal_entry == ic->journal_section_entries)) { 2115 journal_entry = 0; 2116 journal_section++; 2117 wraparound_section(ic, &journal_section); 2118 } 2119 2120 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 2121 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 2122 2123 if (unlikely(dio->op == REQ_OP_READ)) 2124 flush_dcache_page(bv.bv_page); 2125 kunmap_local(mem); 2126 } while (n_sectors); 2127 2128 if (likely(dio->op == REQ_OP_WRITE)) { 2129 smp_mb(); 2130 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 2131 wake_up(&ic->copy_to_journal_wait); 2132 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2133 queue_work(ic->commit_wq, &ic->commit_work); 2134 else 2135 schedule_autocommit(ic); 2136 } else 2137 remove_range(ic, &dio->range); 2138 2139 if (unlikely(bio->bi_iter.bi_size)) { 2140 sector_t area, offset; 2141 2142 dio->range.logical_sector = logical_sector; 2143 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 2144 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 2145 return true; 2146 } 2147 2148 return false; 2149 } 2150 2151 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 2152 { 2153 struct dm_integrity_c *ic = dio->ic; 2154 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 2155 unsigned int journal_section, journal_entry; 2156 unsigned int journal_read_pos; 2157 struct completion read_comp; 2158 bool discard_retried = false; 2159 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ; 2160 2161 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D') 2162 need_sync_io = true; 2163 2164 if (need_sync_io && from_map) { 2165 INIT_WORK(&dio->work, integrity_bio_wait); 2166 queue_work(ic->offload_wq, &dio->work); 2167 return; 2168 } 2169 2170 lock_retry: 2171 spin_lock_irq(&ic->endio_wait.lock); 2172 retry: 2173 if (unlikely(dm_integrity_failed(ic))) { 2174 spin_unlock_irq(&ic->endio_wait.lock); 2175 do_endio(ic, bio); 2176 return; 2177 } 2178 dio->range.n_sectors = bio_sectors(bio); 2179 journal_read_pos = NOT_FOUND; 2180 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) { 2181 if (dio->op == REQ_OP_WRITE) { 2182 unsigned int next_entry, i, pos; 2183 unsigned int ws, we, range_sectors; 2184 2185 dio->range.n_sectors = min(dio->range.n_sectors, 2186 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block); 2187 if (unlikely(!dio->range.n_sectors)) { 2188 if (from_map) 2189 goto offload_to_thread; 2190 sleep_on_endio_wait(ic); 2191 goto retry; 2192 } 2193 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 2194 ic->free_sectors -= range_sectors; 2195 journal_section = ic->free_section; 2196 journal_entry = ic->free_section_entry; 2197 2198 next_entry = ic->free_section_entry + range_sectors; 2199 ic->free_section_entry = next_entry % ic->journal_section_entries; 2200 ic->free_section += next_entry / ic->journal_section_entries; 2201 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 2202 wraparound_section(ic, &ic->free_section); 2203 2204 pos = journal_section * ic->journal_section_entries + journal_entry; 2205 ws = journal_section; 2206 we = journal_entry; 2207 i = 0; 2208 do { 2209 struct journal_entry *je; 2210 2211 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 2212 pos++; 2213 if (unlikely(pos >= ic->journal_entries)) 2214 pos = 0; 2215 2216 je = access_journal_entry(ic, ws, we); 2217 BUG_ON(!journal_entry_is_unused(je)); 2218 journal_entry_set_inprogress(je); 2219 we++; 2220 if (unlikely(we == ic->journal_section_entries)) { 2221 we = 0; 2222 ws++; 2223 wraparound_section(ic, &ws); 2224 } 2225 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 2226 2227 spin_unlock_irq(&ic->endio_wait.lock); 2228 goto journal_read_write; 2229 } else { 2230 sector_t next_sector; 2231 2232 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2233 if (likely(journal_read_pos == NOT_FOUND)) { 2234 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 2235 dio->range.n_sectors = next_sector - dio->range.logical_sector; 2236 } else { 2237 unsigned int i; 2238 unsigned int jp = journal_read_pos + 1; 2239 2240 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 2241 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 2242 break; 2243 } 2244 dio->range.n_sectors = i; 2245 } 2246 } 2247 } 2248 if (unlikely(!add_new_range(ic, &dio->range, true))) { 2249 /* 2250 * We must not sleep in the request routine because it could 2251 * stall bios on current->bio_list. 2252 * So, we offload the bio to a workqueue if we have to sleep. 2253 */ 2254 if (from_map) { 2255 offload_to_thread: 2256 spin_unlock_irq(&ic->endio_wait.lock); 2257 INIT_WORK(&dio->work, integrity_bio_wait); 2258 queue_work(ic->wait_wq, &dio->work); 2259 return; 2260 } 2261 if (journal_read_pos != NOT_FOUND) 2262 dio->range.n_sectors = ic->sectors_per_block; 2263 wait_and_add_new_range(ic, &dio->range); 2264 /* 2265 * wait_and_add_new_range drops the spinlock, so the journal 2266 * may have been changed arbitrarily. We need to recheck. 2267 * To simplify the code, we restrict I/O size to just one block. 2268 */ 2269 if (journal_read_pos != NOT_FOUND) { 2270 sector_t next_sector; 2271 unsigned int new_pos; 2272 2273 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2274 if (unlikely(new_pos != journal_read_pos)) { 2275 remove_range_unlocked(ic, &dio->range); 2276 goto retry; 2277 } 2278 } 2279 } 2280 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) { 2281 sector_t next_sector; 2282 unsigned int new_pos; 2283 2284 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2285 if (unlikely(new_pos != NOT_FOUND) || 2286 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) { 2287 remove_range_unlocked(ic, &dio->range); 2288 spin_unlock_irq(&ic->endio_wait.lock); 2289 queue_work(ic->commit_wq, &ic->commit_work); 2290 flush_workqueue(ic->commit_wq); 2291 queue_work(ic->writer_wq, &ic->writer_work); 2292 flush_workqueue(ic->writer_wq); 2293 discard_retried = true; 2294 goto lock_retry; 2295 } 2296 } 2297 spin_unlock_irq(&ic->endio_wait.lock); 2298 2299 if (unlikely(journal_read_pos != NOT_FOUND)) { 2300 journal_section = journal_read_pos / ic->journal_section_entries; 2301 journal_entry = journal_read_pos % ic->journal_section_entries; 2302 goto journal_read_write; 2303 } 2304 2305 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) { 2306 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2307 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2308 struct bitmap_block_status *bbs; 2309 2310 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector); 2311 spin_lock(&bbs->bio_queue_lock); 2312 bio_list_add(&bbs->bio_queue, bio); 2313 spin_unlock(&bbs->bio_queue_lock); 2314 queue_work(ic->writer_wq, &bbs->work); 2315 return; 2316 } 2317 } 2318 2319 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 2320 2321 if (need_sync_io) { 2322 init_completion(&read_comp); 2323 dio->completion = &read_comp; 2324 } else 2325 dio->completion = NULL; 2326 2327 dm_bio_record(&dio->bio_details, bio); 2328 bio_set_dev(bio, ic->dev->bdev); 2329 bio->bi_integrity = NULL; 2330 bio->bi_opf &= ~REQ_INTEGRITY; 2331 bio->bi_end_io = integrity_end_io; 2332 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 2333 2334 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) { 2335 integrity_metadata(&dio->work); 2336 dm_integrity_flush_buffers(ic, false); 2337 2338 dio->in_flight = (atomic_t)ATOMIC_INIT(1); 2339 dio->completion = NULL; 2340 2341 submit_bio_noacct(bio); 2342 2343 return; 2344 } 2345 2346 submit_bio_noacct(bio); 2347 2348 if (need_sync_io) { 2349 wait_for_completion_io(&read_comp); 2350 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 2351 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector)) 2352 goto skip_check; 2353 if (ic->mode == 'B') { 2354 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector, 2355 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2356 goto skip_check; 2357 } 2358 2359 if (likely(!bio->bi_status)) 2360 integrity_metadata(&dio->work); 2361 else 2362 skip_check: 2363 dec_in_flight(dio); 2364 } else { 2365 INIT_WORK(&dio->work, integrity_metadata); 2366 queue_work(ic->metadata_wq, &dio->work); 2367 } 2368 2369 return; 2370 2371 journal_read_write: 2372 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 2373 goto lock_retry; 2374 2375 do_endio_flush(ic, dio); 2376 } 2377 2378 2379 static void integrity_bio_wait(struct work_struct *w) 2380 { 2381 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 2382 2383 dm_integrity_map_continue(dio, false); 2384 } 2385 2386 static void pad_uncommitted(struct dm_integrity_c *ic) 2387 { 2388 if (ic->free_section_entry) { 2389 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 2390 ic->free_section_entry = 0; 2391 ic->free_section++; 2392 wraparound_section(ic, &ic->free_section); 2393 ic->n_uncommitted_sections++; 2394 } 2395 if (WARN_ON(ic->journal_sections * ic->journal_section_entries != 2396 (ic->n_uncommitted_sections + ic->n_committed_sections) * 2397 ic->journal_section_entries + ic->free_sectors)) { 2398 DMCRIT("journal_sections %u, journal_section_entries %u, " 2399 "n_uncommitted_sections %u, n_committed_sections %u, " 2400 "journal_section_entries %u, free_sectors %u", 2401 ic->journal_sections, ic->journal_section_entries, 2402 ic->n_uncommitted_sections, ic->n_committed_sections, 2403 ic->journal_section_entries, ic->free_sectors); 2404 } 2405 } 2406 2407 static void integrity_commit(struct work_struct *w) 2408 { 2409 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 2410 unsigned int commit_start, commit_sections; 2411 unsigned int i, j, n; 2412 struct bio *flushes; 2413 2414 del_timer(&ic->autocommit_timer); 2415 2416 spin_lock_irq(&ic->endio_wait.lock); 2417 flushes = bio_list_get(&ic->flush_bio_list); 2418 if (unlikely(ic->mode != 'J')) { 2419 spin_unlock_irq(&ic->endio_wait.lock); 2420 dm_integrity_flush_buffers(ic, true); 2421 goto release_flush_bios; 2422 } 2423 2424 pad_uncommitted(ic); 2425 commit_start = ic->uncommitted_section; 2426 commit_sections = ic->n_uncommitted_sections; 2427 spin_unlock_irq(&ic->endio_wait.lock); 2428 2429 if (!commit_sections) 2430 goto release_flush_bios; 2431 2432 ic->wrote_to_journal = true; 2433 2434 i = commit_start; 2435 for (n = 0; n < commit_sections; n++) { 2436 for (j = 0; j < ic->journal_section_entries; j++) { 2437 struct journal_entry *je; 2438 2439 je = access_journal_entry(ic, i, j); 2440 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2441 } 2442 for (j = 0; j < ic->journal_section_sectors; j++) { 2443 struct journal_sector *js; 2444 2445 js = access_journal(ic, i, j); 2446 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 2447 } 2448 i++; 2449 if (unlikely(i >= ic->journal_sections)) 2450 ic->commit_seq = next_commit_seq(ic->commit_seq); 2451 wraparound_section(ic, &i); 2452 } 2453 smp_rmb(); 2454 2455 write_journal(ic, commit_start, commit_sections); 2456 2457 spin_lock_irq(&ic->endio_wait.lock); 2458 ic->uncommitted_section += commit_sections; 2459 wraparound_section(ic, &ic->uncommitted_section); 2460 ic->n_uncommitted_sections -= commit_sections; 2461 ic->n_committed_sections += commit_sections; 2462 spin_unlock_irq(&ic->endio_wait.lock); 2463 2464 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2465 queue_work(ic->writer_wq, &ic->writer_work); 2466 2467 release_flush_bios: 2468 while (flushes) { 2469 struct bio *next = flushes->bi_next; 2470 2471 flushes->bi_next = NULL; 2472 do_endio(ic, flushes); 2473 flushes = next; 2474 } 2475 } 2476 2477 static void complete_copy_from_journal(unsigned long error, void *context) 2478 { 2479 struct journal_io *io = context; 2480 struct journal_completion *comp = io->comp; 2481 struct dm_integrity_c *ic = comp->ic; 2482 2483 remove_range(ic, &io->range); 2484 mempool_free(io, &ic->journal_io_mempool); 2485 if (unlikely(error != 0)) 2486 dm_integrity_io_error(ic, "copying from journal", -EIO); 2487 complete_journal_op(comp); 2488 } 2489 2490 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 2491 struct journal_entry *je) 2492 { 2493 unsigned int s = 0; 2494 2495 do { 2496 js->commit_id = je->last_bytes[s]; 2497 js++; 2498 } while (++s < ic->sectors_per_block); 2499 } 2500 2501 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start, 2502 unsigned int write_sections, bool from_replay) 2503 { 2504 unsigned int i, j, n; 2505 struct journal_completion comp; 2506 struct blk_plug plug; 2507 2508 blk_start_plug(&plug); 2509 2510 comp.ic = ic; 2511 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2512 init_completion(&comp.comp); 2513 2514 i = write_start; 2515 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 2516 #ifndef INTERNAL_VERIFY 2517 if (unlikely(from_replay)) 2518 #endif 2519 rw_section_mac(ic, i, false); 2520 for (j = 0; j < ic->journal_section_entries; j++) { 2521 struct journal_entry *je = access_journal_entry(ic, i, j); 2522 sector_t sec, area, offset; 2523 unsigned int k, l, next_loop; 2524 sector_t metadata_block; 2525 unsigned int metadata_offset; 2526 struct journal_io *io; 2527 2528 if (journal_entry_is_unused(je)) 2529 continue; 2530 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 2531 sec = journal_entry_get_sector(je); 2532 if (unlikely(from_replay)) { 2533 if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) { 2534 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 2535 sec &= ~(sector_t)(ic->sectors_per_block - 1); 2536 } 2537 if (unlikely(sec >= ic->provided_data_sectors)) { 2538 journal_entry_set_unused(je); 2539 continue; 2540 } 2541 } 2542 get_area_and_offset(ic, sec, &area, &offset); 2543 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 2544 for (k = j + 1; k < ic->journal_section_entries; k++) { 2545 struct journal_entry *je2 = access_journal_entry(ic, i, k); 2546 sector_t sec2, area2, offset2; 2547 2548 if (journal_entry_is_unused(je2)) 2549 break; 2550 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 2551 sec2 = journal_entry_get_sector(je2); 2552 if (unlikely(sec2 >= ic->provided_data_sectors)) 2553 break; 2554 get_area_and_offset(ic, sec2, &area2, &offset2); 2555 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 2556 break; 2557 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 2558 } 2559 next_loop = k - 1; 2560 2561 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); 2562 io->comp = ∁ 2563 io->range.logical_sector = sec; 2564 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 2565 2566 spin_lock_irq(&ic->endio_wait.lock); 2567 add_new_range_and_wait(ic, &io->range); 2568 2569 if (likely(!from_replay)) { 2570 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 2571 2572 /* don't write if there is newer committed sector */ 2573 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 2574 struct journal_entry *je2 = access_journal_entry(ic, i, j); 2575 2576 journal_entry_set_unused(je2); 2577 remove_journal_node(ic, §ion_node[j]); 2578 j++; 2579 sec += ic->sectors_per_block; 2580 offset += ic->sectors_per_block; 2581 } 2582 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 2583 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 2584 2585 journal_entry_set_unused(je2); 2586 remove_journal_node(ic, §ion_node[k - 1]); 2587 k--; 2588 } 2589 if (j == k) { 2590 remove_range_unlocked(ic, &io->range); 2591 spin_unlock_irq(&ic->endio_wait.lock); 2592 mempool_free(io, &ic->journal_io_mempool); 2593 goto skip_io; 2594 } 2595 for (l = j; l < k; l++) 2596 remove_journal_node(ic, §ion_node[l]); 2597 } 2598 spin_unlock_irq(&ic->endio_wait.lock); 2599 2600 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2601 for (l = j; l < k; l++) { 2602 int r; 2603 struct journal_entry *je2 = access_journal_entry(ic, i, l); 2604 2605 if ( 2606 #ifndef INTERNAL_VERIFY 2607 unlikely(from_replay) && 2608 #endif 2609 ic->internal_hash) { 2610 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2611 2612 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 2613 (char *)access_journal_data(ic, i, l), test_tag); 2614 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) { 2615 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 2616 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0); 2617 } 2618 } 2619 2620 journal_entry_set_unused(je2); 2621 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 2622 ic->tag_size, TAG_WRITE); 2623 if (unlikely(r)) 2624 dm_integrity_io_error(ic, "reading tags", r); 2625 } 2626 2627 atomic_inc(&comp.in_flight); 2628 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 2629 (k - j) << ic->sb->log2_sectors_per_block, 2630 get_data_sector(ic, area, offset), 2631 complete_copy_from_journal, io); 2632 skip_io: 2633 j = next_loop; 2634 } 2635 } 2636 2637 dm_bufio_write_dirty_buffers_async(ic->bufio); 2638 2639 blk_finish_plug(&plug); 2640 2641 complete_journal_op(&comp); 2642 wait_for_completion_io(&comp.comp); 2643 2644 dm_integrity_flush_buffers(ic, true); 2645 } 2646 2647 static void integrity_writer(struct work_struct *w) 2648 { 2649 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 2650 unsigned int write_start, write_sections; 2651 unsigned int prev_free_sectors; 2652 2653 spin_lock_irq(&ic->endio_wait.lock); 2654 write_start = ic->committed_section; 2655 write_sections = ic->n_committed_sections; 2656 spin_unlock_irq(&ic->endio_wait.lock); 2657 2658 if (!write_sections) 2659 return; 2660 2661 do_journal_write(ic, write_start, write_sections, false); 2662 2663 spin_lock_irq(&ic->endio_wait.lock); 2664 2665 ic->committed_section += write_sections; 2666 wraparound_section(ic, &ic->committed_section); 2667 ic->n_committed_sections -= write_sections; 2668 2669 prev_free_sectors = ic->free_sectors; 2670 ic->free_sectors += write_sections * ic->journal_section_entries; 2671 if (unlikely(!prev_free_sectors)) 2672 wake_up_locked(&ic->endio_wait); 2673 2674 spin_unlock_irq(&ic->endio_wait.lock); 2675 } 2676 2677 static void recalc_write_super(struct dm_integrity_c *ic) 2678 { 2679 int r; 2680 2681 dm_integrity_flush_buffers(ic, false); 2682 if (dm_integrity_failed(ic)) 2683 return; 2684 2685 r = sync_rw_sb(ic, REQ_OP_WRITE); 2686 if (unlikely(r)) 2687 dm_integrity_io_error(ic, "writing superblock", r); 2688 } 2689 2690 static void integrity_recalc(struct work_struct *w) 2691 { 2692 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 2693 size_t recalc_tags_size; 2694 u8 *recalc_buffer = NULL; 2695 u8 *recalc_tags = NULL; 2696 struct dm_integrity_range range; 2697 struct dm_io_request io_req; 2698 struct dm_io_region io_loc; 2699 sector_t area, offset; 2700 sector_t metadata_block; 2701 unsigned int metadata_offset; 2702 sector_t logical_sector, n_sectors; 2703 __u8 *t; 2704 unsigned int i; 2705 int r; 2706 unsigned int super_counter = 0; 2707 unsigned recalc_sectors = RECALC_SECTORS; 2708 2709 retry: 2710 recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO); 2711 if (!recalc_buffer) { 2712 oom: 2713 recalc_sectors >>= 1; 2714 if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block) 2715 goto retry; 2716 DMCRIT("out of memory for recalculate buffer - recalculation disabled"); 2717 goto free_ret; 2718 } 2719 recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 2720 if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size) 2721 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size; 2722 recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO); 2723 if (!recalc_tags) { 2724 vfree(recalc_buffer); 2725 recalc_buffer = NULL; 2726 goto oom; 2727 } 2728 2729 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector)); 2730 2731 spin_lock_irq(&ic->endio_wait.lock); 2732 2733 next_chunk: 2734 2735 if (unlikely(dm_post_suspending(ic->ti))) 2736 goto unlock_ret; 2737 2738 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 2739 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) { 2740 if (ic->mode == 'B') { 2741 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 2742 DEBUG_print("queue_delayed_work: bitmap_flush_work\n"); 2743 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2744 } 2745 goto unlock_ret; 2746 } 2747 2748 get_area_and_offset(ic, range.logical_sector, &area, &offset); 2749 range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector); 2750 if (!ic->meta_dev) 2751 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset); 2752 2753 add_new_range_and_wait(ic, &range); 2754 spin_unlock_irq(&ic->endio_wait.lock); 2755 logical_sector = range.logical_sector; 2756 n_sectors = range.n_sectors; 2757 2758 if (ic->mode == 'B') { 2759 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2760 goto advance_and_next; 2761 2762 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, 2763 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2764 logical_sector += ic->sectors_per_block; 2765 n_sectors -= ic->sectors_per_block; 2766 cond_resched(); 2767 } 2768 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block, 2769 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2770 n_sectors -= ic->sectors_per_block; 2771 cond_resched(); 2772 } 2773 get_area_and_offset(ic, logical_sector, &area, &offset); 2774 } 2775 2776 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors); 2777 2778 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 2779 recalc_write_super(ic); 2780 if (ic->mode == 'B') 2781 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2782 2783 super_counter = 0; 2784 } 2785 2786 if (unlikely(dm_integrity_failed(ic))) 2787 goto err; 2788 2789 io_req.bi_opf = REQ_OP_READ; 2790 io_req.mem.type = DM_IO_VMA; 2791 io_req.mem.ptr.addr = recalc_buffer; 2792 io_req.notify.fn = NULL; 2793 io_req.client = ic->io; 2794 io_loc.bdev = ic->dev->bdev; 2795 io_loc.sector = get_data_sector(ic, area, offset); 2796 io_loc.count = n_sectors; 2797 2798 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 2799 if (unlikely(r)) { 2800 dm_integrity_io_error(ic, "reading data", r); 2801 goto err; 2802 } 2803 2804 t = recalc_tags; 2805 for (i = 0; i < n_sectors; i += ic->sectors_per_block) { 2806 integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t); 2807 t += ic->tag_size; 2808 } 2809 2810 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2811 2812 r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE); 2813 if (unlikely(r)) { 2814 dm_integrity_io_error(ic, "writing tags", r); 2815 goto err; 2816 } 2817 2818 if (ic->mode == 'B') { 2819 sector_t start, end; 2820 2821 start = (range.logical_sector >> 2822 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 2823 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2824 end = ((range.logical_sector + range.n_sectors) >> 2825 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 2826 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2827 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR); 2828 } 2829 2830 advance_and_next: 2831 cond_resched(); 2832 2833 spin_lock_irq(&ic->endio_wait.lock); 2834 remove_range_unlocked(ic, &range); 2835 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 2836 goto next_chunk; 2837 2838 err: 2839 remove_range(ic, &range); 2840 goto free_ret; 2841 2842 unlock_ret: 2843 spin_unlock_irq(&ic->endio_wait.lock); 2844 2845 recalc_write_super(ic); 2846 2847 free_ret: 2848 vfree(recalc_buffer); 2849 kvfree(recalc_tags); 2850 } 2851 2852 static void bitmap_block_work(struct work_struct *w) 2853 { 2854 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work); 2855 struct dm_integrity_c *ic = bbs->ic; 2856 struct bio *bio; 2857 struct bio_list bio_queue; 2858 struct bio_list waiting; 2859 2860 bio_list_init(&waiting); 2861 2862 spin_lock(&bbs->bio_queue_lock); 2863 bio_queue = bbs->bio_queue; 2864 bio_list_init(&bbs->bio_queue); 2865 spin_unlock(&bbs->bio_queue_lock); 2866 2867 while ((bio = bio_list_pop(&bio_queue))) { 2868 struct dm_integrity_io *dio; 2869 2870 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2871 2872 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2873 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2874 remove_range(ic, &dio->range); 2875 INIT_WORK(&dio->work, integrity_bio_wait); 2876 queue_work(ic->offload_wq, &dio->work); 2877 } else { 2878 block_bitmap_op(ic, ic->journal, dio->range.logical_sector, 2879 dio->range.n_sectors, BITMAP_OP_SET); 2880 bio_list_add(&waiting, bio); 2881 } 2882 } 2883 2884 if (bio_list_empty(&waiting)) 2885 return; 2886 2887 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 2888 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), 2889 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL); 2890 2891 while ((bio = bio_list_pop(&waiting))) { 2892 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2893 2894 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2895 dio->range.n_sectors, BITMAP_OP_SET); 2896 2897 remove_range(ic, &dio->range); 2898 INIT_WORK(&dio->work, integrity_bio_wait); 2899 queue_work(ic->offload_wq, &dio->work); 2900 } 2901 2902 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2903 } 2904 2905 static void bitmap_flush_work(struct work_struct *work) 2906 { 2907 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work); 2908 struct dm_integrity_range range; 2909 unsigned long limit; 2910 struct bio *bio; 2911 2912 dm_integrity_flush_buffers(ic, false); 2913 2914 range.logical_sector = 0; 2915 range.n_sectors = ic->provided_data_sectors; 2916 2917 spin_lock_irq(&ic->endio_wait.lock); 2918 add_new_range_and_wait(ic, &range); 2919 spin_unlock_irq(&ic->endio_wait.lock); 2920 2921 dm_integrity_flush_buffers(ic, true); 2922 2923 limit = ic->provided_data_sectors; 2924 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2925 limit = le64_to_cpu(ic->sb->recalc_sector) 2926 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit) 2927 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2928 } 2929 /*DEBUG_print("zeroing journal\n");*/ 2930 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR); 2931 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR); 2932 2933 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 2934 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2935 2936 spin_lock_irq(&ic->endio_wait.lock); 2937 remove_range_unlocked(ic, &range); 2938 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) { 2939 bio_endio(bio); 2940 spin_unlock_irq(&ic->endio_wait.lock); 2941 spin_lock_irq(&ic->endio_wait.lock); 2942 } 2943 spin_unlock_irq(&ic->endio_wait.lock); 2944 } 2945 2946 2947 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section, 2948 unsigned int n_sections, unsigned char commit_seq) 2949 { 2950 unsigned int i, j, n; 2951 2952 if (!n_sections) 2953 return; 2954 2955 for (n = 0; n < n_sections; n++) { 2956 i = start_section + n; 2957 wraparound_section(ic, &i); 2958 for (j = 0; j < ic->journal_section_sectors; j++) { 2959 struct journal_sector *js = access_journal(ic, i, j); 2960 2961 BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA); 2962 memset(&js->sectors, 0, sizeof(js->sectors)); 2963 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 2964 } 2965 for (j = 0; j < ic->journal_section_entries; j++) { 2966 struct journal_entry *je = access_journal_entry(ic, i, j); 2967 2968 journal_entry_set_unused(je); 2969 } 2970 } 2971 2972 write_journal(ic, start_section, n_sections); 2973 } 2974 2975 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id) 2976 { 2977 unsigned char k; 2978 2979 for (k = 0; k < N_COMMIT_IDS; k++) { 2980 if (dm_integrity_commit_id(ic, i, j, k) == id) 2981 return k; 2982 } 2983 dm_integrity_io_error(ic, "journal commit id", -EIO); 2984 return -EIO; 2985 } 2986 2987 static void replay_journal(struct dm_integrity_c *ic) 2988 { 2989 unsigned int i, j; 2990 bool used_commit_ids[N_COMMIT_IDS]; 2991 unsigned int max_commit_id_sections[N_COMMIT_IDS]; 2992 unsigned int write_start, write_sections; 2993 unsigned int continue_section; 2994 bool journal_empty; 2995 unsigned char unused, last_used, want_commit_seq; 2996 2997 if (ic->mode == 'R') 2998 return; 2999 3000 if (ic->journal_uptodate) 3001 return; 3002 3003 last_used = 0; 3004 write_start = 0; 3005 3006 if (!ic->just_formatted) { 3007 DEBUG_print("reading journal\n"); 3008 rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL); 3009 if (ic->journal_io) 3010 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 3011 if (ic->journal_io) { 3012 struct journal_completion crypt_comp; 3013 3014 crypt_comp.ic = ic; 3015 init_completion(&crypt_comp.comp); 3016 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 3017 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 3018 wait_for_completion(&crypt_comp.comp); 3019 } 3020 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 3021 } 3022 3023 if (dm_integrity_failed(ic)) 3024 goto clear_journal; 3025 3026 journal_empty = true; 3027 memset(used_commit_ids, 0, sizeof(used_commit_ids)); 3028 memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections)); 3029 for (i = 0; i < ic->journal_sections; i++) { 3030 for (j = 0; j < ic->journal_section_sectors; j++) { 3031 int k; 3032 struct journal_sector *js = access_journal(ic, i, j); 3033 3034 k = find_commit_seq(ic, i, j, js->commit_id); 3035 if (k < 0) 3036 goto clear_journal; 3037 used_commit_ids[k] = true; 3038 max_commit_id_sections[k] = i; 3039 } 3040 if (journal_empty) { 3041 for (j = 0; j < ic->journal_section_entries; j++) { 3042 struct journal_entry *je = access_journal_entry(ic, i, j); 3043 3044 if (!journal_entry_is_unused(je)) { 3045 journal_empty = false; 3046 break; 3047 } 3048 } 3049 } 3050 } 3051 3052 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 3053 unused = N_COMMIT_IDS - 1; 3054 while (unused && !used_commit_ids[unused - 1]) 3055 unused--; 3056 } else { 3057 for (unused = 0; unused < N_COMMIT_IDS; unused++) 3058 if (!used_commit_ids[unused]) 3059 break; 3060 if (unused == N_COMMIT_IDS) { 3061 dm_integrity_io_error(ic, "journal commit ids", -EIO); 3062 goto clear_journal; 3063 } 3064 } 3065 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 3066 unused, used_commit_ids[0], used_commit_ids[1], 3067 used_commit_ids[2], used_commit_ids[3]); 3068 3069 last_used = prev_commit_seq(unused); 3070 want_commit_seq = prev_commit_seq(last_used); 3071 3072 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 3073 journal_empty = true; 3074 3075 write_start = max_commit_id_sections[last_used] + 1; 3076 if (unlikely(write_start >= ic->journal_sections)) 3077 want_commit_seq = next_commit_seq(want_commit_seq); 3078 wraparound_section(ic, &write_start); 3079 3080 i = write_start; 3081 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 3082 for (j = 0; j < ic->journal_section_sectors; j++) { 3083 struct journal_sector *js = access_journal(ic, i, j); 3084 3085 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 3086 /* 3087 * This could be caused by crash during writing. 3088 * We won't replay the inconsistent part of the 3089 * journal. 3090 */ 3091 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 3092 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 3093 goto brk; 3094 } 3095 } 3096 i++; 3097 if (unlikely(i >= ic->journal_sections)) 3098 want_commit_seq = next_commit_seq(want_commit_seq); 3099 wraparound_section(ic, &i); 3100 } 3101 brk: 3102 3103 if (!journal_empty) { 3104 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 3105 write_sections, write_start, want_commit_seq); 3106 do_journal_write(ic, write_start, write_sections, true); 3107 } 3108 3109 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 3110 continue_section = write_start; 3111 ic->commit_seq = want_commit_seq; 3112 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 3113 } else { 3114 unsigned int s; 3115 unsigned char erase_seq; 3116 3117 clear_journal: 3118 DEBUG_print("clearing journal\n"); 3119 3120 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 3121 s = write_start; 3122 init_journal(ic, s, 1, erase_seq); 3123 s++; 3124 wraparound_section(ic, &s); 3125 if (ic->journal_sections >= 2) { 3126 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 3127 s += ic->journal_sections - 2; 3128 wraparound_section(ic, &s); 3129 init_journal(ic, s, 1, erase_seq); 3130 } 3131 3132 continue_section = 0; 3133 ic->commit_seq = next_commit_seq(erase_seq); 3134 } 3135 3136 ic->committed_section = continue_section; 3137 ic->n_committed_sections = 0; 3138 3139 ic->uncommitted_section = continue_section; 3140 ic->n_uncommitted_sections = 0; 3141 3142 ic->free_section = continue_section; 3143 ic->free_section_entry = 0; 3144 ic->free_sectors = ic->journal_entries; 3145 3146 ic->journal_tree_root = RB_ROOT; 3147 for (i = 0; i < ic->journal_entries; i++) 3148 init_journal_node(&ic->journal_tree[i]); 3149 } 3150 3151 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic) 3152 { 3153 DEBUG_print("%s\n", __func__); 3154 3155 if (ic->mode == 'B') { 3156 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1; 3157 ic->synchronous_mode = 1; 3158 3159 cancel_delayed_work_sync(&ic->bitmap_flush_work); 3160 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 3161 flush_workqueue(ic->commit_wq); 3162 } 3163 } 3164 3165 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x) 3166 { 3167 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier); 3168 3169 DEBUG_print("%s\n", __func__); 3170 3171 dm_integrity_enter_synchronous_mode(ic); 3172 3173 return NOTIFY_DONE; 3174 } 3175 3176 static void dm_integrity_postsuspend(struct dm_target *ti) 3177 { 3178 struct dm_integrity_c *ic = ti->private; 3179 int r; 3180 3181 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier)); 3182 3183 del_timer_sync(&ic->autocommit_timer); 3184 3185 if (ic->recalc_wq) 3186 drain_workqueue(ic->recalc_wq); 3187 3188 if (ic->mode == 'B') 3189 cancel_delayed_work_sync(&ic->bitmap_flush_work); 3190 3191 queue_work(ic->commit_wq, &ic->commit_work); 3192 drain_workqueue(ic->commit_wq); 3193 3194 if (ic->mode == 'J') { 3195 queue_work(ic->writer_wq, &ic->writer_work); 3196 drain_workqueue(ic->writer_wq); 3197 dm_integrity_flush_buffers(ic, true); 3198 if (ic->wrote_to_journal) { 3199 init_journal(ic, ic->free_section, 3200 ic->journal_sections - ic->free_section, ic->commit_seq); 3201 if (ic->free_section) { 3202 init_journal(ic, 0, ic->free_section, 3203 next_commit_seq(ic->commit_seq)); 3204 } 3205 } 3206 } 3207 3208 if (ic->mode == 'B') { 3209 dm_integrity_flush_buffers(ic, true); 3210 #if 1 3211 /* set to 0 to test bitmap replay code */ 3212 init_journal(ic, 0, ic->journal_sections, 0); 3213 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3214 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3215 if (unlikely(r)) 3216 dm_integrity_io_error(ic, "writing superblock", r); 3217 #endif 3218 } 3219 3220 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 3221 3222 ic->journal_uptodate = true; 3223 } 3224 3225 static void dm_integrity_resume(struct dm_target *ti) 3226 { 3227 struct dm_integrity_c *ic = ti->private; 3228 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 3229 int r; 3230 3231 DEBUG_print("resume\n"); 3232 3233 ic->wrote_to_journal = false; 3234 3235 if (ic->provided_data_sectors != old_provided_data_sectors) { 3236 if (ic->provided_data_sectors > old_provided_data_sectors && 3237 ic->mode == 'B' && 3238 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { 3239 rw_journal_sectors(ic, REQ_OP_READ, 0, 3240 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3241 block_bitmap_op(ic, ic->journal, old_provided_data_sectors, 3242 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET); 3243 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3244 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3245 } 3246 3247 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3248 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3249 if (unlikely(r)) 3250 dm_integrity_io_error(ic, "writing superblock", r); 3251 } 3252 3253 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) { 3254 DEBUG_print("resume dirty_bitmap\n"); 3255 rw_journal_sectors(ic, REQ_OP_READ, 0, 3256 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3257 if (ic->mode == 'B') { 3258 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3259 !ic->reset_recalculate_flag) { 3260 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal); 3261 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal); 3262 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, 3263 BITMAP_OP_TEST_ALL_CLEAR)) { 3264 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3265 ic->sb->recalc_sector = cpu_to_le64(0); 3266 } 3267 } else { 3268 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n", 3269 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit); 3270 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3271 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3272 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3273 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3274 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3275 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3276 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3277 ic->sb->recalc_sector = cpu_to_le64(0); 3278 } 3279 } else { 3280 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3281 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) || 3282 ic->reset_recalculate_flag) { 3283 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3284 ic->sb->recalc_sector = cpu_to_le64(0); 3285 } 3286 init_journal(ic, 0, ic->journal_sections, 0); 3287 replay_journal(ic); 3288 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3289 } 3290 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3291 if (unlikely(r)) 3292 dm_integrity_io_error(ic, "writing superblock", r); 3293 } else { 3294 replay_journal(ic); 3295 if (ic->reset_recalculate_flag) { 3296 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3297 ic->sb->recalc_sector = cpu_to_le64(0); 3298 } 3299 if (ic->mode == 'B') { 3300 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3301 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3302 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3303 if (unlikely(r)) 3304 dm_integrity_io_error(ic, "writing superblock", r); 3305 3306 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3307 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3308 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3309 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 3310 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) { 3311 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector), 3312 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3313 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3314 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3315 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3316 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3317 } 3318 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3319 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3320 } 3321 } 3322 3323 DEBUG_print("testing recalc: %x\n", ic->sb->flags); 3324 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 3325 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector); 3326 3327 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors); 3328 if (recalc_pos < ic->provided_data_sectors) { 3329 queue_work(ic->recalc_wq, &ic->recalc_work); 3330 } else if (recalc_pos > ic->provided_data_sectors) { 3331 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors); 3332 recalc_write_super(ic); 3333 } 3334 } 3335 3336 ic->reboot_notifier.notifier_call = dm_integrity_reboot; 3337 ic->reboot_notifier.next = NULL; 3338 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */ 3339 WARN_ON(register_reboot_notifier(&ic->reboot_notifier)); 3340 3341 #if 0 3342 /* set to 1 to stress test synchronous mode */ 3343 dm_integrity_enter_synchronous_mode(ic); 3344 #endif 3345 } 3346 3347 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 3348 unsigned int status_flags, char *result, unsigned int maxlen) 3349 { 3350 struct dm_integrity_c *ic = ti->private; 3351 unsigned int arg_count; 3352 size_t sz = 0; 3353 3354 switch (type) { 3355 case STATUSTYPE_INFO: 3356 DMEMIT("%llu %llu", 3357 (unsigned long long)atomic64_read(&ic->number_of_mismatches), 3358 ic->provided_data_sectors); 3359 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3360 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector)); 3361 else 3362 DMEMIT(" -"); 3363 break; 3364 3365 case STATUSTYPE_TABLE: { 3366 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 3367 3368 watermark_percentage += ic->journal_entries / 2; 3369 do_div(watermark_percentage, ic->journal_entries); 3370 arg_count = 3; 3371 arg_count += !!ic->meta_dev; 3372 arg_count += ic->sectors_per_block != 1; 3373 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)); 3374 arg_count += ic->reset_recalculate_flag; 3375 arg_count += ic->discard; 3376 arg_count += ic->mode == 'J'; 3377 arg_count += ic->mode == 'J'; 3378 arg_count += ic->mode == 'B'; 3379 arg_count += ic->mode == 'B'; 3380 arg_count += !!ic->internal_hash_alg.alg_string; 3381 arg_count += !!ic->journal_crypt_alg.alg_string; 3382 arg_count += !!ic->journal_mac_alg.alg_string; 3383 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0; 3384 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0; 3385 arg_count += ic->legacy_recalculate; 3386 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start, 3387 ic->tag_size, ic->mode, arg_count); 3388 if (ic->meta_dev) 3389 DMEMIT(" meta_device:%s", ic->meta_dev->name); 3390 if (ic->sectors_per_block != 1) 3391 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 3392 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3393 DMEMIT(" recalculate"); 3394 if (ic->reset_recalculate_flag) 3395 DMEMIT(" reset_recalculate"); 3396 if (ic->discard) 3397 DMEMIT(" allow_discards"); 3398 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 3399 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 3400 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 3401 if (ic->mode == 'J') { 3402 DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage); 3403 DMEMIT(" commit_time:%u", ic->autocommit_msec); 3404 } 3405 if (ic->mode == 'B') { 3406 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit); 3407 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval)); 3408 } 3409 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) 3410 DMEMIT(" fix_padding"); 3411 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) 3412 DMEMIT(" fix_hmac"); 3413 if (ic->legacy_recalculate) 3414 DMEMIT(" legacy_recalculate"); 3415 3416 #define EMIT_ALG(a, n) \ 3417 do { \ 3418 if (ic->a.alg_string) { \ 3419 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 3420 if (ic->a.key_string) \ 3421 DMEMIT(":%s", ic->a.key_string);\ 3422 } \ 3423 } while (0) 3424 EMIT_ALG(internal_hash_alg, "internal_hash"); 3425 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 3426 EMIT_ALG(journal_mac_alg, "journal_mac"); 3427 break; 3428 } 3429 case STATUSTYPE_IMA: 3430 DMEMIT_TARGET_NAME_VERSION(ti->type); 3431 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c", 3432 ic->dev->name, ic->start, ic->tag_size, ic->mode); 3433 3434 if (ic->meta_dev) 3435 DMEMIT(",meta_device=%s", ic->meta_dev->name); 3436 if (ic->sectors_per_block != 1) 3437 DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT); 3438 3439 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ? 3440 'y' : 'n'); 3441 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n'); 3442 DMEMIT(",fix_padding=%c", 3443 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n'); 3444 DMEMIT(",fix_hmac=%c", 3445 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n'); 3446 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n'); 3447 3448 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS); 3449 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors); 3450 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors); 3451 DMEMIT(";"); 3452 break; 3453 } 3454 } 3455 3456 static int dm_integrity_iterate_devices(struct dm_target *ti, 3457 iterate_devices_callout_fn fn, void *data) 3458 { 3459 struct dm_integrity_c *ic = ti->private; 3460 3461 if (!ic->meta_dev) 3462 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 3463 else 3464 return fn(ti, ic->dev, 0, ti->len, data); 3465 } 3466 3467 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 3468 { 3469 struct dm_integrity_c *ic = ti->private; 3470 3471 if (ic->sectors_per_block > 1) { 3472 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3473 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3474 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT); 3475 limits->dma_alignment = limits->logical_block_size - 1; 3476 limits->discard_granularity = ic->sectors_per_block << SECTOR_SHIFT; 3477 } 3478 3479 if (!ic->internal_hash) { 3480 struct blk_integrity *bi = &limits->integrity; 3481 3482 memset(bi, 0, sizeof(*bi)); 3483 bi->tuple_size = ic->tag_size; 3484 bi->tag_size = bi->tuple_size; 3485 bi->interval_exp = 3486 ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 3487 } 3488 3489 limits->max_integrity_segments = USHRT_MAX; 3490 } 3491 3492 static void calculate_journal_section_size(struct dm_integrity_c *ic) 3493 { 3494 unsigned int sector_space = JOURNAL_SECTOR_DATA; 3495 3496 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 3497 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 3498 JOURNAL_ENTRY_ROUNDUP); 3499 3500 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 3501 sector_space -= JOURNAL_MAC_PER_SECTOR; 3502 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 3503 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 3504 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 3505 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 3506 } 3507 3508 static int calculate_device_limits(struct dm_integrity_c *ic) 3509 { 3510 __u64 initial_sectors; 3511 3512 calculate_journal_section_size(ic); 3513 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 3514 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX) 3515 return -EINVAL; 3516 ic->initial_sectors = initial_sectors; 3517 3518 if (!ic->meta_dev) { 3519 sector_t last_sector, last_area, last_offset; 3520 3521 /* we have to maintain excessive padding for compatibility with existing volumes */ 3522 __u64 metadata_run_padding = 3523 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ? 3524 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) : 3525 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS); 3526 3527 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 3528 metadata_run_padding) >> SECTOR_SHIFT; 3529 if (!(ic->metadata_run & (ic->metadata_run - 1))) 3530 ic->log2_metadata_run = __ffs(ic->metadata_run); 3531 else 3532 ic->log2_metadata_run = -1; 3533 3534 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 3535 last_sector = get_data_sector(ic, last_area, last_offset); 3536 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors) 3537 return -EINVAL; 3538 } else { 3539 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 3540 3541 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1)) 3542 >> (ic->log2_buffer_sectors + SECTOR_SHIFT); 3543 meta_size <<= ic->log2_buffer_sectors; 3544 if (ic->initial_sectors + meta_size < ic->initial_sectors || 3545 ic->initial_sectors + meta_size > ic->meta_device_sectors) 3546 return -EINVAL; 3547 ic->metadata_run = 1; 3548 ic->log2_metadata_run = 0; 3549 } 3550 3551 return 0; 3552 } 3553 3554 static void get_provided_data_sectors(struct dm_integrity_c *ic) 3555 { 3556 if (!ic->meta_dev) { 3557 int test_bit; 3558 3559 ic->provided_data_sectors = 0; 3560 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) { 3561 __u64 prev_data_sectors = ic->provided_data_sectors; 3562 3563 ic->provided_data_sectors |= (sector_t)1 << test_bit; 3564 if (calculate_device_limits(ic)) 3565 ic->provided_data_sectors = prev_data_sectors; 3566 } 3567 } else { 3568 ic->provided_data_sectors = ic->data_device_sectors; 3569 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1); 3570 } 3571 } 3572 3573 static int initialize_superblock(struct dm_integrity_c *ic, 3574 unsigned int journal_sectors, unsigned int interleave_sectors) 3575 { 3576 unsigned int journal_sections; 3577 int test_bit; 3578 3579 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 3580 memcpy(ic->sb->magic, SB_MAGIC, 8); 3581 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 3582 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 3583 if (ic->journal_mac_alg.alg_string) 3584 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 3585 3586 calculate_journal_section_size(ic); 3587 journal_sections = journal_sectors / ic->journal_section_sectors; 3588 if (!journal_sections) 3589 journal_sections = 1; 3590 3591 if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) { 3592 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC); 3593 get_random_bytes(ic->sb->salt, SALT_SIZE); 3594 } 3595 3596 if (!ic->meta_dev) { 3597 if (ic->fix_padding) 3598 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING); 3599 ic->sb->journal_sections = cpu_to_le32(journal_sections); 3600 if (!interleave_sectors) 3601 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3602 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 3603 ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3604 ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3605 3606 get_provided_data_sectors(ic); 3607 if (!ic->provided_data_sectors) 3608 return -EINVAL; 3609 } else { 3610 ic->sb->log2_interleave_sectors = 0; 3611 3612 get_provided_data_sectors(ic); 3613 if (!ic->provided_data_sectors) 3614 return -EINVAL; 3615 3616 try_smaller_buffer: 3617 ic->sb->journal_sections = cpu_to_le32(0); 3618 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) { 3619 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections); 3620 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit); 3621 3622 if (test_journal_sections > journal_sections) 3623 continue; 3624 ic->sb->journal_sections = cpu_to_le32(test_journal_sections); 3625 if (calculate_device_limits(ic)) 3626 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections); 3627 3628 } 3629 if (!le32_to_cpu(ic->sb->journal_sections)) { 3630 if (ic->log2_buffer_sectors > 3) { 3631 ic->log2_buffer_sectors--; 3632 goto try_smaller_buffer; 3633 } 3634 return -EINVAL; 3635 } 3636 } 3637 3638 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3639 3640 sb_set_version(ic); 3641 3642 return 0; 3643 } 3644 3645 static void dm_integrity_free_page_list(struct page_list *pl) 3646 { 3647 unsigned int i; 3648 3649 if (!pl) 3650 return; 3651 for (i = 0; pl[i].page; i++) 3652 __free_page(pl[i].page); 3653 kvfree(pl); 3654 } 3655 3656 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages) 3657 { 3658 struct page_list *pl; 3659 unsigned int i; 3660 3661 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO); 3662 if (!pl) 3663 return NULL; 3664 3665 for (i = 0; i < n_pages; i++) { 3666 pl[i].page = alloc_page(GFP_KERNEL); 3667 if (!pl[i].page) { 3668 dm_integrity_free_page_list(pl); 3669 return NULL; 3670 } 3671 if (i) 3672 pl[i - 1].next = &pl[i]; 3673 } 3674 pl[i].page = NULL; 3675 pl[i].next = NULL; 3676 3677 return pl; 3678 } 3679 3680 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 3681 { 3682 unsigned int i; 3683 3684 for (i = 0; i < ic->journal_sections; i++) 3685 kvfree(sl[i]); 3686 kvfree(sl); 3687 } 3688 3689 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, 3690 struct page_list *pl) 3691 { 3692 struct scatterlist **sl; 3693 unsigned int i; 3694 3695 sl = kvmalloc_array(ic->journal_sections, 3696 sizeof(struct scatterlist *), 3697 GFP_KERNEL | __GFP_ZERO); 3698 if (!sl) 3699 return NULL; 3700 3701 for (i = 0; i < ic->journal_sections; i++) { 3702 struct scatterlist *s; 3703 unsigned int start_index, start_offset; 3704 unsigned int end_index, end_offset; 3705 unsigned int n_pages; 3706 unsigned int idx; 3707 3708 page_list_location(ic, i, 0, &start_index, &start_offset); 3709 page_list_location(ic, i, ic->journal_section_sectors - 1, 3710 &end_index, &end_offset); 3711 3712 n_pages = (end_index - start_index + 1); 3713 3714 s = kvmalloc_array(n_pages, sizeof(struct scatterlist), 3715 GFP_KERNEL); 3716 if (!s) { 3717 dm_integrity_free_journal_scatterlist(ic, sl); 3718 return NULL; 3719 } 3720 3721 sg_init_table(s, n_pages); 3722 for (idx = start_index; idx <= end_index; idx++) { 3723 char *va = lowmem_page_address(pl[idx].page); 3724 unsigned int start = 0, end = PAGE_SIZE; 3725 3726 if (idx == start_index) 3727 start = start_offset; 3728 if (idx == end_index) 3729 end = end_offset + (1 << SECTOR_SHIFT); 3730 sg_set_buf(&s[idx - start_index], va + start, end - start); 3731 } 3732 3733 sl[i] = s; 3734 } 3735 3736 return sl; 3737 } 3738 3739 static void free_alg(struct alg_spec *a) 3740 { 3741 kfree_sensitive(a->alg_string); 3742 kfree_sensitive(a->key); 3743 memset(a, 0, sizeof(*a)); 3744 } 3745 3746 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 3747 { 3748 char *k; 3749 3750 free_alg(a); 3751 3752 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 3753 if (!a->alg_string) 3754 goto nomem; 3755 3756 k = strchr(a->alg_string, ':'); 3757 if (k) { 3758 *k = 0; 3759 a->key_string = k + 1; 3760 if (strlen(a->key_string) & 1) 3761 goto inval; 3762 3763 a->key_size = strlen(a->key_string) / 2; 3764 a->key = kmalloc(a->key_size, GFP_KERNEL); 3765 if (!a->key) 3766 goto nomem; 3767 if (hex2bin(a->key, a->key_string, a->key_size)) 3768 goto inval; 3769 } 3770 3771 return 0; 3772 inval: 3773 *error = error_inval; 3774 return -EINVAL; 3775 nomem: 3776 *error = "Out of memory for an argument"; 3777 return -ENOMEM; 3778 } 3779 3780 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 3781 char *error_alg, char *error_key) 3782 { 3783 int r; 3784 3785 if (a->alg_string) { 3786 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 3787 if (IS_ERR(*hash)) { 3788 *error = error_alg; 3789 r = PTR_ERR(*hash); 3790 *hash = NULL; 3791 return r; 3792 } 3793 3794 if (a->key) { 3795 r = crypto_shash_setkey(*hash, a->key, a->key_size); 3796 if (r) { 3797 *error = error_key; 3798 return r; 3799 } 3800 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { 3801 *error = error_key; 3802 return -ENOKEY; 3803 } 3804 } 3805 3806 return 0; 3807 } 3808 3809 static int create_journal(struct dm_integrity_c *ic, char **error) 3810 { 3811 int r = 0; 3812 unsigned int i; 3813 __u64 journal_pages, journal_desc_size, journal_tree_size; 3814 unsigned char *crypt_data = NULL, *crypt_iv = NULL; 3815 struct skcipher_request *req = NULL; 3816 3817 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 3818 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 3819 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 3820 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 3821 3822 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 3823 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 3824 journal_desc_size = journal_pages * sizeof(struct page_list); 3825 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) { 3826 *error = "Journal doesn't fit into memory"; 3827 r = -ENOMEM; 3828 goto bad; 3829 } 3830 ic->journal_pages = journal_pages; 3831 3832 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages); 3833 if (!ic->journal) { 3834 *error = "Could not allocate memory for journal"; 3835 r = -ENOMEM; 3836 goto bad; 3837 } 3838 if (ic->journal_crypt_alg.alg_string) { 3839 unsigned int ivsize, blocksize; 3840 struct journal_completion comp; 3841 3842 comp.ic = ic; 3843 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 3844 if (IS_ERR(ic->journal_crypt)) { 3845 *error = "Invalid journal cipher"; 3846 r = PTR_ERR(ic->journal_crypt); 3847 ic->journal_crypt = NULL; 3848 goto bad; 3849 } 3850 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 3851 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 3852 3853 if (ic->journal_crypt_alg.key) { 3854 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 3855 ic->journal_crypt_alg.key_size); 3856 if (r) { 3857 *error = "Error setting encryption key"; 3858 goto bad; 3859 } 3860 } 3861 DEBUG_print("cipher %s, block size %u iv size %u\n", 3862 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 3863 3864 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages); 3865 if (!ic->journal_io) { 3866 *error = "Could not allocate memory for journal io"; 3867 r = -ENOMEM; 3868 goto bad; 3869 } 3870 3871 if (blocksize == 1) { 3872 struct scatterlist *sg; 3873 3874 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3875 if (!req) { 3876 *error = "Could not allocate crypt request"; 3877 r = -ENOMEM; 3878 goto bad; 3879 } 3880 3881 crypt_iv = kzalloc(ivsize, GFP_KERNEL); 3882 if (!crypt_iv) { 3883 *error = "Could not allocate iv"; 3884 r = -ENOMEM; 3885 goto bad; 3886 } 3887 3888 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages); 3889 if (!ic->journal_xor) { 3890 *error = "Could not allocate memory for journal xor"; 3891 r = -ENOMEM; 3892 goto bad; 3893 } 3894 3895 sg = kvmalloc_array(ic->journal_pages + 1, 3896 sizeof(struct scatterlist), 3897 GFP_KERNEL); 3898 if (!sg) { 3899 *error = "Unable to allocate sg list"; 3900 r = -ENOMEM; 3901 goto bad; 3902 } 3903 sg_init_table(sg, ic->journal_pages + 1); 3904 for (i = 0; i < ic->journal_pages; i++) { 3905 char *va = lowmem_page_address(ic->journal_xor[i].page); 3906 3907 clear_page(va); 3908 sg_set_buf(&sg[i], va, PAGE_SIZE); 3909 } 3910 sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids)); 3911 3912 skcipher_request_set_crypt(req, sg, sg, 3913 PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv); 3914 init_completion(&comp.comp); 3915 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3916 if (do_crypt(true, req, &comp)) 3917 wait_for_completion(&comp.comp); 3918 kvfree(sg); 3919 r = dm_integrity_failed(ic); 3920 if (r) { 3921 *error = "Unable to encrypt journal"; 3922 goto bad; 3923 } 3924 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 3925 3926 crypto_free_skcipher(ic->journal_crypt); 3927 ic->journal_crypt = NULL; 3928 } else { 3929 unsigned int crypt_len = roundup(ivsize, blocksize); 3930 3931 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3932 if (!req) { 3933 *error = "Could not allocate crypt request"; 3934 r = -ENOMEM; 3935 goto bad; 3936 } 3937 3938 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 3939 if (!crypt_iv) { 3940 *error = "Could not allocate iv"; 3941 r = -ENOMEM; 3942 goto bad; 3943 } 3944 3945 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 3946 if (!crypt_data) { 3947 *error = "Unable to allocate crypt data"; 3948 r = -ENOMEM; 3949 goto bad; 3950 } 3951 3952 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 3953 if (!ic->journal_scatterlist) { 3954 *error = "Unable to allocate sg list"; 3955 r = -ENOMEM; 3956 goto bad; 3957 } 3958 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 3959 if (!ic->journal_io_scatterlist) { 3960 *error = "Unable to allocate sg list"; 3961 r = -ENOMEM; 3962 goto bad; 3963 } 3964 ic->sk_requests = kvmalloc_array(ic->journal_sections, 3965 sizeof(struct skcipher_request *), 3966 GFP_KERNEL | __GFP_ZERO); 3967 if (!ic->sk_requests) { 3968 *error = "Unable to allocate sk requests"; 3969 r = -ENOMEM; 3970 goto bad; 3971 } 3972 for (i = 0; i < ic->journal_sections; i++) { 3973 struct scatterlist sg; 3974 struct skcipher_request *section_req; 3975 __le32 section_le = cpu_to_le32(i); 3976 3977 memset(crypt_iv, 0x00, ivsize); 3978 memset(crypt_data, 0x00, crypt_len); 3979 memcpy(crypt_data, §ion_le, min_t(size_t, crypt_len, sizeof(section_le))); 3980 3981 sg_init_one(&sg, crypt_data, crypt_len); 3982 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); 3983 init_completion(&comp.comp); 3984 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3985 if (do_crypt(true, req, &comp)) 3986 wait_for_completion(&comp.comp); 3987 3988 r = dm_integrity_failed(ic); 3989 if (r) { 3990 *error = "Unable to generate iv"; 3991 goto bad; 3992 } 3993 3994 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3995 if (!section_req) { 3996 *error = "Unable to allocate crypt request"; 3997 r = -ENOMEM; 3998 goto bad; 3999 } 4000 section_req->iv = kmalloc_array(ivsize, 2, 4001 GFP_KERNEL); 4002 if (!section_req->iv) { 4003 skcipher_request_free(section_req); 4004 *error = "Unable to allocate iv"; 4005 r = -ENOMEM; 4006 goto bad; 4007 } 4008 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 4009 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 4010 ic->sk_requests[i] = section_req; 4011 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 4012 } 4013 } 4014 } 4015 4016 for (i = 0; i < N_COMMIT_IDS; i++) { 4017 unsigned int j; 4018 4019 retest_commit_id: 4020 for (j = 0; j < i; j++) { 4021 if (ic->commit_ids[j] == ic->commit_ids[i]) { 4022 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 4023 goto retest_commit_id; 4024 } 4025 } 4026 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 4027 } 4028 4029 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 4030 if (journal_tree_size > ULONG_MAX) { 4031 *error = "Journal doesn't fit into memory"; 4032 r = -ENOMEM; 4033 goto bad; 4034 } 4035 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 4036 if (!ic->journal_tree) { 4037 *error = "Could not allocate memory for journal tree"; 4038 r = -ENOMEM; 4039 } 4040 bad: 4041 kfree(crypt_data); 4042 kfree(crypt_iv); 4043 skcipher_request_free(req); 4044 4045 return r; 4046 } 4047 4048 /* 4049 * Construct a integrity mapping 4050 * 4051 * Arguments: 4052 * device 4053 * offset from the start of the device 4054 * tag size 4055 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode 4056 * number of optional arguments 4057 * optional arguments: 4058 * journal_sectors 4059 * interleave_sectors 4060 * buffer_sectors 4061 * journal_watermark 4062 * commit_time 4063 * meta_device 4064 * block_size 4065 * sectors_per_bit 4066 * bitmap_flush_interval 4067 * internal_hash 4068 * journal_crypt 4069 * journal_mac 4070 * recalculate 4071 */ 4072 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv) 4073 { 4074 struct dm_integrity_c *ic; 4075 char dummy; 4076 int r; 4077 unsigned int extra_args; 4078 struct dm_arg_set as; 4079 static const struct dm_arg _args[] = { 4080 {0, 18, "Invalid number of feature args"}, 4081 }; 4082 unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 4083 bool should_write_sb; 4084 __u64 threshold; 4085 unsigned long long start; 4086 __s8 log2_sectors_per_bitmap_bit = -1; 4087 __s8 log2_blocks_per_bitmap_bit; 4088 __u64 bits_in_journal; 4089 __u64 n_bitmap_bits; 4090 4091 #define DIRECT_ARGUMENTS 4 4092 4093 if (argc <= DIRECT_ARGUMENTS) { 4094 ti->error = "Invalid argument count"; 4095 return -EINVAL; 4096 } 4097 4098 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 4099 if (!ic) { 4100 ti->error = "Cannot allocate integrity context"; 4101 return -ENOMEM; 4102 } 4103 ti->private = ic; 4104 ti->per_io_data_size = sizeof(struct dm_integrity_io); 4105 ic->ti = ti; 4106 4107 ic->in_progress = RB_ROOT; 4108 INIT_LIST_HEAD(&ic->wait_list); 4109 init_waitqueue_head(&ic->endio_wait); 4110 bio_list_init(&ic->flush_bio_list); 4111 init_waitqueue_head(&ic->copy_to_journal_wait); 4112 init_completion(&ic->crypto_backoff); 4113 atomic64_set(&ic->number_of_mismatches, 0); 4114 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL; 4115 4116 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 4117 if (r) { 4118 ti->error = "Device lookup failed"; 4119 goto bad; 4120 } 4121 4122 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 4123 ti->error = "Invalid starting offset"; 4124 r = -EINVAL; 4125 goto bad; 4126 } 4127 ic->start = start; 4128 4129 if (strcmp(argv[2], "-")) { 4130 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 4131 ti->error = "Invalid tag size"; 4132 r = -EINVAL; 4133 goto bad; 4134 } 4135 } 4136 4137 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") || 4138 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) { 4139 ic->mode = argv[3][0]; 4140 } else { 4141 ti->error = "Invalid mode (expecting J, B, D, R)"; 4142 r = -EINVAL; 4143 goto bad; 4144 } 4145 4146 journal_sectors = 0; 4147 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 4148 buffer_sectors = DEFAULT_BUFFER_SECTORS; 4149 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 4150 sync_msec = DEFAULT_SYNC_MSEC; 4151 ic->sectors_per_block = 1; 4152 4153 as.argc = argc - DIRECT_ARGUMENTS; 4154 as.argv = argv + DIRECT_ARGUMENTS; 4155 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 4156 if (r) 4157 goto bad; 4158 4159 while (extra_args--) { 4160 const char *opt_string; 4161 unsigned int val; 4162 unsigned long long llval; 4163 4164 opt_string = dm_shift_arg(&as); 4165 if (!opt_string) { 4166 r = -EINVAL; 4167 ti->error = "Not enough feature arguments"; 4168 goto bad; 4169 } 4170 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 4171 journal_sectors = val ? val : 1; 4172 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 4173 interleave_sectors = val; 4174 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 4175 buffer_sectors = val; 4176 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 4177 journal_watermark = val; 4178 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 4179 sync_msec = val; 4180 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) { 4181 if (ic->meta_dev) { 4182 dm_put_device(ti, ic->meta_dev); 4183 ic->meta_dev = NULL; 4184 } 4185 r = dm_get_device(ti, strchr(opt_string, ':') + 1, 4186 dm_table_get_mode(ti->table), &ic->meta_dev); 4187 if (r) { 4188 ti->error = "Device lookup failed"; 4189 goto bad; 4190 } 4191 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 4192 if (val < 1 << SECTOR_SHIFT || 4193 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 4194 (val & (val - 1))) { 4195 r = -EINVAL; 4196 ti->error = "Invalid block_size argument"; 4197 goto bad; 4198 } 4199 ic->sectors_per_block = val >> SECTOR_SHIFT; 4200 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) { 4201 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval); 4202 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) { 4203 if ((uint64_t)val >= (uint64_t)UINT_MAX * 1000 / HZ) { 4204 r = -EINVAL; 4205 ti->error = "Invalid bitmap_flush_interval argument"; 4206 goto bad; 4207 } 4208 ic->bitmap_flush_interval = msecs_to_jiffies(val); 4209 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 4210 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 4211 "Invalid internal_hash argument"); 4212 if (r) 4213 goto bad; 4214 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 4215 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 4216 "Invalid journal_crypt argument"); 4217 if (r) 4218 goto bad; 4219 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 4220 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 4221 "Invalid journal_mac argument"); 4222 if (r) 4223 goto bad; 4224 } else if (!strcmp(opt_string, "recalculate")) { 4225 ic->recalculate_flag = true; 4226 } else if (!strcmp(opt_string, "reset_recalculate")) { 4227 ic->recalculate_flag = true; 4228 ic->reset_recalculate_flag = true; 4229 } else if (!strcmp(opt_string, "allow_discards")) { 4230 ic->discard = true; 4231 } else if (!strcmp(opt_string, "fix_padding")) { 4232 ic->fix_padding = true; 4233 } else if (!strcmp(opt_string, "fix_hmac")) { 4234 ic->fix_hmac = true; 4235 } else if (!strcmp(opt_string, "legacy_recalculate")) { 4236 ic->legacy_recalculate = true; 4237 } else { 4238 r = -EINVAL; 4239 ti->error = "Invalid argument"; 4240 goto bad; 4241 } 4242 } 4243 4244 ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev); 4245 if (!ic->meta_dev) 4246 ic->meta_device_sectors = ic->data_device_sectors; 4247 else 4248 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev); 4249 4250 if (!journal_sectors) { 4251 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 4252 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 4253 } 4254 4255 if (!buffer_sectors) 4256 buffer_sectors = 1; 4257 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT); 4258 4259 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 4260 "Invalid internal hash", "Error setting internal hash key"); 4261 if (r) 4262 goto bad; 4263 4264 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 4265 "Invalid journal mac", "Error setting journal mac key"); 4266 if (r) 4267 goto bad; 4268 4269 if (!ic->tag_size) { 4270 if (!ic->internal_hash) { 4271 ti->error = "Unknown tag size"; 4272 r = -EINVAL; 4273 goto bad; 4274 } 4275 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 4276 } 4277 if (ic->tag_size > MAX_TAG_SIZE) { 4278 ti->error = "Too big tag size"; 4279 r = -EINVAL; 4280 goto bad; 4281 } 4282 if (!(ic->tag_size & (ic->tag_size - 1))) 4283 ic->log2_tag_size = __ffs(ic->tag_size); 4284 else 4285 ic->log2_tag_size = -1; 4286 4287 if (ic->mode == 'B' && !ic->internal_hash) { 4288 r = -EINVAL; 4289 ti->error = "Bitmap mode can be only used with internal hash"; 4290 goto bad; 4291 } 4292 4293 if (ic->discard && !ic->internal_hash) { 4294 r = -EINVAL; 4295 ti->error = "Discard can be only used with internal hash"; 4296 goto bad; 4297 } 4298 4299 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 4300 ic->autocommit_msec = sync_msec; 4301 timer_setup(&ic->autocommit_timer, autocommit_fn, 0); 4302 4303 ic->io = dm_io_client_create(); 4304 if (IS_ERR(ic->io)) { 4305 r = PTR_ERR(ic->io); 4306 ic->io = NULL; 4307 ti->error = "Cannot allocate dm io"; 4308 goto bad; 4309 } 4310 4311 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); 4312 if (r) { 4313 ti->error = "Cannot allocate mempool"; 4314 goto bad; 4315 } 4316 4317 r = mempool_init_page_pool(&ic->recheck_pool, 1, 0); 4318 if (r) { 4319 ti->error = "Cannot allocate mempool"; 4320 goto bad; 4321 } 4322 4323 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 4324 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 4325 if (!ic->metadata_wq) { 4326 ti->error = "Cannot allocate workqueue"; 4327 r = -ENOMEM; 4328 goto bad; 4329 } 4330 4331 /* 4332 * If this workqueue weren't ordered, it would cause bio reordering 4333 * and reduced performance. 4334 */ 4335 ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM); 4336 if (!ic->wait_wq) { 4337 ti->error = "Cannot allocate workqueue"; 4338 r = -ENOMEM; 4339 goto bad; 4340 } 4341 4342 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM, 4343 METADATA_WORKQUEUE_MAX_ACTIVE); 4344 if (!ic->offload_wq) { 4345 ti->error = "Cannot allocate workqueue"; 4346 r = -ENOMEM; 4347 goto bad; 4348 } 4349 4350 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 4351 if (!ic->commit_wq) { 4352 ti->error = "Cannot allocate workqueue"; 4353 r = -ENOMEM; 4354 goto bad; 4355 } 4356 INIT_WORK(&ic->commit_work, integrity_commit); 4357 4358 if (ic->mode == 'J' || ic->mode == 'B') { 4359 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 4360 if (!ic->writer_wq) { 4361 ti->error = "Cannot allocate workqueue"; 4362 r = -ENOMEM; 4363 goto bad; 4364 } 4365 INIT_WORK(&ic->writer_work, integrity_writer); 4366 } 4367 4368 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 4369 if (!ic->sb) { 4370 r = -ENOMEM; 4371 ti->error = "Cannot allocate superblock area"; 4372 goto bad; 4373 } 4374 4375 r = sync_rw_sb(ic, REQ_OP_READ); 4376 if (r) { 4377 ti->error = "Error reading superblock"; 4378 goto bad; 4379 } 4380 should_write_sb = false; 4381 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 4382 if (ic->mode != 'R') { 4383 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 4384 r = -EINVAL; 4385 ti->error = "The device is not initialized"; 4386 goto bad; 4387 } 4388 } 4389 4390 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 4391 if (r) { 4392 ti->error = "Could not initialize superblock"; 4393 goto bad; 4394 } 4395 if (ic->mode != 'R') 4396 should_write_sb = true; 4397 } 4398 4399 if (!ic->sb->version || ic->sb->version > SB_VERSION_5) { 4400 r = -EINVAL; 4401 ti->error = "Unknown version"; 4402 goto bad; 4403 } 4404 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 4405 r = -EINVAL; 4406 ti->error = "Tag size doesn't match the information in superblock"; 4407 goto bad; 4408 } 4409 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 4410 r = -EINVAL; 4411 ti->error = "Block size doesn't match the information in superblock"; 4412 goto bad; 4413 } 4414 if (!le32_to_cpu(ic->sb->journal_sections)) { 4415 r = -EINVAL; 4416 ti->error = "Corrupted superblock, journal_sections is 0"; 4417 goto bad; 4418 } 4419 /* make sure that ti->max_io_len doesn't overflow */ 4420 if (!ic->meta_dev) { 4421 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 4422 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 4423 r = -EINVAL; 4424 ti->error = "Invalid interleave_sectors in the superblock"; 4425 goto bad; 4426 } 4427 } else { 4428 if (ic->sb->log2_interleave_sectors) { 4429 r = -EINVAL; 4430 ti->error = "Invalid interleave_sectors in the superblock"; 4431 goto bad; 4432 } 4433 } 4434 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 4435 r = -EINVAL; 4436 ti->error = "Journal mac mismatch"; 4437 goto bad; 4438 } 4439 4440 get_provided_data_sectors(ic); 4441 if (!ic->provided_data_sectors) { 4442 r = -EINVAL; 4443 ti->error = "The device is too small"; 4444 goto bad; 4445 } 4446 4447 try_smaller_buffer: 4448 r = calculate_device_limits(ic); 4449 if (r) { 4450 if (ic->meta_dev) { 4451 if (ic->log2_buffer_sectors > 3) { 4452 ic->log2_buffer_sectors--; 4453 goto try_smaller_buffer; 4454 } 4455 } 4456 ti->error = "The device is too small"; 4457 goto bad; 4458 } 4459 4460 if (log2_sectors_per_bitmap_bit < 0) 4461 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT); 4462 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block) 4463 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block; 4464 4465 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3); 4466 if (bits_in_journal > UINT_MAX) 4467 bits_in_journal = UINT_MAX; 4468 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit) 4469 log2_sectors_per_bitmap_bit++; 4470 4471 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block; 4472 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4473 if (should_write_sb) 4474 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4475 4476 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) 4477 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit; 4478 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8); 4479 4480 if (!ic->meta_dev) 4481 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run)); 4482 4483 if (ti->len > ic->provided_data_sectors) { 4484 r = -EINVAL; 4485 ti->error = "Not enough provided sectors for requested mapping size"; 4486 goto bad; 4487 } 4488 4489 4490 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 4491 threshold += 50; 4492 do_div(threshold, 100); 4493 ic->free_sectors_threshold = threshold; 4494 4495 DEBUG_print("initialized:\n"); 4496 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 4497 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 4498 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 4499 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 4500 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 4501 DEBUG_print(" journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections)); 4502 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 4503 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 4504 DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev)); 4505 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 4506 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 4507 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 4508 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors); 4509 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 4510 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal); 4511 4512 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) { 4513 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 4514 ic->sb->recalc_sector = cpu_to_le64(0); 4515 } 4516 4517 if (ic->internal_hash) { 4518 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1); 4519 if (!ic->recalc_wq) { 4520 ti->error = "Cannot allocate workqueue"; 4521 r = -ENOMEM; 4522 goto bad; 4523 } 4524 INIT_WORK(&ic->recalc_work, integrity_recalc); 4525 } else { 4526 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 4527 ti->error = "Recalculate can only be specified with internal_hash"; 4528 r = -EINVAL; 4529 goto bad; 4530 } 4531 } 4532 4533 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 4534 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors && 4535 dm_integrity_disable_recalculate(ic)) { 4536 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\""; 4537 r = -EOPNOTSUPP; 4538 goto bad; 4539 } 4540 4541 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev, 4542 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0); 4543 if (IS_ERR(ic->bufio)) { 4544 r = PTR_ERR(ic->bufio); 4545 ti->error = "Cannot initialize dm-bufio"; 4546 ic->bufio = NULL; 4547 goto bad; 4548 } 4549 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 4550 4551 if (ic->mode != 'R') { 4552 r = create_journal(ic, &ti->error); 4553 if (r) 4554 goto bad; 4555 4556 } 4557 4558 if (ic->mode == 'B') { 4559 unsigned int i; 4560 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 4561 4562 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4563 if (!ic->recalc_bitmap) { 4564 r = -ENOMEM; 4565 goto bad; 4566 } 4567 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4568 if (!ic->may_write_bitmap) { 4569 r = -ENOMEM; 4570 goto bad; 4571 } 4572 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL); 4573 if (!ic->bbs) { 4574 r = -ENOMEM; 4575 goto bad; 4576 } 4577 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work); 4578 for (i = 0; i < ic->n_bitmap_blocks; i++) { 4579 struct bitmap_block_status *bbs = &ic->bbs[i]; 4580 unsigned int sector, pl_index, pl_offset; 4581 4582 INIT_WORK(&bbs->work, bitmap_block_work); 4583 bbs->ic = ic; 4584 bbs->idx = i; 4585 bio_list_init(&bbs->bio_queue); 4586 spin_lock_init(&bbs->bio_queue_lock); 4587 4588 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT); 4589 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 4590 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 4591 4592 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset; 4593 } 4594 } 4595 4596 if (should_write_sb) { 4597 init_journal(ic, 0, ic->journal_sections, 0); 4598 r = dm_integrity_failed(ic); 4599 if (unlikely(r)) { 4600 ti->error = "Error initializing journal"; 4601 goto bad; 4602 } 4603 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 4604 if (r) { 4605 ti->error = "Error initializing superblock"; 4606 goto bad; 4607 } 4608 ic->just_formatted = true; 4609 } 4610 4611 if (!ic->meta_dev) { 4612 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 4613 if (r) 4614 goto bad; 4615 } 4616 if (ic->mode == 'B') { 4617 unsigned int max_io_len; 4618 4619 max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8); 4620 if (!max_io_len) 4621 max_io_len = 1U << 31; 4622 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len); 4623 if (!ti->max_io_len || ti->max_io_len > max_io_len) { 4624 r = dm_set_target_max_io_len(ti, max_io_len); 4625 if (r) 4626 goto bad; 4627 } 4628 } 4629 4630 ti->num_flush_bios = 1; 4631 ti->flush_supported = true; 4632 if (ic->discard) 4633 ti->num_discard_bios = 1; 4634 4635 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1); 4636 return 0; 4637 4638 bad: 4639 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0); 4640 dm_integrity_dtr(ti); 4641 return r; 4642 } 4643 4644 static void dm_integrity_dtr(struct dm_target *ti) 4645 { 4646 struct dm_integrity_c *ic = ti->private; 4647 4648 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 4649 BUG_ON(!list_empty(&ic->wait_list)); 4650 4651 if (ic->mode == 'B') 4652 cancel_delayed_work_sync(&ic->bitmap_flush_work); 4653 if (ic->metadata_wq) 4654 destroy_workqueue(ic->metadata_wq); 4655 if (ic->wait_wq) 4656 destroy_workqueue(ic->wait_wq); 4657 if (ic->offload_wq) 4658 destroy_workqueue(ic->offload_wq); 4659 if (ic->commit_wq) 4660 destroy_workqueue(ic->commit_wq); 4661 if (ic->writer_wq) 4662 destroy_workqueue(ic->writer_wq); 4663 if (ic->recalc_wq) 4664 destroy_workqueue(ic->recalc_wq); 4665 kvfree(ic->bbs); 4666 if (ic->bufio) 4667 dm_bufio_client_destroy(ic->bufio); 4668 mempool_exit(&ic->recheck_pool); 4669 mempool_exit(&ic->journal_io_mempool); 4670 if (ic->io) 4671 dm_io_client_destroy(ic->io); 4672 if (ic->dev) 4673 dm_put_device(ti, ic->dev); 4674 if (ic->meta_dev) 4675 dm_put_device(ti, ic->meta_dev); 4676 dm_integrity_free_page_list(ic->journal); 4677 dm_integrity_free_page_list(ic->journal_io); 4678 dm_integrity_free_page_list(ic->journal_xor); 4679 dm_integrity_free_page_list(ic->recalc_bitmap); 4680 dm_integrity_free_page_list(ic->may_write_bitmap); 4681 if (ic->journal_scatterlist) 4682 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 4683 if (ic->journal_io_scatterlist) 4684 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 4685 if (ic->sk_requests) { 4686 unsigned int i; 4687 4688 for (i = 0; i < ic->journal_sections; i++) { 4689 struct skcipher_request *req; 4690 4691 req = ic->sk_requests[i]; 4692 if (req) { 4693 kfree_sensitive(req->iv); 4694 skcipher_request_free(req); 4695 } 4696 } 4697 kvfree(ic->sk_requests); 4698 } 4699 kvfree(ic->journal_tree); 4700 if (ic->sb) 4701 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 4702 4703 if (ic->internal_hash) 4704 crypto_free_shash(ic->internal_hash); 4705 free_alg(&ic->internal_hash_alg); 4706 4707 if (ic->journal_crypt) 4708 crypto_free_skcipher(ic->journal_crypt); 4709 free_alg(&ic->journal_crypt_alg); 4710 4711 if (ic->journal_mac) 4712 crypto_free_shash(ic->journal_mac); 4713 free_alg(&ic->journal_mac_alg); 4714 4715 kfree(ic); 4716 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1); 4717 } 4718 4719 static struct target_type integrity_target = { 4720 .name = "integrity", 4721 .version = {1, 11, 0}, 4722 .module = THIS_MODULE, 4723 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 4724 .ctr = dm_integrity_ctr, 4725 .dtr = dm_integrity_dtr, 4726 .map = dm_integrity_map, 4727 .postsuspend = dm_integrity_postsuspend, 4728 .resume = dm_integrity_resume, 4729 .status = dm_integrity_status, 4730 .iterate_devices = dm_integrity_iterate_devices, 4731 .io_hints = dm_integrity_io_hints, 4732 }; 4733 4734 static int __init dm_integrity_init(void) 4735 { 4736 int r; 4737 4738 journal_io_cache = kmem_cache_create("integrity_journal_io", 4739 sizeof(struct journal_io), 0, 0, NULL); 4740 if (!journal_io_cache) { 4741 DMERR("can't allocate journal io cache"); 4742 return -ENOMEM; 4743 } 4744 4745 r = dm_register_target(&integrity_target); 4746 if (r < 0) { 4747 kmem_cache_destroy(journal_io_cache); 4748 return r; 4749 } 4750 4751 return 0; 4752 } 4753 4754 static void __exit dm_integrity_exit(void) 4755 { 4756 dm_unregister_target(&integrity_target); 4757 kmem_cache_destroy(journal_io_cache); 4758 } 4759 4760 module_init(dm_integrity_init); 4761 module_exit(dm_integrity_exit); 4762 4763 MODULE_AUTHOR("Milan Broz"); 4764 MODULE_AUTHOR("Mikulas Patocka"); 4765 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 4766 MODULE_LICENSE("GPL"); 4767