xref: /linux/drivers/md/dm-integrity.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4  * Copyright (C) 2016-2017 Milan Broz
5  * Copyright (C) 2016-2017 Mikulas Patocka
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include "dm-bio-record.h"
11 
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <linux/async_tx.h>
25 #include <linux/dm-bufio.h>
26 
27 #include "dm-audit.h"
28 
29 #define DM_MSG_PREFIX "integrity"
30 
31 #define DEFAULT_INTERLEAVE_SECTORS	32768
32 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
33 #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
34 #define DEFAULT_BUFFER_SECTORS		128
35 #define DEFAULT_JOURNAL_WATERMARK	50
36 #define DEFAULT_SYNC_MSEC		10000
37 #define DEFAULT_MAX_JOURNAL_SECTORS	(IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
38 #define MIN_LOG2_INTERLEAVE_SECTORS	3
39 #define MAX_LOG2_INTERLEAVE_SECTORS	31
40 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
41 #define RECALC_SECTORS			(IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
42 #define RECALC_WRITE_SUPER		16
43 #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
44 #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
45 #define DISCARD_FILLER			0xf6
46 #define SALT_SIZE			16
47 
48 /*
49  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
50  * so it should not be enabled in the official kernel
51  */
52 //#define DEBUG_PRINT
53 //#define INTERNAL_VERIFY
54 
55 /*
56  * On disk structures
57  */
58 
59 #define SB_MAGIC			"integrt"
60 #define SB_VERSION_1			1
61 #define SB_VERSION_2			2
62 #define SB_VERSION_3			3
63 #define SB_VERSION_4			4
64 #define SB_VERSION_5			5
65 #define SB_SECTORS			8
66 #define MAX_SECTORS_PER_BLOCK		8
67 
68 struct superblock {
69 	__u8 magic[8];
70 	__u8 version;
71 	__u8 log2_interleave_sectors;
72 	__le16 integrity_tag_size;
73 	__le32 journal_sections;
74 	__le64 provided_data_sectors;	/* userspace uses this value */
75 	__le32 flags;
76 	__u8 log2_sectors_per_block;
77 	__u8 log2_blocks_per_bitmap_bit;
78 	__u8 pad[2];
79 	__le64 recalc_sector;
80 	__u8 pad2[8];
81 	__u8 salt[SALT_SIZE];
82 };
83 
84 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
85 #define SB_FLAG_RECALCULATING		0x2
86 #define SB_FLAG_DIRTY_BITMAP		0x4
87 #define SB_FLAG_FIXED_PADDING		0x8
88 #define SB_FLAG_FIXED_HMAC		0x10
89 
90 #define	JOURNAL_ENTRY_ROUNDUP		8
91 
92 typedef __le64 commit_id_t;
93 #define JOURNAL_MAC_PER_SECTOR		8
94 
95 struct journal_entry {
96 	union {
97 		struct {
98 			__le32 sector_lo;
99 			__le32 sector_hi;
100 		} s;
101 		__le64 sector;
102 	} u;
103 	commit_id_t last_bytes[];
104 	/* __u8 tag[0]; */
105 };
106 
107 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
108 
109 #if BITS_PER_LONG == 64
110 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
111 #else
112 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
113 #endif
114 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
115 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
116 #define journal_entry_set_unused(je)		((je)->u.s.sector_hi = cpu_to_le32(-1))
117 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
118 #define journal_entry_set_inprogress(je)	((je)->u.s.sector_hi = cpu_to_le32(-2))
119 
120 #define JOURNAL_BLOCK_SECTORS		8
121 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
122 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
123 
124 struct journal_sector {
125 	struct_group(sectors,
126 		__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
127 		__u8 mac[JOURNAL_MAC_PER_SECTOR];
128 	);
129 	commit_id_t commit_id;
130 };
131 
132 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
133 
134 #define METADATA_PADDING_SECTORS	8
135 
136 #define N_COMMIT_IDS			4
137 
138 static unsigned char prev_commit_seq(unsigned char seq)
139 {
140 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
141 }
142 
143 static unsigned char next_commit_seq(unsigned char seq)
144 {
145 	return (seq + 1) % N_COMMIT_IDS;
146 }
147 
148 /*
149  * In-memory structures
150  */
151 
152 struct journal_node {
153 	struct rb_node node;
154 	sector_t sector;
155 };
156 
157 struct alg_spec {
158 	char *alg_string;
159 	char *key_string;
160 	__u8 *key;
161 	unsigned int key_size;
162 };
163 
164 struct dm_integrity_c {
165 	struct dm_dev *dev;
166 	struct dm_dev *meta_dev;
167 	unsigned int tag_size;
168 	__s8 log2_tag_size;
169 	sector_t start;
170 	mempool_t journal_io_mempool;
171 	struct dm_io_client *io;
172 	struct dm_bufio_client *bufio;
173 	struct workqueue_struct *metadata_wq;
174 	struct superblock *sb;
175 	unsigned int journal_pages;
176 	unsigned int n_bitmap_blocks;
177 
178 	struct page_list *journal;
179 	struct page_list *journal_io;
180 	struct page_list *journal_xor;
181 	struct page_list *recalc_bitmap;
182 	struct page_list *may_write_bitmap;
183 	struct bitmap_block_status *bbs;
184 	unsigned int bitmap_flush_interval;
185 	int synchronous_mode;
186 	struct bio_list synchronous_bios;
187 	struct delayed_work bitmap_flush_work;
188 
189 	struct crypto_skcipher *journal_crypt;
190 	struct scatterlist **journal_scatterlist;
191 	struct scatterlist **journal_io_scatterlist;
192 	struct skcipher_request **sk_requests;
193 
194 	struct crypto_shash *journal_mac;
195 
196 	struct journal_node *journal_tree;
197 	struct rb_root journal_tree_root;
198 
199 	sector_t provided_data_sectors;
200 
201 	unsigned short journal_entry_size;
202 	unsigned char journal_entries_per_sector;
203 	unsigned char journal_section_entries;
204 	unsigned short journal_section_sectors;
205 	unsigned int journal_sections;
206 	unsigned int journal_entries;
207 	sector_t data_device_sectors;
208 	sector_t meta_device_sectors;
209 	unsigned int initial_sectors;
210 	unsigned int metadata_run;
211 	__s8 log2_metadata_run;
212 	__u8 log2_buffer_sectors;
213 	__u8 sectors_per_block;
214 	__u8 log2_blocks_per_bitmap_bit;
215 
216 	unsigned char mode;
217 
218 	int failed;
219 
220 	struct crypto_shash *internal_hash;
221 
222 	struct dm_target *ti;
223 
224 	/* these variables are locked with endio_wait.lock */
225 	struct rb_root in_progress;
226 	struct list_head wait_list;
227 	wait_queue_head_t endio_wait;
228 	struct workqueue_struct *wait_wq;
229 	struct workqueue_struct *offload_wq;
230 
231 	unsigned char commit_seq;
232 	commit_id_t commit_ids[N_COMMIT_IDS];
233 
234 	unsigned int committed_section;
235 	unsigned int n_committed_sections;
236 
237 	unsigned int uncommitted_section;
238 	unsigned int n_uncommitted_sections;
239 
240 	unsigned int free_section;
241 	unsigned char free_section_entry;
242 	unsigned int free_sectors;
243 
244 	unsigned int free_sectors_threshold;
245 
246 	struct workqueue_struct *commit_wq;
247 	struct work_struct commit_work;
248 
249 	struct workqueue_struct *writer_wq;
250 	struct work_struct writer_work;
251 
252 	struct workqueue_struct *recalc_wq;
253 	struct work_struct recalc_work;
254 
255 	struct bio_list flush_bio_list;
256 
257 	unsigned long autocommit_jiffies;
258 	struct timer_list autocommit_timer;
259 	unsigned int autocommit_msec;
260 
261 	wait_queue_head_t copy_to_journal_wait;
262 
263 	struct completion crypto_backoff;
264 
265 	bool wrote_to_journal;
266 	bool journal_uptodate;
267 	bool just_formatted;
268 	bool recalculate_flag;
269 	bool reset_recalculate_flag;
270 	bool discard;
271 	bool fix_padding;
272 	bool fix_hmac;
273 	bool legacy_recalculate;
274 
275 	struct alg_spec internal_hash_alg;
276 	struct alg_spec journal_crypt_alg;
277 	struct alg_spec journal_mac_alg;
278 
279 	atomic64_t number_of_mismatches;
280 
281 	mempool_t recheck_pool;
282 
283 	struct notifier_block reboot_notifier;
284 };
285 
286 struct dm_integrity_range {
287 	sector_t logical_sector;
288 	sector_t n_sectors;
289 	bool waiting;
290 	union {
291 		struct rb_node node;
292 		struct {
293 			struct task_struct *task;
294 			struct list_head wait_entry;
295 		};
296 	};
297 };
298 
299 struct dm_integrity_io {
300 	struct work_struct work;
301 
302 	struct dm_integrity_c *ic;
303 	enum req_op op;
304 	bool fua;
305 
306 	struct dm_integrity_range range;
307 
308 	sector_t metadata_block;
309 	unsigned int metadata_offset;
310 
311 	atomic_t in_flight;
312 	blk_status_t bi_status;
313 
314 	struct completion *completion;
315 
316 	struct dm_bio_details bio_details;
317 };
318 
319 struct journal_completion {
320 	struct dm_integrity_c *ic;
321 	atomic_t in_flight;
322 	struct completion comp;
323 };
324 
325 struct journal_io {
326 	struct dm_integrity_range range;
327 	struct journal_completion *comp;
328 };
329 
330 struct bitmap_block_status {
331 	struct work_struct work;
332 	struct dm_integrity_c *ic;
333 	unsigned int idx;
334 	unsigned long *bitmap;
335 	struct bio_list bio_queue;
336 	spinlock_t bio_queue_lock;
337 
338 };
339 
340 static struct kmem_cache *journal_io_cache;
341 
342 #define JOURNAL_IO_MEMPOOL	32
343 
344 #ifdef DEBUG_PRINT
345 #define DEBUG_print(x, ...)			printk(KERN_DEBUG x, ##__VA_ARGS__)
346 #define DEBUG_bytes(bytes, len, msg, ...)	printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
347 						       len ? ": " : "", len, bytes)
348 #else
349 #define DEBUG_print(x, ...)			do { } while (0)
350 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
351 #endif
352 
353 static void dm_integrity_prepare(struct request *rq)
354 {
355 }
356 
357 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
358 {
359 }
360 
361 /*
362  * DM Integrity profile, protection is performed layer above (dm-crypt)
363  */
364 static const struct blk_integrity_profile dm_integrity_profile = {
365 	.name			= "DM-DIF-EXT-TAG",
366 	.generate_fn		= NULL,
367 	.verify_fn		= NULL,
368 	.prepare_fn		= dm_integrity_prepare,
369 	.complete_fn		= dm_integrity_complete,
370 };
371 
372 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
373 static void integrity_bio_wait(struct work_struct *w);
374 static void dm_integrity_dtr(struct dm_target *ti);
375 
376 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
377 {
378 	if (err == -EILSEQ)
379 		atomic64_inc(&ic->number_of_mismatches);
380 	if (!cmpxchg(&ic->failed, 0, err))
381 		DMERR("Error on %s: %d", msg, err);
382 }
383 
384 static int dm_integrity_failed(struct dm_integrity_c *ic)
385 {
386 	return READ_ONCE(ic->failed);
387 }
388 
389 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
390 {
391 	if (ic->legacy_recalculate)
392 		return false;
393 	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
394 	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
395 	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
396 		return true;
397 	return false;
398 }
399 
400 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
401 					  unsigned int j, unsigned char seq)
402 {
403 	/*
404 	 * Xor the number with section and sector, so that if a piece of
405 	 * journal is written at wrong place, it is detected.
406 	 */
407 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
408 }
409 
410 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
411 				sector_t *area, sector_t *offset)
412 {
413 	if (!ic->meta_dev) {
414 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
415 		*area = data_sector >> log2_interleave_sectors;
416 		*offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
417 	} else {
418 		*area = 0;
419 		*offset = data_sector;
420 	}
421 }
422 
423 #define sector_to_block(ic, n)						\
424 do {									\
425 	BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1));		\
426 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
427 } while (0)
428 
429 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
430 					    sector_t offset, unsigned int *metadata_offset)
431 {
432 	__u64 ms;
433 	unsigned int mo;
434 
435 	ms = area << ic->sb->log2_interleave_sectors;
436 	if (likely(ic->log2_metadata_run >= 0))
437 		ms += area << ic->log2_metadata_run;
438 	else
439 		ms += area * ic->metadata_run;
440 	ms >>= ic->log2_buffer_sectors;
441 
442 	sector_to_block(ic, offset);
443 
444 	if (likely(ic->log2_tag_size >= 0)) {
445 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
446 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
447 	} else {
448 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
449 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
450 	}
451 	*metadata_offset = mo;
452 	return ms;
453 }
454 
455 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
456 {
457 	sector_t result;
458 
459 	if (ic->meta_dev)
460 		return offset;
461 
462 	result = area << ic->sb->log2_interleave_sectors;
463 	if (likely(ic->log2_metadata_run >= 0))
464 		result += (area + 1) << ic->log2_metadata_run;
465 	else
466 		result += (area + 1) * ic->metadata_run;
467 
468 	result += (sector_t)ic->initial_sectors + offset;
469 	result += ic->start;
470 
471 	return result;
472 }
473 
474 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
475 {
476 	if (unlikely(*sec_ptr >= ic->journal_sections))
477 		*sec_ptr -= ic->journal_sections;
478 }
479 
480 static void sb_set_version(struct dm_integrity_c *ic)
481 {
482 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
483 		ic->sb->version = SB_VERSION_5;
484 	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
485 		ic->sb->version = SB_VERSION_4;
486 	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
487 		ic->sb->version = SB_VERSION_3;
488 	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
489 		ic->sb->version = SB_VERSION_2;
490 	else
491 		ic->sb->version = SB_VERSION_1;
492 }
493 
494 static int sb_mac(struct dm_integrity_c *ic, bool wr)
495 {
496 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
497 	int r;
498 	unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac);
499 	__u8 *sb = (__u8 *)ic->sb;
500 	__u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size;
501 
502 	if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT) {
503 		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
504 		return -EINVAL;
505 	}
506 
507 	desc->tfm = ic->journal_mac;
508 
509 	if (likely(wr)) {
510 		r = crypto_shash_digest(desc, sb, mac - sb, mac);
511 		if (unlikely(r < 0)) {
512 			dm_integrity_io_error(ic, "crypto_shash_digest", r);
513 			return r;
514 		}
515 	} else {
516 		__u8 actual_mac[HASH_MAX_DIGESTSIZE];
517 
518 		r = crypto_shash_digest(desc, sb, mac - sb, actual_mac);
519 		if (unlikely(r < 0)) {
520 			dm_integrity_io_error(ic, "crypto_shash_digest", r);
521 			return r;
522 		}
523 		if (memcmp(mac, actual_mac, mac_size)) {
524 			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
525 			dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
526 			return -EILSEQ;
527 		}
528 	}
529 
530 	return 0;
531 }
532 
533 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
534 {
535 	struct dm_io_request io_req;
536 	struct dm_io_region io_loc;
537 	const enum req_op op = opf & REQ_OP_MASK;
538 	int r;
539 
540 	io_req.bi_opf = opf;
541 	io_req.mem.type = DM_IO_KMEM;
542 	io_req.mem.ptr.addr = ic->sb;
543 	io_req.notify.fn = NULL;
544 	io_req.client = ic->io;
545 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
546 	io_loc.sector = ic->start;
547 	io_loc.count = SB_SECTORS;
548 
549 	if (op == REQ_OP_WRITE) {
550 		sb_set_version(ic);
551 		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
552 			r = sb_mac(ic, true);
553 			if (unlikely(r))
554 				return r;
555 		}
556 	}
557 
558 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
559 	if (unlikely(r))
560 		return r;
561 
562 	if (op == REQ_OP_READ) {
563 		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
564 			r = sb_mac(ic, false);
565 			if (unlikely(r))
566 				return r;
567 		}
568 	}
569 
570 	return 0;
571 }
572 
573 #define BITMAP_OP_TEST_ALL_SET		0
574 #define BITMAP_OP_TEST_ALL_CLEAR	1
575 #define BITMAP_OP_SET			2
576 #define BITMAP_OP_CLEAR			3
577 
578 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
579 			    sector_t sector, sector_t n_sectors, int mode)
580 {
581 	unsigned long bit, end_bit, this_end_bit, page, end_page;
582 	unsigned long *data;
583 
584 	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
585 		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
586 			sector,
587 			n_sectors,
588 			ic->sb->log2_sectors_per_block,
589 			ic->log2_blocks_per_bitmap_bit,
590 			mode);
591 		BUG();
592 	}
593 
594 	if (unlikely(!n_sectors))
595 		return true;
596 
597 	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
598 	end_bit = (sector + n_sectors - 1) >>
599 		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
600 
601 	page = bit / (PAGE_SIZE * 8);
602 	bit %= PAGE_SIZE * 8;
603 
604 	end_page = end_bit / (PAGE_SIZE * 8);
605 	end_bit %= PAGE_SIZE * 8;
606 
607 repeat:
608 	if (page < end_page)
609 		this_end_bit = PAGE_SIZE * 8 - 1;
610 	else
611 		this_end_bit = end_bit;
612 
613 	data = lowmem_page_address(bitmap[page].page);
614 
615 	if (mode == BITMAP_OP_TEST_ALL_SET) {
616 		while (bit <= this_end_bit) {
617 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
618 				do {
619 					if (data[bit / BITS_PER_LONG] != -1)
620 						return false;
621 					bit += BITS_PER_LONG;
622 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
623 				continue;
624 			}
625 			if (!test_bit(bit, data))
626 				return false;
627 			bit++;
628 		}
629 	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
630 		while (bit <= this_end_bit) {
631 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
632 				do {
633 					if (data[bit / BITS_PER_LONG] != 0)
634 						return false;
635 					bit += BITS_PER_LONG;
636 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
637 				continue;
638 			}
639 			if (test_bit(bit, data))
640 				return false;
641 			bit++;
642 		}
643 	} else if (mode == BITMAP_OP_SET) {
644 		while (bit <= this_end_bit) {
645 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
646 				do {
647 					data[bit / BITS_PER_LONG] = -1;
648 					bit += BITS_PER_LONG;
649 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
650 				continue;
651 			}
652 			__set_bit(bit, data);
653 			bit++;
654 		}
655 	} else if (mode == BITMAP_OP_CLEAR) {
656 		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
657 			clear_page(data);
658 		else {
659 			while (bit <= this_end_bit) {
660 				if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
661 					do {
662 						data[bit / BITS_PER_LONG] = 0;
663 						bit += BITS_PER_LONG;
664 					} while (this_end_bit >= bit + BITS_PER_LONG - 1);
665 					continue;
666 				}
667 				__clear_bit(bit, data);
668 				bit++;
669 			}
670 		}
671 	} else {
672 		BUG();
673 	}
674 
675 	if (unlikely(page < end_page)) {
676 		bit = 0;
677 		page++;
678 		goto repeat;
679 	}
680 
681 	return true;
682 }
683 
684 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
685 {
686 	unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
687 	unsigned int i;
688 
689 	for (i = 0; i < n_bitmap_pages; i++) {
690 		unsigned long *dst_data = lowmem_page_address(dst[i].page);
691 		unsigned long *src_data = lowmem_page_address(src[i].page);
692 
693 		copy_page(dst_data, src_data);
694 	}
695 }
696 
697 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
698 {
699 	unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
700 	unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
701 
702 	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
703 	return &ic->bbs[bitmap_block];
704 }
705 
706 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
707 				 bool e, const char *function)
708 {
709 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
710 	unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
711 
712 	if (unlikely(section >= ic->journal_sections) ||
713 	    unlikely(offset >= limit)) {
714 		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
715 		       function, section, offset, ic->journal_sections, limit);
716 		BUG();
717 	}
718 #endif
719 }
720 
721 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
722 			       unsigned int *pl_index, unsigned int *pl_offset)
723 {
724 	unsigned int sector;
725 
726 	access_journal_check(ic, section, offset, false, "page_list_location");
727 
728 	sector = section * ic->journal_section_sectors + offset;
729 
730 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
731 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
732 }
733 
734 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
735 					       unsigned int section, unsigned int offset, unsigned int *n_sectors)
736 {
737 	unsigned int pl_index, pl_offset;
738 	char *va;
739 
740 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
741 
742 	if (n_sectors)
743 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
744 
745 	va = lowmem_page_address(pl[pl_index].page);
746 
747 	return (struct journal_sector *)(va + pl_offset);
748 }
749 
750 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
751 {
752 	return access_page_list(ic, ic->journal, section, offset, NULL);
753 }
754 
755 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
756 {
757 	unsigned int rel_sector, offset;
758 	struct journal_sector *js;
759 
760 	access_journal_check(ic, section, n, true, "access_journal_entry");
761 
762 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
763 	offset = n / JOURNAL_BLOCK_SECTORS;
764 
765 	js = access_journal(ic, section, rel_sector);
766 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
767 }
768 
769 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
770 {
771 	n <<= ic->sb->log2_sectors_per_block;
772 
773 	n += JOURNAL_BLOCK_SECTORS;
774 
775 	access_journal_check(ic, section, n, false, "access_journal_data");
776 
777 	return access_journal(ic, section, n);
778 }
779 
780 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
781 {
782 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
783 	int r;
784 	unsigned int j, size;
785 
786 	desc->tfm = ic->journal_mac;
787 
788 	r = crypto_shash_init(desc);
789 	if (unlikely(r < 0)) {
790 		dm_integrity_io_error(ic, "crypto_shash_init", r);
791 		goto err;
792 	}
793 
794 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
795 		__le64 section_le;
796 
797 		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
798 		if (unlikely(r < 0)) {
799 			dm_integrity_io_error(ic, "crypto_shash_update", r);
800 			goto err;
801 		}
802 
803 		section_le = cpu_to_le64(section);
804 		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof(section_le));
805 		if (unlikely(r < 0)) {
806 			dm_integrity_io_error(ic, "crypto_shash_update", r);
807 			goto err;
808 		}
809 	}
810 
811 	for (j = 0; j < ic->journal_section_entries; j++) {
812 		struct journal_entry *je = access_journal_entry(ic, section, j);
813 
814 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
815 		if (unlikely(r < 0)) {
816 			dm_integrity_io_error(ic, "crypto_shash_update", r);
817 			goto err;
818 		}
819 	}
820 
821 	size = crypto_shash_digestsize(ic->journal_mac);
822 
823 	if (likely(size <= JOURNAL_MAC_SIZE)) {
824 		r = crypto_shash_final(desc, result);
825 		if (unlikely(r < 0)) {
826 			dm_integrity_io_error(ic, "crypto_shash_final", r);
827 			goto err;
828 		}
829 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
830 	} else {
831 		__u8 digest[HASH_MAX_DIGESTSIZE];
832 
833 		if (WARN_ON(size > sizeof(digest))) {
834 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
835 			goto err;
836 		}
837 		r = crypto_shash_final(desc, digest);
838 		if (unlikely(r < 0)) {
839 			dm_integrity_io_error(ic, "crypto_shash_final", r);
840 			goto err;
841 		}
842 		memcpy(result, digest, JOURNAL_MAC_SIZE);
843 	}
844 
845 	return;
846 err:
847 	memset(result, 0, JOURNAL_MAC_SIZE);
848 }
849 
850 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
851 {
852 	__u8 result[JOURNAL_MAC_SIZE];
853 	unsigned int j;
854 
855 	if (!ic->journal_mac)
856 		return;
857 
858 	section_mac(ic, section, result);
859 
860 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
861 		struct journal_sector *js = access_journal(ic, section, j);
862 
863 		if (likely(wr))
864 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
865 		else {
866 			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
867 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
868 				dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
869 			}
870 		}
871 	}
872 }
873 
874 static void complete_journal_op(void *context)
875 {
876 	struct journal_completion *comp = context;
877 
878 	BUG_ON(!atomic_read(&comp->in_flight));
879 	if (likely(atomic_dec_and_test(&comp->in_flight)))
880 		complete(&comp->comp);
881 }
882 
883 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
884 			unsigned int n_sections, struct journal_completion *comp)
885 {
886 	struct async_submit_ctl submit;
887 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
888 	unsigned int pl_index, pl_offset, section_index;
889 	struct page_list *source_pl, *target_pl;
890 
891 	if (likely(encrypt)) {
892 		source_pl = ic->journal;
893 		target_pl = ic->journal_io;
894 	} else {
895 		source_pl = ic->journal_io;
896 		target_pl = ic->journal;
897 	}
898 
899 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
900 
901 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
902 
903 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
904 
905 	section_index = pl_index;
906 
907 	do {
908 		size_t this_step;
909 		struct page *src_pages[2];
910 		struct page *dst_page;
911 
912 		while (unlikely(pl_index == section_index)) {
913 			unsigned int dummy;
914 
915 			if (likely(encrypt))
916 				rw_section_mac(ic, section, true);
917 			section++;
918 			n_sections--;
919 			if (!n_sections)
920 				break;
921 			page_list_location(ic, section, 0, &section_index, &dummy);
922 		}
923 
924 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
925 		dst_page = target_pl[pl_index].page;
926 		src_pages[0] = source_pl[pl_index].page;
927 		src_pages[1] = ic->journal_xor[pl_index].page;
928 
929 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
930 
931 		pl_index++;
932 		pl_offset = 0;
933 		n_bytes -= this_step;
934 	} while (n_bytes);
935 
936 	BUG_ON(n_sections);
937 
938 	async_tx_issue_pending_all();
939 }
940 
941 static void complete_journal_encrypt(void *data, int err)
942 {
943 	struct journal_completion *comp = data;
944 
945 	if (unlikely(err)) {
946 		if (likely(err == -EINPROGRESS)) {
947 			complete(&comp->ic->crypto_backoff);
948 			return;
949 		}
950 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
951 	}
952 	complete_journal_op(comp);
953 }
954 
955 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
956 {
957 	int r;
958 
959 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
960 				      complete_journal_encrypt, comp);
961 	if (likely(encrypt))
962 		r = crypto_skcipher_encrypt(req);
963 	else
964 		r = crypto_skcipher_decrypt(req);
965 	if (likely(!r))
966 		return false;
967 	if (likely(r == -EINPROGRESS))
968 		return true;
969 	if (likely(r == -EBUSY)) {
970 		wait_for_completion(&comp->ic->crypto_backoff);
971 		reinit_completion(&comp->ic->crypto_backoff);
972 		return true;
973 	}
974 	dm_integrity_io_error(comp->ic, "encrypt", r);
975 	return false;
976 }
977 
978 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
979 			  unsigned int n_sections, struct journal_completion *comp)
980 {
981 	struct scatterlist **source_sg;
982 	struct scatterlist **target_sg;
983 
984 	atomic_add(2, &comp->in_flight);
985 
986 	if (likely(encrypt)) {
987 		source_sg = ic->journal_scatterlist;
988 		target_sg = ic->journal_io_scatterlist;
989 	} else {
990 		source_sg = ic->journal_io_scatterlist;
991 		target_sg = ic->journal_scatterlist;
992 	}
993 
994 	do {
995 		struct skcipher_request *req;
996 		unsigned int ivsize;
997 		char *iv;
998 
999 		if (likely(encrypt))
1000 			rw_section_mac(ic, section, true);
1001 
1002 		req = ic->sk_requests[section];
1003 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1004 		iv = req->iv;
1005 
1006 		memcpy(iv, iv + ivsize, ivsize);
1007 
1008 		req->src = source_sg[section];
1009 		req->dst = target_sg[section];
1010 
1011 		if (unlikely(do_crypt(encrypt, req, comp)))
1012 			atomic_inc(&comp->in_flight);
1013 
1014 		section++;
1015 		n_sections--;
1016 	} while (n_sections);
1017 
1018 	atomic_dec(&comp->in_flight);
1019 	complete_journal_op(comp);
1020 }
1021 
1022 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1023 			    unsigned int n_sections, struct journal_completion *comp)
1024 {
1025 	if (ic->journal_xor)
1026 		return xor_journal(ic, encrypt, section, n_sections, comp);
1027 	else
1028 		return crypt_journal(ic, encrypt, section, n_sections, comp);
1029 }
1030 
1031 static void complete_journal_io(unsigned long error, void *context)
1032 {
1033 	struct journal_completion *comp = context;
1034 
1035 	if (unlikely(error != 0))
1036 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1037 	complete_journal_op(comp);
1038 }
1039 
1040 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1041 			       unsigned int sector, unsigned int n_sectors,
1042 			       struct journal_completion *comp)
1043 {
1044 	struct dm_io_request io_req;
1045 	struct dm_io_region io_loc;
1046 	unsigned int pl_index, pl_offset;
1047 	int r;
1048 
1049 	if (unlikely(dm_integrity_failed(ic))) {
1050 		if (comp)
1051 			complete_journal_io(-1UL, comp);
1052 		return;
1053 	}
1054 
1055 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1056 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1057 
1058 	io_req.bi_opf = opf;
1059 	io_req.mem.type = DM_IO_PAGE_LIST;
1060 	if (ic->journal_io)
1061 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1062 	else
1063 		io_req.mem.ptr.pl = &ic->journal[pl_index];
1064 	io_req.mem.offset = pl_offset;
1065 	if (likely(comp != NULL)) {
1066 		io_req.notify.fn = complete_journal_io;
1067 		io_req.notify.context = comp;
1068 	} else {
1069 		io_req.notify.fn = NULL;
1070 	}
1071 	io_req.client = ic->io;
1072 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1073 	io_loc.sector = ic->start + SB_SECTORS + sector;
1074 	io_loc.count = n_sectors;
1075 
1076 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1077 	if (unlikely(r)) {
1078 		dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1079 				      "reading journal" : "writing journal", r);
1080 		if (comp) {
1081 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1082 			complete_journal_io(-1UL, comp);
1083 		}
1084 	}
1085 }
1086 
1087 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1088 		       unsigned int section, unsigned int n_sections,
1089 		       struct journal_completion *comp)
1090 {
1091 	unsigned int sector, n_sectors;
1092 
1093 	sector = section * ic->journal_section_sectors;
1094 	n_sectors = n_sections * ic->journal_section_sectors;
1095 
1096 	rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1097 }
1098 
1099 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1100 {
1101 	struct journal_completion io_comp;
1102 	struct journal_completion crypt_comp_1;
1103 	struct journal_completion crypt_comp_2;
1104 	unsigned int i;
1105 
1106 	io_comp.ic = ic;
1107 	init_completion(&io_comp.comp);
1108 
1109 	if (commit_start + commit_sections <= ic->journal_sections) {
1110 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1111 		if (ic->journal_io) {
1112 			crypt_comp_1.ic = ic;
1113 			init_completion(&crypt_comp_1.comp);
1114 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1115 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1116 			wait_for_completion_io(&crypt_comp_1.comp);
1117 		} else {
1118 			for (i = 0; i < commit_sections; i++)
1119 				rw_section_mac(ic, commit_start + i, true);
1120 		}
1121 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1122 			   commit_sections, &io_comp);
1123 	} else {
1124 		unsigned int to_end;
1125 
1126 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1127 		to_end = ic->journal_sections - commit_start;
1128 		if (ic->journal_io) {
1129 			crypt_comp_1.ic = ic;
1130 			init_completion(&crypt_comp_1.comp);
1131 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1132 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1133 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1134 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1135 					   commit_start, to_end, &io_comp);
1136 				reinit_completion(&crypt_comp_1.comp);
1137 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1138 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1139 				wait_for_completion_io(&crypt_comp_1.comp);
1140 			} else {
1141 				crypt_comp_2.ic = ic;
1142 				init_completion(&crypt_comp_2.comp);
1143 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1144 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1145 				wait_for_completion_io(&crypt_comp_1.comp);
1146 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1147 				wait_for_completion_io(&crypt_comp_2.comp);
1148 			}
1149 		} else {
1150 			for (i = 0; i < to_end; i++)
1151 				rw_section_mac(ic, commit_start + i, true);
1152 			rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1153 			for (i = 0; i < commit_sections - to_end; i++)
1154 				rw_section_mac(ic, i, true);
1155 		}
1156 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1157 	}
1158 
1159 	wait_for_completion_io(&io_comp.comp);
1160 }
1161 
1162 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1163 			      unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1164 {
1165 	struct dm_io_request io_req;
1166 	struct dm_io_region io_loc;
1167 	int r;
1168 	unsigned int sector, pl_index, pl_offset;
1169 
1170 	BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1171 
1172 	if (unlikely(dm_integrity_failed(ic))) {
1173 		fn(-1UL, data);
1174 		return;
1175 	}
1176 
1177 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1178 
1179 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1180 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1181 
1182 	io_req.bi_opf = REQ_OP_WRITE;
1183 	io_req.mem.type = DM_IO_PAGE_LIST;
1184 	io_req.mem.ptr.pl = &ic->journal[pl_index];
1185 	io_req.mem.offset = pl_offset;
1186 	io_req.notify.fn = fn;
1187 	io_req.notify.context = data;
1188 	io_req.client = ic->io;
1189 	io_loc.bdev = ic->dev->bdev;
1190 	io_loc.sector = target;
1191 	io_loc.count = n_sectors;
1192 
1193 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1194 	if (unlikely(r)) {
1195 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1196 		fn(-1UL, data);
1197 	}
1198 }
1199 
1200 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1201 {
1202 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1203 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1204 }
1205 
1206 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1207 {
1208 	struct rb_node **n = &ic->in_progress.rb_node;
1209 	struct rb_node *parent;
1210 
1211 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1212 
1213 	if (likely(check_waiting)) {
1214 		struct dm_integrity_range *range;
1215 
1216 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1217 			if (unlikely(ranges_overlap(range, new_range)))
1218 				return false;
1219 		}
1220 	}
1221 
1222 	parent = NULL;
1223 
1224 	while (*n) {
1225 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1226 
1227 		parent = *n;
1228 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1229 			n = &range->node.rb_left;
1230 		else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1231 			n = &range->node.rb_right;
1232 		else
1233 			return false;
1234 	}
1235 
1236 	rb_link_node(&new_range->node, parent, n);
1237 	rb_insert_color(&new_range->node, &ic->in_progress);
1238 
1239 	return true;
1240 }
1241 
1242 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1243 {
1244 	rb_erase(&range->node, &ic->in_progress);
1245 	while (unlikely(!list_empty(&ic->wait_list))) {
1246 		struct dm_integrity_range *last_range =
1247 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1248 		struct task_struct *last_range_task;
1249 
1250 		last_range_task = last_range->task;
1251 		list_del(&last_range->wait_entry);
1252 		if (!add_new_range(ic, last_range, false)) {
1253 			last_range->task = last_range_task;
1254 			list_add(&last_range->wait_entry, &ic->wait_list);
1255 			break;
1256 		}
1257 		last_range->waiting = false;
1258 		wake_up_process(last_range_task);
1259 	}
1260 }
1261 
1262 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1263 {
1264 	unsigned long flags;
1265 
1266 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1267 	remove_range_unlocked(ic, range);
1268 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1269 }
1270 
1271 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1272 {
1273 	new_range->waiting = true;
1274 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1275 	new_range->task = current;
1276 	do {
1277 		__set_current_state(TASK_UNINTERRUPTIBLE);
1278 		spin_unlock_irq(&ic->endio_wait.lock);
1279 		io_schedule();
1280 		spin_lock_irq(&ic->endio_wait.lock);
1281 	} while (unlikely(new_range->waiting));
1282 }
1283 
1284 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1285 {
1286 	if (unlikely(!add_new_range(ic, new_range, true)))
1287 		wait_and_add_new_range(ic, new_range);
1288 }
1289 
1290 static void init_journal_node(struct journal_node *node)
1291 {
1292 	RB_CLEAR_NODE(&node->node);
1293 	node->sector = (sector_t)-1;
1294 }
1295 
1296 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1297 {
1298 	struct rb_node **link;
1299 	struct rb_node *parent;
1300 
1301 	node->sector = sector;
1302 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1303 
1304 	link = &ic->journal_tree_root.rb_node;
1305 	parent = NULL;
1306 
1307 	while (*link) {
1308 		struct journal_node *j;
1309 
1310 		parent = *link;
1311 		j = container_of(parent, struct journal_node, node);
1312 		if (sector < j->sector)
1313 			link = &j->node.rb_left;
1314 		else
1315 			link = &j->node.rb_right;
1316 	}
1317 
1318 	rb_link_node(&node->node, parent, link);
1319 	rb_insert_color(&node->node, &ic->journal_tree_root);
1320 }
1321 
1322 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1323 {
1324 	BUG_ON(RB_EMPTY_NODE(&node->node));
1325 	rb_erase(&node->node, &ic->journal_tree_root);
1326 	init_journal_node(node);
1327 }
1328 
1329 #define NOT_FOUND	(-1U)
1330 
1331 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1332 {
1333 	struct rb_node *n = ic->journal_tree_root.rb_node;
1334 	unsigned int found = NOT_FOUND;
1335 
1336 	*next_sector = (sector_t)-1;
1337 	while (n) {
1338 		struct journal_node *j = container_of(n, struct journal_node, node);
1339 
1340 		if (sector == j->sector)
1341 			found = j - ic->journal_tree;
1342 
1343 		if (sector < j->sector) {
1344 			*next_sector = j->sector;
1345 			n = j->node.rb_left;
1346 		} else
1347 			n = j->node.rb_right;
1348 	}
1349 
1350 	return found;
1351 }
1352 
1353 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1354 {
1355 	struct journal_node *node, *next_node;
1356 	struct rb_node *next;
1357 
1358 	if (unlikely(pos >= ic->journal_entries))
1359 		return false;
1360 	node = &ic->journal_tree[pos];
1361 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1362 		return false;
1363 	if (unlikely(node->sector != sector))
1364 		return false;
1365 
1366 	next = rb_next(&node->node);
1367 	if (unlikely(!next))
1368 		return true;
1369 
1370 	next_node = container_of(next, struct journal_node, node);
1371 	return next_node->sector != sector;
1372 }
1373 
1374 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1375 {
1376 	struct rb_node *next;
1377 	struct journal_node *next_node;
1378 	unsigned int next_section;
1379 
1380 	BUG_ON(RB_EMPTY_NODE(&node->node));
1381 
1382 	next = rb_next(&node->node);
1383 	if (unlikely(!next))
1384 		return false;
1385 
1386 	next_node = container_of(next, struct journal_node, node);
1387 
1388 	if (next_node->sector != node->sector)
1389 		return false;
1390 
1391 	next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1392 	if (next_section >= ic->committed_section &&
1393 	    next_section < ic->committed_section + ic->n_committed_sections)
1394 		return true;
1395 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1396 		return true;
1397 
1398 	return false;
1399 }
1400 
1401 #define TAG_READ	0
1402 #define TAG_WRITE	1
1403 #define TAG_CMP		2
1404 
1405 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1406 			       unsigned int *metadata_offset, unsigned int total_size, int op)
1407 {
1408 #define MAY_BE_FILLER		1
1409 #define MAY_BE_HASH		2
1410 	unsigned int hash_offset = 0;
1411 	unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1412 
1413 	do {
1414 		unsigned char *data, *dp;
1415 		struct dm_buffer *b;
1416 		unsigned int to_copy;
1417 		int r;
1418 
1419 		r = dm_integrity_failed(ic);
1420 		if (unlikely(r))
1421 			return r;
1422 
1423 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1424 		if (IS_ERR(data))
1425 			return PTR_ERR(data);
1426 
1427 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1428 		dp = data + *metadata_offset;
1429 		if (op == TAG_READ) {
1430 			memcpy(tag, dp, to_copy);
1431 		} else if (op == TAG_WRITE) {
1432 			if (memcmp(dp, tag, to_copy)) {
1433 				memcpy(dp, tag, to_copy);
1434 				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1435 			}
1436 		} else {
1437 			/* e.g.: op == TAG_CMP */
1438 
1439 			if (likely(is_power_of_2(ic->tag_size))) {
1440 				if (unlikely(memcmp(dp, tag, to_copy)))
1441 					if (unlikely(!ic->discard) ||
1442 					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1443 						goto thorough_test;
1444 				}
1445 			} else {
1446 				unsigned int i, ts;
1447 thorough_test:
1448 				ts = total_size;
1449 
1450 				for (i = 0; i < to_copy; i++, ts--) {
1451 					if (unlikely(dp[i] != tag[i]))
1452 						may_be &= ~MAY_BE_HASH;
1453 					if (likely(dp[i] != DISCARD_FILLER))
1454 						may_be &= ~MAY_BE_FILLER;
1455 					hash_offset++;
1456 					if (unlikely(hash_offset == ic->tag_size)) {
1457 						if (unlikely(!may_be)) {
1458 							dm_bufio_release(b);
1459 							return ts;
1460 						}
1461 						hash_offset = 0;
1462 						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1463 					}
1464 				}
1465 			}
1466 		}
1467 		dm_bufio_release(b);
1468 
1469 		tag += to_copy;
1470 		*metadata_offset += to_copy;
1471 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1472 			(*metadata_block)++;
1473 			*metadata_offset = 0;
1474 		}
1475 
1476 		if (unlikely(!is_power_of_2(ic->tag_size)))
1477 			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1478 
1479 		total_size -= to_copy;
1480 	} while (unlikely(total_size));
1481 
1482 	return 0;
1483 #undef MAY_BE_FILLER
1484 #undef MAY_BE_HASH
1485 }
1486 
1487 struct flush_request {
1488 	struct dm_io_request io_req;
1489 	struct dm_io_region io_reg;
1490 	struct dm_integrity_c *ic;
1491 	struct completion comp;
1492 };
1493 
1494 static void flush_notify(unsigned long error, void *fr_)
1495 {
1496 	struct flush_request *fr = fr_;
1497 
1498 	if (unlikely(error != 0))
1499 		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1500 	complete(&fr->comp);
1501 }
1502 
1503 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1504 {
1505 	int r;
1506 	struct flush_request fr;
1507 
1508 	if (!ic->meta_dev)
1509 		flush_data = false;
1510 	if (flush_data) {
1511 		fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1512 		fr.io_req.mem.type = DM_IO_KMEM,
1513 		fr.io_req.mem.ptr.addr = NULL,
1514 		fr.io_req.notify.fn = flush_notify,
1515 		fr.io_req.notify.context = &fr;
1516 		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1517 		fr.io_reg.bdev = ic->dev->bdev,
1518 		fr.io_reg.sector = 0,
1519 		fr.io_reg.count = 0,
1520 		fr.ic = ic;
1521 		init_completion(&fr.comp);
1522 		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL, IOPRIO_DEFAULT);
1523 		BUG_ON(r);
1524 	}
1525 
1526 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1527 	if (unlikely(r))
1528 		dm_integrity_io_error(ic, "writing tags", r);
1529 
1530 	if (flush_data)
1531 		wait_for_completion(&fr.comp);
1532 }
1533 
1534 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1535 {
1536 	DECLARE_WAITQUEUE(wait, current);
1537 
1538 	__add_wait_queue(&ic->endio_wait, &wait);
1539 	__set_current_state(TASK_UNINTERRUPTIBLE);
1540 	spin_unlock_irq(&ic->endio_wait.lock);
1541 	io_schedule();
1542 	spin_lock_irq(&ic->endio_wait.lock);
1543 	__remove_wait_queue(&ic->endio_wait, &wait);
1544 }
1545 
1546 static void autocommit_fn(struct timer_list *t)
1547 {
1548 	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1549 
1550 	if (likely(!dm_integrity_failed(ic)))
1551 		queue_work(ic->commit_wq, &ic->commit_work);
1552 }
1553 
1554 static void schedule_autocommit(struct dm_integrity_c *ic)
1555 {
1556 	if (!timer_pending(&ic->autocommit_timer))
1557 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1558 }
1559 
1560 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1561 {
1562 	struct bio *bio;
1563 	unsigned long flags;
1564 
1565 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1566 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1567 	bio_list_add(&ic->flush_bio_list, bio);
1568 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1569 
1570 	queue_work(ic->commit_wq, &ic->commit_work);
1571 }
1572 
1573 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1574 {
1575 	int r;
1576 
1577 	r = dm_integrity_failed(ic);
1578 	if (unlikely(r) && !bio->bi_status)
1579 		bio->bi_status = errno_to_blk_status(r);
1580 	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1581 		unsigned long flags;
1582 
1583 		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1584 		bio_list_add(&ic->synchronous_bios, bio);
1585 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1586 		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1587 		return;
1588 	}
1589 	bio_endio(bio);
1590 }
1591 
1592 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1593 {
1594 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1595 
1596 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1597 		submit_flush_bio(ic, dio);
1598 	else
1599 		do_endio(ic, bio);
1600 }
1601 
1602 static void dec_in_flight(struct dm_integrity_io *dio)
1603 {
1604 	if (atomic_dec_and_test(&dio->in_flight)) {
1605 		struct dm_integrity_c *ic = dio->ic;
1606 		struct bio *bio;
1607 
1608 		remove_range(ic, &dio->range);
1609 
1610 		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1611 			schedule_autocommit(ic);
1612 
1613 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1614 		if (unlikely(dio->bi_status) && !bio->bi_status)
1615 			bio->bi_status = dio->bi_status;
1616 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1617 			dio->range.logical_sector += dio->range.n_sectors;
1618 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1619 			INIT_WORK(&dio->work, integrity_bio_wait);
1620 			queue_work(ic->offload_wq, &dio->work);
1621 			return;
1622 		}
1623 		do_endio_flush(ic, dio);
1624 	}
1625 }
1626 
1627 static void integrity_end_io(struct bio *bio)
1628 {
1629 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1630 
1631 	dm_bio_restore(&dio->bio_details, bio);
1632 	if (bio->bi_integrity)
1633 		bio->bi_opf |= REQ_INTEGRITY;
1634 
1635 	if (dio->completion)
1636 		complete(dio->completion);
1637 
1638 	dec_in_flight(dio);
1639 }
1640 
1641 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1642 				      const char *data, char *result)
1643 {
1644 	__le64 sector_le = cpu_to_le64(sector);
1645 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1646 	int r;
1647 	unsigned int digest_size;
1648 
1649 	req->tfm = ic->internal_hash;
1650 
1651 	r = crypto_shash_init(req);
1652 	if (unlikely(r < 0)) {
1653 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1654 		goto failed;
1655 	}
1656 
1657 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1658 		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1659 		if (unlikely(r < 0)) {
1660 			dm_integrity_io_error(ic, "crypto_shash_update", r);
1661 			goto failed;
1662 		}
1663 	}
1664 
1665 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof(sector_le));
1666 	if (unlikely(r < 0)) {
1667 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1668 		goto failed;
1669 	}
1670 
1671 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1672 	if (unlikely(r < 0)) {
1673 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1674 		goto failed;
1675 	}
1676 
1677 	r = crypto_shash_final(req, result);
1678 	if (unlikely(r < 0)) {
1679 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1680 		goto failed;
1681 	}
1682 
1683 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1684 	if (unlikely(digest_size < ic->tag_size))
1685 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1686 
1687 	return;
1688 
1689 failed:
1690 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1691 	get_random_bytes(result, ic->tag_size);
1692 }
1693 
1694 static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum)
1695 {
1696 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1697 	struct dm_integrity_c *ic = dio->ic;
1698 	struct bvec_iter iter;
1699 	struct bio_vec bv;
1700 	sector_t sector, logical_sector, area, offset;
1701 	struct page *page;
1702 	void *buffer;
1703 
1704 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1705 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset,
1706 							     &dio->metadata_offset);
1707 	sector = get_data_sector(ic, area, offset);
1708 	logical_sector = dio->range.logical_sector;
1709 
1710 	page = mempool_alloc(&ic->recheck_pool, GFP_NOIO);
1711 	buffer = page_to_virt(page);
1712 
1713 	__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1714 		unsigned pos = 0;
1715 
1716 		do {
1717 			char *mem;
1718 			int r;
1719 			struct dm_io_request io_req;
1720 			struct dm_io_region io_loc;
1721 			io_req.bi_opf = REQ_OP_READ;
1722 			io_req.mem.type = DM_IO_KMEM;
1723 			io_req.mem.ptr.addr = buffer;
1724 			io_req.notify.fn = NULL;
1725 			io_req.client = ic->io;
1726 			io_loc.bdev = ic->dev->bdev;
1727 			io_loc.sector = sector;
1728 			io_loc.count = ic->sectors_per_block;
1729 
1730 			r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1731 			if (unlikely(r)) {
1732 				dio->bi_status = errno_to_blk_status(r);
1733 				goto free_ret;
1734 			}
1735 
1736 			integrity_sector_checksum(ic, logical_sector, buffer, checksum);
1737 			r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block,
1738 						&dio->metadata_offset, ic->tag_size, TAG_CMP);
1739 			if (r) {
1740 				if (r > 0) {
1741 					DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1742 						    bio->bi_bdev, logical_sector);
1743 					atomic64_inc(&ic->number_of_mismatches);
1744 					dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1745 							 bio, logical_sector, 0);
1746 					r = -EILSEQ;
1747 				}
1748 				dio->bi_status = errno_to_blk_status(r);
1749 				goto free_ret;
1750 			}
1751 
1752 			mem = bvec_kmap_local(&bv);
1753 			memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT);
1754 			kunmap_local(mem);
1755 
1756 			pos += ic->sectors_per_block << SECTOR_SHIFT;
1757 			sector += ic->sectors_per_block;
1758 			logical_sector += ic->sectors_per_block;
1759 		} while (pos < bv.bv_len);
1760 	}
1761 free_ret:
1762 	mempool_free(page, &ic->recheck_pool);
1763 }
1764 
1765 static void integrity_metadata(struct work_struct *w)
1766 {
1767 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1768 	struct dm_integrity_c *ic = dio->ic;
1769 
1770 	int r;
1771 
1772 	if (ic->internal_hash) {
1773 		struct bvec_iter iter;
1774 		struct bio_vec bv;
1775 		unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1776 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1777 		char *checksums;
1778 		unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1779 		char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1780 		sector_t sector;
1781 		unsigned int sectors_to_process;
1782 
1783 		if (unlikely(ic->mode == 'R'))
1784 			goto skip_io;
1785 
1786 		if (likely(dio->op != REQ_OP_DISCARD))
1787 			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1788 					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1789 		else
1790 			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1791 		if (!checksums) {
1792 			checksums = checksums_onstack;
1793 			if (WARN_ON(extra_space &&
1794 				    digest_size > sizeof(checksums_onstack))) {
1795 				r = -EINVAL;
1796 				goto error;
1797 			}
1798 		}
1799 
1800 		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1801 			unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1802 			unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1803 			unsigned int max_blocks = max_size / ic->tag_size;
1804 
1805 			memset(checksums, DISCARD_FILLER, max_size);
1806 
1807 			while (bi_size) {
1808 				unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1809 
1810 				this_step_blocks = min(this_step_blocks, max_blocks);
1811 				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1812 							this_step_blocks * ic->tag_size, TAG_WRITE);
1813 				if (unlikely(r)) {
1814 					if (likely(checksums != checksums_onstack))
1815 						kfree(checksums);
1816 					goto error;
1817 				}
1818 
1819 				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1820 			}
1821 
1822 			if (likely(checksums != checksums_onstack))
1823 				kfree(checksums);
1824 			goto skip_io;
1825 		}
1826 
1827 		sector = dio->range.logical_sector;
1828 		sectors_to_process = dio->range.n_sectors;
1829 
1830 		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1831 			struct bio_vec bv_copy = bv;
1832 			unsigned int pos;
1833 			char *mem, *checksums_ptr;
1834 
1835 again:
1836 			mem = bvec_kmap_local(&bv_copy);
1837 			pos = 0;
1838 			checksums_ptr = checksums;
1839 			do {
1840 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1841 				checksums_ptr += ic->tag_size;
1842 				sectors_to_process -= ic->sectors_per_block;
1843 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1844 				sector += ic->sectors_per_block;
1845 			} while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1846 			kunmap_local(mem);
1847 
1848 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1849 						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1850 			if (unlikely(r)) {
1851 				if (r > 0) {
1852 					integrity_recheck(dio, checksums);
1853 					goto skip_io;
1854 				}
1855 				if (likely(checksums != checksums_onstack))
1856 					kfree(checksums);
1857 				goto error;
1858 			}
1859 
1860 			if (!sectors_to_process)
1861 				break;
1862 
1863 			if (unlikely(pos < bv_copy.bv_len)) {
1864 				bv_copy.bv_offset += pos;
1865 				bv_copy.bv_len -= pos;
1866 				goto again;
1867 			}
1868 		}
1869 
1870 		if (likely(checksums != checksums_onstack))
1871 			kfree(checksums);
1872 	} else {
1873 		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1874 
1875 		if (bip) {
1876 			struct bio_vec biv;
1877 			struct bvec_iter iter;
1878 			unsigned int data_to_process = dio->range.n_sectors;
1879 
1880 			sector_to_block(ic, data_to_process);
1881 			data_to_process *= ic->tag_size;
1882 
1883 			bip_for_each_vec(biv, bip, iter) {
1884 				unsigned char *tag;
1885 				unsigned int this_len;
1886 
1887 				BUG_ON(PageHighMem(biv.bv_page));
1888 				tag = bvec_virt(&biv);
1889 				this_len = min(biv.bv_len, data_to_process);
1890 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1891 							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1892 				if (unlikely(r))
1893 					goto error;
1894 				data_to_process -= this_len;
1895 				if (!data_to_process)
1896 					break;
1897 			}
1898 		}
1899 	}
1900 skip_io:
1901 	dec_in_flight(dio);
1902 	return;
1903 error:
1904 	dio->bi_status = errno_to_blk_status(r);
1905 	dec_in_flight(dio);
1906 }
1907 
1908 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1909 {
1910 	struct dm_integrity_c *ic = ti->private;
1911 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1912 	struct bio_integrity_payload *bip;
1913 
1914 	sector_t area, offset;
1915 
1916 	dio->ic = ic;
1917 	dio->bi_status = 0;
1918 	dio->op = bio_op(bio);
1919 
1920 	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1921 		if (ti->max_io_len) {
1922 			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1923 			unsigned int log2_max_io_len = __fls(ti->max_io_len);
1924 			sector_t start_boundary = sec >> log2_max_io_len;
1925 			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1926 
1927 			if (start_boundary < end_boundary) {
1928 				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1929 
1930 				dm_accept_partial_bio(bio, len);
1931 			}
1932 		}
1933 	}
1934 
1935 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1936 		submit_flush_bio(ic, dio);
1937 		return DM_MAPIO_SUBMITTED;
1938 	}
1939 
1940 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1941 	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1942 	if (unlikely(dio->fua)) {
1943 		/*
1944 		 * Don't pass down the FUA flag because we have to flush
1945 		 * disk cache anyway.
1946 		 */
1947 		bio->bi_opf &= ~REQ_FUA;
1948 	}
1949 	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1950 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1951 		      dio->range.logical_sector, bio_sectors(bio),
1952 		      ic->provided_data_sectors);
1953 		return DM_MAPIO_KILL;
1954 	}
1955 	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1956 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1957 		      ic->sectors_per_block,
1958 		      dio->range.logical_sector, bio_sectors(bio));
1959 		return DM_MAPIO_KILL;
1960 	}
1961 
1962 	if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1963 		struct bvec_iter iter;
1964 		struct bio_vec bv;
1965 
1966 		bio_for_each_segment(bv, bio, iter) {
1967 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1968 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1969 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1970 				return DM_MAPIO_KILL;
1971 			}
1972 		}
1973 	}
1974 
1975 	bip = bio_integrity(bio);
1976 	if (!ic->internal_hash) {
1977 		if (bip) {
1978 			unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1979 
1980 			if (ic->log2_tag_size >= 0)
1981 				wanted_tag_size <<= ic->log2_tag_size;
1982 			else
1983 				wanted_tag_size *= ic->tag_size;
1984 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1985 				DMERR("Invalid integrity data size %u, expected %u",
1986 				      bip->bip_iter.bi_size, wanted_tag_size);
1987 				return DM_MAPIO_KILL;
1988 			}
1989 		}
1990 	} else {
1991 		if (unlikely(bip != NULL)) {
1992 			DMERR("Unexpected integrity data when using internal hash");
1993 			return DM_MAPIO_KILL;
1994 		}
1995 	}
1996 
1997 	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1998 		return DM_MAPIO_KILL;
1999 
2000 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2001 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2002 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
2003 
2004 	dm_integrity_map_continue(dio, true);
2005 	return DM_MAPIO_SUBMITTED;
2006 }
2007 
2008 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
2009 				 unsigned int journal_section, unsigned int journal_entry)
2010 {
2011 	struct dm_integrity_c *ic = dio->ic;
2012 	sector_t logical_sector;
2013 	unsigned int n_sectors;
2014 
2015 	logical_sector = dio->range.logical_sector;
2016 	n_sectors = dio->range.n_sectors;
2017 	do {
2018 		struct bio_vec bv = bio_iovec(bio);
2019 		char *mem;
2020 
2021 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
2022 			bv.bv_len = n_sectors << SECTOR_SHIFT;
2023 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
2024 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
2025 retry_kmap:
2026 		mem = kmap_local_page(bv.bv_page);
2027 		if (likely(dio->op == REQ_OP_WRITE))
2028 			flush_dcache_page(bv.bv_page);
2029 
2030 		do {
2031 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
2032 
2033 			if (unlikely(dio->op == REQ_OP_READ)) {
2034 				struct journal_sector *js;
2035 				char *mem_ptr;
2036 				unsigned int s;
2037 
2038 				if (unlikely(journal_entry_is_inprogress(je))) {
2039 					flush_dcache_page(bv.bv_page);
2040 					kunmap_local(mem);
2041 
2042 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2043 					goto retry_kmap;
2044 				}
2045 				smp_rmb();
2046 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
2047 				js = access_journal_data(ic, journal_section, journal_entry);
2048 				mem_ptr = mem + bv.bv_offset;
2049 				s = 0;
2050 				do {
2051 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2052 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2053 					js++;
2054 					mem_ptr += 1 << SECTOR_SHIFT;
2055 				} while (++s < ic->sectors_per_block);
2056 #ifdef INTERNAL_VERIFY
2057 				if (ic->internal_hash) {
2058 					char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2059 
2060 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2061 					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2062 						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2063 							    logical_sector);
2064 						dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2065 								 bio, logical_sector, 0);
2066 					}
2067 				}
2068 #endif
2069 			}
2070 
2071 			if (!ic->internal_hash) {
2072 				struct bio_integrity_payload *bip = bio_integrity(bio);
2073 				unsigned int tag_todo = ic->tag_size;
2074 				char *tag_ptr = journal_entry_tag(ic, je);
2075 
2076 				if (bip) {
2077 					do {
2078 						struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2079 						unsigned int tag_now = min(biv.bv_len, tag_todo);
2080 						char *tag_addr;
2081 
2082 						BUG_ON(PageHighMem(biv.bv_page));
2083 						tag_addr = bvec_virt(&biv);
2084 						if (likely(dio->op == REQ_OP_WRITE))
2085 							memcpy(tag_ptr, tag_addr, tag_now);
2086 						else
2087 							memcpy(tag_addr, tag_ptr, tag_now);
2088 						bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2089 						tag_ptr += tag_now;
2090 						tag_todo -= tag_now;
2091 					} while (unlikely(tag_todo));
2092 				} else if (likely(dio->op == REQ_OP_WRITE))
2093 					memset(tag_ptr, 0, tag_todo);
2094 			}
2095 
2096 			if (likely(dio->op == REQ_OP_WRITE)) {
2097 				struct journal_sector *js;
2098 				unsigned int s;
2099 
2100 				js = access_journal_data(ic, journal_section, journal_entry);
2101 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2102 
2103 				s = 0;
2104 				do {
2105 					je->last_bytes[s] = js[s].commit_id;
2106 				} while (++s < ic->sectors_per_block);
2107 
2108 				if (ic->internal_hash) {
2109 					unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2110 
2111 					if (unlikely(digest_size > ic->tag_size)) {
2112 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2113 
2114 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2115 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2116 					} else
2117 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2118 				}
2119 
2120 				journal_entry_set_sector(je, logical_sector);
2121 			}
2122 			logical_sector += ic->sectors_per_block;
2123 
2124 			journal_entry++;
2125 			if (unlikely(journal_entry == ic->journal_section_entries)) {
2126 				journal_entry = 0;
2127 				journal_section++;
2128 				wraparound_section(ic, &journal_section);
2129 			}
2130 
2131 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2132 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2133 
2134 		if (unlikely(dio->op == REQ_OP_READ))
2135 			flush_dcache_page(bv.bv_page);
2136 		kunmap_local(mem);
2137 	} while (n_sectors);
2138 
2139 	if (likely(dio->op == REQ_OP_WRITE)) {
2140 		smp_mb();
2141 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2142 			wake_up(&ic->copy_to_journal_wait);
2143 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2144 			queue_work(ic->commit_wq, &ic->commit_work);
2145 		else
2146 			schedule_autocommit(ic);
2147 	} else
2148 		remove_range(ic, &dio->range);
2149 
2150 	if (unlikely(bio->bi_iter.bi_size)) {
2151 		sector_t area, offset;
2152 
2153 		dio->range.logical_sector = logical_sector;
2154 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2155 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2156 		return true;
2157 	}
2158 
2159 	return false;
2160 }
2161 
2162 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2163 {
2164 	struct dm_integrity_c *ic = dio->ic;
2165 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2166 	unsigned int journal_section, journal_entry;
2167 	unsigned int journal_read_pos;
2168 	struct completion read_comp;
2169 	bool discard_retried = false;
2170 	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2171 
2172 	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2173 		need_sync_io = true;
2174 
2175 	if (need_sync_io && from_map) {
2176 		INIT_WORK(&dio->work, integrity_bio_wait);
2177 		queue_work(ic->offload_wq, &dio->work);
2178 		return;
2179 	}
2180 
2181 lock_retry:
2182 	spin_lock_irq(&ic->endio_wait.lock);
2183 retry:
2184 	if (unlikely(dm_integrity_failed(ic))) {
2185 		spin_unlock_irq(&ic->endio_wait.lock);
2186 		do_endio(ic, bio);
2187 		return;
2188 	}
2189 	dio->range.n_sectors = bio_sectors(bio);
2190 	journal_read_pos = NOT_FOUND;
2191 	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2192 		if (dio->op == REQ_OP_WRITE) {
2193 			unsigned int next_entry, i, pos;
2194 			unsigned int ws, we, range_sectors;
2195 
2196 			dio->range.n_sectors = min(dio->range.n_sectors,
2197 						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2198 			if (unlikely(!dio->range.n_sectors)) {
2199 				if (from_map)
2200 					goto offload_to_thread;
2201 				sleep_on_endio_wait(ic);
2202 				goto retry;
2203 			}
2204 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2205 			ic->free_sectors -= range_sectors;
2206 			journal_section = ic->free_section;
2207 			journal_entry = ic->free_section_entry;
2208 
2209 			next_entry = ic->free_section_entry + range_sectors;
2210 			ic->free_section_entry = next_entry % ic->journal_section_entries;
2211 			ic->free_section += next_entry / ic->journal_section_entries;
2212 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2213 			wraparound_section(ic, &ic->free_section);
2214 
2215 			pos = journal_section * ic->journal_section_entries + journal_entry;
2216 			ws = journal_section;
2217 			we = journal_entry;
2218 			i = 0;
2219 			do {
2220 				struct journal_entry *je;
2221 
2222 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2223 				pos++;
2224 				if (unlikely(pos >= ic->journal_entries))
2225 					pos = 0;
2226 
2227 				je = access_journal_entry(ic, ws, we);
2228 				BUG_ON(!journal_entry_is_unused(je));
2229 				journal_entry_set_inprogress(je);
2230 				we++;
2231 				if (unlikely(we == ic->journal_section_entries)) {
2232 					we = 0;
2233 					ws++;
2234 					wraparound_section(ic, &ws);
2235 				}
2236 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2237 
2238 			spin_unlock_irq(&ic->endio_wait.lock);
2239 			goto journal_read_write;
2240 		} else {
2241 			sector_t next_sector;
2242 
2243 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2244 			if (likely(journal_read_pos == NOT_FOUND)) {
2245 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2246 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2247 			} else {
2248 				unsigned int i;
2249 				unsigned int jp = journal_read_pos + 1;
2250 
2251 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2252 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2253 						break;
2254 				}
2255 				dio->range.n_sectors = i;
2256 			}
2257 		}
2258 	}
2259 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2260 		/*
2261 		 * We must not sleep in the request routine because it could
2262 		 * stall bios on current->bio_list.
2263 		 * So, we offload the bio to a workqueue if we have to sleep.
2264 		 */
2265 		if (from_map) {
2266 offload_to_thread:
2267 			spin_unlock_irq(&ic->endio_wait.lock);
2268 			INIT_WORK(&dio->work, integrity_bio_wait);
2269 			queue_work(ic->wait_wq, &dio->work);
2270 			return;
2271 		}
2272 		if (journal_read_pos != NOT_FOUND)
2273 			dio->range.n_sectors = ic->sectors_per_block;
2274 		wait_and_add_new_range(ic, &dio->range);
2275 		/*
2276 		 * wait_and_add_new_range drops the spinlock, so the journal
2277 		 * may have been changed arbitrarily. We need to recheck.
2278 		 * To simplify the code, we restrict I/O size to just one block.
2279 		 */
2280 		if (journal_read_pos != NOT_FOUND) {
2281 			sector_t next_sector;
2282 			unsigned int new_pos;
2283 
2284 			new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2285 			if (unlikely(new_pos != journal_read_pos)) {
2286 				remove_range_unlocked(ic, &dio->range);
2287 				goto retry;
2288 			}
2289 		}
2290 	}
2291 	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2292 		sector_t next_sector;
2293 		unsigned int new_pos;
2294 
2295 		new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2296 		if (unlikely(new_pos != NOT_FOUND) ||
2297 		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2298 			remove_range_unlocked(ic, &dio->range);
2299 			spin_unlock_irq(&ic->endio_wait.lock);
2300 			queue_work(ic->commit_wq, &ic->commit_work);
2301 			flush_workqueue(ic->commit_wq);
2302 			queue_work(ic->writer_wq, &ic->writer_work);
2303 			flush_workqueue(ic->writer_wq);
2304 			discard_retried = true;
2305 			goto lock_retry;
2306 		}
2307 	}
2308 	spin_unlock_irq(&ic->endio_wait.lock);
2309 
2310 	if (unlikely(journal_read_pos != NOT_FOUND)) {
2311 		journal_section = journal_read_pos / ic->journal_section_entries;
2312 		journal_entry = journal_read_pos % ic->journal_section_entries;
2313 		goto journal_read_write;
2314 	}
2315 
2316 	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2317 		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2318 				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2319 			struct bitmap_block_status *bbs;
2320 
2321 			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2322 			spin_lock(&bbs->bio_queue_lock);
2323 			bio_list_add(&bbs->bio_queue, bio);
2324 			spin_unlock(&bbs->bio_queue_lock);
2325 			queue_work(ic->writer_wq, &bbs->work);
2326 			return;
2327 		}
2328 	}
2329 
2330 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2331 
2332 	if (need_sync_io) {
2333 		init_completion(&read_comp);
2334 		dio->completion = &read_comp;
2335 	} else
2336 		dio->completion = NULL;
2337 
2338 	dm_bio_record(&dio->bio_details, bio);
2339 	bio_set_dev(bio, ic->dev->bdev);
2340 	bio->bi_integrity = NULL;
2341 	bio->bi_opf &= ~REQ_INTEGRITY;
2342 	bio->bi_end_io = integrity_end_io;
2343 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2344 
2345 	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2346 		integrity_metadata(&dio->work);
2347 		dm_integrity_flush_buffers(ic, false);
2348 
2349 		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2350 		dio->completion = NULL;
2351 
2352 		submit_bio_noacct(bio);
2353 
2354 		return;
2355 	}
2356 
2357 	submit_bio_noacct(bio);
2358 
2359 	if (need_sync_io) {
2360 		wait_for_completion_io(&read_comp);
2361 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2362 		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2363 			goto skip_check;
2364 		if (ic->mode == 'B') {
2365 			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2366 					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2367 				goto skip_check;
2368 		}
2369 
2370 		if (likely(!bio->bi_status))
2371 			integrity_metadata(&dio->work);
2372 		else
2373 skip_check:
2374 			dec_in_flight(dio);
2375 	} else {
2376 		INIT_WORK(&dio->work, integrity_metadata);
2377 		queue_work(ic->metadata_wq, &dio->work);
2378 	}
2379 
2380 	return;
2381 
2382 journal_read_write:
2383 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2384 		goto lock_retry;
2385 
2386 	do_endio_flush(ic, dio);
2387 }
2388 
2389 
2390 static void integrity_bio_wait(struct work_struct *w)
2391 {
2392 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2393 
2394 	dm_integrity_map_continue(dio, false);
2395 }
2396 
2397 static void pad_uncommitted(struct dm_integrity_c *ic)
2398 {
2399 	if (ic->free_section_entry) {
2400 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2401 		ic->free_section_entry = 0;
2402 		ic->free_section++;
2403 		wraparound_section(ic, &ic->free_section);
2404 		ic->n_uncommitted_sections++;
2405 	}
2406 	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2407 		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2408 		    ic->journal_section_entries + ic->free_sectors)) {
2409 		DMCRIT("journal_sections %u, journal_section_entries %u, "
2410 		       "n_uncommitted_sections %u, n_committed_sections %u, "
2411 		       "journal_section_entries %u, free_sectors %u",
2412 		       ic->journal_sections, ic->journal_section_entries,
2413 		       ic->n_uncommitted_sections, ic->n_committed_sections,
2414 		       ic->journal_section_entries, ic->free_sectors);
2415 	}
2416 }
2417 
2418 static void integrity_commit(struct work_struct *w)
2419 {
2420 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2421 	unsigned int commit_start, commit_sections;
2422 	unsigned int i, j, n;
2423 	struct bio *flushes;
2424 
2425 	del_timer(&ic->autocommit_timer);
2426 
2427 	spin_lock_irq(&ic->endio_wait.lock);
2428 	flushes = bio_list_get(&ic->flush_bio_list);
2429 	if (unlikely(ic->mode != 'J')) {
2430 		spin_unlock_irq(&ic->endio_wait.lock);
2431 		dm_integrity_flush_buffers(ic, true);
2432 		goto release_flush_bios;
2433 	}
2434 
2435 	pad_uncommitted(ic);
2436 	commit_start = ic->uncommitted_section;
2437 	commit_sections = ic->n_uncommitted_sections;
2438 	spin_unlock_irq(&ic->endio_wait.lock);
2439 
2440 	if (!commit_sections)
2441 		goto release_flush_bios;
2442 
2443 	ic->wrote_to_journal = true;
2444 
2445 	i = commit_start;
2446 	for (n = 0; n < commit_sections; n++) {
2447 		for (j = 0; j < ic->journal_section_entries; j++) {
2448 			struct journal_entry *je;
2449 
2450 			je = access_journal_entry(ic, i, j);
2451 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2452 		}
2453 		for (j = 0; j < ic->journal_section_sectors; j++) {
2454 			struct journal_sector *js;
2455 
2456 			js = access_journal(ic, i, j);
2457 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2458 		}
2459 		i++;
2460 		if (unlikely(i >= ic->journal_sections))
2461 			ic->commit_seq = next_commit_seq(ic->commit_seq);
2462 		wraparound_section(ic, &i);
2463 	}
2464 	smp_rmb();
2465 
2466 	write_journal(ic, commit_start, commit_sections);
2467 
2468 	spin_lock_irq(&ic->endio_wait.lock);
2469 	ic->uncommitted_section += commit_sections;
2470 	wraparound_section(ic, &ic->uncommitted_section);
2471 	ic->n_uncommitted_sections -= commit_sections;
2472 	ic->n_committed_sections += commit_sections;
2473 	spin_unlock_irq(&ic->endio_wait.lock);
2474 
2475 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2476 		queue_work(ic->writer_wq, &ic->writer_work);
2477 
2478 release_flush_bios:
2479 	while (flushes) {
2480 		struct bio *next = flushes->bi_next;
2481 
2482 		flushes->bi_next = NULL;
2483 		do_endio(ic, flushes);
2484 		flushes = next;
2485 	}
2486 }
2487 
2488 static void complete_copy_from_journal(unsigned long error, void *context)
2489 {
2490 	struct journal_io *io = context;
2491 	struct journal_completion *comp = io->comp;
2492 	struct dm_integrity_c *ic = comp->ic;
2493 
2494 	remove_range(ic, &io->range);
2495 	mempool_free(io, &ic->journal_io_mempool);
2496 	if (unlikely(error != 0))
2497 		dm_integrity_io_error(ic, "copying from journal", -EIO);
2498 	complete_journal_op(comp);
2499 }
2500 
2501 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2502 			       struct journal_entry *je)
2503 {
2504 	unsigned int s = 0;
2505 
2506 	do {
2507 		js->commit_id = je->last_bytes[s];
2508 		js++;
2509 	} while (++s < ic->sectors_per_block);
2510 }
2511 
2512 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2513 			     unsigned int write_sections, bool from_replay)
2514 {
2515 	unsigned int i, j, n;
2516 	struct journal_completion comp;
2517 	struct blk_plug plug;
2518 
2519 	blk_start_plug(&plug);
2520 
2521 	comp.ic = ic;
2522 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2523 	init_completion(&comp.comp);
2524 
2525 	i = write_start;
2526 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2527 #ifndef INTERNAL_VERIFY
2528 		if (unlikely(from_replay))
2529 #endif
2530 			rw_section_mac(ic, i, false);
2531 		for (j = 0; j < ic->journal_section_entries; j++) {
2532 			struct journal_entry *je = access_journal_entry(ic, i, j);
2533 			sector_t sec, area, offset;
2534 			unsigned int k, l, next_loop;
2535 			sector_t metadata_block;
2536 			unsigned int metadata_offset;
2537 			struct journal_io *io;
2538 
2539 			if (journal_entry_is_unused(je))
2540 				continue;
2541 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2542 			sec = journal_entry_get_sector(je);
2543 			if (unlikely(from_replay)) {
2544 				if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2545 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2546 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2547 				}
2548 				if (unlikely(sec >= ic->provided_data_sectors)) {
2549 					journal_entry_set_unused(je);
2550 					continue;
2551 				}
2552 			}
2553 			get_area_and_offset(ic, sec, &area, &offset);
2554 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2555 			for (k = j + 1; k < ic->journal_section_entries; k++) {
2556 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2557 				sector_t sec2, area2, offset2;
2558 
2559 				if (journal_entry_is_unused(je2))
2560 					break;
2561 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2562 				sec2 = journal_entry_get_sector(je2);
2563 				if (unlikely(sec2 >= ic->provided_data_sectors))
2564 					break;
2565 				get_area_and_offset(ic, sec2, &area2, &offset2);
2566 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2567 					break;
2568 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2569 			}
2570 			next_loop = k - 1;
2571 
2572 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2573 			io->comp = &comp;
2574 			io->range.logical_sector = sec;
2575 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2576 
2577 			spin_lock_irq(&ic->endio_wait.lock);
2578 			add_new_range_and_wait(ic, &io->range);
2579 
2580 			if (likely(!from_replay)) {
2581 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2582 
2583 				/* don't write if there is newer committed sector */
2584 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2585 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2586 
2587 					journal_entry_set_unused(je2);
2588 					remove_journal_node(ic, &section_node[j]);
2589 					j++;
2590 					sec += ic->sectors_per_block;
2591 					offset += ic->sectors_per_block;
2592 				}
2593 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2594 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2595 
2596 					journal_entry_set_unused(je2);
2597 					remove_journal_node(ic, &section_node[k - 1]);
2598 					k--;
2599 				}
2600 				if (j == k) {
2601 					remove_range_unlocked(ic, &io->range);
2602 					spin_unlock_irq(&ic->endio_wait.lock);
2603 					mempool_free(io, &ic->journal_io_mempool);
2604 					goto skip_io;
2605 				}
2606 				for (l = j; l < k; l++)
2607 					remove_journal_node(ic, &section_node[l]);
2608 			}
2609 			spin_unlock_irq(&ic->endio_wait.lock);
2610 
2611 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2612 			for (l = j; l < k; l++) {
2613 				int r;
2614 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2615 
2616 				if (
2617 #ifndef INTERNAL_VERIFY
2618 				    unlikely(from_replay) &&
2619 #endif
2620 				    ic->internal_hash) {
2621 					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2622 
2623 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2624 								  (char *)access_journal_data(ic, i, l), test_tag);
2625 					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2626 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2627 						dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2628 					}
2629 				}
2630 
2631 				journal_entry_set_unused(je2);
2632 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2633 							ic->tag_size, TAG_WRITE);
2634 				if (unlikely(r))
2635 					dm_integrity_io_error(ic, "reading tags", r);
2636 			}
2637 
2638 			atomic_inc(&comp.in_flight);
2639 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2640 					  (k - j) << ic->sb->log2_sectors_per_block,
2641 					  get_data_sector(ic, area, offset),
2642 					  complete_copy_from_journal, io);
2643 skip_io:
2644 			j = next_loop;
2645 		}
2646 	}
2647 
2648 	dm_bufio_write_dirty_buffers_async(ic->bufio);
2649 
2650 	blk_finish_plug(&plug);
2651 
2652 	complete_journal_op(&comp);
2653 	wait_for_completion_io(&comp.comp);
2654 
2655 	dm_integrity_flush_buffers(ic, true);
2656 }
2657 
2658 static void integrity_writer(struct work_struct *w)
2659 {
2660 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2661 	unsigned int write_start, write_sections;
2662 	unsigned int prev_free_sectors;
2663 
2664 	spin_lock_irq(&ic->endio_wait.lock);
2665 	write_start = ic->committed_section;
2666 	write_sections = ic->n_committed_sections;
2667 	spin_unlock_irq(&ic->endio_wait.lock);
2668 
2669 	if (!write_sections)
2670 		return;
2671 
2672 	do_journal_write(ic, write_start, write_sections, false);
2673 
2674 	spin_lock_irq(&ic->endio_wait.lock);
2675 
2676 	ic->committed_section += write_sections;
2677 	wraparound_section(ic, &ic->committed_section);
2678 	ic->n_committed_sections -= write_sections;
2679 
2680 	prev_free_sectors = ic->free_sectors;
2681 	ic->free_sectors += write_sections * ic->journal_section_entries;
2682 	if (unlikely(!prev_free_sectors))
2683 		wake_up_locked(&ic->endio_wait);
2684 
2685 	spin_unlock_irq(&ic->endio_wait.lock);
2686 }
2687 
2688 static void recalc_write_super(struct dm_integrity_c *ic)
2689 {
2690 	int r;
2691 
2692 	dm_integrity_flush_buffers(ic, false);
2693 	if (dm_integrity_failed(ic))
2694 		return;
2695 
2696 	r = sync_rw_sb(ic, REQ_OP_WRITE);
2697 	if (unlikely(r))
2698 		dm_integrity_io_error(ic, "writing superblock", r);
2699 }
2700 
2701 static void integrity_recalc(struct work_struct *w)
2702 {
2703 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2704 	size_t recalc_tags_size;
2705 	u8 *recalc_buffer = NULL;
2706 	u8 *recalc_tags = NULL;
2707 	struct dm_integrity_range range;
2708 	struct dm_io_request io_req;
2709 	struct dm_io_region io_loc;
2710 	sector_t area, offset;
2711 	sector_t metadata_block;
2712 	unsigned int metadata_offset;
2713 	sector_t logical_sector, n_sectors;
2714 	__u8 *t;
2715 	unsigned int i;
2716 	int r;
2717 	unsigned int super_counter = 0;
2718 	unsigned recalc_sectors = RECALC_SECTORS;
2719 
2720 retry:
2721 	recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
2722 	if (!recalc_buffer) {
2723 oom:
2724 		recalc_sectors >>= 1;
2725 		if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
2726 			goto retry;
2727 		DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2728 		goto free_ret;
2729 	}
2730 	recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2731 	if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
2732 		recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
2733 	recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
2734 	if (!recalc_tags) {
2735 		vfree(recalc_buffer);
2736 		recalc_buffer = NULL;
2737 		goto oom;
2738 	}
2739 
2740 	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2741 
2742 	spin_lock_irq(&ic->endio_wait.lock);
2743 
2744 next_chunk:
2745 
2746 	if (unlikely(dm_post_suspending(ic->ti)))
2747 		goto unlock_ret;
2748 
2749 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2750 	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2751 		if (ic->mode == 'B') {
2752 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2753 			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2754 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2755 		}
2756 		goto unlock_ret;
2757 	}
2758 
2759 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2760 	range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
2761 	if (!ic->meta_dev)
2762 		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2763 
2764 	add_new_range_and_wait(ic, &range);
2765 	spin_unlock_irq(&ic->endio_wait.lock);
2766 	logical_sector = range.logical_sector;
2767 	n_sectors = range.n_sectors;
2768 
2769 	if (ic->mode == 'B') {
2770 		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2771 			goto advance_and_next;
2772 
2773 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2774 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2775 			logical_sector += ic->sectors_per_block;
2776 			n_sectors -= ic->sectors_per_block;
2777 			cond_resched();
2778 		}
2779 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2780 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2781 			n_sectors -= ic->sectors_per_block;
2782 			cond_resched();
2783 		}
2784 		get_area_and_offset(ic, logical_sector, &area, &offset);
2785 	}
2786 
2787 	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2788 
2789 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2790 		recalc_write_super(ic);
2791 		if (ic->mode == 'B')
2792 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2793 
2794 		super_counter = 0;
2795 	}
2796 
2797 	if (unlikely(dm_integrity_failed(ic)))
2798 		goto err;
2799 
2800 	io_req.bi_opf = REQ_OP_READ;
2801 	io_req.mem.type = DM_IO_VMA;
2802 	io_req.mem.ptr.addr = recalc_buffer;
2803 	io_req.notify.fn = NULL;
2804 	io_req.client = ic->io;
2805 	io_loc.bdev = ic->dev->bdev;
2806 	io_loc.sector = get_data_sector(ic, area, offset);
2807 	io_loc.count = n_sectors;
2808 
2809 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
2810 	if (unlikely(r)) {
2811 		dm_integrity_io_error(ic, "reading data", r);
2812 		goto err;
2813 	}
2814 
2815 	t = recalc_tags;
2816 	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2817 		integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
2818 		t += ic->tag_size;
2819 	}
2820 
2821 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2822 
2823 	r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
2824 	if (unlikely(r)) {
2825 		dm_integrity_io_error(ic, "writing tags", r);
2826 		goto err;
2827 	}
2828 
2829 	if (ic->mode == 'B') {
2830 		sector_t start, end;
2831 
2832 		start = (range.logical_sector >>
2833 			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2834 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2835 		end = ((range.logical_sector + range.n_sectors) >>
2836 		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2837 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2838 		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2839 	}
2840 
2841 advance_and_next:
2842 	cond_resched();
2843 
2844 	spin_lock_irq(&ic->endio_wait.lock);
2845 	remove_range_unlocked(ic, &range);
2846 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2847 	goto next_chunk;
2848 
2849 err:
2850 	remove_range(ic, &range);
2851 	goto free_ret;
2852 
2853 unlock_ret:
2854 	spin_unlock_irq(&ic->endio_wait.lock);
2855 
2856 	recalc_write_super(ic);
2857 
2858 free_ret:
2859 	vfree(recalc_buffer);
2860 	kvfree(recalc_tags);
2861 }
2862 
2863 static void bitmap_block_work(struct work_struct *w)
2864 {
2865 	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2866 	struct dm_integrity_c *ic = bbs->ic;
2867 	struct bio *bio;
2868 	struct bio_list bio_queue;
2869 	struct bio_list waiting;
2870 
2871 	bio_list_init(&waiting);
2872 
2873 	spin_lock(&bbs->bio_queue_lock);
2874 	bio_queue = bbs->bio_queue;
2875 	bio_list_init(&bbs->bio_queue);
2876 	spin_unlock(&bbs->bio_queue_lock);
2877 
2878 	while ((bio = bio_list_pop(&bio_queue))) {
2879 		struct dm_integrity_io *dio;
2880 
2881 		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2882 
2883 		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2884 				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2885 			remove_range(ic, &dio->range);
2886 			INIT_WORK(&dio->work, integrity_bio_wait);
2887 			queue_work(ic->offload_wq, &dio->work);
2888 		} else {
2889 			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2890 					dio->range.n_sectors, BITMAP_OP_SET);
2891 			bio_list_add(&waiting, bio);
2892 		}
2893 	}
2894 
2895 	if (bio_list_empty(&waiting))
2896 		return;
2897 
2898 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2899 			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2900 			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2901 
2902 	while ((bio = bio_list_pop(&waiting))) {
2903 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2904 
2905 		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2906 				dio->range.n_sectors, BITMAP_OP_SET);
2907 
2908 		remove_range(ic, &dio->range);
2909 		INIT_WORK(&dio->work, integrity_bio_wait);
2910 		queue_work(ic->offload_wq, &dio->work);
2911 	}
2912 
2913 	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2914 }
2915 
2916 static void bitmap_flush_work(struct work_struct *work)
2917 {
2918 	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2919 	struct dm_integrity_range range;
2920 	unsigned long limit;
2921 	struct bio *bio;
2922 
2923 	dm_integrity_flush_buffers(ic, false);
2924 
2925 	range.logical_sector = 0;
2926 	range.n_sectors = ic->provided_data_sectors;
2927 
2928 	spin_lock_irq(&ic->endio_wait.lock);
2929 	add_new_range_and_wait(ic, &range);
2930 	spin_unlock_irq(&ic->endio_wait.lock);
2931 
2932 	dm_integrity_flush_buffers(ic, true);
2933 
2934 	limit = ic->provided_data_sectors;
2935 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2936 		limit = le64_to_cpu(ic->sb->recalc_sector)
2937 			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2938 			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2939 	}
2940 	/*DEBUG_print("zeroing journal\n");*/
2941 	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2942 	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2943 
2944 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2945 			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2946 
2947 	spin_lock_irq(&ic->endio_wait.lock);
2948 	remove_range_unlocked(ic, &range);
2949 	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2950 		bio_endio(bio);
2951 		spin_unlock_irq(&ic->endio_wait.lock);
2952 		spin_lock_irq(&ic->endio_wait.lock);
2953 	}
2954 	spin_unlock_irq(&ic->endio_wait.lock);
2955 }
2956 
2957 
2958 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2959 			 unsigned int n_sections, unsigned char commit_seq)
2960 {
2961 	unsigned int i, j, n;
2962 
2963 	if (!n_sections)
2964 		return;
2965 
2966 	for (n = 0; n < n_sections; n++) {
2967 		i = start_section + n;
2968 		wraparound_section(ic, &i);
2969 		for (j = 0; j < ic->journal_section_sectors; j++) {
2970 			struct journal_sector *js = access_journal(ic, i, j);
2971 
2972 			BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2973 			memset(&js->sectors, 0, sizeof(js->sectors));
2974 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2975 		}
2976 		for (j = 0; j < ic->journal_section_entries; j++) {
2977 			struct journal_entry *je = access_journal_entry(ic, i, j);
2978 
2979 			journal_entry_set_unused(je);
2980 		}
2981 	}
2982 
2983 	write_journal(ic, start_section, n_sections);
2984 }
2985 
2986 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
2987 {
2988 	unsigned char k;
2989 
2990 	for (k = 0; k < N_COMMIT_IDS; k++) {
2991 		if (dm_integrity_commit_id(ic, i, j, k) == id)
2992 			return k;
2993 	}
2994 	dm_integrity_io_error(ic, "journal commit id", -EIO);
2995 	return -EIO;
2996 }
2997 
2998 static void replay_journal(struct dm_integrity_c *ic)
2999 {
3000 	unsigned int i, j;
3001 	bool used_commit_ids[N_COMMIT_IDS];
3002 	unsigned int max_commit_id_sections[N_COMMIT_IDS];
3003 	unsigned int write_start, write_sections;
3004 	unsigned int continue_section;
3005 	bool journal_empty;
3006 	unsigned char unused, last_used, want_commit_seq;
3007 
3008 	if (ic->mode == 'R')
3009 		return;
3010 
3011 	if (ic->journal_uptodate)
3012 		return;
3013 
3014 	last_used = 0;
3015 	write_start = 0;
3016 
3017 	if (!ic->just_formatted) {
3018 		DEBUG_print("reading journal\n");
3019 		rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
3020 		if (ic->journal_io)
3021 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
3022 		if (ic->journal_io) {
3023 			struct journal_completion crypt_comp;
3024 
3025 			crypt_comp.ic = ic;
3026 			init_completion(&crypt_comp.comp);
3027 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
3028 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
3029 			wait_for_completion(&crypt_comp.comp);
3030 		}
3031 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
3032 	}
3033 
3034 	if (dm_integrity_failed(ic))
3035 		goto clear_journal;
3036 
3037 	journal_empty = true;
3038 	memset(used_commit_ids, 0, sizeof(used_commit_ids));
3039 	memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
3040 	for (i = 0; i < ic->journal_sections; i++) {
3041 		for (j = 0; j < ic->journal_section_sectors; j++) {
3042 			int k;
3043 			struct journal_sector *js = access_journal(ic, i, j);
3044 
3045 			k = find_commit_seq(ic, i, j, js->commit_id);
3046 			if (k < 0)
3047 				goto clear_journal;
3048 			used_commit_ids[k] = true;
3049 			max_commit_id_sections[k] = i;
3050 		}
3051 		if (journal_empty) {
3052 			for (j = 0; j < ic->journal_section_entries; j++) {
3053 				struct journal_entry *je = access_journal_entry(ic, i, j);
3054 
3055 				if (!journal_entry_is_unused(je)) {
3056 					journal_empty = false;
3057 					break;
3058 				}
3059 			}
3060 		}
3061 	}
3062 
3063 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3064 		unused = N_COMMIT_IDS - 1;
3065 		while (unused && !used_commit_ids[unused - 1])
3066 			unused--;
3067 	} else {
3068 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
3069 			if (!used_commit_ids[unused])
3070 				break;
3071 		if (unused == N_COMMIT_IDS) {
3072 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
3073 			goto clear_journal;
3074 		}
3075 	}
3076 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3077 		    unused, used_commit_ids[0], used_commit_ids[1],
3078 		    used_commit_ids[2], used_commit_ids[3]);
3079 
3080 	last_used = prev_commit_seq(unused);
3081 	want_commit_seq = prev_commit_seq(last_used);
3082 
3083 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3084 		journal_empty = true;
3085 
3086 	write_start = max_commit_id_sections[last_used] + 1;
3087 	if (unlikely(write_start >= ic->journal_sections))
3088 		want_commit_seq = next_commit_seq(want_commit_seq);
3089 	wraparound_section(ic, &write_start);
3090 
3091 	i = write_start;
3092 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3093 		for (j = 0; j < ic->journal_section_sectors; j++) {
3094 			struct journal_sector *js = access_journal(ic, i, j);
3095 
3096 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3097 				/*
3098 				 * This could be caused by crash during writing.
3099 				 * We won't replay the inconsistent part of the
3100 				 * journal.
3101 				 */
3102 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3103 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3104 				goto brk;
3105 			}
3106 		}
3107 		i++;
3108 		if (unlikely(i >= ic->journal_sections))
3109 			want_commit_seq = next_commit_seq(want_commit_seq);
3110 		wraparound_section(ic, &i);
3111 	}
3112 brk:
3113 
3114 	if (!journal_empty) {
3115 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3116 			    write_sections, write_start, want_commit_seq);
3117 		do_journal_write(ic, write_start, write_sections, true);
3118 	}
3119 
3120 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3121 		continue_section = write_start;
3122 		ic->commit_seq = want_commit_seq;
3123 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3124 	} else {
3125 		unsigned int s;
3126 		unsigned char erase_seq;
3127 
3128 clear_journal:
3129 		DEBUG_print("clearing journal\n");
3130 
3131 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3132 		s = write_start;
3133 		init_journal(ic, s, 1, erase_seq);
3134 		s++;
3135 		wraparound_section(ic, &s);
3136 		if (ic->journal_sections >= 2) {
3137 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3138 			s += ic->journal_sections - 2;
3139 			wraparound_section(ic, &s);
3140 			init_journal(ic, s, 1, erase_seq);
3141 		}
3142 
3143 		continue_section = 0;
3144 		ic->commit_seq = next_commit_seq(erase_seq);
3145 	}
3146 
3147 	ic->committed_section = continue_section;
3148 	ic->n_committed_sections = 0;
3149 
3150 	ic->uncommitted_section = continue_section;
3151 	ic->n_uncommitted_sections = 0;
3152 
3153 	ic->free_section = continue_section;
3154 	ic->free_section_entry = 0;
3155 	ic->free_sectors = ic->journal_entries;
3156 
3157 	ic->journal_tree_root = RB_ROOT;
3158 	for (i = 0; i < ic->journal_entries; i++)
3159 		init_journal_node(&ic->journal_tree[i]);
3160 }
3161 
3162 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3163 {
3164 	DEBUG_print("%s\n", __func__);
3165 
3166 	if (ic->mode == 'B') {
3167 		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3168 		ic->synchronous_mode = 1;
3169 
3170 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3171 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3172 		flush_workqueue(ic->commit_wq);
3173 	}
3174 }
3175 
3176 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3177 {
3178 	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3179 
3180 	DEBUG_print("%s\n", __func__);
3181 
3182 	dm_integrity_enter_synchronous_mode(ic);
3183 
3184 	return NOTIFY_DONE;
3185 }
3186 
3187 static void dm_integrity_postsuspend(struct dm_target *ti)
3188 {
3189 	struct dm_integrity_c *ic = ti->private;
3190 	int r;
3191 
3192 	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3193 
3194 	del_timer_sync(&ic->autocommit_timer);
3195 
3196 	if (ic->recalc_wq)
3197 		drain_workqueue(ic->recalc_wq);
3198 
3199 	if (ic->mode == 'B')
3200 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3201 
3202 	queue_work(ic->commit_wq, &ic->commit_work);
3203 	drain_workqueue(ic->commit_wq);
3204 
3205 	if (ic->mode == 'J') {
3206 		queue_work(ic->writer_wq, &ic->writer_work);
3207 		drain_workqueue(ic->writer_wq);
3208 		dm_integrity_flush_buffers(ic, true);
3209 		if (ic->wrote_to_journal) {
3210 			init_journal(ic, ic->free_section,
3211 				     ic->journal_sections - ic->free_section, ic->commit_seq);
3212 			if (ic->free_section) {
3213 				init_journal(ic, 0, ic->free_section,
3214 					     next_commit_seq(ic->commit_seq));
3215 			}
3216 		}
3217 	}
3218 
3219 	if (ic->mode == 'B') {
3220 		dm_integrity_flush_buffers(ic, true);
3221 #if 1
3222 		/* set to 0 to test bitmap replay code */
3223 		init_journal(ic, 0, ic->journal_sections, 0);
3224 		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3225 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3226 		if (unlikely(r))
3227 			dm_integrity_io_error(ic, "writing superblock", r);
3228 #endif
3229 	}
3230 
3231 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3232 
3233 	ic->journal_uptodate = true;
3234 }
3235 
3236 static void dm_integrity_resume(struct dm_target *ti)
3237 {
3238 	struct dm_integrity_c *ic = ti->private;
3239 	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3240 	int r;
3241 
3242 	DEBUG_print("resume\n");
3243 
3244 	ic->wrote_to_journal = false;
3245 
3246 	if (ic->provided_data_sectors != old_provided_data_sectors) {
3247 		if (ic->provided_data_sectors > old_provided_data_sectors &&
3248 		    ic->mode == 'B' &&
3249 		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3250 			rw_journal_sectors(ic, REQ_OP_READ, 0,
3251 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3252 			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3253 					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3254 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3255 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3256 		}
3257 
3258 		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3259 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3260 		if (unlikely(r))
3261 			dm_integrity_io_error(ic, "writing superblock", r);
3262 	}
3263 
3264 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3265 		DEBUG_print("resume dirty_bitmap\n");
3266 		rw_journal_sectors(ic, REQ_OP_READ, 0,
3267 				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3268 		if (ic->mode == 'B') {
3269 			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3270 			    !ic->reset_recalculate_flag) {
3271 				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3272 				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3273 				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3274 						     BITMAP_OP_TEST_ALL_CLEAR)) {
3275 					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3276 					ic->sb->recalc_sector = cpu_to_le64(0);
3277 				}
3278 			} else {
3279 				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3280 					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3281 				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3282 				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3283 				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3284 				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3285 				rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3286 						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3287 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3288 				ic->sb->recalc_sector = cpu_to_le64(0);
3289 			}
3290 		} else {
3291 			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3292 			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3293 			    ic->reset_recalculate_flag) {
3294 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3295 				ic->sb->recalc_sector = cpu_to_le64(0);
3296 			}
3297 			init_journal(ic, 0, ic->journal_sections, 0);
3298 			replay_journal(ic);
3299 			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3300 		}
3301 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3302 		if (unlikely(r))
3303 			dm_integrity_io_error(ic, "writing superblock", r);
3304 	} else {
3305 		replay_journal(ic);
3306 		if (ic->reset_recalculate_flag) {
3307 			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3308 			ic->sb->recalc_sector = cpu_to_le64(0);
3309 		}
3310 		if (ic->mode == 'B') {
3311 			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3312 			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3313 			r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3314 			if (unlikely(r))
3315 				dm_integrity_io_error(ic, "writing superblock", r);
3316 
3317 			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3318 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3319 			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3320 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3321 			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3322 				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3323 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3324 				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3325 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3326 				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3327 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3328 			}
3329 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3330 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3331 		}
3332 	}
3333 
3334 	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3335 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3336 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3337 
3338 		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3339 		if (recalc_pos < ic->provided_data_sectors) {
3340 			queue_work(ic->recalc_wq, &ic->recalc_work);
3341 		} else if (recalc_pos > ic->provided_data_sectors) {
3342 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3343 			recalc_write_super(ic);
3344 		}
3345 	}
3346 
3347 	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3348 	ic->reboot_notifier.next = NULL;
3349 	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3350 	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3351 
3352 #if 0
3353 	/* set to 1 to stress test synchronous mode */
3354 	dm_integrity_enter_synchronous_mode(ic);
3355 #endif
3356 }
3357 
3358 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3359 				unsigned int status_flags, char *result, unsigned int maxlen)
3360 {
3361 	struct dm_integrity_c *ic = ti->private;
3362 	unsigned int arg_count;
3363 	size_t sz = 0;
3364 
3365 	switch (type) {
3366 	case STATUSTYPE_INFO:
3367 		DMEMIT("%llu %llu",
3368 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3369 			ic->provided_data_sectors);
3370 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3371 			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3372 		else
3373 			DMEMIT(" -");
3374 		break;
3375 
3376 	case STATUSTYPE_TABLE: {
3377 		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3378 
3379 		watermark_percentage += ic->journal_entries / 2;
3380 		do_div(watermark_percentage, ic->journal_entries);
3381 		arg_count = 3;
3382 		arg_count += !!ic->meta_dev;
3383 		arg_count += ic->sectors_per_block != 1;
3384 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3385 		arg_count += ic->reset_recalculate_flag;
3386 		arg_count += ic->discard;
3387 		arg_count += ic->mode == 'J';
3388 		arg_count += ic->mode == 'J';
3389 		arg_count += ic->mode == 'B';
3390 		arg_count += ic->mode == 'B';
3391 		arg_count += !!ic->internal_hash_alg.alg_string;
3392 		arg_count += !!ic->journal_crypt_alg.alg_string;
3393 		arg_count += !!ic->journal_mac_alg.alg_string;
3394 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3395 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3396 		arg_count += ic->legacy_recalculate;
3397 		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3398 		       ic->tag_size, ic->mode, arg_count);
3399 		if (ic->meta_dev)
3400 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3401 		if (ic->sectors_per_block != 1)
3402 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3403 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3404 			DMEMIT(" recalculate");
3405 		if (ic->reset_recalculate_flag)
3406 			DMEMIT(" reset_recalculate");
3407 		if (ic->discard)
3408 			DMEMIT(" allow_discards");
3409 		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3410 		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3411 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3412 		if (ic->mode == 'J') {
3413 			DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3414 			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3415 		}
3416 		if (ic->mode == 'B') {
3417 			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3418 			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3419 		}
3420 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3421 			DMEMIT(" fix_padding");
3422 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3423 			DMEMIT(" fix_hmac");
3424 		if (ic->legacy_recalculate)
3425 			DMEMIT(" legacy_recalculate");
3426 
3427 #define EMIT_ALG(a, n)							\
3428 		do {							\
3429 			if (ic->a.alg_string) {				\
3430 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3431 				if (ic->a.key_string)			\
3432 					DMEMIT(":%s", ic->a.key_string);\
3433 			}						\
3434 		} while (0)
3435 		EMIT_ALG(internal_hash_alg, "internal_hash");
3436 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3437 		EMIT_ALG(journal_mac_alg, "journal_mac");
3438 		break;
3439 	}
3440 	case STATUSTYPE_IMA:
3441 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3442 		DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3443 			ic->dev->name, ic->start, ic->tag_size, ic->mode);
3444 
3445 		if (ic->meta_dev)
3446 			DMEMIT(",meta_device=%s", ic->meta_dev->name);
3447 		if (ic->sectors_per_block != 1)
3448 			DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3449 
3450 		DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3451 		       'y' : 'n');
3452 		DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3453 		DMEMIT(",fix_padding=%c",
3454 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3455 		DMEMIT(",fix_hmac=%c",
3456 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3457 		DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3458 
3459 		DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3460 		DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3461 		DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3462 		DMEMIT(";");
3463 		break;
3464 	}
3465 }
3466 
3467 static int dm_integrity_iterate_devices(struct dm_target *ti,
3468 					iterate_devices_callout_fn fn, void *data)
3469 {
3470 	struct dm_integrity_c *ic = ti->private;
3471 
3472 	if (!ic->meta_dev)
3473 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3474 	else
3475 		return fn(ti, ic->dev, 0, ti->len, data);
3476 }
3477 
3478 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3479 {
3480 	struct dm_integrity_c *ic = ti->private;
3481 
3482 	if (ic->sectors_per_block > 1) {
3483 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3484 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3485 		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3486 		limits->dma_alignment = limits->logical_block_size - 1;
3487 	}
3488 	limits->max_integrity_segments = USHRT_MAX;
3489 }
3490 
3491 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3492 {
3493 	unsigned int sector_space = JOURNAL_SECTOR_DATA;
3494 
3495 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3496 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3497 					 JOURNAL_ENTRY_ROUNDUP);
3498 
3499 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3500 		sector_space -= JOURNAL_MAC_PER_SECTOR;
3501 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3502 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3503 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3504 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3505 }
3506 
3507 static int calculate_device_limits(struct dm_integrity_c *ic)
3508 {
3509 	__u64 initial_sectors;
3510 
3511 	calculate_journal_section_size(ic);
3512 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3513 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3514 		return -EINVAL;
3515 	ic->initial_sectors = initial_sectors;
3516 
3517 	if (!ic->meta_dev) {
3518 		sector_t last_sector, last_area, last_offset;
3519 
3520 		/* we have to maintain excessive padding for compatibility with existing volumes */
3521 		__u64 metadata_run_padding =
3522 			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3523 			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3524 			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3525 
3526 		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3527 					    metadata_run_padding) >> SECTOR_SHIFT;
3528 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3529 			ic->log2_metadata_run = __ffs(ic->metadata_run);
3530 		else
3531 			ic->log2_metadata_run = -1;
3532 
3533 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3534 		last_sector = get_data_sector(ic, last_area, last_offset);
3535 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3536 			return -EINVAL;
3537 	} else {
3538 		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3539 
3540 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3541 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3542 		meta_size <<= ic->log2_buffer_sectors;
3543 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3544 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3545 			return -EINVAL;
3546 		ic->metadata_run = 1;
3547 		ic->log2_metadata_run = 0;
3548 	}
3549 
3550 	return 0;
3551 }
3552 
3553 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3554 {
3555 	if (!ic->meta_dev) {
3556 		int test_bit;
3557 
3558 		ic->provided_data_sectors = 0;
3559 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3560 			__u64 prev_data_sectors = ic->provided_data_sectors;
3561 
3562 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3563 			if (calculate_device_limits(ic))
3564 				ic->provided_data_sectors = prev_data_sectors;
3565 		}
3566 	} else {
3567 		ic->provided_data_sectors = ic->data_device_sectors;
3568 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3569 	}
3570 }
3571 
3572 static int initialize_superblock(struct dm_integrity_c *ic,
3573 				 unsigned int journal_sectors, unsigned int interleave_sectors)
3574 {
3575 	unsigned int journal_sections;
3576 	int test_bit;
3577 
3578 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3579 	memcpy(ic->sb->magic, SB_MAGIC, 8);
3580 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3581 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3582 	if (ic->journal_mac_alg.alg_string)
3583 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3584 
3585 	calculate_journal_section_size(ic);
3586 	journal_sections = journal_sectors / ic->journal_section_sectors;
3587 	if (!journal_sections)
3588 		journal_sections = 1;
3589 
3590 	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3591 		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3592 		get_random_bytes(ic->sb->salt, SALT_SIZE);
3593 	}
3594 
3595 	if (!ic->meta_dev) {
3596 		if (ic->fix_padding)
3597 			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3598 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3599 		if (!interleave_sectors)
3600 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3601 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3602 		ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3603 		ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3604 
3605 		get_provided_data_sectors(ic);
3606 		if (!ic->provided_data_sectors)
3607 			return -EINVAL;
3608 	} else {
3609 		ic->sb->log2_interleave_sectors = 0;
3610 
3611 		get_provided_data_sectors(ic);
3612 		if (!ic->provided_data_sectors)
3613 			return -EINVAL;
3614 
3615 try_smaller_buffer:
3616 		ic->sb->journal_sections = cpu_to_le32(0);
3617 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3618 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3619 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3620 
3621 			if (test_journal_sections > journal_sections)
3622 				continue;
3623 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3624 			if (calculate_device_limits(ic))
3625 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3626 
3627 		}
3628 		if (!le32_to_cpu(ic->sb->journal_sections)) {
3629 			if (ic->log2_buffer_sectors > 3) {
3630 				ic->log2_buffer_sectors--;
3631 				goto try_smaller_buffer;
3632 			}
3633 			return -EINVAL;
3634 		}
3635 	}
3636 
3637 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3638 
3639 	sb_set_version(ic);
3640 
3641 	return 0;
3642 }
3643 
3644 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3645 {
3646 	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3647 	struct blk_integrity bi;
3648 
3649 	memset(&bi, 0, sizeof(bi));
3650 	bi.profile = &dm_integrity_profile;
3651 	bi.tuple_size = ic->tag_size;
3652 	bi.tag_size = bi.tuple_size;
3653 	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3654 
3655 	blk_integrity_register(disk, &bi);
3656 }
3657 
3658 static void dm_integrity_free_page_list(struct page_list *pl)
3659 {
3660 	unsigned int i;
3661 
3662 	if (!pl)
3663 		return;
3664 	for (i = 0; pl[i].page; i++)
3665 		__free_page(pl[i].page);
3666 	kvfree(pl);
3667 }
3668 
3669 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3670 {
3671 	struct page_list *pl;
3672 	unsigned int i;
3673 
3674 	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3675 	if (!pl)
3676 		return NULL;
3677 
3678 	for (i = 0; i < n_pages; i++) {
3679 		pl[i].page = alloc_page(GFP_KERNEL);
3680 		if (!pl[i].page) {
3681 			dm_integrity_free_page_list(pl);
3682 			return NULL;
3683 		}
3684 		if (i)
3685 			pl[i - 1].next = &pl[i];
3686 	}
3687 	pl[i].page = NULL;
3688 	pl[i].next = NULL;
3689 
3690 	return pl;
3691 }
3692 
3693 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3694 {
3695 	unsigned int i;
3696 
3697 	for (i = 0; i < ic->journal_sections; i++)
3698 		kvfree(sl[i]);
3699 	kvfree(sl);
3700 }
3701 
3702 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3703 								   struct page_list *pl)
3704 {
3705 	struct scatterlist **sl;
3706 	unsigned int i;
3707 
3708 	sl = kvmalloc_array(ic->journal_sections,
3709 			    sizeof(struct scatterlist *),
3710 			    GFP_KERNEL | __GFP_ZERO);
3711 	if (!sl)
3712 		return NULL;
3713 
3714 	for (i = 0; i < ic->journal_sections; i++) {
3715 		struct scatterlist *s;
3716 		unsigned int start_index, start_offset;
3717 		unsigned int end_index, end_offset;
3718 		unsigned int n_pages;
3719 		unsigned int idx;
3720 
3721 		page_list_location(ic, i, 0, &start_index, &start_offset);
3722 		page_list_location(ic, i, ic->journal_section_sectors - 1,
3723 				   &end_index, &end_offset);
3724 
3725 		n_pages = (end_index - start_index + 1);
3726 
3727 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3728 				   GFP_KERNEL);
3729 		if (!s) {
3730 			dm_integrity_free_journal_scatterlist(ic, sl);
3731 			return NULL;
3732 		}
3733 
3734 		sg_init_table(s, n_pages);
3735 		for (idx = start_index; idx <= end_index; idx++) {
3736 			char *va = lowmem_page_address(pl[idx].page);
3737 			unsigned int start = 0, end = PAGE_SIZE;
3738 
3739 			if (idx == start_index)
3740 				start = start_offset;
3741 			if (idx == end_index)
3742 				end = end_offset + (1 << SECTOR_SHIFT);
3743 			sg_set_buf(&s[idx - start_index], va + start, end - start);
3744 		}
3745 
3746 		sl[i] = s;
3747 	}
3748 
3749 	return sl;
3750 }
3751 
3752 static void free_alg(struct alg_spec *a)
3753 {
3754 	kfree_sensitive(a->alg_string);
3755 	kfree_sensitive(a->key);
3756 	memset(a, 0, sizeof(*a));
3757 }
3758 
3759 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3760 {
3761 	char *k;
3762 
3763 	free_alg(a);
3764 
3765 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3766 	if (!a->alg_string)
3767 		goto nomem;
3768 
3769 	k = strchr(a->alg_string, ':');
3770 	if (k) {
3771 		*k = 0;
3772 		a->key_string = k + 1;
3773 		if (strlen(a->key_string) & 1)
3774 			goto inval;
3775 
3776 		a->key_size = strlen(a->key_string) / 2;
3777 		a->key = kmalloc(a->key_size, GFP_KERNEL);
3778 		if (!a->key)
3779 			goto nomem;
3780 		if (hex2bin(a->key, a->key_string, a->key_size))
3781 			goto inval;
3782 	}
3783 
3784 	return 0;
3785 inval:
3786 	*error = error_inval;
3787 	return -EINVAL;
3788 nomem:
3789 	*error = "Out of memory for an argument";
3790 	return -ENOMEM;
3791 }
3792 
3793 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3794 		   char *error_alg, char *error_key)
3795 {
3796 	int r;
3797 
3798 	if (a->alg_string) {
3799 		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3800 		if (IS_ERR(*hash)) {
3801 			*error = error_alg;
3802 			r = PTR_ERR(*hash);
3803 			*hash = NULL;
3804 			return r;
3805 		}
3806 
3807 		if (a->key) {
3808 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3809 			if (r) {
3810 				*error = error_key;
3811 				return r;
3812 			}
3813 		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3814 			*error = error_key;
3815 			return -ENOKEY;
3816 		}
3817 	}
3818 
3819 	return 0;
3820 }
3821 
3822 static int create_journal(struct dm_integrity_c *ic, char **error)
3823 {
3824 	int r = 0;
3825 	unsigned int i;
3826 	__u64 journal_pages, journal_desc_size, journal_tree_size;
3827 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3828 	struct skcipher_request *req = NULL;
3829 
3830 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3831 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3832 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3833 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3834 
3835 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3836 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3837 	journal_desc_size = journal_pages * sizeof(struct page_list);
3838 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3839 		*error = "Journal doesn't fit into memory";
3840 		r = -ENOMEM;
3841 		goto bad;
3842 	}
3843 	ic->journal_pages = journal_pages;
3844 
3845 	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3846 	if (!ic->journal) {
3847 		*error = "Could not allocate memory for journal";
3848 		r = -ENOMEM;
3849 		goto bad;
3850 	}
3851 	if (ic->journal_crypt_alg.alg_string) {
3852 		unsigned int ivsize, blocksize;
3853 		struct journal_completion comp;
3854 
3855 		comp.ic = ic;
3856 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3857 		if (IS_ERR(ic->journal_crypt)) {
3858 			*error = "Invalid journal cipher";
3859 			r = PTR_ERR(ic->journal_crypt);
3860 			ic->journal_crypt = NULL;
3861 			goto bad;
3862 		}
3863 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3864 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3865 
3866 		if (ic->journal_crypt_alg.key) {
3867 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3868 						   ic->journal_crypt_alg.key_size);
3869 			if (r) {
3870 				*error = "Error setting encryption key";
3871 				goto bad;
3872 			}
3873 		}
3874 		DEBUG_print("cipher %s, block size %u iv size %u\n",
3875 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3876 
3877 		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3878 		if (!ic->journal_io) {
3879 			*error = "Could not allocate memory for journal io";
3880 			r = -ENOMEM;
3881 			goto bad;
3882 		}
3883 
3884 		if (blocksize == 1) {
3885 			struct scatterlist *sg;
3886 
3887 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3888 			if (!req) {
3889 				*error = "Could not allocate crypt request";
3890 				r = -ENOMEM;
3891 				goto bad;
3892 			}
3893 
3894 			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3895 			if (!crypt_iv) {
3896 				*error = "Could not allocate iv";
3897 				r = -ENOMEM;
3898 				goto bad;
3899 			}
3900 
3901 			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3902 			if (!ic->journal_xor) {
3903 				*error = "Could not allocate memory for journal xor";
3904 				r = -ENOMEM;
3905 				goto bad;
3906 			}
3907 
3908 			sg = kvmalloc_array(ic->journal_pages + 1,
3909 					    sizeof(struct scatterlist),
3910 					    GFP_KERNEL);
3911 			if (!sg) {
3912 				*error = "Unable to allocate sg list";
3913 				r = -ENOMEM;
3914 				goto bad;
3915 			}
3916 			sg_init_table(sg, ic->journal_pages + 1);
3917 			for (i = 0; i < ic->journal_pages; i++) {
3918 				char *va = lowmem_page_address(ic->journal_xor[i].page);
3919 
3920 				clear_page(va);
3921 				sg_set_buf(&sg[i], va, PAGE_SIZE);
3922 			}
3923 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
3924 
3925 			skcipher_request_set_crypt(req, sg, sg,
3926 						   PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
3927 			init_completion(&comp.comp);
3928 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3929 			if (do_crypt(true, req, &comp))
3930 				wait_for_completion(&comp.comp);
3931 			kvfree(sg);
3932 			r = dm_integrity_failed(ic);
3933 			if (r) {
3934 				*error = "Unable to encrypt journal";
3935 				goto bad;
3936 			}
3937 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3938 
3939 			crypto_free_skcipher(ic->journal_crypt);
3940 			ic->journal_crypt = NULL;
3941 		} else {
3942 			unsigned int crypt_len = roundup(ivsize, blocksize);
3943 
3944 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3945 			if (!req) {
3946 				*error = "Could not allocate crypt request";
3947 				r = -ENOMEM;
3948 				goto bad;
3949 			}
3950 
3951 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3952 			if (!crypt_iv) {
3953 				*error = "Could not allocate iv";
3954 				r = -ENOMEM;
3955 				goto bad;
3956 			}
3957 
3958 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3959 			if (!crypt_data) {
3960 				*error = "Unable to allocate crypt data";
3961 				r = -ENOMEM;
3962 				goto bad;
3963 			}
3964 
3965 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3966 			if (!ic->journal_scatterlist) {
3967 				*error = "Unable to allocate sg list";
3968 				r = -ENOMEM;
3969 				goto bad;
3970 			}
3971 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3972 			if (!ic->journal_io_scatterlist) {
3973 				*error = "Unable to allocate sg list";
3974 				r = -ENOMEM;
3975 				goto bad;
3976 			}
3977 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3978 							 sizeof(struct skcipher_request *),
3979 							 GFP_KERNEL | __GFP_ZERO);
3980 			if (!ic->sk_requests) {
3981 				*error = "Unable to allocate sk requests";
3982 				r = -ENOMEM;
3983 				goto bad;
3984 			}
3985 			for (i = 0; i < ic->journal_sections; i++) {
3986 				struct scatterlist sg;
3987 				struct skcipher_request *section_req;
3988 				__le32 section_le = cpu_to_le32(i);
3989 
3990 				memset(crypt_iv, 0x00, ivsize);
3991 				memset(crypt_data, 0x00, crypt_len);
3992 				memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
3993 
3994 				sg_init_one(&sg, crypt_data, crypt_len);
3995 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3996 				init_completion(&comp.comp);
3997 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3998 				if (do_crypt(true, req, &comp))
3999 					wait_for_completion(&comp.comp);
4000 
4001 				r = dm_integrity_failed(ic);
4002 				if (r) {
4003 					*error = "Unable to generate iv";
4004 					goto bad;
4005 				}
4006 
4007 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4008 				if (!section_req) {
4009 					*error = "Unable to allocate crypt request";
4010 					r = -ENOMEM;
4011 					goto bad;
4012 				}
4013 				section_req->iv = kmalloc_array(ivsize, 2,
4014 								GFP_KERNEL);
4015 				if (!section_req->iv) {
4016 					skcipher_request_free(section_req);
4017 					*error = "Unable to allocate iv";
4018 					r = -ENOMEM;
4019 					goto bad;
4020 				}
4021 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
4022 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
4023 				ic->sk_requests[i] = section_req;
4024 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
4025 			}
4026 		}
4027 	}
4028 
4029 	for (i = 0; i < N_COMMIT_IDS; i++) {
4030 		unsigned int j;
4031 
4032 retest_commit_id:
4033 		for (j = 0; j < i; j++) {
4034 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
4035 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
4036 				goto retest_commit_id;
4037 			}
4038 		}
4039 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
4040 	}
4041 
4042 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
4043 	if (journal_tree_size > ULONG_MAX) {
4044 		*error = "Journal doesn't fit into memory";
4045 		r = -ENOMEM;
4046 		goto bad;
4047 	}
4048 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
4049 	if (!ic->journal_tree) {
4050 		*error = "Could not allocate memory for journal tree";
4051 		r = -ENOMEM;
4052 	}
4053 bad:
4054 	kfree(crypt_data);
4055 	kfree(crypt_iv);
4056 	skcipher_request_free(req);
4057 
4058 	return r;
4059 }
4060 
4061 /*
4062  * Construct a integrity mapping
4063  *
4064  * Arguments:
4065  *	device
4066  *	offset from the start of the device
4067  *	tag size
4068  *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4069  *	number of optional arguments
4070  *	optional arguments:
4071  *		journal_sectors
4072  *		interleave_sectors
4073  *		buffer_sectors
4074  *		journal_watermark
4075  *		commit_time
4076  *		meta_device
4077  *		block_size
4078  *		sectors_per_bit
4079  *		bitmap_flush_interval
4080  *		internal_hash
4081  *		journal_crypt
4082  *		journal_mac
4083  *		recalculate
4084  */
4085 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4086 {
4087 	struct dm_integrity_c *ic;
4088 	char dummy;
4089 	int r;
4090 	unsigned int extra_args;
4091 	struct dm_arg_set as;
4092 	static const struct dm_arg _args[] = {
4093 		{0, 18, "Invalid number of feature args"},
4094 	};
4095 	unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4096 	bool should_write_sb;
4097 	__u64 threshold;
4098 	unsigned long long start;
4099 	__s8 log2_sectors_per_bitmap_bit = -1;
4100 	__s8 log2_blocks_per_bitmap_bit;
4101 	__u64 bits_in_journal;
4102 	__u64 n_bitmap_bits;
4103 
4104 #define DIRECT_ARGUMENTS	4
4105 
4106 	if (argc <= DIRECT_ARGUMENTS) {
4107 		ti->error = "Invalid argument count";
4108 		return -EINVAL;
4109 	}
4110 
4111 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4112 	if (!ic) {
4113 		ti->error = "Cannot allocate integrity context";
4114 		return -ENOMEM;
4115 	}
4116 	ti->private = ic;
4117 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
4118 	ic->ti = ti;
4119 
4120 	ic->in_progress = RB_ROOT;
4121 	INIT_LIST_HEAD(&ic->wait_list);
4122 	init_waitqueue_head(&ic->endio_wait);
4123 	bio_list_init(&ic->flush_bio_list);
4124 	init_waitqueue_head(&ic->copy_to_journal_wait);
4125 	init_completion(&ic->crypto_backoff);
4126 	atomic64_set(&ic->number_of_mismatches, 0);
4127 	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4128 
4129 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4130 	if (r) {
4131 		ti->error = "Device lookup failed";
4132 		goto bad;
4133 	}
4134 
4135 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4136 		ti->error = "Invalid starting offset";
4137 		r = -EINVAL;
4138 		goto bad;
4139 	}
4140 	ic->start = start;
4141 
4142 	if (strcmp(argv[2], "-")) {
4143 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4144 			ti->error = "Invalid tag size";
4145 			r = -EINVAL;
4146 			goto bad;
4147 		}
4148 	}
4149 
4150 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4151 	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4152 		ic->mode = argv[3][0];
4153 	} else {
4154 		ti->error = "Invalid mode (expecting J, B, D, R)";
4155 		r = -EINVAL;
4156 		goto bad;
4157 	}
4158 
4159 	journal_sectors = 0;
4160 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4161 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
4162 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4163 	sync_msec = DEFAULT_SYNC_MSEC;
4164 	ic->sectors_per_block = 1;
4165 
4166 	as.argc = argc - DIRECT_ARGUMENTS;
4167 	as.argv = argv + DIRECT_ARGUMENTS;
4168 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4169 	if (r)
4170 		goto bad;
4171 
4172 	while (extra_args--) {
4173 		const char *opt_string;
4174 		unsigned int val;
4175 		unsigned long long llval;
4176 
4177 		opt_string = dm_shift_arg(&as);
4178 		if (!opt_string) {
4179 			r = -EINVAL;
4180 			ti->error = "Not enough feature arguments";
4181 			goto bad;
4182 		}
4183 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4184 			journal_sectors = val ? val : 1;
4185 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4186 			interleave_sectors = val;
4187 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4188 			buffer_sectors = val;
4189 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4190 			journal_watermark = val;
4191 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4192 			sync_msec = val;
4193 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4194 			if (ic->meta_dev) {
4195 				dm_put_device(ti, ic->meta_dev);
4196 				ic->meta_dev = NULL;
4197 			}
4198 			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4199 					  dm_table_get_mode(ti->table), &ic->meta_dev);
4200 			if (r) {
4201 				ti->error = "Device lookup failed";
4202 				goto bad;
4203 			}
4204 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4205 			if (val < 1 << SECTOR_SHIFT ||
4206 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4207 			    (val & (val - 1))) {
4208 				r = -EINVAL;
4209 				ti->error = "Invalid block_size argument";
4210 				goto bad;
4211 			}
4212 			ic->sectors_per_block = val >> SECTOR_SHIFT;
4213 		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4214 			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4215 		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4216 			if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4217 				r = -EINVAL;
4218 				ti->error = "Invalid bitmap_flush_interval argument";
4219 				goto bad;
4220 			}
4221 			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4222 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4223 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4224 					    "Invalid internal_hash argument");
4225 			if (r)
4226 				goto bad;
4227 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4228 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4229 					    "Invalid journal_crypt argument");
4230 			if (r)
4231 				goto bad;
4232 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4233 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4234 					    "Invalid journal_mac argument");
4235 			if (r)
4236 				goto bad;
4237 		} else if (!strcmp(opt_string, "recalculate")) {
4238 			ic->recalculate_flag = true;
4239 		} else if (!strcmp(opt_string, "reset_recalculate")) {
4240 			ic->recalculate_flag = true;
4241 			ic->reset_recalculate_flag = true;
4242 		} else if (!strcmp(opt_string, "allow_discards")) {
4243 			ic->discard = true;
4244 		} else if (!strcmp(opt_string, "fix_padding")) {
4245 			ic->fix_padding = true;
4246 		} else if (!strcmp(opt_string, "fix_hmac")) {
4247 			ic->fix_hmac = true;
4248 		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4249 			ic->legacy_recalculate = true;
4250 		} else {
4251 			r = -EINVAL;
4252 			ti->error = "Invalid argument";
4253 			goto bad;
4254 		}
4255 	}
4256 
4257 	ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4258 	if (!ic->meta_dev)
4259 		ic->meta_device_sectors = ic->data_device_sectors;
4260 	else
4261 		ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4262 
4263 	if (!journal_sectors) {
4264 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4265 				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4266 	}
4267 
4268 	if (!buffer_sectors)
4269 		buffer_sectors = 1;
4270 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4271 
4272 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4273 		    "Invalid internal hash", "Error setting internal hash key");
4274 	if (r)
4275 		goto bad;
4276 
4277 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4278 		    "Invalid journal mac", "Error setting journal mac key");
4279 	if (r)
4280 		goto bad;
4281 
4282 	if (!ic->tag_size) {
4283 		if (!ic->internal_hash) {
4284 			ti->error = "Unknown tag size";
4285 			r = -EINVAL;
4286 			goto bad;
4287 		}
4288 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4289 	}
4290 	if (ic->tag_size > MAX_TAG_SIZE) {
4291 		ti->error = "Too big tag size";
4292 		r = -EINVAL;
4293 		goto bad;
4294 	}
4295 	if (!(ic->tag_size & (ic->tag_size - 1)))
4296 		ic->log2_tag_size = __ffs(ic->tag_size);
4297 	else
4298 		ic->log2_tag_size = -1;
4299 
4300 	if (ic->mode == 'B' && !ic->internal_hash) {
4301 		r = -EINVAL;
4302 		ti->error = "Bitmap mode can be only used with internal hash";
4303 		goto bad;
4304 	}
4305 
4306 	if (ic->discard && !ic->internal_hash) {
4307 		r = -EINVAL;
4308 		ti->error = "Discard can be only used with internal hash";
4309 		goto bad;
4310 	}
4311 
4312 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4313 	ic->autocommit_msec = sync_msec;
4314 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4315 
4316 	ic->io = dm_io_client_create();
4317 	if (IS_ERR(ic->io)) {
4318 		r = PTR_ERR(ic->io);
4319 		ic->io = NULL;
4320 		ti->error = "Cannot allocate dm io";
4321 		goto bad;
4322 	}
4323 
4324 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4325 	if (r) {
4326 		ti->error = "Cannot allocate mempool";
4327 		goto bad;
4328 	}
4329 
4330 	r = mempool_init_page_pool(&ic->recheck_pool, 1, 0);
4331 	if (r) {
4332 		ti->error = "Cannot allocate mempool";
4333 		goto bad;
4334 	}
4335 
4336 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4337 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4338 	if (!ic->metadata_wq) {
4339 		ti->error = "Cannot allocate workqueue";
4340 		r = -ENOMEM;
4341 		goto bad;
4342 	}
4343 
4344 	/*
4345 	 * If this workqueue weren't ordered, it would cause bio reordering
4346 	 * and reduced performance.
4347 	 */
4348 	ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4349 	if (!ic->wait_wq) {
4350 		ti->error = "Cannot allocate workqueue";
4351 		r = -ENOMEM;
4352 		goto bad;
4353 	}
4354 
4355 	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4356 					  METADATA_WORKQUEUE_MAX_ACTIVE);
4357 	if (!ic->offload_wq) {
4358 		ti->error = "Cannot allocate workqueue";
4359 		r = -ENOMEM;
4360 		goto bad;
4361 	}
4362 
4363 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4364 	if (!ic->commit_wq) {
4365 		ti->error = "Cannot allocate workqueue";
4366 		r = -ENOMEM;
4367 		goto bad;
4368 	}
4369 	INIT_WORK(&ic->commit_work, integrity_commit);
4370 
4371 	if (ic->mode == 'J' || ic->mode == 'B') {
4372 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4373 		if (!ic->writer_wq) {
4374 			ti->error = "Cannot allocate workqueue";
4375 			r = -ENOMEM;
4376 			goto bad;
4377 		}
4378 		INIT_WORK(&ic->writer_work, integrity_writer);
4379 	}
4380 
4381 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4382 	if (!ic->sb) {
4383 		r = -ENOMEM;
4384 		ti->error = "Cannot allocate superblock area";
4385 		goto bad;
4386 	}
4387 
4388 	r = sync_rw_sb(ic, REQ_OP_READ);
4389 	if (r) {
4390 		ti->error = "Error reading superblock";
4391 		goto bad;
4392 	}
4393 	should_write_sb = false;
4394 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4395 		if (ic->mode != 'R') {
4396 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4397 				r = -EINVAL;
4398 				ti->error = "The device is not initialized";
4399 				goto bad;
4400 			}
4401 		}
4402 
4403 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4404 		if (r) {
4405 			ti->error = "Could not initialize superblock";
4406 			goto bad;
4407 		}
4408 		if (ic->mode != 'R')
4409 			should_write_sb = true;
4410 	}
4411 
4412 	if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4413 		r = -EINVAL;
4414 		ti->error = "Unknown version";
4415 		goto bad;
4416 	}
4417 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4418 		r = -EINVAL;
4419 		ti->error = "Tag size doesn't match the information in superblock";
4420 		goto bad;
4421 	}
4422 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4423 		r = -EINVAL;
4424 		ti->error = "Block size doesn't match the information in superblock";
4425 		goto bad;
4426 	}
4427 	if (!le32_to_cpu(ic->sb->journal_sections)) {
4428 		r = -EINVAL;
4429 		ti->error = "Corrupted superblock, journal_sections is 0";
4430 		goto bad;
4431 	}
4432 	/* make sure that ti->max_io_len doesn't overflow */
4433 	if (!ic->meta_dev) {
4434 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4435 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4436 			r = -EINVAL;
4437 			ti->error = "Invalid interleave_sectors in the superblock";
4438 			goto bad;
4439 		}
4440 	} else {
4441 		if (ic->sb->log2_interleave_sectors) {
4442 			r = -EINVAL;
4443 			ti->error = "Invalid interleave_sectors in the superblock";
4444 			goto bad;
4445 		}
4446 	}
4447 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4448 		r = -EINVAL;
4449 		ti->error = "Journal mac mismatch";
4450 		goto bad;
4451 	}
4452 
4453 	get_provided_data_sectors(ic);
4454 	if (!ic->provided_data_sectors) {
4455 		r = -EINVAL;
4456 		ti->error = "The device is too small";
4457 		goto bad;
4458 	}
4459 
4460 try_smaller_buffer:
4461 	r = calculate_device_limits(ic);
4462 	if (r) {
4463 		if (ic->meta_dev) {
4464 			if (ic->log2_buffer_sectors > 3) {
4465 				ic->log2_buffer_sectors--;
4466 				goto try_smaller_buffer;
4467 			}
4468 		}
4469 		ti->error = "The device is too small";
4470 		goto bad;
4471 	}
4472 
4473 	if (log2_sectors_per_bitmap_bit < 0)
4474 		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4475 	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4476 		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4477 
4478 	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4479 	if (bits_in_journal > UINT_MAX)
4480 		bits_in_journal = UINT_MAX;
4481 	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4482 		log2_sectors_per_bitmap_bit++;
4483 
4484 	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4485 	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4486 	if (should_write_sb)
4487 		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4488 
4489 	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4490 				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4491 	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4492 
4493 	if (!ic->meta_dev)
4494 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4495 
4496 	if (ti->len > ic->provided_data_sectors) {
4497 		r = -EINVAL;
4498 		ti->error = "Not enough provided sectors for requested mapping size";
4499 		goto bad;
4500 	}
4501 
4502 
4503 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4504 	threshold += 50;
4505 	do_div(threshold, 100);
4506 	ic->free_sectors_threshold = threshold;
4507 
4508 	DEBUG_print("initialized:\n");
4509 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4510 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4511 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4512 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4513 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4514 	DEBUG_print("	journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4515 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4516 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4517 	DEBUG_print("	data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4518 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4519 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4520 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4521 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4522 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4523 	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4524 
4525 	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4526 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4527 		ic->sb->recalc_sector = cpu_to_le64(0);
4528 	}
4529 
4530 	if (ic->internal_hash) {
4531 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4532 		if (!ic->recalc_wq) {
4533 			ti->error = "Cannot allocate workqueue";
4534 			r = -ENOMEM;
4535 			goto bad;
4536 		}
4537 		INIT_WORK(&ic->recalc_work, integrity_recalc);
4538 	} else {
4539 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4540 			ti->error = "Recalculate can only be specified with internal_hash";
4541 			r = -EINVAL;
4542 			goto bad;
4543 		}
4544 	}
4545 
4546 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4547 	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4548 	    dm_integrity_disable_recalculate(ic)) {
4549 		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4550 		r = -EOPNOTSUPP;
4551 		goto bad;
4552 	}
4553 
4554 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4555 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4556 	if (IS_ERR(ic->bufio)) {
4557 		r = PTR_ERR(ic->bufio);
4558 		ti->error = "Cannot initialize dm-bufio";
4559 		ic->bufio = NULL;
4560 		goto bad;
4561 	}
4562 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4563 
4564 	if (ic->mode != 'R') {
4565 		r = create_journal(ic, &ti->error);
4566 		if (r)
4567 			goto bad;
4568 
4569 	}
4570 
4571 	if (ic->mode == 'B') {
4572 		unsigned int i;
4573 		unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4574 
4575 		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4576 		if (!ic->recalc_bitmap) {
4577 			r = -ENOMEM;
4578 			goto bad;
4579 		}
4580 		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4581 		if (!ic->may_write_bitmap) {
4582 			r = -ENOMEM;
4583 			goto bad;
4584 		}
4585 		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4586 		if (!ic->bbs) {
4587 			r = -ENOMEM;
4588 			goto bad;
4589 		}
4590 		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4591 		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4592 			struct bitmap_block_status *bbs = &ic->bbs[i];
4593 			unsigned int sector, pl_index, pl_offset;
4594 
4595 			INIT_WORK(&bbs->work, bitmap_block_work);
4596 			bbs->ic = ic;
4597 			bbs->idx = i;
4598 			bio_list_init(&bbs->bio_queue);
4599 			spin_lock_init(&bbs->bio_queue_lock);
4600 
4601 			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4602 			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4603 			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4604 
4605 			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4606 		}
4607 	}
4608 
4609 	if (should_write_sb) {
4610 		init_journal(ic, 0, ic->journal_sections, 0);
4611 		r = dm_integrity_failed(ic);
4612 		if (unlikely(r)) {
4613 			ti->error = "Error initializing journal";
4614 			goto bad;
4615 		}
4616 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4617 		if (r) {
4618 			ti->error = "Error initializing superblock";
4619 			goto bad;
4620 		}
4621 		ic->just_formatted = true;
4622 	}
4623 
4624 	if (!ic->meta_dev) {
4625 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4626 		if (r)
4627 			goto bad;
4628 	}
4629 	if (ic->mode == 'B') {
4630 		unsigned int max_io_len;
4631 
4632 		max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4633 		if (!max_io_len)
4634 			max_io_len = 1U << 31;
4635 		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4636 		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4637 			r = dm_set_target_max_io_len(ti, max_io_len);
4638 			if (r)
4639 				goto bad;
4640 		}
4641 	}
4642 
4643 	if (!ic->internal_hash)
4644 		dm_integrity_set(ti, ic);
4645 
4646 	ti->num_flush_bios = 1;
4647 	ti->flush_supported = true;
4648 	if (ic->discard)
4649 		ti->num_discard_bios = 1;
4650 
4651 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4652 	return 0;
4653 
4654 bad:
4655 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4656 	dm_integrity_dtr(ti);
4657 	return r;
4658 }
4659 
4660 static void dm_integrity_dtr(struct dm_target *ti)
4661 {
4662 	struct dm_integrity_c *ic = ti->private;
4663 
4664 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4665 	BUG_ON(!list_empty(&ic->wait_list));
4666 
4667 	if (ic->mode == 'B')
4668 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
4669 	if (ic->metadata_wq)
4670 		destroy_workqueue(ic->metadata_wq);
4671 	if (ic->wait_wq)
4672 		destroy_workqueue(ic->wait_wq);
4673 	if (ic->offload_wq)
4674 		destroy_workqueue(ic->offload_wq);
4675 	if (ic->commit_wq)
4676 		destroy_workqueue(ic->commit_wq);
4677 	if (ic->writer_wq)
4678 		destroy_workqueue(ic->writer_wq);
4679 	if (ic->recalc_wq)
4680 		destroy_workqueue(ic->recalc_wq);
4681 	kvfree(ic->bbs);
4682 	if (ic->bufio)
4683 		dm_bufio_client_destroy(ic->bufio);
4684 	mempool_exit(&ic->recheck_pool);
4685 	mempool_exit(&ic->journal_io_mempool);
4686 	if (ic->io)
4687 		dm_io_client_destroy(ic->io);
4688 	if (ic->dev)
4689 		dm_put_device(ti, ic->dev);
4690 	if (ic->meta_dev)
4691 		dm_put_device(ti, ic->meta_dev);
4692 	dm_integrity_free_page_list(ic->journal);
4693 	dm_integrity_free_page_list(ic->journal_io);
4694 	dm_integrity_free_page_list(ic->journal_xor);
4695 	dm_integrity_free_page_list(ic->recalc_bitmap);
4696 	dm_integrity_free_page_list(ic->may_write_bitmap);
4697 	if (ic->journal_scatterlist)
4698 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4699 	if (ic->journal_io_scatterlist)
4700 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4701 	if (ic->sk_requests) {
4702 		unsigned int i;
4703 
4704 		for (i = 0; i < ic->journal_sections; i++) {
4705 			struct skcipher_request *req;
4706 
4707 			req = ic->sk_requests[i];
4708 			if (req) {
4709 				kfree_sensitive(req->iv);
4710 				skcipher_request_free(req);
4711 			}
4712 		}
4713 		kvfree(ic->sk_requests);
4714 	}
4715 	kvfree(ic->journal_tree);
4716 	if (ic->sb)
4717 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4718 
4719 	if (ic->internal_hash)
4720 		crypto_free_shash(ic->internal_hash);
4721 	free_alg(&ic->internal_hash_alg);
4722 
4723 	if (ic->journal_crypt)
4724 		crypto_free_skcipher(ic->journal_crypt);
4725 	free_alg(&ic->journal_crypt_alg);
4726 
4727 	if (ic->journal_mac)
4728 		crypto_free_shash(ic->journal_mac);
4729 	free_alg(&ic->journal_mac_alg);
4730 
4731 	kfree(ic);
4732 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4733 }
4734 
4735 static struct target_type integrity_target = {
4736 	.name			= "integrity",
4737 	.version		= {1, 11, 0},
4738 	.module			= THIS_MODULE,
4739 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4740 	.ctr			= dm_integrity_ctr,
4741 	.dtr			= dm_integrity_dtr,
4742 	.map			= dm_integrity_map,
4743 	.postsuspend		= dm_integrity_postsuspend,
4744 	.resume			= dm_integrity_resume,
4745 	.status			= dm_integrity_status,
4746 	.iterate_devices	= dm_integrity_iterate_devices,
4747 	.io_hints		= dm_integrity_io_hints,
4748 };
4749 
4750 static int __init dm_integrity_init(void)
4751 {
4752 	int r;
4753 
4754 	journal_io_cache = kmem_cache_create("integrity_journal_io",
4755 					     sizeof(struct journal_io), 0, 0, NULL);
4756 	if (!journal_io_cache) {
4757 		DMERR("can't allocate journal io cache");
4758 		return -ENOMEM;
4759 	}
4760 
4761 	r = dm_register_target(&integrity_target);
4762 	if (r < 0) {
4763 		kmem_cache_destroy(journal_io_cache);
4764 		return r;
4765 	}
4766 
4767 	return 0;
4768 }
4769 
4770 static void __exit dm_integrity_exit(void)
4771 {
4772 	dm_unregister_target(&integrity_target);
4773 	kmem_cache_destroy(journal_io_cache);
4774 }
4775 
4776 module_init(dm_integrity_init);
4777 module_exit(dm_integrity_exit);
4778 
4779 MODULE_AUTHOR("Milan Broz");
4780 MODULE_AUTHOR("Mikulas Patocka");
4781 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4782 MODULE_LICENSE("GPL");
4783