xref: /linux/drivers/md/dm-integrity.c (revision fa8a4d3659d0c1ad73d5f59b2e0a6d408de5b317)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4  * Copyright (C) 2016-2017 Milan Broz
5  * Copyright (C) 2016-2017 Mikulas Patocka
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include "dm-bio-record.h"
11 
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <linux/async_tx.h>
25 #include <linux/dm-bufio.h>
26 
27 #include "dm-audit.h"
28 
29 #define DM_MSG_PREFIX "integrity"
30 
31 #define DEFAULT_INTERLEAVE_SECTORS	32768
32 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
33 #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
34 #define DEFAULT_BUFFER_SECTORS		128
35 #define DEFAULT_JOURNAL_WATERMARK	50
36 #define DEFAULT_SYNC_MSEC		10000
37 #define DEFAULT_MAX_JOURNAL_SECTORS	(IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
38 #define MIN_LOG2_INTERLEAVE_SECTORS	3
39 #define MAX_LOG2_INTERLEAVE_SECTORS	31
40 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
41 #define RECALC_SECTORS			(IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
42 #define RECALC_WRITE_SUPER		16
43 #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
44 #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
45 #define DISCARD_FILLER			0xf6
46 #define SALT_SIZE			16
47 #define RECHECK_POOL_SIZE		256
48 
49 /*
50  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
51  * so it should not be enabled in the official kernel
52  */
53 //#define DEBUG_PRINT
54 //#define INTERNAL_VERIFY
55 
56 /*
57  * On disk structures
58  */
59 
60 #define SB_MAGIC			"integrt"
61 #define SB_VERSION_1			1
62 #define SB_VERSION_2			2
63 #define SB_VERSION_3			3
64 #define SB_VERSION_4			4
65 #define SB_VERSION_5			5
66 #define SB_VERSION_6			6
67 #define SB_SECTORS			8
68 #define MAX_SECTORS_PER_BLOCK		8
69 
70 struct superblock {
71 	__u8 magic[8];
72 	__u8 version;
73 	__u8 log2_interleave_sectors;
74 	__le16 integrity_tag_size;
75 	__le32 journal_sections;
76 	__le64 provided_data_sectors;	/* userspace uses this value */
77 	__le32 flags;
78 	__u8 log2_sectors_per_block;
79 	__u8 log2_blocks_per_bitmap_bit;
80 	__u8 pad[2];
81 	__le64 recalc_sector;
82 	__u8 pad2[8];
83 	__u8 salt[SALT_SIZE];
84 };
85 
86 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
87 #define SB_FLAG_RECALCULATING		0x2
88 #define SB_FLAG_DIRTY_BITMAP		0x4
89 #define SB_FLAG_FIXED_PADDING		0x8
90 #define SB_FLAG_FIXED_HMAC		0x10
91 #define SB_FLAG_INLINE			0x20
92 
93 #define	JOURNAL_ENTRY_ROUNDUP		8
94 
95 typedef __le64 commit_id_t;
96 #define JOURNAL_MAC_PER_SECTOR		8
97 
98 struct journal_entry {
99 	union {
100 		struct {
101 			__le32 sector_lo;
102 			__le32 sector_hi;
103 		} s;
104 		__le64 sector;
105 	} u;
106 	commit_id_t last_bytes[];
107 	/* __u8 tag[0]; */
108 };
109 
110 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
111 
112 #if BITS_PER_LONG == 64
113 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
114 #else
115 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
116 #endif
117 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
118 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
119 #define journal_entry_set_unused(je)		((je)->u.s.sector_hi = cpu_to_le32(-1))
120 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
121 #define journal_entry_set_inprogress(je)	((je)->u.s.sector_hi = cpu_to_le32(-2))
122 
123 #define JOURNAL_BLOCK_SECTORS		8
124 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
125 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
126 
127 struct journal_sector {
128 	struct_group(sectors,
129 		__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
130 		__u8 mac[JOURNAL_MAC_PER_SECTOR];
131 	);
132 	commit_id_t commit_id;
133 };
134 
135 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
136 
137 #define METADATA_PADDING_SECTORS	8
138 
139 #define N_COMMIT_IDS			4
140 
141 static unsigned char prev_commit_seq(unsigned char seq)
142 {
143 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
144 }
145 
146 static unsigned char next_commit_seq(unsigned char seq)
147 {
148 	return (seq + 1) % N_COMMIT_IDS;
149 }
150 
151 /*
152  * In-memory structures
153  */
154 
155 struct journal_node {
156 	struct rb_node node;
157 	sector_t sector;
158 };
159 
160 struct alg_spec {
161 	char *alg_string;
162 	char *key_string;
163 	__u8 *key;
164 	unsigned int key_size;
165 };
166 
167 struct dm_integrity_c {
168 	struct dm_dev *dev;
169 	struct dm_dev *meta_dev;
170 	unsigned int tag_size;
171 	__s8 log2_tag_size;
172 	unsigned int tuple_size;
173 	sector_t start;
174 	mempool_t journal_io_mempool;
175 	struct dm_io_client *io;
176 	struct dm_bufio_client *bufio;
177 	struct workqueue_struct *metadata_wq;
178 	struct superblock *sb;
179 	unsigned int journal_pages;
180 	unsigned int n_bitmap_blocks;
181 
182 	struct page_list *journal;
183 	struct page_list *journal_io;
184 	struct page_list *journal_xor;
185 	struct page_list *recalc_bitmap;
186 	struct page_list *may_write_bitmap;
187 	struct bitmap_block_status *bbs;
188 	unsigned int bitmap_flush_interval;
189 	int synchronous_mode;
190 	struct bio_list synchronous_bios;
191 	struct delayed_work bitmap_flush_work;
192 
193 	struct crypto_skcipher *journal_crypt;
194 	struct scatterlist **journal_scatterlist;
195 	struct scatterlist **journal_io_scatterlist;
196 	struct skcipher_request **sk_requests;
197 
198 	struct crypto_shash *journal_mac;
199 
200 	struct journal_node *journal_tree;
201 	struct rb_root journal_tree_root;
202 
203 	sector_t provided_data_sectors;
204 
205 	unsigned short journal_entry_size;
206 	unsigned char journal_entries_per_sector;
207 	unsigned char journal_section_entries;
208 	unsigned short journal_section_sectors;
209 	unsigned int journal_sections;
210 	unsigned int journal_entries;
211 	sector_t data_device_sectors;
212 	sector_t meta_device_sectors;
213 	unsigned int initial_sectors;
214 	unsigned int metadata_run;
215 	__s8 log2_metadata_run;
216 	__u8 log2_buffer_sectors;
217 	__u8 sectors_per_block;
218 	__u8 log2_blocks_per_bitmap_bit;
219 
220 	unsigned char mode;
221 
222 	int failed;
223 
224 	struct crypto_shash *internal_hash;
225 
226 	struct dm_target *ti;
227 
228 	/* these variables are locked with endio_wait.lock */
229 	struct rb_root in_progress;
230 	struct list_head wait_list;
231 	wait_queue_head_t endio_wait;
232 	struct workqueue_struct *wait_wq;
233 	struct workqueue_struct *offload_wq;
234 
235 	unsigned char commit_seq;
236 	commit_id_t commit_ids[N_COMMIT_IDS];
237 
238 	unsigned int committed_section;
239 	unsigned int n_committed_sections;
240 
241 	unsigned int uncommitted_section;
242 	unsigned int n_uncommitted_sections;
243 
244 	unsigned int free_section;
245 	unsigned char free_section_entry;
246 	unsigned int free_sectors;
247 
248 	unsigned int free_sectors_threshold;
249 
250 	struct workqueue_struct *commit_wq;
251 	struct work_struct commit_work;
252 
253 	struct workqueue_struct *writer_wq;
254 	struct work_struct writer_work;
255 
256 	struct workqueue_struct *recalc_wq;
257 	struct work_struct recalc_work;
258 
259 	struct bio_list flush_bio_list;
260 
261 	unsigned long autocommit_jiffies;
262 	struct timer_list autocommit_timer;
263 	unsigned int autocommit_msec;
264 
265 	wait_queue_head_t copy_to_journal_wait;
266 
267 	struct completion crypto_backoff;
268 
269 	bool wrote_to_journal;
270 	bool journal_uptodate;
271 	bool just_formatted;
272 	bool recalculate_flag;
273 	bool reset_recalculate_flag;
274 	bool discard;
275 	bool fix_padding;
276 	bool fix_hmac;
277 	bool legacy_recalculate;
278 
279 	struct alg_spec internal_hash_alg;
280 	struct alg_spec journal_crypt_alg;
281 	struct alg_spec journal_mac_alg;
282 
283 	atomic64_t number_of_mismatches;
284 
285 	mempool_t recheck_pool;
286 	struct bio_set recheck_bios;
287 
288 	struct notifier_block reboot_notifier;
289 };
290 
291 struct dm_integrity_range {
292 	sector_t logical_sector;
293 	sector_t n_sectors;
294 	bool waiting;
295 	union {
296 		struct rb_node node;
297 		struct {
298 			struct task_struct *task;
299 			struct list_head wait_entry;
300 		};
301 	};
302 };
303 
304 struct dm_integrity_io {
305 	struct work_struct work;
306 
307 	struct dm_integrity_c *ic;
308 	enum req_op op;
309 	bool fua;
310 
311 	struct dm_integrity_range range;
312 
313 	sector_t metadata_block;
314 	unsigned int metadata_offset;
315 
316 	atomic_t in_flight;
317 	blk_status_t bi_status;
318 
319 	struct completion *completion;
320 
321 	struct dm_bio_details bio_details;
322 
323 	char *integrity_payload;
324 	bool integrity_payload_from_mempool;
325 };
326 
327 struct journal_completion {
328 	struct dm_integrity_c *ic;
329 	atomic_t in_flight;
330 	struct completion comp;
331 };
332 
333 struct journal_io {
334 	struct dm_integrity_range range;
335 	struct journal_completion *comp;
336 };
337 
338 struct bitmap_block_status {
339 	struct work_struct work;
340 	struct dm_integrity_c *ic;
341 	unsigned int idx;
342 	unsigned long *bitmap;
343 	struct bio_list bio_queue;
344 	spinlock_t bio_queue_lock;
345 
346 };
347 
348 static struct kmem_cache *journal_io_cache;
349 
350 #define JOURNAL_IO_MEMPOOL	32
351 
352 #ifdef DEBUG_PRINT
353 #define DEBUG_print(x, ...)			printk(KERN_DEBUG x, ##__VA_ARGS__)
354 #define DEBUG_bytes(bytes, len, msg, ...)	printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
355 						       len ? ": " : "", len, bytes)
356 #else
357 #define DEBUG_print(x, ...)			do { } while (0)
358 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
359 #endif
360 
361 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
362 static int dm_integrity_map_inline(struct dm_integrity_io *dio);
363 static void integrity_bio_wait(struct work_struct *w);
364 static void dm_integrity_dtr(struct dm_target *ti);
365 
366 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
367 {
368 	if (err == -EILSEQ)
369 		atomic64_inc(&ic->number_of_mismatches);
370 	if (!cmpxchg(&ic->failed, 0, err))
371 		DMERR("Error on %s: %d", msg, err);
372 }
373 
374 static int dm_integrity_failed(struct dm_integrity_c *ic)
375 {
376 	return READ_ONCE(ic->failed);
377 }
378 
379 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
380 {
381 	if (ic->legacy_recalculate)
382 		return false;
383 	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
384 	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
385 	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
386 		return true;
387 	return false;
388 }
389 
390 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
391 					  unsigned int j, unsigned char seq)
392 {
393 	/*
394 	 * Xor the number with section and sector, so that if a piece of
395 	 * journal is written at wrong place, it is detected.
396 	 */
397 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
398 }
399 
400 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
401 				sector_t *area, sector_t *offset)
402 {
403 	if (!ic->meta_dev) {
404 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
405 		*area = data_sector >> log2_interleave_sectors;
406 		*offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
407 	} else {
408 		*area = 0;
409 		*offset = data_sector;
410 	}
411 }
412 
413 #define sector_to_block(ic, n)						\
414 do {									\
415 	BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1));		\
416 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
417 } while (0)
418 
419 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
420 					    sector_t offset, unsigned int *metadata_offset)
421 {
422 	__u64 ms;
423 	unsigned int mo;
424 
425 	ms = area << ic->sb->log2_interleave_sectors;
426 	if (likely(ic->log2_metadata_run >= 0))
427 		ms += area << ic->log2_metadata_run;
428 	else
429 		ms += area * ic->metadata_run;
430 	ms >>= ic->log2_buffer_sectors;
431 
432 	sector_to_block(ic, offset);
433 
434 	if (likely(ic->log2_tag_size >= 0)) {
435 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
436 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
437 	} else {
438 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
439 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
440 	}
441 	*metadata_offset = mo;
442 	return ms;
443 }
444 
445 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
446 {
447 	sector_t result;
448 
449 	if (ic->meta_dev)
450 		return offset;
451 
452 	result = area << ic->sb->log2_interleave_sectors;
453 	if (likely(ic->log2_metadata_run >= 0))
454 		result += (area + 1) << ic->log2_metadata_run;
455 	else
456 		result += (area + 1) * ic->metadata_run;
457 
458 	result += (sector_t)ic->initial_sectors + offset;
459 	result += ic->start;
460 
461 	return result;
462 }
463 
464 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
465 {
466 	if (unlikely(*sec_ptr >= ic->journal_sections))
467 		*sec_ptr -= ic->journal_sections;
468 }
469 
470 static void sb_set_version(struct dm_integrity_c *ic)
471 {
472 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_INLINE))
473 		ic->sb->version = SB_VERSION_6;
474 	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
475 		ic->sb->version = SB_VERSION_5;
476 	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
477 		ic->sb->version = SB_VERSION_4;
478 	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
479 		ic->sb->version = SB_VERSION_3;
480 	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
481 		ic->sb->version = SB_VERSION_2;
482 	else
483 		ic->sb->version = SB_VERSION_1;
484 }
485 
486 static int sb_mac(struct dm_integrity_c *ic, bool wr)
487 {
488 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
489 	int r;
490 	unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac);
491 	__u8 *sb = (__u8 *)ic->sb;
492 	__u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size;
493 
494 	if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT) {
495 		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
496 		return -EINVAL;
497 	}
498 
499 	desc->tfm = ic->journal_mac;
500 
501 	if (likely(wr)) {
502 		r = crypto_shash_digest(desc, sb, mac - sb, mac);
503 		if (unlikely(r < 0)) {
504 			dm_integrity_io_error(ic, "crypto_shash_digest", r);
505 			return r;
506 		}
507 	} else {
508 		__u8 actual_mac[HASH_MAX_DIGESTSIZE];
509 
510 		r = crypto_shash_digest(desc, sb, mac - sb, actual_mac);
511 		if (unlikely(r < 0)) {
512 			dm_integrity_io_error(ic, "crypto_shash_digest", r);
513 			return r;
514 		}
515 		if (memcmp(mac, actual_mac, mac_size)) {
516 			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
517 			dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
518 			return -EILSEQ;
519 		}
520 	}
521 
522 	return 0;
523 }
524 
525 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
526 {
527 	struct dm_io_request io_req;
528 	struct dm_io_region io_loc;
529 	const enum req_op op = opf & REQ_OP_MASK;
530 	int r;
531 
532 	io_req.bi_opf = opf;
533 	io_req.mem.type = DM_IO_KMEM;
534 	io_req.mem.ptr.addr = ic->sb;
535 	io_req.notify.fn = NULL;
536 	io_req.client = ic->io;
537 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
538 	io_loc.sector = ic->start;
539 	io_loc.count = SB_SECTORS;
540 
541 	if (op == REQ_OP_WRITE) {
542 		sb_set_version(ic);
543 		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
544 			r = sb_mac(ic, true);
545 			if (unlikely(r))
546 				return r;
547 		}
548 	}
549 
550 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
551 	if (unlikely(r))
552 		return r;
553 
554 	if (op == REQ_OP_READ) {
555 		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
556 			r = sb_mac(ic, false);
557 			if (unlikely(r))
558 				return r;
559 		}
560 	}
561 
562 	return 0;
563 }
564 
565 #define BITMAP_OP_TEST_ALL_SET		0
566 #define BITMAP_OP_TEST_ALL_CLEAR	1
567 #define BITMAP_OP_SET			2
568 #define BITMAP_OP_CLEAR			3
569 
570 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
571 			    sector_t sector, sector_t n_sectors, int mode)
572 {
573 	unsigned long bit, end_bit, this_end_bit, page, end_page;
574 	unsigned long *data;
575 
576 	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
577 		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
578 			sector,
579 			n_sectors,
580 			ic->sb->log2_sectors_per_block,
581 			ic->log2_blocks_per_bitmap_bit,
582 			mode);
583 		BUG();
584 	}
585 
586 	if (unlikely(!n_sectors))
587 		return true;
588 
589 	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
590 	end_bit = (sector + n_sectors - 1) >>
591 		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
592 
593 	page = bit / (PAGE_SIZE * 8);
594 	bit %= PAGE_SIZE * 8;
595 
596 	end_page = end_bit / (PAGE_SIZE * 8);
597 	end_bit %= PAGE_SIZE * 8;
598 
599 repeat:
600 	if (page < end_page)
601 		this_end_bit = PAGE_SIZE * 8 - 1;
602 	else
603 		this_end_bit = end_bit;
604 
605 	data = lowmem_page_address(bitmap[page].page);
606 
607 	if (mode == BITMAP_OP_TEST_ALL_SET) {
608 		while (bit <= this_end_bit) {
609 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
610 				do {
611 					if (data[bit / BITS_PER_LONG] != -1)
612 						return false;
613 					bit += BITS_PER_LONG;
614 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
615 				continue;
616 			}
617 			if (!test_bit(bit, data))
618 				return false;
619 			bit++;
620 		}
621 	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
622 		while (bit <= this_end_bit) {
623 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
624 				do {
625 					if (data[bit / BITS_PER_LONG] != 0)
626 						return false;
627 					bit += BITS_PER_LONG;
628 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
629 				continue;
630 			}
631 			if (test_bit(bit, data))
632 				return false;
633 			bit++;
634 		}
635 	} else if (mode == BITMAP_OP_SET) {
636 		while (bit <= this_end_bit) {
637 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
638 				do {
639 					data[bit / BITS_PER_LONG] = -1;
640 					bit += BITS_PER_LONG;
641 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
642 				continue;
643 			}
644 			__set_bit(bit, data);
645 			bit++;
646 		}
647 	} else if (mode == BITMAP_OP_CLEAR) {
648 		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
649 			clear_page(data);
650 		else {
651 			while (bit <= this_end_bit) {
652 				if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
653 					do {
654 						data[bit / BITS_PER_LONG] = 0;
655 						bit += BITS_PER_LONG;
656 					} while (this_end_bit >= bit + BITS_PER_LONG - 1);
657 					continue;
658 				}
659 				__clear_bit(bit, data);
660 				bit++;
661 			}
662 		}
663 	} else {
664 		BUG();
665 	}
666 
667 	if (unlikely(page < end_page)) {
668 		bit = 0;
669 		page++;
670 		goto repeat;
671 	}
672 
673 	return true;
674 }
675 
676 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
677 {
678 	unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
679 	unsigned int i;
680 
681 	for (i = 0; i < n_bitmap_pages; i++) {
682 		unsigned long *dst_data = lowmem_page_address(dst[i].page);
683 		unsigned long *src_data = lowmem_page_address(src[i].page);
684 
685 		copy_page(dst_data, src_data);
686 	}
687 }
688 
689 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
690 {
691 	unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
692 	unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
693 
694 	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
695 	return &ic->bbs[bitmap_block];
696 }
697 
698 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
699 				 bool e, const char *function)
700 {
701 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
702 	unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
703 
704 	if (unlikely(section >= ic->journal_sections) ||
705 	    unlikely(offset >= limit)) {
706 		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
707 		       function, section, offset, ic->journal_sections, limit);
708 		BUG();
709 	}
710 #endif
711 }
712 
713 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
714 			       unsigned int *pl_index, unsigned int *pl_offset)
715 {
716 	unsigned int sector;
717 
718 	access_journal_check(ic, section, offset, false, "page_list_location");
719 
720 	sector = section * ic->journal_section_sectors + offset;
721 
722 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
723 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
724 }
725 
726 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
727 					       unsigned int section, unsigned int offset, unsigned int *n_sectors)
728 {
729 	unsigned int pl_index, pl_offset;
730 	char *va;
731 
732 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
733 
734 	if (n_sectors)
735 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
736 
737 	va = lowmem_page_address(pl[pl_index].page);
738 
739 	return (struct journal_sector *)(va + pl_offset);
740 }
741 
742 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
743 {
744 	return access_page_list(ic, ic->journal, section, offset, NULL);
745 }
746 
747 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
748 {
749 	unsigned int rel_sector, offset;
750 	struct journal_sector *js;
751 
752 	access_journal_check(ic, section, n, true, "access_journal_entry");
753 
754 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
755 	offset = n / JOURNAL_BLOCK_SECTORS;
756 
757 	js = access_journal(ic, section, rel_sector);
758 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
759 }
760 
761 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
762 {
763 	n <<= ic->sb->log2_sectors_per_block;
764 
765 	n += JOURNAL_BLOCK_SECTORS;
766 
767 	access_journal_check(ic, section, n, false, "access_journal_data");
768 
769 	return access_journal(ic, section, n);
770 }
771 
772 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
773 {
774 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
775 	int r;
776 	unsigned int j, size;
777 
778 	desc->tfm = ic->journal_mac;
779 
780 	r = crypto_shash_init(desc);
781 	if (unlikely(r < 0)) {
782 		dm_integrity_io_error(ic, "crypto_shash_init", r);
783 		goto err;
784 	}
785 
786 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
787 		__le64 section_le;
788 
789 		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
790 		if (unlikely(r < 0)) {
791 			dm_integrity_io_error(ic, "crypto_shash_update", r);
792 			goto err;
793 		}
794 
795 		section_le = cpu_to_le64(section);
796 		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof(section_le));
797 		if (unlikely(r < 0)) {
798 			dm_integrity_io_error(ic, "crypto_shash_update", r);
799 			goto err;
800 		}
801 	}
802 
803 	for (j = 0; j < ic->journal_section_entries; j++) {
804 		struct journal_entry *je = access_journal_entry(ic, section, j);
805 
806 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
807 		if (unlikely(r < 0)) {
808 			dm_integrity_io_error(ic, "crypto_shash_update", r);
809 			goto err;
810 		}
811 	}
812 
813 	size = crypto_shash_digestsize(ic->journal_mac);
814 
815 	if (likely(size <= JOURNAL_MAC_SIZE)) {
816 		r = crypto_shash_final(desc, result);
817 		if (unlikely(r < 0)) {
818 			dm_integrity_io_error(ic, "crypto_shash_final", r);
819 			goto err;
820 		}
821 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
822 	} else {
823 		__u8 digest[HASH_MAX_DIGESTSIZE];
824 
825 		if (WARN_ON(size > sizeof(digest))) {
826 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
827 			goto err;
828 		}
829 		r = crypto_shash_final(desc, digest);
830 		if (unlikely(r < 0)) {
831 			dm_integrity_io_error(ic, "crypto_shash_final", r);
832 			goto err;
833 		}
834 		memcpy(result, digest, JOURNAL_MAC_SIZE);
835 	}
836 
837 	return;
838 err:
839 	memset(result, 0, JOURNAL_MAC_SIZE);
840 }
841 
842 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
843 {
844 	__u8 result[JOURNAL_MAC_SIZE];
845 	unsigned int j;
846 
847 	if (!ic->journal_mac)
848 		return;
849 
850 	section_mac(ic, section, result);
851 
852 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
853 		struct journal_sector *js = access_journal(ic, section, j);
854 
855 		if (likely(wr))
856 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
857 		else {
858 			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
859 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
860 				dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
861 			}
862 		}
863 	}
864 }
865 
866 static void complete_journal_op(void *context)
867 {
868 	struct journal_completion *comp = context;
869 
870 	BUG_ON(!atomic_read(&comp->in_flight));
871 	if (likely(atomic_dec_and_test(&comp->in_flight)))
872 		complete(&comp->comp);
873 }
874 
875 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
876 			unsigned int n_sections, struct journal_completion *comp)
877 {
878 	struct async_submit_ctl submit;
879 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
880 	unsigned int pl_index, pl_offset, section_index;
881 	struct page_list *source_pl, *target_pl;
882 
883 	if (likely(encrypt)) {
884 		source_pl = ic->journal;
885 		target_pl = ic->journal_io;
886 	} else {
887 		source_pl = ic->journal_io;
888 		target_pl = ic->journal;
889 	}
890 
891 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
892 
893 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
894 
895 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
896 
897 	section_index = pl_index;
898 
899 	do {
900 		size_t this_step;
901 		struct page *src_pages[2];
902 		struct page *dst_page;
903 
904 		while (unlikely(pl_index == section_index)) {
905 			unsigned int dummy;
906 
907 			if (likely(encrypt))
908 				rw_section_mac(ic, section, true);
909 			section++;
910 			n_sections--;
911 			if (!n_sections)
912 				break;
913 			page_list_location(ic, section, 0, &section_index, &dummy);
914 		}
915 
916 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
917 		dst_page = target_pl[pl_index].page;
918 		src_pages[0] = source_pl[pl_index].page;
919 		src_pages[1] = ic->journal_xor[pl_index].page;
920 
921 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
922 
923 		pl_index++;
924 		pl_offset = 0;
925 		n_bytes -= this_step;
926 	} while (n_bytes);
927 
928 	BUG_ON(n_sections);
929 
930 	async_tx_issue_pending_all();
931 }
932 
933 static void complete_journal_encrypt(void *data, int err)
934 {
935 	struct journal_completion *comp = data;
936 
937 	if (unlikely(err)) {
938 		if (likely(err == -EINPROGRESS)) {
939 			complete(&comp->ic->crypto_backoff);
940 			return;
941 		}
942 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
943 	}
944 	complete_journal_op(comp);
945 }
946 
947 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
948 {
949 	int r;
950 
951 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
952 				      complete_journal_encrypt, comp);
953 	if (likely(encrypt))
954 		r = crypto_skcipher_encrypt(req);
955 	else
956 		r = crypto_skcipher_decrypt(req);
957 	if (likely(!r))
958 		return false;
959 	if (likely(r == -EINPROGRESS))
960 		return true;
961 	if (likely(r == -EBUSY)) {
962 		wait_for_completion(&comp->ic->crypto_backoff);
963 		reinit_completion(&comp->ic->crypto_backoff);
964 		return true;
965 	}
966 	dm_integrity_io_error(comp->ic, "encrypt", r);
967 	return false;
968 }
969 
970 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
971 			  unsigned int n_sections, struct journal_completion *comp)
972 {
973 	struct scatterlist **source_sg;
974 	struct scatterlist **target_sg;
975 
976 	atomic_add(2, &comp->in_flight);
977 
978 	if (likely(encrypt)) {
979 		source_sg = ic->journal_scatterlist;
980 		target_sg = ic->journal_io_scatterlist;
981 	} else {
982 		source_sg = ic->journal_io_scatterlist;
983 		target_sg = ic->journal_scatterlist;
984 	}
985 
986 	do {
987 		struct skcipher_request *req;
988 		unsigned int ivsize;
989 		char *iv;
990 
991 		if (likely(encrypt))
992 			rw_section_mac(ic, section, true);
993 
994 		req = ic->sk_requests[section];
995 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
996 		iv = req->iv;
997 
998 		memcpy(iv, iv + ivsize, ivsize);
999 
1000 		req->src = source_sg[section];
1001 		req->dst = target_sg[section];
1002 
1003 		if (unlikely(do_crypt(encrypt, req, comp)))
1004 			atomic_inc(&comp->in_flight);
1005 
1006 		section++;
1007 		n_sections--;
1008 	} while (n_sections);
1009 
1010 	atomic_dec(&comp->in_flight);
1011 	complete_journal_op(comp);
1012 }
1013 
1014 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1015 			    unsigned int n_sections, struct journal_completion *comp)
1016 {
1017 	if (ic->journal_xor)
1018 		return xor_journal(ic, encrypt, section, n_sections, comp);
1019 	else
1020 		return crypt_journal(ic, encrypt, section, n_sections, comp);
1021 }
1022 
1023 static void complete_journal_io(unsigned long error, void *context)
1024 {
1025 	struct journal_completion *comp = context;
1026 
1027 	if (unlikely(error != 0))
1028 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1029 	complete_journal_op(comp);
1030 }
1031 
1032 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1033 			       unsigned int sector, unsigned int n_sectors,
1034 			       struct journal_completion *comp)
1035 {
1036 	struct dm_io_request io_req;
1037 	struct dm_io_region io_loc;
1038 	unsigned int pl_index, pl_offset;
1039 	int r;
1040 
1041 	if (unlikely(dm_integrity_failed(ic))) {
1042 		if (comp)
1043 			complete_journal_io(-1UL, comp);
1044 		return;
1045 	}
1046 
1047 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1048 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1049 
1050 	io_req.bi_opf = opf;
1051 	io_req.mem.type = DM_IO_PAGE_LIST;
1052 	if (ic->journal_io)
1053 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1054 	else
1055 		io_req.mem.ptr.pl = &ic->journal[pl_index];
1056 	io_req.mem.offset = pl_offset;
1057 	if (likely(comp != NULL)) {
1058 		io_req.notify.fn = complete_journal_io;
1059 		io_req.notify.context = comp;
1060 	} else {
1061 		io_req.notify.fn = NULL;
1062 	}
1063 	io_req.client = ic->io;
1064 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1065 	io_loc.sector = ic->start + SB_SECTORS + sector;
1066 	io_loc.count = n_sectors;
1067 
1068 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1069 	if (unlikely(r)) {
1070 		dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1071 				      "reading journal" : "writing journal", r);
1072 		if (comp) {
1073 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1074 			complete_journal_io(-1UL, comp);
1075 		}
1076 	}
1077 }
1078 
1079 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1080 		       unsigned int section, unsigned int n_sections,
1081 		       struct journal_completion *comp)
1082 {
1083 	unsigned int sector, n_sectors;
1084 
1085 	sector = section * ic->journal_section_sectors;
1086 	n_sectors = n_sections * ic->journal_section_sectors;
1087 
1088 	rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1089 }
1090 
1091 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1092 {
1093 	struct journal_completion io_comp;
1094 	struct journal_completion crypt_comp_1;
1095 	struct journal_completion crypt_comp_2;
1096 	unsigned int i;
1097 
1098 	io_comp.ic = ic;
1099 	init_completion(&io_comp.comp);
1100 
1101 	if (commit_start + commit_sections <= ic->journal_sections) {
1102 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1103 		if (ic->journal_io) {
1104 			crypt_comp_1.ic = ic;
1105 			init_completion(&crypt_comp_1.comp);
1106 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1107 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1108 			wait_for_completion_io(&crypt_comp_1.comp);
1109 		} else {
1110 			for (i = 0; i < commit_sections; i++)
1111 				rw_section_mac(ic, commit_start + i, true);
1112 		}
1113 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1114 			   commit_sections, &io_comp);
1115 	} else {
1116 		unsigned int to_end;
1117 
1118 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1119 		to_end = ic->journal_sections - commit_start;
1120 		if (ic->journal_io) {
1121 			crypt_comp_1.ic = ic;
1122 			init_completion(&crypt_comp_1.comp);
1123 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1124 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1125 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1126 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1127 					   commit_start, to_end, &io_comp);
1128 				reinit_completion(&crypt_comp_1.comp);
1129 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1130 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1131 				wait_for_completion_io(&crypt_comp_1.comp);
1132 			} else {
1133 				crypt_comp_2.ic = ic;
1134 				init_completion(&crypt_comp_2.comp);
1135 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1136 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1137 				wait_for_completion_io(&crypt_comp_1.comp);
1138 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1139 				wait_for_completion_io(&crypt_comp_2.comp);
1140 			}
1141 		} else {
1142 			for (i = 0; i < to_end; i++)
1143 				rw_section_mac(ic, commit_start + i, true);
1144 			rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1145 			for (i = 0; i < commit_sections - to_end; i++)
1146 				rw_section_mac(ic, i, true);
1147 		}
1148 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1149 	}
1150 
1151 	wait_for_completion_io(&io_comp.comp);
1152 }
1153 
1154 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1155 			      unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1156 {
1157 	struct dm_io_request io_req;
1158 	struct dm_io_region io_loc;
1159 	int r;
1160 	unsigned int sector, pl_index, pl_offset;
1161 
1162 	BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1163 
1164 	if (unlikely(dm_integrity_failed(ic))) {
1165 		fn(-1UL, data);
1166 		return;
1167 	}
1168 
1169 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1170 
1171 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1172 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1173 
1174 	io_req.bi_opf = REQ_OP_WRITE;
1175 	io_req.mem.type = DM_IO_PAGE_LIST;
1176 	io_req.mem.ptr.pl = &ic->journal[pl_index];
1177 	io_req.mem.offset = pl_offset;
1178 	io_req.notify.fn = fn;
1179 	io_req.notify.context = data;
1180 	io_req.client = ic->io;
1181 	io_loc.bdev = ic->dev->bdev;
1182 	io_loc.sector = target;
1183 	io_loc.count = n_sectors;
1184 
1185 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1186 	if (unlikely(r)) {
1187 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1188 		fn(-1UL, data);
1189 	}
1190 }
1191 
1192 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1193 {
1194 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1195 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1196 }
1197 
1198 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1199 {
1200 	struct rb_node **n = &ic->in_progress.rb_node;
1201 	struct rb_node *parent;
1202 
1203 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1204 
1205 	if (likely(check_waiting)) {
1206 		struct dm_integrity_range *range;
1207 
1208 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1209 			if (unlikely(ranges_overlap(range, new_range)))
1210 				return false;
1211 		}
1212 	}
1213 
1214 	parent = NULL;
1215 
1216 	while (*n) {
1217 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1218 
1219 		parent = *n;
1220 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1221 			n = &range->node.rb_left;
1222 		else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1223 			n = &range->node.rb_right;
1224 		else
1225 			return false;
1226 	}
1227 
1228 	rb_link_node(&new_range->node, parent, n);
1229 	rb_insert_color(&new_range->node, &ic->in_progress);
1230 
1231 	return true;
1232 }
1233 
1234 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1235 {
1236 	rb_erase(&range->node, &ic->in_progress);
1237 	while (unlikely(!list_empty(&ic->wait_list))) {
1238 		struct dm_integrity_range *last_range =
1239 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1240 		struct task_struct *last_range_task;
1241 
1242 		last_range_task = last_range->task;
1243 		list_del(&last_range->wait_entry);
1244 		if (!add_new_range(ic, last_range, false)) {
1245 			last_range->task = last_range_task;
1246 			list_add(&last_range->wait_entry, &ic->wait_list);
1247 			break;
1248 		}
1249 		last_range->waiting = false;
1250 		wake_up_process(last_range_task);
1251 	}
1252 }
1253 
1254 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1255 {
1256 	unsigned long flags;
1257 
1258 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1259 	remove_range_unlocked(ic, range);
1260 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1261 }
1262 
1263 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1264 {
1265 	new_range->waiting = true;
1266 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1267 	new_range->task = current;
1268 	do {
1269 		__set_current_state(TASK_UNINTERRUPTIBLE);
1270 		spin_unlock_irq(&ic->endio_wait.lock);
1271 		io_schedule();
1272 		spin_lock_irq(&ic->endio_wait.lock);
1273 	} while (unlikely(new_range->waiting));
1274 }
1275 
1276 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1277 {
1278 	if (unlikely(!add_new_range(ic, new_range, true)))
1279 		wait_and_add_new_range(ic, new_range);
1280 }
1281 
1282 static void init_journal_node(struct journal_node *node)
1283 {
1284 	RB_CLEAR_NODE(&node->node);
1285 	node->sector = (sector_t)-1;
1286 }
1287 
1288 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1289 {
1290 	struct rb_node **link;
1291 	struct rb_node *parent;
1292 
1293 	node->sector = sector;
1294 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1295 
1296 	link = &ic->journal_tree_root.rb_node;
1297 	parent = NULL;
1298 
1299 	while (*link) {
1300 		struct journal_node *j;
1301 
1302 		parent = *link;
1303 		j = container_of(parent, struct journal_node, node);
1304 		if (sector < j->sector)
1305 			link = &j->node.rb_left;
1306 		else
1307 			link = &j->node.rb_right;
1308 	}
1309 
1310 	rb_link_node(&node->node, parent, link);
1311 	rb_insert_color(&node->node, &ic->journal_tree_root);
1312 }
1313 
1314 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1315 {
1316 	BUG_ON(RB_EMPTY_NODE(&node->node));
1317 	rb_erase(&node->node, &ic->journal_tree_root);
1318 	init_journal_node(node);
1319 }
1320 
1321 #define NOT_FOUND	(-1U)
1322 
1323 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1324 {
1325 	struct rb_node *n = ic->journal_tree_root.rb_node;
1326 	unsigned int found = NOT_FOUND;
1327 
1328 	*next_sector = (sector_t)-1;
1329 	while (n) {
1330 		struct journal_node *j = container_of(n, struct journal_node, node);
1331 
1332 		if (sector == j->sector)
1333 			found = j - ic->journal_tree;
1334 
1335 		if (sector < j->sector) {
1336 			*next_sector = j->sector;
1337 			n = j->node.rb_left;
1338 		} else
1339 			n = j->node.rb_right;
1340 	}
1341 
1342 	return found;
1343 }
1344 
1345 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1346 {
1347 	struct journal_node *node, *next_node;
1348 	struct rb_node *next;
1349 
1350 	if (unlikely(pos >= ic->journal_entries))
1351 		return false;
1352 	node = &ic->journal_tree[pos];
1353 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1354 		return false;
1355 	if (unlikely(node->sector != sector))
1356 		return false;
1357 
1358 	next = rb_next(&node->node);
1359 	if (unlikely(!next))
1360 		return true;
1361 
1362 	next_node = container_of(next, struct journal_node, node);
1363 	return next_node->sector != sector;
1364 }
1365 
1366 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1367 {
1368 	struct rb_node *next;
1369 	struct journal_node *next_node;
1370 	unsigned int next_section;
1371 
1372 	BUG_ON(RB_EMPTY_NODE(&node->node));
1373 
1374 	next = rb_next(&node->node);
1375 	if (unlikely(!next))
1376 		return false;
1377 
1378 	next_node = container_of(next, struct journal_node, node);
1379 
1380 	if (next_node->sector != node->sector)
1381 		return false;
1382 
1383 	next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1384 	if (next_section >= ic->committed_section &&
1385 	    next_section < ic->committed_section + ic->n_committed_sections)
1386 		return true;
1387 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1388 		return true;
1389 
1390 	return false;
1391 }
1392 
1393 #define TAG_READ	0
1394 #define TAG_WRITE	1
1395 #define TAG_CMP		2
1396 
1397 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1398 			       unsigned int *metadata_offset, unsigned int total_size, int op)
1399 {
1400 #define MAY_BE_FILLER		1
1401 #define MAY_BE_HASH		2
1402 	unsigned int hash_offset = 0;
1403 	unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1404 
1405 	do {
1406 		unsigned char *data, *dp;
1407 		struct dm_buffer *b;
1408 		unsigned int to_copy;
1409 		int r;
1410 
1411 		r = dm_integrity_failed(ic);
1412 		if (unlikely(r))
1413 			return r;
1414 
1415 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1416 		if (IS_ERR(data))
1417 			return PTR_ERR(data);
1418 
1419 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1420 		dp = data + *metadata_offset;
1421 		if (op == TAG_READ) {
1422 			memcpy(tag, dp, to_copy);
1423 		} else if (op == TAG_WRITE) {
1424 			if (memcmp(dp, tag, to_copy)) {
1425 				memcpy(dp, tag, to_copy);
1426 				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1427 			}
1428 		} else {
1429 			/* e.g.: op == TAG_CMP */
1430 
1431 			if (likely(is_power_of_2(ic->tag_size))) {
1432 				if (unlikely(memcmp(dp, tag, to_copy)))
1433 					if (unlikely(!ic->discard) ||
1434 					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1435 						goto thorough_test;
1436 				}
1437 			} else {
1438 				unsigned int i, ts;
1439 thorough_test:
1440 				ts = total_size;
1441 
1442 				for (i = 0; i < to_copy; i++, ts--) {
1443 					if (unlikely(dp[i] != tag[i]))
1444 						may_be &= ~MAY_BE_HASH;
1445 					if (likely(dp[i] != DISCARD_FILLER))
1446 						may_be &= ~MAY_BE_FILLER;
1447 					hash_offset++;
1448 					if (unlikely(hash_offset == ic->tag_size)) {
1449 						if (unlikely(!may_be)) {
1450 							dm_bufio_release(b);
1451 							return ts;
1452 						}
1453 						hash_offset = 0;
1454 						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1455 					}
1456 				}
1457 			}
1458 		}
1459 		dm_bufio_release(b);
1460 
1461 		tag += to_copy;
1462 		*metadata_offset += to_copy;
1463 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1464 			(*metadata_block)++;
1465 			*metadata_offset = 0;
1466 		}
1467 
1468 		if (unlikely(!is_power_of_2(ic->tag_size)))
1469 			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1470 
1471 		total_size -= to_copy;
1472 	} while (unlikely(total_size));
1473 
1474 	return 0;
1475 #undef MAY_BE_FILLER
1476 #undef MAY_BE_HASH
1477 }
1478 
1479 struct flush_request {
1480 	struct dm_io_request io_req;
1481 	struct dm_io_region io_reg;
1482 	struct dm_integrity_c *ic;
1483 	struct completion comp;
1484 };
1485 
1486 static void flush_notify(unsigned long error, void *fr_)
1487 {
1488 	struct flush_request *fr = fr_;
1489 
1490 	if (unlikely(error != 0))
1491 		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1492 	complete(&fr->comp);
1493 }
1494 
1495 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1496 {
1497 	int r;
1498 	struct flush_request fr;
1499 
1500 	if (!ic->meta_dev)
1501 		flush_data = false;
1502 	if (flush_data) {
1503 		fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1504 		fr.io_req.mem.type = DM_IO_KMEM,
1505 		fr.io_req.mem.ptr.addr = NULL,
1506 		fr.io_req.notify.fn = flush_notify,
1507 		fr.io_req.notify.context = &fr;
1508 		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1509 		fr.io_reg.bdev = ic->dev->bdev,
1510 		fr.io_reg.sector = 0,
1511 		fr.io_reg.count = 0,
1512 		fr.ic = ic;
1513 		init_completion(&fr.comp);
1514 		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL, IOPRIO_DEFAULT);
1515 		BUG_ON(r);
1516 	}
1517 
1518 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1519 	if (unlikely(r))
1520 		dm_integrity_io_error(ic, "writing tags", r);
1521 
1522 	if (flush_data)
1523 		wait_for_completion(&fr.comp);
1524 }
1525 
1526 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1527 {
1528 	DECLARE_WAITQUEUE(wait, current);
1529 
1530 	__add_wait_queue(&ic->endio_wait, &wait);
1531 	__set_current_state(TASK_UNINTERRUPTIBLE);
1532 	spin_unlock_irq(&ic->endio_wait.lock);
1533 	io_schedule();
1534 	spin_lock_irq(&ic->endio_wait.lock);
1535 	__remove_wait_queue(&ic->endio_wait, &wait);
1536 }
1537 
1538 static void autocommit_fn(struct timer_list *t)
1539 {
1540 	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1541 
1542 	if (likely(!dm_integrity_failed(ic)))
1543 		queue_work(ic->commit_wq, &ic->commit_work);
1544 }
1545 
1546 static void schedule_autocommit(struct dm_integrity_c *ic)
1547 {
1548 	if (!timer_pending(&ic->autocommit_timer))
1549 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1550 }
1551 
1552 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1553 {
1554 	struct bio *bio;
1555 	unsigned long flags;
1556 
1557 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1558 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1559 	bio_list_add(&ic->flush_bio_list, bio);
1560 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1561 
1562 	queue_work(ic->commit_wq, &ic->commit_work);
1563 }
1564 
1565 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1566 {
1567 	int r;
1568 
1569 	r = dm_integrity_failed(ic);
1570 	if (unlikely(r) && !bio->bi_status)
1571 		bio->bi_status = errno_to_blk_status(r);
1572 	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1573 		unsigned long flags;
1574 
1575 		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1576 		bio_list_add(&ic->synchronous_bios, bio);
1577 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1578 		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1579 		return;
1580 	}
1581 	bio_endio(bio);
1582 }
1583 
1584 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1585 {
1586 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1587 
1588 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1589 		submit_flush_bio(ic, dio);
1590 	else
1591 		do_endio(ic, bio);
1592 }
1593 
1594 static void dec_in_flight(struct dm_integrity_io *dio)
1595 {
1596 	if (atomic_dec_and_test(&dio->in_flight)) {
1597 		struct dm_integrity_c *ic = dio->ic;
1598 		struct bio *bio;
1599 
1600 		remove_range(ic, &dio->range);
1601 
1602 		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1603 			schedule_autocommit(ic);
1604 
1605 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1606 		if (unlikely(dio->bi_status) && !bio->bi_status)
1607 			bio->bi_status = dio->bi_status;
1608 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1609 			dio->range.logical_sector += dio->range.n_sectors;
1610 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1611 			INIT_WORK(&dio->work, integrity_bio_wait);
1612 			queue_work(ic->offload_wq, &dio->work);
1613 			return;
1614 		}
1615 		do_endio_flush(ic, dio);
1616 	}
1617 }
1618 
1619 static void integrity_end_io(struct bio *bio)
1620 {
1621 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1622 
1623 	dm_bio_restore(&dio->bio_details, bio);
1624 	if (bio->bi_integrity)
1625 		bio->bi_opf |= REQ_INTEGRITY;
1626 
1627 	if (dio->completion)
1628 		complete(dio->completion);
1629 
1630 	dec_in_flight(dio);
1631 }
1632 
1633 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1634 				      const char *data, char *result)
1635 {
1636 	__le64 sector_le = cpu_to_le64(sector);
1637 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1638 	int r;
1639 	unsigned int digest_size;
1640 
1641 	req->tfm = ic->internal_hash;
1642 
1643 	r = crypto_shash_init(req);
1644 	if (unlikely(r < 0)) {
1645 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1646 		goto failed;
1647 	}
1648 
1649 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1650 		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1651 		if (unlikely(r < 0)) {
1652 			dm_integrity_io_error(ic, "crypto_shash_update", r);
1653 			goto failed;
1654 		}
1655 	}
1656 
1657 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof(sector_le));
1658 	if (unlikely(r < 0)) {
1659 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1660 		goto failed;
1661 	}
1662 
1663 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1664 	if (unlikely(r < 0)) {
1665 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1666 		goto failed;
1667 	}
1668 
1669 	r = crypto_shash_final(req, result);
1670 	if (unlikely(r < 0)) {
1671 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1672 		goto failed;
1673 	}
1674 
1675 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1676 	if (unlikely(digest_size < ic->tag_size))
1677 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1678 
1679 	return;
1680 
1681 failed:
1682 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1683 	get_random_bytes(result, ic->tag_size);
1684 }
1685 
1686 static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum)
1687 {
1688 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1689 	struct dm_integrity_c *ic = dio->ic;
1690 	struct bvec_iter iter;
1691 	struct bio_vec bv;
1692 	sector_t sector, logical_sector, area, offset;
1693 	struct page *page;
1694 
1695 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1696 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset,
1697 							     &dio->metadata_offset);
1698 	sector = get_data_sector(ic, area, offset);
1699 	logical_sector = dio->range.logical_sector;
1700 
1701 	page = mempool_alloc(&ic->recheck_pool, GFP_NOIO);
1702 
1703 	__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1704 		unsigned pos = 0;
1705 
1706 		do {
1707 			sector_t alignment;
1708 			char *mem;
1709 			char *buffer = page_to_virt(page);
1710 			int r;
1711 			struct dm_io_request io_req;
1712 			struct dm_io_region io_loc;
1713 			io_req.bi_opf = REQ_OP_READ;
1714 			io_req.mem.type = DM_IO_KMEM;
1715 			io_req.mem.ptr.addr = buffer;
1716 			io_req.notify.fn = NULL;
1717 			io_req.client = ic->io;
1718 			io_loc.bdev = ic->dev->bdev;
1719 			io_loc.sector = sector;
1720 			io_loc.count = ic->sectors_per_block;
1721 
1722 			/* Align the bio to logical block size */
1723 			alignment = dio->range.logical_sector | bio_sectors(bio) | (PAGE_SIZE >> SECTOR_SHIFT);
1724 			alignment &= -alignment;
1725 			io_loc.sector = round_down(io_loc.sector, alignment);
1726 			io_loc.count += sector - io_loc.sector;
1727 			buffer += (sector - io_loc.sector) << SECTOR_SHIFT;
1728 			io_loc.count = round_up(io_loc.count, alignment);
1729 
1730 			r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1731 			if (unlikely(r)) {
1732 				dio->bi_status = errno_to_blk_status(r);
1733 				goto free_ret;
1734 			}
1735 
1736 			integrity_sector_checksum(ic, logical_sector, buffer, checksum);
1737 			r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block,
1738 						&dio->metadata_offset, ic->tag_size, TAG_CMP);
1739 			if (r) {
1740 				if (r > 0) {
1741 					DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1742 						    bio->bi_bdev, logical_sector);
1743 					atomic64_inc(&ic->number_of_mismatches);
1744 					dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1745 							 bio, logical_sector, 0);
1746 					r = -EILSEQ;
1747 				}
1748 				dio->bi_status = errno_to_blk_status(r);
1749 				goto free_ret;
1750 			}
1751 
1752 			mem = bvec_kmap_local(&bv);
1753 			memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT);
1754 			kunmap_local(mem);
1755 
1756 			pos += ic->sectors_per_block << SECTOR_SHIFT;
1757 			sector += ic->sectors_per_block;
1758 			logical_sector += ic->sectors_per_block;
1759 		} while (pos < bv.bv_len);
1760 	}
1761 free_ret:
1762 	mempool_free(page, &ic->recheck_pool);
1763 }
1764 
1765 static void integrity_metadata(struct work_struct *w)
1766 {
1767 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1768 	struct dm_integrity_c *ic = dio->ic;
1769 
1770 	int r;
1771 
1772 	if (ic->internal_hash) {
1773 		struct bvec_iter iter;
1774 		struct bio_vec bv;
1775 		unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1776 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1777 		char *checksums;
1778 		unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1779 		char checksums_onstack[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1780 		sector_t sector;
1781 		unsigned int sectors_to_process;
1782 
1783 		if (unlikely(ic->mode == 'R'))
1784 			goto skip_io;
1785 
1786 		if (likely(dio->op != REQ_OP_DISCARD))
1787 			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1788 					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1789 		else
1790 			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1791 		if (!checksums) {
1792 			checksums = checksums_onstack;
1793 			if (WARN_ON(extra_space &&
1794 				    digest_size > sizeof(checksums_onstack))) {
1795 				r = -EINVAL;
1796 				goto error;
1797 			}
1798 		}
1799 
1800 		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1801 			unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1802 			unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1803 			unsigned int max_blocks = max_size / ic->tag_size;
1804 
1805 			memset(checksums, DISCARD_FILLER, max_size);
1806 
1807 			while (bi_size) {
1808 				unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1809 
1810 				this_step_blocks = min(this_step_blocks, max_blocks);
1811 				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1812 							this_step_blocks * ic->tag_size, TAG_WRITE);
1813 				if (unlikely(r)) {
1814 					if (likely(checksums != checksums_onstack))
1815 						kfree(checksums);
1816 					goto error;
1817 				}
1818 
1819 				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1820 			}
1821 
1822 			if (likely(checksums != checksums_onstack))
1823 				kfree(checksums);
1824 			goto skip_io;
1825 		}
1826 
1827 		sector = dio->range.logical_sector;
1828 		sectors_to_process = dio->range.n_sectors;
1829 
1830 		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1831 			struct bio_vec bv_copy = bv;
1832 			unsigned int pos;
1833 			char *mem, *checksums_ptr;
1834 
1835 again:
1836 			mem = bvec_kmap_local(&bv_copy);
1837 			pos = 0;
1838 			checksums_ptr = checksums;
1839 			do {
1840 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1841 				checksums_ptr += ic->tag_size;
1842 				sectors_to_process -= ic->sectors_per_block;
1843 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1844 				sector += ic->sectors_per_block;
1845 			} while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1846 			kunmap_local(mem);
1847 
1848 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1849 						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1850 			if (unlikely(r)) {
1851 				if (likely(checksums != checksums_onstack))
1852 					kfree(checksums);
1853 				if (r > 0) {
1854 					integrity_recheck(dio, checksums_onstack);
1855 					goto skip_io;
1856 				}
1857 				goto error;
1858 			}
1859 
1860 			if (!sectors_to_process)
1861 				break;
1862 
1863 			if (unlikely(pos < bv_copy.bv_len)) {
1864 				bv_copy.bv_offset += pos;
1865 				bv_copy.bv_len -= pos;
1866 				goto again;
1867 			}
1868 		}
1869 
1870 		if (likely(checksums != checksums_onstack))
1871 			kfree(checksums);
1872 	} else {
1873 		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1874 
1875 		if (bip) {
1876 			struct bio_vec biv;
1877 			struct bvec_iter iter;
1878 			unsigned int data_to_process = dio->range.n_sectors;
1879 
1880 			sector_to_block(ic, data_to_process);
1881 			data_to_process *= ic->tag_size;
1882 
1883 			bip_for_each_vec(biv, bip, iter) {
1884 				unsigned char *tag;
1885 				unsigned int this_len;
1886 
1887 				BUG_ON(PageHighMem(biv.bv_page));
1888 				tag = bvec_virt(&biv);
1889 				this_len = min(biv.bv_len, data_to_process);
1890 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1891 							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1892 				if (unlikely(r))
1893 					goto error;
1894 				data_to_process -= this_len;
1895 				if (!data_to_process)
1896 					break;
1897 			}
1898 		}
1899 	}
1900 skip_io:
1901 	dec_in_flight(dio);
1902 	return;
1903 error:
1904 	dio->bi_status = errno_to_blk_status(r);
1905 	dec_in_flight(dio);
1906 }
1907 
1908 static inline bool dm_integrity_check_limits(struct dm_integrity_c *ic, sector_t logical_sector, struct bio *bio)
1909 {
1910 	if (unlikely(logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1911 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1912 		      logical_sector, bio_sectors(bio),
1913 		      ic->provided_data_sectors);
1914 		return false;
1915 	}
1916 	if (unlikely((logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1917 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1918 		      ic->sectors_per_block,
1919 		      logical_sector, bio_sectors(bio));
1920 		return false;
1921 	}
1922 	if (ic->sectors_per_block > 1 && likely(bio_op(bio) != REQ_OP_DISCARD)) {
1923 		struct bvec_iter iter;
1924 		struct bio_vec bv;
1925 
1926 		bio_for_each_segment(bv, bio, iter) {
1927 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1928 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1929 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1930 				return false;
1931 			}
1932 		}
1933 	}
1934 	return true;
1935 }
1936 
1937 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1938 {
1939 	struct dm_integrity_c *ic = ti->private;
1940 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1941 	struct bio_integrity_payload *bip;
1942 
1943 	sector_t area, offset;
1944 
1945 	dio->ic = ic;
1946 	dio->bi_status = 0;
1947 	dio->op = bio_op(bio);
1948 
1949 	if (ic->mode == 'I')
1950 		return dm_integrity_map_inline(dio);
1951 
1952 	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1953 		if (ti->max_io_len) {
1954 			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1955 			unsigned int log2_max_io_len = __fls(ti->max_io_len);
1956 			sector_t start_boundary = sec >> log2_max_io_len;
1957 			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1958 
1959 			if (start_boundary < end_boundary) {
1960 				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1961 
1962 				dm_accept_partial_bio(bio, len);
1963 			}
1964 		}
1965 	}
1966 
1967 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1968 		submit_flush_bio(ic, dio);
1969 		return DM_MAPIO_SUBMITTED;
1970 	}
1971 
1972 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1973 	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1974 	if (unlikely(dio->fua)) {
1975 		/*
1976 		 * Don't pass down the FUA flag because we have to flush
1977 		 * disk cache anyway.
1978 		 */
1979 		bio->bi_opf &= ~REQ_FUA;
1980 	}
1981 	if (unlikely(!dm_integrity_check_limits(ic, dio->range.logical_sector, bio)))
1982 		return DM_MAPIO_KILL;
1983 
1984 	bip = bio_integrity(bio);
1985 	if (!ic->internal_hash) {
1986 		if (bip) {
1987 			unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1988 
1989 			if (ic->log2_tag_size >= 0)
1990 				wanted_tag_size <<= ic->log2_tag_size;
1991 			else
1992 				wanted_tag_size *= ic->tag_size;
1993 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1994 				DMERR("Invalid integrity data size %u, expected %u",
1995 				      bip->bip_iter.bi_size, wanted_tag_size);
1996 				return DM_MAPIO_KILL;
1997 			}
1998 		}
1999 	} else {
2000 		if (unlikely(bip != NULL)) {
2001 			DMERR("Unexpected integrity data when using internal hash");
2002 			return DM_MAPIO_KILL;
2003 		}
2004 	}
2005 
2006 	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
2007 		return DM_MAPIO_KILL;
2008 
2009 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2010 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2011 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
2012 
2013 	dm_integrity_map_continue(dio, true);
2014 	return DM_MAPIO_SUBMITTED;
2015 }
2016 
2017 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
2018 				 unsigned int journal_section, unsigned int journal_entry)
2019 {
2020 	struct dm_integrity_c *ic = dio->ic;
2021 	sector_t logical_sector;
2022 	unsigned int n_sectors;
2023 
2024 	logical_sector = dio->range.logical_sector;
2025 	n_sectors = dio->range.n_sectors;
2026 	do {
2027 		struct bio_vec bv = bio_iovec(bio);
2028 		char *mem;
2029 
2030 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
2031 			bv.bv_len = n_sectors << SECTOR_SHIFT;
2032 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
2033 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
2034 retry_kmap:
2035 		mem = kmap_local_page(bv.bv_page);
2036 		if (likely(dio->op == REQ_OP_WRITE))
2037 			flush_dcache_page(bv.bv_page);
2038 
2039 		do {
2040 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
2041 
2042 			if (unlikely(dio->op == REQ_OP_READ)) {
2043 				struct journal_sector *js;
2044 				char *mem_ptr;
2045 				unsigned int s;
2046 
2047 				if (unlikely(journal_entry_is_inprogress(je))) {
2048 					flush_dcache_page(bv.bv_page);
2049 					kunmap_local(mem);
2050 
2051 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2052 					goto retry_kmap;
2053 				}
2054 				smp_rmb();
2055 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
2056 				js = access_journal_data(ic, journal_section, journal_entry);
2057 				mem_ptr = mem + bv.bv_offset;
2058 				s = 0;
2059 				do {
2060 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2061 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2062 					js++;
2063 					mem_ptr += 1 << SECTOR_SHIFT;
2064 				} while (++s < ic->sectors_per_block);
2065 #ifdef INTERNAL_VERIFY
2066 				if (ic->internal_hash) {
2067 					char checksums_onstack[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2068 
2069 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2070 					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2071 						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2072 							    logical_sector);
2073 						dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2074 								 bio, logical_sector, 0);
2075 					}
2076 				}
2077 #endif
2078 			}
2079 
2080 			if (!ic->internal_hash) {
2081 				struct bio_integrity_payload *bip = bio_integrity(bio);
2082 				unsigned int tag_todo = ic->tag_size;
2083 				char *tag_ptr = journal_entry_tag(ic, je);
2084 
2085 				if (bip) {
2086 					do {
2087 						struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2088 						unsigned int tag_now = min(biv.bv_len, tag_todo);
2089 						char *tag_addr;
2090 
2091 						BUG_ON(PageHighMem(biv.bv_page));
2092 						tag_addr = bvec_virt(&biv);
2093 						if (likely(dio->op == REQ_OP_WRITE))
2094 							memcpy(tag_ptr, tag_addr, tag_now);
2095 						else
2096 							memcpy(tag_addr, tag_ptr, tag_now);
2097 						bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2098 						tag_ptr += tag_now;
2099 						tag_todo -= tag_now;
2100 					} while (unlikely(tag_todo));
2101 				} else if (likely(dio->op == REQ_OP_WRITE))
2102 					memset(tag_ptr, 0, tag_todo);
2103 			}
2104 
2105 			if (likely(dio->op == REQ_OP_WRITE)) {
2106 				struct journal_sector *js;
2107 				unsigned int s;
2108 
2109 				js = access_journal_data(ic, journal_section, journal_entry);
2110 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2111 
2112 				s = 0;
2113 				do {
2114 					je->last_bytes[s] = js[s].commit_id;
2115 				} while (++s < ic->sectors_per_block);
2116 
2117 				if (ic->internal_hash) {
2118 					unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2119 
2120 					if (unlikely(digest_size > ic->tag_size)) {
2121 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2122 
2123 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2124 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2125 					} else
2126 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2127 				}
2128 
2129 				journal_entry_set_sector(je, logical_sector);
2130 			}
2131 			logical_sector += ic->sectors_per_block;
2132 
2133 			journal_entry++;
2134 			if (unlikely(journal_entry == ic->journal_section_entries)) {
2135 				journal_entry = 0;
2136 				journal_section++;
2137 				wraparound_section(ic, &journal_section);
2138 			}
2139 
2140 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2141 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2142 
2143 		if (unlikely(dio->op == REQ_OP_READ))
2144 			flush_dcache_page(bv.bv_page);
2145 		kunmap_local(mem);
2146 	} while (n_sectors);
2147 
2148 	if (likely(dio->op == REQ_OP_WRITE)) {
2149 		smp_mb();
2150 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2151 			wake_up(&ic->copy_to_journal_wait);
2152 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2153 			queue_work(ic->commit_wq, &ic->commit_work);
2154 		else
2155 			schedule_autocommit(ic);
2156 	} else
2157 		remove_range(ic, &dio->range);
2158 
2159 	if (unlikely(bio->bi_iter.bi_size)) {
2160 		sector_t area, offset;
2161 
2162 		dio->range.logical_sector = logical_sector;
2163 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2164 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2165 		return true;
2166 	}
2167 
2168 	return false;
2169 }
2170 
2171 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2172 {
2173 	struct dm_integrity_c *ic = dio->ic;
2174 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2175 	unsigned int journal_section, journal_entry;
2176 	unsigned int journal_read_pos;
2177 	struct completion read_comp;
2178 	bool discard_retried = false;
2179 	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2180 
2181 	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2182 		need_sync_io = true;
2183 
2184 	if (need_sync_io && from_map) {
2185 		INIT_WORK(&dio->work, integrity_bio_wait);
2186 		queue_work(ic->offload_wq, &dio->work);
2187 		return;
2188 	}
2189 
2190 lock_retry:
2191 	spin_lock_irq(&ic->endio_wait.lock);
2192 retry:
2193 	if (unlikely(dm_integrity_failed(ic))) {
2194 		spin_unlock_irq(&ic->endio_wait.lock);
2195 		do_endio(ic, bio);
2196 		return;
2197 	}
2198 	dio->range.n_sectors = bio_sectors(bio);
2199 	journal_read_pos = NOT_FOUND;
2200 	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2201 		if (dio->op == REQ_OP_WRITE) {
2202 			unsigned int next_entry, i, pos;
2203 			unsigned int ws, we, range_sectors;
2204 
2205 			dio->range.n_sectors = min(dio->range.n_sectors,
2206 						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2207 			if (unlikely(!dio->range.n_sectors)) {
2208 				if (from_map)
2209 					goto offload_to_thread;
2210 				sleep_on_endio_wait(ic);
2211 				goto retry;
2212 			}
2213 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2214 			ic->free_sectors -= range_sectors;
2215 			journal_section = ic->free_section;
2216 			journal_entry = ic->free_section_entry;
2217 
2218 			next_entry = ic->free_section_entry + range_sectors;
2219 			ic->free_section_entry = next_entry % ic->journal_section_entries;
2220 			ic->free_section += next_entry / ic->journal_section_entries;
2221 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2222 			wraparound_section(ic, &ic->free_section);
2223 
2224 			pos = journal_section * ic->journal_section_entries + journal_entry;
2225 			ws = journal_section;
2226 			we = journal_entry;
2227 			i = 0;
2228 			do {
2229 				struct journal_entry *je;
2230 
2231 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2232 				pos++;
2233 				if (unlikely(pos >= ic->journal_entries))
2234 					pos = 0;
2235 
2236 				je = access_journal_entry(ic, ws, we);
2237 				BUG_ON(!journal_entry_is_unused(je));
2238 				journal_entry_set_inprogress(je);
2239 				we++;
2240 				if (unlikely(we == ic->journal_section_entries)) {
2241 					we = 0;
2242 					ws++;
2243 					wraparound_section(ic, &ws);
2244 				}
2245 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2246 
2247 			spin_unlock_irq(&ic->endio_wait.lock);
2248 			goto journal_read_write;
2249 		} else {
2250 			sector_t next_sector;
2251 
2252 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2253 			if (likely(journal_read_pos == NOT_FOUND)) {
2254 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2255 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2256 			} else {
2257 				unsigned int i;
2258 				unsigned int jp = journal_read_pos + 1;
2259 
2260 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2261 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2262 						break;
2263 				}
2264 				dio->range.n_sectors = i;
2265 			}
2266 		}
2267 	}
2268 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2269 		/*
2270 		 * We must not sleep in the request routine because it could
2271 		 * stall bios on current->bio_list.
2272 		 * So, we offload the bio to a workqueue if we have to sleep.
2273 		 */
2274 		if (from_map) {
2275 offload_to_thread:
2276 			spin_unlock_irq(&ic->endio_wait.lock);
2277 			INIT_WORK(&dio->work, integrity_bio_wait);
2278 			queue_work(ic->wait_wq, &dio->work);
2279 			return;
2280 		}
2281 		if (journal_read_pos != NOT_FOUND)
2282 			dio->range.n_sectors = ic->sectors_per_block;
2283 		wait_and_add_new_range(ic, &dio->range);
2284 		/*
2285 		 * wait_and_add_new_range drops the spinlock, so the journal
2286 		 * may have been changed arbitrarily. We need to recheck.
2287 		 * To simplify the code, we restrict I/O size to just one block.
2288 		 */
2289 		if (journal_read_pos != NOT_FOUND) {
2290 			sector_t next_sector;
2291 			unsigned int new_pos;
2292 
2293 			new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2294 			if (unlikely(new_pos != journal_read_pos)) {
2295 				remove_range_unlocked(ic, &dio->range);
2296 				goto retry;
2297 			}
2298 		}
2299 	}
2300 	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2301 		sector_t next_sector;
2302 		unsigned int new_pos;
2303 
2304 		new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2305 		if (unlikely(new_pos != NOT_FOUND) ||
2306 		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2307 			remove_range_unlocked(ic, &dio->range);
2308 			spin_unlock_irq(&ic->endio_wait.lock);
2309 			queue_work(ic->commit_wq, &ic->commit_work);
2310 			flush_workqueue(ic->commit_wq);
2311 			queue_work(ic->writer_wq, &ic->writer_work);
2312 			flush_workqueue(ic->writer_wq);
2313 			discard_retried = true;
2314 			goto lock_retry;
2315 		}
2316 	}
2317 	spin_unlock_irq(&ic->endio_wait.lock);
2318 
2319 	if (unlikely(journal_read_pos != NOT_FOUND)) {
2320 		journal_section = journal_read_pos / ic->journal_section_entries;
2321 		journal_entry = journal_read_pos % ic->journal_section_entries;
2322 		goto journal_read_write;
2323 	}
2324 
2325 	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2326 		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2327 				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2328 			struct bitmap_block_status *bbs;
2329 
2330 			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2331 			spin_lock(&bbs->bio_queue_lock);
2332 			bio_list_add(&bbs->bio_queue, bio);
2333 			spin_unlock(&bbs->bio_queue_lock);
2334 			queue_work(ic->writer_wq, &bbs->work);
2335 			return;
2336 		}
2337 	}
2338 
2339 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2340 
2341 	if (need_sync_io) {
2342 		init_completion(&read_comp);
2343 		dio->completion = &read_comp;
2344 	} else
2345 		dio->completion = NULL;
2346 
2347 	dm_bio_record(&dio->bio_details, bio);
2348 	bio_set_dev(bio, ic->dev->bdev);
2349 	bio->bi_integrity = NULL;
2350 	bio->bi_opf &= ~REQ_INTEGRITY;
2351 	bio->bi_end_io = integrity_end_io;
2352 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2353 
2354 	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2355 		integrity_metadata(&dio->work);
2356 		dm_integrity_flush_buffers(ic, false);
2357 
2358 		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2359 		dio->completion = NULL;
2360 
2361 		submit_bio_noacct(bio);
2362 
2363 		return;
2364 	}
2365 
2366 	submit_bio_noacct(bio);
2367 
2368 	if (need_sync_io) {
2369 		wait_for_completion_io(&read_comp);
2370 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2371 		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2372 			goto skip_check;
2373 		if (ic->mode == 'B') {
2374 			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2375 					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2376 				goto skip_check;
2377 		}
2378 
2379 		if (likely(!bio->bi_status))
2380 			integrity_metadata(&dio->work);
2381 		else
2382 skip_check:
2383 			dec_in_flight(dio);
2384 	} else {
2385 		INIT_WORK(&dio->work, integrity_metadata);
2386 		queue_work(ic->metadata_wq, &dio->work);
2387 	}
2388 
2389 	return;
2390 
2391 journal_read_write:
2392 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2393 		goto lock_retry;
2394 
2395 	do_endio_flush(ic, dio);
2396 }
2397 
2398 static int dm_integrity_map_inline(struct dm_integrity_io *dio)
2399 {
2400 	struct dm_integrity_c *ic = dio->ic;
2401 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2402 	struct bio_integrity_payload *bip;
2403 	unsigned payload_len, digest_size, extra_size, ret;
2404 
2405 	dio->integrity_payload = NULL;
2406 	dio->integrity_payload_from_mempool = false;
2407 
2408 	if (unlikely(bio_integrity(bio))) {
2409 		bio->bi_status = BLK_STS_NOTSUPP;
2410 		bio_endio(bio);
2411 		return DM_MAPIO_SUBMITTED;
2412 	}
2413 
2414 	bio_set_dev(bio, ic->dev->bdev);
2415 	if (unlikely((bio->bi_opf & REQ_PREFLUSH) != 0))
2416 		return DM_MAPIO_REMAPPED;
2417 
2418 retry:
2419 	payload_len = ic->tuple_size * (bio_sectors(bio) >> ic->sb->log2_sectors_per_block);
2420 	digest_size = crypto_shash_digestsize(ic->internal_hash);
2421 	extra_size = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
2422 	payload_len += extra_size;
2423 	dio->integrity_payload = kmalloc(payload_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
2424 	if (unlikely(!dio->integrity_payload)) {
2425 		const unsigned x_size = PAGE_SIZE << 1;
2426 		if (payload_len > x_size) {
2427 			unsigned sectors = ((x_size - extra_size) / ic->tuple_size) << ic->sb->log2_sectors_per_block;
2428 			if (WARN_ON(!sectors || sectors >= bio_sectors(bio))) {
2429 				bio->bi_status = BLK_STS_NOTSUPP;
2430 				bio_endio(bio);
2431 				return DM_MAPIO_SUBMITTED;
2432 			}
2433 			dm_accept_partial_bio(bio, sectors);
2434 			goto retry;
2435 		}
2436 		dio->integrity_payload = page_to_virt((struct page *)mempool_alloc(&ic->recheck_pool, GFP_NOIO));
2437 		dio->integrity_payload_from_mempool = true;
2438 	}
2439 
2440 	bio->bi_iter.bi_sector = dm_target_offset(ic->ti, bio->bi_iter.bi_sector);
2441 	dio->bio_details.bi_iter = bio->bi_iter;
2442 
2443 	if (unlikely(!dm_integrity_check_limits(ic, bio->bi_iter.bi_sector, bio))) {
2444 		return DM_MAPIO_KILL;
2445 	}
2446 
2447 	bio->bi_iter.bi_sector += ic->start + SB_SECTORS;
2448 
2449 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
2450 	if (unlikely(IS_ERR(bip))) {
2451 		bio->bi_status = errno_to_blk_status(PTR_ERR(bip));
2452 		bio_endio(bio);
2453 		return DM_MAPIO_SUBMITTED;
2454 	}
2455 
2456 	if (dio->op == REQ_OP_WRITE) {
2457 		unsigned pos = 0;
2458 		while (dio->bio_details.bi_iter.bi_size) {
2459 			struct bio_vec bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2460 			const char *mem = bvec_kmap_local(&bv);
2461 			if (ic->tag_size < ic->tuple_size)
2462 				memset(dio->integrity_payload + pos + ic->tag_size, 0, ic->tuple_size - ic->tuple_size);
2463 			integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, mem, dio->integrity_payload + pos);
2464 			kunmap_local(mem);
2465 			pos += ic->tuple_size;
2466 			bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2467 		}
2468 	}
2469 
2470 	ret = bio_integrity_add_page(bio, virt_to_page(dio->integrity_payload),
2471 					payload_len, offset_in_page(dio->integrity_payload));
2472 	if (unlikely(ret != payload_len)) {
2473 		bio->bi_status = BLK_STS_RESOURCE;
2474 		bio_endio(bio);
2475 		return DM_MAPIO_SUBMITTED;
2476 	}
2477 
2478 	return DM_MAPIO_REMAPPED;
2479 }
2480 
2481 static inline void dm_integrity_free_payload(struct dm_integrity_io *dio)
2482 {
2483 	struct dm_integrity_c *ic = dio->ic;
2484 	if (unlikely(dio->integrity_payload_from_mempool))
2485 		mempool_free(virt_to_page(dio->integrity_payload), &ic->recheck_pool);
2486 	else
2487 		kfree(dio->integrity_payload);
2488 	dio->integrity_payload = NULL;
2489 	dio->integrity_payload_from_mempool = false;
2490 }
2491 
2492 static void dm_integrity_inline_recheck(struct work_struct *w)
2493 {
2494 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2495 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2496 	struct dm_integrity_c *ic = dio->ic;
2497 	struct bio *outgoing_bio;
2498 	void *outgoing_data;
2499 
2500 	dio->integrity_payload = page_to_virt((struct page *)mempool_alloc(&ic->recheck_pool, GFP_NOIO));
2501 	dio->integrity_payload_from_mempool = true;
2502 
2503 	outgoing_data = dio->integrity_payload + PAGE_SIZE;
2504 
2505 	while (dio->bio_details.bi_iter.bi_size) {
2506 		char digest[HASH_MAX_DIGESTSIZE];
2507 		int r;
2508 		struct bio_integrity_payload *bip;
2509 		struct bio_vec bv;
2510 		char *mem;
2511 
2512 		outgoing_bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_READ, GFP_NOIO, &ic->recheck_bios);
2513 
2514 		r = bio_add_page(outgoing_bio, virt_to_page(outgoing_data), ic->sectors_per_block << SECTOR_SHIFT, 0);
2515 		if (unlikely(r != (ic->sectors_per_block << SECTOR_SHIFT))) {
2516 			bio_put(outgoing_bio);
2517 			bio->bi_status = BLK_STS_RESOURCE;
2518 			bio_endio(bio);
2519 			return;
2520 		}
2521 
2522 		bip = bio_integrity_alloc(outgoing_bio, GFP_NOIO, 1);
2523 		if (unlikely(IS_ERR(bip))) {
2524 			bio_put(outgoing_bio);
2525 			bio->bi_status = errno_to_blk_status(PTR_ERR(bip));
2526 			bio_endio(bio);
2527 			return;
2528 		}
2529 
2530 		r = bio_integrity_add_page(outgoing_bio, virt_to_page(dio->integrity_payload), ic->tuple_size, 0);
2531 		if (unlikely(r != ic->tuple_size)) {
2532 			bio_put(outgoing_bio);
2533 			bio->bi_status = BLK_STS_RESOURCE;
2534 			bio_endio(bio);
2535 			return;
2536 		}
2537 
2538 		outgoing_bio->bi_iter.bi_sector = dio->bio_details.bi_iter.bi_sector + ic->start + SB_SECTORS;
2539 
2540 		r = submit_bio_wait(outgoing_bio);
2541 		if (unlikely(r != 0)) {
2542 			bio_put(outgoing_bio);
2543 			bio->bi_status = errno_to_blk_status(r);
2544 			bio_endio(bio);
2545 			return;
2546 		}
2547 		bio_put(outgoing_bio);
2548 
2549 		integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, outgoing_data, digest);
2550 		if (unlikely(memcmp(digest, dio->integrity_payload, min(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)))) {
2551 			DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
2552 				ic->dev->bdev, dio->bio_details.bi_iter.bi_sector);
2553 			atomic64_inc(&ic->number_of_mismatches);
2554 			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
2555 				bio, dio->bio_details.bi_iter.bi_sector, 0);
2556 
2557 			bio->bi_status = BLK_STS_PROTECTION;
2558 			bio_endio(bio);
2559 			return;
2560 		}
2561 
2562 		bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2563 		mem = bvec_kmap_local(&bv);
2564 		memcpy(mem, outgoing_data, ic->sectors_per_block << SECTOR_SHIFT);
2565 		kunmap_local(mem);
2566 
2567 		bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2568 	}
2569 
2570 	bio_endio(bio);
2571 }
2572 
2573 static int dm_integrity_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
2574 {
2575 	struct dm_integrity_c *ic = ti->private;
2576 	if (ic->mode == 'I') {
2577 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2578 		if (dio->op == REQ_OP_READ && likely(*status == BLK_STS_OK)) {
2579 			unsigned pos = 0;
2580 			while (dio->bio_details.bi_iter.bi_size) {
2581 				char digest[HASH_MAX_DIGESTSIZE];
2582 				struct bio_vec bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2583 				char *mem = bvec_kmap_local(&bv);
2584 				//memset(mem, 0xff, ic->sectors_per_block << SECTOR_SHIFT);
2585 				integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, mem, digest);
2586 				if (unlikely(memcmp(digest, dio->integrity_payload + pos,
2587 						min(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)))) {
2588 					kunmap_local(mem);
2589 					dm_integrity_free_payload(dio);
2590 					INIT_WORK(&dio->work, dm_integrity_inline_recheck);
2591 					queue_work(ic->offload_wq, &dio->work);
2592 					return DM_ENDIO_INCOMPLETE;
2593 				}
2594 				kunmap_local(mem);
2595 				pos += ic->tuple_size;
2596 				bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2597 			}
2598 		}
2599 		if (likely(dio->op == REQ_OP_READ) || likely(dio->op == REQ_OP_WRITE)) {
2600 			dm_integrity_free_payload(dio);
2601 		}
2602 	}
2603 	return DM_ENDIO_DONE;
2604 }
2605 
2606 static void integrity_bio_wait(struct work_struct *w)
2607 {
2608 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2609 
2610 	dm_integrity_map_continue(dio, false);
2611 }
2612 
2613 static void pad_uncommitted(struct dm_integrity_c *ic)
2614 {
2615 	if (ic->free_section_entry) {
2616 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2617 		ic->free_section_entry = 0;
2618 		ic->free_section++;
2619 		wraparound_section(ic, &ic->free_section);
2620 		ic->n_uncommitted_sections++;
2621 	}
2622 	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2623 		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2624 		    ic->journal_section_entries + ic->free_sectors)) {
2625 		DMCRIT("journal_sections %u, journal_section_entries %u, "
2626 		       "n_uncommitted_sections %u, n_committed_sections %u, "
2627 		       "journal_section_entries %u, free_sectors %u",
2628 		       ic->journal_sections, ic->journal_section_entries,
2629 		       ic->n_uncommitted_sections, ic->n_committed_sections,
2630 		       ic->journal_section_entries, ic->free_sectors);
2631 	}
2632 }
2633 
2634 static void integrity_commit(struct work_struct *w)
2635 {
2636 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2637 	unsigned int commit_start, commit_sections;
2638 	unsigned int i, j, n;
2639 	struct bio *flushes;
2640 
2641 	del_timer(&ic->autocommit_timer);
2642 
2643 	if (ic->mode == 'I')
2644 		return;
2645 
2646 	spin_lock_irq(&ic->endio_wait.lock);
2647 	flushes = bio_list_get(&ic->flush_bio_list);
2648 	if (unlikely(ic->mode != 'J')) {
2649 		spin_unlock_irq(&ic->endio_wait.lock);
2650 		dm_integrity_flush_buffers(ic, true);
2651 		goto release_flush_bios;
2652 	}
2653 
2654 	pad_uncommitted(ic);
2655 	commit_start = ic->uncommitted_section;
2656 	commit_sections = ic->n_uncommitted_sections;
2657 	spin_unlock_irq(&ic->endio_wait.lock);
2658 
2659 	if (!commit_sections)
2660 		goto release_flush_bios;
2661 
2662 	ic->wrote_to_journal = true;
2663 
2664 	i = commit_start;
2665 	for (n = 0; n < commit_sections; n++) {
2666 		for (j = 0; j < ic->journal_section_entries; j++) {
2667 			struct journal_entry *je;
2668 
2669 			je = access_journal_entry(ic, i, j);
2670 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2671 		}
2672 		for (j = 0; j < ic->journal_section_sectors; j++) {
2673 			struct journal_sector *js;
2674 
2675 			js = access_journal(ic, i, j);
2676 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2677 		}
2678 		i++;
2679 		if (unlikely(i >= ic->journal_sections))
2680 			ic->commit_seq = next_commit_seq(ic->commit_seq);
2681 		wraparound_section(ic, &i);
2682 	}
2683 	smp_rmb();
2684 
2685 	write_journal(ic, commit_start, commit_sections);
2686 
2687 	spin_lock_irq(&ic->endio_wait.lock);
2688 	ic->uncommitted_section += commit_sections;
2689 	wraparound_section(ic, &ic->uncommitted_section);
2690 	ic->n_uncommitted_sections -= commit_sections;
2691 	ic->n_committed_sections += commit_sections;
2692 	spin_unlock_irq(&ic->endio_wait.lock);
2693 
2694 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2695 		queue_work(ic->writer_wq, &ic->writer_work);
2696 
2697 release_flush_bios:
2698 	while (flushes) {
2699 		struct bio *next = flushes->bi_next;
2700 
2701 		flushes->bi_next = NULL;
2702 		do_endio(ic, flushes);
2703 		flushes = next;
2704 	}
2705 }
2706 
2707 static void complete_copy_from_journal(unsigned long error, void *context)
2708 {
2709 	struct journal_io *io = context;
2710 	struct journal_completion *comp = io->comp;
2711 	struct dm_integrity_c *ic = comp->ic;
2712 
2713 	remove_range(ic, &io->range);
2714 	mempool_free(io, &ic->journal_io_mempool);
2715 	if (unlikely(error != 0))
2716 		dm_integrity_io_error(ic, "copying from journal", -EIO);
2717 	complete_journal_op(comp);
2718 }
2719 
2720 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2721 			       struct journal_entry *je)
2722 {
2723 	unsigned int s = 0;
2724 
2725 	do {
2726 		js->commit_id = je->last_bytes[s];
2727 		js++;
2728 	} while (++s < ic->sectors_per_block);
2729 }
2730 
2731 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2732 			     unsigned int write_sections, bool from_replay)
2733 {
2734 	unsigned int i, j, n;
2735 	struct journal_completion comp;
2736 	struct blk_plug plug;
2737 
2738 	blk_start_plug(&plug);
2739 
2740 	comp.ic = ic;
2741 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2742 	init_completion(&comp.comp);
2743 
2744 	i = write_start;
2745 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2746 #ifndef INTERNAL_VERIFY
2747 		if (unlikely(from_replay))
2748 #endif
2749 			rw_section_mac(ic, i, false);
2750 		for (j = 0; j < ic->journal_section_entries; j++) {
2751 			struct journal_entry *je = access_journal_entry(ic, i, j);
2752 			sector_t sec, area, offset;
2753 			unsigned int k, l, next_loop;
2754 			sector_t metadata_block;
2755 			unsigned int metadata_offset;
2756 			struct journal_io *io;
2757 
2758 			if (journal_entry_is_unused(je))
2759 				continue;
2760 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2761 			sec = journal_entry_get_sector(je);
2762 			if (unlikely(from_replay)) {
2763 				if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2764 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2765 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2766 				}
2767 				if (unlikely(sec >= ic->provided_data_sectors)) {
2768 					journal_entry_set_unused(je);
2769 					continue;
2770 				}
2771 			}
2772 			get_area_and_offset(ic, sec, &area, &offset);
2773 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2774 			for (k = j + 1; k < ic->journal_section_entries; k++) {
2775 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2776 				sector_t sec2, area2, offset2;
2777 
2778 				if (journal_entry_is_unused(je2))
2779 					break;
2780 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2781 				sec2 = journal_entry_get_sector(je2);
2782 				if (unlikely(sec2 >= ic->provided_data_sectors))
2783 					break;
2784 				get_area_and_offset(ic, sec2, &area2, &offset2);
2785 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2786 					break;
2787 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2788 			}
2789 			next_loop = k - 1;
2790 
2791 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2792 			io->comp = &comp;
2793 			io->range.logical_sector = sec;
2794 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2795 
2796 			spin_lock_irq(&ic->endio_wait.lock);
2797 			add_new_range_and_wait(ic, &io->range);
2798 
2799 			if (likely(!from_replay)) {
2800 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2801 
2802 				/* don't write if there is newer committed sector */
2803 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2804 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2805 
2806 					journal_entry_set_unused(je2);
2807 					remove_journal_node(ic, &section_node[j]);
2808 					j++;
2809 					sec += ic->sectors_per_block;
2810 					offset += ic->sectors_per_block;
2811 				}
2812 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2813 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2814 
2815 					journal_entry_set_unused(je2);
2816 					remove_journal_node(ic, &section_node[k - 1]);
2817 					k--;
2818 				}
2819 				if (j == k) {
2820 					remove_range_unlocked(ic, &io->range);
2821 					spin_unlock_irq(&ic->endio_wait.lock);
2822 					mempool_free(io, &ic->journal_io_mempool);
2823 					goto skip_io;
2824 				}
2825 				for (l = j; l < k; l++)
2826 					remove_journal_node(ic, &section_node[l]);
2827 			}
2828 			spin_unlock_irq(&ic->endio_wait.lock);
2829 
2830 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2831 			for (l = j; l < k; l++) {
2832 				int r;
2833 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2834 
2835 				if (
2836 #ifndef INTERNAL_VERIFY
2837 				    unlikely(from_replay) &&
2838 #endif
2839 				    ic->internal_hash) {
2840 					char test_tag[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2841 
2842 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2843 								  (char *)access_journal_data(ic, i, l), test_tag);
2844 					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2845 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2846 						dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2847 					}
2848 				}
2849 
2850 				journal_entry_set_unused(je2);
2851 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2852 							ic->tag_size, TAG_WRITE);
2853 				if (unlikely(r))
2854 					dm_integrity_io_error(ic, "reading tags", r);
2855 			}
2856 
2857 			atomic_inc(&comp.in_flight);
2858 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2859 					  (k - j) << ic->sb->log2_sectors_per_block,
2860 					  get_data_sector(ic, area, offset),
2861 					  complete_copy_from_journal, io);
2862 skip_io:
2863 			j = next_loop;
2864 		}
2865 	}
2866 
2867 	dm_bufio_write_dirty_buffers_async(ic->bufio);
2868 
2869 	blk_finish_plug(&plug);
2870 
2871 	complete_journal_op(&comp);
2872 	wait_for_completion_io(&comp.comp);
2873 
2874 	dm_integrity_flush_buffers(ic, true);
2875 }
2876 
2877 static void integrity_writer(struct work_struct *w)
2878 {
2879 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2880 	unsigned int write_start, write_sections;
2881 	unsigned int prev_free_sectors;
2882 
2883 	spin_lock_irq(&ic->endio_wait.lock);
2884 	write_start = ic->committed_section;
2885 	write_sections = ic->n_committed_sections;
2886 	spin_unlock_irq(&ic->endio_wait.lock);
2887 
2888 	if (!write_sections)
2889 		return;
2890 
2891 	do_journal_write(ic, write_start, write_sections, false);
2892 
2893 	spin_lock_irq(&ic->endio_wait.lock);
2894 
2895 	ic->committed_section += write_sections;
2896 	wraparound_section(ic, &ic->committed_section);
2897 	ic->n_committed_sections -= write_sections;
2898 
2899 	prev_free_sectors = ic->free_sectors;
2900 	ic->free_sectors += write_sections * ic->journal_section_entries;
2901 	if (unlikely(!prev_free_sectors))
2902 		wake_up_locked(&ic->endio_wait);
2903 
2904 	spin_unlock_irq(&ic->endio_wait.lock);
2905 }
2906 
2907 static void recalc_write_super(struct dm_integrity_c *ic)
2908 {
2909 	int r;
2910 
2911 	dm_integrity_flush_buffers(ic, false);
2912 	if (dm_integrity_failed(ic))
2913 		return;
2914 
2915 	r = sync_rw_sb(ic, REQ_OP_WRITE);
2916 	if (unlikely(r))
2917 		dm_integrity_io_error(ic, "writing superblock", r);
2918 }
2919 
2920 static void integrity_recalc(struct work_struct *w)
2921 {
2922 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2923 	size_t recalc_tags_size;
2924 	u8 *recalc_buffer = NULL;
2925 	u8 *recalc_tags = NULL;
2926 	struct dm_integrity_range range;
2927 	struct dm_io_request io_req;
2928 	struct dm_io_region io_loc;
2929 	sector_t area, offset;
2930 	sector_t metadata_block;
2931 	unsigned int metadata_offset;
2932 	sector_t logical_sector, n_sectors;
2933 	__u8 *t;
2934 	unsigned int i;
2935 	int r;
2936 	unsigned int super_counter = 0;
2937 	unsigned recalc_sectors = RECALC_SECTORS;
2938 
2939 retry:
2940 	recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
2941 	if (!recalc_buffer) {
2942 oom:
2943 		recalc_sectors >>= 1;
2944 		if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
2945 			goto retry;
2946 		DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2947 		goto free_ret;
2948 	}
2949 	recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2950 	if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
2951 		recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
2952 	recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
2953 	if (!recalc_tags) {
2954 		vfree(recalc_buffer);
2955 		recalc_buffer = NULL;
2956 		goto oom;
2957 	}
2958 
2959 	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2960 
2961 	spin_lock_irq(&ic->endio_wait.lock);
2962 
2963 next_chunk:
2964 
2965 	if (unlikely(dm_post_suspending(ic->ti)))
2966 		goto unlock_ret;
2967 
2968 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2969 	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2970 		if (ic->mode == 'B') {
2971 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2972 			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2973 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2974 		}
2975 		goto unlock_ret;
2976 	}
2977 
2978 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2979 	range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
2980 	if (!ic->meta_dev)
2981 		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2982 
2983 	add_new_range_and_wait(ic, &range);
2984 	spin_unlock_irq(&ic->endio_wait.lock);
2985 	logical_sector = range.logical_sector;
2986 	n_sectors = range.n_sectors;
2987 
2988 	if (ic->mode == 'B') {
2989 		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2990 			goto advance_and_next;
2991 
2992 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2993 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2994 			logical_sector += ic->sectors_per_block;
2995 			n_sectors -= ic->sectors_per_block;
2996 			cond_resched();
2997 		}
2998 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2999 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
3000 			n_sectors -= ic->sectors_per_block;
3001 			cond_resched();
3002 		}
3003 		get_area_and_offset(ic, logical_sector, &area, &offset);
3004 	}
3005 
3006 	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
3007 
3008 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
3009 		recalc_write_super(ic);
3010 		if (ic->mode == 'B')
3011 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
3012 
3013 		super_counter = 0;
3014 	}
3015 
3016 	if (unlikely(dm_integrity_failed(ic)))
3017 		goto err;
3018 
3019 	io_req.bi_opf = REQ_OP_READ;
3020 	io_req.mem.type = DM_IO_VMA;
3021 	io_req.mem.ptr.addr = recalc_buffer;
3022 	io_req.notify.fn = NULL;
3023 	io_req.client = ic->io;
3024 	io_loc.bdev = ic->dev->bdev;
3025 	io_loc.sector = get_data_sector(ic, area, offset);
3026 	io_loc.count = n_sectors;
3027 
3028 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
3029 	if (unlikely(r)) {
3030 		dm_integrity_io_error(ic, "reading data", r);
3031 		goto err;
3032 	}
3033 
3034 	t = recalc_tags;
3035 	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
3036 		integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
3037 		t += ic->tag_size;
3038 	}
3039 
3040 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
3041 
3042 	r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
3043 	if (unlikely(r)) {
3044 		dm_integrity_io_error(ic, "writing tags", r);
3045 		goto err;
3046 	}
3047 
3048 	if (ic->mode == 'B') {
3049 		sector_t start, end;
3050 
3051 		start = (range.logical_sector >>
3052 			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
3053 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3054 		end = ((range.logical_sector + range.n_sectors) >>
3055 		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
3056 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3057 		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
3058 	}
3059 
3060 advance_and_next:
3061 	cond_resched();
3062 
3063 	spin_lock_irq(&ic->endio_wait.lock);
3064 	remove_range_unlocked(ic, &range);
3065 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
3066 	goto next_chunk;
3067 
3068 err:
3069 	remove_range(ic, &range);
3070 	goto free_ret;
3071 
3072 unlock_ret:
3073 	spin_unlock_irq(&ic->endio_wait.lock);
3074 
3075 	recalc_write_super(ic);
3076 
3077 free_ret:
3078 	vfree(recalc_buffer);
3079 	kvfree(recalc_tags);
3080 }
3081 
3082 static void bitmap_block_work(struct work_struct *w)
3083 {
3084 	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
3085 	struct dm_integrity_c *ic = bbs->ic;
3086 	struct bio *bio;
3087 	struct bio_list bio_queue;
3088 	struct bio_list waiting;
3089 
3090 	bio_list_init(&waiting);
3091 
3092 	spin_lock(&bbs->bio_queue_lock);
3093 	bio_queue = bbs->bio_queue;
3094 	bio_list_init(&bbs->bio_queue);
3095 	spin_unlock(&bbs->bio_queue_lock);
3096 
3097 	while ((bio = bio_list_pop(&bio_queue))) {
3098 		struct dm_integrity_io *dio;
3099 
3100 		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
3101 
3102 		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
3103 				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
3104 			remove_range(ic, &dio->range);
3105 			INIT_WORK(&dio->work, integrity_bio_wait);
3106 			queue_work(ic->offload_wq, &dio->work);
3107 		} else {
3108 			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
3109 					dio->range.n_sectors, BITMAP_OP_SET);
3110 			bio_list_add(&waiting, bio);
3111 		}
3112 	}
3113 
3114 	if (bio_list_empty(&waiting))
3115 		return;
3116 
3117 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
3118 			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
3119 			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
3120 
3121 	while ((bio = bio_list_pop(&waiting))) {
3122 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
3123 
3124 		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
3125 				dio->range.n_sectors, BITMAP_OP_SET);
3126 
3127 		remove_range(ic, &dio->range);
3128 		INIT_WORK(&dio->work, integrity_bio_wait);
3129 		queue_work(ic->offload_wq, &dio->work);
3130 	}
3131 
3132 	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
3133 }
3134 
3135 static void bitmap_flush_work(struct work_struct *work)
3136 {
3137 	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
3138 	struct dm_integrity_range range;
3139 	unsigned long limit;
3140 	struct bio *bio;
3141 
3142 	dm_integrity_flush_buffers(ic, false);
3143 
3144 	range.logical_sector = 0;
3145 	range.n_sectors = ic->provided_data_sectors;
3146 
3147 	spin_lock_irq(&ic->endio_wait.lock);
3148 	add_new_range_and_wait(ic, &range);
3149 	spin_unlock_irq(&ic->endio_wait.lock);
3150 
3151 	dm_integrity_flush_buffers(ic, true);
3152 
3153 	limit = ic->provided_data_sectors;
3154 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3155 		limit = le64_to_cpu(ic->sb->recalc_sector)
3156 			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
3157 			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3158 	}
3159 	/*DEBUG_print("zeroing journal\n");*/
3160 	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
3161 	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
3162 
3163 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3164 			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3165 
3166 	spin_lock_irq(&ic->endio_wait.lock);
3167 	remove_range_unlocked(ic, &range);
3168 	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
3169 		bio_endio(bio);
3170 		spin_unlock_irq(&ic->endio_wait.lock);
3171 		spin_lock_irq(&ic->endio_wait.lock);
3172 	}
3173 	spin_unlock_irq(&ic->endio_wait.lock);
3174 }
3175 
3176 
3177 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
3178 			 unsigned int n_sections, unsigned char commit_seq)
3179 {
3180 	unsigned int i, j, n;
3181 
3182 	if (!n_sections)
3183 		return;
3184 
3185 	for (n = 0; n < n_sections; n++) {
3186 		i = start_section + n;
3187 		wraparound_section(ic, &i);
3188 		for (j = 0; j < ic->journal_section_sectors; j++) {
3189 			struct journal_sector *js = access_journal(ic, i, j);
3190 
3191 			BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
3192 			memset(&js->sectors, 0, sizeof(js->sectors));
3193 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
3194 		}
3195 		for (j = 0; j < ic->journal_section_entries; j++) {
3196 			struct journal_entry *je = access_journal_entry(ic, i, j);
3197 
3198 			journal_entry_set_unused(je);
3199 		}
3200 	}
3201 
3202 	write_journal(ic, start_section, n_sections);
3203 }
3204 
3205 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
3206 {
3207 	unsigned char k;
3208 
3209 	for (k = 0; k < N_COMMIT_IDS; k++) {
3210 		if (dm_integrity_commit_id(ic, i, j, k) == id)
3211 			return k;
3212 	}
3213 	dm_integrity_io_error(ic, "journal commit id", -EIO);
3214 	return -EIO;
3215 }
3216 
3217 static void replay_journal(struct dm_integrity_c *ic)
3218 {
3219 	unsigned int i, j;
3220 	bool used_commit_ids[N_COMMIT_IDS];
3221 	unsigned int max_commit_id_sections[N_COMMIT_IDS];
3222 	unsigned int write_start, write_sections;
3223 	unsigned int continue_section;
3224 	bool journal_empty;
3225 	unsigned char unused, last_used, want_commit_seq;
3226 
3227 	if (ic->mode == 'R')
3228 		return;
3229 
3230 	if (ic->journal_uptodate)
3231 		return;
3232 
3233 	last_used = 0;
3234 	write_start = 0;
3235 
3236 	if (!ic->just_formatted) {
3237 		DEBUG_print("reading journal\n");
3238 		rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
3239 		if (ic->journal_io)
3240 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
3241 		if (ic->journal_io) {
3242 			struct journal_completion crypt_comp;
3243 
3244 			crypt_comp.ic = ic;
3245 			init_completion(&crypt_comp.comp);
3246 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
3247 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
3248 			wait_for_completion(&crypt_comp.comp);
3249 		}
3250 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
3251 	}
3252 
3253 	if (dm_integrity_failed(ic))
3254 		goto clear_journal;
3255 
3256 	journal_empty = true;
3257 	memset(used_commit_ids, 0, sizeof(used_commit_ids));
3258 	memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
3259 	for (i = 0; i < ic->journal_sections; i++) {
3260 		for (j = 0; j < ic->journal_section_sectors; j++) {
3261 			int k;
3262 			struct journal_sector *js = access_journal(ic, i, j);
3263 
3264 			k = find_commit_seq(ic, i, j, js->commit_id);
3265 			if (k < 0)
3266 				goto clear_journal;
3267 			used_commit_ids[k] = true;
3268 			max_commit_id_sections[k] = i;
3269 		}
3270 		if (journal_empty) {
3271 			for (j = 0; j < ic->journal_section_entries; j++) {
3272 				struct journal_entry *je = access_journal_entry(ic, i, j);
3273 
3274 				if (!journal_entry_is_unused(je)) {
3275 					journal_empty = false;
3276 					break;
3277 				}
3278 			}
3279 		}
3280 	}
3281 
3282 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3283 		unused = N_COMMIT_IDS - 1;
3284 		while (unused && !used_commit_ids[unused - 1])
3285 			unused--;
3286 	} else {
3287 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
3288 			if (!used_commit_ids[unused])
3289 				break;
3290 		if (unused == N_COMMIT_IDS) {
3291 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
3292 			goto clear_journal;
3293 		}
3294 	}
3295 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3296 		    unused, used_commit_ids[0], used_commit_ids[1],
3297 		    used_commit_ids[2], used_commit_ids[3]);
3298 
3299 	last_used = prev_commit_seq(unused);
3300 	want_commit_seq = prev_commit_seq(last_used);
3301 
3302 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3303 		journal_empty = true;
3304 
3305 	write_start = max_commit_id_sections[last_used] + 1;
3306 	if (unlikely(write_start >= ic->journal_sections))
3307 		want_commit_seq = next_commit_seq(want_commit_seq);
3308 	wraparound_section(ic, &write_start);
3309 
3310 	i = write_start;
3311 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3312 		for (j = 0; j < ic->journal_section_sectors; j++) {
3313 			struct journal_sector *js = access_journal(ic, i, j);
3314 
3315 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3316 				/*
3317 				 * This could be caused by crash during writing.
3318 				 * We won't replay the inconsistent part of the
3319 				 * journal.
3320 				 */
3321 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3322 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3323 				goto brk;
3324 			}
3325 		}
3326 		i++;
3327 		if (unlikely(i >= ic->journal_sections))
3328 			want_commit_seq = next_commit_seq(want_commit_seq);
3329 		wraparound_section(ic, &i);
3330 	}
3331 brk:
3332 
3333 	if (!journal_empty) {
3334 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3335 			    write_sections, write_start, want_commit_seq);
3336 		do_journal_write(ic, write_start, write_sections, true);
3337 	}
3338 
3339 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3340 		continue_section = write_start;
3341 		ic->commit_seq = want_commit_seq;
3342 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3343 	} else {
3344 		unsigned int s;
3345 		unsigned char erase_seq;
3346 
3347 clear_journal:
3348 		DEBUG_print("clearing journal\n");
3349 
3350 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3351 		s = write_start;
3352 		init_journal(ic, s, 1, erase_seq);
3353 		s++;
3354 		wraparound_section(ic, &s);
3355 		if (ic->journal_sections >= 2) {
3356 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3357 			s += ic->journal_sections - 2;
3358 			wraparound_section(ic, &s);
3359 			init_journal(ic, s, 1, erase_seq);
3360 		}
3361 
3362 		continue_section = 0;
3363 		ic->commit_seq = next_commit_seq(erase_seq);
3364 	}
3365 
3366 	ic->committed_section = continue_section;
3367 	ic->n_committed_sections = 0;
3368 
3369 	ic->uncommitted_section = continue_section;
3370 	ic->n_uncommitted_sections = 0;
3371 
3372 	ic->free_section = continue_section;
3373 	ic->free_section_entry = 0;
3374 	ic->free_sectors = ic->journal_entries;
3375 
3376 	ic->journal_tree_root = RB_ROOT;
3377 	for (i = 0; i < ic->journal_entries; i++)
3378 		init_journal_node(&ic->journal_tree[i]);
3379 }
3380 
3381 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3382 {
3383 	DEBUG_print("%s\n", __func__);
3384 
3385 	if (ic->mode == 'B') {
3386 		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3387 		ic->synchronous_mode = 1;
3388 
3389 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3390 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3391 		flush_workqueue(ic->commit_wq);
3392 	}
3393 }
3394 
3395 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3396 {
3397 	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3398 
3399 	DEBUG_print("%s\n", __func__);
3400 
3401 	dm_integrity_enter_synchronous_mode(ic);
3402 
3403 	return NOTIFY_DONE;
3404 }
3405 
3406 static void dm_integrity_postsuspend(struct dm_target *ti)
3407 {
3408 	struct dm_integrity_c *ic = ti->private;
3409 	int r;
3410 
3411 	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3412 
3413 	del_timer_sync(&ic->autocommit_timer);
3414 
3415 	if (ic->recalc_wq)
3416 		drain_workqueue(ic->recalc_wq);
3417 
3418 	if (ic->mode == 'B')
3419 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3420 
3421 	queue_work(ic->commit_wq, &ic->commit_work);
3422 	drain_workqueue(ic->commit_wq);
3423 
3424 	if (ic->mode == 'J') {
3425 		queue_work(ic->writer_wq, &ic->writer_work);
3426 		drain_workqueue(ic->writer_wq);
3427 		dm_integrity_flush_buffers(ic, true);
3428 		if (ic->wrote_to_journal) {
3429 			init_journal(ic, ic->free_section,
3430 				     ic->journal_sections - ic->free_section, ic->commit_seq);
3431 			if (ic->free_section) {
3432 				init_journal(ic, 0, ic->free_section,
3433 					     next_commit_seq(ic->commit_seq));
3434 			}
3435 		}
3436 	}
3437 
3438 	if (ic->mode == 'B') {
3439 		dm_integrity_flush_buffers(ic, true);
3440 #if 1
3441 		/* set to 0 to test bitmap replay code */
3442 		init_journal(ic, 0, ic->journal_sections, 0);
3443 		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3444 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3445 		if (unlikely(r))
3446 			dm_integrity_io_error(ic, "writing superblock", r);
3447 #endif
3448 	}
3449 
3450 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3451 
3452 	ic->journal_uptodate = true;
3453 }
3454 
3455 static void dm_integrity_resume(struct dm_target *ti)
3456 {
3457 	struct dm_integrity_c *ic = ti->private;
3458 	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3459 	int r;
3460 
3461 	DEBUG_print("resume\n");
3462 
3463 	ic->wrote_to_journal = false;
3464 
3465 	if (ic->provided_data_sectors != old_provided_data_sectors) {
3466 		if (ic->provided_data_sectors > old_provided_data_sectors &&
3467 		    ic->mode == 'B' &&
3468 		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3469 			rw_journal_sectors(ic, REQ_OP_READ, 0,
3470 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3471 			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3472 					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3473 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3474 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3475 		}
3476 
3477 		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3478 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3479 		if (unlikely(r))
3480 			dm_integrity_io_error(ic, "writing superblock", r);
3481 	}
3482 
3483 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3484 		DEBUG_print("resume dirty_bitmap\n");
3485 		rw_journal_sectors(ic, REQ_OP_READ, 0,
3486 				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3487 		if (ic->mode == 'B') {
3488 			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3489 			    !ic->reset_recalculate_flag) {
3490 				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3491 				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3492 				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3493 						     BITMAP_OP_TEST_ALL_CLEAR)) {
3494 					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3495 					ic->sb->recalc_sector = cpu_to_le64(0);
3496 				}
3497 			} else {
3498 				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3499 					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3500 				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3501 				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3502 				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3503 				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3504 				rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3505 						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3506 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3507 				ic->sb->recalc_sector = cpu_to_le64(0);
3508 			}
3509 		} else {
3510 			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3511 			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3512 			    ic->reset_recalculate_flag) {
3513 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3514 				ic->sb->recalc_sector = cpu_to_le64(0);
3515 			}
3516 			init_journal(ic, 0, ic->journal_sections, 0);
3517 			replay_journal(ic);
3518 			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3519 		}
3520 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3521 		if (unlikely(r))
3522 			dm_integrity_io_error(ic, "writing superblock", r);
3523 	} else {
3524 		replay_journal(ic);
3525 		if (ic->reset_recalculate_flag) {
3526 			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3527 			ic->sb->recalc_sector = cpu_to_le64(0);
3528 		}
3529 		if (ic->mode == 'B') {
3530 			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3531 			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3532 			r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3533 			if (unlikely(r))
3534 				dm_integrity_io_error(ic, "writing superblock", r);
3535 
3536 			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3537 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3538 			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3539 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3540 			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3541 				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3542 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3543 				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3544 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3545 				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3546 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3547 			}
3548 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3549 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3550 		}
3551 	}
3552 
3553 	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3554 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3555 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3556 
3557 		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3558 		if (recalc_pos < ic->provided_data_sectors) {
3559 			queue_work(ic->recalc_wq, &ic->recalc_work);
3560 		} else if (recalc_pos > ic->provided_data_sectors) {
3561 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3562 			recalc_write_super(ic);
3563 		}
3564 	}
3565 
3566 	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3567 	ic->reboot_notifier.next = NULL;
3568 	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3569 	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3570 
3571 #if 0
3572 	/* set to 1 to stress test synchronous mode */
3573 	dm_integrity_enter_synchronous_mode(ic);
3574 #endif
3575 }
3576 
3577 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3578 				unsigned int status_flags, char *result, unsigned int maxlen)
3579 {
3580 	struct dm_integrity_c *ic = ti->private;
3581 	unsigned int arg_count;
3582 	size_t sz = 0;
3583 
3584 	switch (type) {
3585 	case STATUSTYPE_INFO:
3586 		DMEMIT("%llu %llu",
3587 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3588 			ic->provided_data_sectors);
3589 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3590 			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3591 		else
3592 			DMEMIT(" -");
3593 		break;
3594 
3595 	case STATUSTYPE_TABLE: {
3596 		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3597 
3598 		watermark_percentage += ic->journal_entries / 2;
3599 		do_div(watermark_percentage, ic->journal_entries);
3600 		arg_count = 3;
3601 		arg_count += !!ic->meta_dev;
3602 		arg_count += ic->sectors_per_block != 1;
3603 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3604 		arg_count += ic->reset_recalculate_flag;
3605 		arg_count += ic->discard;
3606 		arg_count += ic->mode == 'J';
3607 		arg_count += ic->mode == 'J';
3608 		arg_count += ic->mode == 'B';
3609 		arg_count += ic->mode == 'B';
3610 		arg_count += !!ic->internal_hash_alg.alg_string;
3611 		arg_count += !!ic->journal_crypt_alg.alg_string;
3612 		arg_count += !!ic->journal_mac_alg.alg_string;
3613 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3614 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3615 		arg_count += ic->legacy_recalculate;
3616 		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3617 		       ic->tag_size, ic->mode, arg_count);
3618 		if (ic->meta_dev)
3619 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3620 		if (ic->sectors_per_block != 1)
3621 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3622 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3623 			DMEMIT(" recalculate");
3624 		if (ic->reset_recalculate_flag)
3625 			DMEMIT(" reset_recalculate");
3626 		if (ic->discard)
3627 			DMEMIT(" allow_discards");
3628 		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3629 		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3630 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3631 		if (ic->mode == 'J') {
3632 			DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3633 			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3634 		}
3635 		if (ic->mode == 'B') {
3636 			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3637 			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3638 		}
3639 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3640 			DMEMIT(" fix_padding");
3641 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3642 			DMEMIT(" fix_hmac");
3643 		if (ic->legacy_recalculate)
3644 			DMEMIT(" legacy_recalculate");
3645 
3646 #define EMIT_ALG(a, n)							\
3647 		do {							\
3648 			if (ic->a.alg_string) {				\
3649 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3650 				if (ic->a.key_string)			\
3651 					DMEMIT(":%s", ic->a.key_string);\
3652 			}						\
3653 		} while (0)
3654 		EMIT_ALG(internal_hash_alg, "internal_hash");
3655 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3656 		EMIT_ALG(journal_mac_alg, "journal_mac");
3657 		break;
3658 	}
3659 	case STATUSTYPE_IMA:
3660 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3661 		DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3662 			ic->dev->name, ic->start, ic->tag_size, ic->mode);
3663 
3664 		if (ic->meta_dev)
3665 			DMEMIT(",meta_device=%s", ic->meta_dev->name);
3666 		if (ic->sectors_per_block != 1)
3667 			DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3668 
3669 		DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3670 		       'y' : 'n');
3671 		DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3672 		DMEMIT(",fix_padding=%c",
3673 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3674 		DMEMIT(",fix_hmac=%c",
3675 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3676 		DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3677 
3678 		DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3679 		DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3680 		DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3681 		DMEMIT(";");
3682 		break;
3683 	}
3684 }
3685 
3686 static int dm_integrity_iterate_devices(struct dm_target *ti,
3687 					iterate_devices_callout_fn fn, void *data)
3688 {
3689 	struct dm_integrity_c *ic = ti->private;
3690 
3691 	if (!ic->meta_dev)
3692 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3693 	else
3694 		return fn(ti, ic->dev, 0, ti->len, data);
3695 }
3696 
3697 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3698 {
3699 	struct dm_integrity_c *ic = ti->private;
3700 
3701 	if (ic->sectors_per_block > 1) {
3702 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3703 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3704 		limits->io_min = ic->sectors_per_block << SECTOR_SHIFT;
3705 		limits->dma_alignment = limits->logical_block_size - 1;
3706 		limits->discard_granularity = ic->sectors_per_block << SECTOR_SHIFT;
3707 	}
3708 
3709 	if (!ic->internal_hash) {
3710 		struct blk_integrity *bi = &limits->integrity;
3711 
3712 		memset(bi, 0, sizeof(*bi));
3713 		bi->tuple_size = ic->tag_size;
3714 		bi->tag_size = bi->tuple_size;
3715 		bi->interval_exp =
3716 			ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3717 	}
3718 
3719 	limits->max_integrity_segments = USHRT_MAX;
3720 }
3721 
3722 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3723 {
3724 	unsigned int sector_space = JOURNAL_SECTOR_DATA;
3725 
3726 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3727 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3728 					 JOURNAL_ENTRY_ROUNDUP);
3729 
3730 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3731 		sector_space -= JOURNAL_MAC_PER_SECTOR;
3732 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3733 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3734 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3735 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3736 }
3737 
3738 static int calculate_device_limits(struct dm_integrity_c *ic)
3739 {
3740 	__u64 initial_sectors;
3741 
3742 	calculate_journal_section_size(ic);
3743 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3744 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3745 		return -EINVAL;
3746 	ic->initial_sectors = initial_sectors;
3747 
3748 	if (ic->mode == 'I') {
3749 		if (ic->initial_sectors + ic->provided_data_sectors > ic->meta_device_sectors)
3750 			return -EINVAL;
3751 	} else if (!ic->meta_dev) {
3752 		sector_t last_sector, last_area, last_offset;
3753 
3754 		/* we have to maintain excessive padding for compatibility with existing volumes */
3755 		__u64 metadata_run_padding =
3756 			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3757 			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3758 			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3759 
3760 		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3761 					    metadata_run_padding) >> SECTOR_SHIFT;
3762 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3763 			ic->log2_metadata_run = __ffs(ic->metadata_run);
3764 		else
3765 			ic->log2_metadata_run = -1;
3766 
3767 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3768 		last_sector = get_data_sector(ic, last_area, last_offset);
3769 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3770 			return -EINVAL;
3771 	} else {
3772 		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3773 
3774 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3775 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3776 		meta_size <<= ic->log2_buffer_sectors;
3777 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3778 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3779 			return -EINVAL;
3780 		ic->metadata_run = 1;
3781 		ic->log2_metadata_run = 0;
3782 	}
3783 
3784 	return 0;
3785 }
3786 
3787 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3788 {
3789 	if (!ic->meta_dev) {
3790 		int test_bit;
3791 
3792 		ic->provided_data_sectors = 0;
3793 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3794 			__u64 prev_data_sectors = ic->provided_data_sectors;
3795 
3796 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3797 			if (calculate_device_limits(ic))
3798 				ic->provided_data_sectors = prev_data_sectors;
3799 		}
3800 	} else {
3801 		ic->provided_data_sectors = ic->data_device_sectors;
3802 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3803 	}
3804 }
3805 
3806 static int initialize_superblock(struct dm_integrity_c *ic,
3807 				 unsigned int journal_sectors, unsigned int interleave_sectors)
3808 {
3809 	unsigned int journal_sections;
3810 	int test_bit;
3811 
3812 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3813 	memcpy(ic->sb->magic, SB_MAGIC, 8);
3814 	if (ic->mode == 'I')
3815 		ic->sb->flags |= cpu_to_le32(SB_FLAG_INLINE);
3816 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3817 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3818 	if (ic->journal_mac_alg.alg_string)
3819 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3820 
3821 	calculate_journal_section_size(ic);
3822 	journal_sections = journal_sectors / ic->journal_section_sectors;
3823 	if (!journal_sections)
3824 		journal_sections = 1;
3825 	if (ic->mode == 'I')
3826 		journal_sections = 0;
3827 
3828 	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3829 		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3830 		get_random_bytes(ic->sb->salt, SALT_SIZE);
3831 	}
3832 
3833 	if (!ic->meta_dev) {
3834 		if (ic->fix_padding)
3835 			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3836 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3837 		if (!interleave_sectors)
3838 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3839 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3840 		ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3841 		ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3842 
3843 		get_provided_data_sectors(ic);
3844 		if (!ic->provided_data_sectors)
3845 			return -EINVAL;
3846 	} else {
3847 		ic->sb->log2_interleave_sectors = 0;
3848 
3849 		get_provided_data_sectors(ic);
3850 		if (!ic->provided_data_sectors)
3851 			return -EINVAL;
3852 
3853 try_smaller_buffer:
3854 		ic->sb->journal_sections = cpu_to_le32(0);
3855 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3856 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3857 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3858 
3859 			if (test_journal_sections > journal_sections)
3860 				continue;
3861 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3862 			if (calculate_device_limits(ic))
3863 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3864 
3865 		}
3866 		if (!le32_to_cpu(ic->sb->journal_sections)) {
3867 			if (ic->log2_buffer_sectors > 3) {
3868 				ic->log2_buffer_sectors--;
3869 				goto try_smaller_buffer;
3870 			}
3871 			return -EINVAL;
3872 		}
3873 	}
3874 
3875 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3876 
3877 	sb_set_version(ic);
3878 
3879 	return 0;
3880 }
3881 
3882 static void dm_integrity_free_page_list(struct page_list *pl)
3883 {
3884 	unsigned int i;
3885 
3886 	if (!pl)
3887 		return;
3888 	for (i = 0; pl[i].page; i++)
3889 		__free_page(pl[i].page);
3890 	kvfree(pl);
3891 }
3892 
3893 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3894 {
3895 	struct page_list *pl;
3896 	unsigned int i;
3897 
3898 	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3899 	if (!pl)
3900 		return NULL;
3901 
3902 	for (i = 0; i < n_pages; i++) {
3903 		pl[i].page = alloc_page(GFP_KERNEL);
3904 		if (!pl[i].page) {
3905 			dm_integrity_free_page_list(pl);
3906 			return NULL;
3907 		}
3908 		if (i)
3909 			pl[i - 1].next = &pl[i];
3910 	}
3911 	pl[i].page = NULL;
3912 	pl[i].next = NULL;
3913 
3914 	return pl;
3915 }
3916 
3917 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3918 {
3919 	unsigned int i;
3920 
3921 	for (i = 0; i < ic->journal_sections; i++)
3922 		kvfree(sl[i]);
3923 	kvfree(sl);
3924 }
3925 
3926 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3927 								   struct page_list *pl)
3928 {
3929 	struct scatterlist **sl;
3930 	unsigned int i;
3931 
3932 	sl = kvmalloc_array(ic->journal_sections,
3933 			    sizeof(struct scatterlist *),
3934 			    GFP_KERNEL | __GFP_ZERO);
3935 	if (!sl)
3936 		return NULL;
3937 
3938 	for (i = 0; i < ic->journal_sections; i++) {
3939 		struct scatterlist *s;
3940 		unsigned int start_index, start_offset;
3941 		unsigned int end_index, end_offset;
3942 		unsigned int n_pages;
3943 		unsigned int idx;
3944 
3945 		page_list_location(ic, i, 0, &start_index, &start_offset);
3946 		page_list_location(ic, i, ic->journal_section_sectors - 1,
3947 				   &end_index, &end_offset);
3948 
3949 		n_pages = (end_index - start_index + 1);
3950 
3951 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3952 				   GFP_KERNEL);
3953 		if (!s) {
3954 			dm_integrity_free_journal_scatterlist(ic, sl);
3955 			return NULL;
3956 		}
3957 
3958 		sg_init_table(s, n_pages);
3959 		for (idx = start_index; idx <= end_index; idx++) {
3960 			char *va = lowmem_page_address(pl[idx].page);
3961 			unsigned int start = 0, end = PAGE_SIZE;
3962 
3963 			if (idx == start_index)
3964 				start = start_offset;
3965 			if (idx == end_index)
3966 				end = end_offset + (1 << SECTOR_SHIFT);
3967 			sg_set_buf(&s[idx - start_index], va + start, end - start);
3968 		}
3969 
3970 		sl[i] = s;
3971 	}
3972 
3973 	return sl;
3974 }
3975 
3976 static void free_alg(struct alg_spec *a)
3977 {
3978 	kfree_sensitive(a->alg_string);
3979 	kfree_sensitive(a->key);
3980 	memset(a, 0, sizeof(*a));
3981 }
3982 
3983 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3984 {
3985 	char *k;
3986 
3987 	free_alg(a);
3988 
3989 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3990 	if (!a->alg_string)
3991 		goto nomem;
3992 
3993 	k = strchr(a->alg_string, ':');
3994 	if (k) {
3995 		*k = 0;
3996 		a->key_string = k + 1;
3997 		if (strlen(a->key_string) & 1)
3998 			goto inval;
3999 
4000 		a->key_size = strlen(a->key_string) / 2;
4001 		a->key = kmalloc(a->key_size, GFP_KERNEL);
4002 		if (!a->key)
4003 			goto nomem;
4004 		if (hex2bin(a->key, a->key_string, a->key_size))
4005 			goto inval;
4006 	}
4007 
4008 	return 0;
4009 inval:
4010 	*error = error_inval;
4011 	return -EINVAL;
4012 nomem:
4013 	*error = "Out of memory for an argument";
4014 	return -ENOMEM;
4015 }
4016 
4017 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
4018 		   char *error_alg, char *error_key)
4019 {
4020 	int r;
4021 
4022 	if (a->alg_string) {
4023 		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
4024 		if (IS_ERR(*hash)) {
4025 			*error = error_alg;
4026 			r = PTR_ERR(*hash);
4027 			*hash = NULL;
4028 			return r;
4029 		}
4030 
4031 		if (a->key) {
4032 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
4033 			if (r) {
4034 				*error = error_key;
4035 				return r;
4036 			}
4037 		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
4038 			*error = error_key;
4039 			return -ENOKEY;
4040 		}
4041 	}
4042 
4043 	return 0;
4044 }
4045 
4046 static int create_journal(struct dm_integrity_c *ic, char **error)
4047 {
4048 	int r = 0;
4049 	unsigned int i;
4050 	__u64 journal_pages, journal_desc_size, journal_tree_size;
4051 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
4052 	struct skcipher_request *req = NULL;
4053 
4054 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
4055 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
4056 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
4057 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
4058 
4059 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
4060 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
4061 	journal_desc_size = journal_pages * sizeof(struct page_list);
4062 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
4063 		*error = "Journal doesn't fit into memory";
4064 		r = -ENOMEM;
4065 		goto bad;
4066 	}
4067 	ic->journal_pages = journal_pages;
4068 
4069 	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
4070 	if (!ic->journal) {
4071 		*error = "Could not allocate memory for journal";
4072 		r = -ENOMEM;
4073 		goto bad;
4074 	}
4075 	if (ic->journal_crypt_alg.alg_string) {
4076 		unsigned int ivsize, blocksize;
4077 		struct journal_completion comp;
4078 
4079 		comp.ic = ic;
4080 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
4081 		if (IS_ERR(ic->journal_crypt)) {
4082 			*error = "Invalid journal cipher";
4083 			r = PTR_ERR(ic->journal_crypt);
4084 			ic->journal_crypt = NULL;
4085 			goto bad;
4086 		}
4087 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
4088 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
4089 
4090 		if (ic->journal_crypt_alg.key) {
4091 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
4092 						   ic->journal_crypt_alg.key_size);
4093 			if (r) {
4094 				*error = "Error setting encryption key";
4095 				goto bad;
4096 			}
4097 		}
4098 		DEBUG_print("cipher %s, block size %u iv size %u\n",
4099 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
4100 
4101 		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
4102 		if (!ic->journal_io) {
4103 			*error = "Could not allocate memory for journal io";
4104 			r = -ENOMEM;
4105 			goto bad;
4106 		}
4107 
4108 		if (blocksize == 1) {
4109 			struct scatterlist *sg;
4110 
4111 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4112 			if (!req) {
4113 				*error = "Could not allocate crypt request";
4114 				r = -ENOMEM;
4115 				goto bad;
4116 			}
4117 
4118 			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
4119 			if (!crypt_iv) {
4120 				*error = "Could not allocate iv";
4121 				r = -ENOMEM;
4122 				goto bad;
4123 			}
4124 
4125 			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
4126 			if (!ic->journal_xor) {
4127 				*error = "Could not allocate memory for journal xor";
4128 				r = -ENOMEM;
4129 				goto bad;
4130 			}
4131 
4132 			sg = kvmalloc_array(ic->journal_pages + 1,
4133 					    sizeof(struct scatterlist),
4134 					    GFP_KERNEL);
4135 			if (!sg) {
4136 				*error = "Unable to allocate sg list";
4137 				r = -ENOMEM;
4138 				goto bad;
4139 			}
4140 			sg_init_table(sg, ic->journal_pages + 1);
4141 			for (i = 0; i < ic->journal_pages; i++) {
4142 				char *va = lowmem_page_address(ic->journal_xor[i].page);
4143 
4144 				clear_page(va);
4145 				sg_set_buf(&sg[i], va, PAGE_SIZE);
4146 			}
4147 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
4148 
4149 			skcipher_request_set_crypt(req, sg, sg,
4150 						   PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
4151 			init_completion(&comp.comp);
4152 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
4153 			if (do_crypt(true, req, &comp))
4154 				wait_for_completion(&comp.comp);
4155 			kvfree(sg);
4156 			r = dm_integrity_failed(ic);
4157 			if (r) {
4158 				*error = "Unable to encrypt journal";
4159 				goto bad;
4160 			}
4161 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
4162 
4163 			crypto_free_skcipher(ic->journal_crypt);
4164 			ic->journal_crypt = NULL;
4165 		} else {
4166 			unsigned int crypt_len = roundup(ivsize, blocksize);
4167 
4168 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4169 			if (!req) {
4170 				*error = "Could not allocate crypt request";
4171 				r = -ENOMEM;
4172 				goto bad;
4173 			}
4174 
4175 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
4176 			if (!crypt_iv) {
4177 				*error = "Could not allocate iv";
4178 				r = -ENOMEM;
4179 				goto bad;
4180 			}
4181 
4182 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
4183 			if (!crypt_data) {
4184 				*error = "Unable to allocate crypt data";
4185 				r = -ENOMEM;
4186 				goto bad;
4187 			}
4188 
4189 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
4190 			if (!ic->journal_scatterlist) {
4191 				*error = "Unable to allocate sg list";
4192 				r = -ENOMEM;
4193 				goto bad;
4194 			}
4195 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
4196 			if (!ic->journal_io_scatterlist) {
4197 				*error = "Unable to allocate sg list";
4198 				r = -ENOMEM;
4199 				goto bad;
4200 			}
4201 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
4202 							 sizeof(struct skcipher_request *),
4203 							 GFP_KERNEL | __GFP_ZERO);
4204 			if (!ic->sk_requests) {
4205 				*error = "Unable to allocate sk requests";
4206 				r = -ENOMEM;
4207 				goto bad;
4208 			}
4209 			for (i = 0; i < ic->journal_sections; i++) {
4210 				struct scatterlist sg;
4211 				struct skcipher_request *section_req;
4212 				__le32 section_le = cpu_to_le32(i);
4213 
4214 				memset(crypt_iv, 0x00, ivsize);
4215 				memset(crypt_data, 0x00, crypt_len);
4216 				memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
4217 
4218 				sg_init_one(&sg, crypt_data, crypt_len);
4219 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
4220 				init_completion(&comp.comp);
4221 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
4222 				if (do_crypt(true, req, &comp))
4223 					wait_for_completion(&comp.comp);
4224 
4225 				r = dm_integrity_failed(ic);
4226 				if (r) {
4227 					*error = "Unable to generate iv";
4228 					goto bad;
4229 				}
4230 
4231 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4232 				if (!section_req) {
4233 					*error = "Unable to allocate crypt request";
4234 					r = -ENOMEM;
4235 					goto bad;
4236 				}
4237 				section_req->iv = kmalloc_array(ivsize, 2,
4238 								GFP_KERNEL);
4239 				if (!section_req->iv) {
4240 					skcipher_request_free(section_req);
4241 					*error = "Unable to allocate iv";
4242 					r = -ENOMEM;
4243 					goto bad;
4244 				}
4245 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
4246 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
4247 				ic->sk_requests[i] = section_req;
4248 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
4249 			}
4250 		}
4251 	}
4252 
4253 	for (i = 0; i < N_COMMIT_IDS; i++) {
4254 		unsigned int j;
4255 
4256 retest_commit_id:
4257 		for (j = 0; j < i; j++) {
4258 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
4259 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
4260 				goto retest_commit_id;
4261 			}
4262 		}
4263 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
4264 	}
4265 
4266 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
4267 	if (journal_tree_size > ULONG_MAX) {
4268 		*error = "Journal doesn't fit into memory";
4269 		r = -ENOMEM;
4270 		goto bad;
4271 	}
4272 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
4273 	if (!ic->journal_tree) {
4274 		*error = "Could not allocate memory for journal tree";
4275 		r = -ENOMEM;
4276 	}
4277 bad:
4278 	kfree(crypt_data);
4279 	kfree(crypt_iv);
4280 	skcipher_request_free(req);
4281 
4282 	return r;
4283 }
4284 
4285 /*
4286  * Construct a integrity mapping
4287  *
4288  * Arguments:
4289  *	device
4290  *	offset from the start of the device
4291  *	tag size
4292  *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4293  *	number of optional arguments
4294  *	optional arguments:
4295  *		journal_sectors
4296  *		interleave_sectors
4297  *		buffer_sectors
4298  *		journal_watermark
4299  *		commit_time
4300  *		meta_device
4301  *		block_size
4302  *		sectors_per_bit
4303  *		bitmap_flush_interval
4304  *		internal_hash
4305  *		journal_crypt
4306  *		journal_mac
4307  *		recalculate
4308  */
4309 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4310 {
4311 	struct dm_integrity_c *ic;
4312 	char dummy;
4313 	int r;
4314 	unsigned int extra_args;
4315 	struct dm_arg_set as;
4316 	static const struct dm_arg _args[] = {
4317 		{0, 18, "Invalid number of feature args"},
4318 	};
4319 	unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4320 	bool should_write_sb;
4321 	__u64 threshold;
4322 	unsigned long long start;
4323 	__s8 log2_sectors_per_bitmap_bit = -1;
4324 	__s8 log2_blocks_per_bitmap_bit;
4325 	__u64 bits_in_journal;
4326 	__u64 n_bitmap_bits;
4327 
4328 #define DIRECT_ARGUMENTS	4
4329 
4330 	if (argc <= DIRECT_ARGUMENTS) {
4331 		ti->error = "Invalid argument count";
4332 		return -EINVAL;
4333 	}
4334 
4335 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4336 	if (!ic) {
4337 		ti->error = "Cannot allocate integrity context";
4338 		return -ENOMEM;
4339 	}
4340 	ti->private = ic;
4341 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
4342 	ic->ti = ti;
4343 
4344 	ic->in_progress = RB_ROOT;
4345 	INIT_LIST_HEAD(&ic->wait_list);
4346 	init_waitqueue_head(&ic->endio_wait);
4347 	bio_list_init(&ic->flush_bio_list);
4348 	init_waitqueue_head(&ic->copy_to_journal_wait);
4349 	init_completion(&ic->crypto_backoff);
4350 	atomic64_set(&ic->number_of_mismatches, 0);
4351 	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4352 
4353 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4354 	if (r) {
4355 		ti->error = "Device lookup failed";
4356 		goto bad;
4357 	}
4358 
4359 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4360 		ti->error = "Invalid starting offset";
4361 		r = -EINVAL;
4362 		goto bad;
4363 	}
4364 	ic->start = start;
4365 
4366 	if (strcmp(argv[2], "-")) {
4367 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4368 			ti->error = "Invalid tag size";
4369 			r = -EINVAL;
4370 			goto bad;
4371 		}
4372 	}
4373 
4374 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4375 	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R") ||
4376 	    !strcmp(argv[3], "I")) {
4377 		ic->mode = argv[3][0];
4378 	} else {
4379 		ti->error = "Invalid mode (expecting J, B, D, R, I)";
4380 		r = -EINVAL;
4381 		goto bad;
4382 	}
4383 
4384 	journal_sectors = 0;
4385 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4386 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
4387 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4388 	sync_msec = DEFAULT_SYNC_MSEC;
4389 	ic->sectors_per_block = 1;
4390 
4391 	as.argc = argc - DIRECT_ARGUMENTS;
4392 	as.argv = argv + DIRECT_ARGUMENTS;
4393 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4394 	if (r)
4395 		goto bad;
4396 
4397 	while (extra_args--) {
4398 		const char *opt_string;
4399 		unsigned int val;
4400 		unsigned long long llval;
4401 
4402 		opt_string = dm_shift_arg(&as);
4403 		if (!opt_string) {
4404 			r = -EINVAL;
4405 			ti->error = "Not enough feature arguments";
4406 			goto bad;
4407 		}
4408 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4409 			journal_sectors = val ? val : 1;
4410 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4411 			interleave_sectors = val;
4412 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4413 			buffer_sectors = val;
4414 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4415 			journal_watermark = val;
4416 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4417 			sync_msec = val;
4418 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4419 			if (ic->meta_dev) {
4420 				dm_put_device(ti, ic->meta_dev);
4421 				ic->meta_dev = NULL;
4422 			}
4423 			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4424 					  dm_table_get_mode(ti->table), &ic->meta_dev);
4425 			if (r) {
4426 				ti->error = "Device lookup failed";
4427 				goto bad;
4428 			}
4429 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4430 			if (val < 1 << SECTOR_SHIFT ||
4431 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4432 			    (val & (val - 1))) {
4433 				r = -EINVAL;
4434 				ti->error = "Invalid block_size argument";
4435 				goto bad;
4436 			}
4437 			ic->sectors_per_block = val >> SECTOR_SHIFT;
4438 		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4439 			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4440 		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4441 			if ((uint64_t)val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4442 				r = -EINVAL;
4443 				ti->error = "Invalid bitmap_flush_interval argument";
4444 				goto bad;
4445 			}
4446 			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4447 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4448 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4449 					    "Invalid internal_hash argument");
4450 			if (r)
4451 				goto bad;
4452 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4453 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4454 					    "Invalid journal_crypt argument");
4455 			if (r)
4456 				goto bad;
4457 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4458 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4459 					    "Invalid journal_mac argument");
4460 			if (r)
4461 				goto bad;
4462 		} else if (!strcmp(opt_string, "recalculate")) {
4463 			ic->recalculate_flag = true;
4464 		} else if (!strcmp(opt_string, "reset_recalculate")) {
4465 			ic->recalculate_flag = true;
4466 			ic->reset_recalculate_flag = true;
4467 		} else if (!strcmp(opt_string, "allow_discards")) {
4468 			ic->discard = true;
4469 		} else if (!strcmp(opt_string, "fix_padding")) {
4470 			ic->fix_padding = true;
4471 		} else if (!strcmp(opt_string, "fix_hmac")) {
4472 			ic->fix_hmac = true;
4473 		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4474 			ic->legacy_recalculate = true;
4475 		} else {
4476 			r = -EINVAL;
4477 			ti->error = "Invalid argument";
4478 			goto bad;
4479 		}
4480 	}
4481 
4482 	ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4483 	if (!ic->meta_dev)
4484 		ic->meta_device_sectors = ic->data_device_sectors;
4485 	else
4486 		ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4487 
4488 	if (!journal_sectors) {
4489 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4490 				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4491 	}
4492 
4493 	if (!buffer_sectors)
4494 		buffer_sectors = 1;
4495 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4496 
4497 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4498 		    "Invalid internal hash", "Error setting internal hash key");
4499 	if (r)
4500 		goto bad;
4501 
4502 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4503 		    "Invalid journal mac", "Error setting journal mac key");
4504 	if (r)
4505 		goto bad;
4506 
4507 	if (!ic->tag_size) {
4508 		if (!ic->internal_hash) {
4509 			ti->error = "Unknown tag size";
4510 			r = -EINVAL;
4511 			goto bad;
4512 		}
4513 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4514 	}
4515 	if (ic->tag_size > MAX_TAG_SIZE) {
4516 		ti->error = "Too big tag size";
4517 		r = -EINVAL;
4518 		goto bad;
4519 	}
4520 	if (!(ic->tag_size & (ic->tag_size - 1)))
4521 		ic->log2_tag_size = __ffs(ic->tag_size);
4522 	else
4523 		ic->log2_tag_size = -1;
4524 
4525 	if (ic->mode == 'I') {
4526 		struct blk_integrity *bi;
4527 		if (ic->meta_dev) {
4528 			r = -EINVAL;
4529 			ti->error = "Metadata device not supported in inline mode";
4530 			goto bad;
4531 		}
4532 		if (!ic->internal_hash_alg.alg_string) {
4533 			r = -EINVAL;
4534 			ti->error = "Internal hash not set in inline mode";
4535 			goto bad;
4536 		}
4537 		if (ic->journal_crypt_alg.alg_string || ic->journal_mac_alg.alg_string) {
4538 			r = -EINVAL;
4539 			ti->error = "Journal crypt not supported in inline mode";
4540 			goto bad;
4541 		}
4542 		if (ic->discard) {
4543 			r = -EINVAL;
4544 			ti->error = "Discards not supported in inline mode";
4545 			goto bad;
4546 		}
4547 		bi = blk_get_integrity(ic->dev->bdev->bd_disk);
4548 		if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) {
4549 			r = -EINVAL;
4550 			ti->error = "Integrity profile not supported";
4551 			goto bad;
4552 		}
4553 		/*printk("tag_size: %u, tuple_size: %u\n", bi->tag_size, bi->tuple_size);*/
4554 		if (bi->tuple_size < ic->tag_size) {
4555 			r = -EINVAL;
4556 			ti->error = "The integrity profile is smaller than tag size";
4557 			goto bad;
4558 		}
4559 		if ((unsigned long)bi->tuple_size > PAGE_SIZE / 2) {
4560 			r = -EINVAL;
4561 			ti->error = "Too big tuple size";
4562 			goto bad;
4563 		}
4564 		ic->tuple_size = bi->tuple_size;
4565 		if (1 << bi->interval_exp != ic->sectors_per_block << SECTOR_SHIFT) {
4566 			r = -EINVAL;
4567 			ti->error = "Integrity profile sector size mismatch";
4568 			goto bad;
4569 		}
4570 	}
4571 
4572 	if (ic->mode == 'B' && !ic->internal_hash) {
4573 		r = -EINVAL;
4574 		ti->error = "Bitmap mode can be only used with internal hash";
4575 		goto bad;
4576 	}
4577 
4578 	if (ic->discard && !ic->internal_hash) {
4579 		r = -EINVAL;
4580 		ti->error = "Discard can be only used with internal hash";
4581 		goto bad;
4582 	}
4583 
4584 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4585 	ic->autocommit_msec = sync_msec;
4586 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4587 
4588 	ic->io = dm_io_client_create();
4589 	if (IS_ERR(ic->io)) {
4590 		r = PTR_ERR(ic->io);
4591 		ic->io = NULL;
4592 		ti->error = "Cannot allocate dm io";
4593 		goto bad;
4594 	}
4595 
4596 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4597 	if (r) {
4598 		ti->error = "Cannot allocate mempool";
4599 		goto bad;
4600 	}
4601 
4602 	r = mempool_init_page_pool(&ic->recheck_pool, 1, ic->mode == 'I' ? 1 : 0);
4603 	if (r) {
4604 		ti->error = "Cannot allocate mempool";
4605 		goto bad;
4606 	}
4607 
4608 	if (ic->mode == 'I') {
4609 		r = bioset_init(&ic->recheck_bios, RECHECK_POOL_SIZE, 0, BIOSET_NEED_BVECS);
4610 		if (r) {
4611 			ti->error = "Cannot allocate bio set";
4612 			goto bad;
4613 		}
4614 		r = bioset_integrity_create(&ic->recheck_bios, RECHECK_POOL_SIZE);
4615 		if (r) {
4616 			ti->error = "Cannot allocate bio integrity set";
4617 			r = -ENOMEM;
4618 			goto bad;
4619 		}
4620 	}
4621 
4622 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4623 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4624 	if (!ic->metadata_wq) {
4625 		ti->error = "Cannot allocate workqueue";
4626 		r = -ENOMEM;
4627 		goto bad;
4628 	}
4629 
4630 	/*
4631 	 * If this workqueue weren't ordered, it would cause bio reordering
4632 	 * and reduced performance.
4633 	 */
4634 	ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4635 	if (!ic->wait_wq) {
4636 		ti->error = "Cannot allocate workqueue";
4637 		r = -ENOMEM;
4638 		goto bad;
4639 	}
4640 
4641 	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4642 					  METADATA_WORKQUEUE_MAX_ACTIVE);
4643 	if (!ic->offload_wq) {
4644 		ti->error = "Cannot allocate workqueue";
4645 		r = -ENOMEM;
4646 		goto bad;
4647 	}
4648 
4649 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4650 	if (!ic->commit_wq) {
4651 		ti->error = "Cannot allocate workqueue";
4652 		r = -ENOMEM;
4653 		goto bad;
4654 	}
4655 	INIT_WORK(&ic->commit_work, integrity_commit);
4656 
4657 	if (ic->mode == 'J' || ic->mode == 'B') {
4658 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4659 		if (!ic->writer_wq) {
4660 			ti->error = "Cannot allocate workqueue";
4661 			r = -ENOMEM;
4662 			goto bad;
4663 		}
4664 		INIT_WORK(&ic->writer_work, integrity_writer);
4665 	}
4666 
4667 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4668 	if (!ic->sb) {
4669 		r = -ENOMEM;
4670 		ti->error = "Cannot allocate superblock area";
4671 		goto bad;
4672 	}
4673 
4674 	r = sync_rw_sb(ic, REQ_OP_READ);
4675 	if (r) {
4676 		ti->error = "Error reading superblock";
4677 		goto bad;
4678 	}
4679 	should_write_sb = false;
4680 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4681 		if (ic->mode != 'R') {
4682 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4683 				r = -EINVAL;
4684 				ti->error = "The device is not initialized";
4685 				goto bad;
4686 			}
4687 		}
4688 
4689 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4690 		if (r) {
4691 			ti->error = "Could not initialize superblock";
4692 			goto bad;
4693 		}
4694 		if (ic->mode != 'R')
4695 			should_write_sb = true;
4696 	}
4697 
4698 	if (!ic->sb->version || ic->sb->version > SB_VERSION_6) {
4699 		r = -EINVAL;
4700 		ti->error = "Unknown version";
4701 		goto bad;
4702 	}
4703 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_INLINE)) != (ic->mode == 'I')) {
4704 		r = -EINVAL;
4705 		ti->error = "Inline flag mismatch";
4706 		goto bad;
4707 	}
4708 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4709 		r = -EINVAL;
4710 		ti->error = "Tag size doesn't match the information in superblock";
4711 		goto bad;
4712 	}
4713 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4714 		r = -EINVAL;
4715 		ti->error = "Block size doesn't match the information in superblock";
4716 		goto bad;
4717 	}
4718 	if (!le32_to_cpu(ic->sb->journal_sections) != (ic->mode == 'I')) {
4719 		r = -EINVAL;
4720 		if (ic->mode != 'I')
4721 			ti->error = "Corrupted superblock, journal_sections is 0";
4722 		else
4723 			ti->error = "Corrupted superblock, journal_sections is not 0";
4724 		goto bad;
4725 	}
4726 	/* make sure that ti->max_io_len doesn't overflow */
4727 	if (!ic->meta_dev) {
4728 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4729 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4730 			r = -EINVAL;
4731 			ti->error = "Invalid interleave_sectors in the superblock";
4732 			goto bad;
4733 		}
4734 	} else {
4735 		if (ic->sb->log2_interleave_sectors) {
4736 			r = -EINVAL;
4737 			ti->error = "Invalid interleave_sectors in the superblock";
4738 			goto bad;
4739 		}
4740 	}
4741 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4742 		r = -EINVAL;
4743 		ti->error = "Journal mac mismatch";
4744 		goto bad;
4745 	}
4746 
4747 	get_provided_data_sectors(ic);
4748 	if (!ic->provided_data_sectors) {
4749 		r = -EINVAL;
4750 		ti->error = "The device is too small";
4751 		goto bad;
4752 	}
4753 
4754 try_smaller_buffer:
4755 	r = calculate_device_limits(ic);
4756 	if (r) {
4757 		if (ic->meta_dev) {
4758 			if (ic->log2_buffer_sectors > 3) {
4759 				ic->log2_buffer_sectors--;
4760 				goto try_smaller_buffer;
4761 			}
4762 		}
4763 		ti->error = "The device is too small";
4764 		goto bad;
4765 	}
4766 
4767 	if (log2_sectors_per_bitmap_bit < 0)
4768 		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4769 	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4770 		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4771 
4772 	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4773 	if (bits_in_journal > UINT_MAX)
4774 		bits_in_journal = UINT_MAX;
4775 	if (bits_in_journal)
4776 		while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4777 			log2_sectors_per_bitmap_bit++;
4778 
4779 	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4780 	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4781 	if (should_write_sb)
4782 		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4783 
4784 	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4785 				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4786 	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4787 
4788 	if (!ic->meta_dev)
4789 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4790 
4791 	if (ti->len > ic->provided_data_sectors) {
4792 		r = -EINVAL;
4793 		ti->error = "Not enough provided sectors for requested mapping size";
4794 		goto bad;
4795 	}
4796 
4797 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4798 	threshold += 50;
4799 	do_div(threshold, 100);
4800 	ic->free_sectors_threshold = threshold;
4801 
4802 	DEBUG_print("initialized:\n");
4803 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4804 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4805 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4806 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4807 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4808 	DEBUG_print("	journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4809 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4810 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4811 	DEBUG_print("	data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4812 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4813 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4814 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4815 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4816 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4817 	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4818 
4819 	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4820 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4821 		ic->sb->recalc_sector = cpu_to_le64(0);
4822 	}
4823 
4824 	if (ic->internal_hash) {
4825 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4826 		if (!ic->recalc_wq) {
4827 			ti->error = "Cannot allocate workqueue";
4828 			r = -ENOMEM;
4829 			goto bad;
4830 		}
4831 		INIT_WORK(&ic->recalc_work, integrity_recalc);
4832 	} else {
4833 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4834 			ti->error = "Recalculate can only be specified with internal_hash";
4835 			r = -EINVAL;
4836 			goto bad;
4837 		}
4838 	}
4839 
4840 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4841 	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4842 	    dm_integrity_disable_recalculate(ic)) {
4843 		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4844 		r = -EOPNOTSUPP;
4845 		goto bad;
4846 	}
4847 
4848 	if (ic->mode != 'I') {
4849 		ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4850 				1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4851 		if (IS_ERR(ic->bufio)) {
4852 			r = PTR_ERR(ic->bufio);
4853 			ti->error = "Cannot initialize dm-bufio";
4854 			ic->bufio = NULL;
4855 			goto bad;
4856 		}
4857 		dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4858 	}
4859 
4860 	if (ic->mode != 'R' && ic->mode != 'I') {
4861 		r = create_journal(ic, &ti->error);
4862 		if (r)
4863 			goto bad;
4864 
4865 	}
4866 
4867 	if (ic->mode == 'B') {
4868 		unsigned int i;
4869 		unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4870 
4871 		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4872 		if (!ic->recalc_bitmap) {
4873 			r = -ENOMEM;
4874 			goto bad;
4875 		}
4876 		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4877 		if (!ic->may_write_bitmap) {
4878 			r = -ENOMEM;
4879 			goto bad;
4880 		}
4881 		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4882 		if (!ic->bbs) {
4883 			r = -ENOMEM;
4884 			goto bad;
4885 		}
4886 		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4887 		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4888 			struct bitmap_block_status *bbs = &ic->bbs[i];
4889 			unsigned int sector, pl_index, pl_offset;
4890 
4891 			INIT_WORK(&bbs->work, bitmap_block_work);
4892 			bbs->ic = ic;
4893 			bbs->idx = i;
4894 			bio_list_init(&bbs->bio_queue);
4895 			spin_lock_init(&bbs->bio_queue_lock);
4896 
4897 			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4898 			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4899 			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4900 
4901 			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4902 		}
4903 	}
4904 
4905 	if (should_write_sb) {
4906 		init_journal(ic, 0, ic->journal_sections, 0);
4907 		r = dm_integrity_failed(ic);
4908 		if (unlikely(r)) {
4909 			ti->error = "Error initializing journal";
4910 			goto bad;
4911 		}
4912 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4913 		if (r) {
4914 			ti->error = "Error initializing superblock";
4915 			goto bad;
4916 		}
4917 		ic->just_formatted = true;
4918 	}
4919 
4920 	if (!ic->meta_dev && ic->mode != 'I') {
4921 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4922 		if (r)
4923 			goto bad;
4924 	}
4925 	if (ic->mode == 'B') {
4926 		unsigned int max_io_len;
4927 
4928 		max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4929 		if (!max_io_len)
4930 			max_io_len = 1U << 31;
4931 		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4932 		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4933 			r = dm_set_target_max_io_len(ti, max_io_len);
4934 			if (r)
4935 				goto bad;
4936 		}
4937 	}
4938 
4939 	ti->num_flush_bios = 1;
4940 	ti->flush_supported = true;
4941 	if (ic->discard)
4942 		ti->num_discard_bios = 1;
4943 
4944 	if (ic->mode == 'I')
4945 		ti->mempool_needs_integrity = true;
4946 
4947 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4948 	return 0;
4949 
4950 bad:
4951 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4952 	dm_integrity_dtr(ti);
4953 	return r;
4954 }
4955 
4956 static void dm_integrity_dtr(struct dm_target *ti)
4957 {
4958 	struct dm_integrity_c *ic = ti->private;
4959 
4960 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4961 	BUG_ON(!list_empty(&ic->wait_list));
4962 
4963 	if (ic->mode == 'B')
4964 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
4965 	if (ic->metadata_wq)
4966 		destroy_workqueue(ic->metadata_wq);
4967 	if (ic->wait_wq)
4968 		destroy_workqueue(ic->wait_wq);
4969 	if (ic->offload_wq)
4970 		destroy_workqueue(ic->offload_wq);
4971 	if (ic->commit_wq)
4972 		destroy_workqueue(ic->commit_wq);
4973 	if (ic->writer_wq)
4974 		destroy_workqueue(ic->writer_wq);
4975 	if (ic->recalc_wq)
4976 		destroy_workqueue(ic->recalc_wq);
4977 	kvfree(ic->bbs);
4978 	if (ic->bufio)
4979 		dm_bufio_client_destroy(ic->bufio);
4980 	bioset_exit(&ic->recheck_bios);
4981 	mempool_exit(&ic->recheck_pool);
4982 	mempool_exit(&ic->journal_io_mempool);
4983 	if (ic->io)
4984 		dm_io_client_destroy(ic->io);
4985 	if (ic->dev)
4986 		dm_put_device(ti, ic->dev);
4987 	if (ic->meta_dev)
4988 		dm_put_device(ti, ic->meta_dev);
4989 	dm_integrity_free_page_list(ic->journal);
4990 	dm_integrity_free_page_list(ic->journal_io);
4991 	dm_integrity_free_page_list(ic->journal_xor);
4992 	dm_integrity_free_page_list(ic->recalc_bitmap);
4993 	dm_integrity_free_page_list(ic->may_write_bitmap);
4994 	if (ic->journal_scatterlist)
4995 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4996 	if (ic->journal_io_scatterlist)
4997 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4998 	if (ic->sk_requests) {
4999 		unsigned int i;
5000 
5001 		for (i = 0; i < ic->journal_sections; i++) {
5002 			struct skcipher_request *req;
5003 
5004 			req = ic->sk_requests[i];
5005 			if (req) {
5006 				kfree_sensitive(req->iv);
5007 				skcipher_request_free(req);
5008 			}
5009 		}
5010 		kvfree(ic->sk_requests);
5011 	}
5012 	kvfree(ic->journal_tree);
5013 	if (ic->sb)
5014 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
5015 
5016 	if (ic->internal_hash)
5017 		crypto_free_shash(ic->internal_hash);
5018 	free_alg(&ic->internal_hash_alg);
5019 
5020 	if (ic->journal_crypt)
5021 		crypto_free_skcipher(ic->journal_crypt);
5022 	free_alg(&ic->journal_crypt_alg);
5023 
5024 	if (ic->journal_mac)
5025 		crypto_free_shash(ic->journal_mac);
5026 	free_alg(&ic->journal_mac_alg);
5027 
5028 	kfree(ic);
5029 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
5030 }
5031 
5032 static struct target_type integrity_target = {
5033 	.name			= "integrity",
5034 	.version		= {1, 12, 0},
5035 	.module			= THIS_MODULE,
5036 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
5037 	.ctr			= dm_integrity_ctr,
5038 	.dtr			= dm_integrity_dtr,
5039 	.map			= dm_integrity_map,
5040 	.end_io			= dm_integrity_end_io,
5041 	.postsuspend		= dm_integrity_postsuspend,
5042 	.resume			= dm_integrity_resume,
5043 	.status			= dm_integrity_status,
5044 	.iterate_devices	= dm_integrity_iterate_devices,
5045 	.io_hints		= dm_integrity_io_hints,
5046 };
5047 
5048 static int __init dm_integrity_init(void)
5049 {
5050 	int r;
5051 
5052 	journal_io_cache = kmem_cache_create("integrity_journal_io",
5053 					     sizeof(struct journal_io), 0, 0, NULL);
5054 	if (!journal_io_cache) {
5055 		DMERR("can't allocate journal io cache");
5056 		return -ENOMEM;
5057 	}
5058 
5059 	r = dm_register_target(&integrity_target);
5060 	if (r < 0) {
5061 		kmem_cache_destroy(journal_io_cache);
5062 		return r;
5063 	}
5064 
5065 	return 0;
5066 }
5067 
5068 static void __exit dm_integrity_exit(void)
5069 {
5070 	dm_unregister_target(&integrity_target);
5071 	kmem_cache_destroy(journal_io_cache);
5072 }
5073 
5074 module_init(dm_integrity_init);
5075 module_exit(dm_integrity_exit);
5076 
5077 MODULE_AUTHOR("Milan Broz");
5078 MODULE_AUTHOR("Mikulas Patocka");
5079 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
5080 MODULE_LICENSE("GPL");
5081