xref: /linux/drivers/md/dm-integrity.c (revision aaa44952bbd1d4db14a4d676bf9595bb5db7e7b0)
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bio-record.h"
10 
11 #include <linux/compiler.h>
12 #include <linux/module.h>
13 #include <linux/device-mapper.h>
14 #include <linux/dm-io.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sort.h>
17 #include <linux/rbtree.h>
18 #include <linux/delay.h>
19 #include <linux/random.h>
20 #include <linux/reboot.h>
21 #include <crypto/hash.h>
22 #include <crypto/skcipher.h>
23 #include <linux/async_tx.h>
24 #include <linux/dm-bufio.h>
25 
26 #define DM_MSG_PREFIX "integrity"
27 
28 #define DEFAULT_INTERLEAVE_SECTORS	32768
29 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
30 #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
31 #define DEFAULT_BUFFER_SECTORS		128
32 #define DEFAULT_JOURNAL_WATERMARK	50
33 #define DEFAULT_SYNC_MSEC		10000
34 #define DEFAULT_MAX_JOURNAL_SECTORS	131072
35 #define MIN_LOG2_INTERLEAVE_SECTORS	3
36 #define MAX_LOG2_INTERLEAVE_SECTORS	31
37 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
38 #define RECALC_SECTORS			32768
39 #define RECALC_WRITE_SUPER		16
40 #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
41 #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
42 #define DISCARD_FILLER			0xf6
43 #define SALT_SIZE			16
44 
45 /*
46  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
47  * so it should not be enabled in the official kernel
48  */
49 //#define DEBUG_PRINT
50 //#define INTERNAL_VERIFY
51 
52 /*
53  * On disk structures
54  */
55 
56 #define SB_MAGIC			"integrt"
57 #define SB_VERSION_1			1
58 #define SB_VERSION_2			2
59 #define SB_VERSION_3			3
60 #define SB_VERSION_4			4
61 #define SB_VERSION_5			5
62 #define SB_SECTORS			8
63 #define MAX_SECTORS_PER_BLOCK		8
64 
65 struct superblock {
66 	__u8 magic[8];
67 	__u8 version;
68 	__u8 log2_interleave_sectors;
69 	__u16 integrity_tag_size;
70 	__u32 journal_sections;
71 	__u64 provided_data_sectors;	/* userspace uses this value */
72 	__u32 flags;
73 	__u8 log2_sectors_per_block;
74 	__u8 log2_blocks_per_bitmap_bit;
75 	__u8 pad[2];
76 	__u64 recalc_sector;
77 	__u8 pad2[8];
78 	__u8 salt[SALT_SIZE];
79 };
80 
81 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
82 #define SB_FLAG_RECALCULATING		0x2
83 #define SB_FLAG_DIRTY_BITMAP		0x4
84 #define SB_FLAG_FIXED_PADDING		0x8
85 #define SB_FLAG_FIXED_HMAC		0x10
86 
87 #define	JOURNAL_ENTRY_ROUNDUP		8
88 
89 typedef __u64 commit_id_t;
90 #define JOURNAL_MAC_PER_SECTOR		8
91 
92 struct journal_entry {
93 	union {
94 		struct {
95 			__u32 sector_lo;
96 			__u32 sector_hi;
97 		} s;
98 		__u64 sector;
99 	} u;
100 	commit_id_t last_bytes[];
101 	/* __u8 tag[0]; */
102 };
103 
104 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
105 
106 #if BITS_PER_LONG == 64
107 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
108 #else
109 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
110 #endif
111 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
112 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
113 #define journal_entry_set_unused(je)		do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
114 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
115 #define journal_entry_set_inprogress(je)	do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
116 
117 #define JOURNAL_BLOCK_SECTORS		8
118 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
119 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
120 
121 struct journal_sector {
122 	__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
123 	__u8 mac[JOURNAL_MAC_PER_SECTOR];
124 	commit_id_t commit_id;
125 };
126 
127 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
128 
129 #define METADATA_PADDING_SECTORS	8
130 
131 #define N_COMMIT_IDS			4
132 
133 static unsigned char prev_commit_seq(unsigned char seq)
134 {
135 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
136 }
137 
138 static unsigned char next_commit_seq(unsigned char seq)
139 {
140 	return (seq + 1) % N_COMMIT_IDS;
141 }
142 
143 /*
144  * In-memory structures
145  */
146 
147 struct journal_node {
148 	struct rb_node node;
149 	sector_t sector;
150 };
151 
152 struct alg_spec {
153 	char *alg_string;
154 	char *key_string;
155 	__u8 *key;
156 	unsigned key_size;
157 };
158 
159 struct dm_integrity_c {
160 	struct dm_dev *dev;
161 	struct dm_dev *meta_dev;
162 	unsigned tag_size;
163 	__s8 log2_tag_size;
164 	sector_t start;
165 	mempool_t journal_io_mempool;
166 	struct dm_io_client *io;
167 	struct dm_bufio_client *bufio;
168 	struct workqueue_struct *metadata_wq;
169 	struct superblock *sb;
170 	unsigned journal_pages;
171 	unsigned n_bitmap_blocks;
172 
173 	struct page_list *journal;
174 	struct page_list *journal_io;
175 	struct page_list *journal_xor;
176 	struct page_list *recalc_bitmap;
177 	struct page_list *may_write_bitmap;
178 	struct bitmap_block_status *bbs;
179 	unsigned bitmap_flush_interval;
180 	int synchronous_mode;
181 	struct bio_list synchronous_bios;
182 	struct delayed_work bitmap_flush_work;
183 
184 	struct crypto_skcipher *journal_crypt;
185 	struct scatterlist **journal_scatterlist;
186 	struct scatterlist **journal_io_scatterlist;
187 	struct skcipher_request **sk_requests;
188 
189 	struct crypto_shash *journal_mac;
190 
191 	struct journal_node *journal_tree;
192 	struct rb_root journal_tree_root;
193 
194 	sector_t provided_data_sectors;
195 
196 	unsigned short journal_entry_size;
197 	unsigned char journal_entries_per_sector;
198 	unsigned char journal_section_entries;
199 	unsigned short journal_section_sectors;
200 	unsigned journal_sections;
201 	unsigned journal_entries;
202 	sector_t data_device_sectors;
203 	sector_t meta_device_sectors;
204 	unsigned initial_sectors;
205 	unsigned metadata_run;
206 	__s8 log2_metadata_run;
207 	__u8 log2_buffer_sectors;
208 	__u8 sectors_per_block;
209 	__u8 log2_blocks_per_bitmap_bit;
210 
211 	unsigned char mode;
212 
213 	int failed;
214 
215 	struct crypto_shash *internal_hash;
216 
217 	struct dm_target *ti;
218 
219 	/* these variables are locked with endio_wait.lock */
220 	struct rb_root in_progress;
221 	struct list_head wait_list;
222 	wait_queue_head_t endio_wait;
223 	struct workqueue_struct *wait_wq;
224 	struct workqueue_struct *offload_wq;
225 
226 	unsigned char commit_seq;
227 	commit_id_t commit_ids[N_COMMIT_IDS];
228 
229 	unsigned committed_section;
230 	unsigned n_committed_sections;
231 
232 	unsigned uncommitted_section;
233 	unsigned n_uncommitted_sections;
234 
235 	unsigned free_section;
236 	unsigned char free_section_entry;
237 	unsigned free_sectors;
238 
239 	unsigned free_sectors_threshold;
240 
241 	struct workqueue_struct *commit_wq;
242 	struct work_struct commit_work;
243 
244 	struct workqueue_struct *writer_wq;
245 	struct work_struct writer_work;
246 
247 	struct workqueue_struct *recalc_wq;
248 	struct work_struct recalc_work;
249 	u8 *recalc_buffer;
250 	u8 *recalc_tags;
251 
252 	struct bio_list flush_bio_list;
253 
254 	unsigned long autocommit_jiffies;
255 	struct timer_list autocommit_timer;
256 	unsigned autocommit_msec;
257 
258 	wait_queue_head_t copy_to_journal_wait;
259 
260 	struct completion crypto_backoff;
261 
262 	bool journal_uptodate;
263 	bool just_formatted;
264 	bool recalculate_flag;
265 	bool reset_recalculate_flag;
266 	bool discard;
267 	bool fix_padding;
268 	bool fix_hmac;
269 	bool legacy_recalculate;
270 
271 	struct alg_spec internal_hash_alg;
272 	struct alg_spec journal_crypt_alg;
273 	struct alg_spec journal_mac_alg;
274 
275 	atomic64_t number_of_mismatches;
276 
277 	struct notifier_block reboot_notifier;
278 };
279 
280 struct dm_integrity_range {
281 	sector_t logical_sector;
282 	sector_t n_sectors;
283 	bool waiting;
284 	union {
285 		struct rb_node node;
286 		struct {
287 			struct task_struct *task;
288 			struct list_head wait_entry;
289 		};
290 	};
291 };
292 
293 struct dm_integrity_io {
294 	struct work_struct work;
295 
296 	struct dm_integrity_c *ic;
297 	enum req_opf op;
298 	bool fua;
299 
300 	struct dm_integrity_range range;
301 
302 	sector_t metadata_block;
303 	unsigned metadata_offset;
304 
305 	atomic_t in_flight;
306 	blk_status_t bi_status;
307 
308 	struct completion *completion;
309 
310 	struct dm_bio_details bio_details;
311 };
312 
313 struct journal_completion {
314 	struct dm_integrity_c *ic;
315 	atomic_t in_flight;
316 	struct completion comp;
317 };
318 
319 struct journal_io {
320 	struct dm_integrity_range range;
321 	struct journal_completion *comp;
322 };
323 
324 struct bitmap_block_status {
325 	struct work_struct work;
326 	struct dm_integrity_c *ic;
327 	unsigned idx;
328 	unsigned long *bitmap;
329 	struct bio_list bio_queue;
330 	spinlock_t bio_queue_lock;
331 
332 };
333 
334 static struct kmem_cache *journal_io_cache;
335 
336 #define JOURNAL_IO_MEMPOOL	32
337 
338 #ifdef DEBUG_PRINT
339 #define DEBUG_print(x, ...)	printk(KERN_DEBUG x, ##__VA_ARGS__)
340 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
341 {
342 	va_list args;
343 	va_start(args, msg);
344 	vprintk(msg, args);
345 	va_end(args);
346 	if (len)
347 		pr_cont(":");
348 	while (len) {
349 		pr_cont(" %02x", *bytes);
350 		bytes++;
351 		len--;
352 	}
353 	pr_cont("\n");
354 }
355 #define DEBUG_bytes(bytes, len, msg, ...)	__DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
356 #else
357 #define DEBUG_print(x, ...)			do { } while (0)
358 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
359 #endif
360 
361 static void dm_integrity_prepare(struct request *rq)
362 {
363 }
364 
365 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
366 {
367 }
368 
369 /*
370  * DM Integrity profile, protection is performed layer above (dm-crypt)
371  */
372 static const struct blk_integrity_profile dm_integrity_profile = {
373 	.name			= "DM-DIF-EXT-TAG",
374 	.generate_fn		= NULL,
375 	.verify_fn		= NULL,
376 	.prepare_fn		= dm_integrity_prepare,
377 	.complete_fn		= dm_integrity_complete,
378 };
379 
380 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
381 static void integrity_bio_wait(struct work_struct *w);
382 static void dm_integrity_dtr(struct dm_target *ti);
383 
384 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
385 {
386 	if (err == -EILSEQ)
387 		atomic64_inc(&ic->number_of_mismatches);
388 	if (!cmpxchg(&ic->failed, 0, err))
389 		DMERR("Error on %s: %d", msg, err);
390 }
391 
392 static int dm_integrity_failed(struct dm_integrity_c *ic)
393 {
394 	return READ_ONCE(ic->failed);
395 }
396 
397 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
398 {
399 	if (ic->legacy_recalculate)
400 		return false;
401 	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
402 	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
403 	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
404 		return true;
405 	return false;
406 }
407 
408 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
409 					  unsigned j, unsigned char seq)
410 {
411 	/*
412 	 * Xor the number with section and sector, so that if a piece of
413 	 * journal is written at wrong place, it is detected.
414 	 */
415 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
416 }
417 
418 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
419 				sector_t *area, sector_t *offset)
420 {
421 	if (!ic->meta_dev) {
422 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
423 		*area = data_sector >> log2_interleave_sectors;
424 		*offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
425 	} else {
426 		*area = 0;
427 		*offset = data_sector;
428 	}
429 }
430 
431 #define sector_to_block(ic, n)						\
432 do {									\
433 	BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));		\
434 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
435 } while (0)
436 
437 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
438 					    sector_t offset, unsigned *metadata_offset)
439 {
440 	__u64 ms;
441 	unsigned mo;
442 
443 	ms = area << ic->sb->log2_interleave_sectors;
444 	if (likely(ic->log2_metadata_run >= 0))
445 		ms += area << ic->log2_metadata_run;
446 	else
447 		ms += area * ic->metadata_run;
448 	ms >>= ic->log2_buffer_sectors;
449 
450 	sector_to_block(ic, offset);
451 
452 	if (likely(ic->log2_tag_size >= 0)) {
453 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
454 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
455 	} else {
456 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
457 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
458 	}
459 	*metadata_offset = mo;
460 	return ms;
461 }
462 
463 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
464 {
465 	sector_t result;
466 
467 	if (ic->meta_dev)
468 		return offset;
469 
470 	result = area << ic->sb->log2_interleave_sectors;
471 	if (likely(ic->log2_metadata_run >= 0))
472 		result += (area + 1) << ic->log2_metadata_run;
473 	else
474 		result += (area + 1) * ic->metadata_run;
475 
476 	result += (sector_t)ic->initial_sectors + offset;
477 	result += ic->start;
478 
479 	return result;
480 }
481 
482 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
483 {
484 	if (unlikely(*sec_ptr >= ic->journal_sections))
485 		*sec_ptr -= ic->journal_sections;
486 }
487 
488 static void sb_set_version(struct dm_integrity_c *ic)
489 {
490 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
491 		ic->sb->version = SB_VERSION_5;
492 	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
493 		ic->sb->version = SB_VERSION_4;
494 	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
495 		ic->sb->version = SB_VERSION_3;
496 	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
497 		ic->sb->version = SB_VERSION_2;
498 	else
499 		ic->sb->version = SB_VERSION_1;
500 }
501 
502 static int sb_mac(struct dm_integrity_c *ic, bool wr)
503 {
504 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
505 	int r;
506 	unsigned size = crypto_shash_digestsize(ic->journal_mac);
507 
508 	if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
509 		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
510 		return -EINVAL;
511 	}
512 
513 	desc->tfm = ic->journal_mac;
514 
515 	r = crypto_shash_init(desc);
516 	if (unlikely(r < 0)) {
517 		dm_integrity_io_error(ic, "crypto_shash_init", r);
518 		return r;
519 	}
520 
521 	r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
522 	if (unlikely(r < 0)) {
523 		dm_integrity_io_error(ic, "crypto_shash_update", r);
524 		return r;
525 	}
526 
527 	if (likely(wr)) {
528 		r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
529 		if (unlikely(r < 0)) {
530 			dm_integrity_io_error(ic, "crypto_shash_final", r);
531 			return r;
532 		}
533 	} else {
534 		__u8 result[HASH_MAX_DIGESTSIZE];
535 		r = crypto_shash_final(desc, result);
536 		if (unlikely(r < 0)) {
537 			dm_integrity_io_error(ic, "crypto_shash_final", r);
538 			return r;
539 		}
540 		if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
541 			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
542 			return -EILSEQ;
543 		}
544 	}
545 
546 	return 0;
547 }
548 
549 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
550 {
551 	struct dm_io_request io_req;
552 	struct dm_io_region io_loc;
553 	int r;
554 
555 	io_req.bi_op = op;
556 	io_req.bi_op_flags = op_flags;
557 	io_req.mem.type = DM_IO_KMEM;
558 	io_req.mem.ptr.addr = ic->sb;
559 	io_req.notify.fn = NULL;
560 	io_req.client = ic->io;
561 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
562 	io_loc.sector = ic->start;
563 	io_loc.count = SB_SECTORS;
564 
565 	if (op == REQ_OP_WRITE) {
566 		sb_set_version(ic);
567 		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
568 			r = sb_mac(ic, true);
569 			if (unlikely(r))
570 				return r;
571 		}
572 	}
573 
574 	r = dm_io(&io_req, 1, &io_loc, NULL);
575 	if (unlikely(r))
576 		return r;
577 
578 	if (op == REQ_OP_READ) {
579 		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
580 			r = sb_mac(ic, false);
581 			if (unlikely(r))
582 				return r;
583 		}
584 	}
585 
586 	return 0;
587 }
588 
589 #define BITMAP_OP_TEST_ALL_SET		0
590 #define BITMAP_OP_TEST_ALL_CLEAR	1
591 #define BITMAP_OP_SET			2
592 #define BITMAP_OP_CLEAR			3
593 
594 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
595 			    sector_t sector, sector_t n_sectors, int mode)
596 {
597 	unsigned long bit, end_bit, this_end_bit, page, end_page;
598 	unsigned long *data;
599 
600 	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
601 		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
602 			sector,
603 			n_sectors,
604 			ic->sb->log2_sectors_per_block,
605 			ic->log2_blocks_per_bitmap_bit,
606 			mode);
607 		BUG();
608 	}
609 
610 	if (unlikely(!n_sectors))
611 		return true;
612 
613 	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
614 	end_bit = (sector + n_sectors - 1) >>
615 		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
616 
617 	page = bit / (PAGE_SIZE * 8);
618 	bit %= PAGE_SIZE * 8;
619 
620 	end_page = end_bit / (PAGE_SIZE * 8);
621 	end_bit %= PAGE_SIZE * 8;
622 
623 repeat:
624 	if (page < end_page) {
625 		this_end_bit = PAGE_SIZE * 8 - 1;
626 	} else {
627 		this_end_bit = end_bit;
628 	}
629 
630 	data = lowmem_page_address(bitmap[page].page);
631 
632 	if (mode == BITMAP_OP_TEST_ALL_SET) {
633 		while (bit <= this_end_bit) {
634 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
635 				do {
636 					if (data[bit / BITS_PER_LONG] != -1)
637 						return false;
638 					bit += BITS_PER_LONG;
639 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
640 				continue;
641 			}
642 			if (!test_bit(bit, data))
643 				return false;
644 			bit++;
645 		}
646 	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
647 		while (bit <= this_end_bit) {
648 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
649 				do {
650 					if (data[bit / BITS_PER_LONG] != 0)
651 						return false;
652 					bit += BITS_PER_LONG;
653 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
654 				continue;
655 			}
656 			if (test_bit(bit, data))
657 				return false;
658 			bit++;
659 		}
660 	} else if (mode == BITMAP_OP_SET) {
661 		while (bit <= this_end_bit) {
662 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
663 				do {
664 					data[bit / BITS_PER_LONG] = -1;
665 					bit += BITS_PER_LONG;
666 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
667 				continue;
668 			}
669 			__set_bit(bit, data);
670 			bit++;
671 		}
672 	} else if (mode == BITMAP_OP_CLEAR) {
673 		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
674 			clear_page(data);
675 		else while (bit <= this_end_bit) {
676 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
677 				do {
678 					data[bit / BITS_PER_LONG] = 0;
679 					bit += BITS_PER_LONG;
680 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
681 				continue;
682 			}
683 			__clear_bit(bit, data);
684 			bit++;
685 		}
686 	} else {
687 		BUG();
688 	}
689 
690 	if (unlikely(page < end_page)) {
691 		bit = 0;
692 		page++;
693 		goto repeat;
694 	}
695 
696 	return true;
697 }
698 
699 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
700 {
701 	unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
702 	unsigned i;
703 
704 	for (i = 0; i < n_bitmap_pages; i++) {
705 		unsigned long *dst_data = lowmem_page_address(dst[i].page);
706 		unsigned long *src_data = lowmem_page_address(src[i].page);
707 		copy_page(dst_data, src_data);
708 	}
709 }
710 
711 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
712 {
713 	unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
714 	unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
715 
716 	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
717 	return &ic->bbs[bitmap_block];
718 }
719 
720 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
721 				 bool e, const char *function)
722 {
723 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
724 	unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
725 
726 	if (unlikely(section >= ic->journal_sections) ||
727 	    unlikely(offset >= limit)) {
728 		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
729 		       function, section, offset, ic->journal_sections, limit);
730 		BUG();
731 	}
732 #endif
733 }
734 
735 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
736 			       unsigned *pl_index, unsigned *pl_offset)
737 {
738 	unsigned sector;
739 
740 	access_journal_check(ic, section, offset, false, "page_list_location");
741 
742 	sector = section * ic->journal_section_sectors + offset;
743 
744 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
745 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
746 }
747 
748 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
749 					       unsigned section, unsigned offset, unsigned *n_sectors)
750 {
751 	unsigned pl_index, pl_offset;
752 	char *va;
753 
754 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
755 
756 	if (n_sectors)
757 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
758 
759 	va = lowmem_page_address(pl[pl_index].page);
760 
761 	return (struct journal_sector *)(va + pl_offset);
762 }
763 
764 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
765 {
766 	return access_page_list(ic, ic->journal, section, offset, NULL);
767 }
768 
769 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
770 {
771 	unsigned rel_sector, offset;
772 	struct journal_sector *js;
773 
774 	access_journal_check(ic, section, n, true, "access_journal_entry");
775 
776 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
777 	offset = n / JOURNAL_BLOCK_SECTORS;
778 
779 	js = access_journal(ic, section, rel_sector);
780 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
781 }
782 
783 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
784 {
785 	n <<= ic->sb->log2_sectors_per_block;
786 
787 	n += JOURNAL_BLOCK_SECTORS;
788 
789 	access_journal_check(ic, section, n, false, "access_journal_data");
790 
791 	return access_journal(ic, section, n);
792 }
793 
794 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
795 {
796 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
797 	int r;
798 	unsigned j, size;
799 
800 	desc->tfm = ic->journal_mac;
801 
802 	r = crypto_shash_init(desc);
803 	if (unlikely(r < 0)) {
804 		dm_integrity_io_error(ic, "crypto_shash_init", r);
805 		goto err;
806 	}
807 
808 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
809 		uint64_t section_le;
810 
811 		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
812 		if (unlikely(r < 0)) {
813 			dm_integrity_io_error(ic, "crypto_shash_update", r);
814 			goto err;
815 		}
816 
817 		section_le = cpu_to_le64(section);
818 		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof section_le);
819 		if (unlikely(r < 0)) {
820 			dm_integrity_io_error(ic, "crypto_shash_update", r);
821 			goto err;
822 		}
823 	}
824 
825 	for (j = 0; j < ic->journal_section_entries; j++) {
826 		struct journal_entry *je = access_journal_entry(ic, section, j);
827 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
828 		if (unlikely(r < 0)) {
829 			dm_integrity_io_error(ic, "crypto_shash_update", r);
830 			goto err;
831 		}
832 	}
833 
834 	size = crypto_shash_digestsize(ic->journal_mac);
835 
836 	if (likely(size <= JOURNAL_MAC_SIZE)) {
837 		r = crypto_shash_final(desc, result);
838 		if (unlikely(r < 0)) {
839 			dm_integrity_io_error(ic, "crypto_shash_final", r);
840 			goto err;
841 		}
842 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
843 	} else {
844 		__u8 digest[HASH_MAX_DIGESTSIZE];
845 
846 		if (WARN_ON(size > sizeof(digest))) {
847 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
848 			goto err;
849 		}
850 		r = crypto_shash_final(desc, digest);
851 		if (unlikely(r < 0)) {
852 			dm_integrity_io_error(ic, "crypto_shash_final", r);
853 			goto err;
854 		}
855 		memcpy(result, digest, JOURNAL_MAC_SIZE);
856 	}
857 
858 	return;
859 err:
860 	memset(result, 0, JOURNAL_MAC_SIZE);
861 }
862 
863 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
864 {
865 	__u8 result[JOURNAL_MAC_SIZE];
866 	unsigned j;
867 
868 	if (!ic->journal_mac)
869 		return;
870 
871 	section_mac(ic, section, result);
872 
873 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
874 		struct journal_sector *js = access_journal(ic, section, j);
875 
876 		if (likely(wr))
877 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
878 		else {
879 			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
880 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
881 		}
882 	}
883 }
884 
885 static void complete_journal_op(void *context)
886 {
887 	struct journal_completion *comp = context;
888 	BUG_ON(!atomic_read(&comp->in_flight));
889 	if (likely(atomic_dec_and_test(&comp->in_flight)))
890 		complete(&comp->comp);
891 }
892 
893 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
894 			unsigned n_sections, struct journal_completion *comp)
895 {
896 	struct async_submit_ctl submit;
897 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
898 	unsigned pl_index, pl_offset, section_index;
899 	struct page_list *source_pl, *target_pl;
900 
901 	if (likely(encrypt)) {
902 		source_pl = ic->journal;
903 		target_pl = ic->journal_io;
904 	} else {
905 		source_pl = ic->journal_io;
906 		target_pl = ic->journal;
907 	}
908 
909 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
910 
911 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
912 
913 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
914 
915 	section_index = pl_index;
916 
917 	do {
918 		size_t this_step;
919 		struct page *src_pages[2];
920 		struct page *dst_page;
921 
922 		while (unlikely(pl_index == section_index)) {
923 			unsigned dummy;
924 			if (likely(encrypt))
925 				rw_section_mac(ic, section, true);
926 			section++;
927 			n_sections--;
928 			if (!n_sections)
929 				break;
930 			page_list_location(ic, section, 0, &section_index, &dummy);
931 		}
932 
933 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
934 		dst_page = target_pl[pl_index].page;
935 		src_pages[0] = source_pl[pl_index].page;
936 		src_pages[1] = ic->journal_xor[pl_index].page;
937 
938 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
939 
940 		pl_index++;
941 		pl_offset = 0;
942 		n_bytes -= this_step;
943 	} while (n_bytes);
944 
945 	BUG_ON(n_sections);
946 
947 	async_tx_issue_pending_all();
948 }
949 
950 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
951 {
952 	struct journal_completion *comp = req->data;
953 	if (unlikely(err)) {
954 		if (likely(err == -EINPROGRESS)) {
955 			complete(&comp->ic->crypto_backoff);
956 			return;
957 		}
958 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
959 	}
960 	complete_journal_op(comp);
961 }
962 
963 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
964 {
965 	int r;
966 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
967 				      complete_journal_encrypt, comp);
968 	if (likely(encrypt))
969 		r = crypto_skcipher_encrypt(req);
970 	else
971 		r = crypto_skcipher_decrypt(req);
972 	if (likely(!r))
973 		return false;
974 	if (likely(r == -EINPROGRESS))
975 		return true;
976 	if (likely(r == -EBUSY)) {
977 		wait_for_completion(&comp->ic->crypto_backoff);
978 		reinit_completion(&comp->ic->crypto_backoff);
979 		return true;
980 	}
981 	dm_integrity_io_error(comp->ic, "encrypt", r);
982 	return false;
983 }
984 
985 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
986 			  unsigned n_sections, struct journal_completion *comp)
987 {
988 	struct scatterlist **source_sg;
989 	struct scatterlist **target_sg;
990 
991 	atomic_add(2, &comp->in_flight);
992 
993 	if (likely(encrypt)) {
994 		source_sg = ic->journal_scatterlist;
995 		target_sg = ic->journal_io_scatterlist;
996 	} else {
997 		source_sg = ic->journal_io_scatterlist;
998 		target_sg = ic->journal_scatterlist;
999 	}
1000 
1001 	do {
1002 		struct skcipher_request *req;
1003 		unsigned ivsize;
1004 		char *iv;
1005 
1006 		if (likely(encrypt))
1007 			rw_section_mac(ic, section, true);
1008 
1009 		req = ic->sk_requests[section];
1010 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1011 		iv = req->iv;
1012 
1013 		memcpy(iv, iv + ivsize, ivsize);
1014 
1015 		req->src = source_sg[section];
1016 		req->dst = target_sg[section];
1017 
1018 		if (unlikely(do_crypt(encrypt, req, comp)))
1019 			atomic_inc(&comp->in_flight);
1020 
1021 		section++;
1022 		n_sections--;
1023 	} while (n_sections);
1024 
1025 	atomic_dec(&comp->in_flight);
1026 	complete_journal_op(comp);
1027 }
1028 
1029 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
1030 			    unsigned n_sections, struct journal_completion *comp)
1031 {
1032 	if (ic->journal_xor)
1033 		return xor_journal(ic, encrypt, section, n_sections, comp);
1034 	else
1035 		return crypt_journal(ic, encrypt, section, n_sections, comp);
1036 }
1037 
1038 static void complete_journal_io(unsigned long error, void *context)
1039 {
1040 	struct journal_completion *comp = context;
1041 	if (unlikely(error != 0))
1042 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1043 	complete_journal_op(comp);
1044 }
1045 
1046 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
1047 			       unsigned sector, unsigned n_sectors, struct journal_completion *comp)
1048 {
1049 	struct dm_io_request io_req;
1050 	struct dm_io_region io_loc;
1051 	unsigned pl_index, pl_offset;
1052 	int r;
1053 
1054 	if (unlikely(dm_integrity_failed(ic))) {
1055 		if (comp)
1056 			complete_journal_io(-1UL, comp);
1057 		return;
1058 	}
1059 
1060 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1061 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1062 
1063 	io_req.bi_op = op;
1064 	io_req.bi_op_flags = op_flags;
1065 	io_req.mem.type = DM_IO_PAGE_LIST;
1066 	if (ic->journal_io)
1067 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1068 	else
1069 		io_req.mem.ptr.pl = &ic->journal[pl_index];
1070 	io_req.mem.offset = pl_offset;
1071 	if (likely(comp != NULL)) {
1072 		io_req.notify.fn = complete_journal_io;
1073 		io_req.notify.context = comp;
1074 	} else {
1075 		io_req.notify.fn = NULL;
1076 	}
1077 	io_req.client = ic->io;
1078 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1079 	io_loc.sector = ic->start + SB_SECTORS + sector;
1080 	io_loc.count = n_sectors;
1081 
1082 	r = dm_io(&io_req, 1, &io_loc, NULL);
1083 	if (unlikely(r)) {
1084 		dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
1085 		if (comp) {
1086 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1087 			complete_journal_io(-1UL, comp);
1088 		}
1089 	}
1090 }
1091 
1092 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
1093 		       unsigned n_sections, struct journal_completion *comp)
1094 {
1095 	unsigned sector, n_sectors;
1096 
1097 	sector = section * ic->journal_section_sectors;
1098 	n_sectors = n_sections * ic->journal_section_sectors;
1099 
1100 	rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
1101 }
1102 
1103 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
1104 {
1105 	struct journal_completion io_comp;
1106 	struct journal_completion crypt_comp_1;
1107 	struct journal_completion crypt_comp_2;
1108 	unsigned i;
1109 
1110 	io_comp.ic = ic;
1111 	init_completion(&io_comp.comp);
1112 
1113 	if (commit_start + commit_sections <= ic->journal_sections) {
1114 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1115 		if (ic->journal_io) {
1116 			crypt_comp_1.ic = ic;
1117 			init_completion(&crypt_comp_1.comp);
1118 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1119 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1120 			wait_for_completion_io(&crypt_comp_1.comp);
1121 		} else {
1122 			for (i = 0; i < commit_sections; i++)
1123 				rw_section_mac(ic, commit_start + i, true);
1124 		}
1125 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1126 			   commit_sections, &io_comp);
1127 	} else {
1128 		unsigned to_end;
1129 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1130 		to_end = ic->journal_sections - commit_start;
1131 		if (ic->journal_io) {
1132 			crypt_comp_1.ic = ic;
1133 			init_completion(&crypt_comp_1.comp);
1134 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1135 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1136 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1137 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1138 				reinit_completion(&crypt_comp_1.comp);
1139 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1140 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1141 				wait_for_completion_io(&crypt_comp_1.comp);
1142 			} else {
1143 				crypt_comp_2.ic = ic;
1144 				init_completion(&crypt_comp_2.comp);
1145 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1146 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1147 				wait_for_completion_io(&crypt_comp_1.comp);
1148 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1149 				wait_for_completion_io(&crypt_comp_2.comp);
1150 			}
1151 		} else {
1152 			for (i = 0; i < to_end; i++)
1153 				rw_section_mac(ic, commit_start + i, true);
1154 			rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1155 			for (i = 0; i < commit_sections - to_end; i++)
1156 				rw_section_mac(ic, i, true);
1157 		}
1158 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1159 	}
1160 
1161 	wait_for_completion_io(&io_comp.comp);
1162 }
1163 
1164 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1165 			      unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1166 {
1167 	struct dm_io_request io_req;
1168 	struct dm_io_region io_loc;
1169 	int r;
1170 	unsigned sector, pl_index, pl_offset;
1171 
1172 	BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1173 
1174 	if (unlikely(dm_integrity_failed(ic))) {
1175 		fn(-1UL, data);
1176 		return;
1177 	}
1178 
1179 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1180 
1181 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1182 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1183 
1184 	io_req.bi_op = REQ_OP_WRITE;
1185 	io_req.bi_op_flags = 0;
1186 	io_req.mem.type = DM_IO_PAGE_LIST;
1187 	io_req.mem.ptr.pl = &ic->journal[pl_index];
1188 	io_req.mem.offset = pl_offset;
1189 	io_req.notify.fn = fn;
1190 	io_req.notify.context = data;
1191 	io_req.client = ic->io;
1192 	io_loc.bdev = ic->dev->bdev;
1193 	io_loc.sector = target;
1194 	io_loc.count = n_sectors;
1195 
1196 	r = dm_io(&io_req, 1, &io_loc, NULL);
1197 	if (unlikely(r)) {
1198 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1199 		fn(-1UL, data);
1200 	}
1201 }
1202 
1203 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1204 {
1205 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1206 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1207 }
1208 
1209 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1210 {
1211 	struct rb_node **n = &ic->in_progress.rb_node;
1212 	struct rb_node *parent;
1213 
1214 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1215 
1216 	if (likely(check_waiting)) {
1217 		struct dm_integrity_range *range;
1218 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1219 			if (unlikely(ranges_overlap(range, new_range)))
1220 				return false;
1221 		}
1222 	}
1223 
1224 	parent = NULL;
1225 
1226 	while (*n) {
1227 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1228 
1229 		parent = *n;
1230 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1231 			n = &range->node.rb_left;
1232 		} else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1233 			n = &range->node.rb_right;
1234 		} else {
1235 			return false;
1236 		}
1237 	}
1238 
1239 	rb_link_node(&new_range->node, parent, n);
1240 	rb_insert_color(&new_range->node, &ic->in_progress);
1241 
1242 	return true;
1243 }
1244 
1245 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1246 {
1247 	rb_erase(&range->node, &ic->in_progress);
1248 	while (unlikely(!list_empty(&ic->wait_list))) {
1249 		struct dm_integrity_range *last_range =
1250 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1251 		struct task_struct *last_range_task;
1252 		last_range_task = last_range->task;
1253 		list_del(&last_range->wait_entry);
1254 		if (!add_new_range(ic, last_range, false)) {
1255 			last_range->task = last_range_task;
1256 			list_add(&last_range->wait_entry, &ic->wait_list);
1257 			break;
1258 		}
1259 		last_range->waiting = false;
1260 		wake_up_process(last_range_task);
1261 	}
1262 }
1263 
1264 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1265 {
1266 	unsigned long flags;
1267 
1268 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1269 	remove_range_unlocked(ic, range);
1270 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1271 }
1272 
1273 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1274 {
1275 	new_range->waiting = true;
1276 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1277 	new_range->task = current;
1278 	do {
1279 		__set_current_state(TASK_UNINTERRUPTIBLE);
1280 		spin_unlock_irq(&ic->endio_wait.lock);
1281 		io_schedule();
1282 		spin_lock_irq(&ic->endio_wait.lock);
1283 	} while (unlikely(new_range->waiting));
1284 }
1285 
1286 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1287 {
1288 	if (unlikely(!add_new_range(ic, new_range, true)))
1289 		wait_and_add_new_range(ic, new_range);
1290 }
1291 
1292 static void init_journal_node(struct journal_node *node)
1293 {
1294 	RB_CLEAR_NODE(&node->node);
1295 	node->sector = (sector_t)-1;
1296 }
1297 
1298 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1299 {
1300 	struct rb_node **link;
1301 	struct rb_node *parent;
1302 
1303 	node->sector = sector;
1304 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1305 
1306 	link = &ic->journal_tree_root.rb_node;
1307 	parent = NULL;
1308 
1309 	while (*link) {
1310 		struct journal_node *j;
1311 		parent = *link;
1312 		j = container_of(parent, struct journal_node, node);
1313 		if (sector < j->sector)
1314 			link = &j->node.rb_left;
1315 		else
1316 			link = &j->node.rb_right;
1317 	}
1318 
1319 	rb_link_node(&node->node, parent, link);
1320 	rb_insert_color(&node->node, &ic->journal_tree_root);
1321 }
1322 
1323 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1324 {
1325 	BUG_ON(RB_EMPTY_NODE(&node->node));
1326 	rb_erase(&node->node, &ic->journal_tree_root);
1327 	init_journal_node(node);
1328 }
1329 
1330 #define NOT_FOUND	(-1U)
1331 
1332 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1333 {
1334 	struct rb_node *n = ic->journal_tree_root.rb_node;
1335 	unsigned found = NOT_FOUND;
1336 	*next_sector = (sector_t)-1;
1337 	while (n) {
1338 		struct journal_node *j = container_of(n, struct journal_node, node);
1339 		if (sector == j->sector) {
1340 			found = j - ic->journal_tree;
1341 		}
1342 		if (sector < j->sector) {
1343 			*next_sector = j->sector;
1344 			n = j->node.rb_left;
1345 		} else {
1346 			n = j->node.rb_right;
1347 		}
1348 	}
1349 
1350 	return found;
1351 }
1352 
1353 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1354 {
1355 	struct journal_node *node, *next_node;
1356 	struct rb_node *next;
1357 
1358 	if (unlikely(pos >= ic->journal_entries))
1359 		return false;
1360 	node = &ic->journal_tree[pos];
1361 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1362 		return false;
1363 	if (unlikely(node->sector != sector))
1364 		return false;
1365 
1366 	next = rb_next(&node->node);
1367 	if (unlikely(!next))
1368 		return true;
1369 
1370 	next_node = container_of(next, struct journal_node, node);
1371 	return next_node->sector != sector;
1372 }
1373 
1374 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1375 {
1376 	struct rb_node *next;
1377 	struct journal_node *next_node;
1378 	unsigned next_section;
1379 
1380 	BUG_ON(RB_EMPTY_NODE(&node->node));
1381 
1382 	next = rb_next(&node->node);
1383 	if (unlikely(!next))
1384 		return false;
1385 
1386 	next_node = container_of(next, struct journal_node, node);
1387 
1388 	if (next_node->sector != node->sector)
1389 		return false;
1390 
1391 	next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1392 	if (next_section >= ic->committed_section &&
1393 	    next_section < ic->committed_section + ic->n_committed_sections)
1394 		return true;
1395 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1396 		return true;
1397 
1398 	return false;
1399 }
1400 
1401 #define TAG_READ	0
1402 #define TAG_WRITE	1
1403 #define TAG_CMP		2
1404 
1405 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1406 			       unsigned *metadata_offset, unsigned total_size, int op)
1407 {
1408 #define MAY_BE_FILLER		1
1409 #define MAY_BE_HASH		2
1410 	unsigned hash_offset = 0;
1411 	unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1412 
1413 	do {
1414 		unsigned char *data, *dp;
1415 		struct dm_buffer *b;
1416 		unsigned to_copy;
1417 		int r;
1418 
1419 		r = dm_integrity_failed(ic);
1420 		if (unlikely(r))
1421 			return r;
1422 
1423 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1424 		if (IS_ERR(data))
1425 			return PTR_ERR(data);
1426 
1427 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1428 		dp = data + *metadata_offset;
1429 		if (op == TAG_READ) {
1430 			memcpy(tag, dp, to_copy);
1431 		} else if (op == TAG_WRITE) {
1432 			if (memcmp(dp, tag, to_copy)) {
1433 				memcpy(dp, tag, to_copy);
1434 				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1435 			}
1436 		} else {
1437 			/* e.g.: op == TAG_CMP */
1438 
1439 			if (likely(is_power_of_2(ic->tag_size))) {
1440 				if (unlikely(memcmp(dp, tag, to_copy)))
1441 					if (unlikely(!ic->discard) ||
1442 					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1443 						goto thorough_test;
1444 				}
1445 			} else {
1446 				unsigned i, ts;
1447 thorough_test:
1448 				ts = total_size;
1449 
1450 				for (i = 0; i < to_copy; i++, ts--) {
1451 					if (unlikely(dp[i] != tag[i]))
1452 						may_be &= ~MAY_BE_HASH;
1453 					if (likely(dp[i] != DISCARD_FILLER))
1454 						may_be &= ~MAY_BE_FILLER;
1455 					hash_offset++;
1456 					if (unlikely(hash_offset == ic->tag_size)) {
1457 						if (unlikely(!may_be)) {
1458 							dm_bufio_release(b);
1459 							return ts;
1460 						}
1461 						hash_offset = 0;
1462 						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1463 					}
1464 				}
1465 			}
1466 		}
1467 		dm_bufio_release(b);
1468 
1469 		tag += to_copy;
1470 		*metadata_offset += to_copy;
1471 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1472 			(*metadata_block)++;
1473 			*metadata_offset = 0;
1474 		}
1475 
1476 		if (unlikely(!is_power_of_2(ic->tag_size))) {
1477 			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1478 		}
1479 
1480 		total_size -= to_copy;
1481 	} while (unlikely(total_size));
1482 
1483 	return 0;
1484 #undef MAY_BE_FILLER
1485 #undef MAY_BE_HASH
1486 }
1487 
1488 struct flush_request {
1489 	struct dm_io_request io_req;
1490 	struct dm_io_region io_reg;
1491 	struct dm_integrity_c *ic;
1492 	struct completion comp;
1493 };
1494 
1495 static void flush_notify(unsigned long error, void *fr_)
1496 {
1497 	struct flush_request *fr = fr_;
1498 	if (unlikely(error != 0))
1499 		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1500 	complete(&fr->comp);
1501 }
1502 
1503 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1504 {
1505 	int r;
1506 
1507 	struct flush_request fr;
1508 
1509 	if (!ic->meta_dev)
1510 		flush_data = false;
1511 	if (flush_data) {
1512 		fr.io_req.bi_op = REQ_OP_WRITE,
1513 		fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1514 		fr.io_req.mem.type = DM_IO_KMEM,
1515 		fr.io_req.mem.ptr.addr = NULL,
1516 		fr.io_req.notify.fn = flush_notify,
1517 		fr.io_req.notify.context = &fr;
1518 		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1519 		fr.io_reg.bdev = ic->dev->bdev,
1520 		fr.io_reg.sector = 0,
1521 		fr.io_reg.count = 0,
1522 		fr.ic = ic;
1523 		init_completion(&fr.comp);
1524 		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1525 		BUG_ON(r);
1526 	}
1527 
1528 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1529 	if (unlikely(r))
1530 		dm_integrity_io_error(ic, "writing tags", r);
1531 
1532 	if (flush_data)
1533 		wait_for_completion(&fr.comp);
1534 }
1535 
1536 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1537 {
1538 	DECLARE_WAITQUEUE(wait, current);
1539 	__add_wait_queue(&ic->endio_wait, &wait);
1540 	__set_current_state(TASK_UNINTERRUPTIBLE);
1541 	spin_unlock_irq(&ic->endio_wait.lock);
1542 	io_schedule();
1543 	spin_lock_irq(&ic->endio_wait.lock);
1544 	__remove_wait_queue(&ic->endio_wait, &wait);
1545 }
1546 
1547 static void autocommit_fn(struct timer_list *t)
1548 {
1549 	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1550 
1551 	if (likely(!dm_integrity_failed(ic)))
1552 		queue_work(ic->commit_wq, &ic->commit_work);
1553 }
1554 
1555 static void schedule_autocommit(struct dm_integrity_c *ic)
1556 {
1557 	if (!timer_pending(&ic->autocommit_timer))
1558 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1559 }
1560 
1561 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1562 {
1563 	struct bio *bio;
1564 	unsigned long flags;
1565 
1566 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1567 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1568 	bio_list_add(&ic->flush_bio_list, bio);
1569 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1570 
1571 	queue_work(ic->commit_wq, &ic->commit_work);
1572 }
1573 
1574 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1575 {
1576 	int r = dm_integrity_failed(ic);
1577 	if (unlikely(r) && !bio->bi_status)
1578 		bio->bi_status = errno_to_blk_status(r);
1579 	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1580 		unsigned long flags;
1581 		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1582 		bio_list_add(&ic->synchronous_bios, bio);
1583 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1584 		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1585 		return;
1586 	}
1587 	bio_endio(bio);
1588 }
1589 
1590 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1591 {
1592 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1593 
1594 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1595 		submit_flush_bio(ic, dio);
1596 	else
1597 		do_endio(ic, bio);
1598 }
1599 
1600 static void dec_in_flight(struct dm_integrity_io *dio)
1601 {
1602 	if (atomic_dec_and_test(&dio->in_flight)) {
1603 		struct dm_integrity_c *ic = dio->ic;
1604 		struct bio *bio;
1605 
1606 		remove_range(ic, &dio->range);
1607 
1608 		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1609 			schedule_autocommit(ic);
1610 
1611 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1612 
1613 		if (unlikely(dio->bi_status) && !bio->bi_status)
1614 			bio->bi_status = dio->bi_status;
1615 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1616 			dio->range.logical_sector += dio->range.n_sectors;
1617 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1618 			INIT_WORK(&dio->work, integrity_bio_wait);
1619 			queue_work(ic->offload_wq, &dio->work);
1620 			return;
1621 		}
1622 		do_endio_flush(ic, dio);
1623 	}
1624 }
1625 
1626 static void integrity_end_io(struct bio *bio)
1627 {
1628 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1629 
1630 	dm_bio_restore(&dio->bio_details, bio);
1631 	if (bio->bi_integrity)
1632 		bio->bi_opf |= REQ_INTEGRITY;
1633 
1634 	if (dio->completion)
1635 		complete(dio->completion);
1636 
1637 	dec_in_flight(dio);
1638 }
1639 
1640 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1641 				      const char *data, char *result)
1642 {
1643 	__u64 sector_le = cpu_to_le64(sector);
1644 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1645 	int r;
1646 	unsigned digest_size;
1647 
1648 	req->tfm = ic->internal_hash;
1649 
1650 	r = crypto_shash_init(req);
1651 	if (unlikely(r < 0)) {
1652 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1653 		goto failed;
1654 	}
1655 
1656 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1657 		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1658 		if (unlikely(r < 0)) {
1659 			dm_integrity_io_error(ic, "crypto_shash_update", r);
1660 			goto failed;
1661 		}
1662 	}
1663 
1664 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1665 	if (unlikely(r < 0)) {
1666 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1667 		goto failed;
1668 	}
1669 
1670 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1671 	if (unlikely(r < 0)) {
1672 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1673 		goto failed;
1674 	}
1675 
1676 	r = crypto_shash_final(req, result);
1677 	if (unlikely(r < 0)) {
1678 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1679 		goto failed;
1680 	}
1681 
1682 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1683 	if (unlikely(digest_size < ic->tag_size))
1684 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1685 
1686 	return;
1687 
1688 failed:
1689 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1690 	get_random_bytes(result, ic->tag_size);
1691 }
1692 
1693 static void integrity_metadata(struct work_struct *w)
1694 {
1695 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1696 	struct dm_integrity_c *ic = dio->ic;
1697 
1698 	int r;
1699 
1700 	if (ic->internal_hash) {
1701 		struct bvec_iter iter;
1702 		struct bio_vec bv;
1703 		unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1704 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1705 		char *checksums;
1706 		unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1707 		char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1708 		sector_t sector;
1709 		unsigned sectors_to_process;
1710 
1711 		if (unlikely(ic->mode == 'R'))
1712 			goto skip_io;
1713 
1714 		if (likely(dio->op != REQ_OP_DISCARD))
1715 			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1716 					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1717 		else
1718 			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1719 		if (!checksums) {
1720 			checksums = checksums_onstack;
1721 			if (WARN_ON(extra_space &&
1722 				    digest_size > sizeof(checksums_onstack))) {
1723 				r = -EINVAL;
1724 				goto error;
1725 			}
1726 		}
1727 
1728 		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1729 			sector_t bi_sector = dio->bio_details.bi_iter.bi_sector;
1730 			unsigned bi_size = dio->bio_details.bi_iter.bi_size;
1731 			unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1732 			unsigned max_blocks = max_size / ic->tag_size;
1733 			memset(checksums, DISCARD_FILLER, max_size);
1734 
1735 			while (bi_size) {
1736 				unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1737 				this_step_blocks = min(this_step_blocks, max_blocks);
1738 				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1739 							this_step_blocks * ic->tag_size, TAG_WRITE);
1740 				if (unlikely(r)) {
1741 					if (likely(checksums != checksums_onstack))
1742 						kfree(checksums);
1743 					goto error;
1744 				}
1745 
1746 				/*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) {
1747 					printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size);
1748 					printk("BUGG: this_step_blocks: %u\n", this_step_blocks);
1749 					BUG();
1750 				}*/
1751 				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1752 				bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block;
1753 			}
1754 
1755 			if (likely(checksums != checksums_onstack))
1756 				kfree(checksums);
1757 			goto skip_io;
1758 		}
1759 
1760 		sector = dio->range.logical_sector;
1761 		sectors_to_process = dio->range.n_sectors;
1762 
1763 		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1764 			unsigned pos;
1765 			char *mem, *checksums_ptr;
1766 
1767 again:
1768 			mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1769 			pos = 0;
1770 			checksums_ptr = checksums;
1771 			do {
1772 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1773 				checksums_ptr += ic->tag_size;
1774 				sectors_to_process -= ic->sectors_per_block;
1775 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1776 				sector += ic->sectors_per_block;
1777 			} while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1778 			kunmap_atomic(mem);
1779 
1780 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1781 						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1782 			if (unlikely(r)) {
1783 				if (r > 0) {
1784 					char b[BDEVNAME_SIZE];
1785 					DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", bio_devname(bio, b),
1786 						    (sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1787 					r = -EILSEQ;
1788 					atomic64_inc(&ic->number_of_mismatches);
1789 				}
1790 				if (likely(checksums != checksums_onstack))
1791 					kfree(checksums);
1792 				goto error;
1793 			}
1794 
1795 			if (!sectors_to_process)
1796 				break;
1797 
1798 			if (unlikely(pos < bv.bv_len)) {
1799 				bv.bv_offset += pos;
1800 				bv.bv_len -= pos;
1801 				goto again;
1802 			}
1803 		}
1804 
1805 		if (likely(checksums != checksums_onstack))
1806 			kfree(checksums);
1807 	} else {
1808 		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1809 
1810 		if (bip) {
1811 			struct bio_vec biv;
1812 			struct bvec_iter iter;
1813 			unsigned data_to_process = dio->range.n_sectors;
1814 			sector_to_block(ic, data_to_process);
1815 			data_to_process *= ic->tag_size;
1816 
1817 			bip_for_each_vec(biv, bip, iter) {
1818 				unsigned char *tag;
1819 				unsigned this_len;
1820 
1821 				BUG_ON(PageHighMem(biv.bv_page));
1822 				tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1823 				this_len = min(biv.bv_len, data_to_process);
1824 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1825 							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1826 				if (unlikely(r))
1827 					goto error;
1828 				data_to_process -= this_len;
1829 				if (!data_to_process)
1830 					break;
1831 			}
1832 		}
1833 	}
1834 skip_io:
1835 	dec_in_flight(dio);
1836 	return;
1837 error:
1838 	dio->bi_status = errno_to_blk_status(r);
1839 	dec_in_flight(dio);
1840 }
1841 
1842 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1843 {
1844 	struct dm_integrity_c *ic = ti->private;
1845 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1846 	struct bio_integrity_payload *bip;
1847 
1848 	sector_t area, offset;
1849 
1850 	dio->ic = ic;
1851 	dio->bi_status = 0;
1852 	dio->op = bio_op(bio);
1853 
1854 	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1855 		if (ti->max_io_len) {
1856 			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1857 			unsigned log2_max_io_len = __fls(ti->max_io_len);
1858 			sector_t start_boundary = sec >> log2_max_io_len;
1859 			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1860 			if (start_boundary < end_boundary) {
1861 				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1862 				dm_accept_partial_bio(bio, len);
1863 			}
1864 		}
1865 	}
1866 
1867 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1868 		submit_flush_bio(ic, dio);
1869 		return DM_MAPIO_SUBMITTED;
1870 	}
1871 
1872 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1873 	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1874 	if (unlikely(dio->fua)) {
1875 		/*
1876 		 * Don't pass down the FUA flag because we have to flush
1877 		 * disk cache anyway.
1878 		 */
1879 		bio->bi_opf &= ~REQ_FUA;
1880 	}
1881 	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1882 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1883 		      dio->range.logical_sector, bio_sectors(bio),
1884 		      ic->provided_data_sectors);
1885 		return DM_MAPIO_KILL;
1886 	}
1887 	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1888 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1889 		      ic->sectors_per_block,
1890 		      dio->range.logical_sector, bio_sectors(bio));
1891 		return DM_MAPIO_KILL;
1892 	}
1893 
1894 	if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1895 		struct bvec_iter iter;
1896 		struct bio_vec bv;
1897 		bio_for_each_segment(bv, bio, iter) {
1898 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1899 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1900 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1901 				return DM_MAPIO_KILL;
1902 			}
1903 		}
1904 	}
1905 
1906 	bip = bio_integrity(bio);
1907 	if (!ic->internal_hash) {
1908 		if (bip) {
1909 			unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1910 			if (ic->log2_tag_size >= 0)
1911 				wanted_tag_size <<= ic->log2_tag_size;
1912 			else
1913 				wanted_tag_size *= ic->tag_size;
1914 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1915 				DMERR("Invalid integrity data size %u, expected %u",
1916 				      bip->bip_iter.bi_size, wanted_tag_size);
1917 				return DM_MAPIO_KILL;
1918 			}
1919 		}
1920 	} else {
1921 		if (unlikely(bip != NULL)) {
1922 			DMERR("Unexpected integrity data when using internal hash");
1923 			return DM_MAPIO_KILL;
1924 		}
1925 	}
1926 
1927 	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1928 		return DM_MAPIO_KILL;
1929 
1930 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1931 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1932 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1933 
1934 	dm_integrity_map_continue(dio, true);
1935 	return DM_MAPIO_SUBMITTED;
1936 }
1937 
1938 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1939 				 unsigned journal_section, unsigned journal_entry)
1940 {
1941 	struct dm_integrity_c *ic = dio->ic;
1942 	sector_t logical_sector;
1943 	unsigned n_sectors;
1944 
1945 	logical_sector = dio->range.logical_sector;
1946 	n_sectors = dio->range.n_sectors;
1947 	do {
1948 		struct bio_vec bv = bio_iovec(bio);
1949 		char *mem;
1950 
1951 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1952 			bv.bv_len = n_sectors << SECTOR_SHIFT;
1953 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1954 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1955 retry_kmap:
1956 		mem = kmap_atomic(bv.bv_page);
1957 		if (likely(dio->op == REQ_OP_WRITE))
1958 			flush_dcache_page(bv.bv_page);
1959 
1960 		do {
1961 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1962 
1963 			if (unlikely(dio->op == REQ_OP_READ)) {
1964 				struct journal_sector *js;
1965 				char *mem_ptr;
1966 				unsigned s;
1967 
1968 				if (unlikely(journal_entry_is_inprogress(je))) {
1969 					flush_dcache_page(bv.bv_page);
1970 					kunmap_atomic(mem);
1971 
1972 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1973 					goto retry_kmap;
1974 				}
1975 				smp_rmb();
1976 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
1977 				js = access_journal_data(ic, journal_section, journal_entry);
1978 				mem_ptr = mem + bv.bv_offset;
1979 				s = 0;
1980 				do {
1981 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1982 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1983 					js++;
1984 					mem_ptr += 1 << SECTOR_SHIFT;
1985 				} while (++s < ic->sectors_per_block);
1986 #ifdef INTERNAL_VERIFY
1987 				if (ic->internal_hash) {
1988 					char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1989 
1990 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1991 					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1992 						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1993 							    logical_sector);
1994 					}
1995 				}
1996 #endif
1997 			}
1998 
1999 			if (!ic->internal_hash) {
2000 				struct bio_integrity_payload *bip = bio_integrity(bio);
2001 				unsigned tag_todo = ic->tag_size;
2002 				char *tag_ptr = journal_entry_tag(ic, je);
2003 
2004 				if (bip) do {
2005 					struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2006 					unsigned tag_now = min(biv.bv_len, tag_todo);
2007 					char *tag_addr;
2008 					BUG_ON(PageHighMem(biv.bv_page));
2009 					tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
2010 					if (likely(dio->op == REQ_OP_WRITE))
2011 						memcpy(tag_ptr, tag_addr, tag_now);
2012 					else
2013 						memcpy(tag_addr, tag_ptr, tag_now);
2014 					bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2015 					tag_ptr += tag_now;
2016 					tag_todo -= tag_now;
2017 				} while (unlikely(tag_todo)); else {
2018 					if (likely(dio->op == REQ_OP_WRITE))
2019 						memset(tag_ptr, 0, tag_todo);
2020 				}
2021 			}
2022 
2023 			if (likely(dio->op == REQ_OP_WRITE)) {
2024 				struct journal_sector *js;
2025 				unsigned s;
2026 
2027 				js = access_journal_data(ic, journal_section, journal_entry);
2028 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2029 
2030 				s = 0;
2031 				do {
2032 					je->last_bytes[s] = js[s].commit_id;
2033 				} while (++s < ic->sectors_per_block);
2034 
2035 				if (ic->internal_hash) {
2036 					unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
2037 					if (unlikely(digest_size > ic->tag_size)) {
2038 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2039 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2040 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2041 					} else
2042 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2043 				}
2044 
2045 				journal_entry_set_sector(je, logical_sector);
2046 			}
2047 			logical_sector += ic->sectors_per_block;
2048 
2049 			journal_entry++;
2050 			if (unlikely(journal_entry == ic->journal_section_entries)) {
2051 				journal_entry = 0;
2052 				journal_section++;
2053 				wraparound_section(ic, &journal_section);
2054 			}
2055 
2056 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2057 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2058 
2059 		if (unlikely(dio->op == REQ_OP_READ))
2060 			flush_dcache_page(bv.bv_page);
2061 		kunmap_atomic(mem);
2062 	} while (n_sectors);
2063 
2064 	if (likely(dio->op == REQ_OP_WRITE)) {
2065 		smp_mb();
2066 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2067 			wake_up(&ic->copy_to_journal_wait);
2068 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
2069 			queue_work(ic->commit_wq, &ic->commit_work);
2070 		} else {
2071 			schedule_autocommit(ic);
2072 		}
2073 	} else {
2074 		remove_range(ic, &dio->range);
2075 	}
2076 
2077 	if (unlikely(bio->bi_iter.bi_size)) {
2078 		sector_t area, offset;
2079 
2080 		dio->range.logical_sector = logical_sector;
2081 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2082 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2083 		return true;
2084 	}
2085 
2086 	return false;
2087 }
2088 
2089 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2090 {
2091 	struct dm_integrity_c *ic = dio->ic;
2092 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2093 	unsigned journal_section, journal_entry;
2094 	unsigned journal_read_pos;
2095 	struct completion read_comp;
2096 	bool discard_retried = false;
2097 	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2098 	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2099 		need_sync_io = true;
2100 
2101 	if (need_sync_io && from_map) {
2102 		INIT_WORK(&dio->work, integrity_bio_wait);
2103 		queue_work(ic->offload_wq, &dio->work);
2104 		return;
2105 	}
2106 
2107 lock_retry:
2108 	spin_lock_irq(&ic->endio_wait.lock);
2109 retry:
2110 	if (unlikely(dm_integrity_failed(ic))) {
2111 		spin_unlock_irq(&ic->endio_wait.lock);
2112 		do_endio(ic, bio);
2113 		return;
2114 	}
2115 	dio->range.n_sectors = bio_sectors(bio);
2116 	journal_read_pos = NOT_FOUND;
2117 	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2118 		if (dio->op == REQ_OP_WRITE) {
2119 			unsigned next_entry, i, pos;
2120 			unsigned ws, we, range_sectors;
2121 
2122 			dio->range.n_sectors = min(dio->range.n_sectors,
2123 						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2124 			if (unlikely(!dio->range.n_sectors)) {
2125 				if (from_map)
2126 					goto offload_to_thread;
2127 				sleep_on_endio_wait(ic);
2128 				goto retry;
2129 			}
2130 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2131 			ic->free_sectors -= range_sectors;
2132 			journal_section = ic->free_section;
2133 			journal_entry = ic->free_section_entry;
2134 
2135 			next_entry = ic->free_section_entry + range_sectors;
2136 			ic->free_section_entry = next_entry % ic->journal_section_entries;
2137 			ic->free_section += next_entry / ic->journal_section_entries;
2138 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2139 			wraparound_section(ic, &ic->free_section);
2140 
2141 			pos = journal_section * ic->journal_section_entries + journal_entry;
2142 			ws = journal_section;
2143 			we = journal_entry;
2144 			i = 0;
2145 			do {
2146 				struct journal_entry *je;
2147 
2148 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2149 				pos++;
2150 				if (unlikely(pos >= ic->journal_entries))
2151 					pos = 0;
2152 
2153 				je = access_journal_entry(ic, ws, we);
2154 				BUG_ON(!journal_entry_is_unused(je));
2155 				journal_entry_set_inprogress(je);
2156 				we++;
2157 				if (unlikely(we == ic->journal_section_entries)) {
2158 					we = 0;
2159 					ws++;
2160 					wraparound_section(ic, &ws);
2161 				}
2162 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2163 
2164 			spin_unlock_irq(&ic->endio_wait.lock);
2165 			goto journal_read_write;
2166 		} else {
2167 			sector_t next_sector;
2168 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2169 			if (likely(journal_read_pos == NOT_FOUND)) {
2170 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2171 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2172 			} else {
2173 				unsigned i;
2174 				unsigned jp = journal_read_pos + 1;
2175 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2176 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2177 						break;
2178 				}
2179 				dio->range.n_sectors = i;
2180 			}
2181 		}
2182 	}
2183 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2184 		/*
2185 		 * We must not sleep in the request routine because it could
2186 		 * stall bios on current->bio_list.
2187 		 * So, we offload the bio to a workqueue if we have to sleep.
2188 		 */
2189 		if (from_map) {
2190 offload_to_thread:
2191 			spin_unlock_irq(&ic->endio_wait.lock);
2192 			INIT_WORK(&dio->work, integrity_bio_wait);
2193 			queue_work(ic->wait_wq, &dio->work);
2194 			return;
2195 		}
2196 		if (journal_read_pos != NOT_FOUND)
2197 			dio->range.n_sectors = ic->sectors_per_block;
2198 		wait_and_add_new_range(ic, &dio->range);
2199 		/*
2200 		 * wait_and_add_new_range drops the spinlock, so the journal
2201 		 * may have been changed arbitrarily. We need to recheck.
2202 		 * To simplify the code, we restrict I/O size to just one block.
2203 		 */
2204 		if (journal_read_pos != NOT_FOUND) {
2205 			sector_t next_sector;
2206 			unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2207 			if (unlikely(new_pos != journal_read_pos)) {
2208 				remove_range_unlocked(ic, &dio->range);
2209 				goto retry;
2210 			}
2211 		}
2212 	}
2213 	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2214 		sector_t next_sector;
2215 		unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2216 		if (unlikely(new_pos != NOT_FOUND) ||
2217 		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2218 			remove_range_unlocked(ic, &dio->range);
2219 			spin_unlock_irq(&ic->endio_wait.lock);
2220 			queue_work(ic->commit_wq, &ic->commit_work);
2221 			flush_workqueue(ic->commit_wq);
2222 			queue_work(ic->writer_wq, &ic->writer_work);
2223 			flush_workqueue(ic->writer_wq);
2224 			discard_retried = true;
2225 			goto lock_retry;
2226 		}
2227 	}
2228 	spin_unlock_irq(&ic->endio_wait.lock);
2229 
2230 	if (unlikely(journal_read_pos != NOT_FOUND)) {
2231 		journal_section = journal_read_pos / ic->journal_section_entries;
2232 		journal_entry = journal_read_pos % ic->journal_section_entries;
2233 		goto journal_read_write;
2234 	}
2235 
2236 	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2237 		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2238 				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2239 			struct bitmap_block_status *bbs;
2240 
2241 			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2242 			spin_lock(&bbs->bio_queue_lock);
2243 			bio_list_add(&bbs->bio_queue, bio);
2244 			spin_unlock(&bbs->bio_queue_lock);
2245 			queue_work(ic->writer_wq, &bbs->work);
2246 			return;
2247 		}
2248 	}
2249 
2250 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2251 
2252 	if (need_sync_io) {
2253 		init_completion(&read_comp);
2254 		dio->completion = &read_comp;
2255 	} else
2256 		dio->completion = NULL;
2257 
2258 	dm_bio_record(&dio->bio_details, bio);
2259 	bio_set_dev(bio, ic->dev->bdev);
2260 	bio->bi_integrity = NULL;
2261 	bio->bi_opf &= ~REQ_INTEGRITY;
2262 	bio->bi_end_io = integrity_end_io;
2263 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2264 
2265 	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2266 		integrity_metadata(&dio->work);
2267 		dm_integrity_flush_buffers(ic, false);
2268 
2269 		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2270 		dio->completion = NULL;
2271 
2272 		submit_bio_noacct(bio);
2273 
2274 		return;
2275 	}
2276 
2277 	submit_bio_noacct(bio);
2278 
2279 	if (need_sync_io) {
2280 		wait_for_completion_io(&read_comp);
2281 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2282 		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2283 			goto skip_check;
2284 		if (ic->mode == 'B') {
2285 			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2286 					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2287 				goto skip_check;
2288 		}
2289 
2290 		if (likely(!bio->bi_status))
2291 			integrity_metadata(&dio->work);
2292 		else
2293 skip_check:
2294 			dec_in_flight(dio);
2295 
2296 	} else {
2297 		INIT_WORK(&dio->work, integrity_metadata);
2298 		queue_work(ic->metadata_wq, &dio->work);
2299 	}
2300 
2301 	return;
2302 
2303 journal_read_write:
2304 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2305 		goto lock_retry;
2306 
2307 	do_endio_flush(ic, dio);
2308 }
2309 
2310 
2311 static void integrity_bio_wait(struct work_struct *w)
2312 {
2313 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2314 
2315 	dm_integrity_map_continue(dio, false);
2316 }
2317 
2318 static void pad_uncommitted(struct dm_integrity_c *ic)
2319 {
2320 	if (ic->free_section_entry) {
2321 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2322 		ic->free_section_entry = 0;
2323 		ic->free_section++;
2324 		wraparound_section(ic, &ic->free_section);
2325 		ic->n_uncommitted_sections++;
2326 	}
2327 	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2328 		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2329 		    ic->journal_section_entries + ic->free_sectors)) {
2330 		DMCRIT("journal_sections %u, journal_section_entries %u, "
2331 		       "n_uncommitted_sections %u, n_committed_sections %u, "
2332 		       "journal_section_entries %u, free_sectors %u",
2333 		       ic->journal_sections, ic->journal_section_entries,
2334 		       ic->n_uncommitted_sections, ic->n_committed_sections,
2335 		       ic->journal_section_entries, ic->free_sectors);
2336 	}
2337 }
2338 
2339 static void integrity_commit(struct work_struct *w)
2340 {
2341 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2342 	unsigned commit_start, commit_sections;
2343 	unsigned i, j, n;
2344 	struct bio *flushes;
2345 
2346 	del_timer(&ic->autocommit_timer);
2347 
2348 	spin_lock_irq(&ic->endio_wait.lock);
2349 	flushes = bio_list_get(&ic->flush_bio_list);
2350 	if (unlikely(ic->mode != 'J')) {
2351 		spin_unlock_irq(&ic->endio_wait.lock);
2352 		dm_integrity_flush_buffers(ic, true);
2353 		goto release_flush_bios;
2354 	}
2355 
2356 	pad_uncommitted(ic);
2357 	commit_start = ic->uncommitted_section;
2358 	commit_sections = ic->n_uncommitted_sections;
2359 	spin_unlock_irq(&ic->endio_wait.lock);
2360 
2361 	if (!commit_sections)
2362 		goto release_flush_bios;
2363 
2364 	i = commit_start;
2365 	for (n = 0; n < commit_sections; n++) {
2366 		for (j = 0; j < ic->journal_section_entries; j++) {
2367 			struct journal_entry *je;
2368 			je = access_journal_entry(ic, i, j);
2369 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2370 		}
2371 		for (j = 0; j < ic->journal_section_sectors; j++) {
2372 			struct journal_sector *js;
2373 			js = access_journal(ic, i, j);
2374 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2375 		}
2376 		i++;
2377 		if (unlikely(i >= ic->journal_sections))
2378 			ic->commit_seq = next_commit_seq(ic->commit_seq);
2379 		wraparound_section(ic, &i);
2380 	}
2381 	smp_rmb();
2382 
2383 	write_journal(ic, commit_start, commit_sections);
2384 
2385 	spin_lock_irq(&ic->endio_wait.lock);
2386 	ic->uncommitted_section += commit_sections;
2387 	wraparound_section(ic, &ic->uncommitted_section);
2388 	ic->n_uncommitted_sections -= commit_sections;
2389 	ic->n_committed_sections += commit_sections;
2390 	spin_unlock_irq(&ic->endio_wait.lock);
2391 
2392 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2393 		queue_work(ic->writer_wq, &ic->writer_work);
2394 
2395 release_flush_bios:
2396 	while (flushes) {
2397 		struct bio *next = flushes->bi_next;
2398 		flushes->bi_next = NULL;
2399 		do_endio(ic, flushes);
2400 		flushes = next;
2401 	}
2402 }
2403 
2404 static void complete_copy_from_journal(unsigned long error, void *context)
2405 {
2406 	struct journal_io *io = context;
2407 	struct journal_completion *comp = io->comp;
2408 	struct dm_integrity_c *ic = comp->ic;
2409 	remove_range(ic, &io->range);
2410 	mempool_free(io, &ic->journal_io_mempool);
2411 	if (unlikely(error != 0))
2412 		dm_integrity_io_error(ic, "copying from journal", -EIO);
2413 	complete_journal_op(comp);
2414 }
2415 
2416 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2417 			       struct journal_entry *je)
2418 {
2419 	unsigned s = 0;
2420 	do {
2421 		js->commit_id = je->last_bytes[s];
2422 		js++;
2423 	} while (++s < ic->sectors_per_block);
2424 }
2425 
2426 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2427 			     unsigned write_sections, bool from_replay)
2428 {
2429 	unsigned i, j, n;
2430 	struct journal_completion comp;
2431 	struct blk_plug plug;
2432 
2433 	blk_start_plug(&plug);
2434 
2435 	comp.ic = ic;
2436 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2437 	init_completion(&comp.comp);
2438 
2439 	i = write_start;
2440 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2441 #ifndef INTERNAL_VERIFY
2442 		if (unlikely(from_replay))
2443 #endif
2444 			rw_section_mac(ic, i, false);
2445 		for (j = 0; j < ic->journal_section_entries; j++) {
2446 			struct journal_entry *je = access_journal_entry(ic, i, j);
2447 			sector_t sec, area, offset;
2448 			unsigned k, l, next_loop;
2449 			sector_t metadata_block;
2450 			unsigned metadata_offset;
2451 			struct journal_io *io;
2452 
2453 			if (journal_entry_is_unused(je))
2454 				continue;
2455 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2456 			sec = journal_entry_get_sector(je);
2457 			if (unlikely(from_replay)) {
2458 				if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2459 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2460 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2461 				}
2462 			}
2463 			if (unlikely(sec >= ic->provided_data_sectors))
2464 				continue;
2465 			get_area_and_offset(ic, sec, &area, &offset);
2466 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2467 			for (k = j + 1; k < ic->journal_section_entries; k++) {
2468 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2469 				sector_t sec2, area2, offset2;
2470 				if (journal_entry_is_unused(je2))
2471 					break;
2472 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2473 				sec2 = journal_entry_get_sector(je2);
2474 				if (unlikely(sec2 >= ic->provided_data_sectors))
2475 					break;
2476 				get_area_and_offset(ic, sec2, &area2, &offset2);
2477 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2478 					break;
2479 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2480 			}
2481 			next_loop = k - 1;
2482 
2483 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2484 			io->comp = &comp;
2485 			io->range.logical_sector = sec;
2486 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2487 
2488 			spin_lock_irq(&ic->endio_wait.lock);
2489 			add_new_range_and_wait(ic, &io->range);
2490 
2491 			if (likely(!from_replay)) {
2492 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2493 
2494 				/* don't write if there is newer committed sector */
2495 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2496 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2497 
2498 					journal_entry_set_unused(je2);
2499 					remove_journal_node(ic, &section_node[j]);
2500 					j++;
2501 					sec += ic->sectors_per_block;
2502 					offset += ic->sectors_per_block;
2503 				}
2504 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2505 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2506 
2507 					journal_entry_set_unused(je2);
2508 					remove_journal_node(ic, &section_node[k - 1]);
2509 					k--;
2510 				}
2511 				if (j == k) {
2512 					remove_range_unlocked(ic, &io->range);
2513 					spin_unlock_irq(&ic->endio_wait.lock);
2514 					mempool_free(io, &ic->journal_io_mempool);
2515 					goto skip_io;
2516 				}
2517 				for (l = j; l < k; l++) {
2518 					remove_journal_node(ic, &section_node[l]);
2519 				}
2520 			}
2521 			spin_unlock_irq(&ic->endio_wait.lock);
2522 
2523 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2524 			for (l = j; l < k; l++) {
2525 				int r;
2526 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2527 
2528 				if (
2529 #ifndef INTERNAL_VERIFY
2530 				    unlikely(from_replay) &&
2531 #endif
2532 				    ic->internal_hash) {
2533 					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2534 
2535 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2536 								  (char *)access_journal_data(ic, i, l), test_tag);
2537 					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2538 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2539 				}
2540 
2541 				journal_entry_set_unused(je2);
2542 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2543 							ic->tag_size, TAG_WRITE);
2544 				if (unlikely(r)) {
2545 					dm_integrity_io_error(ic, "reading tags", r);
2546 				}
2547 			}
2548 
2549 			atomic_inc(&comp.in_flight);
2550 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2551 					  (k - j) << ic->sb->log2_sectors_per_block,
2552 					  get_data_sector(ic, area, offset),
2553 					  complete_copy_from_journal, io);
2554 skip_io:
2555 			j = next_loop;
2556 		}
2557 	}
2558 
2559 	dm_bufio_write_dirty_buffers_async(ic->bufio);
2560 
2561 	blk_finish_plug(&plug);
2562 
2563 	complete_journal_op(&comp);
2564 	wait_for_completion_io(&comp.comp);
2565 
2566 	dm_integrity_flush_buffers(ic, true);
2567 }
2568 
2569 static void integrity_writer(struct work_struct *w)
2570 {
2571 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2572 	unsigned write_start, write_sections;
2573 
2574 	unsigned prev_free_sectors;
2575 
2576 	/* the following test is not needed, but it tests the replay code */
2577 	if (unlikely(dm_post_suspending(ic->ti)) && !ic->meta_dev)
2578 		return;
2579 
2580 	spin_lock_irq(&ic->endio_wait.lock);
2581 	write_start = ic->committed_section;
2582 	write_sections = ic->n_committed_sections;
2583 	spin_unlock_irq(&ic->endio_wait.lock);
2584 
2585 	if (!write_sections)
2586 		return;
2587 
2588 	do_journal_write(ic, write_start, write_sections, false);
2589 
2590 	spin_lock_irq(&ic->endio_wait.lock);
2591 
2592 	ic->committed_section += write_sections;
2593 	wraparound_section(ic, &ic->committed_section);
2594 	ic->n_committed_sections -= write_sections;
2595 
2596 	prev_free_sectors = ic->free_sectors;
2597 	ic->free_sectors += write_sections * ic->journal_section_entries;
2598 	if (unlikely(!prev_free_sectors))
2599 		wake_up_locked(&ic->endio_wait);
2600 
2601 	spin_unlock_irq(&ic->endio_wait.lock);
2602 }
2603 
2604 static void recalc_write_super(struct dm_integrity_c *ic)
2605 {
2606 	int r;
2607 
2608 	dm_integrity_flush_buffers(ic, false);
2609 	if (dm_integrity_failed(ic))
2610 		return;
2611 
2612 	r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2613 	if (unlikely(r))
2614 		dm_integrity_io_error(ic, "writing superblock", r);
2615 }
2616 
2617 static void integrity_recalc(struct work_struct *w)
2618 {
2619 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2620 	struct dm_integrity_range range;
2621 	struct dm_io_request io_req;
2622 	struct dm_io_region io_loc;
2623 	sector_t area, offset;
2624 	sector_t metadata_block;
2625 	unsigned metadata_offset;
2626 	sector_t logical_sector, n_sectors;
2627 	__u8 *t;
2628 	unsigned i;
2629 	int r;
2630 	unsigned super_counter = 0;
2631 
2632 	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2633 
2634 	spin_lock_irq(&ic->endio_wait.lock);
2635 
2636 next_chunk:
2637 
2638 	if (unlikely(dm_post_suspending(ic->ti)))
2639 		goto unlock_ret;
2640 
2641 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2642 	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2643 		if (ic->mode == 'B') {
2644 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2645 			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2646 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2647 		}
2648 		goto unlock_ret;
2649 	}
2650 
2651 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2652 	range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2653 	if (!ic->meta_dev)
2654 		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2655 
2656 	add_new_range_and_wait(ic, &range);
2657 	spin_unlock_irq(&ic->endio_wait.lock);
2658 	logical_sector = range.logical_sector;
2659 	n_sectors = range.n_sectors;
2660 
2661 	if (ic->mode == 'B') {
2662 		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2663 			goto advance_and_next;
2664 		}
2665 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2666 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2667 			logical_sector += ic->sectors_per_block;
2668 			n_sectors -= ic->sectors_per_block;
2669 			cond_resched();
2670 		}
2671 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2672 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2673 			n_sectors -= ic->sectors_per_block;
2674 			cond_resched();
2675 		}
2676 		get_area_and_offset(ic, logical_sector, &area, &offset);
2677 	}
2678 
2679 	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2680 
2681 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2682 		recalc_write_super(ic);
2683 		if (ic->mode == 'B') {
2684 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2685 		}
2686 		super_counter = 0;
2687 	}
2688 
2689 	if (unlikely(dm_integrity_failed(ic)))
2690 		goto err;
2691 
2692 	if (!ic->discard) {
2693 		io_req.bi_op = REQ_OP_READ;
2694 		io_req.bi_op_flags = 0;
2695 		io_req.mem.type = DM_IO_VMA;
2696 		io_req.mem.ptr.addr = ic->recalc_buffer;
2697 		io_req.notify.fn = NULL;
2698 		io_req.client = ic->io;
2699 		io_loc.bdev = ic->dev->bdev;
2700 		io_loc.sector = get_data_sector(ic, area, offset);
2701 		io_loc.count = n_sectors;
2702 
2703 		r = dm_io(&io_req, 1, &io_loc, NULL);
2704 		if (unlikely(r)) {
2705 			dm_integrity_io_error(ic, "reading data", r);
2706 			goto err;
2707 		}
2708 
2709 		t = ic->recalc_tags;
2710 		for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2711 			integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2712 			t += ic->tag_size;
2713 		}
2714 	} else {
2715 		t = ic->recalc_tags + (n_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2716 	}
2717 
2718 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2719 
2720 	r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2721 	if (unlikely(r)) {
2722 		dm_integrity_io_error(ic, "writing tags", r);
2723 		goto err;
2724 	}
2725 
2726 	if (ic->mode == 'B') {
2727 		sector_t start, end;
2728 		start = (range.logical_sector >>
2729 			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2730 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2731 		end = ((range.logical_sector + range.n_sectors) >>
2732 		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2733 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2734 		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2735 	}
2736 
2737 advance_and_next:
2738 	cond_resched();
2739 
2740 	spin_lock_irq(&ic->endio_wait.lock);
2741 	remove_range_unlocked(ic, &range);
2742 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2743 	goto next_chunk;
2744 
2745 err:
2746 	remove_range(ic, &range);
2747 	return;
2748 
2749 unlock_ret:
2750 	spin_unlock_irq(&ic->endio_wait.lock);
2751 
2752 	recalc_write_super(ic);
2753 }
2754 
2755 static void bitmap_block_work(struct work_struct *w)
2756 {
2757 	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2758 	struct dm_integrity_c *ic = bbs->ic;
2759 	struct bio *bio;
2760 	struct bio_list bio_queue;
2761 	struct bio_list waiting;
2762 
2763 	bio_list_init(&waiting);
2764 
2765 	spin_lock(&bbs->bio_queue_lock);
2766 	bio_queue = bbs->bio_queue;
2767 	bio_list_init(&bbs->bio_queue);
2768 	spin_unlock(&bbs->bio_queue_lock);
2769 
2770 	while ((bio = bio_list_pop(&bio_queue))) {
2771 		struct dm_integrity_io *dio;
2772 
2773 		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2774 
2775 		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2776 				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2777 			remove_range(ic, &dio->range);
2778 			INIT_WORK(&dio->work, integrity_bio_wait);
2779 			queue_work(ic->offload_wq, &dio->work);
2780 		} else {
2781 			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2782 					dio->range.n_sectors, BITMAP_OP_SET);
2783 			bio_list_add(&waiting, bio);
2784 		}
2785 	}
2786 
2787 	if (bio_list_empty(&waiting))
2788 		return;
2789 
2790 	rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2791 			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2792 			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2793 
2794 	while ((bio = bio_list_pop(&waiting))) {
2795 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2796 
2797 		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2798 				dio->range.n_sectors, BITMAP_OP_SET);
2799 
2800 		remove_range(ic, &dio->range);
2801 		INIT_WORK(&dio->work, integrity_bio_wait);
2802 		queue_work(ic->offload_wq, &dio->work);
2803 	}
2804 
2805 	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2806 }
2807 
2808 static void bitmap_flush_work(struct work_struct *work)
2809 {
2810 	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2811 	struct dm_integrity_range range;
2812 	unsigned long limit;
2813 	struct bio *bio;
2814 
2815 	dm_integrity_flush_buffers(ic, false);
2816 
2817 	range.logical_sector = 0;
2818 	range.n_sectors = ic->provided_data_sectors;
2819 
2820 	spin_lock_irq(&ic->endio_wait.lock);
2821 	add_new_range_and_wait(ic, &range);
2822 	spin_unlock_irq(&ic->endio_wait.lock);
2823 
2824 	dm_integrity_flush_buffers(ic, true);
2825 
2826 	limit = ic->provided_data_sectors;
2827 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2828 		limit = le64_to_cpu(ic->sb->recalc_sector)
2829 			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2830 			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2831 	}
2832 	/*DEBUG_print("zeroing journal\n");*/
2833 	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2834 	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2835 
2836 	rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2837 			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2838 
2839 	spin_lock_irq(&ic->endio_wait.lock);
2840 	remove_range_unlocked(ic, &range);
2841 	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2842 		bio_endio(bio);
2843 		spin_unlock_irq(&ic->endio_wait.lock);
2844 		spin_lock_irq(&ic->endio_wait.lock);
2845 	}
2846 	spin_unlock_irq(&ic->endio_wait.lock);
2847 }
2848 
2849 
2850 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2851 			 unsigned n_sections, unsigned char commit_seq)
2852 {
2853 	unsigned i, j, n;
2854 
2855 	if (!n_sections)
2856 		return;
2857 
2858 	for (n = 0; n < n_sections; n++) {
2859 		i = start_section + n;
2860 		wraparound_section(ic, &i);
2861 		for (j = 0; j < ic->journal_section_sectors; j++) {
2862 			struct journal_sector *js = access_journal(ic, i, j);
2863 			memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2864 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2865 		}
2866 		for (j = 0; j < ic->journal_section_entries; j++) {
2867 			struct journal_entry *je = access_journal_entry(ic, i, j);
2868 			journal_entry_set_unused(je);
2869 		}
2870 	}
2871 
2872 	write_journal(ic, start_section, n_sections);
2873 }
2874 
2875 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2876 {
2877 	unsigned char k;
2878 	for (k = 0; k < N_COMMIT_IDS; k++) {
2879 		if (dm_integrity_commit_id(ic, i, j, k) == id)
2880 			return k;
2881 	}
2882 	dm_integrity_io_error(ic, "journal commit id", -EIO);
2883 	return -EIO;
2884 }
2885 
2886 static void replay_journal(struct dm_integrity_c *ic)
2887 {
2888 	unsigned i, j;
2889 	bool used_commit_ids[N_COMMIT_IDS];
2890 	unsigned max_commit_id_sections[N_COMMIT_IDS];
2891 	unsigned write_start, write_sections;
2892 	unsigned continue_section;
2893 	bool journal_empty;
2894 	unsigned char unused, last_used, want_commit_seq;
2895 
2896 	if (ic->mode == 'R')
2897 		return;
2898 
2899 	if (ic->journal_uptodate)
2900 		return;
2901 
2902 	last_used = 0;
2903 	write_start = 0;
2904 
2905 	if (!ic->just_formatted) {
2906 		DEBUG_print("reading journal\n");
2907 		rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2908 		if (ic->journal_io)
2909 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2910 		if (ic->journal_io) {
2911 			struct journal_completion crypt_comp;
2912 			crypt_comp.ic = ic;
2913 			init_completion(&crypt_comp.comp);
2914 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2915 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2916 			wait_for_completion(&crypt_comp.comp);
2917 		}
2918 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2919 	}
2920 
2921 	if (dm_integrity_failed(ic))
2922 		goto clear_journal;
2923 
2924 	journal_empty = true;
2925 	memset(used_commit_ids, 0, sizeof used_commit_ids);
2926 	memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2927 	for (i = 0; i < ic->journal_sections; i++) {
2928 		for (j = 0; j < ic->journal_section_sectors; j++) {
2929 			int k;
2930 			struct journal_sector *js = access_journal(ic, i, j);
2931 			k = find_commit_seq(ic, i, j, js->commit_id);
2932 			if (k < 0)
2933 				goto clear_journal;
2934 			used_commit_ids[k] = true;
2935 			max_commit_id_sections[k] = i;
2936 		}
2937 		if (journal_empty) {
2938 			for (j = 0; j < ic->journal_section_entries; j++) {
2939 				struct journal_entry *je = access_journal_entry(ic, i, j);
2940 				if (!journal_entry_is_unused(je)) {
2941 					journal_empty = false;
2942 					break;
2943 				}
2944 			}
2945 		}
2946 	}
2947 
2948 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2949 		unused = N_COMMIT_IDS - 1;
2950 		while (unused && !used_commit_ids[unused - 1])
2951 			unused--;
2952 	} else {
2953 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
2954 			if (!used_commit_ids[unused])
2955 				break;
2956 		if (unused == N_COMMIT_IDS) {
2957 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
2958 			goto clear_journal;
2959 		}
2960 	}
2961 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2962 		    unused, used_commit_ids[0], used_commit_ids[1],
2963 		    used_commit_ids[2], used_commit_ids[3]);
2964 
2965 	last_used = prev_commit_seq(unused);
2966 	want_commit_seq = prev_commit_seq(last_used);
2967 
2968 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2969 		journal_empty = true;
2970 
2971 	write_start = max_commit_id_sections[last_used] + 1;
2972 	if (unlikely(write_start >= ic->journal_sections))
2973 		want_commit_seq = next_commit_seq(want_commit_seq);
2974 	wraparound_section(ic, &write_start);
2975 
2976 	i = write_start;
2977 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2978 		for (j = 0; j < ic->journal_section_sectors; j++) {
2979 			struct journal_sector *js = access_journal(ic, i, j);
2980 
2981 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2982 				/*
2983 				 * This could be caused by crash during writing.
2984 				 * We won't replay the inconsistent part of the
2985 				 * journal.
2986 				 */
2987 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2988 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2989 				goto brk;
2990 			}
2991 		}
2992 		i++;
2993 		if (unlikely(i >= ic->journal_sections))
2994 			want_commit_seq = next_commit_seq(want_commit_seq);
2995 		wraparound_section(ic, &i);
2996 	}
2997 brk:
2998 
2999 	if (!journal_empty) {
3000 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3001 			    write_sections, write_start, want_commit_seq);
3002 		do_journal_write(ic, write_start, write_sections, true);
3003 	}
3004 
3005 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3006 		continue_section = write_start;
3007 		ic->commit_seq = want_commit_seq;
3008 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3009 	} else {
3010 		unsigned s;
3011 		unsigned char erase_seq;
3012 clear_journal:
3013 		DEBUG_print("clearing journal\n");
3014 
3015 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3016 		s = write_start;
3017 		init_journal(ic, s, 1, erase_seq);
3018 		s++;
3019 		wraparound_section(ic, &s);
3020 		if (ic->journal_sections >= 2) {
3021 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3022 			s += ic->journal_sections - 2;
3023 			wraparound_section(ic, &s);
3024 			init_journal(ic, s, 1, erase_seq);
3025 		}
3026 
3027 		continue_section = 0;
3028 		ic->commit_seq = next_commit_seq(erase_seq);
3029 	}
3030 
3031 	ic->committed_section = continue_section;
3032 	ic->n_committed_sections = 0;
3033 
3034 	ic->uncommitted_section = continue_section;
3035 	ic->n_uncommitted_sections = 0;
3036 
3037 	ic->free_section = continue_section;
3038 	ic->free_section_entry = 0;
3039 	ic->free_sectors = ic->journal_entries;
3040 
3041 	ic->journal_tree_root = RB_ROOT;
3042 	for (i = 0; i < ic->journal_entries; i++)
3043 		init_journal_node(&ic->journal_tree[i]);
3044 }
3045 
3046 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3047 {
3048 	DEBUG_print("dm_integrity_enter_synchronous_mode\n");
3049 
3050 	if (ic->mode == 'B') {
3051 		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3052 		ic->synchronous_mode = 1;
3053 
3054 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3055 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3056 		flush_workqueue(ic->commit_wq);
3057 	}
3058 }
3059 
3060 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3061 {
3062 	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3063 
3064 	DEBUG_print("dm_integrity_reboot\n");
3065 
3066 	dm_integrity_enter_synchronous_mode(ic);
3067 
3068 	return NOTIFY_DONE;
3069 }
3070 
3071 static void dm_integrity_postsuspend(struct dm_target *ti)
3072 {
3073 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3074 	int r;
3075 
3076 	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3077 
3078 	del_timer_sync(&ic->autocommit_timer);
3079 
3080 	if (ic->recalc_wq)
3081 		drain_workqueue(ic->recalc_wq);
3082 
3083 	if (ic->mode == 'B')
3084 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3085 
3086 	queue_work(ic->commit_wq, &ic->commit_work);
3087 	drain_workqueue(ic->commit_wq);
3088 
3089 	if (ic->mode == 'J') {
3090 		if (ic->meta_dev)
3091 			queue_work(ic->writer_wq, &ic->writer_work);
3092 		drain_workqueue(ic->writer_wq);
3093 		dm_integrity_flush_buffers(ic, true);
3094 	}
3095 
3096 	if (ic->mode == 'B') {
3097 		dm_integrity_flush_buffers(ic, true);
3098 #if 1
3099 		/* set to 0 to test bitmap replay code */
3100 		init_journal(ic, 0, ic->journal_sections, 0);
3101 		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3102 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3103 		if (unlikely(r))
3104 			dm_integrity_io_error(ic, "writing superblock", r);
3105 #endif
3106 	}
3107 
3108 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3109 
3110 	ic->journal_uptodate = true;
3111 }
3112 
3113 static void dm_integrity_resume(struct dm_target *ti)
3114 {
3115 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3116 	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3117 	int r;
3118 
3119 	DEBUG_print("resume\n");
3120 
3121 	if (ic->provided_data_sectors != old_provided_data_sectors) {
3122 		if (ic->provided_data_sectors > old_provided_data_sectors &&
3123 		    ic->mode == 'B' &&
3124 		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3125 			rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3126 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3127 			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3128 					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3129 			rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3130 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3131 		}
3132 
3133 		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3134 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3135 		if (unlikely(r))
3136 			dm_integrity_io_error(ic, "writing superblock", r);
3137 	}
3138 
3139 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3140 		DEBUG_print("resume dirty_bitmap\n");
3141 		rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3142 				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3143 		if (ic->mode == 'B') {
3144 			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3145 			    !ic->reset_recalculate_flag) {
3146 				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3147 				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3148 				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3149 						     BITMAP_OP_TEST_ALL_CLEAR)) {
3150 					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3151 					ic->sb->recalc_sector = cpu_to_le64(0);
3152 				}
3153 			} else {
3154 				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3155 					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3156 				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3157 				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3158 				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3159 				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3160 				rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3161 						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3162 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3163 				ic->sb->recalc_sector = cpu_to_le64(0);
3164 			}
3165 		} else {
3166 			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3167 			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3168 			    ic->reset_recalculate_flag) {
3169 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3170 				ic->sb->recalc_sector = cpu_to_le64(0);
3171 			}
3172 			init_journal(ic, 0, ic->journal_sections, 0);
3173 			replay_journal(ic);
3174 			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3175 		}
3176 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3177 		if (unlikely(r))
3178 			dm_integrity_io_error(ic, "writing superblock", r);
3179 	} else {
3180 		replay_journal(ic);
3181 		if (ic->reset_recalculate_flag) {
3182 			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3183 			ic->sb->recalc_sector = cpu_to_le64(0);
3184 		}
3185 		if (ic->mode == 'B') {
3186 			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3187 			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3188 			r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3189 			if (unlikely(r))
3190 				dm_integrity_io_error(ic, "writing superblock", r);
3191 
3192 			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3193 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3194 			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3195 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3196 			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3197 				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3198 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3199 				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3200 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3201 				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3202 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3203 			}
3204 			rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3205 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3206 		}
3207 	}
3208 
3209 	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3210 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3211 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3212 		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3213 		if (recalc_pos < ic->provided_data_sectors) {
3214 			queue_work(ic->recalc_wq, &ic->recalc_work);
3215 		} else if (recalc_pos > ic->provided_data_sectors) {
3216 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3217 			recalc_write_super(ic);
3218 		}
3219 	}
3220 
3221 	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3222 	ic->reboot_notifier.next = NULL;
3223 	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3224 	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3225 
3226 #if 0
3227 	/* set to 1 to stress test synchronous mode */
3228 	dm_integrity_enter_synchronous_mode(ic);
3229 #endif
3230 }
3231 
3232 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3233 				unsigned status_flags, char *result, unsigned maxlen)
3234 {
3235 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3236 	unsigned arg_count;
3237 	size_t sz = 0;
3238 
3239 	switch (type) {
3240 	case STATUSTYPE_INFO:
3241 		DMEMIT("%llu %llu",
3242 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3243 			ic->provided_data_sectors);
3244 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3245 			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3246 		else
3247 			DMEMIT(" -");
3248 		break;
3249 
3250 	case STATUSTYPE_TABLE: {
3251 		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3252 		watermark_percentage += ic->journal_entries / 2;
3253 		do_div(watermark_percentage, ic->journal_entries);
3254 		arg_count = 3;
3255 		arg_count += !!ic->meta_dev;
3256 		arg_count += ic->sectors_per_block != 1;
3257 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3258 		arg_count += ic->reset_recalculate_flag;
3259 		arg_count += ic->discard;
3260 		arg_count += ic->mode == 'J';
3261 		arg_count += ic->mode == 'J';
3262 		arg_count += ic->mode == 'B';
3263 		arg_count += ic->mode == 'B';
3264 		arg_count += !!ic->internal_hash_alg.alg_string;
3265 		arg_count += !!ic->journal_crypt_alg.alg_string;
3266 		arg_count += !!ic->journal_mac_alg.alg_string;
3267 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3268 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3269 		arg_count += ic->legacy_recalculate;
3270 		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3271 		       ic->tag_size, ic->mode, arg_count);
3272 		if (ic->meta_dev)
3273 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3274 		if (ic->sectors_per_block != 1)
3275 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3276 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3277 			DMEMIT(" recalculate");
3278 		if (ic->reset_recalculate_flag)
3279 			DMEMIT(" reset_recalculate");
3280 		if (ic->discard)
3281 			DMEMIT(" allow_discards");
3282 		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3283 		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3284 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3285 		if (ic->mode == 'J') {
3286 			DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
3287 			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3288 		}
3289 		if (ic->mode == 'B') {
3290 			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3291 			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3292 		}
3293 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3294 			DMEMIT(" fix_padding");
3295 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3296 			DMEMIT(" fix_hmac");
3297 		if (ic->legacy_recalculate)
3298 			DMEMIT(" legacy_recalculate");
3299 
3300 #define EMIT_ALG(a, n)							\
3301 		do {							\
3302 			if (ic->a.alg_string) {				\
3303 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3304 				if (ic->a.key_string)			\
3305 					DMEMIT(":%s", ic->a.key_string);\
3306 			}						\
3307 		} while (0)
3308 		EMIT_ALG(internal_hash_alg, "internal_hash");
3309 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3310 		EMIT_ALG(journal_mac_alg, "journal_mac");
3311 		break;
3312 	}
3313 	}
3314 }
3315 
3316 static int dm_integrity_iterate_devices(struct dm_target *ti,
3317 					iterate_devices_callout_fn fn, void *data)
3318 {
3319 	struct dm_integrity_c *ic = ti->private;
3320 
3321 	if (!ic->meta_dev)
3322 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3323 	else
3324 		return fn(ti, ic->dev, 0, ti->len, data);
3325 }
3326 
3327 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3328 {
3329 	struct dm_integrity_c *ic = ti->private;
3330 
3331 	if (ic->sectors_per_block > 1) {
3332 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3333 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3334 		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3335 	}
3336 }
3337 
3338 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3339 {
3340 	unsigned sector_space = JOURNAL_SECTOR_DATA;
3341 
3342 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3343 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3344 					 JOURNAL_ENTRY_ROUNDUP);
3345 
3346 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3347 		sector_space -= JOURNAL_MAC_PER_SECTOR;
3348 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3349 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3350 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3351 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3352 }
3353 
3354 static int calculate_device_limits(struct dm_integrity_c *ic)
3355 {
3356 	__u64 initial_sectors;
3357 
3358 	calculate_journal_section_size(ic);
3359 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3360 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3361 		return -EINVAL;
3362 	ic->initial_sectors = initial_sectors;
3363 
3364 	if (!ic->meta_dev) {
3365 		sector_t last_sector, last_area, last_offset;
3366 
3367 		/* we have to maintain excessive padding for compatibility with existing volumes */
3368 		__u64 metadata_run_padding =
3369 			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3370 			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3371 			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3372 
3373 		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3374 					    metadata_run_padding) >> SECTOR_SHIFT;
3375 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3376 			ic->log2_metadata_run = __ffs(ic->metadata_run);
3377 		else
3378 			ic->log2_metadata_run = -1;
3379 
3380 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3381 		last_sector = get_data_sector(ic, last_area, last_offset);
3382 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3383 			return -EINVAL;
3384 	} else {
3385 		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3386 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3387 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3388 		meta_size <<= ic->log2_buffer_sectors;
3389 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3390 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3391 			return -EINVAL;
3392 		ic->metadata_run = 1;
3393 		ic->log2_metadata_run = 0;
3394 	}
3395 
3396 	return 0;
3397 }
3398 
3399 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3400 {
3401 	if (!ic->meta_dev) {
3402 		int test_bit;
3403 		ic->provided_data_sectors = 0;
3404 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3405 			__u64 prev_data_sectors = ic->provided_data_sectors;
3406 
3407 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3408 			if (calculate_device_limits(ic))
3409 				ic->provided_data_sectors = prev_data_sectors;
3410 		}
3411 	} else {
3412 		ic->provided_data_sectors = ic->data_device_sectors;
3413 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3414 	}
3415 }
3416 
3417 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3418 {
3419 	unsigned journal_sections;
3420 	int test_bit;
3421 
3422 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3423 	memcpy(ic->sb->magic, SB_MAGIC, 8);
3424 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3425 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3426 	if (ic->journal_mac_alg.alg_string)
3427 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3428 
3429 	calculate_journal_section_size(ic);
3430 	journal_sections = journal_sectors / ic->journal_section_sectors;
3431 	if (!journal_sections)
3432 		journal_sections = 1;
3433 
3434 	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3435 		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3436 		get_random_bytes(ic->sb->salt, SALT_SIZE);
3437 	}
3438 
3439 	if (!ic->meta_dev) {
3440 		if (ic->fix_padding)
3441 			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3442 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3443 		if (!interleave_sectors)
3444 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3445 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3446 		ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3447 		ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3448 
3449 		get_provided_data_sectors(ic);
3450 		if (!ic->provided_data_sectors)
3451 			return -EINVAL;
3452 	} else {
3453 		ic->sb->log2_interleave_sectors = 0;
3454 
3455 		get_provided_data_sectors(ic);
3456 		if (!ic->provided_data_sectors)
3457 			return -EINVAL;
3458 
3459 try_smaller_buffer:
3460 		ic->sb->journal_sections = cpu_to_le32(0);
3461 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3462 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3463 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3464 			if (test_journal_sections > journal_sections)
3465 				continue;
3466 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3467 			if (calculate_device_limits(ic))
3468 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3469 
3470 		}
3471 		if (!le32_to_cpu(ic->sb->journal_sections)) {
3472 			if (ic->log2_buffer_sectors > 3) {
3473 				ic->log2_buffer_sectors--;
3474 				goto try_smaller_buffer;
3475 			}
3476 			return -EINVAL;
3477 		}
3478 	}
3479 
3480 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3481 
3482 	sb_set_version(ic);
3483 
3484 	return 0;
3485 }
3486 
3487 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3488 {
3489 	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3490 	struct blk_integrity bi;
3491 
3492 	memset(&bi, 0, sizeof(bi));
3493 	bi.profile = &dm_integrity_profile;
3494 	bi.tuple_size = ic->tag_size;
3495 	bi.tag_size = bi.tuple_size;
3496 	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3497 
3498 	blk_integrity_register(disk, &bi);
3499 	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3500 }
3501 
3502 static void dm_integrity_free_page_list(struct page_list *pl)
3503 {
3504 	unsigned i;
3505 
3506 	if (!pl)
3507 		return;
3508 	for (i = 0; pl[i].page; i++)
3509 		__free_page(pl[i].page);
3510 	kvfree(pl);
3511 }
3512 
3513 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3514 {
3515 	struct page_list *pl;
3516 	unsigned i;
3517 
3518 	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3519 	if (!pl)
3520 		return NULL;
3521 
3522 	for (i = 0; i < n_pages; i++) {
3523 		pl[i].page = alloc_page(GFP_KERNEL);
3524 		if (!pl[i].page) {
3525 			dm_integrity_free_page_list(pl);
3526 			return NULL;
3527 		}
3528 		if (i)
3529 			pl[i - 1].next = &pl[i];
3530 	}
3531 	pl[i].page = NULL;
3532 	pl[i].next = NULL;
3533 
3534 	return pl;
3535 }
3536 
3537 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3538 {
3539 	unsigned i;
3540 	for (i = 0; i < ic->journal_sections; i++)
3541 		kvfree(sl[i]);
3542 	kvfree(sl);
3543 }
3544 
3545 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3546 								   struct page_list *pl)
3547 {
3548 	struct scatterlist **sl;
3549 	unsigned i;
3550 
3551 	sl = kvmalloc_array(ic->journal_sections,
3552 			    sizeof(struct scatterlist *),
3553 			    GFP_KERNEL | __GFP_ZERO);
3554 	if (!sl)
3555 		return NULL;
3556 
3557 	for (i = 0; i < ic->journal_sections; i++) {
3558 		struct scatterlist *s;
3559 		unsigned start_index, start_offset;
3560 		unsigned end_index, end_offset;
3561 		unsigned n_pages;
3562 		unsigned idx;
3563 
3564 		page_list_location(ic, i, 0, &start_index, &start_offset);
3565 		page_list_location(ic, i, ic->journal_section_sectors - 1,
3566 				   &end_index, &end_offset);
3567 
3568 		n_pages = (end_index - start_index + 1);
3569 
3570 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3571 				   GFP_KERNEL);
3572 		if (!s) {
3573 			dm_integrity_free_journal_scatterlist(ic, sl);
3574 			return NULL;
3575 		}
3576 
3577 		sg_init_table(s, n_pages);
3578 		for (idx = start_index; idx <= end_index; idx++) {
3579 			char *va = lowmem_page_address(pl[idx].page);
3580 			unsigned start = 0, end = PAGE_SIZE;
3581 			if (idx == start_index)
3582 				start = start_offset;
3583 			if (idx == end_index)
3584 				end = end_offset + (1 << SECTOR_SHIFT);
3585 			sg_set_buf(&s[idx - start_index], va + start, end - start);
3586 		}
3587 
3588 		sl[i] = s;
3589 	}
3590 
3591 	return sl;
3592 }
3593 
3594 static void free_alg(struct alg_spec *a)
3595 {
3596 	kfree_sensitive(a->alg_string);
3597 	kfree_sensitive(a->key);
3598 	memset(a, 0, sizeof *a);
3599 }
3600 
3601 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3602 {
3603 	char *k;
3604 
3605 	free_alg(a);
3606 
3607 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3608 	if (!a->alg_string)
3609 		goto nomem;
3610 
3611 	k = strchr(a->alg_string, ':');
3612 	if (k) {
3613 		*k = 0;
3614 		a->key_string = k + 1;
3615 		if (strlen(a->key_string) & 1)
3616 			goto inval;
3617 
3618 		a->key_size = strlen(a->key_string) / 2;
3619 		a->key = kmalloc(a->key_size, GFP_KERNEL);
3620 		if (!a->key)
3621 			goto nomem;
3622 		if (hex2bin(a->key, a->key_string, a->key_size))
3623 			goto inval;
3624 	}
3625 
3626 	return 0;
3627 inval:
3628 	*error = error_inval;
3629 	return -EINVAL;
3630 nomem:
3631 	*error = "Out of memory for an argument";
3632 	return -ENOMEM;
3633 }
3634 
3635 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3636 		   char *error_alg, char *error_key)
3637 {
3638 	int r;
3639 
3640 	if (a->alg_string) {
3641 		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3642 		if (IS_ERR(*hash)) {
3643 			*error = error_alg;
3644 			r = PTR_ERR(*hash);
3645 			*hash = NULL;
3646 			return r;
3647 		}
3648 
3649 		if (a->key) {
3650 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3651 			if (r) {
3652 				*error = error_key;
3653 				return r;
3654 			}
3655 		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3656 			*error = error_key;
3657 			return -ENOKEY;
3658 		}
3659 	}
3660 
3661 	return 0;
3662 }
3663 
3664 static int create_journal(struct dm_integrity_c *ic, char **error)
3665 {
3666 	int r = 0;
3667 	unsigned i;
3668 	__u64 journal_pages, journal_desc_size, journal_tree_size;
3669 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3670 	struct skcipher_request *req = NULL;
3671 
3672 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3673 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3674 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3675 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3676 
3677 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3678 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3679 	journal_desc_size = journal_pages * sizeof(struct page_list);
3680 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3681 		*error = "Journal doesn't fit into memory";
3682 		r = -ENOMEM;
3683 		goto bad;
3684 	}
3685 	ic->journal_pages = journal_pages;
3686 
3687 	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3688 	if (!ic->journal) {
3689 		*error = "Could not allocate memory for journal";
3690 		r = -ENOMEM;
3691 		goto bad;
3692 	}
3693 	if (ic->journal_crypt_alg.alg_string) {
3694 		unsigned ivsize, blocksize;
3695 		struct journal_completion comp;
3696 
3697 		comp.ic = ic;
3698 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3699 		if (IS_ERR(ic->journal_crypt)) {
3700 			*error = "Invalid journal cipher";
3701 			r = PTR_ERR(ic->journal_crypt);
3702 			ic->journal_crypt = NULL;
3703 			goto bad;
3704 		}
3705 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3706 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3707 
3708 		if (ic->journal_crypt_alg.key) {
3709 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3710 						   ic->journal_crypt_alg.key_size);
3711 			if (r) {
3712 				*error = "Error setting encryption key";
3713 				goto bad;
3714 			}
3715 		}
3716 		DEBUG_print("cipher %s, block size %u iv size %u\n",
3717 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3718 
3719 		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3720 		if (!ic->journal_io) {
3721 			*error = "Could not allocate memory for journal io";
3722 			r = -ENOMEM;
3723 			goto bad;
3724 		}
3725 
3726 		if (blocksize == 1) {
3727 			struct scatterlist *sg;
3728 
3729 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3730 			if (!req) {
3731 				*error = "Could not allocate crypt request";
3732 				r = -ENOMEM;
3733 				goto bad;
3734 			}
3735 
3736 			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3737 			if (!crypt_iv) {
3738 				*error = "Could not allocate iv";
3739 				r = -ENOMEM;
3740 				goto bad;
3741 			}
3742 
3743 			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3744 			if (!ic->journal_xor) {
3745 				*error = "Could not allocate memory for journal xor";
3746 				r = -ENOMEM;
3747 				goto bad;
3748 			}
3749 
3750 			sg = kvmalloc_array(ic->journal_pages + 1,
3751 					    sizeof(struct scatterlist),
3752 					    GFP_KERNEL);
3753 			if (!sg) {
3754 				*error = "Unable to allocate sg list";
3755 				r = -ENOMEM;
3756 				goto bad;
3757 			}
3758 			sg_init_table(sg, ic->journal_pages + 1);
3759 			for (i = 0; i < ic->journal_pages; i++) {
3760 				char *va = lowmem_page_address(ic->journal_xor[i].page);
3761 				clear_page(va);
3762 				sg_set_buf(&sg[i], va, PAGE_SIZE);
3763 			}
3764 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3765 
3766 			skcipher_request_set_crypt(req, sg, sg,
3767 						   PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3768 			init_completion(&comp.comp);
3769 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3770 			if (do_crypt(true, req, &comp))
3771 				wait_for_completion(&comp.comp);
3772 			kvfree(sg);
3773 			r = dm_integrity_failed(ic);
3774 			if (r) {
3775 				*error = "Unable to encrypt journal";
3776 				goto bad;
3777 			}
3778 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3779 
3780 			crypto_free_skcipher(ic->journal_crypt);
3781 			ic->journal_crypt = NULL;
3782 		} else {
3783 			unsigned crypt_len = roundup(ivsize, blocksize);
3784 
3785 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3786 			if (!req) {
3787 				*error = "Could not allocate crypt request";
3788 				r = -ENOMEM;
3789 				goto bad;
3790 			}
3791 
3792 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3793 			if (!crypt_iv) {
3794 				*error = "Could not allocate iv";
3795 				r = -ENOMEM;
3796 				goto bad;
3797 			}
3798 
3799 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3800 			if (!crypt_data) {
3801 				*error = "Unable to allocate crypt data";
3802 				r = -ENOMEM;
3803 				goto bad;
3804 			}
3805 
3806 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3807 			if (!ic->journal_scatterlist) {
3808 				*error = "Unable to allocate sg list";
3809 				r = -ENOMEM;
3810 				goto bad;
3811 			}
3812 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3813 			if (!ic->journal_io_scatterlist) {
3814 				*error = "Unable to allocate sg list";
3815 				r = -ENOMEM;
3816 				goto bad;
3817 			}
3818 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3819 							 sizeof(struct skcipher_request *),
3820 							 GFP_KERNEL | __GFP_ZERO);
3821 			if (!ic->sk_requests) {
3822 				*error = "Unable to allocate sk requests";
3823 				r = -ENOMEM;
3824 				goto bad;
3825 			}
3826 			for (i = 0; i < ic->journal_sections; i++) {
3827 				struct scatterlist sg;
3828 				struct skcipher_request *section_req;
3829 				__u32 section_le = cpu_to_le32(i);
3830 
3831 				memset(crypt_iv, 0x00, ivsize);
3832 				memset(crypt_data, 0x00, crypt_len);
3833 				memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3834 
3835 				sg_init_one(&sg, crypt_data, crypt_len);
3836 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3837 				init_completion(&comp.comp);
3838 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3839 				if (do_crypt(true, req, &comp))
3840 					wait_for_completion(&comp.comp);
3841 
3842 				r = dm_integrity_failed(ic);
3843 				if (r) {
3844 					*error = "Unable to generate iv";
3845 					goto bad;
3846 				}
3847 
3848 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3849 				if (!section_req) {
3850 					*error = "Unable to allocate crypt request";
3851 					r = -ENOMEM;
3852 					goto bad;
3853 				}
3854 				section_req->iv = kmalloc_array(ivsize, 2,
3855 								GFP_KERNEL);
3856 				if (!section_req->iv) {
3857 					skcipher_request_free(section_req);
3858 					*error = "Unable to allocate iv";
3859 					r = -ENOMEM;
3860 					goto bad;
3861 				}
3862 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3863 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3864 				ic->sk_requests[i] = section_req;
3865 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3866 			}
3867 		}
3868 	}
3869 
3870 	for (i = 0; i < N_COMMIT_IDS; i++) {
3871 		unsigned j;
3872 retest_commit_id:
3873 		for (j = 0; j < i; j++) {
3874 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
3875 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3876 				goto retest_commit_id;
3877 			}
3878 		}
3879 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3880 	}
3881 
3882 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3883 	if (journal_tree_size > ULONG_MAX) {
3884 		*error = "Journal doesn't fit into memory";
3885 		r = -ENOMEM;
3886 		goto bad;
3887 	}
3888 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3889 	if (!ic->journal_tree) {
3890 		*error = "Could not allocate memory for journal tree";
3891 		r = -ENOMEM;
3892 	}
3893 bad:
3894 	kfree(crypt_data);
3895 	kfree(crypt_iv);
3896 	skcipher_request_free(req);
3897 
3898 	return r;
3899 }
3900 
3901 /*
3902  * Construct a integrity mapping
3903  *
3904  * Arguments:
3905  *	device
3906  *	offset from the start of the device
3907  *	tag size
3908  *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3909  *	number of optional arguments
3910  *	optional arguments:
3911  *		journal_sectors
3912  *		interleave_sectors
3913  *		buffer_sectors
3914  *		journal_watermark
3915  *		commit_time
3916  *		meta_device
3917  *		block_size
3918  *		sectors_per_bit
3919  *		bitmap_flush_interval
3920  *		internal_hash
3921  *		journal_crypt
3922  *		journal_mac
3923  *		recalculate
3924  */
3925 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3926 {
3927 	struct dm_integrity_c *ic;
3928 	char dummy;
3929 	int r;
3930 	unsigned extra_args;
3931 	struct dm_arg_set as;
3932 	static const struct dm_arg _args[] = {
3933 		{0, 18, "Invalid number of feature args"},
3934 	};
3935 	unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3936 	bool should_write_sb;
3937 	__u64 threshold;
3938 	unsigned long long start;
3939 	__s8 log2_sectors_per_bitmap_bit = -1;
3940 	__s8 log2_blocks_per_bitmap_bit;
3941 	__u64 bits_in_journal;
3942 	__u64 n_bitmap_bits;
3943 
3944 #define DIRECT_ARGUMENTS	4
3945 
3946 	if (argc <= DIRECT_ARGUMENTS) {
3947 		ti->error = "Invalid argument count";
3948 		return -EINVAL;
3949 	}
3950 
3951 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3952 	if (!ic) {
3953 		ti->error = "Cannot allocate integrity context";
3954 		return -ENOMEM;
3955 	}
3956 	ti->private = ic;
3957 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
3958 	ic->ti = ti;
3959 
3960 	ic->in_progress = RB_ROOT;
3961 	INIT_LIST_HEAD(&ic->wait_list);
3962 	init_waitqueue_head(&ic->endio_wait);
3963 	bio_list_init(&ic->flush_bio_list);
3964 	init_waitqueue_head(&ic->copy_to_journal_wait);
3965 	init_completion(&ic->crypto_backoff);
3966 	atomic64_set(&ic->number_of_mismatches, 0);
3967 	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
3968 
3969 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3970 	if (r) {
3971 		ti->error = "Device lookup failed";
3972 		goto bad;
3973 	}
3974 
3975 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3976 		ti->error = "Invalid starting offset";
3977 		r = -EINVAL;
3978 		goto bad;
3979 	}
3980 	ic->start = start;
3981 
3982 	if (strcmp(argv[2], "-")) {
3983 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3984 			ti->error = "Invalid tag size";
3985 			r = -EINVAL;
3986 			goto bad;
3987 		}
3988 	}
3989 
3990 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
3991 	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
3992 		ic->mode = argv[3][0];
3993 	} else {
3994 		ti->error = "Invalid mode (expecting J, B, D, R)";
3995 		r = -EINVAL;
3996 		goto bad;
3997 	}
3998 
3999 	journal_sectors = 0;
4000 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4001 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
4002 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4003 	sync_msec = DEFAULT_SYNC_MSEC;
4004 	ic->sectors_per_block = 1;
4005 
4006 	as.argc = argc - DIRECT_ARGUMENTS;
4007 	as.argv = argv + DIRECT_ARGUMENTS;
4008 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4009 	if (r)
4010 		goto bad;
4011 
4012 	while (extra_args--) {
4013 		const char *opt_string;
4014 		unsigned val;
4015 		unsigned long long llval;
4016 		opt_string = dm_shift_arg(&as);
4017 		if (!opt_string) {
4018 			r = -EINVAL;
4019 			ti->error = "Not enough feature arguments";
4020 			goto bad;
4021 		}
4022 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4023 			journal_sectors = val ? val : 1;
4024 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4025 			interleave_sectors = val;
4026 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4027 			buffer_sectors = val;
4028 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4029 			journal_watermark = val;
4030 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4031 			sync_msec = val;
4032 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4033 			if (ic->meta_dev) {
4034 				dm_put_device(ti, ic->meta_dev);
4035 				ic->meta_dev = NULL;
4036 			}
4037 			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4038 					  dm_table_get_mode(ti->table), &ic->meta_dev);
4039 			if (r) {
4040 				ti->error = "Device lookup failed";
4041 				goto bad;
4042 			}
4043 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4044 			if (val < 1 << SECTOR_SHIFT ||
4045 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4046 			    (val & (val -1))) {
4047 				r = -EINVAL;
4048 				ti->error = "Invalid block_size argument";
4049 				goto bad;
4050 			}
4051 			ic->sectors_per_block = val >> SECTOR_SHIFT;
4052 		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4053 			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4054 		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4055 			if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4056 				r = -EINVAL;
4057 				ti->error = "Invalid bitmap_flush_interval argument";
4058 				goto bad;
4059 			}
4060 			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4061 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4062 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4063 					    "Invalid internal_hash argument");
4064 			if (r)
4065 				goto bad;
4066 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4067 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4068 					    "Invalid journal_crypt argument");
4069 			if (r)
4070 				goto bad;
4071 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4072 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4073 					    "Invalid journal_mac argument");
4074 			if (r)
4075 				goto bad;
4076 		} else if (!strcmp(opt_string, "recalculate")) {
4077 			ic->recalculate_flag = true;
4078 		} else if (!strcmp(opt_string, "reset_recalculate")) {
4079 			ic->recalculate_flag = true;
4080 			ic->reset_recalculate_flag = true;
4081 		} else if (!strcmp(opt_string, "allow_discards")) {
4082 			ic->discard = true;
4083 		} else if (!strcmp(opt_string, "fix_padding")) {
4084 			ic->fix_padding = true;
4085 		} else if (!strcmp(opt_string, "fix_hmac")) {
4086 			ic->fix_hmac = true;
4087 		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4088 			ic->legacy_recalculate = true;
4089 		} else {
4090 			r = -EINVAL;
4091 			ti->error = "Invalid argument";
4092 			goto bad;
4093 		}
4094 	}
4095 
4096 	ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
4097 	if (!ic->meta_dev)
4098 		ic->meta_device_sectors = ic->data_device_sectors;
4099 	else
4100 		ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
4101 
4102 	if (!journal_sectors) {
4103 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4104 				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4105 	}
4106 
4107 	if (!buffer_sectors)
4108 		buffer_sectors = 1;
4109 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4110 
4111 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4112 		    "Invalid internal hash", "Error setting internal hash key");
4113 	if (r)
4114 		goto bad;
4115 
4116 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4117 		    "Invalid journal mac", "Error setting journal mac key");
4118 	if (r)
4119 		goto bad;
4120 
4121 	if (!ic->tag_size) {
4122 		if (!ic->internal_hash) {
4123 			ti->error = "Unknown tag size";
4124 			r = -EINVAL;
4125 			goto bad;
4126 		}
4127 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4128 	}
4129 	if (ic->tag_size > MAX_TAG_SIZE) {
4130 		ti->error = "Too big tag size";
4131 		r = -EINVAL;
4132 		goto bad;
4133 	}
4134 	if (!(ic->tag_size & (ic->tag_size - 1)))
4135 		ic->log2_tag_size = __ffs(ic->tag_size);
4136 	else
4137 		ic->log2_tag_size = -1;
4138 
4139 	if (ic->mode == 'B' && !ic->internal_hash) {
4140 		r = -EINVAL;
4141 		ti->error = "Bitmap mode can be only used with internal hash";
4142 		goto bad;
4143 	}
4144 
4145 	if (ic->discard && !ic->internal_hash) {
4146 		r = -EINVAL;
4147 		ti->error = "Discard can be only used with internal hash";
4148 		goto bad;
4149 	}
4150 
4151 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4152 	ic->autocommit_msec = sync_msec;
4153 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4154 
4155 	ic->io = dm_io_client_create();
4156 	if (IS_ERR(ic->io)) {
4157 		r = PTR_ERR(ic->io);
4158 		ic->io = NULL;
4159 		ti->error = "Cannot allocate dm io";
4160 		goto bad;
4161 	}
4162 
4163 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4164 	if (r) {
4165 		ti->error = "Cannot allocate mempool";
4166 		goto bad;
4167 	}
4168 
4169 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4170 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4171 	if (!ic->metadata_wq) {
4172 		ti->error = "Cannot allocate workqueue";
4173 		r = -ENOMEM;
4174 		goto bad;
4175 	}
4176 
4177 	/*
4178 	 * If this workqueue were percpu, it would cause bio reordering
4179 	 * and reduced performance.
4180 	 */
4181 	ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4182 	if (!ic->wait_wq) {
4183 		ti->error = "Cannot allocate workqueue";
4184 		r = -ENOMEM;
4185 		goto bad;
4186 	}
4187 
4188 	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4189 					  METADATA_WORKQUEUE_MAX_ACTIVE);
4190 	if (!ic->offload_wq) {
4191 		ti->error = "Cannot allocate workqueue";
4192 		r = -ENOMEM;
4193 		goto bad;
4194 	}
4195 
4196 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4197 	if (!ic->commit_wq) {
4198 		ti->error = "Cannot allocate workqueue";
4199 		r = -ENOMEM;
4200 		goto bad;
4201 	}
4202 	INIT_WORK(&ic->commit_work, integrity_commit);
4203 
4204 	if (ic->mode == 'J' || ic->mode == 'B') {
4205 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4206 		if (!ic->writer_wq) {
4207 			ti->error = "Cannot allocate workqueue";
4208 			r = -ENOMEM;
4209 			goto bad;
4210 		}
4211 		INIT_WORK(&ic->writer_work, integrity_writer);
4212 	}
4213 
4214 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4215 	if (!ic->sb) {
4216 		r = -ENOMEM;
4217 		ti->error = "Cannot allocate superblock area";
4218 		goto bad;
4219 	}
4220 
4221 	r = sync_rw_sb(ic, REQ_OP_READ, 0);
4222 	if (r) {
4223 		ti->error = "Error reading superblock";
4224 		goto bad;
4225 	}
4226 	should_write_sb = false;
4227 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4228 		if (ic->mode != 'R') {
4229 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4230 				r = -EINVAL;
4231 				ti->error = "The device is not initialized";
4232 				goto bad;
4233 			}
4234 		}
4235 
4236 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4237 		if (r) {
4238 			ti->error = "Could not initialize superblock";
4239 			goto bad;
4240 		}
4241 		if (ic->mode != 'R')
4242 			should_write_sb = true;
4243 	}
4244 
4245 	if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4246 		r = -EINVAL;
4247 		ti->error = "Unknown version";
4248 		goto bad;
4249 	}
4250 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4251 		r = -EINVAL;
4252 		ti->error = "Tag size doesn't match the information in superblock";
4253 		goto bad;
4254 	}
4255 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4256 		r = -EINVAL;
4257 		ti->error = "Block size doesn't match the information in superblock";
4258 		goto bad;
4259 	}
4260 	if (!le32_to_cpu(ic->sb->journal_sections)) {
4261 		r = -EINVAL;
4262 		ti->error = "Corrupted superblock, journal_sections is 0";
4263 		goto bad;
4264 	}
4265 	/* make sure that ti->max_io_len doesn't overflow */
4266 	if (!ic->meta_dev) {
4267 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4268 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4269 			r = -EINVAL;
4270 			ti->error = "Invalid interleave_sectors in the superblock";
4271 			goto bad;
4272 		}
4273 	} else {
4274 		if (ic->sb->log2_interleave_sectors) {
4275 			r = -EINVAL;
4276 			ti->error = "Invalid interleave_sectors in the superblock";
4277 			goto bad;
4278 		}
4279 	}
4280 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4281 		r = -EINVAL;
4282 		ti->error = "Journal mac mismatch";
4283 		goto bad;
4284 	}
4285 
4286 	get_provided_data_sectors(ic);
4287 	if (!ic->provided_data_sectors) {
4288 		r = -EINVAL;
4289 		ti->error = "The device is too small";
4290 		goto bad;
4291 	}
4292 
4293 try_smaller_buffer:
4294 	r = calculate_device_limits(ic);
4295 	if (r) {
4296 		if (ic->meta_dev) {
4297 			if (ic->log2_buffer_sectors > 3) {
4298 				ic->log2_buffer_sectors--;
4299 				goto try_smaller_buffer;
4300 			}
4301 		}
4302 		ti->error = "The device is too small";
4303 		goto bad;
4304 	}
4305 
4306 	if (log2_sectors_per_bitmap_bit < 0)
4307 		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4308 	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4309 		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4310 
4311 	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4312 	if (bits_in_journal > UINT_MAX)
4313 		bits_in_journal = UINT_MAX;
4314 	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4315 		log2_sectors_per_bitmap_bit++;
4316 
4317 	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4318 	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4319 	if (should_write_sb) {
4320 		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4321 	}
4322 	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4323 				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4324 	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4325 
4326 	if (!ic->meta_dev)
4327 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4328 
4329 	if (ti->len > ic->provided_data_sectors) {
4330 		r = -EINVAL;
4331 		ti->error = "Not enough provided sectors for requested mapping size";
4332 		goto bad;
4333 	}
4334 
4335 
4336 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4337 	threshold += 50;
4338 	do_div(threshold, 100);
4339 	ic->free_sectors_threshold = threshold;
4340 
4341 	DEBUG_print("initialized:\n");
4342 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4343 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4344 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4345 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4346 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4347 	DEBUG_print("	journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
4348 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4349 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4350 	DEBUG_print("	data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT);
4351 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4352 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4353 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4354 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4355 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4356 	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4357 
4358 	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4359 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4360 		ic->sb->recalc_sector = cpu_to_le64(0);
4361 	}
4362 
4363 	if (ic->internal_hash) {
4364 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4365 		if (!ic->recalc_wq ) {
4366 			ti->error = "Cannot allocate workqueue";
4367 			r = -ENOMEM;
4368 			goto bad;
4369 		}
4370 		INIT_WORK(&ic->recalc_work, integrity_recalc);
4371 		if (!ic->discard) {
4372 			ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4373 			if (!ic->recalc_buffer) {
4374 				ti->error = "Cannot allocate buffer for recalculating";
4375 				r = -ENOMEM;
4376 				goto bad;
4377 			}
4378 		}
4379 		ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
4380 						 ic->tag_size, GFP_KERNEL);
4381 		if (!ic->recalc_tags) {
4382 			ti->error = "Cannot allocate tags for recalculating";
4383 			r = -ENOMEM;
4384 			goto bad;
4385 		}
4386 		if (ic->discard)
4387 			memset(ic->recalc_tags, DISCARD_FILLER,
4388 			       (RECALC_SECTORS >> ic->sb->log2_sectors_per_block) * ic->tag_size);
4389 	} else {
4390 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4391 			ti->error = "Recalculate can only be specified with internal_hash";
4392 			r = -EINVAL;
4393 			goto bad;
4394 		}
4395 	}
4396 
4397 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4398 	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4399 	    dm_integrity_disable_recalculate(ic)) {
4400 		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4401 		r = -EOPNOTSUPP;
4402 		goto bad;
4403 	}
4404 
4405 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4406 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4407 	if (IS_ERR(ic->bufio)) {
4408 		r = PTR_ERR(ic->bufio);
4409 		ti->error = "Cannot initialize dm-bufio";
4410 		ic->bufio = NULL;
4411 		goto bad;
4412 	}
4413 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4414 
4415 	if (ic->mode != 'R') {
4416 		r = create_journal(ic, &ti->error);
4417 		if (r)
4418 			goto bad;
4419 
4420 	}
4421 
4422 	if (ic->mode == 'B') {
4423 		unsigned i;
4424 		unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4425 
4426 		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4427 		if (!ic->recalc_bitmap) {
4428 			r = -ENOMEM;
4429 			goto bad;
4430 		}
4431 		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4432 		if (!ic->may_write_bitmap) {
4433 			r = -ENOMEM;
4434 			goto bad;
4435 		}
4436 		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4437 		if (!ic->bbs) {
4438 			r = -ENOMEM;
4439 			goto bad;
4440 		}
4441 		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4442 		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4443 			struct bitmap_block_status *bbs = &ic->bbs[i];
4444 			unsigned sector, pl_index, pl_offset;
4445 
4446 			INIT_WORK(&bbs->work, bitmap_block_work);
4447 			bbs->ic = ic;
4448 			bbs->idx = i;
4449 			bio_list_init(&bbs->bio_queue);
4450 			spin_lock_init(&bbs->bio_queue_lock);
4451 
4452 			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4453 			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4454 			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4455 
4456 			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4457 		}
4458 	}
4459 
4460 	if (should_write_sb) {
4461 		int r;
4462 
4463 		init_journal(ic, 0, ic->journal_sections, 0);
4464 		r = dm_integrity_failed(ic);
4465 		if (unlikely(r)) {
4466 			ti->error = "Error initializing journal";
4467 			goto bad;
4468 		}
4469 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4470 		if (r) {
4471 			ti->error = "Error initializing superblock";
4472 			goto bad;
4473 		}
4474 		ic->just_formatted = true;
4475 	}
4476 
4477 	if (!ic->meta_dev) {
4478 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4479 		if (r)
4480 			goto bad;
4481 	}
4482 	if (ic->mode == 'B') {
4483 		unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4484 		if (!max_io_len)
4485 			max_io_len = 1U << 31;
4486 		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4487 		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4488 			r = dm_set_target_max_io_len(ti, max_io_len);
4489 			if (r)
4490 				goto bad;
4491 		}
4492 	}
4493 
4494 	if (!ic->internal_hash)
4495 		dm_integrity_set(ti, ic);
4496 
4497 	ti->num_flush_bios = 1;
4498 	ti->flush_supported = true;
4499 	if (ic->discard)
4500 		ti->num_discard_bios = 1;
4501 
4502 	return 0;
4503 
4504 bad:
4505 	dm_integrity_dtr(ti);
4506 	return r;
4507 }
4508 
4509 static void dm_integrity_dtr(struct dm_target *ti)
4510 {
4511 	struct dm_integrity_c *ic = ti->private;
4512 
4513 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4514 	BUG_ON(!list_empty(&ic->wait_list));
4515 
4516 	if (ic->metadata_wq)
4517 		destroy_workqueue(ic->metadata_wq);
4518 	if (ic->wait_wq)
4519 		destroy_workqueue(ic->wait_wq);
4520 	if (ic->offload_wq)
4521 		destroy_workqueue(ic->offload_wq);
4522 	if (ic->commit_wq)
4523 		destroy_workqueue(ic->commit_wq);
4524 	if (ic->writer_wq)
4525 		destroy_workqueue(ic->writer_wq);
4526 	if (ic->recalc_wq)
4527 		destroy_workqueue(ic->recalc_wq);
4528 	vfree(ic->recalc_buffer);
4529 	kvfree(ic->recalc_tags);
4530 	kvfree(ic->bbs);
4531 	if (ic->bufio)
4532 		dm_bufio_client_destroy(ic->bufio);
4533 	mempool_exit(&ic->journal_io_mempool);
4534 	if (ic->io)
4535 		dm_io_client_destroy(ic->io);
4536 	if (ic->dev)
4537 		dm_put_device(ti, ic->dev);
4538 	if (ic->meta_dev)
4539 		dm_put_device(ti, ic->meta_dev);
4540 	dm_integrity_free_page_list(ic->journal);
4541 	dm_integrity_free_page_list(ic->journal_io);
4542 	dm_integrity_free_page_list(ic->journal_xor);
4543 	dm_integrity_free_page_list(ic->recalc_bitmap);
4544 	dm_integrity_free_page_list(ic->may_write_bitmap);
4545 	if (ic->journal_scatterlist)
4546 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4547 	if (ic->journal_io_scatterlist)
4548 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4549 	if (ic->sk_requests) {
4550 		unsigned i;
4551 
4552 		for (i = 0; i < ic->journal_sections; i++) {
4553 			struct skcipher_request *req = ic->sk_requests[i];
4554 			if (req) {
4555 				kfree_sensitive(req->iv);
4556 				skcipher_request_free(req);
4557 			}
4558 		}
4559 		kvfree(ic->sk_requests);
4560 	}
4561 	kvfree(ic->journal_tree);
4562 	if (ic->sb)
4563 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4564 
4565 	if (ic->internal_hash)
4566 		crypto_free_shash(ic->internal_hash);
4567 	free_alg(&ic->internal_hash_alg);
4568 
4569 	if (ic->journal_crypt)
4570 		crypto_free_skcipher(ic->journal_crypt);
4571 	free_alg(&ic->journal_crypt_alg);
4572 
4573 	if (ic->journal_mac)
4574 		crypto_free_shash(ic->journal_mac);
4575 	free_alg(&ic->journal_mac_alg);
4576 
4577 	kfree(ic);
4578 }
4579 
4580 static struct target_type integrity_target = {
4581 	.name			= "integrity",
4582 	.version		= {1, 9, 0},
4583 	.module			= THIS_MODULE,
4584 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4585 	.ctr			= dm_integrity_ctr,
4586 	.dtr			= dm_integrity_dtr,
4587 	.map			= dm_integrity_map,
4588 	.postsuspend		= dm_integrity_postsuspend,
4589 	.resume			= dm_integrity_resume,
4590 	.status			= dm_integrity_status,
4591 	.iterate_devices	= dm_integrity_iterate_devices,
4592 	.io_hints		= dm_integrity_io_hints,
4593 };
4594 
4595 static int __init dm_integrity_init(void)
4596 {
4597 	int r;
4598 
4599 	journal_io_cache = kmem_cache_create("integrity_journal_io",
4600 					     sizeof(struct journal_io), 0, 0, NULL);
4601 	if (!journal_io_cache) {
4602 		DMERR("can't allocate journal io cache");
4603 		return -ENOMEM;
4604 	}
4605 
4606 	r = dm_register_target(&integrity_target);
4607 
4608 	if (r < 0)
4609 		DMERR("register failed %d", r);
4610 
4611 	return r;
4612 }
4613 
4614 static void __exit dm_integrity_exit(void)
4615 {
4616 	dm_unregister_target(&integrity_target);
4617 	kmem_cache_destroy(journal_io_cache);
4618 }
4619 
4620 module_init(dm_integrity_init);
4621 module_exit(dm_integrity_exit);
4622 
4623 MODULE_AUTHOR("Milan Broz");
4624 MODULE_AUTHOR("Mikulas Patocka");
4625 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4626 MODULE_LICENSE("GPL");
4627