1 /* 2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 3 * Copyright (C) 2016-2017 Milan Broz 4 * Copyright (C) 2016-2017 Mikulas Patocka 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-bio-record.h" 10 11 #include <linux/compiler.h> 12 #include <linux/module.h> 13 #include <linux/device-mapper.h> 14 #include <linux/dm-io.h> 15 #include <linux/vmalloc.h> 16 #include <linux/sort.h> 17 #include <linux/rbtree.h> 18 #include <linux/delay.h> 19 #include <linux/random.h> 20 #include <linux/reboot.h> 21 #include <crypto/hash.h> 22 #include <crypto/skcipher.h> 23 #include <linux/async_tx.h> 24 #include <linux/dm-bufio.h> 25 26 #define DM_MSG_PREFIX "integrity" 27 28 #define DEFAULT_INTERLEAVE_SECTORS 32768 29 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 30 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768 31 #define DEFAULT_BUFFER_SECTORS 128 32 #define DEFAULT_JOURNAL_WATERMARK 50 33 #define DEFAULT_SYNC_MSEC 10000 34 #define DEFAULT_MAX_JOURNAL_SECTORS 131072 35 #define MIN_LOG2_INTERLEAVE_SECTORS 3 36 #define MAX_LOG2_INTERLEAVE_SECTORS 31 37 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 38 #define RECALC_SECTORS 8192 39 #define RECALC_WRITE_SUPER 16 40 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */ 41 #define BITMAP_FLUSH_INTERVAL (10 * HZ) 42 #define DISCARD_FILLER 0xf6 43 44 /* 45 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 46 * so it should not be enabled in the official kernel 47 */ 48 //#define DEBUG_PRINT 49 //#define INTERNAL_VERIFY 50 51 /* 52 * On disk structures 53 */ 54 55 #define SB_MAGIC "integrt" 56 #define SB_VERSION_1 1 57 #define SB_VERSION_2 2 58 #define SB_VERSION_3 3 59 #define SB_VERSION_4 4 60 #define SB_SECTORS 8 61 #define MAX_SECTORS_PER_BLOCK 8 62 63 struct superblock { 64 __u8 magic[8]; 65 __u8 version; 66 __u8 log2_interleave_sectors; 67 __u16 integrity_tag_size; 68 __u32 journal_sections; 69 __u64 provided_data_sectors; /* userspace uses this value */ 70 __u32 flags; 71 __u8 log2_sectors_per_block; 72 __u8 log2_blocks_per_bitmap_bit; 73 __u8 pad[2]; 74 __u64 recalc_sector; 75 }; 76 77 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 78 #define SB_FLAG_RECALCULATING 0x2 79 #define SB_FLAG_DIRTY_BITMAP 0x4 80 #define SB_FLAG_FIXED_PADDING 0x8 81 82 #define JOURNAL_ENTRY_ROUNDUP 8 83 84 typedef __u64 commit_id_t; 85 #define JOURNAL_MAC_PER_SECTOR 8 86 87 struct journal_entry { 88 union { 89 struct { 90 __u32 sector_lo; 91 __u32 sector_hi; 92 } s; 93 __u64 sector; 94 } u; 95 commit_id_t last_bytes[]; 96 /* __u8 tag[0]; */ 97 }; 98 99 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 100 101 #if BITS_PER_LONG == 64 102 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) 103 #else 104 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) 105 #endif 106 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 107 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 108 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0) 109 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 110 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0) 111 112 #define JOURNAL_BLOCK_SECTORS 8 113 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 114 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 115 116 struct journal_sector { 117 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 118 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 119 commit_id_t commit_id; 120 }; 121 122 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 123 124 #define METADATA_PADDING_SECTORS 8 125 126 #define N_COMMIT_IDS 4 127 128 static unsigned char prev_commit_seq(unsigned char seq) 129 { 130 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 131 } 132 133 static unsigned char next_commit_seq(unsigned char seq) 134 { 135 return (seq + 1) % N_COMMIT_IDS; 136 } 137 138 /* 139 * In-memory structures 140 */ 141 142 struct journal_node { 143 struct rb_node node; 144 sector_t sector; 145 }; 146 147 struct alg_spec { 148 char *alg_string; 149 char *key_string; 150 __u8 *key; 151 unsigned key_size; 152 }; 153 154 struct dm_integrity_c { 155 struct dm_dev *dev; 156 struct dm_dev *meta_dev; 157 unsigned tag_size; 158 __s8 log2_tag_size; 159 sector_t start; 160 mempool_t journal_io_mempool; 161 struct dm_io_client *io; 162 struct dm_bufio_client *bufio; 163 struct workqueue_struct *metadata_wq; 164 struct superblock *sb; 165 unsigned journal_pages; 166 unsigned n_bitmap_blocks; 167 168 struct page_list *journal; 169 struct page_list *journal_io; 170 struct page_list *journal_xor; 171 struct page_list *recalc_bitmap; 172 struct page_list *may_write_bitmap; 173 struct bitmap_block_status *bbs; 174 unsigned bitmap_flush_interval; 175 int synchronous_mode; 176 struct bio_list synchronous_bios; 177 struct delayed_work bitmap_flush_work; 178 179 struct crypto_skcipher *journal_crypt; 180 struct scatterlist **journal_scatterlist; 181 struct scatterlist **journal_io_scatterlist; 182 struct skcipher_request **sk_requests; 183 184 struct crypto_shash *journal_mac; 185 186 struct journal_node *journal_tree; 187 struct rb_root journal_tree_root; 188 189 sector_t provided_data_sectors; 190 191 unsigned short journal_entry_size; 192 unsigned char journal_entries_per_sector; 193 unsigned char journal_section_entries; 194 unsigned short journal_section_sectors; 195 unsigned journal_sections; 196 unsigned journal_entries; 197 sector_t data_device_sectors; 198 sector_t meta_device_sectors; 199 unsigned initial_sectors; 200 unsigned metadata_run; 201 __s8 log2_metadata_run; 202 __u8 log2_buffer_sectors; 203 __u8 sectors_per_block; 204 __u8 log2_blocks_per_bitmap_bit; 205 206 unsigned char mode; 207 208 int failed; 209 210 struct crypto_shash *internal_hash; 211 212 struct dm_target *ti; 213 214 /* these variables are locked with endio_wait.lock */ 215 struct rb_root in_progress; 216 struct list_head wait_list; 217 wait_queue_head_t endio_wait; 218 struct workqueue_struct *wait_wq; 219 struct workqueue_struct *offload_wq; 220 221 unsigned char commit_seq; 222 commit_id_t commit_ids[N_COMMIT_IDS]; 223 224 unsigned committed_section; 225 unsigned n_committed_sections; 226 227 unsigned uncommitted_section; 228 unsigned n_uncommitted_sections; 229 230 unsigned free_section; 231 unsigned char free_section_entry; 232 unsigned free_sectors; 233 234 unsigned free_sectors_threshold; 235 236 struct workqueue_struct *commit_wq; 237 struct work_struct commit_work; 238 239 struct workqueue_struct *writer_wq; 240 struct work_struct writer_work; 241 242 struct workqueue_struct *recalc_wq; 243 struct work_struct recalc_work; 244 u8 *recalc_buffer; 245 u8 *recalc_tags; 246 247 struct bio_list flush_bio_list; 248 249 unsigned long autocommit_jiffies; 250 struct timer_list autocommit_timer; 251 unsigned autocommit_msec; 252 253 wait_queue_head_t copy_to_journal_wait; 254 255 struct completion crypto_backoff; 256 257 bool journal_uptodate; 258 bool just_formatted; 259 bool recalculate_flag; 260 bool fix_padding; 261 bool discard; 262 263 struct alg_spec internal_hash_alg; 264 struct alg_spec journal_crypt_alg; 265 struct alg_spec journal_mac_alg; 266 267 atomic64_t number_of_mismatches; 268 269 struct notifier_block reboot_notifier; 270 }; 271 272 struct dm_integrity_range { 273 sector_t logical_sector; 274 sector_t n_sectors; 275 bool waiting; 276 union { 277 struct rb_node node; 278 struct { 279 struct task_struct *task; 280 struct list_head wait_entry; 281 }; 282 }; 283 }; 284 285 struct dm_integrity_io { 286 struct work_struct work; 287 288 struct dm_integrity_c *ic; 289 enum req_opf op; 290 bool fua; 291 292 struct dm_integrity_range range; 293 294 sector_t metadata_block; 295 unsigned metadata_offset; 296 297 atomic_t in_flight; 298 blk_status_t bi_status; 299 300 struct completion *completion; 301 302 struct dm_bio_details bio_details; 303 }; 304 305 struct journal_completion { 306 struct dm_integrity_c *ic; 307 atomic_t in_flight; 308 struct completion comp; 309 }; 310 311 struct journal_io { 312 struct dm_integrity_range range; 313 struct journal_completion *comp; 314 }; 315 316 struct bitmap_block_status { 317 struct work_struct work; 318 struct dm_integrity_c *ic; 319 unsigned idx; 320 unsigned long *bitmap; 321 struct bio_list bio_queue; 322 spinlock_t bio_queue_lock; 323 324 }; 325 326 static struct kmem_cache *journal_io_cache; 327 328 #define JOURNAL_IO_MEMPOOL 32 329 330 #ifdef DEBUG_PRINT 331 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 332 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...) 333 { 334 va_list args; 335 va_start(args, msg); 336 vprintk(msg, args); 337 va_end(args); 338 if (len) 339 pr_cont(":"); 340 while (len) { 341 pr_cont(" %02x", *bytes); 342 bytes++; 343 len--; 344 } 345 pr_cont("\n"); 346 } 347 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__) 348 #else 349 #define DEBUG_print(x, ...) do { } while (0) 350 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 351 #endif 352 353 static void dm_integrity_prepare(struct request *rq) 354 { 355 } 356 357 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes) 358 { 359 } 360 361 /* 362 * DM Integrity profile, protection is performed layer above (dm-crypt) 363 */ 364 static const struct blk_integrity_profile dm_integrity_profile = { 365 .name = "DM-DIF-EXT-TAG", 366 .generate_fn = NULL, 367 .verify_fn = NULL, 368 .prepare_fn = dm_integrity_prepare, 369 .complete_fn = dm_integrity_complete, 370 }; 371 372 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 373 static void integrity_bio_wait(struct work_struct *w); 374 static void dm_integrity_dtr(struct dm_target *ti); 375 376 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 377 { 378 if (err == -EILSEQ) 379 atomic64_inc(&ic->number_of_mismatches); 380 if (!cmpxchg(&ic->failed, 0, err)) 381 DMERR("Error on %s: %d", msg, err); 382 } 383 384 static int dm_integrity_failed(struct dm_integrity_c *ic) 385 { 386 return READ_ONCE(ic->failed); 387 } 388 389 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i, 390 unsigned j, unsigned char seq) 391 { 392 /* 393 * Xor the number with section and sector, so that if a piece of 394 * journal is written at wrong place, it is detected. 395 */ 396 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 397 } 398 399 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 400 sector_t *area, sector_t *offset) 401 { 402 if (!ic->meta_dev) { 403 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 404 *area = data_sector >> log2_interleave_sectors; 405 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1); 406 } else { 407 *area = 0; 408 *offset = data_sector; 409 } 410 } 411 412 #define sector_to_block(ic, n) \ 413 do { \ 414 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \ 415 (n) >>= (ic)->sb->log2_sectors_per_block; \ 416 } while (0) 417 418 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 419 sector_t offset, unsigned *metadata_offset) 420 { 421 __u64 ms; 422 unsigned mo; 423 424 ms = area << ic->sb->log2_interleave_sectors; 425 if (likely(ic->log2_metadata_run >= 0)) 426 ms += area << ic->log2_metadata_run; 427 else 428 ms += area * ic->metadata_run; 429 ms >>= ic->log2_buffer_sectors; 430 431 sector_to_block(ic, offset); 432 433 if (likely(ic->log2_tag_size >= 0)) { 434 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 435 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 436 } else { 437 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 438 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 439 } 440 *metadata_offset = mo; 441 return ms; 442 } 443 444 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 445 { 446 sector_t result; 447 448 if (ic->meta_dev) 449 return offset; 450 451 result = area << ic->sb->log2_interleave_sectors; 452 if (likely(ic->log2_metadata_run >= 0)) 453 result += (area + 1) << ic->log2_metadata_run; 454 else 455 result += (area + 1) * ic->metadata_run; 456 457 result += (sector_t)ic->initial_sectors + offset; 458 result += ic->start; 459 460 return result; 461 } 462 463 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr) 464 { 465 if (unlikely(*sec_ptr >= ic->journal_sections)) 466 *sec_ptr -= ic->journal_sections; 467 } 468 469 static void sb_set_version(struct dm_integrity_c *ic) 470 { 471 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) 472 ic->sb->version = SB_VERSION_4; 473 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) 474 ic->sb->version = SB_VERSION_3; 475 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 476 ic->sb->version = SB_VERSION_2; 477 else 478 ic->sb->version = SB_VERSION_1; 479 } 480 481 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags) 482 { 483 struct dm_io_request io_req; 484 struct dm_io_region io_loc; 485 486 io_req.bi_op = op; 487 io_req.bi_op_flags = op_flags; 488 io_req.mem.type = DM_IO_KMEM; 489 io_req.mem.ptr.addr = ic->sb; 490 io_req.notify.fn = NULL; 491 io_req.client = ic->io; 492 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 493 io_loc.sector = ic->start; 494 io_loc.count = SB_SECTORS; 495 496 if (op == REQ_OP_WRITE) 497 sb_set_version(ic); 498 499 return dm_io(&io_req, 1, &io_loc, NULL); 500 } 501 502 #define BITMAP_OP_TEST_ALL_SET 0 503 #define BITMAP_OP_TEST_ALL_CLEAR 1 504 #define BITMAP_OP_SET 2 505 #define BITMAP_OP_CLEAR 3 506 507 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap, 508 sector_t sector, sector_t n_sectors, int mode) 509 { 510 unsigned long bit, end_bit, this_end_bit, page, end_page; 511 unsigned long *data; 512 513 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) { 514 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)", 515 sector, 516 n_sectors, 517 ic->sb->log2_sectors_per_block, 518 ic->log2_blocks_per_bitmap_bit, 519 mode); 520 BUG(); 521 } 522 523 if (unlikely(!n_sectors)) 524 return true; 525 526 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 527 end_bit = (sector + n_sectors - 1) >> 528 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 529 530 page = bit / (PAGE_SIZE * 8); 531 bit %= PAGE_SIZE * 8; 532 533 end_page = end_bit / (PAGE_SIZE * 8); 534 end_bit %= PAGE_SIZE * 8; 535 536 repeat: 537 if (page < end_page) { 538 this_end_bit = PAGE_SIZE * 8 - 1; 539 } else { 540 this_end_bit = end_bit; 541 } 542 543 data = lowmem_page_address(bitmap[page].page); 544 545 if (mode == BITMAP_OP_TEST_ALL_SET) { 546 while (bit <= this_end_bit) { 547 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 548 do { 549 if (data[bit / BITS_PER_LONG] != -1) 550 return false; 551 bit += BITS_PER_LONG; 552 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 553 continue; 554 } 555 if (!test_bit(bit, data)) 556 return false; 557 bit++; 558 } 559 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) { 560 while (bit <= this_end_bit) { 561 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 562 do { 563 if (data[bit / BITS_PER_LONG] != 0) 564 return false; 565 bit += BITS_PER_LONG; 566 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 567 continue; 568 } 569 if (test_bit(bit, data)) 570 return false; 571 bit++; 572 } 573 } else if (mode == BITMAP_OP_SET) { 574 while (bit <= this_end_bit) { 575 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 576 do { 577 data[bit / BITS_PER_LONG] = -1; 578 bit += BITS_PER_LONG; 579 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 580 continue; 581 } 582 __set_bit(bit, data); 583 bit++; 584 } 585 } else if (mode == BITMAP_OP_CLEAR) { 586 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1) 587 clear_page(data); 588 else while (bit <= this_end_bit) { 589 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 590 do { 591 data[bit / BITS_PER_LONG] = 0; 592 bit += BITS_PER_LONG; 593 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 594 continue; 595 } 596 __clear_bit(bit, data); 597 bit++; 598 } 599 } else { 600 BUG(); 601 } 602 603 if (unlikely(page < end_page)) { 604 bit = 0; 605 page++; 606 goto repeat; 607 } 608 609 return true; 610 } 611 612 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src) 613 { 614 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 615 unsigned i; 616 617 for (i = 0; i < n_bitmap_pages; i++) { 618 unsigned long *dst_data = lowmem_page_address(dst[i].page); 619 unsigned long *src_data = lowmem_page_address(src[i].page); 620 copy_page(dst_data, src_data); 621 } 622 } 623 624 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector) 625 { 626 unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 627 unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8); 628 629 BUG_ON(bitmap_block >= ic->n_bitmap_blocks); 630 return &ic->bbs[bitmap_block]; 631 } 632 633 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset, 634 bool e, const char *function) 635 { 636 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 637 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 638 639 if (unlikely(section >= ic->journal_sections) || 640 unlikely(offset >= limit)) { 641 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)", 642 function, section, offset, ic->journal_sections, limit); 643 BUG(); 644 } 645 #endif 646 } 647 648 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset, 649 unsigned *pl_index, unsigned *pl_offset) 650 { 651 unsigned sector; 652 653 access_journal_check(ic, section, offset, false, "page_list_location"); 654 655 sector = section * ic->journal_section_sectors + offset; 656 657 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 658 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 659 } 660 661 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 662 unsigned section, unsigned offset, unsigned *n_sectors) 663 { 664 unsigned pl_index, pl_offset; 665 char *va; 666 667 page_list_location(ic, section, offset, &pl_index, &pl_offset); 668 669 if (n_sectors) 670 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 671 672 va = lowmem_page_address(pl[pl_index].page); 673 674 return (struct journal_sector *)(va + pl_offset); 675 } 676 677 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset) 678 { 679 return access_page_list(ic, ic->journal, section, offset, NULL); 680 } 681 682 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n) 683 { 684 unsigned rel_sector, offset; 685 struct journal_sector *js; 686 687 access_journal_check(ic, section, n, true, "access_journal_entry"); 688 689 rel_sector = n % JOURNAL_BLOCK_SECTORS; 690 offset = n / JOURNAL_BLOCK_SECTORS; 691 692 js = access_journal(ic, section, rel_sector); 693 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 694 } 695 696 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n) 697 { 698 n <<= ic->sb->log2_sectors_per_block; 699 700 n += JOURNAL_BLOCK_SECTORS; 701 702 access_journal_check(ic, section, n, false, "access_journal_data"); 703 704 return access_journal(ic, section, n); 705 } 706 707 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE]) 708 { 709 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 710 int r; 711 unsigned j, size; 712 713 desc->tfm = ic->journal_mac; 714 715 r = crypto_shash_init(desc); 716 if (unlikely(r)) { 717 dm_integrity_io_error(ic, "crypto_shash_init", r); 718 goto err; 719 } 720 721 for (j = 0; j < ic->journal_section_entries; j++) { 722 struct journal_entry *je = access_journal_entry(ic, section, j); 723 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector); 724 if (unlikely(r)) { 725 dm_integrity_io_error(ic, "crypto_shash_update", r); 726 goto err; 727 } 728 } 729 730 size = crypto_shash_digestsize(ic->journal_mac); 731 732 if (likely(size <= JOURNAL_MAC_SIZE)) { 733 r = crypto_shash_final(desc, result); 734 if (unlikely(r)) { 735 dm_integrity_io_error(ic, "crypto_shash_final", r); 736 goto err; 737 } 738 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 739 } else { 740 __u8 digest[HASH_MAX_DIGESTSIZE]; 741 742 if (WARN_ON(size > sizeof(digest))) { 743 dm_integrity_io_error(ic, "digest_size", -EINVAL); 744 goto err; 745 } 746 r = crypto_shash_final(desc, digest); 747 if (unlikely(r)) { 748 dm_integrity_io_error(ic, "crypto_shash_final", r); 749 goto err; 750 } 751 memcpy(result, digest, JOURNAL_MAC_SIZE); 752 } 753 754 return; 755 err: 756 memset(result, 0, JOURNAL_MAC_SIZE); 757 } 758 759 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr) 760 { 761 __u8 result[JOURNAL_MAC_SIZE]; 762 unsigned j; 763 764 if (!ic->journal_mac) 765 return; 766 767 section_mac(ic, section, result); 768 769 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 770 struct journal_sector *js = access_journal(ic, section, j); 771 772 if (likely(wr)) 773 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 774 else { 775 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) 776 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 777 } 778 } 779 } 780 781 static void complete_journal_op(void *context) 782 { 783 struct journal_completion *comp = context; 784 BUG_ON(!atomic_read(&comp->in_flight)); 785 if (likely(atomic_dec_and_test(&comp->in_flight))) 786 complete(&comp->comp); 787 } 788 789 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 790 unsigned n_sections, struct journal_completion *comp) 791 { 792 struct async_submit_ctl submit; 793 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 794 unsigned pl_index, pl_offset, section_index; 795 struct page_list *source_pl, *target_pl; 796 797 if (likely(encrypt)) { 798 source_pl = ic->journal; 799 target_pl = ic->journal_io; 800 } else { 801 source_pl = ic->journal_io; 802 target_pl = ic->journal; 803 } 804 805 page_list_location(ic, section, 0, &pl_index, &pl_offset); 806 807 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 808 809 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 810 811 section_index = pl_index; 812 813 do { 814 size_t this_step; 815 struct page *src_pages[2]; 816 struct page *dst_page; 817 818 while (unlikely(pl_index == section_index)) { 819 unsigned dummy; 820 if (likely(encrypt)) 821 rw_section_mac(ic, section, true); 822 section++; 823 n_sections--; 824 if (!n_sections) 825 break; 826 page_list_location(ic, section, 0, §ion_index, &dummy); 827 } 828 829 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 830 dst_page = target_pl[pl_index].page; 831 src_pages[0] = source_pl[pl_index].page; 832 src_pages[1] = ic->journal_xor[pl_index].page; 833 834 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 835 836 pl_index++; 837 pl_offset = 0; 838 n_bytes -= this_step; 839 } while (n_bytes); 840 841 BUG_ON(n_sections); 842 843 async_tx_issue_pending_all(); 844 } 845 846 static void complete_journal_encrypt(struct crypto_async_request *req, int err) 847 { 848 struct journal_completion *comp = req->data; 849 if (unlikely(err)) { 850 if (likely(err == -EINPROGRESS)) { 851 complete(&comp->ic->crypto_backoff); 852 return; 853 } 854 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 855 } 856 complete_journal_op(comp); 857 } 858 859 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 860 { 861 int r; 862 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 863 complete_journal_encrypt, comp); 864 if (likely(encrypt)) 865 r = crypto_skcipher_encrypt(req); 866 else 867 r = crypto_skcipher_decrypt(req); 868 if (likely(!r)) 869 return false; 870 if (likely(r == -EINPROGRESS)) 871 return true; 872 if (likely(r == -EBUSY)) { 873 wait_for_completion(&comp->ic->crypto_backoff); 874 reinit_completion(&comp->ic->crypto_backoff); 875 return true; 876 } 877 dm_integrity_io_error(comp->ic, "encrypt", r); 878 return false; 879 } 880 881 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 882 unsigned n_sections, struct journal_completion *comp) 883 { 884 struct scatterlist **source_sg; 885 struct scatterlist **target_sg; 886 887 atomic_add(2, &comp->in_flight); 888 889 if (likely(encrypt)) { 890 source_sg = ic->journal_scatterlist; 891 target_sg = ic->journal_io_scatterlist; 892 } else { 893 source_sg = ic->journal_io_scatterlist; 894 target_sg = ic->journal_scatterlist; 895 } 896 897 do { 898 struct skcipher_request *req; 899 unsigned ivsize; 900 char *iv; 901 902 if (likely(encrypt)) 903 rw_section_mac(ic, section, true); 904 905 req = ic->sk_requests[section]; 906 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 907 iv = req->iv; 908 909 memcpy(iv, iv + ivsize, ivsize); 910 911 req->src = source_sg[section]; 912 req->dst = target_sg[section]; 913 914 if (unlikely(do_crypt(encrypt, req, comp))) 915 atomic_inc(&comp->in_flight); 916 917 section++; 918 n_sections--; 919 } while (n_sections); 920 921 atomic_dec(&comp->in_flight); 922 complete_journal_op(comp); 923 } 924 925 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 926 unsigned n_sections, struct journal_completion *comp) 927 { 928 if (ic->journal_xor) 929 return xor_journal(ic, encrypt, section, n_sections, comp); 930 else 931 return crypt_journal(ic, encrypt, section, n_sections, comp); 932 } 933 934 static void complete_journal_io(unsigned long error, void *context) 935 { 936 struct journal_completion *comp = context; 937 if (unlikely(error != 0)) 938 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 939 complete_journal_op(comp); 940 } 941 942 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags, 943 unsigned sector, unsigned n_sectors, struct journal_completion *comp) 944 { 945 struct dm_io_request io_req; 946 struct dm_io_region io_loc; 947 unsigned pl_index, pl_offset; 948 int r; 949 950 if (unlikely(dm_integrity_failed(ic))) { 951 if (comp) 952 complete_journal_io(-1UL, comp); 953 return; 954 } 955 956 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 957 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 958 959 io_req.bi_op = op; 960 io_req.bi_op_flags = op_flags; 961 io_req.mem.type = DM_IO_PAGE_LIST; 962 if (ic->journal_io) 963 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 964 else 965 io_req.mem.ptr.pl = &ic->journal[pl_index]; 966 io_req.mem.offset = pl_offset; 967 if (likely(comp != NULL)) { 968 io_req.notify.fn = complete_journal_io; 969 io_req.notify.context = comp; 970 } else { 971 io_req.notify.fn = NULL; 972 } 973 io_req.client = ic->io; 974 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 975 io_loc.sector = ic->start + SB_SECTORS + sector; 976 io_loc.count = n_sectors; 977 978 r = dm_io(&io_req, 1, &io_loc, NULL); 979 if (unlikely(r)) { 980 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r); 981 if (comp) { 982 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 983 complete_journal_io(-1UL, comp); 984 } 985 } 986 } 987 988 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section, 989 unsigned n_sections, struct journal_completion *comp) 990 { 991 unsigned sector, n_sectors; 992 993 sector = section * ic->journal_section_sectors; 994 n_sectors = n_sections * ic->journal_section_sectors; 995 996 rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp); 997 } 998 999 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections) 1000 { 1001 struct journal_completion io_comp; 1002 struct journal_completion crypt_comp_1; 1003 struct journal_completion crypt_comp_2; 1004 unsigned i; 1005 1006 io_comp.ic = ic; 1007 init_completion(&io_comp.comp); 1008 1009 if (commit_start + commit_sections <= ic->journal_sections) { 1010 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 1011 if (ic->journal_io) { 1012 crypt_comp_1.ic = ic; 1013 init_completion(&crypt_comp_1.comp); 1014 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1015 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 1016 wait_for_completion_io(&crypt_comp_1.comp); 1017 } else { 1018 for (i = 0; i < commit_sections; i++) 1019 rw_section_mac(ic, commit_start + i, true); 1020 } 1021 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start, 1022 commit_sections, &io_comp); 1023 } else { 1024 unsigned to_end; 1025 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 1026 to_end = ic->journal_sections - commit_start; 1027 if (ic->journal_io) { 1028 crypt_comp_1.ic = ic; 1029 init_completion(&crypt_comp_1.comp); 1030 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1031 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 1032 if (try_wait_for_completion(&crypt_comp_1.comp)) { 1033 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1034 reinit_completion(&crypt_comp_1.comp); 1035 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1036 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 1037 wait_for_completion_io(&crypt_comp_1.comp); 1038 } else { 1039 crypt_comp_2.ic = ic; 1040 init_completion(&crypt_comp_2.comp); 1041 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 1042 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 1043 wait_for_completion_io(&crypt_comp_1.comp); 1044 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1045 wait_for_completion_io(&crypt_comp_2.comp); 1046 } 1047 } else { 1048 for (i = 0; i < to_end; i++) 1049 rw_section_mac(ic, commit_start + i, true); 1050 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1051 for (i = 0; i < commit_sections - to_end; i++) 1052 rw_section_mac(ic, i, true); 1053 } 1054 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp); 1055 } 1056 1057 wait_for_completion_io(&io_comp.comp); 1058 } 1059 1060 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset, 1061 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data) 1062 { 1063 struct dm_io_request io_req; 1064 struct dm_io_region io_loc; 1065 int r; 1066 unsigned sector, pl_index, pl_offset; 1067 1068 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1)); 1069 1070 if (unlikely(dm_integrity_failed(ic))) { 1071 fn(-1UL, data); 1072 return; 1073 } 1074 1075 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 1076 1077 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1078 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1079 1080 io_req.bi_op = REQ_OP_WRITE; 1081 io_req.bi_op_flags = 0; 1082 io_req.mem.type = DM_IO_PAGE_LIST; 1083 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1084 io_req.mem.offset = pl_offset; 1085 io_req.notify.fn = fn; 1086 io_req.notify.context = data; 1087 io_req.client = ic->io; 1088 io_loc.bdev = ic->dev->bdev; 1089 io_loc.sector = target; 1090 io_loc.count = n_sectors; 1091 1092 r = dm_io(&io_req, 1, &io_loc, NULL); 1093 if (unlikely(r)) { 1094 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1095 fn(-1UL, data); 1096 } 1097 } 1098 1099 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2) 1100 { 1101 return range1->logical_sector < range2->logical_sector + range2->n_sectors && 1102 range1->logical_sector + range1->n_sectors > range2->logical_sector; 1103 } 1104 1105 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting) 1106 { 1107 struct rb_node **n = &ic->in_progress.rb_node; 1108 struct rb_node *parent; 1109 1110 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1)); 1111 1112 if (likely(check_waiting)) { 1113 struct dm_integrity_range *range; 1114 list_for_each_entry(range, &ic->wait_list, wait_entry) { 1115 if (unlikely(ranges_overlap(range, new_range))) 1116 return false; 1117 } 1118 } 1119 1120 parent = NULL; 1121 1122 while (*n) { 1123 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 1124 1125 parent = *n; 1126 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) { 1127 n = &range->node.rb_left; 1128 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) { 1129 n = &range->node.rb_right; 1130 } else { 1131 return false; 1132 } 1133 } 1134 1135 rb_link_node(&new_range->node, parent, n); 1136 rb_insert_color(&new_range->node, &ic->in_progress); 1137 1138 return true; 1139 } 1140 1141 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1142 { 1143 rb_erase(&range->node, &ic->in_progress); 1144 while (unlikely(!list_empty(&ic->wait_list))) { 1145 struct dm_integrity_range *last_range = 1146 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry); 1147 struct task_struct *last_range_task; 1148 last_range_task = last_range->task; 1149 list_del(&last_range->wait_entry); 1150 if (!add_new_range(ic, last_range, false)) { 1151 last_range->task = last_range_task; 1152 list_add(&last_range->wait_entry, &ic->wait_list); 1153 break; 1154 } 1155 last_range->waiting = false; 1156 wake_up_process(last_range_task); 1157 } 1158 } 1159 1160 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1161 { 1162 unsigned long flags; 1163 1164 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1165 remove_range_unlocked(ic, range); 1166 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1167 } 1168 1169 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1170 { 1171 new_range->waiting = true; 1172 list_add_tail(&new_range->wait_entry, &ic->wait_list); 1173 new_range->task = current; 1174 do { 1175 __set_current_state(TASK_UNINTERRUPTIBLE); 1176 spin_unlock_irq(&ic->endio_wait.lock); 1177 io_schedule(); 1178 spin_lock_irq(&ic->endio_wait.lock); 1179 } while (unlikely(new_range->waiting)); 1180 } 1181 1182 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1183 { 1184 if (unlikely(!add_new_range(ic, new_range, true))) 1185 wait_and_add_new_range(ic, new_range); 1186 } 1187 1188 static void init_journal_node(struct journal_node *node) 1189 { 1190 RB_CLEAR_NODE(&node->node); 1191 node->sector = (sector_t)-1; 1192 } 1193 1194 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 1195 { 1196 struct rb_node **link; 1197 struct rb_node *parent; 1198 1199 node->sector = sector; 1200 BUG_ON(!RB_EMPTY_NODE(&node->node)); 1201 1202 link = &ic->journal_tree_root.rb_node; 1203 parent = NULL; 1204 1205 while (*link) { 1206 struct journal_node *j; 1207 parent = *link; 1208 j = container_of(parent, struct journal_node, node); 1209 if (sector < j->sector) 1210 link = &j->node.rb_left; 1211 else 1212 link = &j->node.rb_right; 1213 } 1214 1215 rb_link_node(&node->node, parent, link); 1216 rb_insert_color(&node->node, &ic->journal_tree_root); 1217 } 1218 1219 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 1220 { 1221 BUG_ON(RB_EMPTY_NODE(&node->node)); 1222 rb_erase(&node->node, &ic->journal_tree_root); 1223 init_journal_node(node); 1224 } 1225 1226 #define NOT_FOUND (-1U) 1227 1228 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 1229 { 1230 struct rb_node *n = ic->journal_tree_root.rb_node; 1231 unsigned found = NOT_FOUND; 1232 *next_sector = (sector_t)-1; 1233 while (n) { 1234 struct journal_node *j = container_of(n, struct journal_node, node); 1235 if (sector == j->sector) { 1236 found = j - ic->journal_tree; 1237 } 1238 if (sector < j->sector) { 1239 *next_sector = j->sector; 1240 n = j->node.rb_left; 1241 } else { 1242 n = j->node.rb_right; 1243 } 1244 } 1245 1246 return found; 1247 } 1248 1249 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector) 1250 { 1251 struct journal_node *node, *next_node; 1252 struct rb_node *next; 1253 1254 if (unlikely(pos >= ic->journal_entries)) 1255 return false; 1256 node = &ic->journal_tree[pos]; 1257 if (unlikely(RB_EMPTY_NODE(&node->node))) 1258 return false; 1259 if (unlikely(node->sector != sector)) 1260 return false; 1261 1262 next = rb_next(&node->node); 1263 if (unlikely(!next)) 1264 return true; 1265 1266 next_node = container_of(next, struct journal_node, node); 1267 return next_node->sector != sector; 1268 } 1269 1270 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 1271 { 1272 struct rb_node *next; 1273 struct journal_node *next_node; 1274 unsigned next_section; 1275 1276 BUG_ON(RB_EMPTY_NODE(&node->node)); 1277 1278 next = rb_next(&node->node); 1279 if (unlikely(!next)) 1280 return false; 1281 1282 next_node = container_of(next, struct journal_node, node); 1283 1284 if (next_node->sector != node->sector) 1285 return false; 1286 1287 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries; 1288 if (next_section >= ic->committed_section && 1289 next_section < ic->committed_section + ic->n_committed_sections) 1290 return true; 1291 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1292 return true; 1293 1294 return false; 1295 } 1296 1297 #define TAG_READ 0 1298 #define TAG_WRITE 1 1299 #define TAG_CMP 2 1300 1301 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1302 unsigned *metadata_offset, unsigned total_size, int op) 1303 { 1304 #define MAY_BE_FILLER 1 1305 #define MAY_BE_HASH 2 1306 unsigned hash_offset = 0; 1307 unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1308 1309 do { 1310 unsigned char *data, *dp; 1311 struct dm_buffer *b; 1312 unsigned to_copy; 1313 int r; 1314 1315 r = dm_integrity_failed(ic); 1316 if (unlikely(r)) 1317 return r; 1318 1319 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1320 if (IS_ERR(data)) 1321 return PTR_ERR(data); 1322 1323 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1324 dp = data + *metadata_offset; 1325 if (op == TAG_READ) { 1326 memcpy(tag, dp, to_copy); 1327 } else if (op == TAG_WRITE) { 1328 memcpy(dp, tag, to_copy); 1329 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); 1330 } else { 1331 /* e.g.: op == TAG_CMP */ 1332 1333 if (likely(is_power_of_2(ic->tag_size))) { 1334 if (unlikely(memcmp(dp, tag, to_copy))) 1335 if (unlikely(!ic->discard) || 1336 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) { 1337 goto thorough_test; 1338 } 1339 } else { 1340 unsigned i, ts; 1341 thorough_test: 1342 ts = total_size; 1343 1344 for (i = 0; i < to_copy; i++, ts--) { 1345 if (unlikely(dp[i] != tag[i])) 1346 may_be &= ~MAY_BE_HASH; 1347 if (likely(dp[i] != DISCARD_FILLER)) 1348 may_be &= ~MAY_BE_FILLER; 1349 hash_offset++; 1350 if (unlikely(hash_offset == ic->tag_size)) { 1351 if (unlikely(!may_be)) { 1352 dm_bufio_release(b); 1353 return ts; 1354 } 1355 hash_offset = 0; 1356 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1357 } 1358 } 1359 } 1360 } 1361 dm_bufio_release(b); 1362 1363 tag += to_copy; 1364 *metadata_offset += to_copy; 1365 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1366 (*metadata_block)++; 1367 *metadata_offset = 0; 1368 } 1369 1370 if (unlikely(!is_power_of_2(ic->tag_size))) { 1371 hash_offset = (hash_offset + to_copy) % ic->tag_size; 1372 } 1373 1374 total_size -= to_copy; 1375 } while (unlikely(total_size)); 1376 1377 return 0; 1378 #undef MAY_BE_FILLER 1379 #undef MAY_BE_HASH 1380 } 1381 1382 struct flush_request { 1383 struct dm_io_request io_req; 1384 struct dm_io_region io_reg; 1385 struct dm_integrity_c *ic; 1386 struct completion comp; 1387 }; 1388 1389 static void flush_notify(unsigned long error, void *fr_) 1390 { 1391 struct flush_request *fr = fr_; 1392 if (unlikely(error != 0)) 1393 dm_integrity_io_error(fr->ic, "flusing disk cache", -EIO); 1394 complete(&fr->comp); 1395 } 1396 1397 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data) 1398 { 1399 int r; 1400 1401 struct flush_request fr; 1402 1403 if (!ic->meta_dev) 1404 flush_data = false; 1405 if (flush_data) { 1406 fr.io_req.bi_op = REQ_OP_WRITE, 1407 fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC, 1408 fr.io_req.mem.type = DM_IO_KMEM, 1409 fr.io_req.mem.ptr.addr = NULL, 1410 fr.io_req.notify.fn = flush_notify, 1411 fr.io_req.notify.context = &fr; 1412 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio), 1413 fr.io_reg.bdev = ic->dev->bdev, 1414 fr.io_reg.sector = 0, 1415 fr.io_reg.count = 0, 1416 fr.ic = ic; 1417 init_completion(&fr.comp); 1418 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL); 1419 BUG_ON(r); 1420 } 1421 1422 r = dm_bufio_write_dirty_buffers(ic->bufio); 1423 if (unlikely(r)) 1424 dm_integrity_io_error(ic, "writing tags", r); 1425 1426 if (flush_data) 1427 wait_for_completion(&fr.comp); 1428 } 1429 1430 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1431 { 1432 DECLARE_WAITQUEUE(wait, current); 1433 __add_wait_queue(&ic->endio_wait, &wait); 1434 __set_current_state(TASK_UNINTERRUPTIBLE); 1435 spin_unlock_irq(&ic->endio_wait.lock); 1436 io_schedule(); 1437 spin_lock_irq(&ic->endio_wait.lock); 1438 __remove_wait_queue(&ic->endio_wait, &wait); 1439 } 1440 1441 static void autocommit_fn(struct timer_list *t) 1442 { 1443 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer); 1444 1445 if (likely(!dm_integrity_failed(ic))) 1446 queue_work(ic->commit_wq, &ic->commit_work); 1447 } 1448 1449 static void schedule_autocommit(struct dm_integrity_c *ic) 1450 { 1451 if (!timer_pending(&ic->autocommit_timer)) 1452 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1453 } 1454 1455 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1456 { 1457 struct bio *bio; 1458 unsigned long flags; 1459 1460 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1461 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1462 bio_list_add(&ic->flush_bio_list, bio); 1463 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1464 1465 queue_work(ic->commit_wq, &ic->commit_work); 1466 } 1467 1468 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1469 { 1470 int r = dm_integrity_failed(ic); 1471 if (unlikely(r) && !bio->bi_status) 1472 bio->bi_status = errno_to_blk_status(r); 1473 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) { 1474 unsigned long flags; 1475 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1476 bio_list_add(&ic->synchronous_bios, bio); 1477 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 1478 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1479 return; 1480 } 1481 bio_endio(bio); 1482 } 1483 1484 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1485 { 1486 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1487 1488 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1489 submit_flush_bio(ic, dio); 1490 else 1491 do_endio(ic, bio); 1492 } 1493 1494 static void dec_in_flight(struct dm_integrity_io *dio) 1495 { 1496 if (atomic_dec_and_test(&dio->in_flight)) { 1497 struct dm_integrity_c *ic = dio->ic; 1498 struct bio *bio; 1499 1500 remove_range(ic, &dio->range); 1501 1502 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD)) 1503 schedule_autocommit(ic); 1504 1505 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1506 1507 if (unlikely(dio->bi_status) && !bio->bi_status) 1508 bio->bi_status = dio->bi_status; 1509 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1510 dio->range.logical_sector += dio->range.n_sectors; 1511 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1512 INIT_WORK(&dio->work, integrity_bio_wait); 1513 queue_work(ic->offload_wq, &dio->work); 1514 return; 1515 } 1516 do_endio_flush(ic, dio); 1517 } 1518 } 1519 1520 static void integrity_end_io(struct bio *bio) 1521 { 1522 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1523 1524 dm_bio_restore(&dio->bio_details, bio); 1525 if (bio->bi_integrity) 1526 bio->bi_opf |= REQ_INTEGRITY; 1527 1528 if (dio->completion) 1529 complete(dio->completion); 1530 1531 dec_in_flight(dio); 1532 } 1533 1534 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1535 const char *data, char *result) 1536 { 1537 __u64 sector_le = cpu_to_le64(sector); 1538 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1539 int r; 1540 unsigned digest_size; 1541 1542 req->tfm = ic->internal_hash; 1543 1544 r = crypto_shash_init(req); 1545 if (unlikely(r < 0)) { 1546 dm_integrity_io_error(ic, "crypto_shash_init", r); 1547 goto failed; 1548 } 1549 1550 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof sector_le); 1551 if (unlikely(r < 0)) { 1552 dm_integrity_io_error(ic, "crypto_shash_update", r); 1553 goto failed; 1554 } 1555 1556 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1557 if (unlikely(r < 0)) { 1558 dm_integrity_io_error(ic, "crypto_shash_update", r); 1559 goto failed; 1560 } 1561 1562 r = crypto_shash_final(req, result); 1563 if (unlikely(r < 0)) { 1564 dm_integrity_io_error(ic, "crypto_shash_final", r); 1565 goto failed; 1566 } 1567 1568 digest_size = crypto_shash_digestsize(ic->internal_hash); 1569 if (unlikely(digest_size < ic->tag_size)) 1570 memset(result + digest_size, 0, ic->tag_size - digest_size); 1571 1572 return; 1573 1574 failed: 1575 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1576 get_random_bytes(result, ic->tag_size); 1577 } 1578 1579 static void integrity_metadata(struct work_struct *w) 1580 { 1581 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1582 struct dm_integrity_c *ic = dio->ic; 1583 1584 int r; 1585 1586 if (ic->internal_hash) { 1587 struct bvec_iter iter; 1588 struct bio_vec bv; 1589 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1590 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1591 char *checksums; 1592 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1593 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1594 sector_t sector; 1595 unsigned sectors_to_process; 1596 1597 if (unlikely(ic->mode == 'R')) 1598 goto skip_io; 1599 1600 if (likely(dio->op != REQ_OP_DISCARD)) 1601 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1602 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1603 else 1604 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1605 if (!checksums) { 1606 checksums = checksums_onstack; 1607 if (WARN_ON(extra_space && 1608 digest_size > sizeof(checksums_onstack))) { 1609 r = -EINVAL; 1610 goto error; 1611 } 1612 } 1613 1614 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1615 sector_t bi_sector = dio->bio_details.bi_iter.bi_sector; 1616 unsigned bi_size = dio->bio_details.bi_iter.bi_size; 1617 unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE; 1618 unsigned max_blocks = max_size / ic->tag_size; 1619 memset(checksums, DISCARD_FILLER, max_size); 1620 1621 while (bi_size) { 1622 unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1623 this_step_blocks = min(this_step_blocks, max_blocks); 1624 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1625 this_step_blocks * ic->tag_size, TAG_WRITE); 1626 if (unlikely(r)) { 1627 if (likely(checksums != checksums_onstack)) 1628 kfree(checksums); 1629 goto error; 1630 } 1631 1632 /*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) { 1633 printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size); 1634 printk("BUGG: this_step_blocks: %u\n", this_step_blocks); 1635 BUG(); 1636 }*/ 1637 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1638 bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block; 1639 } 1640 1641 if (likely(checksums != checksums_onstack)) 1642 kfree(checksums); 1643 goto skip_io; 1644 } 1645 1646 sector = dio->range.logical_sector; 1647 sectors_to_process = dio->range.n_sectors; 1648 1649 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) { 1650 unsigned pos; 1651 char *mem, *checksums_ptr; 1652 1653 again: 1654 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset; 1655 pos = 0; 1656 checksums_ptr = checksums; 1657 do { 1658 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1659 checksums_ptr += ic->tag_size; 1660 sectors_to_process -= ic->sectors_per_block; 1661 pos += ic->sectors_per_block << SECTOR_SHIFT; 1662 sector += ic->sectors_per_block; 1663 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack); 1664 kunmap_atomic(mem); 1665 1666 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1667 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE); 1668 if (unlikely(r)) { 1669 if (r > 0) { 1670 char b[BDEVNAME_SIZE]; 1671 DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", bio_devname(bio, b), 1672 (sector - ((r + ic->tag_size - 1) / ic->tag_size))); 1673 r = -EILSEQ; 1674 atomic64_inc(&ic->number_of_mismatches); 1675 } 1676 if (likely(checksums != checksums_onstack)) 1677 kfree(checksums); 1678 goto error; 1679 } 1680 1681 if (!sectors_to_process) 1682 break; 1683 1684 if (unlikely(pos < bv.bv_len)) { 1685 bv.bv_offset += pos; 1686 bv.bv_len -= pos; 1687 goto again; 1688 } 1689 } 1690 1691 if (likely(checksums != checksums_onstack)) 1692 kfree(checksums); 1693 } else { 1694 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity; 1695 1696 if (bip) { 1697 struct bio_vec biv; 1698 struct bvec_iter iter; 1699 unsigned data_to_process = dio->range.n_sectors; 1700 sector_to_block(ic, data_to_process); 1701 data_to_process *= ic->tag_size; 1702 1703 bip_for_each_vec(biv, bip, iter) { 1704 unsigned char *tag; 1705 unsigned this_len; 1706 1707 BUG_ON(PageHighMem(biv.bv_page)); 1708 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1709 this_len = min(biv.bv_len, data_to_process); 1710 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1711 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE); 1712 if (unlikely(r)) 1713 goto error; 1714 data_to_process -= this_len; 1715 if (!data_to_process) 1716 break; 1717 } 1718 } 1719 } 1720 skip_io: 1721 dec_in_flight(dio); 1722 return; 1723 error: 1724 dio->bi_status = errno_to_blk_status(r); 1725 dec_in_flight(dio); 1726 } 1727 1728 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1729 { 1730 struct dm_integrity_c *ic = ti->private; 1731 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1732 struct bio_integrity_payload *bip; 1733 1734 sector_t area, offset; 1735 1736 dio->ic = ic; 1737 dio->bi_status = 0; 1738 dio->op = bio_op(bio); 1739 1740 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1741 if (ti->max_io_len) { 1742 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector); 1743 unsigned log2_max_io_len = __fls(ti->max_io_len); 1744 sector_t start_boundary = sec >> log2_max_io_len; 1745 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len; 1746 if (start_boundary < end_boundary) { 1747 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1)); 1748 dm_accept_partial_bio(bio, len); 1749 } 1750 } 1751 } 1752 1753 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1754 submit_flush_bio(ic, dio); 1755 return DM_MAPIO_SUBMITTED; 1756 } 1757 1758 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1759 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA; 1760 if (unlikely(dio->fua)) { 1761 /* 1762 * Don't pass down the FUA flag because we have to flush 1763 * disk cache anyway. 1764 */ 1765 bio->bi_opf &= ~REQ_FUA; 1766 } 1767 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1768 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1769 dio->range.logical_sector, bio_sectors(bio), 1770 ic->provided_data_sectors); 1771 return DM_MAPIO_KILL; 1772 } 1773 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) { 1774 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1775 ic->sectors_per_block, 1776 dio->range.logical_sector, bio_sectors(bio)); 1777 return DM_MAPIO_KILL; 1778 } 1779 1780 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) { 1781 struct bvec_iter iter; 1782 struct bio_vec bv; 1783 bio_for_each_segment(bv, bio, iter) { 1784 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1785 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1786 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1787 return DM_MAPIO_KILL; 1788 } 1789 } 1790 } 1791 1792 bip = bio_integrity(bio); 1793 if (!ic->internal_hash) { 1794 if (bip) { 1795 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1796 if (ic->log2_tag_size >= 0) 1797 wanted_tag_size <<= ic->log2_tag_size; 1798 else 1799 wanted_tag_size *= ic->tag_size; 1800 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 1801 DMERR("Invalid integrity data size %u, expected %u", 1802 bip->bip_iter.bi_size, wanted_tag_size); 1803 return DM_MAPIO_KILL; 1804 } 1805 } 1806 } else { 1807 if (unlikely(bip != NULL)) { 1808 DMERR("Unexpected integrity data when using internal hash"); 1809 return DM_MAPIO_KILL; 1810 } 1811 } 1812 1813 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ)) 1814 return DM_MAPIO_KILL; 1815 1816 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1817 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1818 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 1819 1820 dm_integrity_map_continue(dio, true); 1821 return DM_MAPIO_SUBMITTED; 1822 } 1823 1824 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 1825 unsigned journal_section, unsigned journal_entry) 1826 { 1827 struct dm_integrity_c *ic = dio->ic; 1828 sector_t logical_sector; 1829 unsigned n_sectors; 1830 1831 logical_sector = dio->range.logical_sector; 1832 n_sectors = dio->range.n_sectors; 1833 do { 1834 struct bio_vec bv = bio_iovec(bio); 1835 char *mem; 1836 1837 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 1838 bv.bv_len = n_sectors << SECTOR_SHIFT; 1839 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 1840 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 1841 retry_kmap: 1842 mem = kmap_atomic(bv.bv_page); 1843 if (likely(dio->op == REQ_OP_WRITE)) 1844 flush_dcache_page(bv.bv_page); 1845 1846 do { 1847 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 1848 1849 if (unlikely(dio->op == REQ_OP_READ)) { 1850 struct journal_sector *js; 1851 char *mem_ptr; 1852 unsigned s; 1853 1854 if (unlikely(journal_entry_is_inprogress(je))) { 1855 flush_dcache_page(bv.bv_page); 1856 kunmap_atomic(mem); 1857 1858 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 1859 goto retry_kmap; 1860 } 1861 smp_rmb(); 1862 BUG_ON(journal_entry_get_sector(je) != logical_sector); 1863 js = access_journal_data(ic, journal_section, journal_entry); 1864 mem_ptr = mem + bv.bv_offset; 1865 s = 0; 1866 do { 1867 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 1868 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 1869 js++; 1870 mem_ptr += 1 << SECTOR_SHIFT; 1871 } while (++s < ic->sectors_per_block); 1872 #ifdef INTERNAL_VERIFY 1873 if (ic->internal_hash) { 1874 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1875 1876 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 1877 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 1878 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx", 1879 logical_sector); 1880 } 1881 } 1882 #endif 1883 } 1884 1885 if (!ic->internal_hash) { 1886 struct bio_integrity_payload *bip = bio_integrity(bio); 1887 unsigned tag_todo = ic->tag_size; 1888 char *tag_ptr = journal_entry_tag(ic, je); 1889 1890 if (bip) do { 1891 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 1892 unsigned tag_now = min(biv.bv_len, tag_todo); 1893 char *tag_addr; 1894 BUG_ON(PageHighMem(biv.bv_page)); 1895 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1896 if (likely(dio->op == REQ_OP_WRITE)) 1897 memcpy(tag_ptr, tag_addr, tag_now); 1898 else 1899 memcpy(tag_addr, tag_ptr, tag_now); 1900 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 1901 tag_ptr += tag_now; 1902 tag_todo -= tag_now; 1903 } while (unlikely(tag_todo)); else { 1904 if (likely(dio->op == REQ_OP_WRITE)) 1905 memset(tag_ptr, 0, tag_todo); 1906 } 1907 } 1908 1909 if (likely(dio->op == REQ_OP_WRITE)) { 1910 struct journal_sector *js; 1911 unsigned s; 1912 1913 js = access_journal_data(ic, journal_section, journal_entry); 1914 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 1915 1916 s = 0; 1917 do { 1918 je->last_bytes[s] = js[s].commit_id; 1919 } while (++s < ic->sectors_per_block); 1920 1921 if (ic->internal_hash) { 1922 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1923 if (unlikely(digest_size > ic->tag_size)) { 1924 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 1925 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 1926 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 1927 } else 1928 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 1929 } 1930 1931 journal_entry_set_sector(je, logical_sector); 1932 } 1933 logical_sector += ic->sectors_per_block; 1934 1935 journal_entry++; 1936 if (unlikely(journal_entry == ic->journal_section_entries)) { 1937 journal_entry = 0; 1938 journal_section++; 1939 wraparound_section(ic, &journal_section); 1940 } 1941 1942 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 1943 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 1944 1945 if (unlikely(dio->op == REQ_OP_READ)) 1946 flush_dcache_page(bv.bv_page); 1947 kunmap_atomic(mem); 1948 } while (n_sectors); 1949 1950 if (likely(dio->op == REQ_OP_WRITE)) { 1951 smp_mb(); 1952 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 1953 wake_up(&ic->copy_to_journal_wait); 1954 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) { 1955 queue_work(ic->commit_wq, &ic->commit_work); 1956 } else { 1957 schedule_autocommit(ic); 1958 } 1959 } else { 1960 remove_range(ic, &dio->range); 1961 } 1962 1963 if (unlikely(bio->bi_iter.bi_size)) { 1964 sector_t area, offset; 1965 1966 dio->range.logical_sector = logical_sector; 1967 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1968 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1969 return true; 1970 } 1971 1972 return false; 1973 } 1974 1975 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 1976 { 1977 struct dm_integrity_c *ic = dio->ic; 1978 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1979 unsigned journal_section, journal_entry; 1980 unsigned journal_read_pos; 1981 struct completion read_comp; 1982 bool discard_retried = false; 1983 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ; 1984 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D') 1985 need_sync_io = true; 1986 1987 if (need_sync_io && from_map) { 1988 INIT_WORK(&dio->work, integrity_bio_wait); 1989 queue_work(ic->offload_wq, &dio->work); 1990 return; 1991 } 1992 1993 lock_retry: 1994 spin_lock_irq(&ic->endio_wait.lock); 1995 retry: 1996 if (unlikely(dm_integrity_failed(ic))) { 1997 spin_unlock_irq(&ic->endio_wait.lock); 1998 do_endio(ic, bio); 1999 return; 2000 } 2001 dio->range.n_sectors = bio_sectors(bio); 2002 journal_read_pos = NOT_FOUND; 2003 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) { 2004 if (dio->op == REQ_OP_WRITE) { 2005 unsigned next_entry, i, pos; 2006 unsigned ws, we, range_sectors; 2007 2008 dio->range.n_sectors = min(dio->range.n_sectors, 2009 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block); 2010 if (unlikely(!dio->range.n_sectors)) { 2011 if (from_map) 2012 goto offload_to_thread; 2013 sleep_on_endio_wait(ic); 2014 goto retry; 2015 } 2016 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 2017 ic->free_sectors -= range_sectors; 2018 journal_section = ic->free_section; 2019 journal_entry = ic->free_section_entry; 2020 2021 next_entry = ic->free_section_entry + range_sectors; 2022 ic->free_section_entry = next_entry % ic->journal_section_entries; 2023 ic->free_section += next_entry / ic->journal_section_entries; 2024 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 2025 wraparound_section(ic, &ic->free_section); 2026 2027 pos = journal_section * ic->journal_section_entries + journal_entry; 2028 ws = journal_section; 2029 we = journal_entry; 2030 i = 0; 2031 do { 2032 struct journal_entry *je; 2033 2034 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 2035 pos++; 2036 if (unlikely(pos >= ic->journal_entries)) 2037 pos = 0; 2038 2039 je = access_journal_entry(ic, ws, we); 2040 BUG_ON(!journal_entry_is_unused(je)); 2041 journal_entry_set_inprogress(je); 2042 we++; 2043 if (unlikely(we == ic->journal_section_entries)) { 2044 we = 0; 2045 ws++; 2046 wraparound_section(ic, &ws); 2047 } 2048 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 2049 2050 spin_unlock_irq(&ic->endio_wait.lock); 2051 goto journal_read_write; 2052 } else { 2053 sector_t next_sector; 2054 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2055 if (likely(journal_read_pos == NOT_FOUND)) { 2056 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 2057 dio->range.n_sectors = next_sector - dio->range.logical_sector; 2058 } else { 2059 unsigned i; 2060 unsigned jp = journal_read_pos + 1; 2061 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 2062 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 2063 break; 2064 } 2065 dio->range.n_sectors = i; 2066 } 2067 } 2068 } 2069 if (unlikely(!add_new_range(ic, &dio->range, true))) { 2070 /* 2071 * We must not sleep in the request routine because it could 2072 * stall bios on current->bio_list. 2073 * So, we offload the bio to a workqueue if we have to sleep. 2074 */ 2075 if (from_map) { 2076 offload_to_thread: 2077 spin_unlock_irq(&ic->endio_wait.lock); 2078 INIT_WORK(&dio->work, integrity_bio_wait); 2079 queue_work(ic->wait_wq, &dio->work); 2080 return; 2081 } 2082 if (journal_read_pos != NOT_FOUND) 2083 dio->range.n_sectors = ic->sectors_per_block; 2084 wait_and_add_new_range(ic, &dio->range); 2085 /* 2086 * wait_and_add_new_range drops the spinlock, so the journal 2087 * may have been changed arbitrarily. We need to recheck. 2088 * To simplify the code, we restrict I/O size to just one block. 2089 */ 2090 if (journal_read_pos != NOT_FOUND) { 2091 sector_t next_sector; 2092 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2093 if (unlikely(new_pos != journal_read_pos)) { 2094 remove_range_unlocked(ic, &dio->range); 2095 goto retry; 2096 } 2097 } 2098 } 2099 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) { 2100 sector_t next_sector; 2101 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2102 if (unlikely(new_pos != NOT_FOUND) || 2103 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) { 2104 remove_range_unlocked(ic, &dio->range); 2105 spin_unlock_irq(&ic->endio_wait.lock); 2106 queue_work(ic->commit_wq, &ic->commit_work); 2107 flush_workqueue(ic->commit_wq); 2108 queue_work(ic->writer_wq, &ic->writer_work); 2109 flush_workqueue(ic->writer_wq); 2110 discard_retried = true; 2111 goto lock_retry; 2112 } 2113 } 2114 spin_unlock_irq(&ic->endio_wait.lock); 2115 2116 if (unlikely(journal_read_pos != NOT_FOUND)) { 2117 journal_section = journal_read_pos / ic->journal_section_entries; 2118 journal_entry = journal_read_pos % ic->journal_section_entries; 2119 goto journal_read_write; 2120 } 2121 2122 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) { 2123 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2124 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2125 struct bitmap_block_status *bbs; 2126 2127 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector); 2128 spin_lock(&bbs->bio_queue_lock); 2129 bio_list_add(&bbs->bio_queue, bio); 2130 spin_unlock(&bbs->bio_queue_lock); 2131 queue_work(ic->writer_wq, &bbs->work); 2132 return; 2133 } 2134 } 2135 2136 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 2137 2138 if (need_sync_io) { 2139 init_completion(&read_comp); 2140 dio->completion = &read_comp; 2141 } else 2142 dio->completion = NULL; 2143 2144 dm_bio_record(&dio->bio_details, bio); 2145 bio_set_dev(bio, ic->dev->bdev); 2146 bio->bi_integrity = NULL; 2147 bio->bi_opf &= ~REQ_INTEGRITY; 2148 bio->bi_end_io = integrity_end_io; 2149 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 2150 2151 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) { 2152 integrity_metadata(&dio->work); 2153 dm_integrity_flush_buffers(ic, false); 2154 2155 dio->in_flight = (atomic_t)ATOMIC_INIT(1); 2156 dio->completion = NULL; 2157 2158 submit_bio_noacct(bio); 2159 2160 return; 2161 } 2162 2163 submit_bio_noacct(bio); 2164 2165 if (need_sync_io) { 2166 wait_for_completion_io(&read_comp); 2167 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 2168 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector)) 2169 goto skip_check; 2170 if (ic->mode == 'B') { 2171 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector, 2172 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2173 goto skip_check; 2174 } 2175 2176 if (likely(!bio->bi_status)) 2177 integrity_metadata(&dio->work); 2178 else 2179 skip_check: 2180 dec_in_flight(dio); 2181 2182 } else { 2183 INIT_WORK(&dio->work, integrity_metadata); 2184 queue_work(ic->metadata_wq, &dio->work); 2185 } 2186 2187 return; 2188 2189 journal_read_write: 2190 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 2191 goto lock_retry; 2192 2193 do_endio_flush(ic, dio); 2194 } 2195 2196 2197 static void integrity_bio_wait(struct work_struct *w) 2198 { 2199 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 2200 2201 dm_integrity_map_continue(dio, false); 2202 } 2203 2204 static void pad_uncommitted(struct dm_integrity_c *ic) 2205 { 2206 if (ic->free_section_entry) { 2207 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 2208 ic->free_section_entry = 0; 2209 ic->free_section++; 2210 wraparound_section(ic, &ic->free_section); 2211 ic->n_uncommitted_sections++; 2212 } 2213 if (WARN_ON(ic->journal_sections * ic->journal_section_entries != 2214 (ic->n_uncommitted_sections + ic->n_committed_sections) * 2215 ic->journal_section_entries + ic->free_sectors)) { 2216 DMCRIT("journal_sections %u, journal_section_entries %u, " 2217 "n_uncommitted_sections %u, n_committed_sections %u, " 2218 "journal_section_entries %u, free_sectors %u", 2219 ic->journal_sections, ic->journal_section_entries, 2220 ic->n_uncommitted_sections, ic->n_committed_sections, 2221 ic->journal_section_entries, ic->free_sectors); 2222 } 2223 } 2224 2225 static void integrity_commit(struct work_struct *w) 2226 { 2227 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 2228 unsigned commit_start, commit_sections; 2229 unsigned i, j, n; 2230 struct bio *flushes; 2231 2232 del_timer(&ic->autocommit_timer); 2233 2234 spin_lock_irq(&ic->endio_wait.lock); 2235 flushes = bio_list_get(&ic->flush_bio_list); 2236 if (unlikely(ic->mode != 'J')) { 2237 spin_unlock_irq(&ic->endio_wait.lock); 2238 dm_integrity_flush_buffers(ic, true); 2239 goto release_flush_bios; 2240 } 2241 2242 pad_uncommitted(ic); 2243 commit_start = ic->uncommitted_section; 2244 commit_sections = ic->n_uncommitted_sections; 2245 spin_unlock_irq(&ic->endio_wait.lock); 2246 2247 if (!commit_sections) 2248 goto release_flush_bios; 2249 2250 i = commit_start; 2251 for (n = 0; n < commit_sections; n++) { 2252 for (j = 0; j < ic->journal_section_entries; j++) { 2253 struct journal_entry *je; 2254 je = access_journal_entry(ic, i, j); 2255 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2256 } 2257 for (j = 0; j < ic->journal_section_sectors; j++) { 2258 struct journal_sector *js; 2259 js = access_journal(ic, i, j); 2260 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 2261 } 2262 i++; 2263 if (unlikely(i >= ic->journal_sections)) 2264 ic->commit_seq = next_commit_seq(ic->commit_seq); 2265 wraparound_section(ic, &i); 2266 } 2267 smp_rmb(); 2268 2269 write_journal(ic, commit_start, commit_sections); 2270 2271 spin_lock_irq(&ic->endio_wait.lock); 2272 ic->uncommitted_section += commit_sections; 2273 wraparound_section(ic, &ic->uncommitted_section); 2274 ic->n_uncommitted_sections -= commit_sections; 2275 ic->n_committed_sections += commit_sections; 2276 spin_unlock_irq(&ic->endio_wait.lock); 2277 2278 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2279 queue_work(ic->writer_wq, &ic->writer_work); 2280 2281 release_flush_bios: 2282 while (flushes) { 2283 struct bio *next = flushes->bi_next; 2284 flushes->bi_next = NULL; 2285 do_endio(ic, flushes); 2286 flushes = next; 2287 } 2288 } 2289 2290 static void complete_copy_from_journal(unsigned long error, void *context) 2291 { 2292 struct journal_io *io = context; 2293 struct journal_completion *comp = io->comp; 2294 struct dm_integrity_c *ic = comp->ic; 2295 remove_range(ic, &io->range); 2296 mempool_free(io, &ic->journal_io_mempool); 2297 if (unlikely(error != 0)) 2298 dm_integrity_io_error(ic, "copying from journal", -EIO); 2299 complete_journal_op(comp); 2300 } 2301 2302 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 2303 struct journal_entry *je) 2304 { 2305 unsigned s = 0; 2306 do { 2307 js->commit_id = je->last_bytes[s]; 2308 js++; 2309 } while (++s < ic->sectors_per_block); 2310 } 2311 2312 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start, 2313 unsigned write_sections, bool from_replay) 2314 { 2315 unsigned i, j, n; 2316 struct journal_completion comp; 2317 struct blk_plug plug; 2318 2319 blk_start_plug(&plug); 2320 2321 comp.ic = ic; 2322 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2323 init_completion(&comp.comp); 2324 2325 i = write_start; 2326 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 2327 #ifndef INTERNAL_VERIFY 2328 if (unlikely(from_replay)) 2329 #endif 2330 rw_section_mac(ic, i, false); 2331 for (j = 0; j < ic->journal_section_entries; j++) { 2332 struct journal_entry *je = access_journal_entry(ic, i, j); 2333 sector_t sec, area, offset; 2334 unsigned k, l, next_loop; 2335 sector_t metadata_block; 2336 unsigned metadata_offset; 2337 struct journal_io *io; 2338 2339 if (journal_entry_is_unused(je)) 2340 continue; 2341 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 2342 sec = journal_entry_get_sector(je); 2343 if (unlikely(from_replay)) { 2344 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) { 2345 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 2346 sec &= ~(sector_t)(ic->sectors_per_block - 1); 2347 } 2348 } 2349 if (unlikely(sec >= ic->provided_data_sectors)) 2350 continue; 2351 get_area_and_offset(ic, sec, &area, &offset); 2352 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 2353 for (k = j + 1; k < ic->journal_section_entries; k++) { 2354 struct journal_entry *je2 = access_journal_entry(ic, i, k); 2355 sector_t sec2, area2, offset2; 2356 if (journal_entry_is_unused(je2)) 2357 break; 2358 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 2359 sec2 = journal_entry_get_sector(je2); 2360 if (unlikely(sec2 >= ic->provided_data_sectors)) 2361 break; 2362 get_area_and_offset(ic, sec2, &area2, &offset2); 2363 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 2364 break; 2365 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 2366 } 2367 next_loop = k - 1; 2368 2369 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); 2370 io->comp = ∁ 2371 io->range.logical_sector = sec; 2372 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 2373 2374 spin_lock_irq(&ic->endio_wait.lock); 2375 add_new_range_and_wait(ic, &io->range); 2376 2377 if (likely(!from_replay)) { 2378 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 2379 2380 /* don't write if there is newer committed sector */ 2381 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 2382 struct journal_entry *je2 = access_journal_entry(ic, i, j); 2383 2384 journal_entry_set_unused(je2); 2385 remove_journal_node(ic, §ion_node[j]); 2386 j++; 2387 sec += ic->sectors_per_block; 2388 offset += ic->sectors_per_block; 2389 } 2390 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 2391 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 2392 2393 journal_entry_set_unused(je2); 2394 remove_journal_node(ic, §ion_node[k - 1]); 2395 k--; 2396 } 2397 if (j == k) { 2398 remove_range_unlocked(ic, &io->range); 2399 spin_unlock_irq(&ic->endio_wait.lock); 2400 mempool_free(io, &ic->journal_io_mempool); 2401 goto skip_io; 2402 } 2403 for (l = j; l < k; l++) { 2404 remove_journal_node(ic, §ion_node[l]); 2405 } 2406 } 2407 spin_unlock_irq(&ic->endio_wait.lock); 2408 2409 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2410 for (l = j; l < k; l++) { 2411 int r; 2412 struct journal_entry *je2 = access_journal_entry(ic, i, l); 2413 2414 if ( 2415 #ifndef INTERNAL_VERIFY 2416 unlikely(from_replay) && 2417 #endif 2418 ic->internal_hash) { 2419 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2420 2421 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 2422 (char *)access_journal_data(ic, i, l), test_tag); 2423 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) 2424 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 2425 } 2426 2427 journal_entry_set_unused(je2); 2428 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 2429 ic->tag_size, TAG_WRITE); 2430 if (unlikely(r)) { 2431 dm_integrity_io_error(ic, "reading tags", r); 2432 } 2433 } 2434 2435 atomic_inc(&comp.in_flight); 2436 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 2437 (k - j) << ic->sb->log2_sectors_per_block, 2438 get_data_sector(ic, area, offset), 2439 complete_copy_from_journal, io); 2440 skip_io: 2441 j = next_loop; 2442 } 2443 } 2444 2445 dm_bufio_write_dirty_buffers_async(ic->bufio); 2446 2447 blk_finish_plug(&plug); 2448 2449 complete_journal_op(&comp); 2450 wait_for_completion_io(&comp.comp); 2451 2452 dm_integrity_flush_buffers(ic, true); 2453 } 2454 2455 static void integrity_writer(struct work_struct *w) 2456 { 2457 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 2458 unsigned write_start, write_sections; 2459 2460 unsigned prev_free_sectors; 2461 2462 /* the following test is not needed, but it tests the replay code */ 2463 if (unlikely(dm_post_suspending(ic->ti)) && !ic->meta_dev) 2464 return; 2465 2466 spin_lock_irq(&ic->endio_wait.lock); 2467 write_start = ic->committed_section; 2468 write_sections = ic->n_committed_sections; 2469 spin_unlock_irq(&ic->endio_wait.lock); 2470 2471 if (!write_sections) 2472 return; 2473 2474 do_journal_write(ic, write_start, write_sections, false); 2475 2476 spin_lock_irq(&ic->endio_wait.lock); 2477 2478 ic->committed_section += write_sections; 2479 wraparound_section(ic, &ic->committed_section); 2480 ic->n_committed_sections -= write_sections; 2481 2482 prev_free_sectors = ic->free_sectors; 2483 ic->free_sectors += write_sections * ic->journal_section_entries; 2484 if (unlikely(!prev_free_sectors)) 2485 wake_up_locked(&ic->endio_wait); 2486 2487 spin_unlock_irq(&ic->endio_wait.lock); 2488 } 2489 2490 static void recalc_write_super(struct dm_integrity_c *ic) 2491 { 2492 int r; 2493 2494 dm_integrity_flush_buffers(ic, false); 2495 if (dm_integrity_failed(ic)) 2496 return; 2497 2498 r = sync_rw_sb(ic, REQ_OP_WRITE, 0); 2499 if (unlikely(r)) 2500 dm_integrity_io_error(ic, "writing superblock", r); 2501 } 2502 2503 static void integrity_recalc(struct work_struct *w) 2504 { 2505 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 2506 struct dm_integrity_range range; 2507 struct dm_io_request io_req; 2508 struct dm_io_region io_loc; 2509 sector_t area, offset; 2510 sector_t metadata_block; 2511 unsigned metadata_offset; 2512 sector_t logical_sector, n_sectors; 2513 __u8 *t; 2514 unsigned i; 2515 int r; 2516 unsigned super_counter = 0; 2517 2518 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector)); 2519 2520 spin_lock_irq(&ic->endio_wait.lock); 2521 2522 next_chunk: 2523 2524 if (unlikely(dm_post_suspending(ic->ti))) 2525 goto unlock_ret; 2526 2527 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 2528 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) { 2529 if (ic->mode == 'B') { 2530 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 2531 DEBUG_print("queue_delayed_work: bitmap_flush_work\n"); 2532 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2533 } 2534 goto unlock_ret; 2535 } 2536 2537 get_area_and_offset(ic, range.logical_sector, &area, &offset); 2538 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector); 2539 if (!ic->meta_dev) 2540 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset); 2541 2542 add_new_range_and_wait(ic, &range); 2543 spin_unlock_irq(&ic->endio_wait.lock); 2544 logical_sector = range.logical_sector; 2545 n_sectors = range.n_sectors; 2546 2547 if (ic->mode == 'B') { 2548 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) { 2549 goto advance_and_next; 2550 } 2551 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, 2552 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2553 logical_sector += ic->sectors_per_block; 2554 n_sectors -= ic->sectors_per_block; 2555 cond_resched(); 2556 } 2557 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block, 2558 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2559 n_sectors -= ic->sectors_per_block; 2560 cond_resched(); 2561 } 2562 get_area_and_offset(ic, logical_sector, &area, &offset); 2563 } 2564 2565 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors); 2566 2567 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 2568 recalc_write_super(ic); 2569 if (ic->mode == 'B') { 2570 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2571 } 2572 super_counter = 0; 2573 } 2574 2575 if (unlikely(dm_integrity_failed(ic))) 2576 goto err; 2577 2578 io_req.bi_op = REQ_OP_READ; 2579 io_req.bi_op_flags = 0; 2580 io_req.mem.type = DM_IO_VMA; 2581 io_req.mem.ptr.addr = ic->recalc_buffer; 2582 io_req.notify.fn = NULL; 2583 io_req.client = ic->io; 2584 io_loc.bdev = ic->dev->bdev; 2585 io_loc.sector = get_data_sector(ic, area, offset); 2586 io_loc.count = n_sectors; 2587 2588 r = dm_io(&io_req, 1, &io_loc, NULL); 2589 if (unlikely(r)) { 2590 dm_integrity_io_error(ic, "reading data", r); 2591 goto err; 2592 } 2593 2594 t = ic->recalc_tags; 2595 for (i = 0; i < n_sectors; i += ic->sectors_per_block) { 2596 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t); 2597 t += ic->tag_size; 2598 } 2599 2600 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2601 2602 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE); 2603 if (unlikely(r)) { 2604 dm_integrity_io_error(ic, "writing tags", r); 2605 goto err; 2606 } 2607 2608 if (ic->mode == 'B') { 2609 sector_t start, end; 2610 start = (range.logical_sector >> 2611 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 2612 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2613 end = ((range.logical_sector + range.n_sectors) >> 2614 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 2615 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2616 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR); 2617 } 2618 2619 advance_and_next: 2620 cond_resched(); 2621 2622 spin_lock_irq(&ic->endio_wait.lock); 2623 remove_range_unlocked(ic, &range); 2624 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 2625 goto next_chunk; 2626 2627 err: 2628 remove_range(ic, &range); 2629 return; 2630 2631 unlock_ret: 2632 spin_unlock_irq(&ic->endio_wait.lock); 2633 2634 recalc_write_super(ic); 2635 } 2636 2637 static void bitmap_block_work(struct work_struct *w) 2638 { 2639 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work); 2640 struct dm_integrity_c *ic = bbs->ic; 2641 struct bio *bio; 2642 struct bio_list bio_queue; 2643 struct bio_list waiting; 2644 2645 bio_list_init(&waiting); 2646 2647 spin_lock(&bbs->bio_queue_lock); 2648 bio_queue = bbs->bio_queue; 2649 bio_list_init(&bbs->bio_queue); 2650 spin_unlock(&bbs->bio_queue_lock); 2651 2652 while ((bio = bio_list_pop(&bio_queue))) { 2653 struct dm_integrity_io *dio; 2654 2655 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2656 2657 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2658 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2659 remove_range(ic, &dio->range); 2660 INIT_WORK(&dio->work, integrity_bio_wait); 2661 queue_work(ic->offload_wq, &dio->work); 2662 } else { 2663 block_bitmap_op(ic, ic->journal, dio->range.logical_sector, 2664 dio->range.n_sectors, BITMAP_OP_SET); 2665 bio_list_add(&waiting, bio); 2666 } 2667 } 2668 2669 if (bio_list_empty(&waiting)) 2670 return; 2671 2672 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 2673 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), 2674 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL); 2675 2676 while ((bio = bio_list_pop(&waiting))) { 2677 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2678 2679 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2680 dio->range.n_sectors, BITMAP_OP_SET); 2681 2682 remove_range(ic, &dio->range); 2683 INIT_WORK(&dio->work, integrity_bio_wait); 2684 queue_work(ic->offload_wq, &dio->work); 2685 } 2686 2687 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2688 } 2689 2690 static void bitmap_flush_work(struct work_struct *work) 2691 { 2692 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work); 2693 struct dm_integrity_range range; 2694 unsigned long limit; 2695 struct bio *bio; 2696 2697 dm_integrity_flush_buffers(ic, false); 2698 2699 range.logical_sector = 0; 2700 range.n_sectors = ic->provided_data_sectors; 2701 2702 spin_lock_irq(&ic->endio_wait.lock); 2703 add_new_range_and_wait(ic, &range); 2704 spin_unlock_irq(&ic->endio_wait.lock); 2705 2706 dm_integrity_flush_buffers(ic, true); 2707 2708 limit = ic->provided_data_sectors; 2709 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2710 limit = le64_to_cpu(ic->sb->recalc_sector) 2711 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit) 2712 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2713 } 2714 /*DEBUG_print("zeroing journal\n");*/ 2715 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR); 2716 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR); 2717 2718 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2719 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2720 2721 spin_lock_irq(&ic->endio_wait.lock); 2722 remove_range_unlocked(ic, &range); 2723 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) { 2724 bio_endio(bio); 2725 spin_unlock_irq(&ic->endio_wait.lock); 2726 spin_lock_irq(&ic->endio_wait.lock); 2727 } 2728 spin_unlock_irq(&ic->endio_wait.lock); 2729 } 2730 2731 2732 static void init_journal(struct dm_integrity_c *ic, unsigned start_section, 2733 unsigned n_sections, unsigned char commit_seq) 2734 { 2735 unsigned i, j, n; 2736 2737 if (!n_sections) 2738 return; 2739 2740 for (n = 0; n < n_sections; n++) { 2741 i = start_section + n; 2742 wraparound_section(ic, &i); 2743 for (j = 0; j < ic->journal_section_sectors; j++) { 2744 struct journal_sector *js = access_journal(ic, i, j); 2745 memset(&js->entries, 0, JOURNAL_SECTOR_DATA); 2746 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 2747 } 2748 for (j = 0; j < ic->journal_section_entries; j++) { 2749 struct journal_entry *je = access_journal_entry(ic, i, j); 2750 journal_entry_set_unused(je); 2751 } 2752 } 2753 2754 write_journal(ic, start_section, n_sections); 2755 } 2756 2757 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id) 2758 { 2759 unsigned char k; 2760 for (k = 0; k < N_COMMIT_IDS; k++) { 2761 if (dm_integrity_commit_id(ic, i, j, k) == id) 2762 return k; 2763 } 2764 dm_integrity_io_error(ic, "journal commit id", -EIO); 2765 return -EIO; 2766 } 2767 2768 static void replay_journal(struct dm_integrity_c *ic) 2769 { 2770 unsigned i, j; 2771 bool used_commit_ids[N_COMMIT_IDS]; 2772 unsigned max_commit_id_sections[N_COMMIT_IDS]; 2773 unsigned write_start, write_sections; 2774 unsigned continue_section; 2775 bool journal_empty; 2776 unsigned char unused, last_used, want_commit_seq; 2777 2778 if (ic->mode == 'R') 2779 return; 2780 2781 if (ic->journal_uptodate) 2782 return; 2783 2784 last_used = 0; 2785 write_start = 0; 2786 2787 if (!ic->just_formatted) { 2788 DEBUG_print("reading journal\n"); 2789 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL); 2790 if (ic->journal_io) 2791 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 2792 if (ic->journal_io) { 2793 struct journal_completion crypt_comp; 2794 crypt_comp.ic = ic; 2795 init_completion(&crypt_comp.comp); 2796 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 2797 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 2798 wait_for_completion(&crypt_comp.comp); 2799 } 2800 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 2801 } 2802 2803 if (dm_integrity_failed(ic)) 2804 goto clear_journal; 2805 2806 journal_empty = true; 2807 memset(used_commit_ids, 0, sizeof used_commit_ids); 2808 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections); 2809 for (i = 0; i < ic->journal_sections; i++) { 2810 for (j = 0; j < ic->journal_section_sectors; j++) { 2811 int k; 2812 struct journal_sector *js = access_journal(ic, i, j); 2813 k = find_commit_seq(ic, i, j, js->commit_id); 2814 if (k < 0) 2815 goto clear_journal; 2816 used_commit_ids[k] = true; 2817 max_commit_id_sections[k] = i; 2818 } 2819 if (journal_empty) { 2820 for (j = 0; j < ic->journal_section_entries; j++) { 2821 struct journal_entry *je = access_journal_entry(ic, i, j); 2822 if (!journal_entry_is_unused(je)) { 2823 journal_empty = false; 2824 break; 2825 } 2826 } 2827 } 2828 } 2829 2830 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 2831 unused = N_COMMIT_IDS - 1; 2832 while (unused && !used_commit_ids[unused - 1]) 2833 unused--; 2834 } else { 2835 for (unused = 0; unused < N_COMMIT_IDS; unused++) 2836 if (!used_commit_ids[unused]) 2837 break; 2838 if (unused == N_COMMIT_IDS) { 2839 dm_integrity_io_error(ic, "journal commit ids", -EIO); 2840 goto clear_journal; 2841 } 2842 } 2843 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 2844 unused, used_commit_ids[0], used_commit_ids[1], 2845 used_commit_ids[2], used_commit_ids[3]); 2846 2847 last_used = prev_commit_seq(unused); 2848 want_commit_seq = prev_commit_seq(last_used); 2849 2850 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 2851 journal_empty = true; 2852 2853 write_start = max_commit_id_sections[last_used] + 1; 2854 if (unlikely(write_start >= ic->journal_sections)) 2855 want_commit_seq = next_commit_seq(want_commit_seq); 2856 wraparound_section(ic, &write_start); 2857 2858 i = write_start; 2859 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 2860 for (j = 0; j < ic->journal_section_sectors; j++) { 2861 struct journal_sector *js = access_journal(ic, i, j); 2862 2863 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 2864 /* 2865 * This could be caused by crash during writing. 2866 * We won't replay the inconsistent part of the 2867 * journal. 2868 */ 2869 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 2870 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 2871 goto brk; 2872 } 2873 } 2874 i++; 2875 if (unlikely(i >= ic->journal_sections)) 2876 want_commit_seq = next_commit_seq(want_commit_seq); 2877 wraparound_section(ic, &i); 2878 } 2879 brk: 2880 2881 if (!journal_empty) { 2882 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 2883 write_sections, write_start, want_commit_seq); 2884 do_journal_write(ic, write_start, write_sections, true); 2885 } 2886 2887 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 2888 continue_section = write_start; 2889 ic->commit_seq = want_commit_seq; 2890 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 2891 } else { 2892 unsigned s; 2893 unsigned char erase_seq; 2894 clear_journal: 2895 DEBUG_print("clearing journal\n"); 2896 2897 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 2898 s = write_start; 2899 init_journal(ic, s, 1, erase_seq); 2900 s++; 2901 wraparound_section(ic, &s); 2902 if (ic->journal_sections >= 2) { 2903 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 2904 s += ic->journal_sections - 2; 2905 wraparound_section(ic, &s); 2906 init_journal(ic, s, 1, erase_seq); 2907 } 2908 2909 continue_section = 0; 2910 ic->commit_seq = next_commit_seq(erase_seq); 2911 } 2912 2913 ic->committed_section = continue_section; 2914 ic->n_committed_sections = 0; 2915 2916 ic->uncommitted_section = continue_section; 2917 ic->n_uncommitted_sections = 0; 2918 2919 ic->free_section = continue_section; 2920 ic->free_section_entry = 0; 2921 ic->free_sectors = ic->journal_entries; 2922 2923 ic->journal_tree_root = RB_ROOT; 2924 for (i = 0; i < ic->journal_entries; i++) 2925 init_journal_node(&ic->journal_tree[i]); 2926 } 2927 2928 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic) 2929 { 2930 DEBUG_print("dm_integrity_enter_synchronous_mode\n"); 2931 2932 if (ic->mode == 'B') { 2933 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1; 2934 ic->synchronous_mode = 1; 2935 2936 cancel_delayed_work_sync(&ic->bitmap_flush_work); 2937 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2938 flush_workqueue(ic->commit_wq); 2939 } 2940 } 2941 2942 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x) 2943 { 2944 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier); 2945 2946 DEBUG_print("dm_integrity_reboot\n"); 2947 2948 dm_integrity_enter_synchronous_mode(ic); 2949 2950 return NOTIFY_DONE; 2951 } 2952 2953 static void dm_integrity_postsuspend(struct dm_target *ti) 2954 { 2955 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2956 int r; 2957 2958 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier)); 2959 2960 del_timer_sync(&ic->autocommit_timer); 2961 2962 if (ic->recalc_wq) 2963 drain_workqueue(ic->recalc_wq); 2964 2965 if (ic->mode == 'B') 2966 cancel_delayed_work_sync(&ic->bitmap_flush_work); 2967 2968 queue_work(ic->commit_wq, &ic->commit_work); 2969 drain_workqueue(ic->commit_wq); 2970 2971 if (ic->mode == 'J') { 2972 if (ic->meta_dev) 2973 queue_work(ic->writer_wq, &ic->writer_work); 2974 drain_workqueue(ic->writer_wq); 2975 dm_integrity_flush_buffers(ic, true); 2976 } 2977 2978 if (ic->mode == 'B') { 2979 dm_integrity_flush_buffers(ic, true); 2980 #if 1 2981 /* set to 0 to test bitmap replay code */ 2982 init_journal(ic, 0, ic->journal_sections, 0); 2983 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 2984 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 2985 if (unlikely(r)) 2986 dm_integrity_io_error(ic, "writing superblock", r); 2987 #endif 2988 } 2989 2990 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 2991 2992 ic->journal_uptodate = true; 2993 } 2994 2995 static void dm_integrity_resume(struct dm_target *ti) 2996 { 2997 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2998 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 2999 int r; 3000 3001 DEBUG_print("resume\n"); 3002 3003 if (ic->provided_data_sectors != old_provided_data_sectors) { 3004 if (ic->provided_data_sectors > old_provided_data_sectors && 3005 ic->mode == 'B' && 3006 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { 3007 rw_journal_sectors(ic, REQ_OP_READ, 0, 0, 3008 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3009 block_bitmap_op(ic, ic->journal, old_provided_data_sectors, 3010 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET); 3011 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 3012 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3013 } 3014 3015 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3016 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3017 if (unlikely(r)) 3018 dm_integrity_io_error(ic, "writing superblock", r); 3019 } 3020 3021 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) { 3022 DEBUG_print("resume dirty_bitmap\n"); 3023 rw_journal_sectors(ic, REQ_OP_READ, 0, 0, 3024 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3025 if (ic->mode == 'B') { 3026 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { 3027 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal); 3028 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal); 3029 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, 3030 BITMAP_OP_TEST_ALL_CLEAR)) { 3031 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3032 ic->sb->recalc_sector = cpu_to_le64(0); 3033 } 3034 } else { 3035 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n", 3036 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit); 3037 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3038 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3039 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3040 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3041 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 3042 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3043 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3044 ic->sb->recalc_sector = cpu_to_le64(0); 3045 } 3046 } else { 3047 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3048 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) { 3049 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3050 ic->sb->recalc_sector = cpu_to_le64(0); 3051 } 3052 init_journal(ic, 0, ic->journal_sections, 0); 3053 replay_journal(ic); 3054 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3055 } 3056 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3057 if (unlikely(r)) 3058 dm_integrity_io_error(ic, "writing superblock", r); 3059 } else { 3060 replay_journal(ic); 3061 if (ic->mode == 'B') { 3062 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3063 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3064 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3065 if (unlikely(r)) 3066 dm_integrity_io_error(ic, "writing superblock", r); 3067 3068 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3069 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3070 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3071 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 3072 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) { 3073 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector), 3074 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3075 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3076 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3077 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3078 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3079 } 3080 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 3081 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3082 } 3083 } 3084 3085 DEBUG_print("testing recalc: %x\n", ic->sb->flags); 3086 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 3087 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector); 3088 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors); 3089 if (recalc_pos < ic->provided_data_sectors) { 3090 queue_work(ic->recalc_wq, &ic->recalc_work); 3091 } else if (recalc_pos > ic->provided_data_sectors) { 3092 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors); 3093 recalc_write_super(ic); 3094 } 3095 } 3096 3097 ic->reboot_notifier.notifier_call = dm_integrity_reboot; 3098 ic->reboot_notifier.next = NULL; 3099 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */ 3100 WARN_ON(register_reboot_notifier(&ic->reboot_notifier)); 3101 3102 #if 0 3103 /* set to 1 to stress test synchronous mode */ 3104 dm_integrity_enter_synchronous_mode(ic); 3105 #endif 3106 } 3107 3108 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 3109 unsigned status_flags, char *result, unsigned maxlen) 3110 { 3111 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 3112 unsigned arg_count; 3113 size_t sz = 0; 3114 3115 switch (type) { 3116 case STATUSTYPE_INFO: 3117 DMEMIT("%llu %llu", 3118 (unsigned long long)atomic64_read(&ic->number_of_mismatches), 3119 ic->provided_data_sectors); 3120 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3121 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector)); 3122 else 3123 DMEMIT(" -"); 3124 break; 3125 3126 case STATUSTYPE_TABLE: { 3127 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 3128 watermark_percentage += ic->journal_entries / 2; 3129 do_div(watermark_percentage, ic->journal_entries); 3130 arg_count = 3; 3131 arg_count += !!ic->meta_dev; 3132 arg_count += ic->sectors_per_block != 1; 3133 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)); 3134 arg_count += ic->discard; 3135 arg_count += ic->mode == 'J'; 3136 arg_count += ic->mode == 'J'; 3137 arg_count += ic->mode == 'B'; 3138 arg_count += ic->mode == 'B'; 3139 arg_count += !!ic->internal_hash_alg.alg_string; 3140 arg_count += !!ic->journal_crypt_alg.alg_string; 3141 arg_count += !!ic->journal_mac_alg.alg_string; 3142 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0; 3143 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start, 3144 ic->tag_size, ic->mode, arg_count); 3145 if (ic->meta_dev) 3146 DMEMIT(" meta_device:%s", ic->meta_dev->name); 3147 if (ic->sectors_per_block != 1) 3148 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 3149 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3150 DMEMIT(" recalculate"); 3151 if (ic->discard) 3152 DMEMIT(" allow_discards"); 3153 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 3154 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 3155 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 3156 if (ic->mode == 'J') { 3157 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage); 3158 DMEMIT(" commit_time:%u", ic->autocommit_msec); 3159 } 3160 if (ic->mode == 'B') { 3161 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit); 3162 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval)); 3163 } 3164 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) 3165 DMEMIT(" fix_padding"); 3166 3167 #define EMIT_ALG(a, n) \ 3168 do { \ 3169 if (ic->a.alg_string) { \ 3170 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 3171 if (ic->a.key_string) \ 3172 DMEMIT(":%s", ic->a.key_string);\ 3173 } \ 3174 } while (0) 3175 EMIT_ALG(internal_hash_alg, "internal_hash"); 3176 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 3177 EMIT_ALG(journal_mac_alg, "journal_mac"); 3178 break; 3179 } 3180 } 3181 } 3182 3183 static int dm_integrity_iterate_devices(struct dm_target *ti, 3184 iterate_devices_callout_fn fn, void *data) 3185 { 3186 struct dm_integrity_c *ic = ti->private; 3187 3188 if (!ic->meta_dev) 3189 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 3190 else 3191 return fn(ti, ic->dev, 0, ti->len, data); 3192 } 3193 3194 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 3195 { 3196 struct dm_integrity_c *ic = ti->private; 3197 3198 if (ic->sectors_per_block > 1) { 3199 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3200 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3201 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT); 3202 } 3203 } 3204 3205 static void calculate_journal_section_size(struct dm_integrity_c *ic) 3206 { 3207 unsigned sector_space = JOURNAL_SECTOR_DATA; 3208 3209 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 3210 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 3211 JOURNAL_ENTRY_ROUNDUP); 3212 3213 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 3214 sector_space -= JOURNAL_MAC_PER_SECTOR; 3215 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 3216 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 3217 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 3218 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 3219 } 3220 3221 static int calculate_device_limits(struct dm_integrity_c *ic) 3222 { 3223 __u64 initial_sectors; 3224 3225 calculate_journal_section_size(ic); 3226 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 3227 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX) 3228 return -EINVAL; 3229 ic->initial_sectors = initial_sectors; 3230 3231 if (!ic->meta_dev) { 3232 sector_t last_sector, last_area, last_offset; 3233 3234 /* we have to maintain excessive padding for compatibility with existing volumes */ 3235 __u64 metadata_run_padding = 3236 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ? 3237 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) : 3238 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS); 3239 3240 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 3241 metadata_run_padding) >> SECTOR_SHIFT; 3242 if (!(ic->metadata_run & (ic->metadata_run - 1))) 3243 ic->log2_metadata_run = __ffs(ic->metadata_run); 3244 else 3245 ic->log2_metadata_run = -1; 3246 3247 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 3248 last_sector = get_data_sector(ic, last_area, last_offset); 3249 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors) 3250 return -EINVAL; 3251 } else { 3252 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 3253 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1)) 3254 >> (ic->log2_buffer_sectors + SECTOR_SHIFT); 3255 meta_size <<= ic->log2_buffer_sectors; 3256 if (ic->initial_sectors + meta_size < ic->initial_sectors || 3257 ic->initial_sectors + meta_size > ic->meta_device_sectors) 3258 return -EINVAL; 3259 ic->metadata_run = 1; 3260 ic->log2_metadata_run = 0; 3261 } 3262 3263 return 0; 3264 } 3265 3266 static void get_provided_data_sectors(struct dm_integrity_c *ic) 3267 { 3268 if (!ic->meta_dev) { 3269 int test_bit; 3270 ic->provided_data_sectors = 0; 3271 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) { 3272 __u64 prev_data_sectors = ic->provided_data_sectors; 3273 3274 ic->provided_data_sectors |= (sector_t)1 << test_bit; 3275 if (calculate_device_limits(ic)) 3276 ic->provided_data_sectors = prev_data_sectors; 3277 } 3278 } else { 3279 ic->provided_data_sectors = ic->data_device_sectors; 3280 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1); 3281 } 3282 } 3283 3284 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors) 3285 { 3286 unsigned journal_sections; 3287 int test_bit; 3288 3289 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 3290 memcpy(ic->sb->magic, SB_MAGIC, 8); 3291 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 3292 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 3293 if (ic->journal_mac_alg.alg_string) 3294 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 3295 3296 calculate_journal_section_size(ic); 3297 journal_sections = journal_sectors / ic->journal_section_sectors; 3298 if (!journal_sections) 3299 journal_sections = 1; 3300 3301 if (!ic->meta_dev) { 3302 if (ic->fix_padding) 3303 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING); 3304 ic->sb->journal_sections = cpu_to_le32(journal_sections); 3305 if (!interleave_sectors) 3306 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3307 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 3308 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3309 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3310 3311 get_provided_data_sectors(ic); 3312 if (!ic->provided_data_sectors) 3313 return -EINVAL; 3314 } else { 3315 ic->sb->log2_interleave_sectors = 0; 3316 3317 get_provided_data_sectors(ic); 3318 if (!ic->provided_data_sectors) 3319 return -EINVAL; 3320 3321 try_smaller_buffer: 3322 ic->sb->journal_sections = cpu_to_le32(0); 3323 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) { 3324 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections); 3325 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit); 3326 if (test_journal_sections > journal_sections) 3327 continue; 3328 ic->sb->journal_sections = cpu_to_le32(test_journal_sections); 3329 if (calculate_device_limits(ic)) 3330 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections); 3331 3332 } 3333 if (!le32_to_cpu(ic->sb->journal_sections)) { 3334 if (ic->log2_buffer_sectors > 3) { 3335 ic->log2_buffer_sectors--; 3336 goto try_smaller_buffer; 3337 } 3338 return -EINVAL; 3339 } 3340 } 3341 3342 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3343 3344 sb_set_version(ic); 3345 3346 return 0; 3347 } 3348 3349 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic) 3350 { 3351 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table)); 3352 struct blk_integrity bi; 3353 3354 memset(&bi, 0, sizeof(bi)); 3355 bi.profile = &dm_integrity_profile; 3356 bi.tuple_size = ic->tag_size; 3357 bi.tag_size = bi.tuple_size; 3358 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 3359 3360 blk_integrity_register(disk, &bi); 3361 blk_queue_max_integrity_segments(disk->queue, UINT_MAX); 3362 } 3363 3364 static void dm_integrity_free_page_list(struct page_list *pl) 3365 { 3366 unsigned i; 3367 3368 if (!pl) 3369 return; 3370 for (i = 0; pl[i].page; i++) 3371 __free_page(pl[i].page); 3372 kvfree(pl); 3373 } 3374 3375 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages) 3376 { 3377 struct page_list *pl; 3378 unsigned i; 3379 3380 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO); 3381 if (!pl) 3382 return NULL; 3383 3384 for (i = 0; i < n_pages; i++) { 3385 pl[i].page = alloc_page(GFP_KERNEL); 3386 if (!pl[i].page) { 3387 dm_integrity_free_page_list(pl); 3388 return NULL; 3389 } 3390 if (i) 3391 pl[i - 1].next = &pl[i]; 3392 } 3393 pl[i].page = NULL; 3394 pl[i].next = NULL; 3395 3396 return pl; 3397 } 3398 3399 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 3400 { 3401 unsigned i; 3402 for (i = 0; i < ic->journal_sections; i++) 3403 kvfree(sl[i]); 3404 kvfree(sl); 3405 } 3406 3407 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, 3408 struct page_list *pl) 3409 { 3410 struct scatterlist **sl; 3411 unsigned i; 3412 3413 sl = kvmalloc_array(ic->journal_sections, 3414 sizeof(struct scatterlist *), 3415 GFP_KERNEL | __GFP_ZERO); 3416 if (!sl) 3417 return NULL; 3418 3419 for (i = 0; i < ic->journal_sections; i++) { 3420 struct scatterlist *s; 3421 unsigned start_index, start_offset; 3422 unsigned end_index, end_offset; 3423 unsigned n_pages; 3424 unsigned idx; 3425 3426 page_list_location(ic, i, 0, &start_index, &start_offset); 3427 page_list_location(ic, i, ic->journal_section_sectors - 1, 3428 &end_index, &end_offset); 3429 3430 n_pages = (end_index - start_index + 1); 3431 3432 s = kvmalloc_array(n_pages, sizeof(struct scatterlist), 3433 GFP_KERNEL); 3434 if (!s) { 3435 dm_integrity_free_journal_scatterlist(ic, sl); 3436 return NULL; 3437 } 3438 3439 sg_init_table(s, n_pages); 3440 for (idx = start_index; idx <= end_index; idx++) { 3441 char *va = lowmem_page_address(pl[idx].page); 3442 unsigned start = 0, end = PAGE_SIZE; 3443 if (idx == start_index) 3444 start = start_offset; 3445 if (idx == end_index) 3446 end = end_offset + (1 << SECTOR_SHIFT); 3447 sg_set_buf(&s[idx - start_index], va + start, end - start); 3448 } 3449 3450 sl[i] = s; 3451 } 3452 3453 return sl; 3454 } 3455 3456 static void free_alg(struct alg_spec *a) 3457 { 3458 kfree_sensitive(a->alg_string); 3459 kfree_sensitive(a->key); 3460 memset(a, 0, sizeof *a); 3461 } 3462 3463 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 3464 { 3465 char *k; 3466 3467 free_alg(a); 3468 3469 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 3470 if (!a->alg_string) 3471 goto nomem; 3472 3473 k = strchr(a->alg_string, ':'); 3474 if (k) { 3475 *k = 0; 3476 a->key_string = k + 1; 3477 if (strlen(a->key_string) & 1) 3478 goto inval; 3479 3480 a->key_size = strlen(a->key_string) / 2; 3481 a->key = kmalloc(a->key_size, GFP_KERNEL); 3482 if (!a->key) 3483 goto nomem; 3484 if (hex2bin(a->key, a->key_string, a->key_size)) 3485 goto inval; 3486 } 3487 3488 return 0; 3489 inval: 3490 *error = error_inval; 3491 return -EINVAL; 3492 nomem: 3493 *error = "Out of memory for an argument"; 3494 return -ENOMEM; 3495 } 3496 3497 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 3498 char *error_alg, char *error_key) 3499 { 3500 int r; 3501 3502 if (a->alg_string) { 3503 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 3504 if (IS_ERR(*hash)) { 3505 *error = error_alg; 3506 r = PTR_ERR(*hash); 3507 *hash = NULL; 3508 return r; 3509 } 3510 3511 if (a->key) { 3512 r = crypto_shash_setkey(*hash, a->key, a->key_size); 3513 if (r) { 3514 *error = error_key; 3515 return r; 3516 } 3517 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { 3518 *error = error_key; 3519 return -ENOKEY; 3520 } 3521 } 3522 3523 return 0; 3524 } 3525 3526 static int create_journal(struct dm_integrity_c *ic, char **error) 3527 { 3528 int r = 0; 3529 unsigned i; 3530 __u64 journal_pages, journal_desc_size, journal_tree_size; 3531 unsigned char *crypt_data = NULL, *crypt_iv = NULL; 3532 struct skcipher_request *req = NULL; 3533 3534 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 3535 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 3536 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 3537 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 3538 3539 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 3540 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 3541 journal_desc_size = journal_pages * sizeof(struct page_list); 3542 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) { 3543 *error = "Journal doesn't fit into memory"; 3544 r = -ENOMEM; 3545 goto bad; 3546 } 3547 ic->journal_pages = journal_pages; 3548 3549 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages); 3550 if (!ic->journal) { 3551 *error = "Could not allocate memory for journal"; 3552 r = -ENOMEM; 3553 goto bad; 3554 } 3555 if (ic->journal_crypt_alg.alg_string) { 3556 unsigned ivsize, blocksize; 3557 struct journal_completion comp; 3558 3559 comp.ic = ic; 3560 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 3561 if (IS_ERR(ic->journal_crypt)) { 3562 *error = "Invalid journal cipher"; 3563 r = PTR_ERR(ic->journal_crypt); 3564 ic->journal_crypt = NULL; 3565 goto bad; 3566 } 3567 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 3568 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 3569 3570 if (ic->journal_crypt_alg.key) { 3571 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 3572 ic->journal_crypt_alg.key_size); 3573 if (r) { 3574 *error = "Error setting encryption key"; 3575 goto bad; 3576 } 3577 } 3578 DEBUG_print("cipher %s, block size %u iv size %u\n", 3579 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 3580 3581 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages); 3582 if (!ic->journal_io) { 3583 *error = "Could not allocate memory for journal io"; 3584 r = -ENOMEM; 3585 goto bad; 3586 } 3587 3588 if (blocksize == 1) { 3589 struct scatterlist *sg; 3590 3591 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3592 if (!req) { 3593 *error = "Could not allocate crypt request"; 3594 r = -ENOMEM; 3595 goto bad; 3596 } 3597 3598 crypt_iv = kzalloc(ivsize, GFP_KERNEL); 3599 if (!crypt_iv) { 3600 *error = "Could not allocate iv"; 3601 r = -ENOMEM; 3602 goto bad; 3603 } 3604 3605 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages); 3606 if (!ic->journal_xor) { 3607 *error = "Could not allocate memory for journal xor"; 3608 r = -ENOMEM; 3609 goto bad; 3610 } 3611 3612 sg = kvmalloc_array(ic->journal_pages + 1, 3613 sizeof(struct scatterlist), 3614 GFP_KERNEL); 3615 if (!sg) { 3616 *error = "Unable to allocate sg list"; 3617 r = -ENOMEM; 3618 goto bad; 3619 } 3620 sg_init_table(sg, ic->journal_pages + 1); 3621 for (i = 0; i < ic->journal_pages; i++) { 3622 char *va = lowmem_page_address(ic->journal_xor[i].page); 3623 clear_page(va); 3624 sg_set_buf(&sg[i], va, PAGE_SIZE); 3625 } 3626 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids); 3627 3628 skcipher_request_set_crypt(req, sg, sg, 3629 PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv); 3630 init_completion(&comp.comp); 3631 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3632 if (do_crypt(true, req, &comp)) 3633 wait_for_completion(&comp.comp); 3634 kvfree(sg); 3635 r = dm_integrity_failed(ic); 3636 if (r) { 3637 *error = "Unable to encrypt journal"; 3638 goto bad; 3639 } 3640 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 3641 3642 crypto_free_skcipher(ic->journal_crypt); 3643 ic->journal_crypt = NULL; 3644 } else { 3645 unsigned crypt_len = roundup(ivsize, blocksize); 3646 3647 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3648 if (!req) { 3649 *error = "Could not allocate crypt request"; 3650 r = -ENOMEM; 3651 goto bad; 3652 } 3653 3654 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 3655 if (!crypt_iv) { 3656 *error = "Could not allocate iv"; 3657 r = -ENOMEM; 3658 goto bad; 3659 } 3660 3661 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 3662 if (!crypt_data) { 3663 *error = "Unable to allocate crypt data"; 3664 r = -ENOMEM; 3665 goto bad; 3666 } 3667 3668 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 3669 if (!ic->journal_scatterlist) { 3670 *error = "Unable to allocate sg list"; 3671 r = -ENOMEM; 3672 goto bad; 3673 } 3674 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 3675 if (!ic->journal_io_scatterlist) { 3676 *error = "Unable to allocate sg list"; 3677 r = -ENOMEM; 3678 goto bad; 3679 } 3680 ic->sk_requests = kvmalloc_array(ic->journal_sections, 3681 sizeof(struct skcipher_request *), 3682 GFP_KERNEL | __GFP_ZERO); 3683 if (!ic->sk_requests) { 3684 *error = "Unable to allocate sk requests"; 3685 r = -ENOMEM; 3686 goto bad; 3687 } 3688 for (i = 0; i < ic->journal_sections; i++) { 3689 struct scatterlist sg; 3690 struct skcipher_request *section_req; 3691 __u32 section_le = cpu_to_le32(i); 3692 3693 memset(crypt_iv, 0x00, ivsize); 3694 memset(crypt_data, 0x00, crypt_len); 3695 memcpy(crypt_data, §ion_le, min((size_t)crypt_len, sizeof(section_le))); 3696 3697 sg_init_one(&sg, crypt_data, crypt_len); 3698 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); 3699 init_completion(&comp.comp); 3700 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3701 if (do_crypt(true, req, &comp)) 3702 wait_for_completion(&comp.comp); 3703 3704 r = dm_integrity_failed(ic); 3705 if (r) { 3706 *error = "Unable to generate iv"; 3707 goto bad; 3708 } 3709 3710 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3711 if (!section_req) { 3712 *error = "Unable to allocate crypt request"; 3713 r = -ENOMEM; 3714 goto bad; 3715 } 3716 section_req->iv = kmalloc_array(ivsize, 2, 3717 GFP_KERNEL); 3718 if (!section_req->iv) { 3719 skcipher_request_free(section_req); 3720 *error = "Unable to allocate iv"; 3721 r = -ENOMEM; 3722 goto bad; 3723 } 3724 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 3725 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 3726 ic->sk_requests[i] = section_req; 3727 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 3728 } 3729 } 3730 } 3731 3732 for (i = 0; i < N_COMMIT_IDS; i++) { 3733 unsigned j; 3734 retest_commit_id: 3735 for (j = 0; j < i; j++) { 3736 if (ic->commit_ids[j] == ic->commit_ids[i]) { 3737 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 3738 goto retest_commit_id; 3739 } 3740 } 3741 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 3742 } 3743 3744 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 3745 if (journal_tree_size > ULONG_MAX) { 3746 *error = "Journal doesn't fit into memory"; 3747 r = -ENOMEM; 3748 goto bad; 3749 } 3750 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 3751 if (!ic->journal_tree) { 3752 *error = "Could not allocate memory for journal tree"; 3753 r = -ENOMEM; 3754 } 3755 bad: 3756 kfree(crypt_data); 3757 kfree(crypt_iv); 3758 skcipher_request_free(req); 3759 3760 return r; 3761 } 3762 3763 /* 3764 * Construct a integrity mapping 3765 * 3766 * Arguments: 3767 * device 3768 * offset from the start of the device 3769 * tag size 3770 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode 3771 * number of optional arguments 3772 * optional arguments: 3773 * journal_sectors 3774 * interleave_sectors 3775 * buffer_sectors 3776 * journal_watermark 3777 * commit_time 3778 * meta_device 3779 * block_size 3780 * sectors_per_bit 3781 * bitmap_flush_interval 3782 * internal_hash 3783 * journal_crypt 3784 * journal_mac 3785 * recalculate 3786 */ 3787 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv) 3788 { 3789 struct dm_integrity_c *ic; 3790 char dummy; 3791 int r; 3792 unsigned extra_args; 3793 struct dm_arg_set as; 3794 static const struct dm_arg _args[] = { 3795 {0, 15, "Invalid number of feature args"}, 3796 }; 3797 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 3798 bool should_write_sb; 3799 __u64 threshold; 3800 unsigned long long start; 3801 __s8 log2_sectors_per_bitmap_bit = -1; 3802 __s8 log2_blocks_per_bitmap_bit; 3803 __u64 bits_in_journal; 3804 __u64 n_bitmap_bits; 3805 3806 #define DIRECT_ARGUMENTS 4 3807 3808 if (argc <= DIRECT_ARGUMENTS) { 3809 ti->error = "Invalid argument count"; 3810 return -EINVAL; 3811 } 3812 3813 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 3814 if (!ic) { 3815 ti->error = "Cannot allocate integrity context"; 3816 return -ENOMEM; 3817 } 3818 ti->private = ic; 3819 ti->per_io_data_size = sizeof(struct dm_integrity_io); 3820 ic->ti = ti; 3821 3822 ic->in_progress = RB_ROOT; 3823 INIT_LIST_HEAD(&ic->wait_list); 3824 init_waitqueue_head(&ic->endio_wait); 3825 bio_list_init(&ic->flush_bio_list); 3826 init_waitqueue_head(&ic->copy_to_journal_wait); 3827 init_completion(&ic->crypto_backoff); 3828 atomic64_set(&ic->number_of_mismatches, 0); 3829 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL; 3830 3831 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 3832 if (r) { 3833 ti->error = "Device lookup failed"; 3834 goto bad; 3835 } 3836 3837 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 3838 ti->error = "Invalid starting offset"; 3839 r = -EINVAL; 3840 goto bad; 3841 } 3842 ic->start = start; 3843 3844 if (strcmp(argv[2], "-")) { 3845 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 3846 ti->error = "Invalid tag size"; 3847 r = -EINVAL; 3848 goto bad; 3849 } 3850 } 3851 3852 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") || 3853 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) { 3854 ic->mode = argv[3][0]; 3855 } else { 3856 ti->error = "Invalid mode (expecting J, B, D, R)"; 3857 r = -EINVAL; 3858 goto bad; 3859 } 3860 3861 journal_sectors = 0; 3862 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3863 buffer_sectors = DEFAULT_BUFFER_SECTORS; 3864 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 3865 sync_msec = DEFAULT_SYNC_MSEC; 3866 ic->sectors_per_block = 1; 3867 3868 as.argc = argc - DIRECT_ARGUMENTS; 3869 as.argv = argv + DIRECT_ARGUMENTS; 3870 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 3871 if (r) 3872 goto bad; 3873 3874 while (extra_args--) { 3875 const char *opt_string; 3876 unsigned val; 3877 unsigned long long llval; 3878 opt_string = dm_shift_arg(&as); 3879 if (!opt_string) { 3880 r = -EINVAL; 3881 ti->error = "Not enough feature arguments"; 3882 goto bad; 3883 } 3884 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 3885 journal_sectors = val ? val : 1; 3886 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 3887 interleave_sectors = val; 3888 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 3889 buffer_sectors = val; 3890 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 3891 journal_watermark = val; 3892 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 3893 sync_msec = val; 3894 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) { 3895 if (ic->meta_dev) { 3896 dm_put_device(ti, ic->meta_dev); 3897 ic->meta_dev = NULL; 3898 } 3899 r = dm_get_device(ti, strchr(opt_string, ':') + 1, 3900 dm_table_get_mode(ti->table), &ic->meta_dev); 3901 if (r) { 3902 ti->error = "Device lookup failed"; 3903 goto bad; 3904 } 3905 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 3906 if (val < 1 << SECTOR_SHIFT || 3907 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 3908 (val & (val -1))) { 3909 r = -EINVAL; 3910 ti->error = "Invalid block_size argument"; 3911 goto bad; 3912 } 3913 ic->sectors_per_block = val >> SECTOR_SHIFT; 3914 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) { 3915 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval); 3916 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) { 3917 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) { 3918 r = -EINVAL; 3919 ti->error = "Invalid bitmap_flush_interval argument"; 3920 } 3921 ic->bitmap_flush_interval = msecs_to_jiffies(val); 3922 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 3923 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 3924 "Invalid internal_hash argument"); 3925 if (r) 3926 goto bad; 3927 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 3928 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 3929 "Invalid journal_crypt argument"); 3930 if (r) 3931 goto bad; 3932 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 3933 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 3934 "Invalid journal_mac argument"); 3935 if (r) 3936 goto bad; 3937 } else if (!strcmp(opt_string, "recalculate")) { 3938 ic->recalculate_flag = true; 3939 } else if (!strcmp(opt_string, "allow_discards")) { 3940 ic->discard = true; 3941 } else if (!strcmp(opt_string, "fix_padding")) { 3942 ic->fix_padding = true; 3943 } else { 3944 r = -EINVAL; 3945 ti->error = "Invalid argument"; 3946 goto bad; 3947 } 3948 } 3949 3950 ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT; 3951 if (!ic->meta_dev) 3952 ic->meta_device_sectors = ic->data_device_sectors; 3953 else 3954 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT; 3955 3956 if (!journal_sectors) { 3957 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 3958 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 3959 } 3960 3961 if (!buffer_sectors) 3962 buffer_sectors = 1; 3963 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT); 3964 3965 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 3966 "Invalid internal hash", "Error setting internal hash key"); 3967 if (r) 3968 goto bad; 3969 3970 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 3971 "Invalid journal mac", "Error setting journal mac key"); 3972 if (r) 3973 goto bad; 3974 3975 if (!ic->tag_size) { 3976 if (!ic->internal_hash) { 3977 ti->error = "Unknown tag size"; 3978 r = -EINVAL; 3979 goto bad; 3980 } 3981 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 3982 } 3983 if (ic->tag_size > MAX_TAG_SIZE) { 3984 ti->error = "Too big tag size"; 3985 r = -EINVAL; 3986 goto bad; 3987 } 3988 if (!(ic->tag_size & (ic->tag_size - 1))) 3989 ic->log2_tag_size = __ffs(ic->tag_size); 3990 else 3991 ic->log2_tag_size = -1; 3992 3993 if (ic->mode == 'B' && !ic->internal_hash) { 3994 r = -EINVAL; 3995 ti->error = "Bitmap mode can be only used with internal hash"; 3996 goto bad; 3997 } 3998 3999 if (ic->discard && !ic->internal_hash) { 4000 r = -EINVAL; 4001 ti->error = "Discard can be only used with internal hash"; 4002 goto bad; 4003 } 4004 4005 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 4006 ic->autocommit_msec = sync_msec; 4007 timer_setup(&ic->autocommit_timer, autocommit_fn, 0); 4008 4009 ic->io = dm_io_client_create(); 4010 if (IS_ERR(ic->io)) { 4011 r = PTR_ERR(ic->io); 4012 ic->io = NULL; 4013 ti->error = "Cannot allocate dm io"; 4014 goto bad; 4015 } 4016 4017 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); 4018 if (r) { 4019 ti->error = "Cannot allocate mempool"; 4020 goto bad; 4021 } 4022 4023 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 4024 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 4025 if (!ic->metadata_wq) { 4026 ti->error = "Cannot allocate workqueue"; 4027 r = -ENOMEM; 4028 goto bad; 4029 } 4030 4031 /* 4032 * If this workqueue were percpu, it would cause bio reordering 4033 * and reduced performance. 4034 */ 4035 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4036 if (!ic->wait_wq) { 4037 ti->error = "Cannot allocate workqueue"; 4038 r = -ENOMEM; 4039 goto bad; 4040 } 4041 4042 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM, 4043 METADATA_WORKQUEUE_MAX_ACTIVE); 4044 if (!ic->offload_wq) { 4045 ti->error = "Cannot allocate workqueue"; 4046 r = -ENOMEM; 4047 goto bad; 4048 } 4049 4050 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 4051 if (!ic->commit_wq) { 4052 ti->error = "Cannot allocate workqueue"; 4053 r = -ENOMEM; 4054 goto bad; 4055 } 4056 INIT_WORK(&ic->commit_work, integrity_commit); 4057 4058 if (ic->mode == 'J' || ic->mode == 'B') { 4059 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 4060 if (!ic->writer_wq) { 4061 ti->error = "Cannot allocate workqueue"; 4062 r = -ENOMEM; 4063 goto bad; 4064 } 4065 INIT_WORK(&ic->writer_work, integrity_writer); 4066 } 4067 4068 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 4069 if (!ic->sb) { 4070 r = -ENOMEM; 4071 ti->error = "Cannot allocate superblock area"; 4072 goto bad; 4073 } 4074 4075 r = sync_rw_sb(ic, REQ_OP_READ, 0); 4076 if (r) { 4077 ti->error = "Error reading superblock"; 4078 goto bad; 4079 } 4080 should_write_sb = false; 4081 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 4082 if (ic->mode != 'R') { 4083 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 4084 r = -EINVAL; 4085 ti->error = "The device is not initialized"; 4086 goto bad; 4087 } 4088 } 4089 4090 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 4091 if (r) { 4092 ti->error = "Could not initialize superblock"; 4093 goto bad; 4094 } 4095 if (ic->mode != 'R') 4096 should_write_sb = true; 4097 } 4098 4099 if (!ic->sb->version || ic->sb->version > SB_VERSION_4) { 4100 r = -EINVAL; 4101 ti->error = "Unknown version"; 4102 goto bad; 4103 } 4104 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 4105 r = -EINVAL; 4106 ti->error = "Tag size doesn't match the information in superblock"; 4107 goto bad; 4108 } 4109 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 4110 r = -EINVAL; 4111 ti->error = "Block size doesn't match the information in superblock"; 4112 goto bad; 4113 } 4114 if (!le32_to_cpu(ic->sb->journal_sections)) { 4115 r = -EINVAL; 4116 ti->error = "Corrupted superblock, journal_sections is 0"; 4117 goto bad; 4118 } 4119 /* make sure that ti->max_io_len doesn't overflow */ 4120 if (!ic->meta_dev) { 4121 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 4122 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 4123 r = -EINVAL; 4124 ti->error = "Invalid interleave_sectors in the superblock"; 4125 goto bad; 4126 } 4127 } else { 4128 if (ic->sb->log2_interleave_sectors) { 4129 r = -EINVAL; 4130 ti->error = "Invalid interleave_sectors in the superblock"; 4131 goto bad; 4132 } 4133 } 4134 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 4135 r = -EINVAL; 4136 ti->error = "Journal mac mismatch"; 4137 goto bad; 4138 } 4139 4140 get_provided_data_sectors(ic); 4141 if (!ic->provided_data_sectors) { 4142 r = -EINVAL; 4143 ti->error = "The device is too small"; 4144 goto bad; 4145 } 4146 4147 try_smaller_buffer: 4148 r = calculate_device_limits(ic); 4149 if (r) { 4150 if (ic->meta_dev) { 4151 if (ic->log2_buffer_sectors > 3) { 4152 ic->log2_buffer_sectors--; 4153 goto try_smaller_buffer; 4154 } 4155 } 4156 ti->error = "The device is too small"; 4157 goto bad; 4158 } 4159 4160 if (log2_sectors_per_bitmap_bit < 0) 4161 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT); 4162 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block) 4163 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block; 4164 4165 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3); 4166 if (bits_in_journal > UINT_MAX) 4167 bits_in_journal = UINT_MAX; 4168 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit) 4169 log2_sectors_per_bitmap_bit++; 4170 4171 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block; 4172 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4173 if (should_write_sb) { 4174 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4175 } 4176 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) 4177 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit; 4178 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8); 4179 4180 if (!ic->meta_dev) 4181 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run)); 4182 4183 if (ti->len > ic->provided_data_sectors) { 4184 r = -EINVAL; 4185 ti->error = "Not enough provided sectors for requested mapping size"; 4186 goto bad; 4187 } 4188 4189 4190 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 4191 threshold += 50; 4192 do_div(threshold, 100); 4193 ic->free_sectors_threshold = threshold; 4194 4195 DEBUG_print("initialized:\n"); 4196 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 4197 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 4198 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 4199 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 4200 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 4201 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections)); 4202 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 4203 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 4204 DEBUG_print(" data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT); 4205 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 4206 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 4207 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 4208 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors); 4209 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 4210 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal); 4211 4212 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) { 4213 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 4214 ic->sb->recalc_sector = cpu_to_le64(0); 4215 } 4216 4217 if (ic->internal_hash) { 4218 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1); 4219 if (!ic->recalc_wq ) { 4220 ti->error = "Cannot allocate workqueue"; 4221 r = -ENOMEM; 4222 goto bad; 4223 } 4224 INIT_WORK(&ic->recalc_work, integrity_recalc); 4225 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT); 4226 if (!ic->recalc_buffer) { 4227 ti->error = "Cannot allocate buffer for recalculating"; 4228 r = -ENOMEM; 4229 goto bad; 4230 } 4231 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block, 4232 ic->tag_size, GFP_KERNEL); 4233 if (!ic->recalc_tags) { 4234 ti->error = "Cannot allocate tags for recalculating"; 4235 r = -ENOMEM; 4236 goto bad; 4237 } 4238 } 4239 4240 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev, 4241 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL); 4242 if (IS_ERR(ic->bufio)) { 4243 r = PTR_ERR(ic->bufio); 4244 ti->error = "Cannot initialize dm-bufio"; 4245 ic->bufio = NULL; 4246 goto bad; 4247 } 4248 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 4249 4250 if (ic->mode != 'R') { 4251 r = create_journal(ic, &ti->error); 4252 if (r) 4253 goto bad; 4254 4255 } 4256 4257 if (ic->mode == 'B') { 4258 unsigned i; 4259 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 4260 4261 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4262 if (!ic->recalc_bitmap) { 4263 r = -ENOMEM; 4264 goto bad; 4265 } 4266 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4267 if (!ic->may_write_bitmap) { 4268 r = -ENOMEM; 4269 goto bad; 4270 } 4271 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL); 4272 if (!ic->bbs) { 4273 r = -ENOMEM; 4274 goto bad; 4275 } 4276 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work); 4277 for (i = 0; i < ic->n_bitmap_blocks; i++) { 4278 struct bitmap_block_status *bbs = &ic->bbs[i]; 4279 unsigned sector, pl_index, pl_offset; 4280 4281 INIT_WORK(&bbs->work, bitmap_block_work); 4282 bbs->ic = ic; 4283 bbs->idx = i; 4284 bio_list_init(&bbs->bio_queue); 4285 spin_lock_init(&bbs->bio_queue_lock); 4286 4287 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT); 4288 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 4289 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 4290 4291 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset; 4292 } 4293 } 4294 4295 if (should_write_sb) { 4296 int r; 4297 4298 init_journal(ic, 0, ic->journal_sections, 0); 4299 r = dm_integrity_failed(ic); 4300 if (unlikely(r)) { 4301 ti->error = "Error initializing journal"; 4302 goto bad; 4303 } 4304 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 4305 if (r) { 4306 ti->error = "Error initializing superblock"; 4307 goto bad; 4308 } 4309 ic->just_formatted = true; 4310 } 4311 4312 if (!ic->meta_dev) { 4313 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 4314 if (r) 4315 goto bad; 4316 } 4317 if (ic->mode == 'B') { 4318 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8); 4319 if (!max_io_len) 4320 max_io_len = 1U << 31; 4321 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len); 4322 if (!ti->max_io_len || ti->max_io_len > max_io_len) { 4323 r = dm_set_target_max_io_len(ti, max_io_len); 4324 if (r) 4325 goto bad; 4326 } 4327 } 4328 4329 if (!ic->internal_hash) 4330 dm_integrity_set(ti, ic); 4331 4332 ti->num_flush_bios = 1; 4333 ti->flush_supported = true; 4334 if (ic->discard) 4335 ti->num_discard_bios = 1; 4336 4337 return 0; 4338 4339 bad: 4340 dm_integrity_dtr(ti); 4341 return r; 4342 } 4343 4344 static void dm_integrity_dtr(struct dm_target *ti) 4345 { 4346 struct dm_integrity_c *ic = ti->private; 4347 4348 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 4349 BUG_ON(!list_empty(&ic->wait_list)); 4350 4351 if (ic->metadata_wq) 4352 destroy_workqueue(ic->metadata_wq); 4353 if (ic->wait_wq) 4354 destroy_workqueue(ic->wait_wq); 4355 if (ic->offload_wq) 4356 destroy_workqueue(ic->offload_wq); 4357 if (ic->commit_wq) 4358 destroy_workqueue(ic->commit_wq); 4359 if (ic->writer_wq) 4360 destroy_workqueue(ic->writer_wq); 4361 if (ic->recalc_wq) 4362 destroy_workqueue(ic->recalc_wq); 4363 vfree(ic->recalc_buffer); 4364 kvfree(ic->recalc_tags); 4365 kvfree(ic->bbs); 4366 if (ic->bufio) 4367 dm_bufio_client_destroy(ic->bufio); 4368 mempool_exit(&ic->journal_io_mempool); 4369 if (ic->io) 4370 dm_io_client_destroy(ic->io); 4371 if (ic->dev) 4372 dm_put_device(ti, ic->dev); 4373 if (ic->meta_dev) 4374 dm_put_device(ti, ic->meta_dev); 4375 dm_integrity_free_page_list(ic->journal); 4376 dm_integrity_free_page_list(ic->journal_io); 4377 dm_integrity_free_page_list(ic->journal_xor); 4378 dm_integrity_free_page_list(ic->recalc_bitmap); 4379 dm_integrity_free_page_list(ic->may_write_bitmap); 4380 if (ic->journal_scatterlist) 4381 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 4382 if (ic->journal_io_scatterlist) 4383 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 4384 if (ic->sk_requests) { 4385 unsigned i; 4386 4387 for (i = 0; i < ic->journal_sections; i++) { 4388 struct skcipher_request *req = ic->sk_requests[i]; 4389 if (req) { 4390 kfree_sensitive(req->iv); 4391 skcipher_request_free(req); 4392 } 4393 } 4394 kvfree(ic->sk_requests); 4395 } 4396 kvfree(ic->journal_tree); 4397 if (ic->sb) 4398 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 4399 4400 if (ic->internal_hash) 4401 crypto_free_shash(ic->internal_hash); 4402 free_alg(&ic->internal_hash_alg); 4403 4404 if (ic->journal_crypt) 4405 crypto_free_skcipher(ic->journal_crypt); 4406 free_alg(&ic->journal_crypt_alg); 4407 4408 if (ic->journal_mac) 4409 crypto_free_shash(ic->journal_mac); 4410 free_alg(&ic->journal_mac_alg); 4411 4412 kfree(ic); 4413 } 4414 4415 static struct target_type integrity_target = { 4416 .name = "integrity", 4417 .version = {1, 6, 0}, 4418 .module = THIS_MODULE, 4419 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 4420 .ctr = dm_integrity_ctr, 4421 .dtr = dm_integrity_dtr, 4422 .map = dm_integrity_map, 4423 .postsuspend = dm_integrity_postsuspend, 4424 .resume = dm_integrity_resume, 4425 .status = dm_integrity_status, 4426 .iterate_devices = dm_integrity_iterate_devices, 4427 .io_hints = dm_integrity_io_hints, 4428 }; 4429 4430 static int __init dm_integrity_init(void) 4431 { 4432 int r; 4433 4434 journal_io_cache = kmem_cache_create("integrity_journal_io", 4435 sizeof(struct journal_io), 0, 0, NULL); 4436 if (!journal_io_cache) { 4437 DMERR("can't allocate journal io cache"); 4438 return -ENOMEM; 4439 } 4440 4441 r = dm_register_target(&integrity_target); 4442 4443 if (r < 0) 4444 DMERR("register failed %d", r); 4445 4446 return r; 4447 } 4448 4449 static void __exit dm_integrity_exit(void) 4450 { 4451 dm_unregister_target(&integrity_target); 4452 kmem_cache_destroy(journal_io_cache); 4453 } 4454 4455 module_init(dm_integrity_init); 4456 module_exit(dm_integrity_exit); 4457 4458 MODULE_AUTHOR("Milan Broz"); 4459 MODULE_AUTHOR("Mikulas Patocka"); 4460 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 4461 MODULE_LICENSE("GPL"); 4462