1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 4 * Copyright (C) 2016-2017 Milan Broz 5 * Copyright (C) 2016-2017 Mikulas Patocka 6 * 7 * This file is released under the GPL. 8 */ 9 10 #include "dm-bio-record.h" 11 12 #include <linux/compiler.h> 13 #include <linux/module.h> 14 #include <linux/device-mapper.h> 15 #include <linux/dm-io.h> 16 #include <linux/vmalloc.h> 17 #include <linux/sort.h> 18 #include <linux/rbtree.h> 19 #include <linux/delay.h> 20 #include <linux/random.h> 21 #include <linux/reboot.h> 22 #include <crypto/hash.h> 23 #include <crypto/skcipher.h> 24 #include <linux/async_tx.h> 25 #include <linux/dm-bufio.h> 26 27 #include "dm-audit.h" 28 29 #define DM_MSG_PREFIX "integrity" 30 31 #define DEFAULT_INTERLEAVE_SECTORS 32768 32 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 33 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768 34 #define DEFAULT_BUFFER_SECTORS 128 35 #define DEFAULT_JOURNAL_WATERMARK 50 36 #define DEFAULT_SYNC_MSEC 10000 37 #define DEFAULT_MAX_JOURNAL_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192) 38 #define MIN_LOG2_INTERLEAVE_SECTORS 3 39 #define MAX_LOG2_INTERLEAVE_SECTORS 31 40 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 41 #define RECALC_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048) 42 #define RECALC_WRITE_SUPER 16 43 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */ 44 #define BITMAP_FLUSH_INTERVAL (10 * HZ) 45 #define DISCARD_FILLER 0xf6 46 #define SALT_SIZE 16 47 48 /* 49 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 50 * so it should not be enabled in the official kernel 51 */ 52 //#define DEBUG_PRINT 53 //#define INTERNAL_VERIFY 54 55 /* 56 * On disk structures 57 */ 58 59 #define SB_MAGIC "integrt" 60 #define SB_VERSION_1 1 61 #define SB_VERSION_2 2 62 #define SB_VERSION_3 3 63 #define SB_VERSION_4 4 64 #define SB_VERSION_5 5 65 #define SB_SECTORS 8 66 #define MAX_SECTORS_PER_BLOCK 8 67 68 struct superblock { 69 __u8 magic[8]; 70 __u8 version; 71 __u8 log2_interleave_sectors; 72 __le16 integrity_tag_size; 73 __le32 journal_sections; 74 __le64 provided_data_sectors; /* userspace uses this value */ 75 __le32 flags; 76 __u8 log2_sectors_per_block; 77 __u8 log2_blocks_per_bitmap_bit; 78 __u8 pad[2]; 79 __le64 recalc_sector; 80 __u8 pad2[8]; 81 __u8 salt[SALT_SIZE]; 82 }; 83 84 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 85 #define SB_FLAG_RECALCULATING 0x2 86 #define SB_FLAG_DIRTY_BITMAP 0x4 87 #define SB_FLAG_FIXED_PADDING 0x8 88 #define SB_FLAG_FIXED_HMAC 0x10 89 90 #define JOURNAL_ENTRY_ROUNDUP 8 91 92 typedef __le64 commit_id_t; 93 #define JOURNAL_MAC_PER_SECTOR 8 94 95 struct journal_entry { 96 union { 97 struct { 98 __le32 sector_lo; 99 __le32 sector_hi; 100 } s; 101 __le64 sector; 102 } u; 103 commit_id_t last_bytes[]; 104 /* __u8 tag[0]; */ 105 }; 106 107 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 108 109 #if BITS_PER_LONG == 64 110 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) 111 #else 112 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) 113 #endif 114 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 115 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 116 #define journal_entry_set_unused(je) ((je)->u.s.sector_hi = cpu_to_le32(-1)) 117 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 118 #define journal_entry_set_inprogress(je) ((je)->u.s.sector_hi = cpu_to_le32(-2)) 119 120 #define JOURNAL_BLOCK_SECTORS 8 121 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 122 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 123 124 struct journal_sector { 125 struct_group(sectors, 126 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 127 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 128 ); 129 commit_id_t commit_id; 130 }; 131 132 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 133 134 #define METADATA_PADDING_SECTORS 8 135 136 #define N_COMMIT_IDS 4 137 138 static unsigned char prev_commit_seq(unsigned char seq) 139 { 140 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 141 } 142 143 static unsigned char next_commit_seq(unsigned char seq) 144 { 145 return (seq + 1) % N_COMMIT_IDS; 146 } 147 148 /* 149 * In-memory structures 150 */ 151 152 struct journal_node { 153 struct rb_node node; 154 sector_t sector; 155 }; 156 157 struct alg_spec { 158 char *alg_string; 159 char *key_string; 160 __u8 *key; 161 unsigned int key_size; 162 }; 163 164 struct dm_integrity_c { 165 struct dm_dev *dev; 166 struct dm_dev *meta_dev; 167 unsigned int tag_size; 168 __s8 log2_tag_size; 169 sector_t start; 170 mempool_t journal_io_mempool; 171 struct dm_io_client *io; 172 struct dm_bufio_client *bufio; 173 struct workqueue_struct *metadata_wq; 174 struct superblock *sb; 175 unsigned int journal_pages; 176 unsigned int n_bitmap_blocks; 177 178 struct page_list *journal; 179 struct page_list *journal_io; 180 struct page_list *journal_xor; 181 struct page_list *recalc_bitmap; 182 struct page_list *may_write_bitmap; 183 struct bitmap_block_status *bbs; 184 unsigned int bitmap_flush_interval; 185 int synchronous_mode; 186 struct bio_list synchronous_bios; 187 struct delayed_work bitmap_flush_work; 188 189 struct crypto_skcipher *journal_crypt; 190 struct scatterlist **journal_scatterlist; 191 struct scatterlist **journal_io_scatterlist; 192 struct skcipher_request **sk_requests; 193 194 struct crypto_shash *journal_mac; 195 196 struct journal_node *journal_tree; 197 struct rb_root journal_tree_root; 198 199 sector_t provided_data_sectors; 200 201 unsigned short journal_entry_size; 202 unsigned char journal_entries_per_sector; 203 unsigned char journal_section_entries; 204 unsigned short journal_section_sectors; 205 unsigned int journal_sections; 206 unsigned int journal_entries; 207 sector_t data_device_sectors; 208 sector_t meta_device_sectors; 209 unsigned int initial_sectors; 210 unsigned int metadata_run; 211 __s8 log2_metadata_run; 212 __u8 log2_buffer_sectors; 213 __u8 sectors_per_block; 214 __u8 log2_blocks_per_bitmap_bit; 215 216 unsigned char mode; 217 218 int failed; 219 220 struct crypto_shash *internal_hash; 221 222 struct dm_target *ti; 223 224 /* these variables are locked with endio_wait.lock */ 225 struct rb_root in_progress; 226 struct list_head wait_list; 227 wait_queue_head_t endio_wait; 228 struct workqueue_struct *wait_wq; 229 struct workqueue_struct *offload_wq; 230 231 unsigned char commit_seq; 232 commit_id_t commit_ids[N_COMMIT_IDS]; 233 234 unsigned int committed_section; 235 unsigned int n_committed_sections; 236 237 unsigned int uncommitted_section; 238 unsigned int n_uncommitted_sections; 239 240 unsigned int free_section; 241 unsigned char free_section_entry; 242 unsigned int free_sectors; 243 244 unsigned int free_sectors_threshold; 245 246 struct workqueue_struct *commit_wq; 247 struct work_struct commit_work; 248 249 struct workqueue_struct *writer_wq; 250 struct work_struct writer_work; 251 252 struct workqueue_struct *recalc_wq; 253 struct work_struct recalc_work; 254 255 struct bio_list flush_bio_list; 256 257 unsigned long autocommit_jiffies; 258 struct timer_list autocommit_timer; 259 unsigned int autocommit_msec; 260 261 wait_queue_head_t copy_to_journal_wait; 262 263 struct completion crypto_backoff; 264 265 bool wrote_to_journal; 266 bool journal_uptodate; 267 bool just_formatted; 268 bool recalculate_flag; 269 bool reset_recalculate_flag; 270 bool discard; 271 bool fix_padding; 272 bool fix_hmac; 273 bool legacy_recalculate; 274 275 struct alg_spec internal_hash_alg; 276 struct alg_spec journal_crypt_alg; 277 struct alg_spec journal_mac_alg; 278 279 atomic64_t number_of_mismatches; 280 281 mempool_t recheck_pool; 282 283 struct notifier_block reboot_notifier; 284 }; 285 286 struct dm_integrity_range { 287 sector_t logical_sector; 288 sector_t n_sectors; 289 bool waiting; 290 union { 291 struct rb_node node; 292 struct { 293 struct task_struct *task; 294 struct list_head wait_entry; 295 }; 296 }; 297 }; 298 299 struct dm_integrity_io { 300 struct work_struct work; 301 302 struct dm_integrity_c *ic; 303 enum req_op op; 304 bool fua; 305 306 struct dm_integrity_range range; 307 308 sector_t metadata_block; 309 unsigned int metadata_offset; 310 311 atomic_t in_flight; 312 blk_status_t bi_status; 313 314 struct completion *completion; 315 316 struct dm_bio_details bio_details; 317 }; 318 319 struct journal_completion { 320 struct dm_integrity_c *ic; 321 atomic_t in_flight; 322 struct completion comp; 323 }; 324 325 struct journal_io { 326 struct dm_integrity_range range; 327 struct journal_completion *comp; 328 }; 329 330 struct bitmap_block_status { 331 struct work_struct work; 332 struct dm_integrity_c *ic; 333 unsigned int idx; 334 unsigned long *bitmap; 335 struct bio_list bio_queue; 336 spinlock_t bio_queue_lock; 337 338 }; 339 340 static struct kmem_cache *journal_io_cache; 341 342 #define JOURNAL_IO_MEMPOOL 32 343 344 #ifdef DEBUG_PRINT 345 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 346 #define DEBUG_bytes(bytes, len, msg, ...) printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \ 347 len ? ": " : "", len, bytes) 348 #else 349 #define DEBUG_print(x, ...) do { } while (0) 350 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 351 #endif 352 353 static void dm_integrity_prepare(struct request *rq) 354 { 355 } 356 357 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes) 358 { 359 } 360 361 /* 362 * DM Integrity profile, protection is performed layer above (dm-crypt) 363 */ 364 static const struct blk_integrity_profile dm_integrity_profile = { 365 .name = "DM-DIF-EXT-TAG", 366 .generate_fn = NULL, 367 .verify_fn = NULL, 368 .prepare_fn = dm_integrity_prepare, 369 .complete_fn = dm_integrity_complete, 370 }; 371 372 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 373 static void integrity_bio_wait(struct work_struct *w); 374 static void dm_integrity_dtr(struct dm_target *ti); 375 376 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 377 { 378 if (err == -EILSEQ) 379 atomic64_inc(&ic->number_of_mismatches); 380 if (!cmpxchg(&ic->failed, 0, err)) 381 DMERR("Error on %s: %d", msg, err); 382 } 383 384 static int dm_integrity_failed(struct dm_integrity_c *ic) 385 { 386 return READ_ONCE(ic->failed); 387 } 388 389 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic) 390 { 391 if (ic->legacy_recalculate) 392 return false; 393 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ? 394 ic->internal_hash_alg.key || ic->journal_mac_alg.key : 395 ic->internal_hash_alg.key && !ic->journal_mac_alg.key) 396 return true; 397 return false; 398 } 399 400 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i, 401 unsigned int j, unsigned char seq) 402 { 403 /* 404 * Xor the number with section and sector, so that if a piece of 405 * journal is written at wrong place, it is detected. 406 */ 407 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 408 } 409 410 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 411 sector_t *area, sector_t *offset) 412 { 413 if (!ic->meta_dev) { 414 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 415 *area = data_sector >> log2_interleave_sectors; 416 *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1); 417 } else { 418 *area = 0; 419 *offset = data_sector; 420 } 421 } 422 423 #define sector_to_block(ic, n) \ 424 do { \ 425 BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1)); \ 426 (n) >>= (ic)->sb->log2_sectors_per_block; \ 427 } while (0) 428 429 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 430 sector_t offset, unsigned int *metadata_offset) 431 { 432 __u64 ms; 433 unsigned int mo; 434 435 ms = area << ic->sb->log2_interleave_sectors; 436 if (likely(ic->log2_metadata_run >= 0)) 437 ms += area << ic->log2_metadata_run; 438 else 439 ms += area * ic->metadata_run; 440 ms >>= ic->log2_buffer_sectors; 441 442 sector_to_block(ic, offset); 443 444 if (likely(ic->log2_tag_size >= 0)) { 445 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 446 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 447 } else { 448 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 449 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 450 } 451 *metadata_offset = mo; 452 return ms; 453 } 454 455 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 456 { 457 sector_t result; 458 459 if (ic->meta_dev) 460 return offset; 461 462 result = area << ic->sb->log2_interleave_sectors; 463 if (likely(ic->log2_metadata_run >= 0)) 464 result += (area + 1) << ic->log2_metadata_run; 465 else 466 result += (area + 1) * ic->metadata_run; 467 468 result += (sector_t)ic->initial_sectors + offset; 469 result += ic->start; 470 471 return result; 472 } 473 474 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr) 475 { 476 if (unlikely(*sec_ptr >= ic->journal_sections)) 477 *sec_ptr -= ic->journal_sections; 478 } 479 480 static void sb_set_version(struct dm_integrity_c *ic) 481 { 482 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) 483 ic->sb->version = SB_VERSION_5; 484 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) 485 ic->sb->version = SB_VERSION_4; 486 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) 487 ic->sb->version = SB_VERSION_3; 488 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 489 ic->sb->version = SB_VERSION_2; 490 else 491 ic->sb->version = SB_VERSION_1; 492 } 493 494 static int sb_mac(struct dm_integrity_c *ic, bool wr) 495 { 496 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 497 int r; 498 unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac); 499 __u8 *sb = (__u8 *)ic->sb; 500 __u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size; 501 502 if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT) { 503 dm_integrity_io_error(ic, "digest is too long", -EINVAL); 504 return -EINVAL; 505 } 506 507 desc->tfm = ic->journal_mac; 508 509 if (likely(wr)) { 510 r = crypto_shash_digest(desc, sb, mac - sb, mac); 511 if (unlikely(r < 0)) { 512 dm_integrity_io_error(ic, "crypto_shash_digest", r); 513 return r; 514 } 515 } else { 516 __u8 actual_mac[HASH_MAX_DIGESTSIZE]; 517 518 r = crypto_shash_digest(desc, sb, mac - sb, actual_mac); 519 if (unlikely(r < 0)) { 520 dm_integrity_io_error(ic, "crypto_shash_digest", r); 521 return r; 522 } 523 if (memcmp(mac, actual_mac, mac_size)) { 524 dm_integrity_io_error(ic, "superblock mac", -EILSEQ); 525 dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0); 526 return -EILSEQ; 527 } 528 } 529 530 return 0; 531 } 532 533 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf) 534 { 535 struct dm_io_request io_req; 536 struct dm_io_region io_loc; 537 const enum req_op op = opf & REQ_OP_MASK; 538 int r; 539 540 io_req.bi_opf = opf; 541 io_req.mem.type = DM_IO_KMEM; 542 io_req.mem.ptr.addr = ic->sb; 543 io_req.notify.fn = NULL; 544 io_req.client = ic->io; 545 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 546 io_loc.sector = ic->start; 547 io_loc.count = SB_SECTORS; 548 549 if (op == REQ_OP_WRITE) { 550 sb_set_version(ic); 551 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 552 r = sb_mac(ic, true); 553 if (unlikely(r)) 554 return r; 555 } 556 } 557 558 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 559 if (unlikely(r)) 560 return r; 561 562 if (op == REQ_OP_READ) { 563 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 564 r = sb_mac(ic, false); 565 if (unlikely(r)) 566 return r; 567 } 568 } 569 570 return 0; 571 } 572 573 #define BITMAP_OP_TEST_ALL_SET 0 574 #define BITMAP_OP_TEST_ALL_CLEAR 1 575 #define BITMAP_OP_SET 2 576 #define BITMAP_OP_CLEAR 3 577 578 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap, 579 sector_t sector, sector_t n_sectors, int mode) 580 { 581 unsigned long bit, end_bit, this_end_bit, page, end_page; 582 unsigned long *data; 583 584 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) { 585 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)", 586 sector, 587 n_sectors, 588 ic->sb->log2_sectors_per_block, 589 ic->log2_blocks_per_bitmap_bit, 590 mode); 591 BUG(); 592 } 593 594 if (unlikely(!n_sectors)) 595 return true; 596 597 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 598 end_bit = (sector + n_sectors - 1) >> 599 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 600 601 page = bit / (PAGE_SIZE * 8); 602 bit %= PAGE_SIZE * 8; 603 604 end_page = end_bit / (PAGE_SIZE * 8); 605 end_bit %= PAGE_SIZE * 8; 606 607 repeat: 608 if (page < end_page) 609 this_end_bit = PAGE_SIZE * 8 - 1; 610 else 611 this_end_bit = end_bit; 612 613 data = lowmem_page_address(bitmap[page].page); 614 615 if (mode == BITMAP_OP_TEST_ALL_SET) { 616 while (bit <= this_end_bit) { 617 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 618 do { 619 if (data[bit / BITS_PER_LONG] != -1) 620 return false; 621 bit += BITS_PER_LONG; 622 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 623 continue; 624 } 625 if (!test_bit(bit, data)) 626 return false; 627 bit++; 628 } 629 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) { 630 while (bit <= this_end_bit) { 631 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 632 do { 633 if (data[bit / BITS_PER_LONG] != 0) 634 return false; 635 bit += BITS_PER_LONG; 636 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 637 continue; 638 } 639 if (test_bit(bit, data)) 640 return false; 641 bit++; 642 } 643 } else if (mode == BITMAP_OP_SET) { 644 while (bit <= this_end_bit) { 645 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 646 do { 647 data[bit / BITS_PER_LONG] = -1; 648 bit += BITS_PER_LONG; 649 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 650 continue; 651 } 652 __set_bit(bit, data); 653 bit++; 654 } 655 } else if (mode == BITMAP_OP_CLEAR) { 656 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1) 657 clear_page(data); 658 else { 659 while (bit <= this_end_bit) { 660 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 661 do { 662 data[bit / BITS_PER_LONG] = 0; 663 bit += BITS_PER_LONG; 664 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 665 continue; 666 } 667 __clear_bit(bit, data); 668 bit++; 669 } 670 } 671 } else { 672 BUG(); 673 } 674 675 if (unlikely(page < end_page)) { 676 bit = 0; 677 page++; 678 goto repeat; 679 } 680 681 return true; 682 } 683 684 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src) 685 { 686 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 687 unsigned int i; 688 689 for (i = 0; i < n_bitmap_pages; i++) { 690 unsigned long *dst_data = lowmem_page_address(dst[i].page); 691 unsigned long *src_data = lowmem_page_address(src[i].page); 692 693 copy_page(dst_data, src_data); 694 } 695 } 696 697 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector) 698 { 699 unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 700 unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8); 701 702 BUG_ON(bitmap_block >= ic->n_bitmap_blocks); 703 return &ic->bbs[bitmap_block]; 704 } 705 706 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset, 707 bool e, const char *function) 708 { 709 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 710 unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 711 712 if (unlikely(section >= ic->journal_sections) || 713 unlikely(offset >= limit)) { 714 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)", 715 function, section, offset, ic->journal_sections, limit); 716 BUG(); 717 } 718 #endif 719 } 720 721 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset, 722 unsigned int *pl_index, unsigned int *pl_offset) 723 { 724 unsigned int sector; 725 726 access_journal_check(ic, section, offset, false, "page_list_location"); 727 728 sector = section * ic->journal_section_sectors + offset; 729 730 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 731 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 732 } 733 734 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 735 unsigned int section, unsigned int offset, unsigned int *n_sectors) 736 { 737 unsigned int pl_index, pl_offset; 738 char *va; 739 740 page_list_location(ic, section, offset, &pl_index, &pl_offset); 741 742 if (n_sectors) 743 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 744 745 va = lowmem_page_address(pl[pl_index].page); 746 747 return (struct journal_sector *)(va + pl_offset); 748 } 749 750 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset) 751 { 752 return access_page_list(ic, ic->journal, section, offset, NULL); 753 } 754 755 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n) 756 { 757 unsigned int rel_sector, offset; 758 struct journal_sector *js; 759 760 access_journal_check(ic, section, n, true, "access_journal_entry"); 761 762 rel_sector = n % JOURNAL_BLOCK_SECTORS; 763 offset = n / JOURNAL_BLOCK_SECTORS; 764 765 js = access_journal(ic, section, rel_sector); 766 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 767 } 768 769 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n) 770 { 771 n <<= ic->sb->log2_sectors_per_block; 772 773 n += JOURNAL_BLOCK_SECTORS; 774 775 access_journal_check(ic, section, n, false, "access_journal_data"); 776 777 return access_journal(ic, section, n); 778 } 779 780 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE]) 781 { 782 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 783 int r; 784 unsigned int j, size; 785 786 desc->tfm = ic->journal_mac; 787 788 r = crypto_shash_init(desc); 789 if (unlikely(r < 0)) { 790 dm_integrity_io_error(ic, "crypto_shash_init", r); 791 goto err; 792 } 793 794 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 795 __le64 section_le; 796 797 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE); 798 if (unlikely(r < 0)) { 799 dm_integrity_io_error(ic, "crypto_shash_update", r); 800 goto err; 801 } 802 803 section_le = cpu_to_le64(section); 804 r = crypto_shash_update(desc, (__u8 *)§ion_le, sizeof(section_le)); 805 if (unlikely(r < 0)) { 806 dm_integrity_io_error(ic, "crypto_shash_update", r); 807 goto err; 808 } 809 } 810 811 for (j = 0; j < ic->journal_section_entries; j++) { 812 struct journal_entry *je = access_journal_entry(ic, section, j); 813 814 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector)); 815 if (unlikely(r < 0)) { 816 dm_integrity_io_error(ic, "crypto_shash_update", r); 817 goto err; 818 } 819 } 820 821 size = crypto_shash_digestsize(ic->journal_mac); 822 823 if (likely(size <= JOURNAL_MAC_SIZE)) { 824 r = crypto_shash_final(desc, result); 825 if (unlikely(r < 0)) { 826 dm_integrity_io_error(ic, "crypto_shash_final", r); 827 goto err; 828 } 829 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 830 } else { 831 __u8 digest[HASH_MAX_DIGESTSIZE]; 832 833 if (WARN_ON(size > sizeof(digest))) { 834 dm_integrity_io_error(ic, "digest_size", -EINVAL); 835 goto err; 836 } 837 r = crypto_shash_final(desc, digest); 838 if (unlikely(r < 0)) { 839 dm_integrity_io_error(ic, "crypto_shash_final", r); 840 goto err; 841 } 842 memcpy(result, digest, JOURNAL_MAC_SIZE); 843 } 844 845 return; 846 err: 847 memset(result, 0, JOURNAL_MAC_SIZE); 848 } 849 850 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr) 851 { 852 __u8 result[JOURNAL_MAC_SIZE]; 853 unsigned int j; 854 855 if (!ic->journal_mac) 856 return; 857 858 section_mac(ic, section, result); 859 860 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 861 struct journal_sector *js = access_journal(ic, section, j); 862 863 if (likely(wr)) 864 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 865 else { 866 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) { 867 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 868 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0); 869 } 870 } 871 } 872 } 873 874 static void complete_journal_op(void *context) 875 { 876 struct journal_completion *comp = context; 877 878 BUG_ON(!atomic_read(&comp->in_flight)); 879 if (likely(atomic_dec_and_test(&comp->in_flight))) 880 complete(&comp->comp); 881 } 882 883 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section, 884 unsigned int n_sections, struct journal_completion *comp) 885 { 886 struct async_submit_ctl submit; 887 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 888 unsigned int pl_index, pl_offset, section_index; 889 struct page_list *source_pl, *target_pl; 890 891 if (likely(encrypt)) { 892 source_pl = ic->journal; 893 target_pl = ic->journal_io; 894 } else { 895 source_pl = ic->journal_io; 896 target_pl = ic->journal; 897 } 898 899 page_list_location(ic, section, 0, &pl_index, &pl_offset); 900 901 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 902 903 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 904 905 section_index = pl_index; 906 907 do { 908 size_t this_step; 909 struct page *src_pages[2]; 910 struct page *dst_page; 911 912 while (unlikely(pl_index == section_index)) { 913 unsigned int dummy; 914 915 if (likely(encrypt)) 916 rw_section_mac(ic, section, true); 917 section++; 918 n_sections--; 919 if (!n_sections) 920 break; 921 page_list_location(ic, section, 0, §ion_index, &dummy); 922 } 923 924 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 925 dst_page = target_pl[pl_index].page; 926 src_pages[0] = source_pl[pl_index].page; 927 src_pages[1] = ic->journal_xor[pl_index].page; 928 929 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 930 931 pl_index++; 932 pl_offset = 0; 933 n_bytes -= this_step; 934 } while (n_bytes); 935 936 BUG_ON(n_sections); 937 938 async_tx_issue_pending_all(); 939 } 940 941 static void complete_journal_encrypt(void *data, int err) 942 { 943 struct journal_completion *comp = data; 944 945 if (unlikely(err)) { 946 if (likely(err == -EINPROGRESS)) { 947 complete(&comp->ic->crypto_backoff); 948 return; 949 } 950 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 951 } 952 complete_journal_op(comp); 953 } 954 955 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 956 { 957 int r; 958 959 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 960 complete_journal_encrypt, comp); 961 if (likely(encrypt)) 962 r = crypto_skcipher_encrypt(req); 963 else 964 r = crypto_skcipher_decrypt(req); 965 if (likely(!r)) 966 return false; 967 if (likely(r == -EINPROGRESS)) 968 return true; 969 if (likely(r == -EBUSY)) { 970 wait_for_completion(&comp->ic->crypto_backoff); 971 reinit_completion(&comp->ic->crypto_backoff); 972 return true; 973 } 974 dm_integrity_io_error(comp->ic, "encrypt", r); 975 return false; 976 } 977 978 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section, 979 unsigned int n_sections, struct journal_completion *comp) 980 { 981 struct scatterlist **source_sg; 982 struct scatterlist **target_sg; 983 984 atomic_add(2, &comp->in_flight); 985 986 if (likely(encrypt)) { 987 source_sg = ic->journal_scatterlist; 988 target_sg = ic->journal_io_scatterlist; 989 } else { 990 source_sg = ic->journal_io_scatterlist; 991 target_sg = ic->journal_scatterlist; 992 } 993 994 do { 995 struct skcipher_request *req; 996 unsigned int ivsize; 997 char *iv; 998 999 if (likely(encrypt)) 1000 rw_section_mac(ic, section, true); 1001 1002 req = ic->sk_requests[section]; 1003 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 1004 iv = req->iv; 1005 1006 memcpy(iv, iv + ivsize, ivsize); 1007 1008 req->src = source_sg[section]; 1009 req->dst = target_sg[section]; 1010 1011 if (unlikely(do_crypt(encrypt, req, comp))) 1012 atomic_inc(&comp->in_flight); 1013 1014 section++; 1015 n_sections--; 1016 } while (n_sections); 1017 1018 atomic_dec(&comp->in_flight); 1019 complete_journal_op(comp); 1020 } 1021 1022 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section, 1023 unsigned int n_sections, struct journal_completion *comp) 1024 { 1025 if (ic->journal_xor) 1026 return xor_journal(ic, encrypt, section, n_sections, comp); 1027 else 1028 return crypt_journal(ic, encrypt, section, n_sections, comp); 1029 } 1030 1031 static void complete_journal_io(unsigned long error, void *context) 1032 { 1033 struct journal_completion *comp = context; 1034 1035 if (unlikely(error != 0)) 1036 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 1037 complete_journal_op(comp); 1038 } 1039 1040 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf, 1041 unsigned int sector, unsigned int n_sectors, 1042 struct journal_completion *comp) 1043 { 1044 struct dm_io_request io_req; 1045 struct dm_io_region io_loc; 1046 unsigned int pl_index, pl_offset; 1047 int r; 1048 1049 if (unlikely(dm_integrity_failed(ic))) { 1050 if (comp) 1051 complete_journal_io(-1UL, comp); 1052 return; 1053 } 1054 1055 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1056 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1057 1058 io_req.bi_opf = opf; 1059 io_req.mem.type = DM_IO_PAGE_LIST; 1060 if (ic->journal_io) 1061 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 1062 else 1063 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1064 io_req.mem.offset = pl_offset; 1065 if (likely(comp != NULL)) { 1066 io_req.notify.fn = complete_journal_io; 1067 io_req.notify.context = comp; 1068 } else { 1069 io_req.notify.fn = NULL; 1070 } 1071 io_req.client = ic->io; 1072 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 1073 io_loc.sector = ic->start + SB_SECTORS + sector; 1074 io_loc.count = n_sectors; 1075 1076 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 1077 if (unlikely(r)) { 1078 dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ? 1079 "reading journal" : "writing journal", r); 1080 if (comp) { 1081 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1082 complete_journal_io(-1UL, comp); 1083 } 1084 } 1085 } 1086 1087 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf, 1088 unsigned int section, unsigned int n_sections, 1089 struct journal_completion *comp) 1090 { 1091 unsigned int sector, n_sectors; 1092 1093 sector = section * ic->journal_section_sectors; 1094 n_sectors = n_sections * ic->journal_section_sectors; 1095 1096 rw_journal_sectors(ic, opf, sector, n_sectors, comp); 1097 } 1098 1099 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections) 1100 { 1101 struct journal_completion io_comp; 1102 struct journal_completion crypt_comp_1; 1103 struct journal_completion crypt_comp_2; 1104 unsigned int i; 1105 1106 io_comp.ic = ic; 1107 init_completion(&io_comp.comp); 1108 1109 if (commit_start + commit_sections <= ic->journal_sections) { 1110 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 1111 if (ic->journal_io) { 1112 crypt_comp_1.ic = ic; 1113 init_completion(&crypt_comp_1.comp); 1114 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1115 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 1116 wait_for_completion_io(&crypt_comp_1.comp); 1117 } else { 1118 for (i = 0; i < commit_sections; i++) 1119 rw_section_mac(ic, commit_start + i, true); 1120 } 1121 rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start, 1122 commit_sections, &io_comp); 1123 } else { 1124 unsigned int to_end; 1125 1126 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 1127 to_end = ic->journal_sections - commit_start; 1128 if (ic->journal_io) { 1129 crypt_comp_1.ic = ic; 1130 init_completion(&crypt_comp_1.comp); 1131 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1132 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 1133 if (try_wait_for_completion(&crypt_comp_1.comp)) { 1134 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 1135 commit_start, to_end, &io_comp); 1136 reinit_completion(&crypt_comp_1.comp); 1137 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1138 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 1139 wait_for_completion_io(&crypt_comp_1.comp); 1140 } else { 1141 crypt_comp_2.ic = ic; 1142 init_completion(&crypt_comp_2.comp); 1143 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 1144 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 1145 wait_for_completion_io(&crypt_comp_1.comp); 1146 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp); 1147 wait_for_completion_io(&crypt_comp_2.comp); 1148 } 1149 } else { 1150 for (i = 0; i < to_end; i++) 1151 rw_section_mac(ic, commit_start + i, true); 1152 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp); 1153 for (i = 0; i < commit_sections - to_end; i++) 1154 rw_section_mac(ic, i, true); 1155 } 1156 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp); 1157 } 1158 1159 wait_for_completion_io(&io_comp.comp); 1160 } 1161 1162 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset, 1163 unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data) 1164 { 1165 struct dm_io_request io_req; 1166 struct dm_io_region io_loc; 1167 int r; 1168 unsigned int sector, pl_index, pl_offset; 1169 1170 BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1)); 1171 1172 if (unlikely(dm_integrity_failed(ic))) { 1173 fn(-1UL, data); 1174 return; 1175 } 1176 1177 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 1178 1179 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1180 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1181 1182 io_req.bi_opf = REQ_OP_WRITE; 1183 io_req.mem.type = DM_IO_PAGE_LIST; 1184 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1185 io_req.mem.offset = pl_offset; 1186 io_req.notify.fn = fn; 1187 io_req.notify.context = data; 1188 io_req.client = ic->io; 1189 io_loc.bdev = ic->dev->bdev; 1190 io_loc.sector = target; 1191 io_loc.count = n_sectors; 1192 1193 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 1194 if (unlikely(r)) { 1195 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1196 fn(-1UL, data); 1197 } 1198 } 1199 1200 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2) 1201 { 1202 return range1->logical_sector < range2->logical_sector + range2->n_sectors && 1203 range1->logical_sector + range1->n_sectors > range2->logical_sector; 1204 } 1205 1206 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting) 1207 { 1208 struct rb_node **n = &ic->in_progress.rb_node; 1209 struct rb_node *parent; 1210 1211 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1)); 1212 1213 if (likely(check_waiting)) { 1214 struct dm_integrity_range *range; 1215 1216 list_for_each_entry(range, &ic->wait_list, wait_entry) { 1217 if (unlikely(ranges_overlap(range, new_range))) 1218 return false; 1219 } 1220 } 1221 1222 parent = NULL; 1223 1224 while (*n) { 1225 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 1226 1227 parent = *n; 1228 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) 1229 n = &range->node.rb_left; 1230 else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) 1231 n = &range->node.rb_right; 1232 else 1233 return false; 1234 } 1235 1236 rb_link_node(&new_range->node, parent, n); 1237 rb_insert_color(&new_range->node, &ic->in_progress); 1238 1239 return true; 1240 } 1241 1242 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1243 { 1244 rb_erase(&range->node, &ic->in_progress); 1245 while (unlikely(!list_empty(&ic->wait_list))) { 1246 struct dm_integrity_range *last_range = 1247 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry); 1248 struct task_struct *last_range_task; 1249 1250 last_range_task = last_range->task; 1251 list_del(&last_range->wait_entry); 1252 if (!add_new_range(ic, last_range, false)) { 1253 last_range->task = last_range_task; 1254 list_add(&last_range->wait_entry, &ic->wait_list); 1255 break; 1256 } 1257 last_range->waiting = false; 1258 wake_up_process(last_range_task); 1259 } 1260 } 1261 1262 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1263 { 1264 unsigned long flags; 1265 1266 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1267 remove_range_unlocked(ic, range); 1268 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1269 } 1270 1271 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1272 { 1273 new_range->waiting = true; 1274 list_add_tail(&new_range->wait_entry, &ic->wait_list); 1275 new_range->task = current; 1276 do { 1277 __set_current_state(TASK_UNINTERRUPTIBLE); 1278 spin_unlock_irq(&ic->endio_wait.lock); 1279 io_schedule(); 1280 spin_lock_irq(&ic->endio_wait.lock); 1281 } while (unlikely(new_range->waiting)); 1282 } 1283 1284 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1285 { 1286 if (unlikely(!add_new_range(ic, new_range, true))) 1287 wait_and_add_new_range(ic, new_range); 1288 } 1289 1290 static void init_journal_node(struct journal_node *node) 1291 { 1292 RB_CLEAR_NODE(&node->node); 1293 node->sector = (sector_t)-1; 1294 } 1295 1296 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 1297 { 1298 struct rb_node **link; 1299 struct rb_node *parent; 1300 1301 node->sector = sector; 1302 BUG_ON(!RB_EMPTY_NODE(&node->node)); 1303 1304 link = &ic->journal_tree_root.rb_node; 1305 parent = NULL; 1306 1307 while (*link) { 1308 struct journal_node *j; 1309 1310 parent = *link; 1311 j = container_of(parent, struct journal_node, node); 1312 if (sector < j->sector) 1313 link = &j->node.rb_left; 1314 else 1315 link = &j->node.rb_right; 1316 } 1317 1318 rb_link_node(&node->node, parent, link); 1319 rb_insert_color(&node->node, &ic->journal_tree_root); 1320 } 1321 1322 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 1323 { 1324 BUG_ON(RB_EMPTY_NODE(&node->node)); 1325 rb_erase(&node->node, &ic->journal_tree_root); 1326 init_journal_node(node); 1327 } 1328 1329 #define NOT_FOUND (-1U) 1330 1331 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 1332 { 1333 struct rb_node *n = ic->journal_tree_root.rb_node; 1334 unsigned int found = NOT_FOUND; 1335 1336 *next_sector = (sector_t)-1; 1337 while (n) { 1338 struct journal_node *j = container_of(n, struct journal_node, node); 1339 1340 if (sector == j->sector) 1341 found = j - ic->journal_tree; 1342 1343 if (sector < j->sector) { 1344 *next_sector = j->sector; 1345 n = j->node.rb_left; 1346 } else 1347 n = j->node.rb_right; 1348 } 1349 1350 return found; 1351 } 1352 1353 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector) 1354 { 1355 struct journal_node *node, *next_node; 1356 struct rb_node *next; 1357 1358 if (unlikely(pos >= ic->journal_entries)) 1359 return false; 1360 node = &ic->journal_tree[pos]; 1361 if (unlikely(RB_EMPTY_NODE(&node->node))) 1362 return false; 1363 if (unlikely(node->sector != sector)) 1364 return false; 1365 1366 next = rb_next(&node->node); 1367 if (unlikely(!next)) 1368 return true; 1369 1370 next_node = container_of(next, struct journal_node, node); 1371 return next_node->sector != sector; 1372 } 1373 1374 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 1375 { 1376 struct rb_node *next; 1377 struct journal_node *next_node; 1378 unsigned int next_section; 1379 1380 BUG_ON(RB_EMPTY_NODE(&node->node)); 1381 1382 next = rb_next(&node->node); 1383 if (unlikely(!next)) 1384 return false; 1385 1386 next_node = container_of(next, struct journal_node, node); 1387 1388 if (next_node->sector != node->sector) 1389 return false; 1390 1391 next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries; 1392 if (next_section >= ic->committed_section && 1393 next_section < ic->committed_section + ic->n_committed_sections) 1394 return true; 1395 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1396 return true; 1397 1398 return false; 1399 } 1400 1401 #define TAG_READ 0 1402 #define TAG_WRITE 1 1403 #define TAG_CMP 2 1404 1405 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1406 unsigned int *metadata_offset, unsigned int total_size, int op) 1407 { 1408 #define MAY_BE_FILLER 1 1409 #define MAY_BE_HASH 2 1410 unsigned int hash_offset = 0; 1411 unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1412 1413 do { 1414 unsigned char *data, *dp; 1415 struct dm_buffer *b; 1416 unsigned int to_copy; 1417 int r; 1418 1419 r = dm_integrity_failed(ic); 1420 if (unlikely(r)) 1421 return r; 1422 1423 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1424 if (IS_ERR(data)) 1425 return PTR_ERR(data); 1426 1427 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1428 dp = data + *metadata_offset; 1429 if (op == TAG_READ) { 1430 memcpy(tag, dp, to_copy); 1431 } else if (op == TAG_WRITE) { 1432 if (memcmp(dp, tag, to_copy)) { 1433 memcpy(dp, tag, to_copy); 1434 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); 1435 } 1436 } else { 1437 /* e.g.: op == TAG_CMP */ 1438 1439 if (likely(is_power_of_2(ic->tag_size))) { 1440 if (unlikely(memcmp(dp, tag, to_copy))) 1441 if (unlikely(!ic->discard) || 1442 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) { 1443 goto thorough_test; 1444 } 1445 } else { 1446 unsigned int i, ts; 1447 thorough_test: 1448 ts = total_size; 1449 1450 for (i = 0; i < to_copy; i++, ts--) { 1451 if (unlikely(dp[i] != tag[i])) 1452 may_be &= ~MAY_BE_HASH; 1453 if (likely(dp[i] != DISCARD_FILLER)) 1454 may_be &= ~MAY_BE_FILLER; 1455 hash_offset++; 1456 if (unlikely(hash_offset == ic->tag_size)) { 1457 if (unlikely(!may_be)) { 1458 dm_bufio_release(b); 1459 return ts; 1460 } 1461 hash_offset = 0; 1462 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1463 } 1464 } 1465 } 1466 } 1467 dm_bufio_release(b); 1468 1469 tag += to_copy; 1470 *metadata_offset += to_copy; 1471 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1472 (*metadata_block)++; 1473 *metadata_offset = 0; 1474 } 1475 1476 if (unlikely(!is_power_of_2(ic->tag_size))) 1477 hash_offset = (hash_offset + to_copy) % ic->tag_size; 1478 1479 total_size -= to_copy; 1480 } while (unlikely(total_size)); 1481 1482 return 0; 1483 #undef MAY_BE_FILLER 1484 #undef MAY_BE_HASH 1485 } 1486 1487 struct flush_request { 1488 struct dm_io_request io_req; 1489 struct dm_io_region io_reg; 1490 struct dm_integrity_c *ic; 1491 struct completion comp; 1492 }; 1493 1494 static void flush_notify(unsigned long error, void *fr_) 1495 { 1496 struct flush_request *fr = fr_; 1497 1498 if (unlikely(error != 0)) 1499 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO); 1500 complete(&fr->comp); 1501 } 1502 1503 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data) 1504 { 1505 int r; 1506 struct flush_request fr; 1507 1508 if (!ic->meta_dev) 1509 flush_data = false; 1510 if (flush_data) { 1511 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC, 1512 fr.io_req.mem.type = DM_IO_KMEM, 1513 fr.io_req.mem.ptr.addr = NULL, 1514 fr.io_req.notify.fn = flush_notify, 1515 fr.io_req.notify.context = &fr; 1516 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio), 1517 fr.io_reg.bdev = ic->dev->bdev, 1518 fr.io_reg.sector = 0, 1519 fr.io_reg.count = 0, 1520 fr.ic = ic; 1521 init_completion(&fr.comp); 1522 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL, IOPRIO_DEFAULT); 1523 BUG_ON(r); 1524 } 1525 1526 r = dm_bufio_write_dirty_buffers(ic->bufio); 1527 if (unlikely(r)) 1528 dm_integrity_io_error(ic, "writing tags", r); 1529 1530 if (flush_data) 1531 wait_for_completion(&fr.comp); 1532 } 1533 1534 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1535 { 1536 DECLARE_WAITQUEUE(wait, current); 1537 1538 __add_wait_queue(&ic->endio_wait, &wait); 1539 __set_current_state(TASK_UNINTERRUPTIBLE); 1540 spin_unlock_irq(&ic->endio_wait.lock); 1541 io_schedule(); 1542 spin_lock_irq(&ic->endio_wait.lock); 1543 __remove_wait_queue(&ic->endio_wait, &wait); 1544 } 1545 1546 static void autocommit_fn(struct timer_list *t) 1547 { 1548 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer); 1549 1550 if (likely(!dm_integrity_failed(ic))) 1551 queue_work(ic->commit_wq, &ic->commit_work); 1552 } 1553 1554 static void schedule_autocommit(struct dm_integrity_c *ic) 1555 { 1556 if (!timer_pending(&ic->autocommit_timer)) 1557 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1558 } 1559 1560 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1561 { 1562 struct bio *bio; 1563 unsigned long flags; 1564 1565 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1566 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1567 bio_list_add(&ic->flush_bio_list, bio); 1568 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1569 1570 queue_work(ic->commit_wq, &ic->commit_work); 1571 } 1572 1573 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1574 { 1575 int r; 1576 1577 r = dm_integrity_failed(ic); 1578 if (unlikely(r) && !bio->bi_status) 1579 bio->bi_status = errno_to_blk_status(r); 1580 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) { 1581 unsigned long flags; 1582 1583 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1584 bio_list_add(&ic->synchronous_bios, bio); 1585 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 1586 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1587 return; 1588 } 1589 bio_endio(bio); 1590 } 1591 1592 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1593 { 1594 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1595 1596 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1597 submit_flush_bio(ic, dio); 1598 else 1599 do_endio(ic, bio); 1600 } 1601 1602 static void dec_in_flight(struct dm_integrity_io *dio) 1603 { 1604 if (atomic_dec_and_test(&dio->in_flight)) { 1605 struct dm_integrity_c *ic = dio->ic; 1606 struct bio *bio; 1607 1608 remove_range(ic, &dio->range); 1609 1610 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD)) 1611 schedule_autocommit(ic); 1612 1613 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1614 if (unlikely(dio->bi_status) && !bio->bi_status) 1615 bio->bi_status = dio->bi_status; 1616 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1617 dio->range.logical_sector += dio->range.n_sectors; 1618 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1619 INIT_WORK(&dio->work, integrity_bio_wait); 1620 queue_work(ic->offload_wq, &dio->work); 1621 return; 1622 } 1623 do_endio_flush(ic, dio); 1624 } 1625 } 1626 1627 static void integrity_end_io(struct bio *bio) 1628 { 1629 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1630 1631 dm_bio_restore(&dio->bio_details, bio); 1632 if (bio->bi_integrity) 1633 bio->bi_opf |= REQ_INTEGRITY; 1634 1635 if (dio->completion) 1636 complete(dio->completion); 1637 1638 dec_in_flight(dio); 1639 } 1640 1641 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1642 const char *data, char *result) 1643 { 1644 __le64 sector_le = cpu_to_le64(sector); 1645 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1646 int r; 1647 unsigned int digest_size; 1648 1649 req->tfm = ic->internal_hash; 1650 1651 r = crypto_shash_init(req); 1652 if (unlikely(r < 0)) { 1653 dm_integrity_io_error(ic, "crypto_shash_init", r); 1654 goto failed; 1655 } 1656 1657 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 1658 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE); 1659 if (unlikely(r < 0)) { 1660 dm_integrity_io_error(ic, "crypto_shash_update", r); 1661 goto failed; 1662 } 1663 } 1664 1665 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof(sector_le)); 1666 if (unlikely(r < 0)) { 1667 dm_integrity_io_error(ic, "crypto_shash_update", r); 1668 goto failed; 1669 } 1670 1671 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1672 if (unlikely(r < 0)) { 1673 dm_integrity_io_error(ic, "crypto_shash_update", r); 1674 goto failed; 1675 } 1676 1677 r = crypto_shash_final(req, result); 1678 if (unlikely(r < 0)) { 1679 dm_integrity_io_error(ic, "crypto_shash_final", r); 1680 goto failed; 1681 } 1682 1683 digest_size = crypto_shash_digestsize(ic->internal_hash); 1684 if (unlikely(digest_size < ic->tag_size)) 1685 memset(result + digest_size, 0, ic->tag_size - digest_size); 1686 1687 return; 1688 1689 failed: 1690 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1691 get_random_bytes(result, ic->tag_size); 1692 } 1693 1694 static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum) 1695 { 1696 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1697 struct dm_integrity_c *ic = dio->ic; 1698 struct bvec_iter iter; 1699 struct bio_vec bv; 1700 sector_t sector, logical_sector, area, offset; 1701 struct page *page; 1702 void *buffer; 1703 1704 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1705 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, 1706 &dio->metadata_offset); 1707 sector = get_data_sector(ic, area, offset); 1708 logical_sector = dio->range.logical_sector; 1709 1710 page = mempool_alloc(&ic->recheck_pool, GFP_NOIO); 1711 buffer = page_to_virt(page); 1712 1713 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) { 1714 unsigned pos = 0; 1715 1716 do { 1717 char *mem; 1718 int r; 1719 struct dm_io_request io_req; 1720 struct dm_io_region io_loc; 1721 io_req.bi_opf = REQ_OP_READ; 1722 io_req.mem.type = DM_IO_KMEM; 1723 io_req.mem.ptr.addr = buffer; 1724 io_req.notify.fn = NULL; 1725 io_req.client = ic->io; 1726 io_loc.bdev = ic->dev->bdev; 1727 io_loc.sector = sector; 1728 io_loc.count = ic->sectors_per_block; 1729 1730 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 1731 if (unlikely(r)) { 1732 dio->bi_status = errno_to_blk_status(r); 1733 goto free_ret; 1734 } 1735 1736 integrity_sector_checksum(ic, logical_sector, buffer, checksum); 1737 r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block, 1738 &dio->metadata_offset, ic->tag_size, TAG_CMP); 1739 if (r) { 1740 if (r > 0) { 1741 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx", 1742 bio->bi_bdev, logical_sector); 1743 atomic64_inc(&ic->number_of_mismatches); 1744 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum", 1745 bio, logical_sector, 0); 1746 r = -EILSEQ; 1747 } 1748 dio->bi_status = errno_to_blk_status(r); 1749 goto free_ret; 1750 } 1751 1752 mem = bvec_kmap_local(&bv); 1753 memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT); 1754 kunmap_local(mem); 1755 1756 pos += ic->sectors_per_block << SECTOR_SHIFT; 1757 sector += ic->sectors_per_block; 1758 logical_sector += ic->sectors_per_block; 1759 } while (pos < bv.bv_len); 1760 } 1761 free_ret: 1762 mempool_free(page, &ic->recheck_pool); 1763 } 1764 1765 static void integrity_metadata(struct work_struct *w) 1766 { 1767 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1768 struct dm_integrity_c *ic = dio->ic; 1769 1770 int r; 1771 1772 if (ic->internal_hash) { 1773 struct bvec_iter iter; 1774 struct bio_vec bv; 1775 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash); 1776 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1777 char *checksums; 1778 unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1779 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1780 sector_t sector; 1781 unsigned int sectors_to_process; 1782 1783 if (unlikely(ic->mode == 'R')) 1784 goto skip_io; 1785 1786 if (likely(dio->op != REQ_OP_DISCARD)) 1787 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1788 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1789 else 1790 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1791 if (!checksums) { 1792 checksums = checksums_onstack; 1793 if (WARN_ON(extra_space && 1794 digest_size > sizeof(checksums_onstack))) { 1795 r = -EINVAL; 1796 goto error; 1797 } 1798 } 1799 1800 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1801 unsigned int bi_size = dio->bio_details.bi_iter.bi_size; 1802 unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE; 1803 unsigned int max_blocks = max_size / ic->tag_size; 1804 1805 memset(checksums, DISCARD_FILLER, max_size); 1806 1807 while (bi_size) { 1808 unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1809 1810 this_step_blocks = min(this_step_blocks, max_blocks); 1811 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1812 this_step_blocks * ic->tag_size, TAG_WRITE); 1813 if (unlikely(r)) { 1814 if (likely(checksums != checksums_onstack)) 1815 kfree(checksums); 1816 goto error; 1817 } 1818 1819 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1820 } 1821 1822 if (likely(checksums != checksums_onstack)) 1823 kfree(checksums); 1824 goto skip_io; 1825 } 1826 1827 sector = dio->range.logical_sector; 1828 sectors_to_process = dio->range.n_sectors; 1829 1830 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) { 1831 struct bio_vec bv_copy = bv; 1832 unsigned int pos; 1833 char *mem, *checksums_ptr; 1834 1835 again: 1836 mem = bvec_kmap_local(&bv_copy); 1837 pos = 0; 1838 checksums_ptr = checksums; 1839 do { 1840 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1841 checksums_ptr += ic->tag_size; 1842 sectors_to_process -= ic->sectors_per_block; 1843 pos += ic->sectors_per_block << SECTOR_SHIFT; 1844 sector += ic->sectors_per_block; 1845 } while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack); 1846 kunmap_local(mem); 1847 1848 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1849 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE); 1850 if (unlikely(r)) { 1851 if (r > 0) { 1852 integrity_recheck(dio, checksums); 1853 goto skip_io; 1854 } 1855 if (likely(checksums != checksums_onstack)) 1856 kfree(checksums); 1857 goto error; 1858 } 1859 1860 if (!sectors_to_process) 1861 break; 1862 1863 if (unlikely(pos < bv_copy.bv_len)) { 1864 bv_copy.bv_offset += pos; 1865 bv_copy.bv_len -= pos; 1866 goto again; 1867 } 1868 } 1869 1870 if (likely(checksums != checksums_onstack)) 1871 kfree(checksums); 1872 } else { 1873 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity; 1874 1875 if (bip) { 1876 struct bio_vec biv; 1877 struct bvec_iter iter; 1878 unsigned int data_to_process = dio->range.n_sectors; 1879 1880 sector_to_block(ic, data_to_process); 1881 data_to_process *= ic->tag_size; 1882 1883 bip_for_each_vec(biv, bip, iter) { 1884 unsigned char *tag; 1885 unsigned int this_len; 1886 1887 BUG_ON(PageHighMem(biv.bv_page)); 1888 tag = bvec_virt(&biv); 1889 this_len = min(biv.bv_len, data_to_process); 1890 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1891 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE); 1892 if (unlikely(r)) 1893 goto error; 1894 data_to_process -= this_len; 1895 if (!data_to_process) 1896 break; 1897 } 1898 } 1899 } 1900 skip_io: 1901 dec_in_flight(dio); 1902 return; 1903 error: 1904 dio->bi_status = errno_to_blk_status(r); 1905 dec_in_flight(dio); 1906 } 1907 1908 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1909 { 1910 struct dm_integrity_c *ic = ti->private; 1911 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1912 struct bio_integrity_payload *bip; 1913 1914 sector_t area, offset; 1915 1916 dio->ic = ic; 1917 dio->bi_status = 0; 1918 dio->op = bio_op(bio); 1919 1920 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1921 if (ti->max_io_len) { 1922 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector); 1923 unsigned int log2_max_io_len = __fls(ti->max_io_len); 1924 sector_t start_boundary = sec >> log2_max_io_len; 1925 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len; 1926 1927 if (start_boundary < end_boundary) { 1928 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1)); 1929 1930 dm_accept_partial_bio(bio, len); 1931 } 1932 } 1933 } 1934 1935 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1936 submit_flush_bio(ic, dio); 1937 return DM_MAPIO_SUBMITTED; 1938 } 1939 1940 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1941 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA; 1942 if (unlikely(dio->fua)) { 1943 /* 1944 * Don't pass down the FUA flag because we have to flush 1945 * disk cache anyway. 1946 */ 1947 bio->bi_opf &= ~REQ_FUA; 1948 } 1949 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1950 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1951 dio->range.logical_sector, bio_sectors(bio), 1952 ic->provided_data_sectors); 1953 return DM_MAPIO_KILL; 1954 } 1955 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) { 1956 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1957 ic->sectors_per_block, 1958 dio->range.logical_sector, bio_sectors(bio)); 1959 return DM_MAPIO_KILL; 1960 } 1961 1962 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) { 1963 struct bvec_iter iter; 1964 struct bio_vec bv; 1965 1966 bio_for_each_segment(bv, bio, iter) { 1967 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1968 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1969 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1970 return DM_MAPIO_KILL; 1971 } 1972 } 1973 } 1974 1975 bip = bio_integrity(bio); 1976 if (!ic->internal_hash) { 1977 if (bip) { 1978 unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1979 1980 if (ic->log2_tag_size >= 0) 1981 wanted_tag_size <<= ic->log2_tag_size; 1982 else 1983 wanted_tag_size *= ic->tag_size; 1984 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 1985 DMERR("Invalid integrity data size %u, expected %u", 1986 bip->bip_iter.bi_size, wanted_tag_size); 1987 return DM_MAPIO_KILL; 1988 } 1989 } 1990 } else { 1991 if (unlikely(bip != NULL)) { 1992 DMERR("Unexpected integrity data when using internal hash"); 1993 return DM_MAPIO_KILL; 1994 } 1995 } 1996 1997 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ)) 1998 return DM_MAPIO_KILL; 1999 2000 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 2001 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 2002 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 2003 2004 dm_integrity_map_continue(dio, true); 2005 return DM_MAPIO_SUBMITTED; 2006 } 2007 2008 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 2009 unsigned int journal_section, unsigned int journal_entry) 2010 { 2011 struct dm_integrity_c *ic = dio->ic; 2012 sector_t logical_sector; 2013 unsigned int n_sectors; 2014 2015 logical_sector = dio->range.logical_sector; 2016 n_sectors = dio->range.n_sectors; 2017 do { 2018 struct bio_vec bv = bio_iovec(bio); 2019 char *mem; 2020 2021 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 2022 bv.bv_len = n_sectors << SECTOR_SHIFT; 2023 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 2024 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 2025 retry_kmap: 2026 mem = kmap_local_page(bv.bv_page); 2027 if (likely(dio->op == REQ_OP_WRITE)) 2028 flush_dcache_page(bv.bv_page); 2029 2030 do { 2031 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 2032 2033 if (unlikely(dio->op == REQ_OP_READ)) { 2034 struct journal_sector *js; 2035 char *mem_ptr; 2036 unsigned int s; 2037 2038 if (unlikely(journal_entry_is_inprogress(je))) { 2039 flush_dcache_page(bv.bv_page); 2040 kunmap_local(mem); 2041 2042 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2043 goto retry_kmap; 2044 } 2045 smp_rmb(); 2046 BUG_ON(journal_entry_get_sector(je) != logical_sector); 2047 js = access_journal_data(ic, journal_section, journal_entry); 2048 mem_ptr = mem + bv.bv_offset; 2049 s = 0; 2050 do { 2051 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 2052 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 2053 js++; 2054 mem_ptr += 1 << SECTOR_SHIFT; 2055 } while (++s < ic->sectors_per_block); 2056 #ifdef INTERNAL_VERIFY 2057 if (ic->internal_hash) { 2058 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2059 2060 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 2061 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 2062 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx", 2063 logical_sector); 2064 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum", 2065 bio, logical_sector, 0); 2066 } 2067 } 2068 #endif 2069 } 2070 2071 if (!ic->internal_hash) { 2072 struct bio_integrity_payload *bip = bio_integrity(bio); 2073 unsigned int tag_todo = ic->tag_size; 2074 char *tag_ptr = journal_entry_tag(ic, je); 2075 2076 if (bip) { 2077 do { 2078 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 2079 unsigned int tag_now = min(biv.bv_len, tag_todo); 2080 char *tag_addr; 2081 2082 BUG_ON(PageHighMem(biv.bv_page)); 2083 tag_addr = bvec_virt(&biv); 2084 if (likely(dio->op == REQ_OP_WRITE)) 2085 memcpy(tag_ptr, tag_addr, tag_now); 2086 else 2087 memcpy(tag_addr, tag_ptr, tag_now); 2088 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 2089 tag_ptr += tag_now; 2090 tag_todo -= tag_now; 2091 } while (unlikely(tag_todo)); 2092 } else if (likely(dio->op == REQ_OP_WRITE)) 2093 memset(tag_ptr, 0, tag_todo); 2094 } 2095 2096 if (likely(dio->op == REQ_OP_WRITE)) { 2097 struct journal_sector *js; 2098 unsigned int s; 2099 2100 js = access_journal_data(ic, journal_section, journal_entry); 2101 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 2102 2103 s = 0; 2104 do { 2105 je->last_bytes[s] = js[s].commit_id; 2106 } while (++s < ic->sectors_per_block); 2107 2108 if (ic->internal_hash) { 2109 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash); 2110 2111 if (unlikely(digest_size > ic->tag_size)) { 2112 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 2113 2114 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 2115 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 2116 } else 2117 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 2118 } 2119 2120 journal_entry_set_sector(je, logical_sector); 2121 } 2122 logical_sector += ic->sectors_per_block; 2123 2124 journal_entry++; 2125 if (unlikely(journal_entry == ic->journal_section_entries)) { 2126 journal_entry = 0; 2127 journal_section++; 2128 wraparound_section(ic, &journal_section); 2129 } 2130 2131 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 2132 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 2133 2134 if (unlikely(dio->op == REQ_OP_READ)) 2135 flush_dcache_page(bv.bv_page); 2136 kunmap_local(mem); 2137 } while (n_sectors); 2138 2139 if (likely(dio->op == REQ_OP_WRITE)) { 2140 smp_mb(); 2141 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 2142 wake_up(&ic->copy_to_journal_wait); 2143 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2144 queue_work(ic->commit_wq, &ic->commit_work); 2145 else 2146 schedule_autocommit(ic); 2147 } else 2148 remove_range(ic, &dio->range); 2149 2150 if (unlikely(bio->bi_iter.bi_size)) { 2151 sector_t area, offset; 2152 2153 dio->range.logical_sector = logical_sector; 2154 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 2155 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 2156 return true; 2157 } 2158 2159 return false; 2160 } 2161 2162 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 2163 { 2164 struct dm_integrity_c *ic = dio->ic; 2165 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 2166 unsigned int journal_section, journal_entry; 2167 unsigned int journal_read_pos; 2168 struct completion read_comp; 2169 bool discard_retried = false; 2170 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ; 2171 2172 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D') 2173 need_sync_io = true; 2174 2175 if (need_sync_io && from_map) { 2176 INIT_WORK(&dio->work, integrity_bio_wait); 2177 queue_work(ic->offload_wq, &dio->work); 2178 return; 2179 } 2180 2181 lock_retry: 2182 spin_lock_irq(&ic->endio_wait.lock); 2183 retry: 2184 if (unlikely(dm_integrity_failed(ic))) { 2185 spin_unlock_irq(&ic->endio_wait.lock); 2186 do_endio(ic, bio); 2187 return; 2188 } 2189 dio->range.n_sectors = bio_sectors(bio); 2190 journal_read_pos = NOT_FOUND; 2191 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) { 2192 if (dio->op == REQ_OP_WRITE) { 2193 unsigned int next_entry, i, pos; 2194 unsigned int ws, we, range_sectors; 2195 2196 dio->range.n_sectors = min(dio->range.n_sectors, 2197 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block); 2198 if (unlikely(!dio->range.n_sectors)) { 2199 if (from_map) 2200 goto offload_to_thread; 2201 sleep_on_endio_wait(ic); 2202 goto retry; 2203 } 2204 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 2205 ic->free_sectors -= range_sectors; 2206 journal_section = ic->free_section; 2207 journal_entry = ic->free_section_entry; 2208 2209 next_entry = ic->free_section_entry + range_sectors; 2210 ic->free_section_entry = next_entry % ic->journal_section_entries; 2211 ic->free_section += next_entry / ic->journal_section_entries; 2212 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 2213 wraparound_section(ic, &ic->free_section); 2214 2215 pos = journal_section * ic->journal_section_entries + journal_entry; 2216 ws = journal_section; 2217 we = journal_entry; 2218 i = 0; 2219 do { 2220 struct journal_entry *je; 2221 2222 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 2223 pos++; 2224 if (unlikely(pos >= ic->journal_entries)) 2225 pos = 0; 2226 2227 je = access_journal_entry(ic, ws, we); 2228 BUG_ON(!journal_entry_is_unused(je)); 2229 journal_entry_set_inprogress(je); 2230 we++; 2231 if (unlikely(we == ic->journal_section_entries)) { 2232 we = 0; 2233 ws++; 2234 wraparound_section(ic, &ws); 2235 } 2236 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 2237 2238 spin_unlock_irq(&ic->endio_wait.lock); 2239 goto journal_read_write; 2240 } else { 2241 sector_t next_sector; 2242 2243 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2244 if (likely(journal_read_pos == NOT_FOUND)) { 2245 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 2246 dio->range.n_sectors = next_sector - dio->range.logical_sector; 2247 } else { 2248 unsigned int i; 2249 unsigned int jp = journal_read_pos + 1; 2250 2251 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 2252 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 2253 break; 2254 } 2255 dio->range.n_sectors = i; 2256 } 2257 } 2258 } 2259 if (unlikely(!add_new_range(ic, &dio->range, true))) { 2260 /* 2261 * We must not sleep in the request routine because it could 2262 * stall bios on current->bio_list. 2263 * So, we offload the bio to a workqueue if we have to sleep. 2264 */ 2265 if (from_map) { 2266 offload_to_thread: 2267 spin_unlock_irq(&ic->endio_wait.lock); 2268 INIT_WORK(&dio->work, integrity_bio_wait); 2269 queue_work(ic->wait_wq, &dio->work); 2270 return; 2271 } 2272 if (journal_read_pos != NOT_FOUND) 2273 dio->range.n_sectors = ic->sectors_per_block; 2274 wait_and_add_new_range(ic, &dio->range); 2275 /* 2276 * wait_and_add_new_range drops the spinlock, so the journal 2277 * may have been changed arbitrarily. We need to recheck. 2278 * To simplify the code, we restrict I/O size to just one block. 2279 */ 2280 if (journal_read_pos != NOT_FOUND) { 2281 sector_t next_sector; 2282 unsigned int new_pos; 2283 2284 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2285 if (unlikely(new_pos != journal_read_pos)) { 2286 remove_range_unlocked(ic, &dio->range); 2287 goto retry; 2288 } 2289 } 2290 } 2291 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) { 2292 sector_t next_sector; 2293 unsigned int new_pos; 2294 2295 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2296 if (unlikely(new_pos != NOT_FOUND) || 2297 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) { 2298 remove_range_unlocked(ic, &dio->range); 2299 spin_unlock_irq(&ic->endio_wait.lock); 2300 queue_work(ic->commit_wq, &ic->commit_work); 2301 flush_workqueue(ic->commit_wq); 2302 queue_work(ic->writer_wq, &ic->writer_work); 2303 flush_workqueue(ic->writer_wq); 2304 discard_retried = true; 2305 goto lock_retry; 2306 } 2307 } 2308 spin_unlock_irq(&ic->endio_wait.lock); 2309 2310 if (unlikely(journal_read_pos != NOT_FOUND)) { 2311 journal_section = journal_read_pos / ic->journal_section_entries; 2312 journal_entry = journal_read_pos % ic->journal_section_entries; 2313 goto journal_read_write; 2314 } 2315 2316 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) { 2317 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2318 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2319 struct bitmap_block_status *bbs; 2320 2321 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector); 2322 spin_lock(&bbs->bio_queue_lock); 2323 bio_list_add(&bbs->bio_queue, bio); 2324 spin_unlock(&bbs->bio_queue_lock); 2325 queue_work(ic->writer_wq, &bbs->work); 2326 return; 2327 } 2328 } 2329 2330 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 2331 2332 if (need_sync_io) { 2333 init_completion(&read_comp); 2334 dio->completion = &read_comp; 2335 } else 2336 dio->completion = NULL; 2337 2338 dm_bio_record(&dio->bio_details, bio); 2339 bio_set_dev(bio, ic->dev->bdev); 2340 bio->bi_integrity = NULL; 2341 bio->bi_opf &= ~REQ_INTEGRITY; 2342 bio->bi_end_io = integrity_end_io; 2343 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 2344 2345 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) { 2346 integrity_metadata(&dio->work); 2347 dm_integrity_flush_buffers(ic, false); 2348 2349 dio->in_flight = (atomic_t)ATOMIC_INIT(1); 2350 dio->completion = NULL; 2351 2352 submit_bio_noacct(bio); 2353 2354 return; 2355 } 2356 2357 submit_bio_noacct(bio); 2358 2359 if (need_sync_io) { 2360 wait_for_completion_io(&read_comp); 2361 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 2362 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector)) 2363 goto skip_check; 2364 if (ic->mode == 'B') { 2365 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector, 2366 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2367 goto skip_check; 2368 } 2369 2370 if (likely(!bio->bi_status)) 2371 integrity_metadata(&dio->work); 2372 else 2373 skip_check: 2374 dec_in_flight(dio); 2375 } else { 2376 INIT_WORK(&dio->work, integrity_metadata); 2377 queue_work(ic->metadata_wq, &dio->work); 2378 } 2379 2380 return; 2381 2382 journal_read_write: 2383 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 2384 goto lock_retry; 2385 2386 do_endio_flush(ic, dio); 2387 } 2388 2389 2390 static void integrity_bio_wait(struct work_struct *w) 2391 { 2392 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 2393 2394 dm_integrity_map_continue(dio, false); 2395 } 2396 2397 static void pad_uncommitted(struct dm_integrity_c *ic) 2398 { 2399 if (ic->free_section_entry) { 2400 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 2401 ic->free_section_entry = 0; 2402 ic->free_section++; 2403 wraparound_section(ic, &ic->free_section); 2404 ic->n_uncommitted_sections++; 2405 } 2406 if (WARN_ON(ic->journal_sections * ic->journal_section_entries != 2407 (ic->n_uncommitted_sections + ic->n_committed_sections) * 2408 ic->journal_section_entries + ic->free_sectors)) { 2409 DMCRIT("journal_sections %u, journal_section_entries %u, " 2410 "n_uncommitted_sections %u, n_committed_sections %u, " 2411 "journal_section_entries %u, free_sectors %u", 2412 ic->journal_sections, ic->journal_section_entries, 2413 ic->n_uncommitted_sections, ic->n_committed_sections, 2414 ic->journal_section_entries, ic->free_sectors); 2415 } 2416 } 2417 2418 static void integrity_commit(struct work_struct *w) 2419 { 2420 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 2421 unsigned int commit_start, commit_sections; 2422 unsigned int i, j, n; 2423 struct bio *flushes; 2424 2425 del_timer(&ic->autocommit_timer); 2426 2427 spin_lock_irq(&ic->endio_wait.lock); 2428 flushes = bio_list_get(&ic->flush_bio_list); 2429 if (unlikely(ic->mode != 'J')) { 2430 spin_unlock_irq(&ic->endio_wait.lock); 2431 dm_integrity_flush_buffers(ic, true); 2432 goto release_flush_bios; 2433 } 2434 2435 pad_uncommitted(ic); 2436 commit_start = ic->uncommitted_section; 2437 commit_sections = ic->n_uncommitted_sections; 2438 spin_unlock_irq(&ic->endio_wait.lock); 2439 2440 if (!commit_sections) 2441 goto release_flush_bios; 2442 2443 ic->wrote_to_journal = true; 2444 2445 i = commit_start; 2446 for (n = 0; n < commit_sections; n++) { 2447 for (j = 0; j < ic->journal_section_entries; j++) { 2448 struct journal_entry *je; 2449 2450 je = access_journal_entry(ic, i, j); 2451 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2452 } 2453 for (j = 0; j < ic->journal_section_sectors; j++) { 2454 struct journal_sector *js; 2455 2456 js = access_journal(ic, i, j); 2457 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 2458 } 2459 i++; 2460 if (unlikely(i >= ic->journal_sections)) 2461 ic->commit_seq = next_commit_seq(ic->commit_seq); 2462 wraparound_section(ic, &i); 2463 } 2464 smp_rmb(); 2465 2466 write_journal(ic, commit_start, commit_sections); 2467 2468 spin_lock_irq(&ic->endio_wait.lock); 2469 ic->uncommitted_section += commit_sections; 2470 wraparound_section(ic, &ic->uncommitted_section); 2471 ic->n_uncommitted_sections -= commit_sections; 2472 ic->n_committed_sections += commit_sections; 2473 spin_unlock_irq(&ic->endio_wait.lock); 2474 2475 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2476 queue_work(ic->writer_wq, &ic->writer_work); 2477 2478 release_flush_bios: 2479 while (flushes) { 2480 struct bio *next = flushes->bi_next; 2481 2482 flushes->bi_next = NULL; 2483 do_endio(ic, flushes); 2484 flushes = next; 2485 } 2486 } 2487 2488 static void complete_copy_from_journal(unsigned long error, void *context) 2489 { 2490 struct journal_io *io = context; 2491 struct journal_completion *comp = io->comp; 2492 struct dm_integrity_c *ic = comp->ic; 2493 2494 remove_range(ic, &io->range); 2495 mempool_free(io, &ic->journal_io_mempool); 2496 if (unlikely(error != 0)) 2497 dm_integrity_io_error(ic, "copying from journal", -EIO); 2498 complete_journal_op(comp); 2499 } 2500 2501 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 2502 struct journal_entry *je) 2503 { 2504 unsigned int s = 0; 2505 2506 do { 2507 js->commit_id = je->last_bytes[s]; 2508 js++; 2509 } while (++s < ic->sectors_per_block); 2510 } 2511 2512 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start, 2513 unsigned int write_sections, bool from_replay) 2514 { 2515 unsigned int i, j, n; 2516 struct journal_completion comp; 2517 struct blk_plug plug; 2518 2519 blk_start_plug(&plug); 2520 2521 comp.ic = ic; 2522 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2523 init_completion(&comp.comp); 2524 2525 i = write_start; 2526 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 2527 #ifndef INTERNAL_VERIFY 2528 if (unlikely(from_replay)) 2529 #endif 2530 rw_section_mac(ic, i, false); 2531 for (j = 0; j < ic->journal_section_entries; j++) { 2532 struct journal_entry *je = access_journal_entry(ic, i, j); 2533 sector_t sec, area, offset; 2534 unsigned int k, l, next_loop; 2535 sector_t metadata_block; 2536 unsigned int metadata_offset; 2537 struct journal_io *io; 2538 2539 if (journal_entry_is_unused(je)) 2540 continue; 2541 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 2542 sec = journal_entry_get_sector(je); 2543 if (unlikely(from_replay)) { 2544 if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) { 2545 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 2546 sec &= ~(sector_t)(ic->sectors_per_block - 1); 2547 } 2548 if (unlikely(sec >= ic->provided_data_sectors)) { 2549 journal_entry_set_unused(je); 2550 continue; 2551 } 2552 } 2553 get_area_and_offset(ic, sec, &area, &offset); 2554 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 2555 for (k = j + 1; k < ic->journal_section_entries; k++) { 2556 struct journal_entry *je2 = access_journal_entry(ic, i, k); 2557 sector_t sec2, area2, offset2; 2558 2559 if (journal_entry_is_unused(je2)) 2560 break; 2561 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 2562 sec2 = journal_entry_get_sector(je2); 2563 if (unlikely(sec2 >= ic->provided_data_sectors)) 2564 break; 2565 get_area_and_offset(ic, sec2, &area2, &offset2); 2566 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 2567 break; 2568 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 2569 } 2570 next_loop = k - 1; 2571 2572 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); 2573 io->comp = ∁ 2574 io->range.logical_sector = sec; 2575 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 2576 2577 spin_lock_irq(&ic->endio_wait.lock); 2578 add_new_range_and_wait(ic, &io->range); 2579 2580 if (likely(!from_replay)) { 2581 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 2582 2583 /* don't write if there is newer committed sector */ 2584 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 2585 struct journal_entry *je2 = access_journal_entry(ic, i, j); 2586 2587 journal_entry_set_unused(je2); 2588 remove_journal_node(ic, §ion_node[j]); 2589 j++; 2590 sec += ic->sectors_per_block; 2591 offset += ic->sectors_per_block; 2592 } 2593 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 2594 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 2595 2596 journal_entry_set_unused(je2); 2597 remove_journal_node(ic, §ion_node[k - 1]); 2598 k--; 2599 } 2600 if (j == k) { 2601 remove_range_unlocked(ic, &io->range); 2602 spin_unlock_irq(&ic->endio_wait.lock); 2603 mempool_free(io, &ic->journal_io_mempool); 2604 goto skip_io; 2605 } 2606 for (l = j; l < k; l++) 2607 remove_journal_node(ic, §ion_node[l]); 2608 } 2609 spin_unlock_irq(&ic->endio_wait.lock); 2610 2611 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2612 for (l = j; l < k; l++) { 2613 int r; 2614 struct journal_entry *je2 = access_journal_entry(ic, i, l); 2615 2616 if ( 2617 #ifndef INTERNAL_VERIFY 2618 unlikely(from_replay) && 2619 #endif 2620 ic->internal_hash) { 2621 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2622 2623 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 2624 (char *)access_journal_data(ic, i, l), test_tag); 2625 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) { 2626 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 2627 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0); 2628 } 2629 } 2630 2631 journal_entry_set_unused(je2); 2632 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 2633 ic->tag_size, TAG_WRITE); 2634 if (unlikely(r)) 2635 dm_integrity_io_error(ic, "reading tags", r); 2636 } 2637 2638 atomic_inc(&comp.in_flight); 2639 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 2640 (k - j) << ic->sb->log2_sectors_per_block, 2641 get_data_sector(ic, area, offset), 2642 complete_copy_from_journal, io); 2643 skip_io: 2644 j = next_loop; 2645 } 2646 } 2647 2648 dm_bufio_write_dirty_buffers_async(ic->bufio); 2649 2650 blk_finish_plug(&plug); 2651 2652 complete_journal_op(&comp); 2653 wait_for_completion_io(&comp.comp); 2654 2655 dm_integrity_flush_buffers(ic, true); 2656 } 2657 2658 static void integrity_writer(struct work_struct *w) 2659 { 2660 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 2661 unsigned int write_start, write_sections; 2662 unsigned int prev_free_sectors; 2663 2664 spin_lock_irq(&ic->endio_wait.lock); 2665 write_start = ic->committed_section; 2666 write_sections = ic->n_committed_sections; 2667 spin_unlock_irq(&ic->endio_wait.lock); 2668 2669 if (!write_sections) 2670 return; 2671 2672 do_journal_write(ic, write_start, write_sections, false); 2673 2674 spin_lock_irq(&ic->endio_wait.lock); 2675 2676 ic->committed_section += write_sections; 2677 wraparound_section(ic, &ic->committed_section); 2678 ic->n_committed_sections -= write_sections; 2679 2680 prev_free_sectors = ic->free_sectors; 2681 ic->free_sectors += write_sections * ic->journal_section_entries; 2682 if (unlikely(!prev_free_sectors)) 2683 wake_up_locked(&ic->endio_wait); 2684 2685 spin_unlock_irq(&ic->endio_wait.lock); 2686 } 2687 2688 static void recalc_write_super(struct dm_integrity_c *ic) 2689 { 2690 int r; 2691 2692 dm_integrity_flush_buffers(ic, false); 2693 if (dm_integrity_failed(ic)) 2694 return; 2695 2696 r = sync_rw_sb(ic, REQ_OP_WRITE); 2697 if (unlikely(r)) 2698 dm_integrity_io_error(ic, "writing superblock", r); 2699 } 2700 2701 static void integrity_recalc(struct work_struct *w) 2702 { 2703 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 2704 size_t recalc_tags_size; 2705 u8 *recalc_buffer = NULL; 2706 u8 *recalc_tags = NULL; 2707 struct dm_integrity_range range; 2708 struct dm_io_request io_req; 2709 struct dm_io_region io_loc; 2710 sector_t area, offset; 2711 sector_t metadata_block; 2712 unsigned int metadata_offset; 2713 sector_t logical_sector, n_sectors; 2714 __u8 *t; 2715 unsigned int i; 2716 int r; 2717 unsigned int super_counter = 0; 2718 unsigned recalc_sectors = RECALC_SECTORS; 2719 2720 retry: 2721 recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO); 2722 if (!recalc_buffer) { 2723 oom: 2724 recalc_sectors >>= 1; 2725 if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block) 2726 goto retry; 2727 DMCRIT("out of memory for recalculate buffer - recalculation disabled"); 2728 goto free_ret; 2729 } 2730 recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 2731 if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size) 2732 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size; 2733 recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO); 2734 if (!recalc_tags) { 2735 vfree(recalc_buffer); 2736 recalc_buffer = NULL; 2737 goto oom; 2738 } 2739 2740 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector)); 2741 2742 spin_lock_irq(&ic->endio_wait.lock); 2743 2744 next_chunk: 2745 2746 if (unlikely(dm_post_suspending(ic->ti))) 2747 goto unlock_ret; 2748 2749 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 2750 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) { 2751 if (ic->mode == 'B') { 2752 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 2753 DEBUG_print("queue_delayed_work: bitmap_flush_work\n"); 2754 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2755 } 2756 goto unlock_ret; 2757 } 2758 2759 get_area_and_offset(ic, range.logical_sector, &area, &offset); 2760 range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector); 2761 if (!ic->meta_dev) 2762 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset); 2763 2764 add_new_range_and_wait(ic, &range); 2765 spin_unlock_irq(&ic->endio_wait.lock); 2766 logical_sector = range.logical_sector; 2767 n_sectors = range.n_sectors; 2768 2769 if (ic->mode == 'B') { 2770 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2771 goto advance_and_next; 2772 2773 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, 2774 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2775 logical_sector += ic->sectors_per_block; 2776 n_sectors -= ic->sectors_per_block; 2777 cond_resched(); 2778 } 2779 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block, 2780 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2781 n_sectors -= ic->sectors_per_block; 2782 cond_resched(); 2783 } 2784 get_area_and_offset(ic, logical_sector, &area, &offset); 2785 } 2786 2787 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors); 2788 2789 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 2790 recalc_write_super(ic); 2791 if (ic->mode == 'B') 2792 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2793 2794 super_counter = 0; 2795 } 2796 2797 if (unlikely(dm_integrity_failed(ic))) 2798 goto err; 2799 2800 io_req.bi_opf = REQ_OP_READ; 2801 io_req.mem.type = DM_IO_VMA; 2802 io_req.mem.ptr.addr = recalc_buffer; 2803 io_req.notify.fn = NULL; 2804 io_req.client = ic->io; 2805 io_loc.bdev = ic->dev->bdev; 2806 io_loc.sector = get_data_sector(ic, area, offset); 2807 io_loc.count = n_sectors; 2808 2809 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 2810 if (unlikely(r)) { 2811 dm_integrity_io_error(ic, "reading data", r); 2812 goto err; 2813 } 2814 2815 t = recalc_tags; 2816 for (i = 0; i < n_sectors; i += ic->sectors_per_block) { 2817 integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t); 2818 t += ic->tag_size; 2819 } 2820 2821 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2822 2823 r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE); 2824 if (unlikely(r)) { 2825 dm_integrity_io_error(ic, "writing tags", r); 2826 goto err; 2827 } 2828 2829 if (ic->mode == 'B') { 2830 sector_t start, end; 2831 2832 start = (range.logical_sector >> 2833 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 2834 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2835 end = ((range.logical_sector + range.n_sectors) >> 2836 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 2837 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2838 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR); 2839 } 2840 2841 advance_and_next: 2842 cond_resched(); 2843 2844 spin_lock_irq(&ic->endio_wait.lock); 2845 remove_range_unlocked(ic, &range); 2846 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 2847 goto next_chunk; 2848 2849 err: 2850 remove_range(ic, &range); 2851 goto free_ret; 2852 2853 unlock_ret: 2854 spin_unlock_irq(&ic->endio_wait.lock); 2855 2856 recalc_write_super(ic); 2857 2858 free_ret: 2859 vfree(recalc_buffer); 2860 kvfree(recalc_tags); 2861 } 2862 2863 static void bitmap_block_work(struct work_struct *w) 2864 { 2865 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work); 2866 struct dm_integrity_c *ic = bbs->ic; 2867 struct bio *bio; 2868 struct bio_list bio_queue; 2869 struct bio_list waiting; 2870 2871 bio_list_init(&waiting); 2872 2873 spin_lock(&bbs->bio_queue_lock); 2874 bio_queue = bbs->bio_queue; 2875 bio_list_init(&bbs->bio_queue); 2876 spin_unlock(&bbs->bio_queue_lock); 2877 2878 while ((bio = bio_list_pop(&bio_queue))) { 2879 struct dm_integrity_io *dio; 2880 2881 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2882 2883 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2884 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2885 remove_range(ic, &dio->range); 2886 INIT_WORK(&dio->work, integrity_bio_wait); 2887 queue_work(ic->offload_wq, &dio->work); 2888 } else { 2889 block_bitmap_op(ic, ic->journal, dio->range.logical_sector, 2890 dio->range.n_sectors, BITMAP_OP_SET); 2891 bio_list_add(&waiting, bio); 2892 } 2893 } 2894 2895 if (bio_list_empty(&waiting)) 2896 return; 2897 2898 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 2899 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), 2900 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL); 2901 2902 while ((bio = bio_list_pop(&waiting))) { 2903 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2904 2905 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2906 dio->range.n_sectors, BITMAP_OP_SET); 2907 2908 remove_range(ic, &dio->range); 2909 INIT_WORK(&dio->work, integrity_bio_wait); 2910 queue_work(ic->offload_wq, &dio->work); 2911 } 2912 2913 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2914 } 2915 2916 static void bitmap_flush_work(struct work_struct *work) 2917 { 2918 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work); 2919 struct dm_integrity_range range; 2920 unsigned long limit; 2921 struct bio *bio; 2922 2923 dm_integrity_flush_buffers(ic, false); 2924 2925 range.logical_sector = 0; 2926 range.n_sectors = ic->provided_data_sectors; 2927 2928 spin_lock_irq(&ic->endio_wait.lock); 2929 add_new_range_and_wait(ic, &range); 2930 spin_unlock_irq(&ic->endio_wait.lock); 2931 2932 dm_integrity_flush_buffers(ic, true); 2933 2934 limit = ic->provided_data_sectors; 2935 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2936 limit = le64_to_cpu(ic->sb->recalc_sector) 2937 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit) 2938 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2939 } 2940 /*DEBUG_print("zeroing journal\n");*/ 2941 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR); 2942 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR); 2943 2944 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 2945 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2946 2947 spin_lock_irq(&ic->endio_wait.lock); 2948 remove_range_unlocked(ic, &range); 2949 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) { 2950 bio_endio(bio); 2951 spin_unlock_irq(&ic->endio_wait.lock); 2952 spin_lock_irq(&ic->endio_wait.lock); 2953 } 2954 spin_unlock_irq(&ic->endio_wait.lock); 2955 } 2956 2957 2958 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section, 2959 unsigned int n_sections, unsigned char commit_seq) 2960 { 2961 unsigned int i, j, n; 2962 2963 if (!n_sections) 2964 return; 2965 2966 for (n = 0; n < n_sections; n++) { 2967 i = start_section + n; 2968 wraparound_section(ic, &i); 2969 for (j = 0; j < ic->journal_section_sectors; j++) { 2970 struct journal_sector *js = access_journal(ic, i, j); 2971 2972 BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA); 2973 memset(&js->sectors, 0, sizeof(js->sectors)); 2974 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 2975 } 2976 for (j = 0; j < ic->journal_section_entries; j++) { 2977 struct journal_entry *je = access_journal_entry(ic, i, j); 2978 2979 journal_entry_set_unused(je); 2980 } 2981 } 2982 2983 write_journal(ic, start_section, n_sections); 2984 } 2985 2986 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id) 2987 { 2988 unsigned char k; 2989 2990 for (k = 0; k < N_COMMIT_IDS; k++) { 2991 if (dm_integrity_commit_id(ic, i, j, k) == id) 2992 return k; 2993 } 2994 dm_integrity_io_error(ic, "journal commit id", -EIO); 2995 return -EIO; 2996 } 2997 2998 static void replay_journal(struct dm_integrity_c *ic) 2999 { 3000 unsigned int i, j; 3001 bool used_commit_ids[N_COMMIT_IDS]; 3002 unsigned int max_commit_id_sections[N_COMMIT_IDS]; 3003 unsigned int write_start, write_sections; 3004 unsigned int continue_section; 3005 bool journal_empty; 3006 unsigned char unused, last_used, want_commit_seq; 3007 3008 if (ic->mode == 'R') 3009 return; 3010 3011 if (ic->journal_uptodate) 3012 return; 3013 3014 last_used = 0; 3015 write_start = 0; 3016 3017 if (!ic->just_formatted) { 3018 DEBUG_print("reading journal\n"); 3019 rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL); 3020 if (ic->journal_io) 3021 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 3022 if (ic->journal_io) { 3023 struct journal_completion crypt_comp; 3024 3025 crypt_comp.ic = ic; 3026 init_completion(&crypt_comp.comp); 3027 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 3028 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 3029 wait_for_completion(&crypt_comp.comp); 3030 } 3031 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 3032 } 3033 3034 if (dm_integrity_failed(ic)) 3035 goto clear_journal; 3036 3037 journal_empty = true; 3038 memset(used_commit_ids, 0, sizeof(used_commit_ids)); 3039 memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections)); 3040 for (i = 0; i < ic->journal_sections; i++) { 3041 for (j = 0; j < ic->journal_section_sectors; j++) { 3042 int k; 3043 struct journal_sector *js = access_journal(ic, i, j); 3044 3045 k = find_commit_seq(ic, i, j, js->commit_id); 3046 if (k < 0) 3047 goto clear_journal; 3048 used_commit_ids[k] = true; 3049 max_commit_id_sections[k] = i; 3050 } 3051 if (journal_empty) { 3052 for (j = 0; j < ic->journal_section_entries; j++) { 3053 struct journal_entry *je = access_journal_entry(ic, i, j); 3054 3055 if (!journal_entry_is_unused(je)) { 3056 journal_empty = false; 3057 break; 3058 } 3059 } 3060 } 3061 } 3062 3063 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 3064 unused = N_COMMIT_IDS - 1; 3065 while (unused && !used_commit_ids[unused - 1]) 3066 unused--; 3067 } else { 3068 for (unused = 0; unused < N_COMMIT_IDS; unused++) 3069 if (!used_commit_ids[unused]) 3070 break; 3071 if (unused == N_COMMIT_IDS) { 3072 dm_integrity_io_error(ic, "journal commit ids", -EIO); 3073 goto clear_journal; 3074 } 3075 } 3076 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 3077 unused, used_commit_ids[0], used_commit_ids[1], 3078 used_commit_ids[2], used_commit_ids[3]); 3079 3080 last_used = prev_commit_seq(unused); 3081 want_commit_seq = prev_commit_seq(last_used); 3082 3083 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 3084 journal_empty = true; 3085 3086 write_start = max_commit_id_sections[last_used] + 1; 3087 if (unlikely(write_start >= ic->journal_sections)) 3088 want_commit_seq = next_commit_seq(want_commit_seq); 3089 wraparound_section(ic, &write_start); 3090 3091 i = write_start; 3092 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 3093 for (j = 0; j < ic->journal_section_sectors; j++) { 3094 struct journal_sector *js = access_journal(ic, i, j); 3095 3096 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 3097 /* 3098 * This could be caused by crash during writing. 3099 * We won't replay the inconsistent part of the 3100 * journal. 3101 */ 3102 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 3103 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 3104 goto brk; 3105 } 3106 } 3107 i++; 3108 if (unlikely(i >= ic->journal_sections)) 3109 want_commit_seq = next_commit_seq(want_commit_seq); 3110 wraparound_section(ic, &i); 3111 } 3112 brk: 3113 3114 if (!journal_empty) { 3115 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 3116 write_sections, write_start, want_commit_seq); 3117 do_journal_write(ic, write_start, write_sections, true); 3118 } 3119 3120 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 3121 continue_section = write_start; 3122 ic->commit_seq = want_commit_seq; 3123 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 3124 } else { 3125 unsigned int s; 3126 unsigned char erase_seq; 3127 3128 clear_journal: 3129 DEBUG_print("clearing journal\n"); 3130 3131 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 3132 s = write_start; 3133 init_journal(ic, s, 1, erase_seq); 3134 s++; 3135 wraparound_section(ic, &s); 3136 if (ic->journal_sections >= 2) { 3137 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 3138 s += ic->journal_sections - 2; 3139 wraparound_section(ic, &s); 3140 init_journal(ic, s, 1, erase_seq); 3141 } 3142 3143 continue_section = 0; 3144 ic->commit_seq = next_commit_seq(erase_seq); 3145 } 3146 3147 ic->committed_section = continue_section; 3148 ic->n_committed_sections = 0; 3149 3150 ic->uncommitted_section = continue_section; 3151 ic->n_uncommitted_sections = 0; 3152 3153 ic->free_section = continue_section; 3154 ic->free_section_entry = 0; 3155 ic->free_sectors = ic->journal_entries; 3156 3157 ic->journal_tree_root = RB_ROOT; 3158 for (i = 0; i < ic->journal_entries; i++) 3159 init_journal_node(&ic->journal_tree[i]); 3160 } 3161 3162 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic) 3163 { 3164 DEBUG_print("%s\n", __func__); 3165 3166 if (ic->mode == 'B') { 3167 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1; 3168 ic->synchronous_mode = 1; 3169 3170 cancel_delayed_work_sync(&ic->bitmap_flush_work); 3171 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 3172 flush_workqueue(ic->commit_wq); 3173 } 3174 } 3175 3176 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x) 3177 { 3178 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier); 3179 3180 DEBUG_print("%s\n", __func__); 3181 3182 dm_integrity_enter_synchronous_mode(ic); 3183 3184 return NOTIFY_DONE; 3185 } 3186 3187 static void dm_integrity_postsuspend(struct dm_target *ti) 3188 { 3189 struct dm_integrity_c *ic = ti->private; 3190 int r; 3191 3192 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier)); 3193 3194 del_timer_sync(&ic->autocommit_timer); 3195 3196 if (ic->recalc_wq) 3197 drain_workqueue(ic->recalc_wq); 3198 3199 if (ic->mode == 'B') 3200 cancel_delayed_work_sync(&ic->bitmap_flush_work); 3201 3202 queue_work(ic->commit_wq, &ic->commit_work); 3203 drain_workqueue(ic->commit_wq); 3204 3205 if (ic->mode == 'J') { 3206 queue_work(ic->writer_wq, &ic->writer_work); 3207 drain_workqueue(ic->writer_wq); 3208 dm_integrity_flush_buffers(ic, true); 3209 if (ic->wrote_to_journal) { 3210 init_journal(ic, ic->free_section, 3211 ic->journal_sections - ic->free_section, ic->commit_seq); 3212 if (ic->free_section) { 3213 init_journal(ic, 0, ic->free_section, 3214 next_commit_seq(ic->commit_seq)); 3215 } 3216 } 3217 } 3218 3219 if (ic->mode == 'B') { 3220 dm_integrity_flush_buffers(ic, true); 3221 #if 1 3222 /* set to 0 to test bitmap replay code */ 3223 init_journal(ic, 0, ic->journal_sections, 0); 3224 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3225 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3226 if (unlikely(r)) 3227 dm_integrity_io_error(ic, "writing superblock", r); 3228 #endif 3229 } 3230 3231 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 3232 3233 ic->journal_uptodate = true; 3234 } 3235 3236 static void dm_integrity_resume(struct dm_target *ti) 3237 { 3238 struct dm_integrity_c *ic = ti->private; 3239 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 3240 int r; 3241 3242 DEBUG_print("resume\n"); 3243 3244 ic->wrote_to_journal = false; 3245 3246 if (ic->provided_data_sectors != old_provided_data_sectors) { 3247 if (ic->provided_data_sectors > old_provided_data_sectors && 3248 ic->mode == 'B' && 3249 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { 3250 rw_journal_sectors(ic, REQ_OP_READ, 0, 3251 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3252 block_bitmap_op(ic, ic->journal, old_provided_data_sectors, 3253 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET); 3254 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3255 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3256 } 3257 3258 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3259 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3260 if (unlikely(r)) 3261 dm_integrity_io_error(ic, "writing superblock", r); 3262 } 3263 3264 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) { 3265 DEBUG_print("resume dirty_bitmap\n"); 3266 rw_journal_sectors(ic, REQ_OP_READ, 0, 3267 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3268 if (ic->mode == 'B') { 3269 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3270 !ic->reset_recalculate_flag) { 3271 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal); 3272 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal); 3273 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, 3274 BITMAP_OP_TEST_ALL_CLEAR)) { 3275 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3276 ic->sb->recalc_sector = cpu_to_le64(0); 3277 } 3278 } else { 3279 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n", 3280 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit); 3281 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3282 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3283 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3284 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3285 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3286 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3287 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3288 ic->sb->recalc_sector = cpu_to_le64(0); 3289 } 3290 } else { 3291 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3292 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) || 3293 ic->reset_recalculate_flag) { 3294 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3295 ic->sb->recalc_sector = cpu_to_le64(0); 3296 } 3297 init_journal(ic, 0, ic->journal_sections, 0); 3298 replay_journal(ic); 3299 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3300 } 3301 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3302 if (unlikely(r)) 3303 dm_integrity_io_error(ic, "writing superblock", r); 3304 } else { 3305 replay_journal(ic); 3306 if (ic->reset_recalculate_flag) { 3307 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3308 ic->sb->recalc_sector = cpu_to_le64(0); 3309 } 3310 if (ic->mode == 'B') { 3311 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3312 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3313 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3314 if (unlikely(r)) 3315 dm_integrity_io_error(ic, "writing superblock", r); 3316 3317 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3318 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3319 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3320 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 3321 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) { 3322 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector), 3323 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3324 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3325 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3326 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3327 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3328 } 3329 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3330 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3331 } 3332 } 3333 3334 DEBUG_print("testing recalc: %x\n", ic->sb->flags); 3335 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 3336 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector); 3337 3338 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors); 3339 if (recalc_pos < ic->provided_data_sectors) { 3340 queue_work(ic->recalc_wq, &ic->recalc_work); 3341 } else if (recalc_pos > ic->provided_data_sectors) { 3342 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors); 3343 recalc_write_super(ic); 3344 } 3345 } 3346 3347 ic->reboot_notifier.notifier_call = dm_integrity_reboot; 3348 ic->reboot_notifier.next = NULL; 3349 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */ 3350 WARN_ON(register_reboot_notifier(&ic->reboot_notifier)); 3351 3352 #if 0 3353 /* set to 1 to stress test synchronous mode */ 3354 dm_integrity_enter_synchronous_mode(ic); 3355 #endif 3356 } 3357 3358 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 3359 unsigned int status_flags, char *result, unsigned int maxlen) 3360 { 3361 struct dm_integrity_c *ic = ti->private; 3362 unsigned int arg_count; 3363 size_t sz = 0; 3364 3365 switch (type) { 3366 case STATUSTYPE_INFO: 3367 DMEMIT("%llu %llu", 3368 (unsigned long long)atomic64_read(&ic->number_of_mismatches), 3369 ic->provided_data_sectors); 3370 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3371 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector)); 3372 else 3373 DMEMIT(" -"); 3374 break; 3375 3376 case STATUSTYPE_TABLE: { 3377 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 3378 3379 watermark_percentage += ic->journal_entries / 2; 3380 do_div(watermark_percentage, ic->journal_entries); 3381 arg_count = 3; 3382 arg_count += !!ic->meta_dev; 3383 arg_count += ic->sectors_per_block != 1; 3384 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)); 3385 arg_count += ic->reset_recalculate_flag; 3386 arg_count += ic->discard; 3387 arg_count += ic->mode == 'J'; 3388 arg_count += ic->mode == 'J'; 3389 arg_count += ic->mode == 'B'; 3390 arg_count += ic->mode == 'B'; 3391 arg_count += !!ic->internal_hash_alg.alg_string; 3392 arg_count += !!ic->journal_crypt_alg.alg_string; 3393 arg_count += !!ic->journal_mac_alg.alg_string; 3394 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0; 3395 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0; 3396 arg_count += ic->legacy_recalculate; 3397 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start, 3398 ic->tag_size, ic->mode, arg_count); 3399 if (ic->meta_dev) 3400 DMEMIT(" meta_device:%s", ic->meta_dev->name); 3401 if (ic->sectors_per_block != 1) 3402 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 3403 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3404 DMEMIT(" recalculate"); 3405 if (ic->reset_recalculate_flag) 3406 DMEMIT(" reset_recalculate"); 3407 if (ic->discard) 3408 DMEMIT(" allow_discards"); 3409 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 3410 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 3411 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 3412 if (ic->mode == 'J') { 3413 DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage); 3414 DMEMIT(" commit_time:%u", ic->autocommit_msec); 3415 } 3416 if (ic->mode == 'B') { 3417 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit); 3418 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval)); 3419 } 3420 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) 3421 DMEMIT(" fix_padding"); 3422 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) 3423 DMEMIT(" fix_hmac"); 3424 if (ic->legacy_recalculate) 3425 DMEMIT(" legacy_recalculate"); 3426 3427 #define EMIT_ALG(a, n) \ 3428 do { \ 3429 if (ic->a.alg_string) { \ 3430 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 3431 if (ic->a.key_string) \ 3432 DMEMIT(":%s", ic->a.key_string);\ 3433 } \ 3434 } while (0) 3435 EMIT_ALG(internal_hash_alg, "internal_hash"); 3436 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 3437 EMIT_ALG(journal_mac_alg, "journal_mac"); 3438 break; 3439 } 3440 case STATUSTYPE_IMA: 3441 DMEMIT_TARGET_NAME_VERSION(ti->type); 3442 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c", 3443 ic->dev->name, ic->start, ic->tag_size, ic->mode); 3444 3445 if (ic->meta_dev) 3446 DMEMIT(",meta_device=%s", ic->meta_dev->name); 3447 if (ic->sectors_per_block != 1) 3448 DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT); 3449 3450 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ? 3451 'y' : 'n'); 3452 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n'); 3453 DMEMIT(",fix_padding=%c", 3454 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n'); 3455 DMEMIT(",fix_hmac=%c", 3456 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n'); 3457 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n'); 3458 3459 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS); 3460 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors); 3461 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors); 3462 DMEMIT(";"); 3463 break; 3464 } 3465 } 3466 3467 static int dm_integrity_iterate_devices(struct dm_target *ti, 3468 iterate_devices_callout_fn fn, void *data) 3469 { 3470 struct dm_integrity_c *ic = ti->private; 3471 3472 if (!ic->meta_dev) 3473 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 3474 else 3475 return fn(ti, ic->dev, 0, ti->len, data); 3476 } 3477 3478 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 3479 { 3480 struct dm_integrity_c *ic = ti->private; 3481 3482 if (ic->sectors_per_block > 1) { 3483 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3484 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3485 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT); 3486 limits->dma_alignment = limits->logical_block_size - 1; 3487 } 3488 limits->max_integrity_segments = USHRT_MAX; 3489 } 3490 3491 static void calculate_journal_section_size(struct dm_integrity_c *ic) 3492 { 3493 unsigned int sector_space = JOURNAL_SECTOR_DATA; 3494 3495 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 3496 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 3497 JOURNAL_ENTRY_ROUNDUP); 3498 3499 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 3500 sector_space -= JOURNAL_MAC_PER_SECTOR; 3501 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 3502 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 3503 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 3504 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 3505 } 3506 3507 static int calculate_device_limits(struct dm_integrity_c *ic) 3508 { 3509 __u64 initial_sectors; 3510 3511 calculate_journal_section_size(ic); 3512 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 3513 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX) 3514 return -EINVAL; 3515 ic->initial_sectors = initial_sectors; 3516 3517 if (!ic->meta_dev) { 3518 sector_t last_sector, last_area, last_offset; 3519 3520 /* we have to maintain excessive padding for compatibility with existing volumes */ 3521 __u64 metadata_run_padding = 3522 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ? 3523 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) : 3524 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS); 3525 3526 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 3527 metadata_run_padding) >> SECTOR_SHIFT; 3528 if (!(ic->metadata_run & (ic->metadata_run - 1))) 3529 ic->log2_metadata_run = __ffs(ic->metadata_run); 3530 else 3531 ic->log2_metadata_run = -1; 3532 3533 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 3534 last_sector = get_data_sector(ic, last_area, last_offset); 3535 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors) 3536 return -EINVAL; 3537 } else { 3538 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 3539 3540 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1)) 3541 >> (ic->log2_buffer_sectors + SECTOR_SHIFT); 3542 meta_size <<= ic->log2_buffer_sectors; 3543 if (ic->initial_sectors + meta_size < ic->initial_sectors || 3544 ic->initial_sectors + meta_size > ic->meta_device_sectors) 3545 return -EINVAL; 3546 ic->metadata_run = 1; 3547 ic->log2_metadata_run = 0; 3548 } 3549 3550 return 0; 3551 } 3552 3553 static void get_provided_data_sectors(struct dm_integrity_c *ic) 3554 { 3555 if (!ic->meta_dev) { 3556 int test_bit; 3557 3558 ic->provided_data_sectors = 0; 3559 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) { 3560 __u64 prev_data_sectors = ic->provided_data_sectors; 3561 3562 ic->provided_data_sectors |= (sector_t)1 << test_bit; 3563 if (calculate_device_limits(ic)) 3564 ic->provided_data_sectors = prev_data_sectors; 3565 } 3566 } else { 3567 ic->provided_data_sectors = ic->data_device_sectors; 3568 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1); 3569 } 3570 } 3571 3572 static int initialize_superblock(struct dm_integrity_c *ic, 3573 unsigned int journal_sectors, unsigned int interleave_sectors) 3574 { 3575 unsigned int journal_sections; 3576 int test_bit; 3577 3578 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 3579 memcpy(ic->sb->magic, SB_MAGIC, 8); 3580 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 3581 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 3582 if (ic->journal_mac_alg.alg_string) 3583 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 3584 3585 calculate_journal_section_size(ic); 3586 journal_sections = journal_sectors / ic->journal_section_sectors; 3587 if (!journal_sections) 3588 journal_sections = 1; 3589 3590 if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) { 3591 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC); 3592 get_random_bytes(ic->sb->salt, SALT_SIZE); 3593 } 3594 3595 if (!ic->meta_dev) { 3596 if (ic->fix_padding) 3597 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING); 3598 ic->sb->journal_sections = cpu_to_le32(journal_sections); 3599 if (!interleave_sectors) 3600 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3601 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 3602 ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3603 ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3604 3605 get_provided_data_sectors(ic); 3606 if (!ic->provided_data_sectors) 3607 return -EINVAL; 3608 } else { 3609 ic->sb->log2_interleave_sectors = 0; 3610 3611 get_provided_data_sectors(ic); 3612 if (!ic->provided_data_sectors) 3613 return -EINVAL; 3614 3615 try_smaller_buffer: 3616 ic->sb->journal_sections = cpu_to_le32(0); 3617 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) { 3618 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections); 3619 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit); 3620 3621 if (test_journal_sections > journal_sections) 3622 continue; 3623 ic->sb->journal_sections = cpu_to_le32(test_journal_sections); 3624 if (calculate_device_limits(ic)) 3625 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections); 3626 3627 } 3628 if (!le32_to_cpu(ic->sb->journal_sections)) { 3629 if (ic->log2_buffer_sectors > 3) { 3630 ic->log2_buffer_sectors--; 3631 goto try_smaller_buffer; 3632 } 3633 return -EINVAL; 3634 } 3635 } 3636 3637 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3638 3639 sb_set_version(ic); 3640 3641 return 0; 3642 } 3643 3644 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic) 3645 { 3646 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table)); 3647 struct blk_integrity bi; 3648 3649 memset(&bi, 0, sizeof(bi)); 3650 bi.profile = &dm_integrity_profile; 3651 bi.tuple_size = ic->tag_size; 3652 bi.tag_size = bi.tuple_size; 3653 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 3654 3655 blk_integrity_register(disk, &bi); 3656 } 3657 3658 static void dm_integrity_free_page_list(struct page_list *pl) 3659 { 3660 unsigned int i; 3661 3662 if (!pl) 3663 return; 3664 for (i = 0; pl[i].page; i++) 3665 __free_page(pl[i].page); 3666 kvfree(pl); 3667 } 3668 3669 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages) 3670 { 3671 struct page_list *pl; 3672 unsigned int i; 3673 3674 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO); 3675 if (!pl) 3676 return NULL; 3677 3678 for (i = 0; i < n_pages; i++) { 3679 pl[i].page = alloc_page(GFP_KERNEL); 3680 if (!pl[i].page) { 3681 dm_integrity_free_page_list(pl); 3682 return NULL; 3683 } 3684 if (i) 3685 pl[i - 1].next = &pl[i]; 3686 } 3687 pl[i].page = NULL; 3688 pl[i].next = NULL; 3689 3690 return pl; 3691 } 3692 3693 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 3694 { 3695 unsigned int i; 3696 3697 for (i = 0; i < ic->journal_sections; i++) 3698 kvfree(sl[i]); 3699 kvfree(sl); 3700 } 3701 3702 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, 3703 struct page_list *pl) 3704 { 3705 struct scatterlist **sl; 3706 unsigned int i; 3707 3708 sl = kvmalloc_array(ic->journal_sections, 3709 sizeof(struct scatterlist *), 3710 GFP_KERNEL | __GFP_ZERO); 3711 if (!sl) 3712 return NULL; 3713 3714 for (i = 0; i < ic->journal_sections; i++) { 3715 struct scatterlist *s; 3716 unsigned int start_index, start_offset; 3717 unsigned int end_index, end_offset; 3718 unsigned int n_pages; 3719 unsigned int idx; 3720 3721 page_list_location(ic, i, 0, &start_index, &start_offset); 3722 page_list_location(ic, i, ic->journal_section_sectors - 1, 3723 &end_index, &end_offset); 3724 3725 n_pages = (end_index - start_index + 1); 3726 3727 s = kvmalloc_array(n_pages, sizeof(struct scatterlist), 3728 GFP_KERNEL); 3729 if (!s) { 3730 dm_integrity_free_journal_scatterlist(ic, sl); 3731 return NULL; 3732 } 3733 3734 sg_init_table(s, n_pages); 3735 for (idx = start_index; idx <= end_index; idx++) { 3736 char *va = lowmem_page_address(pl[idx].page); 3737 unsigned int start = 0, end = PAGE_SIZE; 3738 3739 if (idx == start_index) 3740 start = start_offset; 3741 if (idx == end_index) 3742 end = end_offset + (1 << SECTOR_SHIFT); 3743 sg_set_buf(&s[idx - start_index], va + start, end - start); 3744 } 3745 3746 sl[i] = s; 3747 } 3748 3749 return sl; 3750 } 3751 3752 static void free_alg(struct alg_spec *a) 3753 { 3754 kfree_sensitive(a->alg_string); 3755 kfree_sensitive(a->key); 3756 memset(a, 0, sizeof(*a)); 3757 } 3758 3759 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 3760 { 3761 char *k; 3762 3763 free_alg(a); 3764 3765 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 3766 if (!a->alg_string) 3767 goto nomem; 3768 3769 k = strchr(a->alg_string, ':'); 3770 if (k) { 3771 *k = 0; 3772 a->key_string = k + 1; 3773 if (strlen(a->key_string) & 1) 3774 goto inval; 3775 3776 a->key_size = strlen(a->key_string) / 2; 3777 a->key = kmalloc(a->key_size, GFP_KERNEL); 3778 if (!a->key) 3779 goto nomem; 3780 if (hex2bin(a->key, a->key_string, a->key_size)) 3781 goto inval; 3782 } 3783 3784 return 0; 3785 inval: 3786 *error = error_inval; 3787 return -EINVAL; 3788 nomem: 3789 *error = "Out of memory for an argument"; 3790 return -ENOMEM; 3791 } 3792 3793 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 3794 char *error_alg, char *error_key) 3795 { 3796 int r; 3797 3798 if (a->alg_string) { 3799 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 3800 if (IS_ERR(*hash)) { 3801 *error = error_alg; 3802 r = PTR_ERR(*hash); 3803 *hash = NULL; 3804 return r; 3805 } 3806 3807 if (a->key) { 3808 r = crypto_shash_setkey(*hash, a->key, a->key_size); 3809 if (r) { 3810 *error = error_key; 3811 return r; 3812 } 3813 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { 3814 *error = error_key; 3815 return -ENOKEY; 3816 } 3817 } 3818 3819 return 0; 3820 } 3821 3822 static int create_journal(struct dm_integrity_c *ic, char **error) 3823 { 3824 int r = 0; 3825 unsigned int i; 3826 __u64 journal_pages, journal_desc_size, journal_tree_size; 3827 unsigned char *crypt_data = NULL, *crypt_iv = NULL; 3828 struct skcipher_request *req = NULL; 3829 3830 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 3831 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 3832 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 3833 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 3834 3835 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 3836 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 3837 journal_desc_size = journal_pages * sizeof(struct page_list); 3838 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) { 3839 *error = "Journal doesn't fit into memory"; 3840 r = -ENOMEM; 3841 goto bad; 3842 } 3843 ic->journal_pages = journal_pages; 3844 3845 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages); 3846 if (!ic->journal) { 3847 *error = "Could not allocate memory for journal"; 3848 r = -ENOMEM; 3849 goto bad; 3850 } 3851 if (ic->journal_crypt_alg.alg_string) { 3852 unsigned int ivsize, blocksize; 3853 struct journal_completion comp; 3854 3855 comp.ic = ic; 3856 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 3857 if (IS_ERR(ic->journal_crypt)) { 3858 *error = "Invalid journal cipher"; 3859 r = PTR_ERR(ic->journal_crypt); 3860 ic->journal_crypt = NULL; 3861 goto bad; 3862 } 3863 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 3864 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 3865 3866 if (ic->journal_crypt_alg.key) { 3867 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 3868 ic->journal_crypt_alg.key_size); 3869 if (r) { 3870 *error = "Error setting encryption key"; 3871 goto bad; 3872 } 3873 } 3874 DEBUG_print("cipher %s, block size %u iv size %u\n", 3875 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 3876 3877 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages); 3878 if (!ic->journal_io) { 3879 *error = "Could not allocate memory for journal io"; 3880 r = -ENOMEM; 3881 goto bad; 3882 } 3883 3884 if (blocksize == 1) { 3885 struct scatterlist *sg; 3886 3887 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3888 if (!req) { 3889 *error = "Could not allocate crypt request"; 3890 r = -ENOMEM; 3891 goto bad; 3892 } 3893 3894 crypt_iv = kzalloc(ivsize, GFP_KERNEL); 3895 if (!crypt_iv) { 3896 *error = "Could not allocate iv"; 3897 r = -ENOMEM; 3898 goto bad; 3899 } 3900 3901 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages); 3902 if (!ic->journal_xor) { 3903 *error = "Could not allocate memory for journal xor"; 3904 r = -ENOMEM; 3905 goto bad; 3906 } 3907 3908 sg = kvmalloc_array(ic->journal_pages + 1, 3909 sizeof(struct scatterlist), 3910 GFP_KERNEL); 3911 if (!sg) { 3912 *error = "Unable to allocate sg list"; 3913 r = -ENOMEM; 3914 goto bad; 3915 } 3916 sg_init_table(sg, ic->journal_pages + 1); 3917 for (i = 0; i < ic->journal_pages; i++) { 3918 char *va = lowmem_page_address(ic->journal_xor[i].page); 3919 3920 clear_page(va); 3921 sg_set_buf(&sg[i], va, PAGE_SIZE); 3922 } 3923 sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids)); 3924 3925 skcipher_request_set_crypt(req, sg, sg, 3926 PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv); 3927 init_completion(&comp.comp); 3928 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3929 if (do_crypt(true, req, &comp)) 3930 wait_for_completion(&comp.comp); 3931 kvfree(sg); 3932 r = dm_integrity_failed(ic); 3933 if (r) { 3934 *error = "Unable to encrypt journal"; 3935 goto bad; 3936 } 3937 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 3938 3939 crypto_free_skcipher(ic->journal_crypt); 3940 ic->journal_crypt = NULL; 3941 } else { 3942 unsigned int crypt_len = roundup(ivsize, blocksize); 3943 3944 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3945 if (!req) { 3946 *error = "Could not allocate crypt request"; 3947 r = -ENOMEM; 3948 goto bad; 3949 } 3950 3951 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 3952 if (!crypt_iv) { 3953 *error = "Could not allocate iv"; 3954 r = -ENOMEM; 3955 goto bad; 3956 } 3957 3958 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 3959 if (!crypt_data) { 3960 *error = "Unable to allocate crypt data"; 3961 r = -ENOMEM; 3962 goto bad; 3963 } 3964 3965 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 3966 if (!ic->journal_scatterlist) { 3967 *error = "Unable to allocate sg list"; 3968 r = -ENOMEM; 3969 goto bad; 3970 } 3971 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 3972 if (!ic->journal_io_scatterlist) { 3973 *error = "Unable to allocate sg list"; 3974 r = -ENOMEM; 3975 goto bad; 3976 } 3977 ic->sk_requests = kvmalloc_array(ic->journal_sections, 3978 sizeof(struct skcipher_request *), 3979 GFP_KERNEL | __GFP_ZERO); 3980 if (!ic->sk_requests) { 3981 *error = "Unable to allocate sk requests"; 3982 r = -ENOMEM; 3983 goto bad; 3984 } 3985 for (i = 0; i < ic->journal_sections; i++) { 3986 struct scatterlist sg; 3987 struct skcipher_request *section_req; 3988 __le32 section_le = cpu_to_le32(i); 3989 3990 memset(crypt_iv, 0x00, ivsize); 3991 memset(crypt_data, 0x00, crypt_len); 3992 memcpy(crypt_data, §ion_le, min_t(size_t, crypt_len, sizeof(section_le))); 3993 3994 sg_init_one(&sg, crypt_data, crypt_len); 3995 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); 3996 init_completion(&comp.comp); 3997 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3998 if (do_crypt(true, req, &comp)) 3999 wait_for_completion(&comp.comp); 4000 4001 r = dm_integrity_failed(ic); 4002 if (r) { 4003 *error = "Unable to generate iv"; 4004 goto bad; 4005 } 4006 4007 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 4008 if (!section_req) { 4009 *error = "Unable to allocate crypt request"; 4010 r = -ENOMEM; 4011 goto bad; 4012 } 4013 section_req->iv = kmalloc_array(ivsize, 2, 4014 GFP_KERNEL); 4015 if (!section_req->iv) { 4016 skcipher_request_free(section_req); 4017 *error = "Unable to allocate iv"; 4018 r = -ENOMEM; 4019 goto bad; 4020 } 4021 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 4022 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 4023 ic->sk_requests[i] = section_req; 4024 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 4025 } 4026 } 4027 } 4028 4029 for (i = 0; i < N_COMMIT_IDS; i++) { 4030 unsigned int j; 4031 4032 retest_commit_id: 4033 for (j = 0; j < i; j++) { 4034 if (ic->commit_ids[j] == ic->commit_ids[i]) { 4035 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 4036 goto retest_commit_id; 4037 } 4038 } 4039 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 4040 } 4041 4042 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 4043 if (journal_tree_size > ULONG_MAX) { 4044 *error = "Journal doesn't fit into memory"; 4045 r = -ENOMEM; 4046 goto bad; 4047 } 4048 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 4049 if (!ic->journal_tree) { 4050 *error = "Could not allocate memory for journal tree"; 4051 r = -ENOMEM; 4052 } 4053 bad: 4054 kfree(crypt_data); 4055 kfree(crypt_iv); 4056 skcipher_request_free(req); 4057 4058 return r; 4059 } 4060 4061 /* 4062 * Construct a integrity mapping 4063 * 4064 * Arguments: 4065 * device 4066 * offset from the start of the device 4067 * tag size 4068 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode 4069 * number of optional arguments 4070 * optional arguments: 4071 * journal_sectors 4072 * interleave_sectors 4073 * buffer_sectors 4074 * journal_watermark 4075 * commit_time 4076 * meta_device 4077 * block_size 4078 * sectors_per_bit 4079 * bitmap_flush_interval 4080 * internal_hash 4081 * journal_crypt 4082 * journal_mac 4083 * recalculate 4084 */ 4085 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv) 4086 { 4087 struct dm_integrity_c *ic; 4088 char dummy; 4089 int r; 4090 unsigned int extra_args; 4091 struct dm_arg_set as; 4092 static const struct dm_arg _args[] = { 4093 {0, 18, "Invalid number of feature args"}, 4094 }; 4095 unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 4096 bool should_write_sb; 4097 __u64 threshold; 4098 unsigned long long start; 4099 __s8 log2_sectors_per_bitmap_bit = -1; 4100 __s8 log2_blocks_per_bitmap_bit; 4101 __u64 bits_in_journal; 4102 __u64 n_bitmap_bits; 4103 4104 #define DIRECT_ARGUMENTS 4 4105 4106 if (argc <= DIRECT_ARGUMENTS) { 4107 ti->error = "Invalid argument count"; 4108 return -EINVAL; 4109 } 4110 4111 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 4112 if (!ic) { 4113 ti->error = "Cannot allocate integrity context"; 4114 return -ENOMEM; 4115 } 4116 ti->private = ic; 4117 ti->per_io_data_size = sizeof(struct dm_integrity_io); 4118 ic->ti = ti; 4119 4120 ic->in_progress = RB_ROOT; 4121 INIT_LIST_HEAD(&ic->wait_list); 4122 init_waitqueue_head(&ic->endio_wait); 4123 bio_list_init(&ic->flush_bio_list); 4124 init_waitqueue_head(&ic->copy_to_journal_wait); 4125 init_completion(&ic->crypto_backoff); 4126 atomic64_set(&ic->number_of_mismatches, 0); 4127 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL; 4128 4129 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 4130 if (r) { 4131 ti->error = "Device lookup failed"; 4132 goto bad; 4133 } 4134 4135 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 4136 ti->error = "Invalid starting offset"; 4137 r = -EINVAL; 4138 goto bad; 4139 } 4140 ic->start = start; 4141 4142 if (strcmp(argv[2], "-")) { 4143 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 4144 ti->error = "Invalid tag size"; 4145 r = -EINVAL; 4146 goto bad; 4147 } 4148 } 4149 4150 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") || 4151 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) { 4152 ic->mode = argv[3][0]; 4153 } else { 4154 ti->error = "Invalid mode (expecting J, B, D, R)"; 4155 r = -EINVAL; 4156 goto bad; 4157 } 4158 4159 journal_sectors = 0; 4160 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 4161 buffer_sectors = DEFAULT_BUFFER_SECTORS; 4162 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 4163 sync_msec = DEFAULT_SYNC_MSEC; 4164 ic->sectors_per_block = 1; 4165 4166 as.argc = argc - DIRECT_ARGUMENTS; 4167 as.argv = argv + DIRECT_ARGUMENTS; 4168 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 4169 if (r) 4170 goto bad; 4171 4172 while (extra_args--) { 4173 const char *opt_string; 4174 unsigned int val; 4175 unsigned long long llval; 4176 4177 opt_string = dm_shift_arg(&as); 4178 if (!opt_string) { 4179 r = -EINVAL; 4180 ti->error = "Not enough feature arguments"; 4181 goto bad; 4182 } 4183 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 4184 journal_sectors = val ? val : 1; 4185 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 4186 interleave_sectors = val; 4187 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 4188 buffer_sectors = val; 4189 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 4190 journal_watermark = val; 4191 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 4192 sync_msec = val; 4193 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) { 4194 if (ic->meta_dev) { 4195 dm_put_device(ti, ic->meta_dev); 4196 ic->meta_dev = NULL; 4197 } 4198 r = dm_get_device(ti, strchr(opt_string, ':') + 1, 4199 dm_table_get_mode(ti->table), &ic->meta_dev); 4200 if (r) { 4201 ti->error = "Device lookup failed"; 4202 goto bad; 4203 } 4204 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 4205 if (val < 1 << SECTOR_SHIFT || 4206 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 4207 (val & (val - 1))) { 4208 r = -EINVAL; 4209 ti->error = "Invalid block_size argument"; 4210 goto bad; 4211 } 4212 ic->sectors_per_block = val >> SECTOR_SHIFT; 4213 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) { 4214 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval); 4215 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) { 4216 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) { 4217 r = -EINVAL; 4218 ti->error = "Invalid bitmap_flush_interval argument"; 4219 goto bad; 4220 } 4221 ic->bitmap_flush_interval = msecs_to_jiffies(val); 4222 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 4223 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 4224 "Invalid internal_hash argument"); 4225 if (r) 4226 goto bad; 4227 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 4228 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 4229 "Invalid journal_crypt argument"); 4230 if (r) 4231 goto bad; 4232 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 4233 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 4234 "Invalid journal_mac argument"); 4235 if (r) 4236 goto bad; 4237 } else if (!strcmp(opt_string, "recalculate")) { 4238 ic->recalculate_flag = true; 4239 } else if (!strcmp(opt_string, "reset_recalculate")) { 4240 ic->recalculate_flag = true; 4241 ic->reset_recalculate_flag = true; 4242 } else if (!strcmp(opt_string, "allow_discards")) { 4243 ic->discard = true; 4244 } else if (!strcmp(opt_string, "fix_padding")) { 4245 ic->fix_padding = true; 4246 } else if (!strcmp(opt_string, "fix_hmac")) { 4247 ic->fix_hmac = true; 4248 } else if (!strcmp(opt_string, "legacy_recalculate")) { 4249 ic->legacy_recalculate = true; 4250 } else { 4251 r = -EINVAL; 4252 ti->error = "Invalid argument"; 4253 goto bad; 4254 } 4255 } 4256 4257 ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev); 4258 if (!ic->meta_dev) 4259 ic->meta_device_sectors = ic->data_device_sectors; 4260 else 4261 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev); 4262 4263 if (!journal_sectors) { 4264 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 4265 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 4266 } 4267 4268 if (!buffer_sectors) 4269 buffer_sectors = 1; 4270 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT); 4271 4272 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 4273 "Invalid internal hash", "Error setting internal hash key"); 4274 if (r) 4275 goto bad; 4276 4277 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 4278 "Invalid journal mac", "Error setting journal mac key"); 4279 if (r) 4280 goto bad; 4281 4282 if (!ic->tag_size) { 4283 if (!ic->internal_hash) { 4284 ti->error = "Unknown tag size"; 4285 r = -EINVAL; 4286 goto bad; 4287 } 4288 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 4289 } 4290 if (ic->tag_size > MAX_TAG_SIZE) { 4291 ti->error = "Too big tag size"; 4292 r = -EINVAL; 4293 goto bad; 4294 } 4295 if (!(ic->tag_size & (ic->tag_size - 1))) 4296 ic->log2_tag_size = __ffs(ic->tag_size); 4297 else 4298 ic->log2_tag_size = -1; 4299 4300 if (ic->mode == 'B' && !ic->internal_hash) { 4301 r = -EINVAL; 4302 ti->error = "Bitmap mode can be only used with internal hash"; 4303 goto bad; 4304 } 4305 4306 if (ic->discard && !ic->internal_hash) { 4307 r = -EINVAL; 4308 ti->error = "Discard can be only used with internal hash"; 4309 goto bad; 4310 } 4311 4312 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 4313 ic->autocommit_msec = sync_msec; 4314 timer_setup(&ic->autocommit_timer, autocommit_fn, 0); 4315 4316 ic->io = dm_io_client_create(); 4317 if (IS_ERR(ic->io)) { 4318 r = PTR_ERR(ic->io); 4319 ic->io = NULL; 4320 ti->error = "Cannot allocate dm io"; 4321 goto bad; 4322 } 4323 4324 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); 4325 if (r) { 4326 ti->error = "Cannot allocate mempool"; 4327 goto bad; 4328 } 4329 4330 r = mempool_init_page_pool(&ic->recheck_pool, 1, 0); 4331 if (r) { 4332 ti->error = "Cannot allocate mempool"; 4333 goto bad; 4334 } 4335 4336 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 4337 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 4338 if (!ic->metadata_wq) { 4339 ti->error = "Cannot allocate workqueue"; 4340 r = -ENOMEM; 4341 goto bad; 4342 } 4343 4344 /* 4345 * If this workqueue weren't ordered, it would cause bio reordering 4346 * and reduced performance. 4347 */ 4348 ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM); 4349 if (!ic->wait_wq) { 4350 ti->error = "Cannot allocate workqueue"; 4351 r = -ENOMEM; 4352 goto bad; 4353 } 4354 4355 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM, 4356 METADATA_WORKQUEUE_MAX_ACTIVE); 4357 if (!ic->offload_wq) { 4358 ti->error = "Cannot allocate workqueue"; 4359 r = -ENOMEM; 4360 goto bad; 4361 } 4362 4363 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 4364 if (!ic->commit_wq) { 4365 ti->error = "Cannot allocate workqueue"; 4366 r = -ENOMEM; 4367 goto bad; 4368 } 4369 INIT_WORK(&ic->commit_work, integrity_commit); 4370 4371 if (ic->mode == 'J' || ic->mode == 'B') { 4372 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 4373 if (!ic->writer_wq) { 4374 ti->error = "Cannot allocate workqueue"; 4375 r = -ENOMEM; 4376 goto bad; 4377 } 4378 INIT_WORK(&ic->writer_work, integrity_writer); 4379 } 4380 4381 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 4382 if (!ic->sb) { 4383 r = -ENOMEM; 4384 ti->error = "Cannot allocate superblock area"; 4385 goto bad; 4386 } 4387 4388 r = sync_rw_sb(ic, REQ_OP_READ); 4389 if (r) { 4390 ti->error = "Error reading superblock"; 4391 goto bad; 4392 } 4393 should_write_sb = false; 4394 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 4395 if (ic->mode != 'R') { 4396 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 4397 r = -EINVAL; 4398 ti->error = "The device is not initialized"; 4399 goto bad; 4400 } 4401 } 4402 4403 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 4404 if (r) { 4405 ti->error = "Could not initialize superblock"; 4406 goto bad; 4407 } 4408 if (ic->mode != 'R') 4409 should_write_sb = true; 4410 } 4411 4412 if (!ic->sb->version || ic->sb->version > SB_VERSION_5) { 4413 r = -EINVAL; 4414 ti->error = "Unknown version"; 4415 goto bad; 4416 } 4417 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 4418 r = -EINVAL; 4419 ti->error = "Tag size doesn't match the information in superblock"; 4420 goto bad; 4421 } 4422 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 4423 r = -EINVAL; 4424 ti->error = "Block size doesn't match the information in superblock"; 4425 goto bad; 4426 } 4427 if (!le32_to_cpu(ic->sb->journal_sections)) { 4428 r = -EINVAL; 4429 ti->error = "Corrupted superblock, journal_sections is 0"; 4430 goto bad; 4431 } 4432 /* make sure that ti->max_io_len doesn't overflow */ 4433 if (!ic->meta_dev) { 4434 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 4435 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 4436 r = -EINVAL; 4437 ti->error = "Invalid interleave_sectors in the superblock"; 4438 goto bad; 4439 } 4440 } else { 4441 if (ic->sb->log2_interleave_sectors) { 4442 r = -EINVAL; 4443 ti->error = "Invalid interleave_sectors in the superblock"; 4444 goto bad; 4445 } 4446 } 4447 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 4448 r = -EINVAL; 4449 ti->error = "Journal mac mismatch"; 4450 goto bad; 4451 } 4452 4453 get_provided_data_sectors(ic); 4454 if (!ic->provided_data_sectors) { 4455 r = -EINVAL; 4456 ti->error = "The device is too small"; 4457 goto bad; 4458 } 4459 4460 try_smaller_buffer: 4461 r = calculate_device_limits(ic); 4462 if (r) { 4463 if (ic->meta_dev) { 4464 if (ic->log2_buffer_sectors > 3) { 4465 ic->log2_buffer_sectors--; 4466 goto try_smaller_buffer; 4467 } 4468 } 4469 ti->error = "The device is too small"; 4470 goto bad; 4471 } 4472 4473 if (log2_sectors_per_bitmap_bit < 0) 4474 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT); 4475 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block) 4476 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block; 4477 4478 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3); 4479 if (bits_in_journal > UINT_MAX) 4480 bits_in_journal = UINT_MAX; 4481 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit) 4482 log2_sectors_per_bitmap_bit++; 4483 4484 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block; 4485 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4486 if (should_write_sb) 4487 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4488 4489 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) 4490 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit; 4491 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8); 4492 4493 if (!ic->meta_dev) 4494 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run)); 4495 4496 if (ti->len > ic->provided_data_sectors) { 4497 r = -EINVAL; 4498 ti->error = "Not enough provided sectors for requested mapping size"; 4499 goto bad; 4500 } 4501 4502 4503 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 4504 threshold += 50; 4505 do_div(threshold, 100); 4506 ic->free_sectors_threshold = threshold; 4507 4508 DEBUG_print("initialized:\n"); 4509 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 4510 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 4511 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 4512 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 4513 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 4514 DEBUG_print(" journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections)); 4515 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 4516 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 4517 DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev)); 4518 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 4519 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 4520 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 4521 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors); 4522 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 4523 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal); 4524 4525 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) { 4526 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 4527 ic->sb->recalc_sector = cpu_to_le64(0); 4528 } 4529 4530 if (ic->internal_hash) { 4531 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1); 4532 if (!ic->recalc_wq) { 4533 ti->error = "Cannot allocate workqueue"; 4534 r = -ENOMEM; 4535 goto bad; 4536 } 4537 INIT_WORK(&ic->recalc_work, integrity_recalc); 4538 } else { 4539 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 4540 ti->error = "Recalculate can only be specified with internal_hash"; 4541 r = -EINVAL; 4542 goto bad; 4543 } 4544 } 4545 4546 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 4547 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors && 4548 dm_integrity_disable_recalculate(ic)) { 4549 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\""; 4550 r = -EOPNOTSUPP; 4551 goto bad; 4552 } 4553 4554 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev, 4555 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0); 4556 if (IS_ERR(ic->bufio)) { 4557 r = PTR_ERR(ic->bufio); 4558 ti->error = "Cannot initialize dm-bufio"; 4559 ic->bufio = NULL; 4560 goto bad; 4561 } 4562 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 4563 4564 if (ic->mode != 'R') { 4565 r = create_journal(ic, &ti->error); 4566 if (r) 4567 goto bad; 4568 4569 } 4570 4571 if (ic->mode == 'B') { 4572 unsigned int i; 4573 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 4574 4575 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4576 if (!ic->recalc_bitmap) { 4577 r = -ENOMEM; 4578 goto bad; 4579 } 4580 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4581 if (!ic->may_write_bitmap) { 4582 r = -ENOMEM; 4583 goto bad; 4584 } 4585 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL); 4586 if (!ic->bbs) { 4587 r = -ENOMEM; 4588 goto bad; 4589 } 4590 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work); 4591 for (i = 0; i < ic->n_bitmap_blocks; i++) { 4592 struct bitmap_block_status *bbs = &ic->bbs[i]; 4593 unsigned int sector, pl_index, pl_offset; 4594 4595 INIT_WORK(&bbs->work, bitmap_block_work); 4596 bbs->ic = ic; 4597 bbs->idx = i; 4598 bio_list_init(&bbs->bio_queue); 4599 spin_lock_init(&bbs->bio_queue_lock); 4600 4601 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT); 4602 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 4603 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 4604 4605 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset; 4606 } 4607 } 4608 4609 if (should_write_sb) { 4610 init_journal(ic, 0, ic->journal_sections, 0); 4611 r = dm_integrity_failed(ic); 4612 if (unlikely(r)) { 4613 ti->error = "Error initializing journal"; 4614 goto bad; 4615 } 4616 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 4617 if (r) { 4618 ti->error = "Error initializing superblock"; 4619 goto bad; 4620 } 4621 ic->just_formatted = true; 4622 } 4623 4624 if (!ic->meta_dev) { 4625 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 4626 if (r) 4627 goto bad; 4628 } 4629 if (ic->mode == 'B') { 4630 unsigned int max_io_len; 4631 4632 max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8); 4633 if (!max_io_len) 4634 max_io_len = 1U << 31; 4635 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len); 4636 if (!ti->max_io_len || ti->max_io_len > max_io_len) { 4637 r = dm_set_target_max_io_len(ti, max_io_len); 4638 if (r) 4639 goto bad; 4640 } 4641 } 4642 4643 if (!ic->internal_hash) 4644 dm_integrity_set(ti, ic); 4645 4646 ti->num_flush_bios = 1; 4647 ti->flush_supported = true; 4648 if (ic->discard) 4649 ti->num_discard_bios = 1; 4650 4651 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1); 4652 return 0; 4653 4654 bad: 4655 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0); 4656 dm_integrity_dtr(ti); 4657 return r; 4658 } 4659 4660 static void dm_integrity_dtr(struct dm_target *ti) 4661 { 4662 struct dm_integrity_c *ic = ti->private; 4663 4664 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 4665 BUG_ON(!list_empty(&ic->wait_list)); 4666 4667 if (ic->mode == 'B') 4668 cancel_delayed_work_sync(&ic->bitmap_flush_work); 4669 if (ic->metadata_wq) 4670 destroy_workqueue(ic->metadata_wq); 4671 if (ic->wait_wq) 4672 destroy_workqueue(ic->wait_wq); 4673 if (ic->offload_wq) 4674 destroy_workqueue(ic->offload_wq); 4675 if (ic->commit_wq) 4676 destroy_workqueue(ic->commit_wq); 4677 if (ic->writer_wq) 4678 destroy_workqueue(ic->writer_wq); 4679 if (ic->recalc_wq) 4680 destroy_workqueue(ic->recalc_wq); 4681 kvfree(ic->bbs); 4682 if (ic->bufio) 4683 dm_bufio_client_destroy(ic->bufio); 4684 mempool_exit(&ic->recheck_pool); 4685 mempool_exit(&ic->journal_io_mempool); 4686 if (ic->io) 4687 dm_io_client_destroy(ic->io); 4688 if (ic->dev) 4689 dm_put_device(ti, ic->dev); 4690 if (ic->meta_dev) 4691 dm_put_device(ti, ic->meta_dev); 4692 dm_integrity_free_page_list(ic->journal); 4693 dm_integrity_free_page_list(ic->journal_io); 4694 dm_integrity_free_page_list(ic->journal_xor); 4695 dm_integrity_free_page_list(ic->recalc_bitmap); 4696 dm_integrity_free_page_list(ic->may_write_bitmap); 4697 if (ic->journal_scatterlist) 4698 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 4699 if (ic->journal_io_scatterlist) 4700 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 4701 if (ic->sk_requests) { 4702 unsigned int i; 4703 4704 for (i = 0; i < ic->journal_sections; i++) { 4705 struct skcipher_request *req; 4706 4707 req = ic->sk_requests[i]; 4708 if (req) { 4709 kfree_sensitive(req->iv); 4710 skcipher_request_free(req); 4711 } 4712 } 4713 kvfree(ic->sk_requests); 4714 } 4715 kvfree(ic->journal_tree); 4716 if (ic->sb) 4717 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 4718 4719 if (ic->internal_hash) 4720 crypto_free_shash(ic->internal_hash); 4721 free_alg(&ic->internal_hash_alg); 4722 4723 if (ic->journal_crypt) 4724 crypto_free_skcipher(ic->journal_crypt); 4725 free_alg(&ic->journal_crypt_alg); 4726 4727 if (ic->journal_mac) 4728 crypto_free_shash(ic->journal_mac); 4729 free_alg(&ic->journal_mac_alg); 4730 4731 kfree(ic); 4732 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1); 4733 } 4734 4735 static struct target_type integrity_target = { 4736 .name = "integrity", 4737 .version = {1, 11, 0}, 4738 .module = THIS_MODULE, 4739 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 4740 .ctr = dm_integrity_ctr, 4741 .dtr = dm_integrity_dtr, 4742 .map = dm_integrity_map, 4743 .postsuspend = dm_integrity_postsuspend, 4744 .resume = dm_integrity_resume, 4745 .status = dm_integrity_status, 4746 .iterate_devices = dm_integrity_iterate_devices, 4747 .io_hints = dm_integrity_io_hints, 4748 }; 4749 4750 static int __init dm_integrity_init(void) 4751 { 4752 int r; 4753 4754 journal_io_cache = kmem_cache_create("integrity_journal_io", 4755 sizeof(struct journal_io), 0, 0, NULL); 4756 if (!journal_io_cache) { 4757 DMERR("can't allocate journal io cache"); 4758 return -ENOMEM; 4759 } 4760 4761 r = dm_register_target(&integrity_target); 4762 if (r < 0) { 4763 kmem_cache_destroy(journal_io_cache); 4764 return r; 4765 } 4766 4767 return 0; 4768 } 4769 4770 static void __exit dm_integrity_exit(void) 4771 { 4772 dm_unregister_target(&integrity_target); 4773 kmem_cache_destroy(journal_io_cache); 4774 } 4775 4776 module_init(dm_integrity_init); 4777 module_exit(dm_integrity_exit); 4778 4779 MODULE_AUTHOR("Milan Broz"); 4780 MODULE_AUTHOR("Mikulas Patocka"); 4781 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 4782 MODULE_LICENSE("GPL"); 4783