xref: /linux/drivers/md/dm-integrity.c (revision ad30469a841b50dbb541df4d6971d891f703c297)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4  * Copyright (C) 2016-2017 Milan Broz
5  * Copyright (C) 2016-2017 Mikulas Patocka
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include "dm-bio-record.h"
11 
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <linux/async_tx.h>
25 #include <linux/dm-bufio.h>
26 
27 #include "dm-audit.h"
28 
29 #define DM_MSG_PREFIX "integrity"
30 
31 #define DEFAULT_INTERLEAVE_SECTORS	32768
32 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
33 #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
34 #define DEFAULT_BUFFER_SECTORS		128
35 #define DEFAULT_JOURNAL_WATERMARK	50
36 #define DEFAULT_SYNC_MSEC		10000
37 #define DEFAULT_MAX_JOURNAL_SECTORS	(IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
38 #define MIN_LOG2_INTERLEAVE_SECTORS	3
39 #define MAX_LOG2_INTERLEAVE_SECTORS	31
40 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
41 #define RECALC_SECTORS			(IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
42 #define RECALC_WRITE_SUPER		16
43 #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
44 #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
45 #define DISCARD_FILLER			0xf6
46 #define SALT_SIZE			16
47 
48 /*
49  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
50  * so it should not be enabled in the official kernel
51  */
52 //#define DEBUG_PRINT
53 //#define INTERNAL_VERIFY
54 
55 /*
56  * On disk structures
57  */
58 
59 #define SB_MAGIC			"integrt"
60 #define SB_VERSION_1			1
61 #define SB_VERSION_2			2
62 #define SB_VERSION_3			3
63 #define SB_VERSION_4			4
64 #define SB_VERSION_5			5
65 #define SB_SECTORS			8
66 #define MAX_SECTORS_PER_BLOCK		8
67 
68 struct superblock {
69 	__u8 magic[8];
70 	__u8 version;
71 	__u8 log2_interleave_sectors;
72 	__le16 integrity_tag_size;
73 	__le32 journal_sections;
74 	__le64 provided_data_sectors;	/* userspace uses this value */
75 	__le32 flags;
76 	__u8 log2_sectors_per_block;
77 	__u8 log2_blocks_per_bitmap_bit;
78 	__u8 pad[2];
79 	__le64 recalc_sector;
80 	__u8 pad2[8];
81 	__u8 salt[SALT_SIZE];
82 };
83 
84 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
85 #define SB_FLAG_RECALCULATING		0x2
86 #define SB_FLAG_DIRTY_BITMAP		0x4
87 #define SB_FLAG_FIXED_PADDING		0x8
88 #define SB_FLAG_FIXED_HMAC		0x10
89 
90 #define	JOURNAL_ENTRY_ROUNDUP		8
91 
92 typedef __le64 commit_id_t;
93 #define JOURNAL_MAC_PER_SECTOR		8
94 
95 struct journal_entry {
96 	union {
97 		struct {
98 			__le32 sector_lo;
99 			__le32 sector_hi;
100 		} s;
101 		__le64 sector;
102 	} u;
103 	commit_id_t last_bytes[];
104 	/* __u8 tag[0]; */
105 };
106 
107 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
108 
109 #if BITS_PER_LONG == 64
110 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
111 #else
112 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
113 #endif
114 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
115 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
116 #define journal_entry_set_unused(je)		((je)->u.s.sector_hi = cpu_to_le32(-1))
117 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
118 #define journal_entry_set_inprogress(je)	((je)->u.s.sector_hi = cpu_to_le32(-2))
119 
120 #define JOURNAL_BLOCK_SECTORS		8
121 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
122 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
123 
124 struct journal_sector {
125 	struct_group(sectors,
126 		__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
127 		__u8 mac[JOURNAL_MAC_PER_SECTOR];
128 	);
129 	commit_id_t commit_id;
130 };
131 
132 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
133 
134 #define METADATA_PADDING_SECTORS	8
135 
136 #define N_COMMIT_IDS			4
137 
138 static unsigned char prev_commit_seq(unsigned char seq)
139 {
140 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
141 }
142 
143 static unsigned char next_commit_seq(unsigned char seq)
144 {
145 	return (seq + 1) % N_COMMIT_IDS;
146 }
147 
148 /*
149  * In-memory structures
150  */
151 
152 struct journal_node {
153 	struct rb_node node;
154 	sector_t sector;
155 };
156 
157 struct alg_spec {
158 	char *alg_string;
159 	char *key_string;
160 	__u8 *key;
161 	unsigned int key_size;
162 };
163 
164 struct dm_integrity_c {
165 	struct dm_dev *dev;
166 	struct dm_dev *meta_dev;
167 	unsigned int tag_size;
168 	__s8 log2_tag_size;
169 	sector_t start;
170 	mempool_t journal_io_mempool;
171 	struct dm_io_client *io;
172 	struct dm_bufio_client *bufio;
173 	struct workqueue_struct *metadata_wq;
174 	struct superblock *sb;
175 	unsigned int journal_pages;
176 	unsigned int n_bitmap_blocks;
177 
178 	struct page_list *journal;
179 	struct page_list *journal_io;
180 	struct page_list *journal_xor;
181 	struct page_list *recalc_bitmap;
182 	struct page_list *may_write_bitmap;
183 	struct bitmap_block_status *bbs;
184 	unsigned int bitmap_flush_interval;
185 	int synchronous_mode;
186 	struct bio_list synchronous_bios;
187 	struct delayed_work bitmap_flush_work;
188 
189 	struct crypto_skcipher *journal_crypt;
190 	struct scatterlist **journal_scatterlist;
191 	struct scatterlist **journal_io_scatterlist;
192 	struct skcipher_request **sk_requests;
193 
194 	struct crypto_shash *journal_mac;
195 
196 	struct journal_node *journal_tree;
197 	struct rb_root journal_tree_root;
198 
199 	sector_t provided_data_sectors;
200 
201 	unsigned short journal_entry_size;
202 	unsigned char journal_entries_per_sector;
203 	unsigned char journal_section_entries;
204 	unsigned short journal_section_sectors;
205 	unsigned int journal_sections;
206 	unsigned int journal_entries;
207 	sector_t data_device_sectors;
208 	sector_t meta_device_sectors;
209 	unsigned int initial_sectors;
210 	unsigned int metadata_run;
211 	__s8 log2_metadata_run;
212 	__u8 log2_buffer_sectors;
213 	__u8 sectors_per_block;
214 	__u8 log2_blocks_per_bitmap_bit;
215 
216 	unsigned char mode;
217 
218 	int failed;
219 
220 	struct crypto_shash *internal_hash;
221 
222 	struct dm_target *ti;
223 
224 	/* these variables are locked with endio_wait.lock */
225 	struct rb_root in_progress;
226 	struct list_head wait_list;
227 	wait_queue_head_t endio_wait;
228 	struct workqueue_struct *wait_wq;
229 	struct workqueue_struct *offload_wq;
230 
231 	unsigned char commit_seq;
232 	commit_id_t commit_ids[N_COMMIT_IDS];
233 
234 	unsigned int committed_section;
235 	unsigned int n_committed_sections;
236 
237 	unsigned int uncommitted_section;
238 	unsigned int n_uncommitted_sections;
239 
240 	unsigned int free_section;
241 	unsigned char free_section_entry;
242 	unsigned int free_sectors;
243 
244 	unsigned int free_sectors_threshold;
245 
246 	struct workqueue_struct *commit_wq;
247 	struct work_struct commit_work;
248 
249 	struct workqueue_struct *writer_wq;
250 	struct work_struct writer_work;
251 
252 	struct workqueue_struct *recalc_wq;
253 	struct work_struct recalc_work;
254 
255 	struct bio_list flush_bio_list;
256 
257 	unsigned long autocommit_jiffies;
258 	struct timer_list autocommit_timer;
259 	unsigned int autocommit_msec;
260 
261 	wait_queue_head_t copy_to_journal_wait;
262 
263 	struct completion crypto_backoff;
264 
265 	bool wrote_to_journal;
266 	bool journal_uptodate;
267 	bool just_formatted;
268 	bool recalculate_flag;
269 	bool reset_recalculate_flag;
270 	bool discard;
271 	bool fix_padding;
272 	bool fix_hmac;
273 	bool legacy_recalculate;
274 
275 	struct alg_spec internal_hash_alg;
276 	struct alg_spec journal_crypt_alg;
277 	struct alg_spec journal_mac_alg;
278 
279 	atomic64_t number_of_mismatches;
280 
281 	struct notifier_block reboot_notifier;
282 };
283 
284 struct dm_integrity_range {
285 	sector_t logical_sector;
286 	sector_t n_sectors;
287 	bool waiting;
288 	union {
289 		struct rb_node node;
290 		struct {
291 			struct task_struct *task;
292 			struct list_head wait_entry;
293 		};
294 	};
295 };
296 
297 struct dm_integrity_io {
298 	struct work_struct work;
299 
300 	struct dm_integrity_c *ic;
301 	enum req_op op;
302 	bool fua;
303 
304 	struct dm_integrity_range range;
305 
306 	sector_t metadata_block;
307 	unsigned int metadata_offset;
308 
309 	atomic_t in_flight;
310 	blk_status_t bi_status;
311 
312 	struct completion *completion;
313 
314 	struct dm_bio_details bio_details;
315 };
316 
317 struct journal_completion {
318 	struct dm_integrity_c *ic;
319 	atomic_t in_flight;
320 	struct completion comp;
321 };
322 
323 struct journal_io {
324 	struct dm_integrity_range range;
325 	struct journal_completion *comp;
326 };
327 
328 struct bitmap_block_status {
329 	struct work_struct work;
330 	struct dm_integrity_c *ic;
331 	unsigned int idx;
332 	unsigned long *bitmap;
333 	struct bio_list bio_queue;
334 	spinlock_t bio_queue_lock;
335 
336 };
337 
338 static struct kmem_cache *journal_io_cache;
339 
340 #define JOURNAL_IO_MEMPOOL	32
341 
342 #ifdef DEBUG_PRINT
343 #define DEBUG_print(x, ...)			printk(KERN_DEBUG x, ##__VA_ARGS__)
344 #define DEBUG_bytes(bytes, len, msg, ...)	printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
345 						       len ? ": " : "", len, bytes)
346 #else
347 #define DEBUG_print(x, ...)			do { } while (0)
348 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
349 #endif
350 
351 static void dm_integrity_prepare(struct request *rq)
352 {
353 }
354 
355 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
356 {
357 }
358 
359 /*
360  * DM Integrity profile, protection is performed layer above (dm-crypt)
361  */
362 static const struct blk_integrity_profile dm_integrity_profile = {
363 	.name			= "DM-DIF-EXT-TAG",
364 	.generate_fn		= NULL,
365 	.verify_fn		= NULL,
366 	.prepare_fn		= dm_integrity_prepare,
367 	.complete_fn		= dm_integrity_complete,
368 };
369 
370 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
371 static void integrity_bio_wait(struct work_struct *w);
372 static void dm_integrity_dtr(struct dm_target *ti);
373 
374 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
375 {
376 	if (err == -EILSEQ)
377 		atomic64_inc(&ic->number_of_mismatches);
378 	if (!cmpxchg(&ic->failed, 0, err))
379 		DMERR("Error on %s: %d", msg, err);
380 }
381 
382 static int dm_integrity_failed(struct dm_integrity_c *ic)
383 {
384 	return READ_ONCE(ic->failed);
385 }
386 
387 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
388 {
389 	if (ic->legacy_recalculate)
390 		return false;
391 	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
392 	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
393 	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
394 		return true;
395 	return false;
396 }
397 
398 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
399 					  unsigned int j, unsigned char seq)
400 {
401 	/*
402 	 * Xor the number with section and sector, so that if a piece of
403 	 * journal is written at wrong place, it is detected.
404 	 */
405 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
406 }
407 
408 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
409 				sector_t *area, sector_t *offset)
410 {
411 	if (!ic->meta_dev) {
412 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
413 		*area = data_sector >> log2_interleave_sectors;
414 		*offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
415 	} else {
416 		*area = 0;
417 		*offset = data_sector;
418 	}
419 }
420 
421 #define sector_to_block(ic, n)						\
422 do {									\
423 	BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1));		\
424 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
425 } while (0)
426 
427 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
428 					    sector_t offset, unsigned int *metadata_offset)
429 {
430 	__u64 ms;
431 	unsigned int mo;
432 
433 	ms = area << ic->sb->log2_interleave_sectors;
434 	if (likely(ic->log2_metadata_run >= 0))
435 		ms += area << ic->log2_metadata_run;
436 	else
437 		ms += area * ic->metadata_run;
438 	ms >>= ic->log2_buffer_sectors;
439 
440 	sector_to_block(ic, offset);
441 
442 	if (likely(ic->log2_tag_size >= 0)) {
443 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
444 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
445 	} else {
446 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
447 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
448 	}
449 	*metadata_offset = mo;
450 	return ms;
451 }
452 
453 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
454 {
455 	sector_t result;
456 
457 	if (ic->meta_dev)
458 		return offset;
459 
460 	result = area << ic->sb->log2_interleave_sectors;
461 	if (likely(ic->log2_metadata_run >= 0))
462 		result += (area + 1) << ic->log2_metadata_run;
463 	else
464 		result += (area + 1) * ic->metadata_run;
465 
466 	result += (sector_t)ic->initial_sectors + offset;
467 	result += ic->start;
468 
469 	return result;
470 }
471 
472 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
473 {
474 	if (unlikely(*sec_ptr >= ic->journal_sections))
475 		*sec_ptr -= ic->journal_sections;
476 }
477 
478 static void sb_set_version(struct dm_integrity_c *ic)
479 {
480 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
481 		ic->sb->version = SB_VERSION_5;
482 	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
483 		ic->sb->version = SB_VERSION_4;
484 	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
485 		ic->sb->version = SB_VERSION_3;
486 	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
487 		ic->sb->version = SB_VERSION_2;
488 	else
489 		ic->sb->version = SB_VERSION_1;
490 }
491 
492 static int sb_mac(struct dm_integrity_c *ic, bool wr)
493 {
494 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
495 	int r;
496 	unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac);
497 	__u8 *sb = (__u8 *)ic->sb;
498 	__u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size;
499 
500 	if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT) {
501 		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
502 		return -EINVAL;
503 	}
504 
505 	desc->tfm = ic->journal_mac;
506 
507 	if (likely(wr)) {
508 		r = crypto_shash_digest(desc, sb, mac - sb, mac);
509 		if (unlikely(r < 0)) {
510 			dm_integrity_io_error(ic, "crypto_shash_digest", r);
511 			return r;
512 		}
513 	} else {
514 		__u8 actual_mac[HASH_MAX_DIGESTSIZE];
515 
516 		r = crypto_shash_digest(desc, sb, mac - sb, actual_mac);
517 		if (unlikely(r < 0)) {
518 			dm_integrity_io_error(ic, "crypto_shash_digest", r);
519 			return r;
520 		}
521 		if (memcmp(mac, actual_mac, mac_size)) {
522 			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
523 			dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
524 			return -EILSEQ;
525 		}
526 	}
527 
528 	return 0;
529 }
530 
531 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
532 {
533 	struct dm_io_request io_req;
534 	struct dm_io_region io_loc;
535 	const enum req_op op = opf & REQ_OP_MASK;
536 	int r;
537 
538 	io_req.bi_opf = opf;
539 	io_req.mem.type = DM_IO_KMEM;
540 	io_req.mem.ptr.addr = ic->sb;
541 	io_req.notify.fn = NULL;
542 	io_req.client = ic->io;
543 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
544 	io_loc.sector = ic->start;
545 	io_loc.count = SB_SECTORS;
546 
547 	if (op == REQ_OP_WRITE) {
548 		sb_set_version(ic);
549 		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
550 			r = sb_mac(ic, true);
551 			if (unlikely(r))
552 				return r;
553 		}
554 	}
555 
556 	r = dm_io(&io_req, 1, &io_loc, NULL);
557 	if (unlikely(r))
558 		return r;
559 
560 	if (op == REQ_OP_READ) {
561 		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
562 			r = sb_mac(ic, false);
563 			if (unlikely(r))
564 				return r;
565 		}
566 	}
567 
568 	return 0;
569 }
570 
571 #define BITMAP_OP_TEST_ALL_SET		0
572 #define BITMAP_OP_TEST_ALL_CLEAR	1
573 #define BITMAP_OP_SET			2
574 #define BITMAP_OP_CLEAR			3
575 
576 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
577 			    sector_t sector, sector_t n_sectors, int mode)
578 {
579 	unsigned long bit, end_bit, this_end_bit, page, end_page;
580 	unsigned long *data;
581 
582 	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
583 		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
584 			sector,
585 			n_sectors,
586 			ic->sb->log2_sectors_per_block,
587 			ic->log2_blocks_per_bitmap_bit,
588 			mode);
589 		BUG();
590 	}
591 
592 	if (unlikely(!n_sectors))
593 		return true;
594 
595 	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
596 	end_bit = (sector + n_sectors - 1) >>
597 		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
598 
599 	page = bit / (PAGE_SIZE * 8);
600 	bit %= PAGE_SIZE * 8;
601 
602 	end_page = end_bit / (PAGE_SIZE * 8);
603 	end_bit %= PAGE_SIZE * 8;
604 
605 repeat:
606 	if (page < end_page)
607 		this_end_bit = PAGE_SIZE * 8 - 1;
608 	else
609 		this_end_bit = end_bit;
610 
611 	data = lowmem_page_address(bitmap[page].page);
612 
613 	if (mode == BITMAP_OP_TEST_ALL_SET) {
614 		while (bit <= this_end_bit) {
615 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
616 				do {
617 					if (data[bit / BITS_PER_LONG] != -1)
618 						return false;
619 					bit += BITS_PER_LONG;
620 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
621 				continue;
622 			}
623 			if (!test_bit(bit, data))
624 				return false;
625 			bit++;
626 		}
627 	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
628 		while (bit <= this_end_bit) {
629 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
630 				do {
631 					if (data[bit / BITS_PER_LONG] != 0)
632 						return false;
633 					bit += BITS_PER_LONG;
634 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
635 				continue;
636 			}
637 			if (test_bit(bit, data))
638 				return false;
639 			bit++;
640 		}
641 	} else if (mode == BITMAP_OP_SET) {
642 		while (bit <= this_end_bit) {
643 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
644 				do {
645 					data[bit / BITS_PER_LONG] = -1;
646 					bit += BITS_PER_LONG;
647 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
648 				continue;
649 			}
650 			__set_bit(bit, data);
651 			bit++;
652 		}
653 	} else if (mode == BITMAP_OP_CLEAR) {
654 		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
655 			clear_page(data);
656 		else {
657 			while (bit <= this_end_bit) {
658 				if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
659 					do {
660 						data[bit / BITS_PER_LONG] = 0;
661 						bit += BITS_PER_LONG;
662 					} while (this_end_bit >= bit + BITS_PER_LONG - 1);
663 					continue;
664 				}
665 				__clear_bit(bit, data);
666 				bit++;
667 			}
668 		}
669 	} else {
670 		BUG();
671 	}
672 
673 	if (unlikely(page < end_page)) {
674 		bit = 0;
675 		page++;
676 		goto repeat;
677 	}
678 
679 	return true;
680 }
681 
682 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
683 {
684 	unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
685 	unsigned int i;
686 
687 	for (i = 0; i < n_bitmap_pages; i++) {
688 		unsigned long *dst_data = lowmem_page_address(dst[i].page);
689 		unsigned long *src_data = lowmem_page_address(src[i].page);
690 
691 		copy_page(dst_data, src_data);
692 	}
693 }
694 
695 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
696 {
697 	unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
698 	unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
699 
700 	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
701 	return &ic->bbs[bitmap_block];
702 }
703 
704 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
705 				 bool e, const char *function)
706 {
707 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
708 	unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
709 
710 	if (unlikely(section >= ic->journal_sections) ||
711 	    unlikely(offset >= limit)) {
712 		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
713 		       function, section, offset, ic->journal_sections, limit);
714 		BUG();
715 	}
716 #endif
717 }
718 
719 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
720 			       unsigned int *pl_index, unsigned int *pl_offset)
721 {
722 	unsigned int sector;
723 
724 	access_journal_check(ic, section, offset, false, "page_list_location");
725 
726 	sector = section * ic->journal_section_sectors + offset;
727 
728 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
729 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
730 }
731 
732 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
733 					       unsigned int section, unsigned int offset, unsigned int *n_sectors)
734 {
735 	unsigned int pl_index, pl_offset;
736 	char *va;
737 
738 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
739 
740 	if (n_sectors)
741 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
742 
743 	va = lowmem_page_address(pl[pl_index].page);
744 
745 	return (struct journal_sector *)(va + pl_offset);
746 }
747 
748 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
749 {
750 	return access_page_list(ic, ic->journal, section, offset, NULL);
751 }
752 
753 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
754 {
755 	unsigned int rel_sector, offset;
756 	struct journal_sector *js;
757 
758 	access_journal_check(ic, section, n, true, "access_journal_entry");
759 
760 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
761 	offset = n / JOURNAL_BLOCK_SECTORS;
762 
763 	js = access_journal(ic, section, rel_sector);
764 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
765 }
766 
767 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
768 {
769 	n <<= ic->sb->log2_sectors_per_block;
770 
771 	n += JOURNAL_BLOCK_SECTORS;
772 
773 	access_journal_check(ic, section, n, false, "access_journal_data");
774 
775 	return access_journal(ic, section, n);
776 }
777 
778 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
779 {
780 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
781 	int r;
782 	unsigned int j, size;
783 
784 	desc->tfm = ic->journal_mac;
785 
786 	r = crypto_shash_init(desc);
787 	if (unlikely(r < 0)) {
788 		dm_integrity_io_error(ic, "crypto_shash_init", r);
789 		goto err;
790 	}
791 
792 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
793 		__le64 section_le;
794 
795 		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
796 		if (unlikely(r < 0)) {
797 			dm_integrity_io_error(ic, "crypto_shash_update", r);
798 			goto err;
799 		}
800 
801 		section_le = cpu_to_le64(section);
802 		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof(section_le));
803 		if (unlikely(r < 0)) {
804 			dm_integrity_io_error(ic, "crypto_shash_update", r);
805 			goto err;
806 		}
807 	}
808 
809 	for (j = 0; j < ic->journal_section_entries; j++) {
810 		struct journal_entry *je = access_journal_entry(ic, section, j);
811 
812 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
813 		if (unlikely(r < 0)) {
814 			dm_integrity_io_error(ic, "crypto_shash_update", r);
815 			goto err;
816 		}
817 	}
818 
819 	size = crypto_shash_digestsize(ic->journal_mac);
820 
821 	if (likely(size <= JOURNAL_MAC_SIZE)) {
822 		r = crypto_shash_final(desc, result);
823 		if (unlikely(r < 0)) {
824 			dm_integrity_io_error(ic, "crypto_shash_final", r);
825 			goto err;
826 		}
827 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
828 	} else {
829 		__u8 digest[HASH_MAX_DIGESTSIZE];
830 
831 		if (WARN_ON(size > sizeof(digest))) {
832 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
833 			goto err;
834 		}
835 		r = crypto_shash_final(desc, digest);
836 		if (unlikely(r < 0)) {
837 			dm_integrity_io_error(ic, "crypto_shash_final", r);
838 			goto err;
839 		}
840 		memcpy(result, digest, JOURNAL_MAC_SIZE);
841 	}
842 
843 	return;
844 err:
845 	memset(result, 0, JOURNAL_MAC_SIZE);
846 }
847 
848 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
849 {
850 	__u8 result[JOURNAL_MAC_SIZE];
851 	unsigned int j;
852 
853 	if (!ic->journal_mac)
854 		return;
855 
856 	section_mac(ic, section, result);
857 
858 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
859 		struct journal_sector *js = access_journal(ic, section, j);
860 
861 		if (likely(wr))
862 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
863 		else {
864 			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
865 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
866 				dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
867 			}
868 		}
869 	}
870 }
871 
872 static void complete_journal_op(void *context)
873 {
874 	struct journal_completion *comp = context;
875 
876 	BUG_ON(!atomic_read(&comp->in_flight));
877 	if (likely(atomic_dec_and_test(&comp->in_flight)))
878 		complete(&comp->comp);
879 }
880 
881 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
882 			unsigned int n_sections, struct journal_completion *comp)
883 {
884 	struct async_submit_ctl submit;
885 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
886 	unsigned int pl_index, pl_offset, section_index;
887 	struct page_list *source_pl, *target_pl;
888 
889 	if (likely(encrypt)) {
890 		source_pl = ic->journal;
891 		target_pl = ic->journal_io;
892 	} else {
893 		source_pl = ic->journal_io;
894 		target_pl = ic->journal;
895 	}
896 
897 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
898 
899 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
900 
901 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
902 
903 	section_index = pl_index;
904 
905 	do {
906 		size_t this_step;
907 		struct page *src_pages[2];
908 		struct page *dst_page;
909 
910 		while (unlikely(pl_index == section_index)) {
911 			unsigned int dummy;
912 
913 			if (likely(encrypt))
914 				rw_section_mac(ic, section, true);
915 			section++;
916 			n_sections--;
917 			if (!n_sections)
918 				break;
919 			page_list_location(ic, section, 0, &section_index, &dummy);
920 		}
921 
922 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
923 		dst_page = target_pl[pl_index].page;
924 		src_pages[0] = source_pl[pl_index].page;
925 		src_pages[1] = ic->journal_xor[pl_index].page;
926 
927 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
928 
929 		pl_index++;
930 		pl_offset = 0;
931 		n_bytes -= this_step;
932 	} while (n_bytes);
933 
934 	BUG_ON(n_sections);
935 
936 	async_tx_issue_pending_all();
937 }
938 
939 static void complete_journal_encrypt(void *data, int err)
940 {
941 	struct journal_completion *comp = data;
942 
943 	if (unlikely(err)) {
944 		if (likely(err == -EINPROGRESS)) {
945 			complete(&comp->ic->crypto_backoff);
946 			return;
947 		}
948 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
949 	}
950 	complete_journal_op(comp);
951 }
952 
953 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
954 {
955 	int r;
956 
957 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
958 				      complete_journal_encrypt, comp);
959 	if (likely(encrypt))
960 		r = crypto_skcipher_encrypt(req);
961 	else
962 		r = crypto_skcipher_decrypt(req);
963 	if (likely(!r))
964 		return false;
965 	if (likely(r == -EINPROGRESS))
966 		return true;
967 	if (likely(r == -EBUSY)) {
968 		wait_for_completion(&comp->ic->crypto_backoff);
969 		reinit_completion(&comp->ic->crypto_backoff);
970 		return true;
971 	}
972 	dm_integrity_io_error(comp->ic, "encrypt", r);
973 	return false;
974 }
975 
976 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
977 			  unsigned int n_sections, struct journal_completion *comp)
978 {
979 	struct scatterlist **source_sg;
980 	struct scatterlist **target_sg;
981 
982 	atomic_add(2, &comp->in_flight);
983 
984 	if (likely(encrypt)) {
985 		source_sg = ic->journal_scatterlist;
986 		target_sg = ic->journal_io_scatterlist;
987 	} else {
988 		source_sg = ic->journal_io_scatterlist;
989 		target_sg = ic->journal_scatterlist;
990 	}
991 
992 	do {
993 		struct skcipher_request *req;
994 		unsigned int ivsize;
995 		char *iv;
996 
997 		if (likely(encrypt))
998 			rw_section_mac(ic, section, true);
999 
1000 		req = ic->sk_requests[section];
1001 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1002 		iv = req->iv;
1003 
1004 		memcpy(iv, iv + ivsize, ivsize);
1005 
1006 		req->src = source_sg[section];
1007 		req->dst = target_sg[section];
1008 
1009 		if (unlikely(do_crypt(encrypt, req, comp)))
1010 			atomic_inc(&comp->in_flight);
1011 
1012 		section++;
1013 		n_sections--;
1014 	} while (n_sections);
1015 
1016 	atomic_dec(&comp->in_flight);
1017 	complete_journal_op(comp);
1018 }
1019 
1020 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1021 			    unsigned int n_sections, struct journal_completion *comp)
1022 {
1023 	if (ic->journal_xor)
1024 		return xor_journal(ic, encrypt, section, n_sections, comp);
1025 	else
1026 		return crypt_journal(ic, encrypt, section, n_sections, comp);
1027 }
1028 
1029 static void complete_journal_io(unsigned long error, void *context)
1030 {
1031 	struct journal_completion *comp = context;
1032 
1033 	if (unlikely(error != 0))
1034 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1035 	complete_journal_op(comp);
1036 }
1037 
1038 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1039 			       unsigned int sector, unsigned int n_sectors,
1040 			       struct journal_completion *comp)
1041 {
1042 	struct dm_io_request io_req;
1043 	struct dm_io_region io_loc;
1044 	unsigned int pl_index, pl_offset;
1045 	int r;
1046 
1047 	if (unlikely(dm_integrity_failed(ic))) {
1048 		if (comp)
1049 			complete_journal_io(-1UL, comp);
1050 		return;
1051 	}
1052 
1053 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1054 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1055 
1056 	io_req.bi_opf = opf;
1057 	io_req.mem.type = DM_IO_PAGE_LIST;
1058 	if (ic->journal_io)
1059 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1060 	else
1061 		io_req.mem.ptr.pl = &ic->journal[pl_index];
1062 	io_req.mem.offset = pl_offset;
1063 	if (likely(comp != NULL)) {
1064 		io_req.notify.fn = complete_journal_io;
1065 		io_req.notify.context = comp;
1066 	} else {
1067 		io_req.notify.fn = NULL;
1068 	}
1069 	io_req.client = ic->io;
1070 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1071 	io_loc.sector = ic->start + SB_SECTORS + sector;
1072 	io_loc.count = n_sectors;
1073 
1074 	r = dm_io(&io_req, 1, &io_loc, NULL);
1075 	if (unlikely(r)) {
1076 		dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1077 				      "reading journal" : "writing journal", r);
1078 		if (comp) {
1079 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1080 			complete_journal_io(-1UL, comp);
1081 		}
1082 	}
1083 }
1084 
1085 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1086 		       unsigned int section, unsigned int n_sections,
1087 		       struct journal_completion *comp)
1088 {
1089 	unsigned int sector, n_sectors;
1090 
1091 	sector = section * ic->journal_section_sectors;
1092 	n_sectors = n_sections * ic->journal_section_sectors;
1093 
1094 	rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1095 }
1096 
1097 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1098 {
1099 	struct journal_completion io_comp;
1100 	struct journal_completion crypt_comp_1;
1101 	struct journal_completion crypt_comp_2;
1102 	unsigned int i;
1103 
1104 	io_comp.ic = ic;
1105 	init_completion(&io_comp.comp);
1106 
1107 	if (commit_start + commit_sections <= ic->journal_sections) {
1108 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1109 		if (ic->journal_io) {
1110 			crypt_comp_1.ic = ic;
1111 			init_completion(&crypt_comp_1.comp);
1112 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1113 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1114 			wait_for_completion_io(&crypt_comp_1.comp);
1115 		} else {
1116 			for (i = 0; i < commit_sections; i++)
1117 				rw_section_mac(ic, commit_start + i, true);
1118 		}
1119 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1120 			   commit_sections, &io_comp);
1121 	} else {
1122 		unsigned int to_end;
1123 
1124 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1125 		to_end = ic->journal_sections - commit_start;
1126 		if (ic->journal_io) {
1127 			crypt_comp_1.ic = ic;
1128 			init_completion(&crypt_comp_1.comp);
1129 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1130 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1131 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1132 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1133 					   commit_start, to_end, &io_comp);
1134 				reinit_completion(&crypt_comp_1.comp);
1135 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1136 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1137 				wait_for_completion_io(&crypt_comp_1.comp);
1138 			} else {
1139 				crypt_comp_2.ic = ic;
1140 				init_completion(&crypt_comp_2.comp);
1141 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1142 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1143 				wait_for_completion_io(&crypt_comp_1.comp);
1144 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1145 				wait_for_completion_io(&crypt_comp_2.comp);
1146 			}
1147 		} else {
1148 			for (i = 0; i < to_end; i++)
1149 				rw_section_mac(ic, commit_start + i, true);
1150 			rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1151 			for (i = 0; i < commit_sections - to_end; i++)
1152 				rw_section_mac(ic, i, true);
1153 		}
1154 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1155 	}
1156 
1157 	wait_for_completion_io(&io_comp.comp);
1158 }
1159 
1160 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1161 			      unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1162 {
1163 	struct dm_io_request io_req;
1164 	struct dm_io_region io_loc;
1165 	int r;
1166 	unsigned int sector, pl_index, pl_offset;
1167 
1168 	BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1169 
1170 	if (unlikely(dm_integrity_failed(ic))) {
1171 		fn(-1UL, data);
1172 		return;
1173 	}
1174 
1175 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1176 
1177 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1178 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1179 
1180 	io_req.bi_opf = REQ_OP_WRITE;
1181 	io_req.mem.type = DM_IO_PAGE_LIST;
1182 	io_req.mem.ptr.pl = &ic->journal[pl_index];
1183 	io_req.mem.offset = pl_offset;
1184 	io_req.notify.fn = fn;
1185 	io_req.notify.context = data;
1186 	io_req.client = ic->io;
1187 	io_loc.bdev = ic->dev->bdev;
1188 	io_loc.sector = target;
1189 	io_loc.count = n_sectors;
1190 
1191 	r = dm_io(&io_req, 1, &io_loc, NULL);
1192 	if (unlikely(r)) {
1193 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1194 		fn(-1UL, data);
1195 	}
1196 }
1197 
1198 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1199 {
1200 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1201 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1202 }
1203 
1204 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1205 {
1206 	struct rb_node **n = &ic->in_progress.rb_node;
1207 	struct rb_node *parent;
1208 
1209 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1210 
1211 	if (likely(check_waiting)) {
1212 		struct dm_integrity_range *range;
1213 
1214 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1215 			if (unlikely(ranges_overlap(range, new_range)))
1216 				return false;
1217 		}
1218 	}
1219 
1220 	parent = NULL;
1221 
1222 	while (*n) {
1223 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1224 
1225 		parent = *n;
1226 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1227 			n = &range->node.rb_left;
1228 		else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1229 			n = &range->node.rb_right;
1230 		else
1231 			return false;
1232 	}
1233 
1234 	rb_link_node(&new_range->node, parent, n);
1235 	rb_insert_color(&new_range->node, &ic->in_progress);
1236 
1237 	return true;
1238 }
1239 
1240 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1241 {
1242 	rb_erase(&range->node, &ic->in_progress);
1243 	while (unlikely(!list_empty(&ic->wait_list))) {
1244 		struct dm_integrity_range *last_range =
1245 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1246 		struct task_struct *last_range_task;
1247 
1248 		last_range_task = last_range->task;
1249 		list_del(&last_range->wait_entry);
1250 		if (!add_new_range(ic, last_range, false)) {
1251 			last_range->task = last_range_task;
1252 			list_add(&last_range->wait_entry, &ic->wait_list);
1253 			break;
1254 		}
1255 		last_range->waiting = false;
1256 		wake_up_process(last_range_task);
1257 	}
1258 }
1259 
1260 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1261 {
1262 	unsigned long flags;
1263 
1264 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1265 	remove_range_unlocked(ic, range);
1266 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1267 }
1268 
1269 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1270 {
1271 	new_range->waiting = true;
1272 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1273 	new_range->task = current;
1274 	do {
1275 		__set_current_state(TASK_UNINTERRUPTIBLE);
1276 		spin_unlock_irq(&ic->endio_wait.lock);
1277 		io_schedule();
1278 		spin_lock_irq(&ic->endio_wait.lock);
1279 	} while (unlikely(new_range->waiting));
1280 }
1281 
1282 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1283 {
1284 	if (unlikely(!add_new_range(ic, new_range, true)))
1285 		wait_and_add_new_range(ic, new_range);
1286 }
1287 
1288 static void init_journal_node(struct journal_node *node)
1289 {
1290 	RB_CLEAR_NODE(&node->node);
1291 	node->sector = (sector_t)-1;
1292 }
1293 
1294 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1295 {
1296 	struct rb_node **link;
1297 	struct rb_node *parent;
1298 
1299 	node->sector = sector;
1300 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1301 
1302 	link = &ic->journal_tree_root.rb_node;
1303 	parent = NULL;
1304 
1305 	while (*link) {
1306 		struct journal_node *j;
1307 
1308 		parent = *link;
1309 		j = container_of(parent, struct journal_node, node);
1310 		if (sector < j->sector)
1311 			link = &j->node.rb_left;
1312 		else
1313 			link = &j->node.rb_right;
1314 	}
1315 
1316 	rb_link_node(&node->node, parent, link);
1317 	rb_insert_color(&node->node, &ic->journal_tree_root);
1318 }
1319 
1320 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1321 {
1322 	BUG_ON(RB_EMPTY_NODE(&node->node));
1323 	rb_erase(&node->node, &ic->journal_tree_root);
1324 	init_journal_node(node);
1325 }
1326 
1327 #define NOT_FOUND	(-1U)
1328 
1329 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1330 {
1331 	struct rb_node *n = ic->journal_tree_root.rb_node;
1332 	unsigned int found = NOT_FOUND;
1333 
1334 	*next_sector = (sector_t)-1;
1335 	while (n) {
1336 		struct journal_node *j = container_of(n, struct journal_node, node);
1337 
1338 		if (sector == j->sector)
1339 			found = j - ic->journal_tree;
1340 
1341 		if (sector < j->sector) {
1342 			*next_sector = j->sector;
1343 			n = j->node.rb_left;
1344 		} else
1345 			n = j->node.rb_right;
1346 	}
1347 
1348 	return found;
1349 }
1350 
1351 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1352 {
1353 	struct journal_node *node, *next_node;
1354 	struct rb_node *next;
1355 
1356 	if (unlikely(pos >= ic->journal_entries))
1357 		return false;
1358 	node = &ic->journal_tree[pos];
1359 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1360 		return false;
1361 	if (unlikely(node->sector != sector))
1362 		return false;
1363 
1364 	next = rb_next(&node->node);
1365 	if (unlikely(!next))
1366 		return true;
1367 
1368 	next_node = container_of(next, struct journal_node, node);
1369 	return next_node->sector != sector;
1370 }
1371 
1372 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1373 {
1374 	struct rb_node *next;
1375 	struct journal_node *next_node;
1376 	unsigned int next_section;
1377 
1378 	BUG_ON(RB_EMPTY_NODE(&node->node));
1379 
1380 	next = rb_next(&node->node);
1381 	if (unlikely(!next))
1382 		return false;
1383 
1384 	next_node = container_of(next, struct journal_node, node);
1385 
1386 	if (next_node->sector != node->sector)
1387 		return false;
1388 
1389 	next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1390 	if (next_section >= ic->committed_section &&
1391 	    next_section < ic->committed_section + ic->n_committed_sections)
1392 		return true;
1393 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1394 		return true;
1395 
1396 	return false;
1397 }
1398 
1399 #define TAG_READ	0
1400 #define TAG_WRITE	1
1401 #define TAG_CMP		2
1402 
1403 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1404 			       unsigned int *metadata_offset, unsigned int total_size, int op)
1405 {
1406 #define MAY_BE_FILLER		1
1407 #define MAY_BE_HASH		2
1408 	unsigned int hash_offset = 0;
1409 	unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1410 
1411 	do {
1412 		unsigned char *data, *dp;
1413 		struct dm_buffer *b;
1414 		unsigned int to_copy;
1415 		int r;
1416 
1417 		r = dm_integrity_failed(ic);
1418 		if (unlikely(r))
1419 			return r;
1420 
1421 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1422 		if (IS_ERR(data))
1423 			return PTR_ERR(data);
1424 
1425 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1426 		dp = data + *metadata_offset;
1427 		if (op == TAG_READ) {
1428 			memcpy(tag, dp, to_copy);
1429 		} else if (op == TAG_WRITE) {
1430 			if (memcmp(dp, tag, to_copy)) {
1431 				memcpy(dp, tag, to_copy);
1432 				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1433 			}
1434 		} else {
1435 			/* e.g.: op == TAG_CMP */
1436 
1437 			if (likely(is_power_of_2(ic->tag_size))) {
1438 				if (unlikely(memcmp(dp, tag, to_copy)))
1439 					if (unlikely(!ic->discard) ||
1440 					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1441 						goto thorough_test;
1442 				}
1443 			} else {
1444 				unsigned int i, ts;
1445 thorough_test:
1446 				ts = total_size;
1447 
1448 				for (i = 0; i < to_copy; i++, ts--) {
1449 					if (unlikely(dp[i] != tag[i]))
1450 						may_be &= ~MAY_BE_HASH;
1451 					if (likely(dp[i] != DISCARD_FILLER))
1452 						may_be &= ~MAY_BE_FILLER;
1453 					hash_offset++;
1454 					if (unlikely(hash_offset == ic->tag_size)) {
1455 						if (unlikely(!may_be)) {
1456 							dm_bufio_release(b);
1457 							return ts;
1458 						}
1459 						hash_offset = 0;
1460 						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1461 					}
1462 				}
1463 			}
1464 		}
1465 		dm_bufio_release(b);
1466 
1467 		tag += to_copy;
1468 		*metadata_offset += to_copy;
1469 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1470 			(*metadata_block)++;
1471 			*metadata_offset = 0;
1472 		}
1473 
1474 		if (unlikely(!is_power_of_2(ic->tag_size)))
1475 			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1476 
1477 		total_size -= to_copy;
1478 	} while (unlikely(total_size));
1479 
1480 	return 0;
1481 #undef MAY_BE_FILLER
1482 #undef MAY_BE_HASH
1483 }
1484 
1485 struct flush_request {
1486 	struct dm_io_request io_req;
1487 	struct dm_io_region io_reg;
1488 	struct dm_integrity_c *ic;
1489 	struct completion comp;
1490 };
1491 
1492 static void flush_notify(unsigned long error, void *fr_)
1493 {
1494 	struct flush_request *fr = fr_;
1495 
1496 	if (unlikely(error != 0))
1497 		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1498 	complete(&fr->comp);
1499 }
1500 
1501 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1502 {
1503 	int r;
1504 	struct flush_request fr;
1505 
1506 	if (!ic->meta_dev)
1507 		flush_data = false;
1508 	if (flush_data) {
1509 		fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1510 		fr.io_req.mem.type = DM_IO_KMEM,
1511 		fr.io_req.mem.ptr.addr = NULL,
1512 		fr.io_req.notify.fn = flush_notify,
1513 		fr.io_req.notify.context = &fr;
1514 		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1515 		fr.io_reg.bdev = ic->dev->bdev,
1516 		fr.io_reg.sector = 0,
1517 		fr.io_reg.count = 0,
1518 		fr.ic = ic;
1519 		init_completion(&fr.comp);
1520 		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1521 		BUG_ON(r);
1522 	}
1523 
1524 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1525 	if (unlikely(r))
1526 		dm_integrity_io_error(ic, "writing tags", r);
1527 
1528 	if (flush_data)
1529 		wait_for_completion(&fr.comp);
1530 }
1531 
1532 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1533 {
1534 	DECLARE_WAITQUEUE(wait, current);
1535 
1536 	__add_wait_queue(&ic->endio_wait, &wait);
1537 	__set_current_state(TASK_UNINTERRUPTIBLE);
1538 	spin_unlock_irq(&ic->endio_wait.lock);
1539 	io_schedule();
1540 	spin_lock_irq(&ic->endio_wait.lock);
1541 	__remove_wait_queue(&ic->endio_wait, &wait);
1542 }
1543 
1544 static void autocommit_fn(struct timer_list *t)
1545 {
1546 	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1547 
1548 	if (likely(!dm_integrity_failed(ic)))
1549 		queue_work(ic->commit_wq, &ic->commit_work);
1550 }
1551 
1552 static void schedule_autocommit(struct dm_integrity_c *ic)
1553 {
1554 	if (!timer_pending(&ic->autocommit_timer))
1555 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1556 }
1557 
1558 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1559 {
1560 	struct bio *bio;
1561 	unsigned long flags;
1562 
1563 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1564 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1565 	bio_list_add(&ic->flush_bio_list, bio);
1566 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1567 
1568 	queue_work(ic->commit_wq, &ic->commit_work);
1569 }
1570 
1571 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1572 {
1573 	int r;
1574 
1575 	r = dm_integrity_failed(ic);
1576 	if (unlikely(r) && !bio->bi_status)
1577 		bio->bi_status = errno_to_blk_status(r);
1578 	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1579 		unsigned long flags;
1580 
1581 		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1582 		bio_list_add(&ic->synchronous_bios, bio);
1583 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1584 		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1585 		return;
1586 	}
1587 	bio_endio(bio);
1588 }
1589 
1590 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1591 {
1592 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1593 
1594 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1595 		submit_flush_bio(ic, dio);
1596 	else
1597 		do_endio(ic, bio);
1598 }
1599 
1600 static void dec_in_flight(struct dm_integrity_io *dio)
1601 {
1602 	if (atomic_dec_and_test(&dio->in_flight)) {
1603 		struct dm_integrity_c *ic = dio->ic;
1604 		struct bio *bio;
1605 
1606 		remove_range(ic, &dio->range);
1607 
1608 		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1609 			schedule_autocommit(ic);
1610 
1611 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1612 		if (unlikely(dio->bi_status) && !bio->bi_status)
1613 			bio->bi_status = dio->bi_status;
1614 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1615 			dio->range.logical_sector += dio->range.n_sectors;
1616 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1617 			INIT_WORK(&dio->work, integrity_bio_wait);
1618 			queue_work(ic->offload_wq, &dio->work);
1619 			return;
1620 		}
1621 		do_endio_flush(ic, dio);
1622 	}
1623 }
1624 
1625 static void integrity_end_io(struct bio *bio)
1626 {
1627 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1628 
1629 	dm_bio_restore(&dio->bio_details, bio);
1630 	if (bio->bi_integrity)
1631 		bio->bi_opf |= REQ_INTEGRITY;
1632 
1633 	if (dio->completion)
1634 		complete(dio->completion);
1635 
1636 	dec_in_flight(dio);
1637 }
1638 
1639 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1640 				      const char *data, char *result)
1641 {
1642 	__le64 sector_le = cpu_to_le64(sector);
1643 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1644 	int r;
1645 	unsigned int digest_size;
1646 
1647 	req->tfm = ic->internal_hash;
1648 
1649 	r = crypto_shash_init(req);
1650 	if (unlikely(r < 0)) {
1651 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1652 		goto failed;
1653 	}
1654 
1655 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1656 		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1657 		if (unlikely(r < 0)) {
1658 			dm_integrity_io_error(ic, "crypto_shash_update", r);
1659 			goto failed;
1660 		}
1661 	}
1662 
1663 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof(sector_le));
1664 	if (unlikely(r < 0)) {
1665 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1666 		goto failed;
1667 	}
1668 
1669 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1670 	if (unlikely(r < 0)) {
1671 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1672 		goto failed;
1673 	}
1674 
1675 	r = crypto_shash_final(req, result);
1676 	if (unlikely(r < 0)) {
1677 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1678 		goto failed;
1679 	}
1680 
1681 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1682 	if (unlikely(digest_size < ic->tag_size))
1683 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1684 
1685 	return;
1686 
1687 failed:
1688 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1689 	get_random_bytes(result, ic->tag_size);
1690 }
1691 
1692 static void integrity_metadata(struct work_struct *w)
1693 {
1694 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1695 	struct dm_integrity_c *ic = dio->ic;
1696 
1697 	int r;
1698 
1699 	if (ic->internal_hash) {
1700 		struct bvec_iter iter;
1701 		struct bio_vec bv;
1702 		unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1703 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1704 		char *checksums;
1705 		unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1706 		char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1707 		sector_t sector;
1708 		unsigned int sectors_to_process;
1709 
1710 		if (unlikely(ic->mode == 'R'))
1711 			goto skip_io;
1712 
1713 		if (likely(dio->op != REQ_OP_DISCARD))
1714 			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1715 					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1716 		else
1717 			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1718 		if (!checksums) {
1719 			checksums = checksums_onstack;
1720 			if (WARN_ON(extra_space &&
1721 				    digest_size > sizeof(checksums_onstack))) {
1722 				r = -EINVAL;
1723 				goto error;
1724 			}
1725 		}
1726 
1727 		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1728 			unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1729 			unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1730 			unsigned int max_blocks = max_size / ic->tag_size;
1731 
1732 			memset(checksums, DISCARD_FILLER, max_size);
1733 
1734 			while (bi_size) {
1735 				unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1736 
1737 				this_step_blocks = min(this_step_blocks, max_blocks);
1738 				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1739 							this_step_blocks * ic->tag_size, TAG_WRITE);
1740 				if (unlikely(r)) {
1741 					if (likely(checksums != checksums_onstack))
1742 						kfree(checksums);
1743 					goto error;
1744 				}
1745 
1746 				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1747 			}
1748 
1749 			if (likely(checksums != checksums_onstack))
1750 				kfree(checksums);
1751 			goto skip_io;
1752 		}
1753 
1754 		sector = dio->range.logical_sector;
1755 		sectors_to_process = dio->range.n_sectors;
1756 
1757 		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1758 			unsigned int pos;
1759 			char *mem, *checksums_ptr;
1760 
1761 again:
1762 			mem = bvec_kmap_local(&bv);
1763 			pos = 0;
1764 			checksums_ptr = checksums;
1765 			do {
1766 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1767 				checksums_ptr += ic->tag_size;
1768 				sectors_to_process -= ic->sectors_per_block;
1769 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1770 				sector += ic->sectors_per_block;
1771 			} while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1772 			kunmap_local(mem);
1773 
1774 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1775 						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1776 			if (unlikely(r)) {
1777 				if (r > 0) {
1778 					sector_t s;
1779 
1780 					s = sector - ((r + ic->tag_size - 1) / ic->tag_size);
1781 					DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1782 						    bio->bi_bdev, s);
1783 					r = -EILSEQ;
1784 					atomic64_inc(&ic->number_of_mismatches);
1785 					dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1786 							 bio, s, 0);
1787 				}
1788 				if (likely(checksums != checksums_onstack))
1789 					kfree(checksums);
1790 				goto error;
1791 			}
1792 
1793 			if (!sectors_to_process)
1794 				break;
1795 
1796 			if (unlikely(pos < bv.bv_len)) {
1797 				bv.bv_offset += pos;
1798 				bv.bv_len -= pos;
1799 				goto again;
1800 			}
1801 		}
1802 
1803 		if (likely(checksums != checksums_onstack))
1804 			kfree(checksums);
1805 	} else {
1806 		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1807 
1808 		if (bip) {
1809 			struct bio_vec biv;
1810 			struct bvec_iter iter;
1811 			unsigned int data_to_process = dio->range.n_sectors;
1812 
1813 			sector_to_block(ic, data_to_process);
1814 			data_to_process *= ic->tag_size;
1815 
1816 			bip_for_each_vec(biv, bip, iter) {
1817 				unsigned char *tag;
1818 				unsigned int this_len;
1819 
1820 				BUG_ON(PageHighMem(biv.bv_page));
1821 				tag = bvec_virt(&biv);
1822 				this_len = min(biv.bv_len, data_to_process);
1823 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1824 							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1825 				if (unlikely(r))
1826 					goto error;
1827 				data_to_process -= this_len;
1828 				if (!data_to_process)
1829 					break;
1830 			}
1831 		}
1832 	}
1833 skip_io:
1834 	dec_in_flight(dio);
1835 	return;
1836 error:
1837 	dio->bi_status = errno_to_blk_status(r);
1838 	dec_in_flight(dio);
1839 }
1840 
1841 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1842 {
1843 	struct dm_integrity_c *ic = ti->private;
1844 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1845 	struct bio_integrity_payload *bip;
1846 
1847 	sector_t area, offset;
1848 
1849 	dio->ic = ic;
1850 	dio->bi_status = 0;
1851 	dio->op = bio_op(bio);
1852 
1853 	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1854 		if (ti->max_io_len) {
1855 			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1856 			unsigned int log2_max_io_len = __fls(ti->max_io_len);
1857 			sector_t start_boundary = sec >> log2_max_io_len;
1858 			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1859 
1860 			if (start_boundary < end_boundary) {
1861 				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1862 
1863 				dm_accept_partial_bio(bio, len);
1864 			}
1865 		}
1866 	}
1867 
1868 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1869 		submit_flush_bio(ic, dio);
1870 		return DM_MAPIO_SUBMITTED;
1871 	}
1872 
1873 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1874 	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1875 	if (unlikely(dio->fua)) {
1876 		/*
1877 		 * Don't pass down the FUA flag because we have to flush
1878 		 * disk cache anyway.
1879 		 */
1880 		bio->bi_opf &= ~REQ_FUA;
1881 	}
1882 	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1883 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1884 		      dio->range.logical_sector, bio_sectors(bio),
1885 		      ic->provided_data_sectors);
1886 		return DM_MAPIO_KILL;
1887 	}
1888 	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1889 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1890 		      ic->sectors_per_block,
1891 		      dio->range.logical_sector, bio_sectors(bio));
1892 		return DM_MAPIO_KILL;
1893 	}
1894 
1895 	if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1896 		struct bvec_iter iter;
1897 		struct bio_vec bv;
1898 
1899 		bio_for_each_segment(bv, bio, iter) {
1900 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1901 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1902 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1903 				return DM_MAPIO_KILL;
1904 			}
1905 		}
1906 	}
1907 
1908 	bip = bio_integrity(bio);
1909 	if (!ic->internal_hash) {
1910 		if (bip) {
1911 			unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1912 
1913 			if (ic->log2_tag_size >= 0)
1914 				wanted_tag_size <<= ic->log2_tag_size;
1915 			else
1916 				wanted_tag_size *= ic->tag_size;
1917 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1918 				DMERR("Invalid integrity data size %u, expected %u",
1919 				      bip->bip_iter.bi_size, wanted_tag_size);
1920 				return DM_MAPIO_KILL;
1921 			}
1922 		}
1923 	} else {
1924 		if (unlikely(bip != NULL)) {
1925 			DMERR("Unexpected integrity data when using internal hash");
1926 			return DM_MAPIO_KILL;
1927 		}
1928 	}
1929 
1930 	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1931 		return DM_MAPIO_KILL;
1932 
1933 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1934 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1935 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1936 
1937 	dm_integrity_map_continue(dio, true);
1938 	return DM_MAPIO_SUBMITTED;
1939 }
1940 
1941 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1942 				 unsigned int journal_section, unsigned int journal_entry)
1943 {
1944 	struct dm_integrity_c *ic = dio->ic;
1945 	sector_t logical_sector;
1946 	unsigned int n_sectors;
1947 
1948 	logical_sector = dio->range.logical_sector;
1949 	n_sectors = dio->range.n_sectors;
1950 	do {
1951 		struct bio_vec bv = bio_iovec(bio);
1952 		char *mem;
1953 
1954 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1955 			bv.bv_len = n_sectors << SECTOR_SHIFT;
1956 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1957 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1958 retry_kmap:
1959 		mem = kmap_local_page(bv.bv_page);
1960 		if (likely(dio->op == REQ_OP_WRITE))
1961 			flush_dcache_page(bv.bv_page);
1962 
1963 		do {
1964 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1965 
1966 			if (unlikely(dio->op == REQ_OP_READ)) {
1967 				struct journal_sector *js;
1968 				char *mem_ptr;
1969 				unsigned int s;
1970 
1971 				if (unlikely(journal_entry_is_inprogress(je))) {
1972 					flush_dcache_page(bv.bv_page);
1973 					kunmap_local(mem);
1974 
1975 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1976 					goto retry_kmap;
1977 				}
1978 				smp_rmb();
1979 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
1980 				js = access_journal_data(ic, journal_section, journal_entry);
1981 				mem_ptr = mem + bv.bv_offset;
1982 				s = 0;
1983 				do {
1984 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1985 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1986 					js++;
1987 					mem_ptr += 1 << SECTOR_SHIFT;
1988 				} while (++s < ic->sectors_per_block);
1989 #ifdef INTERNAL_VERIFY
1990 				if (ic->internal_hash) {
1991 					char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1992 
1993 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1994 					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1995 						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1996 							    logical_sector);
1997 						dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
1998 								 bio, logical_sector, 0);
1999 					}
2000 				}
2001 #endif
2002 			}
2003 
2004 			if (!ic->internal_hash) {
2005 				struct bio_integrity_payload *bip = bio_integrity(bio);
2006 				unsigned int tag_todo = ic->tag_size;
2007 				char *tag_ptr = journal_entry_tag(ic, je);
2008 
2009 				if (bip) {
2010 					do {
2011 						struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2012 						unsigned int tag_now = min(biv.bv_len, tag_todo);
2013 						char *tag_addr;
2014 
2015 						BUG_ON(PageHighMem(biv.bv_page));
2016 						tag_addr = bvec_virt(&biv);
2017 						if (likely(dio->op == REQ_OP_WRITE))
2018 							memcpy(tag_ptr, tag_addr, tag_now);
2019 						else
2020 							memcpy(tag_addr, tag_ptr, tag_now);
2021 						bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2022 						tag_ptr += tag_now;
2023 						tag_todo -= tag_now;
2024 					} while (unlikely(tag_todo));
2025 				} else if (likely(dio->op == REQ_OP_WRITE))
2026 					memset(tag_ptr, 0, tag_todo);
2027 			}
2028 
2029 			if (likely(dio->op == REQ_OP_WRITE)) {
2030 				struct journal_sector *js;
2031 				unsigned int s;
2032 
2033 				js = access_journal_data(ic, journal_section, journal_entry);
2034 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2035 
2036 				s = 0;
2037 				do {
2038 					je->last_bytes[s] = js[s].commit_id;
2039 				} while (++s < ic->sectors_per_block);
2040 
2041 				if (ic->internal_hash) {
2042 					unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2043 
2044 					if (unlikely(digest_size > ic->tag_size)) {
2045 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2046 
2047 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2048 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2049 					} else
2050 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2051 				}
2052 
2053 				journal_entry_set_sector(je, logical_sector);
2054 			}
2055 			logical_sector += ic->sectors_per_block;
2056 
2057 			journal_entry++;
2058 			if (unlikely(journal_entry == ic->journal_section_entries)) {
2059 				journal_entry = 0;
2060 				journal_section++;
2061 				wraparound_section(ic, &journal_section);
2062 			}
2063 
2064 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2065 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2066 
2067 		if (unlikely(dio->op == REQ_OP_READ))
2068 			flush_dcache_page(bv.bv_page);
2069 		kunmap_local(mem);
2070 	} while (n_sectors);
2071 
2072 	if (likely(dio->op == REQ_OP_WRITE)) {
2073 		smp_mb();
2074 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2075 			wake_up(&ic->copy_to_journal_wait);
2076 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2077 			queue_work(ic->commit_wq, &ic->commit_work);
2078 		else
2079 			schedule_autocommit(ic);
2080 	} else
2081 		remove_range(ic, &dio->range);
2082 
2083 	if (unlikely(bio->bi_iter.bi_size)) {
2084 		sector_t area, offset;
2085 
2086 		dio->range.logical_sector = logical_sector;
2087 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2088 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2089 		return true;
2090 	}
2091 
2092 	return false;
2093 }
2094 
2095 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2096 {
2097 	struct dm_integrity_c *ic = dio->ic;
2098 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2099 	unsigned int journal_section, journal_entry;
2100 	unsigned int journal_read_pos;
2101 	struct completion read_comp;
2102 	bool discard_retried = false;
2103 	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2104 
2105 	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2106 		need_sync_io = true;
2107 
2108 	if (need_sync_io && from_map) {
2109 		INIT_WORK(&dio->work, integrity_bio_wait);
2110 		queue_work(ic->offload_wq, &dio->work);
2111 		return;
2112 	}
2113 
2114 lock_retry:
2115 	spin_lock_irq(&ic->endio_wait.lock);
2116 retry:
2117 	if (unlikely(dm_integrity_failed(ic))) {
2118 		spin_unlock_irq(&ic->endio_wait.lock);
2119 		do_endio(ic, bio);
2120 		return;
2121 	}
2122 	dio->range.n_sectors = bio_sectors(bio);
2123 	journal_read_pos = NOT_FOUND;
2124 	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2125 		if (dio->op == REQ_OP_WRITE) {
2126 			unsigned int next_entry, i, pos;
2127 			unsigned int ws, we, range_sectors;
2128 
2129 			dio->range.n_sectors = min(dio->range.n_sectors,
2130 						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2131 			if (unlikely(!dio->range.n_sectors)) {
2132 				if (from_map)
2133 					goto offload_to_thread;
2134 				sleep_on_endio_wait(ic);
2135 				goto retry;
2136 			}
2137 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2138 			ic->free_sectors -= range_sectors;
2139 			journal_section = ic->free_section;
2140 			journal_entry = ic->free_section_entry;
2141 
2142 			next_entry = ic->free_section_entry + range_sectors;
2143 			ic->free_section_entry = next_entry % ic->journal_section_entries;
2144 			ic->free_section += next_entry / ic->journal_section_entries;
2145 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2146 			wraparound_section(ic, &ic->free_section);
2147 
2148 			pos = journal_section * ic->journal_section_entries + journal_entry;
2149 			ws = journal_section;
2150 			we = journal_entry;
2151 			i = 0;
2152 			do {
2153 				struct journal_entry *je;
2154 
2155 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2156 				pos++;
2157 				if (unlikely(pos >= ic->journal_entries))
2158 					pos = 0;
2159 
2160 				je = access_journal_entry(ic, ws, we);
2161 				BUG_ON(!journal_entry_is_unused(je));
2162 				journal_entry_set_inprogress(je);
2163 				we++;
2164 				if (unlikely(we == ic->journal_section_entries)) {
2165 					we = 0;
2166 					ws++;
2167 					wraparound_section(ic, &ws);
2168 				}
2169 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2170 
2171 			spin_unlock_irq(&ic->endio_wait.lock);
2172 			goto journal_read_write;
2173 		} else {
2174 			sector_t next_sector;
2175 
2176 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2177 			if (likely(journal_read_pos == NOT_FOUND)) {
2178 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2179 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2180 			} else {
2181 				unsigned int i;
2182 				unsigned int jp = journal_read_pos + 1;
2183 
2184 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2185 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2186 						break;
2187 				}
2188 				dio->range.n_sectors = i;
2189 			}
2190 		}
2191 	}
2192 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2193 		/*
2194 		 * We must not sleep in the request routine because it could
2195 		 * stall bios on current->bio_list.
2196 		 * So, we offload the bio to a workqueue if we have to sleep.
2197 		 */
2198 		if (from_map) {
2199 offload_to_thread:
2200 			spin_unlock_irq(&ic->endio_wait.lock);
2201 			INIT_WORK(&dio->work, integrity_bio_wait);
2202 			queue_work(ic->wait_wq, &dio->work);
2203 			return;
2204 		}
2205 		if (journal_read_pos != NOT_FOUND)
2206 			dio->range.n_sectors = ic->sectors_per_block;
2207 		wait_and_add_new_range(ic, &dio->range);
2208 		/*
2209 		 * wait_and_add_new_range drops the spinlock, so the journal
2210 		 * may have been changed arbitrarily. We need to recheck.
2211 		 * To simplify the code, we restrict I/O size to just one block.
2212 		 */
2213 		if (journal_read_pos != NOT_FOUND) {
2214 			sector_t next_sector;
2215 			unsigned int new_pos;
2216 
2217 			new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2218 			if (unlikely(new_pos != journal_read_pos)) {
2219 				remove_range_unlocked(ic, &dio->range);
2220 				goto retry;
2221 			}
2222 		}
2223 	}
2224 	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2225 		sector_t next_sector;
2226 		unsigned int new_pos;
2227 
2228 		new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2229 		if (unlikely(new_pos != NOT_FOUND) ||
2230 		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2231 			remove_range_unlocked(ic, &dio->range);
2232 			spin_unlock_irq(&ic->endio_wait.lock);
2233 			queue_work(ic->commit_wq, &ic->commit_work);
2234 			flush_workqueue(ic->commit_wq);
2235 			queue_work(ic->writer_wq, &ic->writer_work);
2236 			flush_workqueue(ic->writer_wq);
2237 			discard_retried = true;
2238 			goto lock_retry;
2239 		}
2240 	}
2241 	spin_unlock_irq(&ic->endio_wait.lock);
2242 
2243 	if (unlikely(journal_read_pos != NOT_FOUND)) {
2244 		journal_section = journal_read_pos / ic->journal_section_entries;
2245 		journal_entry = journal_read_pos % ic->journal_section_entries;
2246 		goto journal_read_write;
2247 	}
2248 
2249 	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2250 		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2251 				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2252 			struct bitmap_block_status *bbs;
2253 
2254 			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2255 			spin_lock(&bbs->bio_queue_lock);
2256 			bio_list_add(&bbs->bio_queue, bio);
2257 			spin_unlock(&bbs->bio_queue_lock);
2258 			queue_work(ic->writer_wq, &bbs->work);
2259 			return;
2260 		}
2261 	}
2262 
2263 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2264 
2265 	if (need_sync_io) {
2266 		init_completion(&read_comp);
2267 		dio->completion = &read_comp;
2268 	} else
2269 		dio->completion = NULL;
2270 
2271 	dm_bio_record(&dio->bio_details, bio);
2272 	bio_set_dev(bio, ic->dev->bdev);
2273 	bio->bi_integrity = NULL;
2274 	bio->bi_opf &= ~REQ_INTEGRITY;
2275 	bio->bi_end_io = integrity_end_io;
2276 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2277 
2278 	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2279 		integrity_metadata(&dio->work);
2280 		dm_integrity_flush_buffers(ic, false);
2281 
2282 		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2283 		dio->completion = NULL;
2284 
2285 		submit_bio_noacct(bio);
2286 
2287 		return;
2288 	}
2289 
2290 	submit_bio_noacct(bio);
2291 
2292 	if (need_sync_io) {
2293 		wait_for_completion_io(&read_comp);
2294 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2295 		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2296 			goto skip_check;
2297 		if (ic->mode == 'B') {
2298 			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2299 					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2300 				goto skip_check;
2301 		}
2302 
2303 		if (likely(!bio->bi_status))
2304 			integrity_metadata(&dio->work);
2305 		else
2306 skip_check:
2307 			dec_in_flight(dio);
2308 	} else {
2309 		INIT_WORK(&dio->work, integrity_metadata);
2310 		queue_work(ic->metadata_wq, &dio->work);
2311 	}
2312 
2313 	return;
2314 
2315 journal_read_write:
2316 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2317 		goto lock_retry;
2318 
2319 	do_endio_flush(ic, dio);
2320 }
2321 
2322 
2323 static void integrity_bio_wait(struct work_struct *w)
2324 {
2325 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2326 
2327 	dm_integrity_map_continue(dio, false);
2328 }
2329 
2330 static void pad_uncommitted(struct dm_integrity_c *ic)
2331 {
2332 	if (ic->free_section_entry) {
2333 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2334 		ic->free_section_entry = 0;
2335 		ic->free_section++;
2336 		wraparound_section(ic, &ic->free_section);
2337 		ic->n_uncommitted_sections++;
2338 	}
2339 	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2340 		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2341 		    ic->journal_section_entries + ic->free_sectors)) {
2342 		DMCRIT("journal_sections %u, journal_section_entries %u, "
2343 		       "n_uncommitted_sections %u, n_committed_sections %u, "
2344 		       "journal_section_entries %u, free_sectors %u",
2345 		       ic->journal_sections, ic->journal_section_entries,
2346 		       ic->n_uncommitted_sections, ic->n_committed_sections,
2347 		       ic->journal_section_entries, ic->free_sectors);
2348 	}
2349 }
2350 
2351 static void integrity_commit(struct work_struct *w)
2352 {
2353 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2354 	unsigned int commit_start, commit_sections;
2355 	unsigned int i, j, n;
2356 	struct bio *flushes;
2357 
2358 	del_timer(&ic->autocommit_timer);
2359 
2360 	spin_lock_irq(&ic->endio_wait.lock);
2361 	flushes = bio_list_get(&ic->flush_bio_list);
2362 	if (unlikely(ic->mode != 'J')) {
2363 		spin_unlock_irq(&ic->endio_wait.lock);
2364 		dm_integrity_flush_buffers(ic, true);
2365 		goto release_flush_bios;
2366 	}
2367 
2368 	pad_uncommitted(ic);
2369 	commit_start = ic->uncommitted_section;
2370 	commit_sections = ic->n_uncommitted_sections;
2371 	spin_unlock_irq(&ic->endio_wait.lock);
2372 
2373 	if (!commit_sections)
2374 		goto release_flush_bios;
2375 
2376 	ic->wrote_to_journal = true;
2377 
2378 	i = commit_start;
2379 	for (n = 0; n < commit_sections; n++) {
2380 		for (j = 0; j < ic->journal_section_entries; j++) {
2381 			struct journal_entry *je;
2382 
2383 			je = access_journal_entry(ic, i, j);
2384 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2385 		}
2386 		for (j = 0; j < ic->journal_section_sectors; j++) {
2387 			struct journal_sector *js;
2388 
2389 			js = access_journal(ic, i, j);
2390 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2391 		}
2392 		i++;
2393 		if (unlikely(i >= ic->journal_sections))
2394 			ic->commit_seq = next_commit_seq(ic->commit_seq);
2395 		wraparound_section(ic, &i);
2396 	}
2397 	smp_rmb();
2398 
2399 	write_journal(ic, commit_start, commit_sections);
2400 
2401 	spin_lock_irq(&ic->endio_wait.lock);
2402 	ic->uncommitted_section += commit_sections;
2403 	wraparound_section(ic, &ic->uncommitted_section);
2404 	ic->n_uncommitted_sections -= commit_sections;
2405 	ic->n_committed_sections += commit_sections;
2406 	spin_unlock_irq(&ic->endio_wait.lock);
2407 
2408 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2409 		queue_work(ic->writer_wq, &ic->writer_work);
2410 
2411 release_flush_bios:
2412 	while (flushes) {
2413 		struct bio *next = flushes->bi_next;
2414 
2415 		flushes->bi_next = NULL;
2416 		do_endio(ic, flushes);
2417 		flushes = next;
2418 	}
2419 }
2420 
2421 static void complete_copy_from_journal(unsigned long error, void *context)
2422 {
2423 	struct journal_io *io = context;
2424 	struct journal_completion *comp = io->comp;
2425 	struct dm_integrity_c *ic = comp->ic;
2426 
2427 	remove_range(ic, &io->range);
2428 	mempool_free(io, &ic->journal_io_mempool);
2429 	if (unlikely(error != 0))
2430 		dm_integrity_io_error(ic, "copying from journal", -EIO);
2431 	complete_journal_op(comp);
2432 }
2433 
2434 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2435 			       struct journal_entry *je)
2436 {
2437 	unsigned int s = 0;
2438 
2439 	do {
2440 		js->commit_id = je->last_bytes[s];
2441 		js++;
2442 	} while (++s < ic->sectors_per_block);
2443 }
2444 
2445 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2446 			     unsigned int write_sections, bool from_replay)
2447 {
2448 	unsigned int i, j, n;
2449 	struct journal_completion comp;
2450 	struct blk_plug plug;
2451 
2452 	blk_start_plug(&plug);
2453 
2454 	comp.ic = ic;
2455 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2456 	init_completion(&comp.comp);
2457 
2458 	i = write_start;
2459 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2460 #ifndef INTERNAL_VERIFY
2461 		if (unlikely(from_replay))
2462 #endif
2463 			rw_section_mac(ic, i, false);
2464 		for (j = 0; j < ic->journal_section_entries; j++) {
2465 			struct journal_entry *je = access_journal_entry(ic, i, j);
2466 			sector_t sec, area, offset;
2467 			unsigned int k, l, next_loop;
2468 			sector_t metadata_block;
2469 			unsigned int metadata_offset;
2470 			struct journal_io *io;
2471 
2472 			if (journal_entry_is_unused(je))
2473 				continue;
2474 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2475 			sec = journal_entry_get_sector(je);
2476 			if (unlikely(from_replay)) {
2477 				if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2478 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2479 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2480 				}
2481 				if (unlikely(sec >= ic->provided_data_sectors)) {
2482 					journal_entry_set_unused(je);
2483 					continue;
2484 				}
2485 			}
2486 			get_area_and_offset(ic, sec, &area, &offset);
2487 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2488 			for (k = j + 1; k < ic->journal_section_entries; k++) {
2489 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2490 				sector_t sec2, area2, offset2;
2491 
2492 				if (journal_entry_is_unused(je2))
2493 					break;
2494 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2495 				sec2 = journal_entry_get_sector(je2);
2496 				if (unlikely(sec2 >= ic->provided_data_sectors))
2497 					break;
2498 				get_area_and_offset(ic, sec2, &area2, &offset2);
2499 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2500 					break;
2501 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2502 			}
2503 			next_loop = k - 1;
2504 
2505 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2506 			io->comp = &comp;
2507 			io->range.logical_sector = sec;
2508 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2509 
2510 			spin_lock_irq(&ic->endio_wait.lock);
2511 			add_new_range_and_wait(ic, &io->range);
2512 
2513 			if (likely(!from_replay)) {
2514 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2515 
2516 				/* don't write if there is newer committed sector */
2517 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2518 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2519 
2520 					journal_entry_set_unused(je2);
2521 					remove_journal_node(ic, &section_node[j]);
2522 					j++;
2523 					sec += ic->sectors_per_block;
2524 					offset += ic->sectors_per_block;
2525 				}
2526 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2527 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2528 
2529 					journal_entry_set_unused(je2);
2530 					remove_journal_node(ic, &section_node[k - 1]);
2531 					k--;
2532 				}
2533 				if (j == k) {
2534 					remove_range_unlocked(ic, &io->range);
2535 					spin_unlock_irq(&ic->endio_wait.lock);
2536 					mempool_free(io, &ic->journal_io_mempool);
2537 					goto skip_io;
2538 				}
2539 				for (l = j; l < k; l++)
2540 					remove_journal_node(ic, &section_node[l]);
2541 			}
2542 			spin_unlock_irq(&ic->endio_wait.lock);
2543 
2544 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2545 			for (l = j; l < k; l++) {
2546 				int r;
2547 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2548 
2549 				if (
2550 #ifndef INTERNAL_VERIFY
2551 				    unlikely(from_replay) &&
2552 #endif
2553 				    ic->internal_hash) {
2554 					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2555 
2556 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2557 								  (char *)access_journal_data(ic, i, l), test_tag);
2558 					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2559 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2560 						dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2561 					}
2562 				}
2563 
2564 				journal_entry_set_unused(je2);
2565 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2566 							ic->tag_size, TAG_WRITE);
2567 				if (unlikely(r))
2568 					dm_integrity_io_error(ic, "reading tags", r);
2569 			}
2570 
2571 			atomic_inc(&comp.in_flight);
2572 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2573 					  (k - j) << ic->sb->log2_sectors_per_block,
2574 					  get_data_sector(ic, area, offset),
2575 					  complete_copy_from_journal, io);
2576 skip_io:
2577 			j = next_loop;
2578 		}
2579 	}
2580 
2581 	dm_bufio_write_dirty_buffers_async(ic->bufio);
2582 
2583 	blk_finish_plug(&plug);
2584 
2585 	complete_journal_op(&comp);
2586 	wait_for_completion_io(&comp.comp);
2587 
2588 	dm_integrity_flush_buffers(ic, true);
2589 }
2590 
2591 static void integrity_writer(struct work_struct *w)
2592 {
2593 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2594 	unsigned int write_start, write_sections;
2595 	unsigned int prev_free_sectors;
2596 
2597 	spin_lock_irq(&ic->endio_wait.lock);
2598 	write_start = ic->committed_section;
2599 	write_sections = ic->n_committed_sections;
2600 	spin_unlock_irq(&ic->endio_wait.lock);
2601 
2602 	if (!write_sections)
2603 		return;
2604 
2605 	do_journal_write(ic, write_start, write_sections, false);
2606 
2607 	spin_lock_irq(&ic->endio_wait.lock);
2608 
2609 	ic->committed_section += write_sections;
2610 	wraparound_section(ic, &ic->committed_section);
2611 	ic->n_committed_sections -= write_sections;
2612 
2613 	prev_free_sectors = ic->free_sectors;
2614 	ic->free_sectors += write_sections * ic->journal_section_entries;
2615 	if (unlikely(!prev_free_sectors))
2616 		wake_up_locked(&ic->endio_wait);
2617 
2618 	spin_unlock_irq(&ic->endio_wait.lock);
2619 }
2620 
2621 static void recalc_write_super(struct dm_integrity_c *ic)
2622 {
2623 	int r;
2624 
2625 	dm_integrity_flush_buffers(ic, false);
2626 	if (dm_integrity_failed(ic))
2627 		return;
2628 
2629 	r = sync_rw_sb(ic, REQ_OP_WRITE);
2630 	if (unlikely(r))
2631 		dm_integrity_io_error(ic, "writing superblock", r);
2632 }
2633 
2634 static void integrity_recalc(struct work_struct *w)
2635 {
2636 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2637 	size_t recalc_tags_size;
2638 	u8 *recalc_buffer = NULL;
2639 	u8 *recalc_tags = NULL;
2640 	struct dm_integrity_range range;
2641 	struct dm_io_request io_req;
2642 	struct dm_io_region io_loc;
2643 	sector_t area, offset;
2644 	sector_t metadata_block;
2645 	unsigned int metadata_offset;
2646 	sector_t logical_sector, n_sectors;
2647 	__u8 *t;
2648 	unsigned int i;
2649 	int r;
2650 	unsigned int super_counter = 0;
2651 	unsigned recalc_sectors = RECALC_SECTORS;
2652 
2653 retry:
2654 	recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
2655 	if (!recalc_buffer) {
2656 oom:
2657 		recalc_sectors >>= 1;
2658 		if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
2659 			goto retry;
2660 		DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2661 		goto free_ret;
2662 	}
2663 	recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2664 	if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
2665 		recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
2666 	recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
2667 	if (!recalc_tags) {
2668 		vfree(recalc_buffer);
2669 		recalc_buffer = NULL;
2670 		goto oom;
2671 	}
2672 
2673 	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2674 
2675 	spin_lock_irq(&ic->endio_wait.lock);
2676 
2677 next_chunk:
2678 
2679 	if (unlikely(dm_post_suspending(ic->ti)))
2680 		goto unlock_ret;
2681 
2682 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2683 	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2684 		if (ic->mode == 'B') {
2685 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2686 			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2687 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2688 		}
2689 		goto unlock_ret;
2690 	}
2691 
2692 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2693 	range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
2694 	if (!ic->meta_dev)
2695 		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2696 
2697 	add_new_range_and_wait(ic, &range);
2698 	spin_unlock_irq(&ic->endio_wait.lock);
2699 	logical_sector = range.logical_sector;
2700 	n_sectors = range.n_sectors;
2701 
2702 	if (ic->mode == 'B') {
2703 		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2704 			goto advance_and_next;
2705 
2706 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2707 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2708 			logical_sector += ic->sectors_per_block;
2709 			n_sectors -= ic->sectors_per_block;
2710 			cond_resched();
2711 		}
2712 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2713 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2714 			n_sectors -= ic->sectors_per_block;
2715 			cond_resched();
2716 		}
2717 		get_area_and_offset(ic, logical_sector, &area, &offset);
2718 	}
2719 
2720 	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2721 
2722 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2723 		recalc_write_super(ic);
2724 		if (ic->mode == 'B')
2725 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2726 
2727 		super_counter = 0;
2728 	}
2729 
2730 	if (unlikely(dm_integrity_failed(ic)))
2731 		goto err;
2732 
2733 	io_req.bi_opf = REQ_OP_READ;
2734 	io_req.mem.type = DM_IO_VMA;
2735 	io_req.mem.ptr.addr = recalc_buffer;
2736 	io_req.notify.fn = NULL;
2737 	io_req.client = ic->io;
2738 	io_loc.bdev = ic->dev->bdev;
2739 	io_loc.sector = get_data_sector(ic, area, offset);
2740 	io_loc.count = n_sectors;
2741 
2742 	r = dm_io(&io_req, 1, &io_loc, NULL);
2743 	if (unlikely(r)) {
2744 		dm_integrity_io_error(ic, "reading data", r);
2745 		goto err;
2746 	}
2747 
2748 	t = recalc_tags;
2749 	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2750 		integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
2751 		t += ic->tag_size;
2752 	}
2753 
2754 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2755 
2756 	r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
2757 	if (unlikely(r)) {
2758 		dm_integrity_io_error(ic, "writing tags", r);
2759 		goto err;
2760 	}
2761 
2762 	if (ic->mode == 'B') {
2763 		sector_t start, end;
2764 
2765 		start = (range.logical_sector >>
2766 			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2767 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2768 		end = ((range.logical_sector + range.n_sectors) >>
2769 		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2770 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2771 		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2772 	}
2773 
2774 advance_and_next:
2775 	cond_resched();
2776 
2777 	spin_lock_irq(&ic->endio_wait.lock);
2778 	remove_range_unlocked(ic, &range);
2779 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2780 	goto next_chunk;
2781 
2782 err:
2783 	remove_range(ic, &range);
2784 	goto free_ret;
2785 
2786 unlock_ret:
2787 	spin_unlock_irq(&ic->endio_wait.lock);
2788 
2789 	recalc_write_super(ic);
2790 
2791 free_ret:
2792 	vfree(recalc_buffer);
2793 	kvfree(recalc_tags);
2794 }
2795 
2796 static void bitmap_block_work(struct work_struct *w)
2797 {
2798 	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2799 	struct dm_integrity_c *ic = bbs->ic;
2800 	struct bio *bio;
2801 	struct bio_list bio_queue;
2802 	struct bio_list waiting;
2803 
2804 	bio_list_init(&waiting);
2805 
2806 	spin_lock(&bbs->bio_queue_lock);
2807 	bio_queue = bbs->bio_queue;
2808 	bio_list_init(&bbs->bio_queue);
2809 	spin_unlock(&bbs->bio_queue_lock);
2810 
2811 	while ((bio = bio_list_pop(&bio_queue))) {
2812 		struct dm_integrity_io *dio;
2813 
2814 		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2815 
2816 		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2817 				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2818 			remove_range(ic, &dio->range);
2819 			INIT_WORK(&dio->work, integrity_bio_wait);
2820 			queue_work(ic->offload_wq, &dio->work);
2821 		} else {
2822 			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2823 					dio->range.n_sectors, BITMAP_OP_SET);
2824 			bio_list_add(&waiting, bio);
2825 		}
2826 	}
2827 
2828 	if (bio_list_empty(&waiting))
2829 		return;
2830 
2831 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2832 			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2833 			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2834 
2835 	while ((bio = bio_list_pop(&waiting))) {
2836 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2837 
2838 		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2839 				dio->range.n_sectors, BITMAP_OP_SET);
2840 
2841 		remove_range(ic, &dio->range);
2842 		INIT_WORK(&dio->work, integrity_bio_wait);
2843 		queue_work(ic->offload_wq, &dio->work);
2844 	}
2845 
2846 	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2847 }
2848 
2849 static void bitmap_flush_work(struct work_struct *work)
2850 {
2851 	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2852 	struct dm_integrity_range range;
2853 	unsigned long limit;
2854 	struct bio *bio;
2855 
2856 	dm_integrity_flush_buffers(ic, false);
2857 
2858 	range.logical_sector = 0;
2859 	range.n_sectors = ic->provided_data_sectors;
2860 
2861 	spin_lock_irq(&ic->endio_wait.lock);
2862 	add_new_range_and_wait(ic, &range);
2863 	spin_unlock_irq(&ic->endio_wait.lock);
2864 
2865 	dm_integrity_flush_buffers(ic, true);
2866 
2867 	limit = ic->provided_data_sectors;
2868 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2869 		limit = le64_to_cpu(ic->sb->recalc_sector)
2870 			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2871 			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2872 	}
2873 	/*DEBUG_print("zeroing journal\n");*/
2874 	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2875 	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2876 
2877 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2878 			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2879 
2880 	spin_lock_irq(&ic->endio_wait.lock);
2881 	remove_range_unlocked(ic, &range);
2882 	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2883 		bio_endio(bio);
2884 		spin_unlock_irq(&ic->endio_wait.lock);
2885 		spin_lock_irq(&ic->endio_wait.lock);
2886 	}
2887 	spin_unlock_irq(&ic->endio_wait.lock);
2888 }
2889 
2890 
2891 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2892 			 unsigned int n_sections, unsigned char commit_seq)
2893 {
2894 	unsigned int i, j, n;
2895 
2896 	if (!n_sections)
2897 		return;
2898 
2899 	for (n = 0; n < n_sections; n++) {
2900 		i = start_section + n;
2901 		wraparound_section(ic, &i);
2902 		for (j = 0; j < ic->journal_section_sectors; j++) {
2903 			struct journal_sector *js = access_journal(ic, i, j);
2904 
2905 			BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2906 			memset(&js->sectors, 0, sizeof(js->sectors));
2907 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2908 		}
2909 		for (j = 0; j < ic->journal_section_entries; j++) {
2910 			struct journal_entry *je = access_journal_entry(ic, i, j);
2911 
2912 			journal_entry_set_unused(je);
2913 		}
2914 	}
2915 
2916 	write_journal(ic, start_section, n_sections);
2917 }
2918 
2919 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
2920 {
2921 	unsigned char k;
2922 
2923 	for (k = 0; k < N_COMMIT_IDS; k++) {
2924 		if (dm_integrity_commit_id(ic, i, j, k) == id)
2925 			return k;
2926 	}
2927 	dm_integrity_io_error(ic, "journal commit id", -EIO);
2928 	return -EIO;
2929 }
2930 
2931 static void replay_journal(struct dm_integrity_c *ic)
2932 {
2933 	unsigned int i, j;
2934 	bool used_commit_ids[N_COMMIT_IDS];
2935 	unsigned int max_commit_id_sections[N_COMMIT_IDS];
2936 	unsigned int write_start, write_sections;
2937 	unsigned int continue_section;
2938 	bool journal_empty;
2939 	unsigned char unused, last_used, want_commit_seq;
2940 
2941 	if (ic->mode == 'R')
2942 		return;
2943 
2944 	if (ic->journal_uptodate)
2945 		return;
2946 
2947 	last_used = 0;
2948 	write_start = 0;
2949 
2950 	if (!ic->just_formatted) {
2951 		DEBUG_print("reading journal\n");
2952 		rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
2953 		if (ic->journal_io)
2954 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2955 		if (ic->journal_io) {
2956 			struct journal_completion crypt_comp;
2957 
2958 			crypt_comp.ic = ic;
2959 			init_completion(&crypt_comp.comp);
2960 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2961 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2962 			wait_for_completion(&crypt_comp.comp);
2963 		}
2964 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2965 	}
2966 
2967 	if (dm_integrity_failed(ic))
2968 		goto clear_journal;
2969 
2970 	journal_empty = true;
2971 	memset(used_commit_ids, 0, sizeof(used_commit_ids));
2972 	memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
2973 	for (i = 0; i < ic->journal_sections; i++) {
2974 		for (j = 0; j < ic->journal_section_sectors; j++) {
2975 			int k;
2976 			struct journal_sector *js = access_journal(ic, i, j);
2977 
2978 			k = find_commit_seq(ic, i, j, js->commit_id);
2979 			if (k < 0)
2980 				goto clear_journal;
2981 			used_commit_ids[k] = true;
2982 			max_commit_id_sections[k] = i;
2983 		}
2984 		if (journal_empty) {
2985 			for (j = 0; j < ic->journal_section_entries; j++) {
2986 				struct journal_entry *je = access_journal_entry(ic, i, j);
2987 
2988 				if (!journal_entry_is_unused(je)) {
2989 					journal_empty = false;
2990 					break;
2991 				}
2992 			}
2993 		}
2994 	}
2995 
2996 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2997 		unused = N_COMMIT_IDS - 1;
2998 		while (unused && !used_commit_ids[unused - 1])
2999 			unused--;
3000 	} else {
3001 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
3002 			if (!used_commit_ids[unused])
3003 				break;
3004 		if (unused == N_COMMIT_IDS) {
3005 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
3006 			goto clear_journal;
3007 		}
3008 	}
3009 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3010 		    unused, used_commit_ids[0], used_commit_ids[1],
3011 		    used_commit_ids[2], used_commit_ids[3]);
3012 
3013 	last_used = prev_commit_seq(unused);
3014 	want_commit_seq = prev_commit_seq(last_used);
3015 
3016 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3017 		journal_empty = true;
3018 
3019 	write_start = max_commit_id_sections[last_used] + 1;
3020 	if (unlikely(write_start >= ic->journal_sections))
3021 		want_commit_seq = next_commit_seq(want_commit_seq);
3022 	wraparound_section(ic, &write_start);
3023 
3024 	i = write_start;
3025 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3026 		for (j = 0; j < ic->journal_section_sectors; j++) {
3027 			struct journal_sector *js = access_journal(ic, i, j);
3028 
3029 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3030 				/*
3031 				 * This could be caused by crash during writing.
3032 				 * We won't replay the inconsistent part of the
3033 				 * journal.
3034 				 */
3035 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3036 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3037 				goto brk;
3038 			}
3039 		}
3040 		i++;
3041 		if (unlikely(i >= ic->journal_sections))
3042 			want_commit_seq = next_commit_seq(want_commit_seq);
3043 		wraparound_section(ic, &i);
3044 	}
3045 brk:
3046 
3047 	if (!journal_empty) {
3048 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3049 			    write_sections, write_start, want_commit_seq);
3050 		do_journal_write(ic, write_start, write_sections, true);
3051 	}
3052 
3053 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3054 		continue_section = write_start;
3055 		ic->commit_seq = want_commit_seq;
3056 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3057 	} else {
3058 		unsigned int s;
3059 		unsigned char erase_seq;
3060 
3061 clear_journal:
3062 		DEBUG_print("clearing journal\n");
3063 
3064 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3065 		s = write_start;
3066 		init_journal(ic, s, 1, erase_seq);
3067 		s++;
3068 		wraparound_section(ic, &s);
3069 		if (ic->journal_sections >= 2) {
3070 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3071 			s += ic->journal_sections - 2;
3072 			wraparound_section(ic, &s);
3073 			init_journal(ic, s, 1, erase_seq);
3074 		}
3075 
3076 		continue_section = 0;
3077 		ic->commit_seq = next_commit_seq(erase_seq);
3078 	}
3079 
3080 	ic->committed_section = continue_section;
3081 	ic->n_committed_sections = 0;
3082 
3083 	ic->uncommitted_section = continue_section;
3084 	ic->n_uncommitted_sections = 0;
3085 
3086 	ic->free_section = continue_section;
3087 	ic->free_section_entry = 0;
3088 	ic->free_sectors = ic->journal_entries;
3089 
3090 	ic->journal_tree_root = RB_ROOT;
3091 	for (i = 0; i < ic->journal_entries; i++)
3092 		init_journal_node(&ic->journal_tree[i]);
3093 }
3094 
3095 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3096 {
3097 	DEBUG_print("%s\n", __func__);
3098 
3099 	if (ic->mode == 'B') {
3100 		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3101 		ic->synchronous_mode = 1;
3102 
3103 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3104 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3105 		flush_workqueue(ic->commit_wq);
3106 	}
3107 }
3108 
3109 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3110 {
3111 	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3112 
3113 	DEBUG_print("%s\n", __func__);
3114 
3115 	dm_integrity_enter_synchronous_mode(ic);
3116 
3117 	return NOTIFY_DONE;
3118 }
3119 
3120 static void dm_integrity_postsuspend(struct dm_target *ti)
3121 {
3122 	struct dm_integrity_c *ic = ti->private;
3123 	int r;
3124 
3125 	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3126 
3127 	del_timer_sync(&ic->autocommit_timer);
3128 
3129 	if (ic->recalc_wq)
3130 		drain_workqueue(ic->recalc_wq);
3131 
3132 	if (ic->mode == 'B')
3133 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3134 
3135 	queue_work(ic->commit_wq, &ic->commit_work);
3136 	drain_workqueue(ic->commit_wq);
3137 
3138 	if (ic->mode == 'J') {
3139 		queue_work(ic->writer_wq, &ic->writer_work);
3140 		drain_workqueue(ic->writer_wq);
3141 		dm_integrity_flush_buffers(ic, true);
3142 		if (ic->wrote_to_journal) {
3143 			init_journal(ic, ic->free_section,
3144 				     ic->journal_sections - ic->free_section, ic->commit_seq);
3145 			if (ic->free_section) {
3146 				init_journal(ic, 0, ic->free_section,
3147 					     next_commit_seq(ic->commit_seq));
3148 			}
3149 		}
3150 	}
3151 
3152 	if (ic->mode == 'B') {
3153 		dm_integrity_flush_buffers(ic, true);
3154 #if 1
3155 		/* set to 0 to test bitmap replay code */
3156 		init_journal(ic, 0, ic->journal_sections, 0);
3157 		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3158 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3159 		if (unlikely(r))
3160 			dm_integrity_io_error(ic, "writing superblock", r);
3161 #endif
3162 	}
3163 
3164 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3165 
3166 	ic->journal_uptodate = true;
3167 }
3168 
3169 static void dm_integrity_resume(struct dm_target *ti)
3170 {
3171 	struct dm_integrity_c *ic = ti->private;
3172 	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3173 	int r;
3174 
3175 	DEBUG_print("resume\n");
3176 
3177 	ic->wrote_to_journal = false;
3178 
3179 	if (ic->provided_data_sectors != old_provided_data_sectors) {
3180 		if (ic->provided_data_sectors > old_provided_data_sectors &&
3181 		    ic->mode == 'B' &&
3182 		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3183 			rw_journal_sectors(ic, REQ_OP_READ, 0,
3184 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3185 			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3186 					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3187 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3188 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3189 		}
3190 
3191 		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3192 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3193 		if (unlikely(r))
3194 			dm_integrity_io_error(ic, "writing superblock", r);
3195 	}
3196 
3197 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3198 		DEBUG_print("resume dirty_bitmap\n");
3199 		rw_journal_sectors(ic, REQ_OP_READ, 0,
3200 				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3201 		if (ic->mode == 'B') {
3202 			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3203 			    !ic->reset_recalculate_flag) {
3204 				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3205 				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3206 				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3207 						     BITMAP_OP_TEST_ALL_CLEAR)) {
3208 					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3209 					ic->sb->recalc_sector = cpu_to_le64(0);
3210 				}
3211 			} else {
3212 				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3213 					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3214 				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3215 				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3216 				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3217 				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3218 				rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3219 						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3220 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3221 				ic->sb->recalc_sector = cpu_to_le64(0);
3222 			}
3223 		} else {
3224 			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3225 			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3226 			    ic->reset_recalculate_flag) {
3227 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3228 				ic->sb->recalc_sector = cpu_to_le64(0);
3229 			}
3230 			init_journal(ic, 0, ic->journal_sections, 0);
3231 			replay_journal(ic);
3232 			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3233 		}
3234 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3235 		if (unlikely(r))
3236 			dm_integrity_io_error(ic, "writing superblock", r);
3237 	} else {
3238 		replay_journal(ic);
3239 		if (ic->reset_recalculate_flag) {
3240 			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3241 			ic->sb->recalc_sector = cpu_to_le64(0);
3242 		}
3243 		if (ic->mode == 'B') {
3244 			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3245 			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3246 			r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3247 			if (unlikely(r))
3248 				dm_integrity_io_error(ic, "writing superblock", r);
3249 
3250 			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3251 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3252 			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3253 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3254 			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3255 				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3256 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3257 				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3258 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3259 				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3260 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3261 			}
3262 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3263 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3264 		}
3265 	}
3266 
3267 	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3268 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3269 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3270 
3271 		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3272 		if (recalc_pos < ic->provided_data_sectors) {
3273 			queue_work(ic->recalc_wq, &ic->recalc_work);
3274 		} else if (recalc_pos > ic->provided_data_sectors) {
3275 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3276 			recalc_write_super(ic);
3277 		}
3278 	}
3279 
3280 	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3281 	ic->reboot_notifier.next = NULL;
3282 	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3283 	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3284 
3285 #if 0
3286 	/* set to 1 to stress test synchronous mode */
3287 	dm_integrity_enter_synchronous_mode(ic);
3288 #endif
3289 }
3290 
3291 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3292 				unsigned int status_flags, char *result, unsigned int maxlen)
3293 {
3294 	struct dm_integrity_c *ic = ti->private;
3295 	unsigned int arg_count;
3296 	size_t sz = 0;
3297 
3298 	switch (type) {
3299 	case STATUSTYPE_INFO:
3300 		DMEMIT("%llu %llu",
3301 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3302 			ic->provided_data_sectors);
3303 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3304 			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3305 		else
3306 			DMEMIT(" -");
3307 		break;
3308 
3309 	case STATUSTYPE_TABLE: {
3310 		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3311 
3312 		watermark_percentage += ic->journal_entries / 2;
3313 		do_div(watermark_percentage, ic->journal_entries);
3314 		arg_count = 3;
3315 		arg_count += !!ic->meta_dev;
3316 		arg_count += ic->sectors_per_block != 1;
3317 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3318 		arg_count += ic->reset_recalculate_flag;
3319 		arg_count += ic->discard;
3320 		arg_count += ic->mode == 'J';
3321 		arg_count += ic->mode == 'J';
3322 		arg_count += ic->mode == 'B';
3323 		arg_count += ic->mode == 'B';
3324 		arg_count += !!ic->internal_hash_alg.alg_string;
3325 		arg_count += !!ic->journal_crypt_alg.alg_string;
3326 		arg_count += !!ic->journal_mac_alg.alg_string;
3327 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3328 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3329 		arg_count += ic->legacy_recalculate;
3330 		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3331 		       ic->tag_size, ic->mode, arg_count);
3332 		if (ic->meta_dev)
3333 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3334 		if (ic->sectors_per_block != 1)
3335 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3336 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3337 			DMEMIT(" recalculate");
3338 		if (ic->reset_recalculate_flag)
3339 			DMEMIT(" reset_recalculate");
3340 		if (ic->discard)
3341 			DMEMIT(" allow_discards");
3342 		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3343 		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3344 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3345 		if (ic->mode == 'J') {
3346 			DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3347 			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3348 		}
3349 		if (ic->mode == 'B') {
3350 			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3351 			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3352 		}
3353 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3354 			DMEMIT(" fix_padding");
3355 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3356 			DMEMIT(" fix_hmac");
3357 		if (ic->legacy_recalculate)
3358 			DMEMIT(" legacy_recalculate");
3359 
3360 #define EMIT_ALG(a, n)							\
3361 		do {							\
3362 			if (ic->a.alg_string) {				\
3363 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3364 				if (ic->a.key_string)			\
3365 					DMEMIT(":%s", ic->a.key_string);\
3366 			}						\
3367 		} while (0)
3368 		EMIT_ALG(internal_hash_alg, "internal_hash");
3369 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3370 		EMIT_ALG(journal_mac_alg, "journal_mac");
3371 		break;
3372 	}
3373 	case STATUSTYPE_IMA:
3374 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3375 		DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3376 			ic->dev->name, ic->start, ic->tag_size, ic->mode);
3377 
3378 		if (ic->meta_dev)
3379 			DMEMIT(",meta_device=%s", ic->meta_dev->name);
3380 		if (ic->sectors_per_block != 1)
3381 			DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3382 
3383 		DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3384 		       'y' : 'n');
3385 		DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3386 		DMEMIT(",fix_padding=%c",
3387 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3388 		DMEMIT(",fix_hmac=%c",
3389 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3390 		DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3391 
3392 		DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3393 		DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3394 		DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3395 		DMEMIT(";");
3396 		break;
3397 	}
3398 }
3399 
3400 static int dm_integrity_iterate_devices(struct dm_target *ti,
3401 					iterate_devices_callout_fn fn, void *data)
3402 {
3403 	struct dm_integrity_c *ic = ti->private;
3404 
3405 	if (!ic->meta_dev)
3406 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3407 	else
3408 		return fn(ti, ic->dev, 0, ti->len, data);
3409 }
3410 
3411 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3412 {
3413 	struct dm_integrity_c *ic = ti->private;
3414 
3415 	if (ic->sectors_per_block > 1) {
3416 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3417 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3418 		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3419 		limits->dma_alignment = limits->logical_block_size - 1;
3420 	}
3421 }
3422 
3423 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3424 {
3425 	unsigned int sector_space = JOURNAL_SECTOR_DATA;
3426 
3427 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3428 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3429 					 JOURNAL_ENTRY_ROUNDUP);
3430 
3431 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3432 		sector_space -= JOURNAL_MAC_PER_SECTOR;
3433 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3434 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3435 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3436 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3437 }
3438 
3439 static int calculate_device_limits(struct dm_integrity_c *ic)
3440 {
3441 	__u64 initial_sectors;
3442 
3443 	calculate_journal_section_size(ic);
3444 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3445 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3446 		return -EINVAL;
3447 	ic->initial_sectors = initial_sectors;
3448 
3449 	if (!ic->meta_dev) {
3450 		sector_t last_sector, last_area, last_offset;
3451 
3452 		/* we have to maintain excessive padding for compatibility with existing volumes */
3453 		__u64 metadata_run_padding =
3454 			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3455 			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3456 			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3457 
3458 		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3459 					    metadata_run_padding) >> SECTOR_SHIFT;
3460 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3461 			ic->log2_metadata_run = __ffs(ic->metadata_run);
3462 		else
3463 			ic->log2_metadata_run = -1;
3464 
3465 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3466 		last_sector = get_data_sector(ic, last_area, last_offset);
3467 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3468 			return -EINVAL;
3469 	} else {
3470 		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3471 
3472 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3473 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3474 		meta_size <<= ic->log2_buffer_sectors;
3475 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3476 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3477 			return -EINVAL;
3478 		ic->metadata_run = 1;
3479 		ic->log2_metadata_run = 0;
3480 	}
3481 
3482 	return 0;
3483 }
3484 
3485 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3486 {
3487 	if (!ic->meta_dev) {
3488 		int test_bit;
3489 
3490 		ic->provided_data_sectors = 0;
3491 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3492 			__u64 prev_data_sectors = ic->provided_data_sectors;
3493 
3494 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3495 			if (calculate_device_limits(ic))
3496 				ic->provided_data_sectors = prev_data_sectors;
3497 		}
3498 	} else {
3499 		ic->provided_data_sectors = ic->data_device_sectors;
3500 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3501 	}
3502 }
3503 
3504 static int initialize_superblock(struct dm_integrity_c *ic,
3505 				 unsigned int journal_sectors, unsigned int interleave_sectors)
3506 {
3507 	unsigned int journal_sections;
3508 	int test_bit;
3509 
3510 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3511 	memcpy(ic->sb->magic, SB_MAGIC, 8);
3512 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3513 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3514 	if (ic->journal_mac_alg.alg_string)
3515 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3516 
3517 	calculate_journal_section_size(ic);
3518 	journal_sections = journal_sectors / ic->journal_section_sectors;
3519 	if (!journal_sections)
3520 		journal_sections = 1;
3521 
3522 	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3523 		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3524 		get_random_bytes(ic->sb->salt, SALT_SIZE);
3525 	}
3526 
3527 	if (!ic->meta_dev) {
3528 		if (ic->fix_padding)
3529 			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3530 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3531 		if (!interleave_sectors)
3532 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3533 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3534 		ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3535 		ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3536 
3537 		get_provided_data_sectors(ic);
3538 		if (!ic->provided_data_sectors)
3539 			return -EINVAL;
3540 	} else {
3541 		ic->sb->log2_interleave_sectors = 0;
3542 
3543 		get_provided_data_sectors(ic);
3544 		if (!ic->provided_data_sectors)
3545 			return -EINVAL;
3546 
3547 try_smaller_buffer:
3548 		ic->sb->journal_sections = cpu_to_le32(0);
3549 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3550 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3551 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3552 
3553 			if (test_journal_sections > journal_sections)
3554 				continue;
3555 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3556 			if (calculate_device_limits(ic))
3557 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3558 
3559 		}
3560 		if (!le32_to_cpu(ic->sb->journal_sections)) {
3561 			if (ic->log2_buffer_sectors > 3) {
3562 				ic->log2_buffer_sectors--;
3563 				goto try_smaller_buffer;
3564 			}
3565 			return -EINVAL;
3566 		}
3567 	}
3568 
3569 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3570 
3571 	sb_set_version(ic);
3572 
3573 	return 0;
3574 }
3575 
3576 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3577 {
3578 	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3579 	struct blk_integrity bi;
3580 
3581 	memset(&bi, 0, sizeof(bi));
3582 	bi.profile = &dm_integrity_profile;
3583 	bi.tuple_size = ic->tag_size;
3584 	bi.tag_size = bi.tuple_size;
3585 	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3586 
3587 	blk_integrity_register(disk, &bi);
3588 	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3589 }
3590 
3591 static void dm_integrity_free_page_list(struct page_list *pl)
3592 {
3593 	unsigned int i;
3594 
3595 	if (!pl)
3596 		return;
3597 	for (i = 0; pl[i].page; i++)
3598 		__free_page(pl[i].page);
3599 	kvfree(pl);
3600 }
3601 
3602 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3603 {
3604 	struct page_list *pl;
3605 	unsigned int i;
3606 
3607 	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3608 	if (!pl)
3609 		return NULL;
3610 
3611 	for (i = 0; i < n_pages; i++) {
3612 		pl[i].page = alloc_page(GFP_KERNEL);
3613 		if (!pl[i].page) {
3614 			dm_integrity_free_page_list(pl);
3615 			return NULL;
3616 		}
3617 		if (i)
3618 			pl[i - 1].next = &pl[i];
3619 	}
3620 	pl[i].page = NULL;
3621 	pl[i].next = NULL;
3622 
3623 	return pl;
3624 }
3625 
3626 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3627 {
3628 	unsigned int i;
3629 
3630 	for (i = 0; i < ic->journal_sections; i++)
3631 		kvfree(sl[i]);
3632 	kvfree(sl);
3633 }
3634 
3635 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3636 								   struct page_list *pl)
3637 {
3638 	struct scatterlist **sl;
3639 	unsigned int i;
3640 
3641 	sl = kvmalloc_array(ic->journal_sections,
3642 			    sizeof(struct scatterlist *),
3643 			    GFP_KERNEL | __GFP_ZERO);
3644 	if (!sl)
3645 		return NULL;
3646 
3647 	for (i = 0; i < ic->journal_sections; i++) {
3648 		struct scatterlist *s;
3649 		unsigned int start_index, start_offset;
3650 		unsigned int end_index, end_offset;
3651 		unsigned int n_pages;
3652 		unsigned int idx;
3653 
3654 		page_list_location(ic, i, 0, &start_index, &start_offset);
3655 		page_list_location(ic, i, ic->journal_section_sectors - 1,
3656 				   &end_index, &end_offset);
3657 
3658 		n_pages = (end_index - start_index + 1);
3659 
3660 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3661 				   GFP_KERNEL);
3662 		if (!s) {
3663 			dm_integrity_free_journal_scatterlist(ic, sl);
3664 			return NULL;
3665 		}
3666 
3667 		sg_init_table(s, n_pages);
3668 		for (idx = start_index; idx <= end_index; idx++) {
3669 			char *va = lowmem_page_address(pl[idx].page);
3670 			unsigned int start = 0, end = PAGE_SIZE;
3671 
3672 			if (idx == start_index)
3673 				start = start_offset;
3674 			if (idx == end_index)
3675 				end = end_offset + (1 << SECTOR_SHIFT);
3676 			sg_set_buf(&s[idx - start_index], va + start, end - start);
3677 		}
3678 
3679 		sl[i] = s;
3680 	}
3681 
3682 	return sl;
3683 }
3684 
3685 static void free_alg(struct alg_spec *a)
3686 {
3687 	kfree_sensitive(a->alg_string);
3688 	kfree_sensitive(a->key);
3689 	memset(a, 0, sizeof(*a));
3690 }
3691 
3692 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3693 {
3694 	char *k;
3695 
3696 	free_alg(a);
3697 
3698 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3699 	if (!a->alg_string)
3700 		goto nomem;
3701 
3702 	k = strchr(a->alg_string, ':');
3703 	if (k) {
3704 		*k = 0;
3705 		a->key_string = k + 1;
3706 		if (strlen(a->key_string) & 1)
3707 			goto inval;
3708 
3709 		a->key_size = strlen(a->key_string) / 2;
3710 		a->key = kmalloc(a->key_size, GFP_KERNEL);
3711 		if (!a->key)
3712 			goto nomem;
3713 		if (hex2bin(a->key, a->key_string, a->key_size))
3714 			goto inval;
3715 	}
3716 
3717 	return 0;
3718 inval:
3719 	*error = error_inval;
3720 	return -EINVAL;
3721 nomem:
3722 	*error = "Out of memory for an argument";
3723 	return -ENOMEM;
3724 }
3725 
3726 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3727 		   char *error_alg, char *error_key)
3728 {
3729 	int r;
3730 
3731 	if (a->alg_string) {
3732 		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3733 		if (IS_ERR(*hash)) {
3734 			*error = error_alg;
3735 			r = PTR_ERR(*hash);
3736 			*hash = NULL;
3737 			return r;
3738 		}
3739 
3740 		if (a->key) {
3741 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3742 			if (r) {
3743 				*error = error_key;
3744 				return r;
3745 			}
3746 		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3747 			*error = error_key;
3748 			return -ENOKEY;
3749 		}
3750 	}
3751 
3752 	return 0;
3753 }
3754 
3755 static int create_journal(struct dm_integrity_c *ic, char **error)
3756 {
3757 	int r = 0;
3758 	unsigned int i;
3759 	__u64 journal_pages, journal_desc_size, journal_tree_size;
3760 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3761 	struct skcipher_request *req = NULL;
3762 
3763 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3764 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3765 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3766 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3767 
3768 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3769 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3770 	journal_desc_size = journal_pages * sizeof(struct page_list);
3771 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3772 		*error = "Journal doesn't fit into memory";
3773 		r = -ENOMEM;
3774 		goto bad;
3775 	}
3776 	ic->journal_pages = journal_pages;
3777 
3778 	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3779 	if (!ic->journal) {
3780 		*error = "Could not allocate memory for journal";
3781 		r = -ENOMEM;
3782 		goto bad;
3783 	}
3784 	if (ic->journal_crypt_alg.alg_string) {
3785 		unsigned int ivsize, blocksize;
3786 		struct journal_completion comp;
3787 
3788 		comp.ic = ic;
3789 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3790 		if (IS_ERR(ic->journal_crypt)) {
3791 			*error = "Invalid journal cipher";
3792 			r = PTR_ERR(ic->journal_crypt);
3793 			ic->journal_crypt = NULL;
3794 			goto bad;
3795 		}
3796 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3797 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3798 
3799 		if (ic->journal_crypt_alg.key) {
3800 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3801 						   ic->journal_crypt_alg.key_size);
3802 			if (r) {
3803 				*error = "Error setting encryption key";
3804 				goto bad;
3805 			}
3806 		}
3807 		DEBUG_print("cipher %s, block size %u iv size %u\n",
3808 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3809 
3810 		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3811 		if (!ic->journal_io) {
3812 			*error = "Could not allocate memory for journal io";
3813 			r = -ENOMEM;
3814 			goto bad;
3815 		}
3816 
3817 		if (blocksize == 1) {
3818 			struct scatterlist *sg;
3819 
3820 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3821 			if (!req) {
3822 				*error = "Could not allocate crypt request";
3823 				r = -ENOMEM;
3824 				goto bad;
3825 			}
3826 
3827 			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3828 			if (!crypt_iv) {
3829 				*error = "Could not allocate iv";
3830 				r = -ENOMEM;
3831 				goto bad;
3832 			}
3833 
3834 			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3835 			if (!ic->journal_xor) {
3836 				*error = "Could not allocate memory for journal xor";
3837 				r = -ENOMEM;
3838 				goto bad;
3839 			}
3840 
3841 			sg = kvmalloc_array(ic->journal_pages + 1,
3842 					    sizeof(struct scatterlist),
3843 					    GFP_KERNEL);
3844 			if (!sg) {
3845 				*error = "Unable to allocate sg list";
3846 				r = -ENOMEM;
3847 				goto bad;
3848 			}
3849 			sg_init_table(sg, ic->journal_pages + 1);
3850 			for (i = 0; i < ic->journal_pages; i++) {
3851 				char *va = lowmem_page_address(ic->journal_xor[i].page);
3852 
3853 				clear_page(va);
3854 				sg_set_buf(&sg[i], va, PAGE_SIZE);
3855 			}
3856 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
3857 
3858 			skcipher_request_set_crypt(req, sg, sg,
3859 						   PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
3860 			init_completion(&comp.comp);
3861 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3862 			if (do_crypt(true, req, &comp))
3863 				wait_for_completion(&comp.comp);
3864 			kvfree(sg);
3865 			r = dm_integrity_failed(ic);
3866 			if (r) {
3867 				*error = "Unable to encrypt journal";
3868 				goto bad;
3869 			}
3870 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3871 
3872 			crypto_free_skcipher(ic->journal_crypt);
3873 			ic->journal_crypt = NULL;
3874 		} else {
3875 			unsigned int crypt_len = roundup(ivsize, blocksize);
3876 
3877 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3878 			if (!req) {
3879 				*error = "Could not allocate crypt request";
3880 				r = -ENOMEM;
3881 				goto bad;
3882 			}
3883 
3884 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3885 			if (!crypt_iv) {
3886 				*error = "Could not allocate iv";
3887 				r = -ENOMEM;
3888 				goto bad;
3889 			}
3890 
3891 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3892 			if (!crypt_data) {
3893 				*error = "Unable to allocate crypt data";
3894 				r = -ENOMEM;
3895 				goto bad;
3896 			}
3897 
3898 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3899 			if (!ic->journal_scatterlist) {
3900 				*error = "Unable to allocate sg list";
3901 				r = -ENOMEM;
3902 				goto bad;
3903 			}
3904 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3905 			if (!ic->journal_io_scatterlist) {
3906 				*error = "Unable to allocate sg list";
3907 				r = -ENOMEM;
3908 				goto bad;
3909 			}
3910 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3911 							 sizeof(struct skcipher_request *),
3912 							 GFP_KERNEL | __GFP_ZERO);
3913 			if (!ic->sk_requests) {
3914 				*error = "Unable to allocate sk requests";
3915 				r = -ENOMEM;
3916 				goto bad;
3917 			}
3918 			for (i = 0; i < ic->journal_sections; i++) {
3919 				struct scatterlist sg;
3920 				struct skcipher_request *section_req;
3921 				__le32 section_le = cpu_to_le32(i);
3922 
3923 				memset(crypt_iv, 0x00, ivsize);
3924 				memset(crypt_data, 0x00, crypt_len);
3925 				memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
3926 
3927 				sg_init_one(&sg, crypt_data, crypt_len);
3928 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3929 				init_completion(&comp.comp);
3930 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3931 				if (do_crypt(true, req, &comp))
3932 					wait_for_completion(&comp.comp);
3933 
3934 				r = dm_integrity_failed(ic);
3935 				if (r) {
3936 					*error = "Unable to generate iv";
3937 					goto bad;
3938 				}
3939 
3940 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3941 				if (!section_req) {
3942 					*error = "Unable to allocate crypt request";
3943 					r = -ENOMEM;
3944 					goto bad;
3945 				}
3946 				section_req->iv = kmalloc_array(ivsize, 2,
3947 								GFP_KERNEL);
3948 				if (!section_req->iv) {
3949 					skcipher_request_free(section_req);
3950 					*error = "Unable to allocate iv";
3951 					r = -ENOMEM;
3952 					goto bad;
3953 				}
3954 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3955 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3956 				ic->sk_requests[i] = section_req;
3957 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3958 			}
3959 		}
3960 	}
3961 
3962 	for (i = 0; i < N_COMMIT_IDS; i++) {
3963 		unsigned int j;
3964 
3965 retest_commit_id:
3966 		for (j = 0; j < i; j++) {
3967 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
3968 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3969 				goto retest_commit_id;
3970 			}
3971 		}
3972 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3973 	}
3974 
3975 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3976 	if (journal_tree_size > ULONG_MAX) {
3977 		*error = "Journal doesn't fit into memory";
3978 		r = -ENOMEM;
3979 		goto bad;
3980 	}
3981 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3982 	if (!ic->journal_tree) {
3983 		*error = "Could not allocate memory for journal tree";
3984 		r = -ENOMEM;
3985 	}
3986 bad:
3987 	kfree(crypt_data);
3988 	kfree(crypt_iv);
3989 	skcipher_request_free(req);
3990 
3991 	return r;
3992 }
3993 
3994 /*
3995  * Construct a integrity mapping
3996  *
3997  * Arguments:
3998  *	device
3999  *	offset from the start of the device
4000  *	tag size
4001  *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4002  *	number of optional arguments
4003  *	optional arguments:
4004  *		journal_sectors
4005  *		interleave_sectors
4006  *		buffer_sectors
4007  *		journal_watermark
4008  *		commit_time
4009  *		meta_device
4010  *		block_size
4011  *		sectors_per_bit
4012  *		bitmap_flush_interval
4013  *		internal_hash
4014  *		journal_crypt
4015  *		journal_mac
4016  *		recalculate
4017  */
4018 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4019 {
4020 	struct dm_integrity_c *ic;
4021 	char dummy;
4022 	int r;
4023 	unsigned int extra_args;
4024 	struct dm_arg_set as;
4025 	static const struct dm_arg _args[] = {
4026 		{0, 18, "Invalid number of feature args"},
4027 	};
4028 	unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4029 	bool should_write_sb;
4030 	__u64 threshold;
4031 	unsigned long long start;
4032 	__s8 log2_sectors_per_bitmap_bit = -1;
4033 	__s8 log2_blocks_per_bitmap_bit;
4034 	__u64 bits_in_journal;
4035 	__u64 n_bitmap_bits;
4036 
4037 #define DIRECT_ARGUMENTS	4
4038 
4039 	if (argc <= DIRECT_ARGUMENTS) {
4040 		ti->error = "Invalid argument count";
4041 		return -EINVAL;
4042 	}
4043 
4044 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4045 	if (!ic) {
4046 		ti->error = "Cannot allocate integrity context";
4047 		return -ENOMEM;
4048 	}
4049 	ti->private = ic;
4050 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
4051 	ic->ti = ti;
4052 
4053 	ic->in_progress = RB_ROOT;
4054 	INIT_LIST_HEAD(&ic->wait_list);
4055 	init_waitqueue_head(&ic->endio_wait);
4056 	bio_list_init(&ic->flush_bio_list);
4057 	init_waitqueue_head(&ic->copy_to_journal_wait);
4058 	init_completion(&ic->crypto_backoff);
4059 	atomic64_set(&ic->number_of_mismatches, 0);
4060 	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4061 
4062 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4063 	if (r) {
4064 		ti->error = "Device lookup failed";
4065 		goto bad;
4066 	}
4067 
4068 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4069 		ti->error = "Invalid starting offset";
4070 		r = -EINVAL;
4071 		goto bad;
4072 	}
4073 	ic->start = start;
4074 
4075 	if (strcmp(argv[2], "-")) {
4076 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4077 			ti->error = "Invalid tag size";
4078 			r = -EINVAL;
4079 			goto bad;
4080 		}
4081 	}
4082 
4083 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4084 	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4085 		ic->mode = argv[3][0];
4086 	} else {
4087 		ti->error = "Invalid mode (expecting J, B, D, R)";
4088 		r = -EINVAL;
4089 		goto bad;
4090 	}
4091 
4092 	journal_sectors = 0;
4093 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4094 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
4095 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4096 	sync_msec = DEFAULT_SYNC_MSEC;
4097 	ic->sectors_per_block = 1;
4098 
4099 	as.argc = argc - DIRECT_ARGUMENTS;
4100 	as.argv = argv + DIRECT_ARGUMENTS;
4101 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4102 	if (r)
4103 		goto bad;
4104 
4105 	while (extra_args--) {
4106 		const char *opt_string;
4107 		unsigned int val;
4108 		unsigned long long llval;
4109 
4110 		opt_string = dm_shift_arg(&as);
4111 		if (!opt_string) {
4112 			r = -EINVAL;
4113 			ti->error = "Not enough feature arguments";
4114 			goto bad;
4115 		}
4116 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4117 			journal_sectors = val ? val : 1;
4118 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4119 			interleave_sectors = val;
4120 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4121 			buffer_sectors = val;
4122 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4123 			journal_watermark = val;
4124 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4125 			sync_msec = val;
4126 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4127 			if (ic->meta_dev) {
4128 				dm_put_device(ti, ic->meta_dev);
4129 				ic->meta_dev = NULL;
4130 			}
4131 			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4132 					  dm_table_get_mode(ti->table), &ic->meta_dev);
4133 			if (r) {
4134 				ti->error = "Device lookup failed";
4135 				goto bad;
4136 			}
4137 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4138 			if (val < 1 << SECTOR_SHIFT ||
4139 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4140 			    (val & (val - 1))) {
4141 				r = -EINVAL;
4142 				ti->error = "Invalid block_size argument";
4143 				goto bad;
4144 			}
4145 			ic->sectors_per_block = val >> SECTOR_SHIFT;
4146 		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4147 			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4148 		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4149 			if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4150 				r = -EINVAL;
4151 				ti->error = "Invalid bitmap_flush_interval argument";
4152 				goto bad;
4153 			}
4154 			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4155 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4156 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4157 					    "Invalid internal_hash argument");
4158 			if (r)
4159 				goto bad;
4160 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4161 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4162 					    "Invalid journal_crypt argument");
4163 			if (r)
4164 				goto bad;
4165 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4166 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4167 					    "Invalid journal_mac argument");
4168 			if (r)
4169 				goto bad;
4170 		} else if (!strcmp(opt_string, "recalculate")) {
4171 			ic->recalculate_flag = true;
4172 		} else if (!strcmp(opt_string, "reset_recalculate")) {
4173 			ic->recalculate_flag = true;
4174 			ic->reset_recalculate_flag = true;
4175 		} else if (!strcmp(opt_string, "allow_discards")) {
4176 			ic->discard = true;
4177 		} else if (!strcmp(opt_string, "fix_padding")) {
4178 			ic->fix_padding = true;
4179 		} else if (!strcmp(opt_string, "fix_hmac")) {
4180 			ic->fix_hmac = true;
4181 		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4182 			ic->legacy_recalculate = true;
4183 		} else {
4184 			r = -EINVAL;
4185 			ti->error = "Invalid argument";
4186 			goto bad;
4187 		}
4188 	}
4189 
4190 	ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4191 	if (!ic->meta_dev)
4192 		ic->meta_device_sectors = ic->data_device_sectors;
4193 	else
4194 		ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4195 
4196 	if (!journal_sectors) {
4197 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4198 				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4199 	}
4200 
4201 	if (!buffer_sectors)
4202 		buffer_sectors = 1;
4203 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4204 
4205 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4206 		    "Invalid internal hash", "Error setting internal hash key");
4207 	if (r)
4208 		goto bad;
4209 
4210 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4211 		    "Invalid journal mac", "Error setting journal mac key");
4212 	if (r)
4213 		goto bad;
4214 
4215 	if (!ic->tag_size) {
4216 		if (!ic->internal_hash) {
4217 			ti->error = "Unknown tag size";
4218 			r = -EINVAL;
4219 			goto bad;
4220 		}
4221 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4222 	}
4223 	if (ic->tag_size > MAX_TAG_SIZE) {
4224 		ti->error = "Too big tag size";
4225 		r = -EINVAL;
4226 		goto bad;
4227 	}
4228 	if (!(ic->tag_size & (ic->tag_size - 1)))
4229 		ic->log2_tag_size = __ffs(ic->tag_size);
4230 	else
4231 		ic->log2_tag_size = -1;
4232 
4233 	if (ic->mode == 'B' && !ic->internal_hash) {
4234 		r = -EINVAL;
4235 		ti->error = "Bitmap mode can be only used with internal hash";
4236 		goto bad;
4237 	}
4238 
4239 	if (ic->discard && !ic->internal_hash) {
4240 		r = -EINVAL;
4241 		ti->error = "Discard can be only used with internal hash";
4242 		goto bad;
4243 	}
4244 
4245 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4246 	ic->autocommit_msec = sync_msec;
4247 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4248 
4249 	ic->io = dm_io_client_create();
4250 	if (IS_ERR(ic->io)) {
4251 		r = PTR_ERR(ic->io);
4252 		ic->io = NULL;
4253 		ti->error = "Cannot allocate dm io";
4254 		goto bad;
4255 	}
4256 
4257 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4258 	if (r) {
4259 		ti->error = "Cannot allocate mempool";
4260 		goto bad;
4261 	}
4262 
4263 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4264 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4265 	if (!ic->metadata_wq) {
4266 		ti->error = "Cannot allocate workqueue";
4267 		r = -ENOMEM;
4268 		goto bad;
4269 	}
4270 
4271 	/*
4272 	 * If this workqueue weren't ordered, it would cause bio reordering
4273 	 * and reduced performance.
4274 	 */
4275 	ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4276 	if (!ic->wait_wq) {
4277 		ti->error = "Cannot allocate workqueue";
4278 		r = -ENOMEM;
4279 		goto bad;
4280 	}
4281 
4282 	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4283 					  METADATA_WORKQUEUE_MAX_ACTIVE);
4284 	if (!ic->offload_wq) {
4285 		ti->error = "Cannot allocate workqueue";
4286 		r = -ENOMEM;
4287 		goto bad;
4288 	}
4289 
4290 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4291 	if (!ic->commit_wq) {
4292 		ti->error = "Cannot allocate workqueue";
4293 		r = -ENOMEM;
4294 		goto bad;
4295 	}
4296 	INIT_WORK(&ic->commit_work, integrity_commit);
4297 
4298 	if (ic->mode == 'J' || ic->mode == 'B') {
4299 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4300 		if (!ic->writer_wq) {
4301 			ti->error = "Cannot allocate workqueue";
4302 			r = -ENOMEM;
4303 			goto bad;
4304 		}
4305 		INIT_WORK(&ic->writer_work, integrity_writer);
4306 	}
4307 
4308 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4309 	if (!ic->sb) {
4310 		r = -ENOMEM;
4311 		ti->error = "Cannot allocate superblock area";
4312 		goto bad;
4313 	}
4314 
4315 	r = sync_rw_sb(ic, REQ_OP_READ);
4316 	if (r) {
4317 		ti->error = "Error reading superblock";
4318 		goto bad;
4319 	}
4320 	should_write_sb = false;
4321 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4322 		if (ic->mode != 'R') {
4323 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4324 				r = -EINVAL;
4325 				ti->error = "The device is not initialized";
4326 				goto bad;
4327 			}
4328 		}
4329 
4330 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4331 		if (r) {
4332 			ti->error = "Could not initialize superblock";
4333 			goto bad;
4334 		}
4335 		if (ic->mode != 'R')
4336 			should_write_sb = true;
4337 	}
4338 
4339 	if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4340 		r = -EINVAL;
4341 		ti->error = "Unknown version";
4342 		goto bad;
4343 	}
4344 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4345 		r = -EINVAL;
4346 		ti->error = "Tag size doesn't match the information in superblock";
4347 		goto bad;
4348 	}
4349 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4350 		r = -EINVAL;
4351 		ti->error = "Block size doesn't match the information in superblock";
4352 		goto bad;
4353 	}
4354 	if (!le32_to_cpu(ic->sb->journal_sections)) {
4355 		r = -EINVAL;
4356 		ti->error = "Corrupted superblock, journal_sections is 0";
4357 		goto bad;
4358 	}
4359 	/* make sure that ti->max_io_len doesn't overflow */
4360 	if (!ic->meta_dev) {
4361 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4362 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4363 			r = -EINVAL;
4364 			ti->error = "Invalid interleave_sectors in the superblock";
4365 			goto bad;
4366 		}
4367 	} else {
4368 		if (ic->sb->log2_interleave_sectors) {
4369 			r = -EINVAL;
4370 			ti->error = "Invalid interleave_sectors in the superblock";
4371 			goto bad;
4372 		}
4373 	}
4374 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4375 		r = -EINVAL;
4376 		ti->error = "Journal mac mismatch";
4377 		goto bad;
4378 	}
4379 
4380 	get_provided_data_sectors(ic);
4381 	if (!ic->provided_data_sectors) {
4382 		r = -EINVAL;
4383 		ti->error = "The device is too small";
4384 		goto bad;
4385 	}
4386 
4387 try_smaller_buffer:
4388 	r = calculate_device_limits(ic);
4389 	if (r) {
4390 		if (ic->meta_dev) {
4391 			if (ic->log2_buffer_sectors > 3) {
4392 				ic->log2_buffer_sectors--;
4393 				goto try_smaller_buffer;
4394 			}
4395 		}
4396 		ti->error = "The device is too small";
4397 		goto bad;
4398 	}
4399 
4400 	if (log2_sectors_per_bitmap_bit < 0)
4401 		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4402 	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4403 		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4404 
4405 	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4406 	if (bits_in_journal > UINT_MAX)
4407 		bits_in_journal = UINT_MAX;
4408 	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4409 		log2_sectors_per_bitmap_bit++;
4410 
4411 	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4412 	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4413 	if (should_write_sb)
4414 		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4415 
4416 	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4417 				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4418 	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4419 
4420 	if (!ic->meta_dev)
4421 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4422 
4423 	if (ti->len > ic->provided_data_sectors) {
4424 		r = -EINVAL;
4425 		ti->error = "Not enough provided sectors for requested mapping size";
4426 		goto bad;
4427 	}
4428 
4429 
4430 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4431 	threshold += 50;
4432 	do_div(threshold, 100);
4433 	ic->free_sectors_threshold = threshold;
4434 
4435 	DEBUG_print("initialized:\n");
4436 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4437 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4438 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4439 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4440 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4441 	DEBUG_print("	journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4442 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4443 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4444 	DEBUG_print("	data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4445 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4446 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4447 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4448 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4449 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4450 	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4451 
4452 	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4453 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4454 		ic->sb->recalc_sector = cpu_to_le64(0);
4455 	}
4456 
4457 	if (ic->internal_hash) {
4458 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4459 		if (!ic->recalc_wq) {
4460 			ti->error = "Cannot allocate workqueue";
4461 			r = -ENOMEM;
4462 			goto bad;
4463 		}
4464 		INIT_WORK(&ic->recalc_work, integrity_recalc);
4465 	} else {
4466 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4467 			ti->error = "Recalculate can only be specified with internal_hash";
4468 			r = -EINVAL;
4469 			goto bad;
4470 		}
4471 	}
4472 
4473 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4474 	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4475 	    dm_integrity_disable_recalculate(ic)) {
4476 		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4477 		r = -EOPNOTSUPP;
4478 		goto bad;
4479 	}
4480 
4481 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4482 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4483 	if (IS_ERR(ic->bufio)) {
4484 		r = PTR_ERR(ic->bufio);
4485 		ti->error = "Cannot initialize dm-bufio";
4486 		ic->bufio = NULL;
4487 		goto bad;
4488 	}
4489 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4490 
4491 	if (ic->mode != 'R') {
4492 		r = create_journal(ic, &ti->error);
4493 		if (r)
4494 			goto bad;
4495 
4496 	}
4497 
4498 	if (ic->mode == 'B') {
4499 		unsigned int i;
4500 		unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4501 
4502 		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4503 		if (!ic->recalc_bitmap) {
4504 			r = -ENOMEM;
4505 			goto bad;
4506 		}
4507 		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4508 		if (!ic->may_write_bitmap) {
4509 			r = -ENOMEM;
4510 			goto bad;
4511 		}
4512 		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4513 		if (!ic->bbs) {
4514 			r = -ENOMEM;
4515 			goto bad;
4516 		}
4517 		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4518 		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4519 			struct bitmap_block_status *bbs = &ic->bbs[i];
4520 			unsigned int sector, pl_index, pl_offset;
4521 
4522 			INIT_WORK(&bbs->work, bitmap_block_work);
4523 			bbs->ic = ic;
4524 			bbs->idx = i;
4525 			bio_list_init(&bbs->bio_queue);
4526 			spin_lock_init(&bbs->bio_queue_lock);
4527 
4528 			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4529 			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4530 			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4531 
4532 			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4533 		}
4534 	}
4535 
4536 	if (should_write_sb) {
4537 		init_journal(ic, 0, ic->journal_sections, 0);
4538 		r = dm_integrity_failed(ic);
4539 		if (unlikely(r)) {
4540 			ti->error = "Error initializing journal";
4541 			goto bad;
4542 		}
4543 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4544 		if (r) {
4545 			ti->error = "Error initializing superblock";
4546 			goto bad;
4547 		}
4548 		ic->just_formatted = true;
4549 	}
4550 
4551 	if (!ic->meta_dev) {
4552 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4553 		if (r)
4554 			goto bad;
4555 	}
4556 	if (ic->mode == 'B') {
4557 		unsigned int max_io_len;
4558 
4559 		max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4560 		if (!max_io_len)
4561 			max_io_len = 1U << 31;
4562 		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4563 		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4564 			r = dm_set_target_max_io_len(ti, max_io_len);
4565 			if (r)
4566 				goto bad;
4567 		}
4568 	}
4569 
4570 	if (!ic->internal_hash)
4571 		dm_integrity_set(ti, ic);
4572 
4573 	ti->num_flush_bios = 1;
4574 	ti->flush_supported = true;
4575 	if (ic->discard)
4576 		ti->num_discard_bios = 1;
4577 
4578 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4579 	return 0;
4580 
4581 bad:
4582 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4583 	dm_integrity_dtr(ti);
4584 	return r;
4585 }
4586 
4587 static void dm_integrity_dtr(struct dm_target *ti)
4588 {
4589 	struct dm_integrity_c *ic = ti->private;
4590 
4591 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4592 	BUG_ON(!list_empty(&ic->wait_list));
4593 
4594 	if (ic->mode == 'B')
4595 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
4596 	if (ic->metadata_wq)
4597 		destroy_workqueue(ic->metadata_wq);
4598 	if (ic->wait_wq)
4599 		destroy_workqueue(ic->wait_wq);
4600 	if (ic->offload_wq)
4601 		destroy_workqueue(ic->offload_wq);
4602 	if (ic->commit_wq)
4603 		destroy_workqueue(ic->commit_wq);
4604 	if (ic->writer_wq)
4605 		destroy_workqueue(ic->writer_wq);
4606 	if (ic->recalc_wq)
4607 		destroy_workqueue(ic->recalc_wq);
4608 	kvfree(ic->bbs);
4609 	if (ic->bufio)
4610 		dm_bufio_client_destroy(ic->bufio);
4611 	mempool_exit(&ic->journal_io_mempool);
4612 	if (ic->io)
4613 		dm_io_client_destroy(ic->io);
4614 	if (ic->dev)
4615 		dm_put_device(ti, ic->dev);
4616 	if (ic->meta_dev)
4617 		dm_put_device(ti, ic->meta_dev);
4618 	dm_integrity_free_page_list(ic->journal);
4619 	dm_integrity_free_page_list(ic->journal_io);
4620 	dm_integrity_free_page_list(ic->journal_xor);
4621 	dm_integrity_free_page_list(ic->recalc_bitmap);
4622 	dm_integrity_free_page_list(ic->may_write_bitmap);
4623 	if (ic->journal_scatterlist)
4624 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4625 	if (ic->journal_io_scatterlist)
4626 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4627 	if (ic->sk_requests) {
4628 		unsigned int i;
4629 
4630 		for (i = 0; i < ic->journal_sections; i++) {
4631 			struct skcipher_request *req;
4632 
4633 			req = ic->sk_requests[i];
4634 			if (req) {
4635 				kfree_sensitive(req->iv);
4636 				skcipher_request_free(req);
4637 			}
4638 		}
4639 		kvfree(ic->sk_requests);
4640 	}
4641 	kvfree(ic->journal_tree);
4642 	if (ic->sb)
4643 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4644 
4645 	if (ic->internal_hash)
4646 		crypto_free_shash(ic->internal_hash);
4647 	free_alg(&ic->internal_hash_alg);
4648 
4649 	if (ic->journal_crypt)
4650 		crypto_free_skcipher(ic->journal_crypt);
4651 	free_alg(&ic->journal_crypt_alg);
4652 
4653 	if (ic->journal_mac)
4654 		crypto_free_shash(ic->journal_mac);
4655 	free_alg(&ic->journal_mac_alg);
4656 
4657 	kfree(ic);
4658 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4659 }
4660 
4661 static struct target_type integrity_target = {
4662 	.name			= "integrity",
4663 	.version		= {1, 10, 0},
4664 	.module			= THIS_MODULE,
4665 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4666 	.ctr			= dm_integrity_ctr,
4667 	.dtr			= dm_integrity_dtr,
4668 	.map			= dm_integrity_map,
4669 	.postsuspend		= dm_integrity_postsuspend,
4670 	.resume			= dm_integrity_resume,
4671 	.status			= dm_integrity_status,
4672 	.iterate_devices	= dm_integrity_iterate_devices,
4673 	.io_hints		= dm_integrity_io_hints,
4674 };
4675 
4676 static int __init dm_integrity_init(void)
4677 {
4678 	int r;
4679 
4680 	journal_io_cache = kmem_cache_create("integrity_journal_io",
4681 					     sizeof(struct journal_io), 0, 0, NULL);
4682 	if (!journal_io_cache) {
4683 		DMERR("can't allocate journal io cache");
4684 		return -ENOMEM;
4685 	}
4686 
4687 	r = dm_register_target(&integrity_target);
4688 	if (r < 0) {
4689 		kmem_cache_destroy(journal_io_cache);
4690 		return r;
4691 	}
4692 
4693 	return 0;
4694 }
4695 
4696 static void __exit dm_integrity_exit(void)
4697 {
4698 	dm_unregister_target(&integrity_target);
4699 	kmem_cache_destroy(journal_io_cache);
4700 }
4701 
4702 module_init(dm_integrity_init);
4703 module_exit(dm_integrity_exit);
4704 
4705 MODULE_AUTHOR("Milan Broz");
4706 MODULE_AUTHOR("Mikulas Patocka");
4707 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4708 MODULE_LICENSE("GPL");
4709