1 /* 2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 3 * Copyright (C) 2016-2017 Milan Broz 4 * Copyright (C) 2016-2017 Mikulas Patocka 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-bio-record.h" 10 11 #include <linux/compiler.h> 12 #include <linux/module.h> 13 #include <linux/device-mapper.h> 14 #include <linux/dm-io.h> 15 #include <linux/vmalloc.h> 16 #include <linux/sort.h> 17 #include <linux/rbtree.h> 18 #include <linux/delay.h> 19 #include <linux/random.h> 20 #include <linux/reboot.h> 21 #include <crypto/hash.h> 22 #include <crypto/skcipher.h> 23 #include <linux/async_tx.h> 24 #include <linux/dm-bufio.h> 25 26 #define DM_MSG_PREFIX "integrity" 27 28 #define DEFAULT_INTERLEAVE_SECTORS 32768 29 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 30 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768 31 #define DEFAULT_BUFFER_SECTORS 128 32 #define DEFAULT_JOURNAL_WATERMARK 50 33 #define DEFAULT_SYNC_MSEC 10000 34 #define DEFAULT_MAX_JOURNAL_SECTORS 131072 35 #define MIN_LOG2_INTERLEAVE_SECTORS 3 36 #define MAX_LOG2_INTERLEAVE_SECTORS 31 37 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 38 #define RECALC_SECTORS 32768 39 #define RECALC_WRITE_SUPER 16 40 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */ 41 #define BITMAP_FLUSH_INTERVAL (10 * HZ) 42 #define DISCARD_FILLER 0xf6 43 #define SALT_SIZE 16 44 45 /* 46 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 47 * so it should not be enabled in the official kernel 48 */ 49 //#define DEBUG_PRINT 50 //#define INTERNAL_VERIFY 51 52 /* 53 * On disk structures 54 */ 55 56 #define SB_MAGIC "integrt" 57 #define SB_VERSION_1 1 58 #define SB_VERSION_2 2 59 #define SB_VERSION_3 3 60 #define SB_VERSION_4 4 61 #define SB_VERSION_5 5 62 #define SB_SECTORS 8 63 #define MAX_SECTORS_PER_BLOCK 8 64 65 struct superblock { 66 __u8 magic[8]; 67 __u8 version; 68 __u8 log2_interleave_sectors; 69 __u16 integrity_tag_size; 70 __u32 journal_sections; 71 __u64 provided_data_sectors; /* userspace uses this value */ 72 __u32 flags; 73 __u8 log2_sectors_per_block; 74 __u8 log2_blocks_per_bitmap_bit; 75 __u8 pad[2]; 76 __u64 recalc_sector; 77 __u8 pad2[8]; 78 __u8 salt[SALT_SIZE]; 79 }; 80 81 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 82 #define SB_FLAG_RECALCULATING 0x2 83 #define SB_FLAG_DIRTY_BITMAP 0x4 84 #define SB_FLAG_FIXED_PADDING 0x8 85 #define SB_FLAG_FIXED_HMAC 0x10 86 87 #define JOURNAL_ENTRY_ROUNDUP 8 88 89 typedef __u64 commit_id_t; 90 #define JOURNAL_MAC_PER_SECTOR 8 91 92 struct journal_entry { 93 union { 94 struct { 95 __u32 sector_lo; 96 __u32 sector_hi; 97 } s; 98 __u64 sector; 99 } u; 100 commit_id_t last_bytes[]; 101 /* __u8 tag[0]; */ 102 }; 103 104 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 105 106 #if BITS_PER_LONG == 64 107 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) 108 #else 109 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) 110 #endif 111 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 112 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 113 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0) 114 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 115 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0) 116 117 #define JOURNAL_BLOCK_SECTORS 8 118 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 119 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 120 121 struct journal_sector { 122 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 123 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 124 commit_id_t commit_id; 125 }; 126 127 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 128 129 #define METADATA_PADDING_SECTORS 8 130 131 #define N_COMMIT_IDS 4 132 133 static unsigned char prev_commit_seq(unsigned char seq) 134 { 135 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 136 } 137 138 static unsigned char next_commit_seq(unsigned char seq) 139 { 140 return (seq + 1) % N_COMMIT_IDS; 141 } 142 143 /* 144 * In-memory structures 145 */ 146 147 struct journal_node { 148 struct rb_node node; 149 sector_t sector; 150 }; 151 152 struct alg_spec { 153 char *alg_string; 154 char *key_string; 155 __u8 *key; 156 unsigned key_size; 157 }; 158 159 struct dm_integrity_c { 160 struct dm_dev *dev; 161 struct dm_dev *meta_dev; 162 unsigned tag_size; 163 __s8 log2_tag_size; 164 sector_t start; 165 mempool_t journal_io_mempool; 166 struct dm_io_client *io; 167 struct dm_bufio_client *bufio; 168 struct workqueue_struct *metadata_wq; 169 struct superblock *sb; 170 unsigned journal_pages; 171 unsigned n_bitmap_blocks; 172 173 struct page_list *journal; 174 struct page_list *journal_io; 175 struct page_list *journal_xor; 176 struct page_list *recalc_bitmap; 177 struct page_list *may_write_bitmap; 178 struct bitmap_block_status *bbs; 179 unsigned bitmap_flush_interval; 180 int synchronous_mode; 181 struct bio_list synchronous_bios; 182 struct delayed_work bitmap_flush_work; 183 184 struct crypto_skcipher *journal_crypt; 185 struct scatterlist **journal_scatterlist; 186 struct scatterlist **journal_io_scatterlist; 187 struct skcipher_request **sk_requests; 188 189 struct crypto_shash *journal_mac; 190 191 struct journal_node *journal_tree; 192 struct rb_root journal_tree_root; 193 194 sector_t provided_data_sectors; 195 196 unsigned short journal_entry_size; 197 unsigned char journal_entries_per_sector; 198 unsigned char journal_section_entries; 199 unsigned short journal_section_sectors; 200 unsigned journal_sections; 201 unsigned journal_entries; 202 sector_t data_device_sectors; 203 sector_t meta_device_sectors; 204 unsigned initial_sectors; 205 unsigned metadata_run; 206 __s8 log2_metadata_run; 207 __u8 log2_buffer_sectors; 208 __u8 sectors_per_block; 209 __u8 log2_blocks_per_bitmap_bit; 210 211 unsigned char mode; 212 213 int failed; 214 215 struct crypto_shash *internal_hash; 216 217 struct dm_target *ti; 218 219 /* these variables are locked with endio_wait.lock */ 220 struct rb_root in_progress; 221 struct list_head wait_list; 222 wait_queue_head_t endio_wait; 223 struct workqueue_struct *wait_wq; 224 struct workqueue_struct *offload_wq; 225 226 unsigned char commit_seq; 227 commit_id_t commit_ids[N_COMMIT_IDS]; 228 229 unsigned committed_section; 230 unsigned n_committed_sections; 231 232 unsigned uncommitted_section; 233 unsigned n_uncommitted_sections; 234 235 unsigned free_section; 236 unsigned char free_section_entry; 237 unsigned free_sectors; 238 239 unsigned free_sectors_threshold; 240 241 struct workqueue_struct *commit_wq; 242 struct work_struct commit_work; 243 244 struct workqueue_struct *writer_wq; 245 struct work_struct writer_work; 246 247 struct workqueue_struct *recalc_wq; 248 struct work_struct recalc_work; 249 u8 *recalc_buffer; 250 u8 *recalc_tags; 251 252 struct bio_list flush_bio_list; 253 254 unsigned long autocommit_jiffies; 255 struct timer_list autocommit_timer; 256 unsigned autocommit_msec; 257 258 wait_queue_head_t copy_to_journal_wait; 259 260 struct completion crypto_backoff; 261 262 bool journal_uptodate; 263 bool just_formatted; 264 bool recalculate_flag; 265 bool reset_recalculate_flag; 266 bool discard; 267 bool fix_padding; 268 bool fix_hmac; 269 bool legacy_recalculate; 270 271 struct alg_spec internal_hash_alg; 272 struct alg_spec journal_crypt_alg; 273 struct alg_spec journal_mac_alg; 274 275 atomic64_t number_of_mismatches; 276 277 struct notifier_block reboot_notifier; 278 }; 279 280 struct dm_integrity_range { 281 sector_t logical_sector; 282 sector_t n_sectors; 283 bool waiting; 284 union { 285 struct rb_node node; 286 struct { 287 struct task_struct *task; 288 struct list_head wait_entry; 289 }; 290 }; 291 }; 292 293 struct dm_integrity_io { 294 struct work_struct work; 295 296 struct dm_integrity_c *ic; 297 enum req_opf op; 298 bool fua; 299 300 struct dm_integrity_range range; 301 302 sector_t metadata_block; 303 unsigned metadata_offset; 304 305 atomic_t in_flight; 306 blk_status_t bi_status; 307 308 struct completion *completion; 309 310 struct dm_bio_details bio_details; 311 }; 312 313 struct journal_completion { 314 struct dm_integrity_c *ic; 315 atomic_t in_flight; 316 struct completion comp; 317 }; 318 319 struct journal_io { 320 struct dm_integrity_range range; 321 struct journal_completion *comp; 322 }; 323 324 struct bitmap_block_status { 325 struct work_struct work; 326 struct dm_integrity_c *ic; 327 unsigned idx; 328 unsigned long *bitmap; 329 struct bio_list bio_queue; 330 spinlock_t bio_queue_lock; 331 332 }; 333 334 static struct kmem_cache *journal_io_cache; 335 336 #define JOURNAL_IO_MEMPOOL 32 337 338 #ifdef DEBUG_PRINT 339 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 340 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...) 341 { 342 va_list args; 343 va_start(args, msg); 344 vprintk(msg, args); 345 va_end(args); 346 if (len) 347 pr_cont(":"); 348 while (len) { 349 pr_cont(" %02x", *bytes); 350 bytes++; 351 len--; 352 } 353 pr_cont("\n"); 354 } 355 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__) 356 #else 357 #define DEBUG_print(x, ...) do { } while (0) 358 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 359 #endif 360 361 static void dm_integrity_prepare(struct request *rq) 362 { 363 } 364 365 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes) 366 { 367 } 368 369 /* 370 * DM Integrity profile, protection is performed layer above (dm-crypt) 371 */ 372 static const struct blk_integrity_profile dm_integrity_profile = { 373 .name = "DM-DIF-EXT-TAG", 374 .generate_fn = NULL, 375 .verify_fn = NULL, 376 .prepare_fn = dm_integrity_prepare, 377 .complete_fn = dm_integrity_complete, 378 }; 379 380 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 381 static void integrity_bio_wait(struct work_struct *w); 382 static void dm_integrity_dtr(struct dm_target *ti); 383 384 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 385 { 386 if (err == -EILSEQ) 387 atomic64_inc(&ic->number_of_mismatches); 388 if (!cmpxchg(&ic->failed, 0, err)) 389 DMERR("Error on %s: %d", msg, err); 390 } 391 392 static int dm_integrity_failed(struct dm_integrity_c *ic) 393 { 394 return READ_ONCE(ic->failed); 395 } 396 397 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic) 398 { 399 if (ic->legacy_recalculate) 400 return false; 401 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ? 402 ic->internal_hash_alg.key || ic->journal_mac_alg.key : 403 ic->internal_hash_alg.key && !ic->journal_mac_alg.key) 404 return true; 405 return false; 406 } 407 408 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i, 409 unsigned j, unsigned char seq) 410 { 411 /* 412 * Xor the number with section and sector, so that if a piece of 413 * journal is written at wrong place, it is detected. 414 */ 415 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 416 } 417 418 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 419 sector_t *area, sector_t *offset) 420 { 421 if (!ic->meta_dev) { 422 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 423 *area = data_sector >> log2_interleave_sectors; 424 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1); 425 } else { 426 *area = 0; 427 *offset = data_sector; 428 } 429 } 430 431 #define sector_to_block(ic, n) \ 432 do { \ 433 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \ 434 (n) >>= (ic)->sb->log2_sectors_per_block; \ 435 } while (0) 436 437 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 438 sector_t offset, unsigned *metadata_offset) 439 { 440 __u64 ms; 441 unsigned mo; 442 443 ms = area << ic->sb->log2_interleave_sectors; 444 if (likely(ic->log2_metadata_run >= 0)) 445 ms += area << ic->log2_metadata_run; 446 else 447 ms += area * ic->metadata_run; 448 ms >>= ic->log2_buffer_sectors; 449 450 sector_to_block(ic, offset); 451 452 if (likely(ic->log2_tag_size >= 0)) { 453 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 454 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 455 } else { 456 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 457 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 458 } 459 *metadata_offset = mo; 460 return ms; 461 } 462 463 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 464 { 465 sector_t result; 466 467 if (ic->meta_dev) 468 return offset; 469 470 result = area << ic->sb->log2_interleave_sectors; 471 if (likely(ic->log2_metadata_run >= 0)) 472 result += (area + 1) << ic->log2_metadata_run; 473 else 474 result += (area + 1) * ic->metadata_run; 475 476 result += (sector_t)ic->initial_sectors + offset; 477 result += ic->start; 478 479 return result; 480 } 481 482 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr) 483 { 484 if (unlikely(*sec_ptr >= ic->journal_sections)) 485 *sec_ptr -= ic->journal_sections; 486 } 487 488 static void sb_set_version(struct dm_integrity_c *ic) 489 { 490 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) 491 ic->sb->version = SB_VERSION_5; 492 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) 493 ic->sb->version = SB_VERSION_4; 494 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) 495 ic->sb->version = SB_VERSION_3; 496 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 497 ic->sb->version = SB_VERSION_2; 498 else 499 ic->sb->version = SB_VERSION_1; 500 } 501 502 static int sb_mac(struct dm_integrity_c *ic, bool wr) 503 { 504 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 505 int r; 506 unsigned size = crypto_shash_digestsize(ic->journal_mac); 507 508 if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) { 509 dm_integrity_io_error(ic, "digest is too long", -EINVAL); 510 return -EINVAL; 511 } 512 513 desc->tfm = ic->journal_mac; 514 515 r = crypto_shash_init(desc); 516 if (unlikely(r < 0)) { 517 dm_integrity_io_error(ic, "crypto_shash_init", r); 518 return r; 519 } 520 521 r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size); 522 if (unlikely(r < 0)) { 523 dm_integrity_io_error(ic, "crypto_shash_update", r); 524 return r; 525 } 526 527 if (likely(wr)) { 528 r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size); 529 if (unlikely(r < 0)) { 530 dm_integrity_io_error(ic, "crypto_shash_final", r); 531 return r; 532 } 533 } else { 534 __u8 result[HASH_MAX_DIGESTSIZE]; 535 r = crypto_shash_final(desc, result); 536 if (unlikely(r < 0)) { 537 dm_integrity_io_error(ic, "crypto_shash_final", r); 538 return r; 539 } 540 if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) { 541 dm_integrity_io_error(ic, "superblock mac", -EILSEQ); 542 return -EILSEQ; 543 } 544 } 545 546 return 0; 547 } 548 549 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags) 550 { 551 struct dm_io_request io_req; 552 struct dm_io_region io_loc; 553 int r; 554 555 io_req.bi_op = op; 556 io_req.bi_op_flags = op_flags; 557 io_req.mem.type = DM_IO_KMEM; 558 io_req.mem.ptr.addr = ic->sb; 559 io_req.notify.fn = NULL; 560 io_req.client = ic->io; 561 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 562 io_loc.sector = ic->start; 563 io_loc.count = SB_SECTORS; 564 565 if (op == REQ_OP_WRITE) { 566 sb_set_version(ic); 567 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 568 r = sb_mac(ic, true); 569 if (unlikely(r)) 570 return r; 571 } 572 } 573 574 r = dm_io(&io_req, 1, &io_loc, NULL); 575 if (unlikely(r)) 576 return r; 577 578 if (op == REQ_OP_READ) { 579 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 580 r = sb_mac(ic, false); 581 if (unlikely(r)) 582 return r; 583 } 584 } 585 586 return 0; 587 } 588 589 #define BITMAP_OP_TEST_ALL_SET 0 590 #define BITMAP_OP_TEST_ALL_CLEAR 1 591 #define BITMAP_OP_SET 2 592 #define BITMAP_OP_CLEAR 3 593 594 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap, 595 sector_t sector, sector_t n_sectors, int mode) 596 { 597 unsigned long bit, end_bit, this_end_bit, page, end_page; 598 unsigned long *data; 599 600 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) { 601 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)", 602 sector, 603 n_sectors, 604 ic->sb->log2_sectors_per_block, 605 ic->log2_blocks_per_bitmap_bit, 606 mode); 607 BUG(); 608 } 609 610 if (unlikely(!n_sectors)) 611 return true; 612 613 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 614 end_bit = (sector + n_sectors - 1) >> 615 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 616 617 page = bit / (PAGE_SIZE * 8); 618 bit %= PAGE_SIZE * 8; 619 620 end_page = end_bit / (PAGE_SIZE * 8); 621 end_bit %= PAGE_SIZE * 8; 622 623 repeat: 624 if (page < end_page) { 625 this_end_bit = PAGE_SIZE * 8 - 1; 626 } else { 627 this_end_bit = end_bit; 628 } 629 630 data = lowmem_page_address(bitmap[page].page); 631 632 if (mode == BITMAP_OP_TEST_ALL_SET) { 633 while (bit <= this_end_bit) { 634 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 635 do { 636 if (data[bit / BITS_PER_LONG] != -1) 637 return false; 638 bit += BITS_PER_LONG; 639 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 640 continue; 641 } 642 if (!test_bit(bit, data)) 643 return false; 644 bit++; 645 } 646 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) { 647 while (bit <= this_end_bit) { 648 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 649 do { 650 if (data[bit / BITS_PER_LONG] != 0) 651 return false; 652 bit += BITS_PER_LONG; 653 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 654 continue; 655 } 656 if (test_bit(bit, data)) 657 return false; 658 bit++; 659 } 660 } else if (mode == BITMAP_OP_SET) { 661 while (bit <= this_end_bit) { 662 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 663 do { 664 data[bit / BITS_PER_LONG] = -1; 665 bit += BITS_PER_LONG; 666 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 667 continue; 668 } 669 __set_bit(bit, data); 670 bit++; 671 } 672 } else if (mode == BITMAP_OP_CLEAR) { 673 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1) 674 clear_page(data); 675 else while (bit <= this_end_bit) { 676 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 677 do { 678 data[bit / BITS_PER_LONG] = 0; 679 bit += BITS_PER_LONG; 680 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 681 continue; 682 } 683 __clear_bit(bit, data); 684 bit++; 685 } 686 } else { 687 BUG(); 688 } 689 690 if (unlikely(page < end_page)) { 691 bit = 0; 692 page++; 693 goto repeat; 694 } 695 696 return true; 697 } 698 699 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src) 700 { 701 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 702 unsigned i; 703 704 for (i = 0; i < n_bitmap_pages; i++) { 705 unsigned long *dst_data = lowmem_page_address(dst[i].page); 706 unsigned long *src_data = lowmem_page_address(src[i].page); 707 copy_page(dst_data, src_data); 708 } 709 } 710 711 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector) 712 { 713 unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 714 unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8); 715 716 BUG_ON(bitmap_block >= ic->n_bitmap_blocks); 717 return &ic->bbs[bitmap_block]; 718 } 719 720 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset, 721 bool e, const char *function) 722 { 723 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 724 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 725 726 if (unlikely(section >= ic->journal_sections) || 727 unlikely(offset >= limit)) { 728 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)", 729 function, section, offset, ic->journal_sections, limit); 730 BUG(); 731 } 732 #endif 733 } 734 735 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset, 736 unsigned *pl_index, unsigned *pl_offset) 737 { 738 unsigned sector; 739 740 access_journal_check(ic, section, offset, false, "page_list_location"); 741 742 sector = section * ic->journal_section_sectors + offset; 743 744 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 745 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 746 } 747 748 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 749 unsigned section, unsigned offset, unsigned *n_sectors) 750 { 751 unsigned pl_index, pl_offset; 752 char *va; 753 754 page_list_location(ic, section, offset, &pl_index, &pl_offset); 755 756 if (n_sectors) 757 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 758 759 va = lowmem_page_address(pl[pl_index].page); 760 761 return (struct journal_sector *)(va + pl_offset); 762 } 763 764 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset) 765 { 766 return access_page_list(ic, ic->journal, section, offset, NULL); 767 } 768 769 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n) 770 { 771 unsigned rel_sector, offset; 772 struct journal_sector *js; 773 774 access_journal_check(ic, section, n, true, "access_journal_entry"); 775 776 rel_sector = n % JOURNAL_BLOCK_SECTORS; 777 offset = n / JOURNAL_BLOCK_SECTORS; 778 779 js = access_journal(ic, section, rel_sector); 780 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 781 } 782 783 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n) 784 { 785 n <<= ic->sb->log2_sectors_per_block; 786 787 n += JOURNAL_BLOCK_SECTORS; 788 789 access_journal_check(ic, section, n, false, "access_journal_data"); 790 791 return access_journal(ic, section, n); 792 } 793 794 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE]) 795 { 796 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 797 int r; 798 unsigned j, size; 799 800 desc->tfm = ic->journal_mac; 801 802 r = crypto_shash_init(desc); 803 if (unlikely(r < 0)) { 804 dm_integrity_io_error(ic, "crypto_shash_init", r); 805 goto err; 806 } 807 808 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 809 uint64_t section_le; 810 811 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE); 812 if (unlikely(r < 0)) { 813 dm_integrity_io_error(ic, "crypto_shash_update", r); 814 goto err; 815 } 816 817 section_le = cpu_to_le64(section); 818 r = crypto_shash_update(desc, (__u8 *)§ion_le, sizeof section_le); 819 if (unlikely(r < 0)) { 820 dm_integrity_io_error(ic, "crypto_shash_update", r); 821 goto err; 822 } 823 } 824 825 for (j = 0; j < ic->journal_section_entries; j++) { 826 struct journal_entry *je = access_journal_entry(ic, section, j); 827 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector); 828 if (unlikely(r < 0)) { 829 dm_integrity_io_error(ic, "crypto_shash_update", r); 830 goto err; 831 } 832 } 833 834 size = crypto_shash_digestsize(ic->journal_mac); 835 836 if (likely(size <= JOURNAL_MAC_SIZE)) { 837 r = crypto_shash_final(desc, result); 838 if (unlikely(r < 0)) { 839 dm_integrity_io_error(ic, "crypto_shash_final", r); 840 goto err; 841 } 842 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 843 } else { 844 __u8 digest[HASH_MAX_DIGESTSIZE]; 845 846 if (WARN_ON(size > sizeof(digest))) { 847 dm_integrity_io_error(ic, "digest_size", -EINVAL); 848 goto err; 849 } 850 r = crypto_shash_final(desc, digest); 851 if (unlikely(r < 0)) { 852 dm_integrity_io_error(ic, "crypto_shash_final", r); 853 goto err; 854 } 855 memcpy(result, digest, JOURNAL_MAC_SIZE); 856 } 857 858 return; 859 err: 860 memset(result, 0, JOURNAL_MAC_SIZE); 861 } 862 863 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr) 864 { 865 __u8 result[JOURNAL_MAC_SIZE]; 866 unsigned j; 867 868 if (!ic->journal_mac) 869 return; 870 871 section_mac(ic, section, result); 872 873 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 874 struct journal_sector *js = access_journal(ic, section, j); 875 876 if (likely(wr)) 877 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 878 else { 879 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) 880 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 881 } 882 } 883 } 884 885 static void complete_journal_op(void *context) 886 { 887 struct journal_completion *comp = context; 888 BUG_ON(!atomic_read(&comp->in_flight)); 889 if (likely(atomic_dec_and_test(&comp->in_flight))) 890 complete(&comp->comp); 891 } 892 893 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 894 unsigned n_sections, struct journal_completion *comp) 895 { 896 struct async_submit_ctl submit; 897 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 898 unsigned pl_index, pl_offset, section_index; 899 struct page_list *source_pl, *target_pl; 900 901 if (likely(encrypt)) { 902 source_pl = ic->journal; 903 target_pl = ic->journal_io; 904 } else { 905 source_pl = ic->journal_io; 906 target_pl = ic->journal; 907 } 908 909 page_list_location(ic, section, 0, &pl_index, &pl_offset); 910 911 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 912 913 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 914 915 section_index = pl_index; 916 917 do { 918 size_t this_step; 919 struct page *src_pages[2]; 920 struct page *dst_page; 921 922 while (unlikely(pl_index == section_index)) { 923 unsigned dummy; 924 if (likely(encrypt)) 925 rw_section_mac(ic, section, true); 926 section++; 927 n_sections--; 928 if (!n_sections) 929 break; 930 page_list_location(ic, section, 0, §ion_index, &dummy); 931 } 932 933 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 934 dst_page = target_pl[pl_index].page; 935 src_pages[0] = source_pl[pl_index].page; 936 src_pages[1] = ic->journal_xor[pl_index].page; 937 938 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 939 940 pl_index++; 941 pl_offset = 0; 942 n_bytes -= this_step; 943 } while (n_bytes); 944 945 BUG_ON(n_sections); 946 947 async_tx_issue_pending_all(); 948 } 949 950 static void complete_journal_encrypt(struct crypto_async_request *req, int err) 951 { 952 struct journal_completion *comp = req->data; 953 if (unlikely(err)) { 954 if (likely(err == -EINPROGRESS)) { 955 complete(&comp->ic->crypto_backoff); 956 return; 957 } 958 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 959 } 960 complete_journal_op(comp); 961 } 962 963 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 964 { 965 int r; 966 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 967 complete_journal_encrypt, comp); 968 if (likely(encrypt)) 969 r = crypto_skcipher_encrypt(req); 970 else 971 r = crypto_skcipher_decrypt(req); 972 if (likely(!r)) 973 return false; 974 if (likely(r == -EINPROGRESS)) 975 return true; 976 if (likely(r == -EBUSY)) { 977 wait_for_completion(&comp->ic->crypto_backoff); 978 reinit_completion(&comp->ic->crypto_backoff); 979 return true; 980 } 981 dm_integrity_io_error(comp->ic, "encrypt", r); 982 return false; 983 } 984 985 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 986 unsigned n_sections, struct journal_completion *comp) 987 { 988 struct scatterlist **source_sg; 989 struct scatterlist **target_sg; 990 991 atomic_add(2, &comp->in_flight); 992 993 if (likely(encrypt)) { 994 source_sg = ic->journal_scatterlist; 995 target_sg = ic->journal_io_scatterlist; 996 } else { 997 source_sg = ic->journal_io_scatterlist; 998 target_sg = ic->journal_scatterlist; 999 } 1000 1001 do { 1002 struct skcipher_request *req; 1003 unsigned ivsize; 1004 char *iv; 1005 1006 if (likely(encrypt)) 1007 rw_section_mac(ic, section, true); 1008 1009 req = ic->sk_requests[section]; 1010 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 1011 iv = req->iv; 1012 1013 memcpy(iv, iv + ivsize, ivsize); 1014 1015 req->src = source_sg[section]; 1016 req->dst = target_sg[section]; 1017 1018 if (unlikely(do_crypt(encrypt, req, comp))) 1019 atomic_inc(&comp->in_flight); 1020 1021 section++; 1022 n_sections--; 1023 } while (n_sections); 1024 1025 atomic_dec(&comp->in_flight); 1026 complete_journal_op(comp); 1027 } 1028 1029 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 1030 unsigned n_sections, struct journal_completion *comp) 1031 { 1032 if (ic->journal_xor) 1033 return xor_journal(ic, encrypt, section, n_sections, comp); 1034 else 1035 return crypt_journal(ic, encrypt, section, n_sections, comp); 1036 } 1037 1038 static void complete_journal_io(unsigned long error, void *context) 1039 { 1040 struct journal_completion *comp = context; 1041 if (unlikely(error != 0)) 1042 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 1043 complete_journal_op(comp); 1044 } 1045 1046 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags, 1047 unsigned sector, unsigned n_sectors, struct journal_completion *comp) 1048 { 1049 struct dm_io_request io_req; 1050 struct dm_io_region io_loc; 1051 unsigned pl_index, pl_offset; 1052 int r; 1053 1054 if (unlikely(dm_integrity_failed(ic))) { 1055 if (comp) 1056 complete_journal_io(-1UL, comp); 1057 return; 1058 } 1059 1060 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1061 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1062 1063 io_req.bi_op = op; 1064 io_req.bi_op_flags = op_flags; 1065 io_req.mem.type = DM_IO_PAGE_LIST; 1066 if (ic->journal_io) 1067 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 1068 else 1069 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1070 io_req.mem.offset = pl_offset; 1071 if (likely(comp != NULL)) { 1072 io_req.notify.fn = complete_journal_io; 1073 io_req.notify.context = comp; 1074 } else { 1075 io_req.notify.fn = NULL; 1076 } 1077 io_req.client = ic->io; 1078 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 1079 io_loc.sector = ic->start + SB_SECTORS + sector; 1080 io_loc.count = n_sectors; 1081 1082 r = dm_io(&io_req, 1, &io_loc, NULL); 1083 if (unlikely(r)) { 1084 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r); 1085 if (comp) { 1086 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1087 complete_journal_io(-1UL, comp); 1088 } 1089 } 1090 } 1091 1092 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section, 1093 unsigned n_sections, struct journal_completion *comp) 1094 { 1095 unsigned sector, n_sectors; 1096 1097 sector = section * ic->journal_section_sectors; 1098 n_sectors = n_sections * ic->journal_section_sectors; 1099 1100 rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp); 1101 } 1102 1103 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections) 1104 { 1105 struct journal_completion io_comp; 1106 struct journal_completion crypt_comp_1; 1107 struct journal_completion crypt_comp_2; 1108 unsigned i; 1109 1110 io_comp.ic = ic; 1111 init_completion(&io_comp.comp); 1112 1113 if (commit_start + commit_sections <= ic->journal_sections) { 1114 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 1115 if (ic->journal_io) { 1116 crypt_comp_1.ic = ic; 1117 init_completion(&crypt_comp_1.comp); 1118 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1119 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 1120 wait_for_completion_io(&crypt_comp_1.comp); 1121 } else { 1122 for (i = 0; i < commit_sections; i++) 1123 rw_section_mac(ic, commit_start + i, true); 1124 } 1125 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start, 1126 commit_sections, &io_comp); 1127 } else { 1128 unsigned to_end; 1129 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 1130 to_end = ic->journal_sections - commit_start; 1131 if (ic->journal_io) { 1132 crypt_comp_1.ic = ic; 1133 init_completion(&crypt_comp_1.comp); 1134 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1135 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 1136 if (try_wait_for_completion(&crypt_comp_1.comp)) { 1137 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1138 reinit_completion(&crypt_comp_1.comp); 1139 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1140 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 1141 wait_for_completion_io(&crypt_comp_1.comp); 1142 } else { 1143 crypt_comp_2.ic = ic; 1144 init_completion(&crypt_comp_2.comp); 1145 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 1146 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 1147 wait_for_completion_io(&crypt_comp_1.comp); 1148 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1149 wait_for_completion_io(&crypt_comp_2.comp); 1150 } 1151 } else { 1152 for (i = 0; i < to_end; i++) 1153 rw_section_mac(ic, commit_start + i, true); 1154 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1155 for (i = 0; i < commit_sections - to_end; i++) 1156 rw_section_mac(ic, i, true); 1157 } 1158 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp); 1159 } 1160 1161 wait_for_completion_io(&io_comp.comp); 1162 } 1163 1164 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset, 1165 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data) 1166 { 1167 struct dm_io_request io_req; 1168 struct dm_io_region io_loc; 1169 int r; 1170 unsigned sector, pl_index, pl_offset; 1171 1172 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1)); 1173 1174 if (unlikely(dm_integrity_failed(ic))) { 1175 fn(-1UL, data); 1176 return; 1177 } 1178 1179 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 1180 1181 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1182 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1183 1184 io_req.bi_op = REQ_OP_WRITE; 1185 io_req.bi_op_flags = 0; 1186 io_req.mem.type = DM_IO_PAGE_LIST; 1187 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1188 io_req.mem.offset = pl_offset; 1189 io_req.notify.fn = fn; 1190 io_req.notify.context = data; 1191 io_req.client = ic->io; 1192 io_loc.bdev = ic->dev->bdev; 1193 io_loc.sector = target; 1194 io_loc.count = n_sectors; 1195 1196 r = dm_io(&io_req, 1, &io_loc, NULL); 1197 if (unlikely(r)) { 1198 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1199 fn(-1UL, data); 1200 } 1201 } 1202 1203 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2) 1204 { 1205 return range1->logical_sector < range2->logical_sector + range2->n_sectors && 1206 range1->logical_sector + range1->n_sectors > range2->logical_sector; 1207 } 1208 1209 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting) 1210 { 1211 struct rb_node **n = &ic->in_progress.rb_node; 1212 struct rb_node *parent; 1213 1214 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1)); 1215 1216 if (likely(check_waiting)) { 1217 struct dm_integrity_range *range; 1218 list_for_each_entry(range, &ic->wait_list, wait_entry) { 1219 if (unlikely(ranges_overlap(range, new_range))) 1220 return false; 1221 } 1222 } 1223 1224 parent = NULL; 1225 1226 while (*n) { 1227 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 1228 1229 parent = *n; 1230 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) { 1231 n = &range->node.rb_left; 1232 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) { 1233 n = &range->node.rb_right; 1234 } else { 1235 return false; 1236 } 1237 } 1238 1239 rb_link_node(&new_range->node, parent, n); 1240 rb_insert_color(&new_range->node, &ic->in_progress); 1241 1242 return true; 1243 } 1244 1245 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1246 { 1247 rb_erase(&range->node, &ic->in_progress); 1248 while (unlikely(!list_empty(&ic->wait_list))) { 1249 struct dm_integrity_range *last_range = 1250 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry); 1251 struct task_struct *last_range_task; 1252 last_range_task = last_range->task; 1253 list_del(&last_range->wait_entry); 1254 if (!add_new_range(ic, last_range, false)) { 1255 last_range->task = last_range_task; 1256 list_add(&last_range->wait_entry, &ic->wait_list); 1257 break; 1258 } 1259 last_range->waiting = false; 1260 wake_up_process(last_range_task); 1261 } 1262 } 1263 1264 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1265 { 1266 unsigned long flags; 1267 1268 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1269 remove_range_unlocked(ic, range); 1270 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1271 } 1272 1273 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1274 { 1275 new_range->waiting = true; 1276 list_add_tail(&new_range->wait_entry, &ic->wait_list); 1277 new_range->task = current; 1278 do { 1279 __set_current_state(TASK_UNINTERRUPTIBLE); 1280 spin_unlock_irq(&ic->endio_wait.lock); 1281 io_schedule(); 1282 spin_lock_irq(&ic->endio_wait.lock); 1283 } while (unlikely(new_range->waiting)); 1284 } 1285 1286 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1287 { 1288 if (unlikely(!add_new_range(ic, new_range, true))) 1289 wait_and_add_new_range(ic, new_range); 1290 } 1291 1292 static void init_journal_node(struct journal_node *node) 1293 { 1294 RB_CLEAR_NODE(&node->node); 1295 node->sector = (sector_t)-1; 1296 } 1297 1298 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 1299 { 1300 struct rb_node **link; 1301 struct rb_node *parent; 1302 1303 node->sector = sector; 1304 BUG_ON(!RB_EMPTY_NODE(&node->node)); 1305 1306 link = &ic->journal_tree_root.rb_node; 1307 parent = NULL; 1308 1309 while (*link) { 1310 struct journal_node *j; 1311 parent = *link; 1312 j = container_of(parent, struct journal_node, node); 1313 if (sector < j->sector) 1314 link = &j->node.rb_left; 1315 else 1316 link = &j->node.rb_right; 1317 } 1318 1319 rb_link_node(&node->node, parent, link); 1320 rb_insert_color(&node->node, &ic->journal_tree_root); 1321 } 1322 1323 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 1324 { 1325 BUG_ON(RB_EMPTY_NODE(&node->node)); 1326 rb_erase(&node->node, &ic->journal_tree_root); 1327 init_journal_node(node); 1328 } 1329 1330 #define NOT_FOUND (-1U) 1331 1332 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 1333 { 1334 struct rb_node *n = ic->journal_tree_root.rb_node; 1335 unsigned found = NOT_FOUND; 1336 *next_sector = (sector_t)-1; 1337 while (n) { 1338 struct journal_node *j = container_of(n, struct journal_node, node); 1339 if (sector == j->sector) { 1340 found = j - ic->journal_tree; 1341 } 1342 if (sector < j->sector) { 1343 *next_sector = j->sector; 1344 n = j->node.rb_left; 1345 } else { 1346 n = j->node.rb_right; 1347 } 1348 } 1349 1350 return found; 1351 } 1352 1353 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector) 1354 { 1355 struct journal_node *node, *next_node; 1356 struct rb_node *next; 1357 1358 if (unlikely(pos >= ic->journal_entries)) 1359 return false; 1360 node = &ic->journal_tree[pos]; 1361 if (unlikely(RB_EMPTY_NODE(&node->node))) 1362 return false; 1363 if (unlikely(node->sector != sector)) 1364 return false; 1365 1366 next = rb_next(&node->node); 1367 if (unlikely(!next)) 1368 return true; 1369 1370 next_node = container_of(next, struct journal_node, node); 1371 return next_node->sector != sector; 1372 } 1373 1374 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 1375 { 1376 struct rb_node *next; 1377 struct journal_node *next_node; 1378 unsigned next_section; 1379 1380 BUG_ON(RB_EMPTY_NODE(&node->node)); 1381 1382 next = rb_next(&node->node); 1383 if (unlikely(!next)) 1384 return false; 1385 1386 next_node = container_of(next, struct journal_node, node); 1387 1388 if (next_node->sector != node->sector) 1389 return false; 1390 1391 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries; 1392 if (next_section >= ic->committed_section && 1393 next_section < ic->committed_section + ic->n_committed_sections) 1394 return true; 1395 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1396 return true; 1397 1398 return false; 1399 } 1400 1401 #define TAG_READ 0 1402 #define TAG_WRITE 1 1403 #define TAG_CMP 2 1404 1405 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1406 unsigned *metadata_offset, unsigned total_size, int op) 1407 { 1408 #define MAY_BE_FILLER 1 1409 #define MAY_BE_HASH 2 1410 unsigned hash_offset = 0; 1411 unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1412 1413 do { 1414 unsigned char *data, *dp; 1415 struct dm_buffer *b; 1416 unsigned to_copy; 1417 int r; 1418 1419 r = dm_integrity_failed(ic); 1420 if (unlikely(r)) 1421 return r; 1422 1423 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1424 if (IS_ERR(data)) 1425 return PTR_ERR(data); 1426 1427 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1428 dp = data + *metadata_offset; 1429 if (op == TAG_READ) { 1430 memcpy(tag, dp, to_copy); 1431 } else if (op == TAG_WRITE) { 1432 if (memcmp(dp, tag, to_copy)) { 1433 memcpy(dp, tag, to_copy); 1434 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); 1435 } 1436 } else { 1437 /* e.g.: op == TAG_CMP */ 1438 1439 if (likely(is_power_of_2(ic->tag_size))) { 1440 if (unlikely(memcmp(dp, tag, to_copy))) 1441 if (unlikely(!ic->discard) || 1442 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) { 1443 goto thorough_test; 1444 } 1445 } else { 1446 unsigned i, ts; 1447 thorough_test: 1448 ts = total_size; 1449 1450 for (i = 0; i < to_copy; i++, ts--) { 1451 if (unlikely(dp[i] != tag[i])) 1452 may_be &= ~MAY_BE_HASH; 1453 if (likely(dp[i] != DISCARD_FILLER)) 1454 may_be &= ~MAY_BE_FILLER; 1455 hash_offset++; 1456 if (unlikely(hash_offset == ic->tag_size)) { 1457 if (unlikely(!may_be)) { 1458 dm_bufio_release(b); 1459 return ts; 1460 } 1461 hash_offset = 0; 1462 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1463 } 1464 } 1465 } 1466 } 1467 dm_bufio_release(b); 1468 1469 tag += to_copy; 1470 *metadata_offset += to_copy; 1471 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1472 (*metadata_block)++; 1473 *metadata_offset = 0; 1474 } 1475 1476 if (unlikely(!is_power_of_2(ic->tag_size))) { 1477 hash_offset = (hash_offset + to_copy) % ic->tag_size; 1478 } 1479 1480 total_size -= to_copy; 1481 } while (unlikely(total_size)); 1482 1483 return 0; 1484 #undef MAY_BE_FILLER 1485 #undef MAY_BE_HASH 1486 } 1487 1488 struct flush_request { 1489 struct dm_io_request io_req; 1490 struct dm_io_region io_reg; 1491 struct dm_integrity_c *ic; 1492 struct completion comp; 1493 }; 1494 1495 static void flush_notify(unsigned long error, void *fr_) 1496 { 1497 struct flush_request *fr = fr_; 1498 if (unlikely(error != 0)) 1499 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO); 1500 complete(&fr->comp); 1501 } 1502 1503 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data) 1504 { 1505 int r; 1506 1507 struct flush_request fr; 1508 1509 if (!ic->meta_dev) 1510 flush_data = false; 1511 if (flush_data) { 1512 fr.io_req.bi_op = REQ_OP_WRITE, 1513 fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC, 1514 fr.io_req.mem.type = DM_IO_KMEM, 1515 fr.io_req.mem.ptr.addr = NULL, 1516 fr.io_req.notify.fn = flush_notify, 1517 fr.io_req.notify.context = &fr; 1518 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio), 1519 fr.io_reg.bdev = ic->dev->bdev, 1520 fr.io_reg.sector = 0, 1521 fr.io_reg.count = 0, 1522 fr.ic = ic; 1523 init_completion(&fr.comp); 1524 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL); 1525 BUG_ON(r); 1526 } 1527 1528 r = dm_bufio_write_dirty_buffers(ic->bufio); 1529 if (unlikely(r)) 1530 dm_integrity_io_error(ic, "writing tags", r); 1531 1532 if (flush_data) 1533 wait_for_completion(&fr.comp); 1534 } 1535 1536 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1537 { 1538 DECLARE_WAITQUEUE(wait, current); 1539 __add_wait_queue(&ic->endio_wait, &wait); 1540 __set_current_state(TASK_UNINTERRUPTIBLE); 1541 spin_unlock_irq(&ic->endio_wait.lock); 1542 io_schedule(); 1543 spin_lock_irq(&ic->endio_wait.lock); 1544 __remove_wait_queue(&ic->endio_wait, &wait); 1545 } 1546 1547 static void autocommit_fn(struct timer_list *t) 1548 { 1549 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer); 1550 1551 if (likely(!dm_integrity_failed(ic))) 1552 queue_work(ic->commit_wq, &ic->commit_work); 1553 } 1554 1555 static void schedule_autocommit(struct dm_integrity_c *ic) 1556 { 1557 if (!timer_pending(&ic->autocommit_timer)) 1558 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1559 } 1560 1561 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1562 { 1563 struct bio *bio; 1564 unsigned long flags; 1565 1566 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1567 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1568 bio_list_add(&ic->flush_bio_list, bio); 1569 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1570 1571 queue_work(ic->commit_wq, &ic->commit_work); 1572 } 1573 1574 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1575 { 1576 int r = dm_integrity_failed(ic); 1577 if (unlikely(r) && !bio->bi_status) 1578 bio->bi_status = errno_to_blk_status(r); 1579 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) { 1580 unsigned long flags; 1581 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1582 bio_list_add(&ic->synchronous_bios, bio); 1583 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 1584 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1585 return; 1586 } 1587 bio_endio(bio); 1588 } 1589 1590 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1591 { 1592 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1593 1594 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1595 submit_flush_bio(ic, dio); 1596 else 1597 do_endio(ic, bio); 1598 } 1599 1600 static void dec_in_flight(struct dm_integrity_io *dio) 1601 { 1602 if (atomic_dec_and_test(&dio->in_flight)) { 1603 struct dm_integrity_c *ic = dio->ic; 1604 struct bio *bio; 1605 1606 remove_range(ic, &dio->range); 1607 1608 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD)) 1609 schedule_autocommit(ic); 1610 1611 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1612 1613 if (unlikely(dio->bi_status) && !bio->bi_status) 1614 bio->bi_status = dio->bi_status; 1615 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1616 dio->range.logical_sector += dio->range.n_sectors; 1617 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1618 INIT_WORK(&dio->work, integrity_bio_wait); 1619 queue_work(ic->offload_wq, &dio->work); 1620 return; 1621 } 1622 do_endio_flush(ic, dio); 1623 } 1624 } 1625 1626 static void integrity_end_io(struct bio *bio) 1627 { 1628 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1629 1630 dm_bio_restore(&dio->bio_details, bio); 1631 if (bio->bi_integrity) 1632 bio->bi_opf |= REQ_INTEGRITY; 1633 1634 if (dio->completion) 1635 complete(dio->completion); 1636 1637 dec_in_flight(dio); 1638 } 1639 1640 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1641 const char *data, char *result) 1642 { 1643 __u64 sector_le = cpu_to_le64(sector); 1644 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1645 int r; 1646 unsigned digest_size; 1647 1648 req->tfm = ic->internal_hash; 1649 1650 r = crypto_shash_init(req); 1651 if (unlikely(r < 0)) { 1652 dm_integrity_io_error(ic, "crypto_shash_init", r); 1653 goto failed; 1654 } 1655 1656 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 1657 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE); 1658 if (unlikely(r < 0)) { 1659 dm_integrity_io_error(ic, "crypto_shash_update", r); 1660 goto failed; 1661 } 1662 } 1663 1664 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof sector_le); 1665 if (unlikely(r < 0)) { 1666 dm_integrity_io_error(ic, "crypto_shash_update", r); 1667 goto failed; 1668 } 1669 1670 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1671 if (unlikely(r < 0)) { 1672 dm_integrity_io_error(ic, "crypto_shash_update", r); 1673 goto failed; 1674 } 1675 1676 r = crypto_shash_final(req, result); 1677 if (unlikely(r < 0)) { 1678 dm_integrity_io_error(ic, "crypto_shash_final", r); 1679 goto failed; 1680 } 1681 1682 digest_size = crypto_shash_digestsize(ic->internal_hash); 1683 if (unlikely(digest_size < ic->tag_size)) 1684 memset(result + digest_size, 0, ic->tag_size - digest_size); 1685 1686 return; 1687 1688 failed: 1689 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1690 get_random_bytes(result, ic->tag_size); 1691 } 1692 1693 static void integrity_metadata(struct work_struct *w) 1694 { 1695 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1696 struct dm_integrity_c *ic = dio->ic; 1697 1698 int r; 1699 1700 if (ic->internal_hash) { 1701 struct bvec_iter iter; 1702 struct bio_vec bv; 1703 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1704 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1705 char *checksums; 1706 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1707 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1708 sector_t sector; 1709 unsigned sectors_to_process; 1710 1711 if (unlikely(ic->mode == 'R')) 1712 goto skip_io; 1713 1714 if (likely(dio->op != REQ_OP_DISCARD)) 1715 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1716 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1717 else 1718 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1719 if (!checksums) { 1720 checksums = checksums_onstack; 1721 if (WARN_ON(extra_space && 1722 digest_size > sizeof(checksums_onstack))) { 1723 r = -EINVAL; 1724 goto error; 1725 } 1726 } 1727 1728 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1729 sector_t bi_sector = dio->bio_details.bi_iter.bi_sector; 1730 unsigned bi_size = dio->bio_details.bi_iter.bi_size; 1731 unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE; 1732 unsigned max_blocks = max_size / ic->tag_size; 1733 memset(checksums, DISCARD_FILLER, max_size); 1734 1735 while (bi_size) { 1736 unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1737 this_step_blocks = min(this_step_blocks, max_blocks); 1738 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1739 this_step_blocks * ic->tag_size, TAG_WRITE); 1740 if (unlikely(r)) { 1741 if (likely(checksums != checksums_onstack)) 1742 kfree(checksums); 1743 goto error; 1744 } 1745 1746 /*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) { 1747 printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size); 1748 printk("BUGG: this_step_blocks: %u\n", this_step_blocks); 1749 BUG(); 1750 }*/ 1751 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1752 bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block; 1753 } 1754 1755 if (likely(checksums != checksums_onstack)) 1756 kfree(checksums); 1757 goto skip_io; 1758 } 1759 1760 sector = dio->range.logical_sector; 1761 sectors_to_process = dio->range.n_sectors; 1762 1763 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) { 1764 unsigned pos; 1765 char *mem, *checksums_ptr; 1766 1767 again: 1768 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset; 1769 pos = 0; 1770 checksums_ptr = checksums; 1771 do { 1772 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1773 checksums_ptr += ic->tag_size; 1774 sectors_to_process -= ic->sectors_per_block; 1775 pos += ic->sectors_per_block << SECTOR_SHIFT; 1776 sector += ic->sectors_per_block; 1777 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack); 1778 kunmap_atomic(mem); 1779 1780 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1781 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE); 1782 if (unlikely(r)) { 1783 if (r > 0) { 1784 char b[BDEVNAME_SIZE]; 1785 DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", bio_devname(bio, b), 1786 (sector - ((r + ic->tag_size - 1) / ic->tag_size))); 1787 r = -EILSEQ; 1788 atomic64_inc(&ic->number_of_mismatches); 1789 } 1790 if (likely(checksums != checksums_onstack)) 1791 kfree(checksums); 1792 goto error; 1793 } 1794 1795 if (!sectors_to_process) 1796 break; 1797 1798 if (unlikely(pos < bv.bv_len)) { 1799 bv.bv_offset += pos; 1800 bv.bv_len -= pos; 1801 goto again; 1802 } 1803 } 1804 1805 if (likely(checksums != checksums_onstack)) 1806 kfree(checksums); 1807 } else { 1808 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity; 1809 1810 if (bip) { 1811 struct bio_vec biv; 1812 struct bvec_iter iter; 1813 unsigned data_to_process = dio->range.n_sectors; 1814 sector_to_block(ic, data_to_process); 1815 data_to_process *= ic->tag_size; 1816 1817 bip_for_each_vec(biv, bip, iter) { 1818 unsigned char *tag; 1819 unsigned this_len; 1820 1821 BUG_ON(PageHighMem(biv.bv_page)); 1822 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1823 this_len = min(biv.bv_len, data_to_process); 1824 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1825 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE); 1826 if (unlikely(r)) 1827 goto error; 1828 data_to_process -= this_len; 1829 if (!data_to_process) 1830 break; 1831 } 1832 } 1833 } 1834 skip_io: 1835 dec_in_flight(dio); 1836 return; 1837 error: 1838 dio->bi_status = errno_to_blk_status(r); 1839 dec_in_flight(dio); 1840 } 1841 1842 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1843 { 1844 struct dm_integrity_c *ic = ti->private; 1845 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1846 struct bio_integrity_payload *bip; 1847 1848 sector_t area, offset; 1849 1850 dio->ic = ic; 1851 dio->bi_status = 0; 1852 dio->op = bio_op(bio); 1853 1854 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1855 if (ti->max_io_len) { 1856 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector); 1857 unsigned log2_max_io_len = __fls(ti->max_io_len); 1858 sector_t start_boundary = sec >> log2_max_io_len; 1859 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len; 1860 if (start_boundary < end_boundary) { 1861 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1)); 1862 dm_accept_partial_bio(bio, len); 1863 } 1864 } 1865 } 1866 1867 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1868 submit_flush_bio(ic, dio); 1869 return DM_MAPIO_SUBMITTED; 1870 } 1871 1872 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1873 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA; 1874 if (unlikely(dio->fua)) { 1875 /* 1876 * Don't pass down the FUA flag because we have to flush 1877 * disk cache anyway. 1878 */ 1879 bio->bi_opf &= ~REQ_FUA; 1880 } 1881 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1882 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1883 dio->range.logical_sector, bio_sectors(bio), 1884 ic->provided_data_sectors); 1885 return DM_MAPIO_KILL; 1886 } 1887 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) { 1888 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1889 ic->sectors_per_block, 1890 dio->range.logical_sector, bio_sectors(bio)); 1891 return DM_MAPIO_KILL; 1892 } 1893 1894 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) { 1895 struct bvec_iter iter; 1896 struct bio_vec bv; 1897 bio_for_each_segment(bv, bio, iter) { 1898 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1899 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1900 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1901 return DM_MAPIO_KILL; 1902 } 1903 } 1904 } 1905 1906 bip = bio_integrity(bio); 1907 if (!ic->internal_hash) { 1908 if (bip) { 1909 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1910 if (ic->log2_tag_size >= 0) 1911 wanted_tag_size <<= ic->log2_tag_size; 1912 else 1913 wanted_tag_size *= ic->tag_size; 1914 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 1915 DMERR("Invalid integrity data size %u, expected %u", 1916 bip->bip_iter.bi_size, wanted_tag_size); 1917 return DM_MAPIO_KILL; 1918 } 1919 } 1920 } else { 1921 if (unlikely(bip != NULL)) { 1922 DMERR("Unexpected integrity data when using internal hash"); 1923 return DM_MAPIO_KILL; 1924 } 1925 } 1926 1927 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ)) 1928 return DM_MAPIO_KILL; 1929 1930 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1931 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1932 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 1933 1934 dm_integrity_map_continue(dio, true); 1935 return DM_MAPIO_SUBMITTED; 1936 } 1937 1938 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 1939 unsigned journal_section, unsigned journal_entry) 1940 { 1941 struct dm_integrity_c *ic = dio->ic; 1942 sector_t logical_sector; 1943 unsigned n_sectors; 1944 1945 logical_sector = dio->range.logical_sector; 1946 n_sectors = dio->range.n_sectors; 1947 do { 1948 struct bio_vec bv = bio_iovec(bio); 1949 char *mem; 1950 1951 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 1952 bv.bv_len = n_sectors << SECTOR_SHIFT; 1953 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 1954 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 1955 retry_kmap: 1956 mem = kmap_atomic(bv.bv_page); 1957 if (likely(dio->op == REQ_OP_WRITE)) 1958 flush_dcache_page(bv.bv_page); 1959 1960 do { 1961 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 1962 1963 if (unlikely(dio->op == REQ_OP_READ)) { 1964 struct journal_sector *js; 1965 char *mem_ptr; 1966 unsigned s; 1967 1968 if (unlikely(journal_entry_is_inprogress(je))) { 1969 flush_dcache_page(bv.bv_page); 1970 kunmap_atomic(mem); 1971 1972 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 1973 goto retry_kmap; 1974 } 1975 smp_rmb(); 1976 BUG_ON(journal_entry_get_sector(je) != logical_sector); 1977 js = access_journal_data(ic, journal_section, journal_entry); 1978 mem_ptr = mem + bv.bv_offset; 1979 s = 0; 1980 do { 1981 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 1982 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 1983 js++; 1984 mem_ptr += 1 << SECTOR_SHIFT; 1985 } while (++s < ic->sectors_per_block); 1986 #ifdef INTERNAL_VERIFY 1987 if (ic->internal_hash) { 1988 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1989 1990 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 1991 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 1992 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx", 1993 logical_sector); 1994 } 1995 } 1996 #endif 1997 } 1998 1999 if (!ic->internal_hash) { 2000 struct bio_integrity_payload *bip = bio_integrity(bio); 2001 unsigned tag_todo = ic->tag_size; 2002 char *tag_ptr = journal_entry_tag(ic, je); 2003 2004 if (bip) do { 2005 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 2006 unsigned tag_now = min(biv.bv_len, tag_todo); 2007 char *tag_addr; 2008 BUG_ON(PageHighMem(biv.bv_page)); 2009 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset; 2010 if (likely(dio->op == REQ_OP_WRITE)) 2011 memcpy(tag_ptr, tag_addr, tag_now); 2012 else 2013 memcpy(tag_addr, tag_ptr, tag_now); 2014 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 2015 tag_ptr += tag_now; 2016 tag_todo -= tag_now; 2017 } while (unlikely(tag_todo)); else { 2018 if (likely(dio->op == REQ_OP_WRITE)) 2019 memset(tag_ptr, 0, tag_todo); 2020 } 2021 } 2022 2023 if (likely(dio->op == REQ_OP_WRITE)) { 2024 struct journal_sector *js; 2025 unsigned s; 2026 2027 js = access_journal_data(ic, journal_section, journal_entry); 2028 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 2029 2030 s = 0; 2031 do { 2032 je->last_bytes[s] = js[s].commit_id; 2033 } while (++s < ic->sectors_per_block); 2034 2035 if (ic->internal_hash) { 2036 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 2037 if (unlikely(digest_size > ic->tag_size)) { 2038 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 2039 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 2040 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 2041 } else 2042 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 2043 } 2044 2045 journal_entry_set_sector(je, logical_sector); 2046 } 2047 logical_sector += ic->sectors_per_block; 2048 2049 journal_entry++; 2050 if (unlikely(journal_entry == ic->journal_section_entries)) { 2051 journal_entry = 0; 2052 journal_section++; 2053 wraparound_section(ic, &journal_section); 2054 } 2055 2056 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 2057 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 2058 2059 if (unlikely(dio->op == REQ_OP_READ)) 2060 flush_dcache_page(bv.bv_page); 2061 kunmap_atomic(mem); 2062 } while (n_sectors); 2063 2064 if (likely(dio->op == REQ_OP_WRITE)) { 2065 smp_mb(); 2066 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 2067 wake_up(&ic->copy_to_journal_wait); 2068 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) { 2069 queue_work(ic->commit_wq, &ic->commit_work); 2070 } else { 2071 schedule_autocommit(ic); 2072 } 2073 } else { 2074 remove_range(ic, &dio->range); 2075 } 2076 2077 if (unlikely(bio->bi_iter.bi_size)) { 2078 sector_t area, offset; 2079 2080 dio->range.logical_sector = logical_sector; 2081 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 2082 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 2083 return true; 2084 } 2085 2086 return false; 2087 } 2088 2089 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 2090 { 2091 struct dm_integrity_c *ic = dio->ic; 2092 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 2093 unsigned journal_section, journal_entry; 2094 unsigned journal_read_pos; 2095 struct completion read_comp; 2096 bool discard_retried = false; 2097 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ; 2098 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D') 2099 need_sync_io = true; 2100 2101 if (need_sync_io && from_map) { 2102 INIT_WORK(&dio->work, integrity_bio_wait); 2103 queue_work(ic->offload_wq, &dio->work); 2104 return; 2105 } 2106 2107 lock_retry: 2108 spin_lock_irq(&ic->endio_wait.lock); 2109 retry: 2110 if (unlikely(dm_integrity_failed(ic))) { 2111 spin_unlock_irq(&ic->endio_wait.lock); 2112 do_endio(ic, bio); 2113 return; 2114 } 2115 dio->range.n_sectors = bio_sectors(bio); 2116 journal_read_pos = NOT_FOUND; 2117 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) { 2118 if (dio->op == REQ_OP_WRITE) { 2119 unsigned next_entry, i, pos; 2120 unsigned ws, we, range_sectors; 2121 2122 dio->range.n_sectors = min(dio->range.n_sectors, 2123 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block); 2124 if (unlikely(!dio->range.n_sectors)) { 2125 if (from_map) 2126 goto offload_to_thread; 2127 sleep_on_endio_wait(ic); 2128 goto retry; 2129 } 2130 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 2131 ic->free_sectors -= range_sectors; 2132 journal_section = ic->free_section; 2133 journal_entry = ic->free_section_entry; 2134 2135 next_entry = ic->free_section_entry + range_sectors; 2136 ic->free_section_entry = next_entry % ic->journal_section_entries; 2137 ic->free_section += next_entry / ic->journal_section_entries; 2138 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 2139 wraparound_section(ic, &ic->free_section); 2140 2141 pos = journal_section * ic->journal_section_entries + journal_entry; 2142 ws = journal_section; 2143 we = journal_entry; 2144 i = 0; 2145 do { 2146 struct journal_entry *je; 2147 2148 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 2149 pos++; 2150 if (unlikely(pos >= ic->journal_entries)) 2151 pos = 0; 2152 2153 je = access_journal_entry(ic, ws, we); 2154 BUG_ON(!journal_entry_is_unused(je)); 2155 journal_entry_set_inprogress(je); 2156 we++; 2157 if (unlikely(we == ic->journal_section_entries)) { 2158 we = 0; 2159 ws++; 2160 wraparound_section(ic, &ws); 2161 } 2162 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 2163 2164 spin_unlock_irq(&ic->endio_wait.lock); 2165 goto journal_read_write; 2166 } else { 2167 sector_t next_sector; 2168 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2169 if (likely(journal_read_pos == NOT_FOUND)) { 2170 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 2171 dio->range.n_sectors = next_sector - dio->range.logical_sector; 2172 } else { 2173 unsigned i; 2174 unsigned jp = journal_read_pos + 1; 2175 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 2176 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 2177 break; 2178 } 2179 dio->range.n_sectors = i; 2180 } 2181 } 2182 } 2183 if (unlikely(!add_new_range(ic, &dio->range, true))) { 2184 /* 2185 * We must not sleep in the request routine because it could 2186 * stall bios on current->bio_list. 2187 * So, we offload the bio to a workqueue if we have to sleep. 2188 */ 2189 if (from_map) { 2190 offload_to_thread: 2191 spin_unlock_irq(&ic->endio_wait.lock); 2192 INIT_WORK(&dio->work, integrity_bio_wait); 2193 queue_work(ic->wait_wq, &dio->work); 2194 return; 2195 } 2196 if (journal_read_pos != NOT_FOUND) 2197 dio->range.n_sectors = ic->sectors_per_block; 2198 wait_and_add_new_range(ic, &dio->range); 2199 /* 2200 * wait_and_add_new_range drops the spinlock, so the journal 2201 * may have been changed arbitrarily. We need to recheck. 2202 * To simplify the code, we restrict I/O size to just one block. 2203 */ 2204 if (journal_read_pos != NOT_FOUND) { 2205 sector_t next_sector; 2206 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2207 if (unlikely(new_pos != journal_read_pos)) { 2208 remove_range_unlocked(ic, &dio->range); 2209 goto retry; 2210 } 2211 } 2212 } 2213 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) { 2214 sector_t next_sector; 2215 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2216 if (unlikely(new_pos != NOT_FOUND) || 2217 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) { 2218 remove_range_unlocked(ic, &dio->range); 2219 spin_unlock_irq(&ic->endio_wait.lock); 2220 queue_work(ic->commit_wq, &ic->commit_work); 2221 flush_workqueue(ic->commit_wq); 2222 queue_work(ic->writer_wq, &ic->writer_work); 2223 flush_workqueue(ic->writer_wq); 2224 discard_retried = true; 2225 goto lock_retry; 2226 } 2227 } 2228 spin_unlock_irq(&ic->endio_wait.lock); 2229 2230 if (unlikely(journal_read_pos != NOT_FOUND)) { 2231 journal_section = journal_read_pos / ic->journal_section_entries; 2232 journal_entry = journal_read_pos % ic->journal_section_entries; 2233 goto journal_read_write; 2234 } 2235 2236 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) { 2237 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2238 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2239 struct bitmap_block_status *bbs; 2240 2241 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector); 2242 spin_lock(&bbs->bio_queue_lock); 2243 bio_list_add(&bbs->bio_queue, bio); 2244 spin_unlock(&bbs->bio_queue_lock); 2245 queue_work(ic->writer_wq, &bbs->work); 2246 return; 2247 } 2248 } 2249 2250 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 2251 2252 if (need_sync_io) { 2253 init_completion(&read_comp); 2254 dio->completion = &read_comp; 2255 } else 2256 dio->completion = NULL; 2257 2258 dm_bio_record(&dio->bio_details, bio); 2259 bio_set_dev(bio, ic->dev->bdev); 2260 bio->bi_integrity = NULL; 2261 bio->bi_opf &= ~REQ_INTEGRITY; 2262 bio->bi_end_io = integrity_end_io; 2263 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 2264 2265 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) { 2266 integrity_metadata(&dio->work); 2267 dm_integrity_flush_buffers(ic, false); 2268 2269 dio->in_flight = (atomic_t)ATOMIC_INIT(1); 2270 dio->completion = NULL; 2271 2272 submit_bio_noacct(bio); 2273 2274 return; 2275 } 2276 2277 submit_bio_noacct(bio); 2278 2279 if (need_sync_io) { 2280 wait_for_completion_io(&read_comp); 2281 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 2282 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector)) 2283 goto skip_check; 2284 if (ic->mode == 'B') { 2285 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector, 2286 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2287 goto skip_check; 2288 } 2289 2290 if (likely(!bio->bi_status)) 2291 integrity_metadata(&dio->work); 2292 else 2293 skip_check: 2294 dec_in_flight(dio); 2295 2296 } else { 2297 INIT_WORK(&dio->work, integrity_metadata); 2298 queue_work(ic->metadata_wq, &dio->work); 2299 } 2300 2301 return; 2302 2303 journal_read_write: 2304 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 2305 goto lock_retry; 2306 2307 do_endio_flush(ic, dio); 2308 } 2309 2310 2311 static void integrity_bio_wait(struct work_struct *w) 2312 { 2313 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 2314 2315 dm_integrity_map_continue(dio, false); 2316 } 2317 2318 static void pad_uncommitted(struct dm_integrity_c *ic) 2319 { 2320 if (ic->free_section_entry) { 2321 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 2322 ic->free_section_entry = 0; 2323 ic->free_section++; 2324 wraparound_section(ic, &ic->free_section); 2325 ic->n_uncommitted_sections++; 2326 } 2327 if (WARN_ON(ic->journal_sections * ic->journal_section_entries != 2328 (ic->n_uncommitted_sections + ic->n_committed_sections) * 2329 ic->journal_section_entries + ic->free_sectors)) { 2330 DMCRIT("journal_sections %u, journal_section_entries %u, " 2331 "n_uncommitted_sections %u, n_committed_sections %u, " 2332 "journal_section_entries %u, free_sectors %u", 2333 ic->journal_sections, ic->journal_section_entries, 2334 ic->n_uncommitted_sections, ic->n_committed_sections, 2335 ic->journal_section_entries, ic->free_sectors); 2336 } 2337 } 2338 2339 static void integrity_commit(struct work_struct *w) 2340 { 2341 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 2342 unsigned commit_start, commit_sections; 2343 unsigned i, j, n; 2344 struct bio *flushes; 2345 2346 del_timer(&ic->autocommit_timer); 2347 2348 spin_lock_irq(&ic->endio_wait.lock); 2349 flushes = bio_list_get(&ic->flush_bio_list); 2350 if (unlikely(ic->mode != 'J')) { 2351 spin_unlock_irq(&ic->endio_wait.lock); 2352 dm_integrity_flush_buffers(ic, true); 2353 goto release_flush_bios; 2354 } 2355 2356 pad_uncommitted(ic); 2357 commit_start = ic->uncommitted_section; 2358 commit_sections = ic->n_uncommitted_sections; 2359 spin_unlock_irq(&ic->endio_wait.lock); 2360 2361 if (!commit_sections) 2362 goto release_flush_bios; 2363 2364 i = commit_start; 2365 for (n = 0; n < commit_sections; n++) { 2366 for (j = 0; j < ic->journal_section_entries; j++) { 2367 struct journal_entry *je; 2368 je = access_journal_entry(ic, i, j); 2369 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2370 } 2371 for (j = 0; j < ic->journal_section_sectors; j++) { 2372 struct journal_sector *js; 2373 js = access_journal(ic, i, j); 2374 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 2375 } 2376 i++; 2377 if (unlikely(i >= ic->journal_sections)) 2378 ic->commit_seq = next_commit_seq(ic->commit_seq); 2379 wraparound_section(ic, &i); 2380 } 2381 smp_rmb(); 2382 2383 write_journal(ic, commit_start, commit_sections); 2384 2385 spin_lock_irq(&ic->endio_wait.lock); 2386 ic->uncommitted_section += commit_sections; 2387 wraparound_section(ic, &ic->uncommitted_section); 2388 ic->n_uncommitted_sections -= commit_sections; 2389 ic->n_committed_sections += commit_sections; 2390 spin_unlock_irq(&ic->endio_wait.lock); 2391 2392 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2393 queue_work(ic->writer_wq, &ic->writer_work); 2394 2395 release_flush_bios: 2396 while (flushes) { 2397 struct bio *next = flushes->bi_next; 2398 flushes->bi_next = NULL; 2399 do_endio(ic, flushes); 2400 flushes = next; 2401 } 2402 } 2403 2404 static void complete_copy_from_journal(unsigned long error, void *context) 2405 { 2406 struct journal_io *io = context; 2407 struct journal_completion *comp = io->comp; 2408 struct dm_integrity_c *ic = comp->ic; 2409 remove_range(ic, &io->range); 2410 mempool_free(io, &ic->journal_io_mempool); 2411 if (unlikely(error != 0)) 2412 dm_integrity_io_error(ic, "copying from journal", -EIO); 2413 complete_journal_op(comp); 2414 } 2415 2416 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 2417 struct journal_entry *je) 2418 { 2419 unsigned s = 0; 2420 do { 2421 js->commit_id = je->last_bytes[s]; 2422 js++; 2423 } while (++s < ic->sectors_per_block); 2424 } 2425 2426 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start, 2427 unsigned write_sections, bool from_replay) 2428 { 2429 unsigned i, j, n; 2430 struct journal_completion comp; 2431 struct blk_plug plug; 2432 2433 blk_start_plug(&plug); 2434 2435 comp.ic = ic; 2436 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2437 init_completion(&comp.comp); 2438 2439 i = write_start; 2440 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 2441 #ifndef INTERNAL_VERIFY 2442 if (unlikely(from_replay)) 2443 #endif 2444 rw_section_mac(ic, i, false); 2445 for (j = 0; j < ic->journal_section_entries; j++) { 2446 struct journal_entry *je = access_journal_entry(ic, i, j); 2447 sector_t sec, area, offset; 2448 unsigned k, l, next_loop; 2449 sector_t metadata_block; 2450 unsigned metadata_offset; 2451 struct journal_io *io; 2452 2453 if (journal_entry_is_unused(je)) 2454 continue; 2455 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 2456 sec = journal_entry_get_sector(je); 2457 if (unlikely(from_replay)) { 2458 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) { 2459 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 2460 sec &= ~(sector_t)(ic->sectors_per_block - 1); 2461 } 2462 } 2463 if (unlikely(sec >= ic->provided_data_sectors)) 2464 continue; 2465 get_area_and_offset(ic, sec, &area, &offset); 2466 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 2467 for (k = j + 1; k < ic->journal_section_entries; k++) { 2468 struct journal_entry *je2 = access_journal_entry(ic, i, k); 2469 sector_t sec2, area2, offset2; 2470 if (journal_entry_is_unused(je2)) 2471 break; 2472 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 2473 sec2 = journal_entry_get_sector(je2); 2474 if (unlikely(sec2 >= ic->provided_data_sectors)) 2475 break; 2476 get_area_and_offset(ic, sec2, &area2, &offset2); 2477 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 2478 break; 2479 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 2480 } 2481 next_loop = k - 1; 2482 2483 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); 2484 io->comp = ∁ 2485 io->range.logical_sector = sec; 2486 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 2487 2488 spin_lock_irq(&ic->endio_wait.lock); 2489 add_new_range_and_wait(ic, &io->range); 2490 2491 if (likely(!from_replay)) { 2492 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 2493 2494 /* don't write if there is newer committed sector */ 2495 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 2496 struct journal_entry *je2 = access_journal_entry(ic, i, j); 2497 2498 journal_entry_set_unused(je2); 2499 remove_journal_node(ic, §ion_node[j]); 2500 j++; 2501 sec += ic->sectors_per_block; 2502 offset += ic->sectors_per_block; 2503 } 2504 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 2505 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 2506 2507 journal_entry_set_unused(je2); 2508 remove_journal_node(ic, §ion_node[k - 1]); 2509 k--; 2510 } 2511 if (j == k) { 2512 remove_range_unlocked(ic, &io->range); 2513 spin_unlock_irq(&ic->endio_wait.lock); 2514 mempool_free(io, &ic->journal_io_mempool); 2515 goto skip_io; 2516 } 2517 for (l = j; l < k; l++) { 2518 remove_journal_node(ic, §ion_node[l]); 2519 } 2520 } 2521 spin_unlock_irq(&ic->endio_wait.lock); 2522 2523 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2524 for (l = j; l < k; l++) { 2525 int r; 2526 struct journal_entry *je2 = access_journal_entry(ic, i, l); 2527 2528 if ( 2529 #ifndef INTERNAL_VERIFY 2530 unlikely(from_replay) && 2531 #endif 2532 ic->internal_hash) { 2533 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2534 2535 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 2536 (char *)access_journal_data(ic, i, l), test_tag); 2537 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) 2538 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 2539 } 2540 2541 journal_entry_set_unused(je2); 2542 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 2543 ic->tag_size, TAG_WRITE); 2544 if (unlikely(r)) { 2545 dm_integrity_io_error(ic, "reading tags", r); 2546 } 2547 } 2548 2549 atomic_inc(&comp.in_flight); 2550 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 2551 (k - j) << ic->sb->log2_sectors_per_block, 2552 get_data_sector(ic, area, offset), 2553 complete_copy_from_journal, io); 2554 skip_io: 2555 j = next_loop; 2556 } 2557 } 2558 2559 dm_bufio_write_dirty_buffers_async(ic->bufio); 2560 2561 blk_finish_plug(&plug); 2562 2563 complete_journal_op(&comp); 2564 wait_for_completion_io(&comp.comp); 2565 2566 dm_integrity_flush_buffers(ic, true); 2567 } 2568 2569 static void integrity_writer(struct work_struct *w) 2570 { 2571 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 2572 unsigned write_start, write_sections; 2573 2574 unsigned prev_free_sectors; 2575 2576 /* the following test is not needed, but it tests the replay code */ 2577 if (unlikely(dm_post_suspending(ic->ti)) && !ic->meta_dev) 2578 return; 2579 2580 spin_lock_irq(&ic->endio_wait.lock); 2581 write_start = ic->committed_section; 2582 write_sections = ic->n_committed_sections; 2583 spin_unlock_irq(&ic->endio_wait.lock); 2584 2585 if (!write_sections) 2586 return; 2587 2588 do_journal_write(ic, write_start, write_sections, false); 2589 2590 spin_lock_irq(&ic->endio_wait.lock); 2591 2592 ic->committed_section += write_sections; 2593 wraparound_section(ic, &ic->committed_section); 2594 ic->n_committed_sections -= write_sections; 2595 2596 prev_free_sectors = ic->free_sectors; 2597 ic->free_sectors += write_sections * ic->journal_section_entries; 2598 if (unlikely(!prev_free_sectors)) 2599 wake_up_locked(&ic->endio_wait); 2600 2601 spin_unlock_irq(&ic->endio_wait.lock); 2602 } 2603 2604 static void recalc_write_super(struct dm_integrity_c *ic) 2605 { 2606 int r; 2607 2608 dm_integrity_flush_buffers(ic, false); 2609 if (dm_integrity_failed(ic)) 2610 return; 2611 2612 r = sync_rw_sb(ic, REQ_OP_WRITE, 0); 2613 if (unlikely(r)) 2614 dm_integrity_io_error(ic, "writing superblock", r); 2615 } 2616 2617 static void integrity_recalc(struct work_struct *w) 2618 { 2619 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 2620 struct dm_integrity_range range; 2621 struct dm_io_request io_req; 2622 struct dm_io_region io_loc; 2623 sector_t area, offset; 2624 sector_t metadata_block; 2625 unsigned metadata_offset; 2626 sector_t logical_sector, n_sectors; 2627 __u8 *t; 2628 unsigned i; 2629 int r; 2630 unsigned super_counter = 0; 2631 2632 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector)); 2633 2634 spin_lock_irq(&ic->endio_wait.lock); 2635 2636 next_chunk: 2637 2638 if (unlikely(dm_post_suspending(ic->ti))) 2639 goto unlock_ret; 2640 2641 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 2642 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) { 2643 if (ic->mode == 'B') { 2644 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 2645 DEBUG_print("queue_delayed_work: bitmap_flush_work\n"); 2646 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2647 } 2648 goto unlock_ret; 2649 } 2650 2651 get_area_and_offset(ic, range.logical_sector, &area, &offset); 2652 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector); 2653 if (!ic->meta_dev) 2654 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset); 2655 2656 add_new_range_and_wait(ic, &range); 2657 spin_unlock_irq(&ic->endio_wait.lock); 2658 logical_sector = range.logical_sector; 2659 n_sectors = range.n_sectors; 2660 2661 if (ic->mode == 'B') { 2662 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) { 2663 goto advance_and_next; 2664 } 2665 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, 2666 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2667 logical_sector += ic->sectors_per_block; 2668 n_sectors -= ic->sectors_per_block; 2669 cond_resched(); 2670 } 2671 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block, 2672 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2673 n_sectors -= ic->sectors_per_block; 2674 cond_resched(); 2675 } 2676 get_area_and_offset(ic, logical_sector, &area, &offset); 2677 } 2678 2679 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors); 2680 2681 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 2682 recalc_write_super(ic); 2683 if (ic->mode == 'B') { 2684 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2685 } 2686 super_counter = 0; 2687 } 2688 2689 if (unlikely(dm_integrity_failed(ic))) 2690 goto err; 2691 2692 if (!ic->discard) { 2693 io_req.bi_op = REQ_OP_READ; 2694 io_req.bi_op_flags = 0; 2695 io_req.mem.type = DM_IO_VMA; 2696 io_req.mem.ptr.addr = ic->recalc_buffer; 2697 io_req.notify.fn = NULL; 2698 io_req.client = ic->io; 2699 io_loc.bdev = ic->dev->bdev; 2700 io_loc.sector = get_data_sector(ic, area, offset); 2701 io_loc.count = n_sectors; 2702 2703 r = dm_io(&io_req, 1, &io_loc, NULL); 2704 if (unlikely(r)) { 2705 dm_integrity_io_error(ic, "reading data", r); 2706 goto err; 2707 } 2708 2709 t = ic->recalc_tags; 2710 for (i = 0; i < n_sectors; i += ic->sectors_per_block) { 2711 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t); 2712 t += ic->tag_size; 2713 } 2714 } else { 2715 t = ic->recalc_tags + (n_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 2716 } 2717 2718 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2719 2720 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE); 2721 if (unlikely(r)) { 2722 dm_integrity_io_error(ic, "writing tags", r); 2723 goto err; 2724 } 2725 2726 if (ic->mode == 'B') { 2727 sector_t start, end; 2728 start = (range.logical_sector >> 2729 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 2730 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2731 end = ((range.logical_sector + range.n_sectors) >> 2732 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 2733 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2734 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR); 2735 } 2736 2737 advance_and_next: 2738 cond_resched(); 2739 2740 spin_lock_irq(&ic->endio_wait.lock); 2741 remove_range_unlocked(ic, &range); 2742 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 2743 goto next_chunk; 2744 2745 err: 2746 remove_range(ic, &range); 2747 return; 2748 2749 unlock_ret: 2750 spin_unlock_irq(&ic->endio_wait.lock); 2751 2752 recalc_write_super(ic); 2753 } 2754 2755 static void bitmap_block_work(struct work_struct *w) 2756 { 2757 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work); 2758 struct dm_integrity_c *ic = bbs->ic; 2759 struct bio *bio; 2760 struct bio_list bio_queue; 2761 struct bio_list waiting; 2762 2763 bio_list_init(&waiting); 2764 2765 spin_lock(&bbs->bio_queue_lock); 2766 bio_queue = bbs->bio_queue; 2767 bio_list_init(&bbs->bio_queue); 2768 spin_unlock(&bbs->bio_queue_lock); 2769 2770 while ((bio = bio_list_pop(&bio_queue))) { 2771 struct dm_integrity_io *dio; 2772 2773 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2774 2775 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2776 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2777 remove_range(ic, &dio->range); 2778 INIT_WORK(&dio->work, integrity_bio_wait); 2779 queue_work(ic->offload_wq, &dio->work); 2780 } else { 2781 block_bitmap_op(ic, ic->journal, dio->range.logical_sector, 2782 dio->range.n_sectors, BITMAP_OP_SET); 2783 bio_list_add(&waiting, bio); 2784 } 2785 } 2786 2787 if (bio_list_empty(&waiting)) 2788 return; 2789 2790 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 2791 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), 2792 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL); 2793 2794 while ((bio = bio_list_pop(&waiting))) { 2795 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2796 2797 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2798 dio->range.n_sectors, BITMAP_OP_SET); 2799 2800 remove_range(ic, &dio->range); 2801 INIT_WORK(&dio->work, integrity_bio_wait); 2802 queue_work(ic->offload_wq, &dio->work); 2803 } 2804 2805 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2806 } 2807 2808 static void bitmap_flush_work(struct work_struct *work) 2809 { 2810 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work); 2811 struct dm_integrity_range range; 2812 unsigned long limit; 2813 struct bio *bio; 2814 2815 dm_integrity_flush_buffers(ic, false); 2816 2817 range.logical_sector = 0; 2818 range.n_sectors = ic->provided_data_sectors; 2819 2820 spin_lock_irq(&ic->endio_wait.lock); 2821 add_new_range_and_wait(ic, &range); 2822 spin_unlock_irq(&ic->endio_wait.lock); 2823 2824 dm_integrity_flush_buffers(ic, true); 2825 2826 limit = ic->provided_data_sectors; 2827 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2828 limit = le64_to_cpu(ic->sb->recalc_sector) 2829 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit) 2830 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2831 } 2832 /*DEBUG_print("zeroing journal\n");*/ 2833 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR); 2834 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR); 2835 2836 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2837 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2838 2839 spin_lock_irq(&ic->endio_wait.lock); 2840 remove_range_unlocked(ic, &range); 2841 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) { 2842 bio_endio(bio); 2843 spin_unlock_irq(&ic->endio_wait.lock); 2844 spin_lock_irq(&ic->endio_wait.lock); 2845 } 2846 spin_unlock_irq(&ic->endio_wait.lock); 2847 } 2848 2849 2850 static void init_journal(struct dm_integrity_c *ic, unsigned start_section, 2851 unsigned n_sections, unsigned char commit_seq) 2852 { 2853 unsigned i, j, n; 2854 2855 if (!n_sections) 2856 return; 2857 2858 for (n = 0; n < n_sections; n++) { 2859 i = start_section + n; 2860 wraparound_section(ic, &i); 2861 for (j = 0; j < ic->journal_section_sectors; j++) { 2862 struct journal_sector *js = access_journal(ic, i, j); 2863 memset(&js->entries, 0, JOURNAL_SECTOR_DATA); 2864 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 2865 } 2866 for (j = 0; j < ic->journal_section_entries; j++) { 2867 struct journal_entry *je = access_journal_entry(ic, i, j); 2868 journal_entry_set_unused(je); 2869 } 2870 } 2871 2872 write_journal(ic, start_section, n_sections); 2873 } 2874 2875 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id) 2876 { 2877 unsigned char k; 2878 for (k = 0; k < N_COMMIT_IDS; k++) { 2879 if (dm_integrity_commit_id(ic, i, j, k) == id) 2880 return k; 2881 } 2882 dm_integrity_io_error(ic, "journal commit id", -EIO); 2883 return -EIO; 2884 } 2885 2886 static void replay_journal(struct dm_integrity_c *ic) 2887 { 2888 unsigned i, j; 2889 bool used_commit_ids[N_COMMIT_IDS]; 2890 unsigned max_commit_id_sections[N_COMMIT_IDS]; 2891 unsigned write_start, write_sections; 2892 unsigned continue_section; 2893 bool journal_empty; 2894 unsigned char unused, last_used, want_commit_seq; 2895 2896 if (ic->mode == 'R') 2897 return; 2898 2899 if (ic->journal_uptodate) 2900 return; 2901 2902 last_used = 0; 2903 write_start = 0; 2904 2905 if (!ic->just_formatted) { 2906 DEBUG_print("reading journal\n"); 2907 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL); 2908 if (ic->journal_io) 2909 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 2910 if (ic->journal_io) { 2911 struct journal_completion crypt_comp; 2912 crypt_comp.ic = ic; 2913 init_completion(&crypt_comp.comp); 2914 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 2915 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 2916 wait_for_completion(&crypt_comp.comp); 2917 } 2918 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 2919 } 2920 2921 if (dm_integrity_failed(ic)) 2922 goto clear_journal; 2923 2924 journal_empty = true; 2925 memset(used_commit_ids, 0, sizeof used_commit_ids); 2926 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections); 2927 for (i = 0; i < ic->journal_sections; i++) { 2928 for (j = 0; j < ic->journal_section_sectors; j++) { 2929 int k; 2930 struct journal_sector *js = access_journal(ic, i, j); 2931 k = find_commit_seq(ic, i, j, js->commit_id); 2932 if (k < 0) 2933 goto clear_journal; 2934 used_commit_ids[k] = true; 2935 max_commit_id_sections[k] = i; 2936 } 2937 if (journal_empty) { 2938 for (j = 0; j < ic->journal_section_entries; j++) { 2939 struct journal_entry *je = access_journal_entry(ic, i, j); 2940 if (!journal_entry_is_unused(je)) { 2941 journal_empty = false; 2942 break; 2943 } 2944 } 2945 } 2946 } 2947 2948 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 2949 unused = N_COMMIT_IDS - 1; 2950 while (unused && !used_commit_ids[unused - 1]) 2951 unused--; 2952 } else { 2953 for (unused = 0; unused < N_COMMIT_IDS; unused++) 2954 if (!used_commit_ids[unused]) 2955 break; 2956 if (unused == N_COMMIT_IDS) { 2957 dm_integrity_io_error(ic, "journal commit ids", -EIO); 2958 goto clear_journal; 2959 } 2960 } 2961 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 2962 unused, used_commit_ids[0], used_commit_ids[1], 2963 used_commit_ids[2], used_commit_ids[3]); 2964 2965 last_used = prev_commit_seq(unused); 2966 want_commit_seq = prev_commit_seq(last_used); 2967 2968 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 2969 journal_empty = true; 2970 2971 write_start = max_commit_id_sections[last_used] + 1; 2972 if (unlikely(write_start >= ic->journal_sections)) 2973 want_commit_seq = next_commit_seq(want_commit_seq); 2974 wraparound_section(ic, &write_start); 2975 2976 i = write_start; 2977 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 2978 for (j = 0; j < ic->journal_section_sectors; j++) { 2979 struct journal_sector *js = access_journal(ic, i, j); 2980 2981 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 2982 /* 2983 * This could be caused by crash during writing. 2984 * We won't replay the inconsistent part of the 2985 * journal. 2986 */ 2987 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 2988 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 2989 goto brk; 2990 } 2991 } 2992 i++; 2993 if (unlikely(i >= ic->journal_sections)) 2994 want_commit_seq = next_commit_seq(want_commit_seq); 2995 wraparound_section(ic, &i); 2996 } 2997 brk: 2998 2999 if (!journal_empty) { 3000 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 3001 write_sections, write_start, want_commit_seq); 3002 do_journal_write(ic, write_start, write_sections, true); 3003 } 3004 3005 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 3006 continue_section = write_start; 3007 ic->commit_seq = want_commit_seq; 3008 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 3009 } else { 3010 unsigned s; 3011 unsigned char erase_seq; 3012 clear_journal: 3013 DEBUG_print("clearing journal\n"); 3014 3015 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 3016 s = write_start; 3017 init_journal(ic, s, 1, erase_seq); 3018 s++; 3019 wraparound_section(ic, &s); 3020 if (ic->journal_sections >= 2) { 3021 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 3022 s += ic->journal_sections - 2; 3023 wraparound_section(ic, &s); 3024 init_journal(ic, s, 1, erase_seq); 3025 } 3026 3027 continue_section = 0; 3028 ic->commit_seq = next_commit_seq(erase_seq); 3029 } 3030 3031 ic->committed_section = continue_section; 3032 ic->n_committed_sections = 0; 3033 3034 ic->uncommitted_section = continue_section; 3035 ic->n_uncommitted_sections = 0; 3036 3037 ic->free_section = continue_section; 3038 ic->free_section_entry = 0; 3039 ic->free_sectors = ic->journal_entries; 3040 3041 ic->journal_tree_root = RB_ROOT; 3042 for (i = 0; i < ic->journal_entries; i++) 3043 init_journal_node(&ic->journal_tree[i]); 3044 } 3045 3046 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic) 3047 { 3048 DEBUG_print("dm_integrity_enter_synchronous_mode\n"); 3049 3050 if (ic->mode == 'B') { 3051 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1; 3052 ic->synchronous_mode = 1; 3053 3054 cancel_delayed_work_sync(&ic->bitmap_flush_work); 3055 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 3056 flush_workqueue(ic->commit_wq); 3057 } 3058 } 3059 3060 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x) 3061 { 3062 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier); 3063 3064 DEBUG_print("dm_integrity_reboot\n"); 3065 3066 dm_integrity_enter_synchronous_mode(ic); 3067 3068 return NOTIFY_DONE; 3069 } 3070 3071 static void dm_integrity_postsuspend(struct dm_target *ti) 3072 { 3073 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 3074 int r; 3075 3076 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier)); 3077 3078 del_timer_sync(&ic->autocommit_timer); 3079 3080 if (ic->recalc_wq) 3081 drain_workqueue(ic->recalc_wq); 3082 3083 if (ic->mode == 'B') 3084 cancel_delayed_work_sync(&ic->bitmap_flush_work); 3085 3086 queue_work(ic->commit_wq, &ic->commit_work); 3087 drain_workqueue(ic->commit_wq); 3088 3089 if (ic->mode == 'J') { 3090 if (ic->meta_dev) 3091 queue_work(ic->writer_wq, &ic->writer_work); 3092 drain_workqueue(ic->writer_wq); 3093 dm_integrity_flush_buffers(ic, true); 3094 } 3095 3096 if (ic->mode == 'B') { 3097 dm_integrity_flush_buffers(ic, true); 3098 #if 1 3099 /* set to 0 to test bitmap replay code */ 3100 init_journal(ic, 0, ic->journal_sections, 0); 3101 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3102 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3103 if (unlikely(r)) 3104 dm_integrity_io_error(ic, "writing superblock", r); 3105 #endif 3106 } 3107 3108 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 3109 3110 ic->journal_uptodate = true; 3111 } 3112 3113 static void dm_integrity_resume(struct dm_target *ti) 3114 { 3115 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 3116 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 3117 int r; 3118 3119 DEBUG_print("resume\n"); 3120 3121 if (ic->provided_data_sectors != old_provided_data_sectors) { 3122 if (ic->provided_data_sectors > old_provided_data_sectors && 3123 ic->mode == 'B' && 3124 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { 3125 rw_journal_sectors(ic, REQ_OP_READ, 0, 0, 3126 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3127 block_bitmap_op(ic, ic->journal, old_provided_data_sectors, 3128 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET); 3129 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 3130 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3131 } 3132 3133 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3134 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3135 if (unlikely(r)) 3136 dm_integrity_io_error(ic, "writing superblock", r); 3137 } 3138 3139 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) { 3140 DEBUG_print("resume dirty_bitmap\n"); 3141 rw_journal_sectors(ic, REQ_OP_READ, 0, 0, 3142 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3143 if (ic->mode == 'B') { 3144 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3145 !ic->reset_recalculate_flag) { 3146 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal); 3147 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal); 3148 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, 3149 BITMAP_OP_TEST_ALL_CLEAR)) { 3150 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3151 ic->sb->recalc_sector = cpu_to_le64(0); 3152 } 3153 } else { 3154 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n", 3155 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit); 3156 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3157 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3158 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3159 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3160 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 3161 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3162 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3163 ic->sb->recalc_sector = cpu_to_le64(0); 3164 } 3165 } else { 3166 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3167 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) || 3168 ic->reset_recalculate_flag) { 3169 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3170 ic->sb->recalc_sector = cpu_to_le64(0); 3171 } 3172 init_journal(ic, 0, ic->journal_sections, 0); 3173 replay_journal(ic); 3174 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3175 } 3176 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3177 if (unlikely(r)) 3178 dm_integrity_io_error(ic, "writing superblock", r); 3179 } else { 3180 replay_journal(ic); 3181 if (ic->reset_recalculate_flag) { 3182 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3183 ic->sb->recalc_sector = cpu_to_le64(0); 3184 } 3185 if (ic->mode == 'B') { 3186 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3187 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3188 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3189 if (unlikely(r)) 3190 dm_integrity_io_error(ic, "writing superblock", r); 3191 3192 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3193 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3194 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3195 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 3196 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) { 3197 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector), 3198 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3199 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3200 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3201 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3202 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3203 } 3204 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 3205 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3206 } 3207 } 3208 3209 DEBUG_print("testing recalc: %x\n", ic->sb->flags); 3210 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 3211 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector); 3212 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors); 3213 if (recalc_pos < ic->provided_data_sectors) { 3214 queue_work(ic->recalc_wq, &ic->recalc_work); 3215 } else if (recalc_pos > ic->provided_data_sectors) { 3216 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors); 3217 recalc_write_super(ic); 3218 } 3219 } 3220 3221 ic->reboot_notifier.notifier_call = dm_integrity_reboot; 3222 ic->reboot_notifier.next = NULL; 3223 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */ 3224 WARN_ON(register_reboot_notifier(&ic->reboot_notifier)); 3225 3226 #if 0 3227 /* set to 1 to stress test synchronous mode */ 3228 dm_integrity_enter_synchronous_mode(ic); 3229 #endif 3230 } 3231 3232 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 3233 unsigned status_flags, char *result, unsigned maxlen) 3234 { 3235 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 3236 unsigned arg_count; 3237 size_t sz = 0; 3238 3239 switch (type) { 3240 case STATUSTYPE_INFO: 3241 DMEMIT("%llu %llu", 3242 (unsigned long long)atomic64_read(&ic->number_of_mismatches), 3243 ic->provided_data_sectors); 3244 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3245 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector)); 3246 else 3247 DMEMIT(" -"); 3248 break; 3249 3250 case STATUSTYPE_TABLE: { 3251 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 3252 watermark_percentage += ic->journal_entries / 2; 3253 do_div(watermark_percentage, ic->journal_entries); 3254 arg_count = 3; 3255 arg_count += !!ic->meta_dev; 3256 arg_count += ic->sectors_per_block != 1; 3257 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)); 3258 arg_count += ic->reset_recalculate_flag; 3259 arg_count += ic->discard; 3260 arg_count += ic->mode == 'J'; 3261 arg_count += ic->mode == 'J'; 3262 arg_count += ic->mode == 'B'; 3263 arg_count += ic->mode == 'B'; 3264 arg_count += !!ic->internal_hash_alg.alg_string; 3265 arg_count += !!ic->journal_crypt_alg.alg_string; 3266 arg_count += !!ic->journal_mac_alg.alg_string; 3267 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0; 3268 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0; 3269 arg_count += ic->legacy_recalculate; 3270 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start, 3271 ic->tag_size, ic->mode, arg_count); 3272 if (ic->meta_dev) 3273 DMEMIT(" meta_device:%s", ic->meta_dev->name); 3274 if (ic->sectors_per_block != 1) 3275 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 3276 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3277 DMEMIT(" recalculate"); 3278 if (ic->reset_recalculate_flag) 3279 DMEMIT(" reset_recalculate"); 3280 if (ic->discard) 3281 DMEMIT(" allow_discards"); 3282 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 3283 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 3284 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 3285 if (ic->mode == 'J') { 3286 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage); 3287 DMEMIT(" commit_time:%u", ic->autocommit_msec); 3288 } 3289 if (ic->mode == 'B') { 3290 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit); 3291 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval)); 3292 } 3293 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) 3294 DMEMIT(" fix_padding"); 3295 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) 3296 DMEMIT(" fix_hmac"); 3297 if (ic->legacy_recalculate) 3298 DMEMIT(" legacy_recalculate"); 3299 3300 #define EMIT_ALG(a, n) \ 3301 do { \ 3302 if (ic->a.alg_string) { \ 3303 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 3304 if (ic->a.key_string) \ 3305 DMEMIT(":%s", ic->a.key_string);\ 3306 } \ 3307 } while (0) 3308 EMIT_ALG(internal_hash_alg, "internal_hash"); 3309 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 3310 EMIT_ALG(journal_mac_alg, "journal_mac"); 3311 break; 3312 } 3313 } 3314 } 3315 3316 static int dm_integrity_iterate_devices(struct dm_target *ti, 3317 iterate_devices_callout_fn fn, void *data) 3318 { 3319 struct dm_integrity_c *ic = ti->private; 3320 3321 if (!ic->meta_dev) 3322 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 3323 else 3324 return fn(ti, ic->dev, 0, ti->len, data); 3325 } 3326 3327 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 3328 { 3329 struct dm_integrity_c *ic = ti->private; 3330 3331 if (ic->sectors_per_block > 1) { 3332 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3333 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3334 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT); 3335 } 3336 } 3337 3338 static void calculate_journal_section_size(struct dm_integrity_c *ic) 3339 { 3340 unsigned sector_space = JOURNAL_SECTOR_DATA; 3341 3342 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 3343 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 3344 JOURNAL_ENTRY_ROUNDUP); 3345 3346 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 3347 sector_space -= JOURNAL_MAC_PER_SECTOR; 3348 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 3349 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 3350 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 3351 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 3352 } 3353 3354 static int calculate_device_limits(struct dm_integrity_c *ic) 3355 { 3356 __u64 initial_sectors; 3357 3358 calculate_journal_section_size(ic); 3359 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 3360 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX) 3361 return -EINVAL; 3362 ic->initial_sectors = initial_sectors; 3363 3364 if (!ic->meta_dev) { 3365 sector_t last_sector, last_area, last_offset; 3366 3367 /* we have to maintain excessive padding for compatibility with existing volumes */ 3368 __u64 metadata_run_padding = 3369 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ? 3370 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) : 3371 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS); 3372 3373 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 3374 metadata_run_padding) >> SECTOR_SHIFT; 3375 if (!(ic->metadata_run & (ic->metadata_run - 1))) 3376 ic->log2_metadata_run = __ffs(ic->metadata_run); 3377 else 3378 ic->log2_metadata_run = -1; 3379 3380 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 3381 last_sector = get_data_sector(ic, last_area, last_offset); 3382 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors) 3383 return -EINVAL; 3384 } else { 3385 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 3386 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1)) 3387 >> (ic->log2_buffer_sectors + SECTOR_SHIFT); 3388 meta_size <<= ic->log2_buffer_sectors; 3389 if (ic->initial_sectors + meta_size < ic->initial_sectors || 3390 ic->initial_sectors + meta_size > ic->meta_device_sectors) 3391 return -EINVAL; 3392 ic->metadata_run = 1; 3393 ic->log2_metadata_run = 0; 3394 } 3395 3396 return 0; 3397 } 3398 3399 static void get_provided_data_sectors(struct dm_integrity_c *ic) 3400 { 3401 if (!ic->meta_dev) { 3402 int test_bit; 3403 ic->provided_data_sectors = 0; 3404 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) { 3405 __u64 prev_data_sectors = ic->provided_data_sectors; 3406 3407 ic->provided_data_sectors |= (sector_t)1 << test_bit; 3408 if (calculate_device_limits(ic)) 3409 ic->provided_data_sectors = prev_data_sectors; 3410 } 3411 } else { 3412 ic->provided_data_sectors = ic->data_device_sectors; 3413 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1); 3414 } 3415 } 3416 3417 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors) 3418 { 3419 unsigned journal_sections; 3420 int test_bit; 3421 3422 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 3423 memcpy(ic->sb->magic, SB_MAGIC, 8); 3424 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 3425 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 3426 if (ic->journal_mac_alg.alg_string) 3427 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 3428 3429 calculate_journal_section_size(ic); 3430 journal_sections = journal_sectors / ic->journal_section_sectors; 3431 if (!journal_sections) 3432 journal_sections = 1; 3433 3434 if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) { 3435 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC); 3436 get_random_bytes(ic->sb->salt, SALT_SIZE); 3437 } 3438 3439 if (!ic->meta_dev) { 3440 if (ic->fix_padding) 3441 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING); 3442 ic->sb->journal_sections = cpu_to_le32(journal_sections); 3443 if (!interleave_sectors) 3444 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3445 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 3446 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3447 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3448 3449 get_provided_data_sectors(ic); 3450 if (!ic->provided_data_sectors) 3451 return -EINVAL; 3452 } else { 3453 ic->sb->log2_interleave_sectors = 0; 3454 3455 get_provided_data_sectors(ic); 3456 if (!ic->provided_data_sectors) 3457 return -EINVAL; 3458 3459 try_smaller_buffer: 3460 ic->sb->journal_sections = cpu_to_le32(0); 3461 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) { 3462 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections); 3463 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit); 3464 if (test_journal_sections > journal_sections) 3465 continue; 3466 ic->sb->journal_sections = cpu_to_le32(test_journal_sections); 3467 if (calculate_device_limits(ic)) 3468 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections); 3469 3470 } 3471 if (!le32_to_cpu(ic->sb->journal_sections)) { 3472 if (ic->log2_buffer_sectors > 3) { 3473 ic->log2_buffer_sectors--; 3474 goto try_smaller_buffer; 3475 } 3476 return -EINVAL; 3477 } 3478 } 3479 3480 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3481 3482 sb_set_version(ic); 3483 3484 return 0; 3485 } 3486 3487 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic) 3488 { 3489 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table)); 3490 struct blk_integrity bi; 3491 3492 memset(&bi, 0, sizeof(bi)); 3493 bi.profile = &dm_integrity_profile; 3494 bi.tuple_size = ic->tag_size; 3495 bi.tag_size = bi.tuple_size; 3496 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 3497 3498 blk_integrity_register(disk, &bi); 3499 blk_queue_max_integrity_segments(disk->queue, UINT_MAX); 3500 } 3501 3502 static void dm_integrity_free_page_list(struct page_list *pl) 3503 { 3504 unsigned i; 3505 3506 if (!pl) 3507 return; 3508 for (i = 0; pl[i].page; i++) 3509 __free_page(pl[i].page); 3510 kvfree(pl); 3511 } 3512 3513 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages) 3514 { 3515 struct page_list *pl; 3516 unsigned i; 3517 3518 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO); 3519 if (!pl) 3520 return NULL; 3521 3522 for (i = 0; i < n_pages; i++) { 3523 pl[i].page = alloc_page(GFP_KERNEL); 3524 if (!pl[i].page) { 3525 dm_integrity_free_page_list(pl); 3526 return NULL; 3527 } 3528 if (i) 3529 pl[i - 1].next = &pl[i]; 3530 } 3531 pl[i].page = NULL; 3532 pl[i].next = NULL; 3533 3534 return pl; 3535 } 3536 3537 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 3538 { 3539 unsigned i; 3540 for (i = 0; i < ic->journal_sections; i++) 3541 kvfree(sl[i]); 3542 kvfree(sl); 3543 } 3544 3545 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, 3546 struct page_list *pl) 3547 { 3548 struct scatterlist **sl; 3549 unsigned i; 3550 3551 sl = kvmalloc_array(ic->journal_sections, 3552 sizeof(struct scatterlist *), 3553 GFP_KERNEL | __GFP_ZERO); 3554 if (!sl) 3555 return NULL; 3556 3557 for (i = 0; i < ic->journal_sections; i++) { 3558 struct scatterlist *s; 3559 unsigned start_index, start_offset; 3560 unsigned end_index, end_offset; 3561 unsigned n_pages; 3562 unsigned idx; 3563 3564 page_list_location(ic, i, 0, &start_index, &start_offset); 3565 page_list_location(ic, i, ic->journal_section_sectors - 1, 3566 &end_index, &end_offset); 3567 3568 n_pages = (end_index - start_index + 1); 3569 3570 s = kvmalloc_array(n_pages, sizeof(struct scatterlist), 3571 GFP_KERNEL); 3572 if (!s) { 3573 dm_integrity_free_journal_scatterlist(ic, sl); 3574 return NULL; 3575 } 3576 3577 sg_init_table(s, n_pages); 3578 for (idx = start_index; idx <= end_index; idx++) { 3579 char *va = lowmem_page_address(pl[idx].page); 3580 unsigned start = 0, end = PAGE_SIZE; 3581 if (idx == start_index) 3582 start = start_offset; 3583 if (idx == end_index) 3584 end = end_offset + (1 << SECTOR_SHIFT); 3585 sg_set_buf(&s[idx - start_index], va + start, end - start); 3586 } 3587 3588 sl[i] = s; 3589 } 3590 3591 return sl; 3592 } 3593 3594 static void free_alg(struct alg_spec *a) 3595 { 3596 kfree_sensitive(a->alg_string); 3597 kfree_sensitive(a->key); 3598 memset(a, 0, sizeof *a); 3599 } 3600 3601 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 3602 { 3603 char *k; 3604 3605 free_alg(a); 3606 3607 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 3608 if (!a->alg_string) 3609 goto nomem; 3610 3611 k = strchr(a->alg_string, ':'); 3612 if (k) { 3613 *k = 0; 3614 a->key_string = k + 1; 3615 if (strlen(a->key_string) & 1) 3616 goto inval; 3617 3618 a->key_size = strlen(a->key_string) / 2; 3619 a->key = kmalloc(a->key_size, GFP_KERNEL); 3620 if (!a->key) 3621 goto nomem; 3622 if (hex2bin(a->key, a->key_string, a->key_size)) 3623 goto inval; 3624 } 3625 3626 return 0; 3627 inval: 3628 *error = error_inval; 3629 return -EINVAL; 3630 nomem: 3631 *error = "Out of memory for an argument"; 3632 return -ENOMEM; 3633 } 3634 3635 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 3636 char *error_alg, char *error_key) 3637 { 3638 int r; 3639 3640 if (a->alg_string) { 3641 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 3642 if (IS_ERR(*hash)) { 3643 *error = error_alg; 3644 r = PTR_ERR(*hash); 3645 *hash = NULL; 3646 return r; 3647 } 3648 3649 if (a->key) { 3650 r = crypto_shash_setkey(*hash, a->key, a->key_size); 3651 if (r) { 3652 *error = error_key; 3653 return r; 3654 } 3655 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { 3656 *error = error_key; 3657 return -ENOKEY; 3658 } 3659 } 3660 3661 return 0; 3662 } 3663 3664 static int create_journal(struct dm_integrity_c *ic, char **error) 3665 { 3666 int r = 0; 3667 unsigned i; 3668 __u64 journal_pages, journal_desc_size, journal_tree_size; 3669 unsigned char *crypt_data = NULL, *crypt_iv = NULL; 3670 struct skcipher_request *req = NULL; 3671 3672 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 3673 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 3674 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 3675 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 3676 3677 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 3678 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 3679 journal_desc_size = journal_pages * sizeof(struct page_list); 3680 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) { 3681 *error = "Journal doesn't fit into memory"; 3682 r = -ENOMEM; 3683 goto bad; 3684 } 3685 ic->journal_pages = journal_pages; 3686 3687 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages); 3688 if (!ic->journal) { 3689 *error = "Could not allocate memory for journal"; 3690 r = -ENOMEM; 3691 goto bad; 3692 } 3693 if (ic->journal_crypt_alg.alg_string) { 3694 unsigned ivsize, blocksize; 3695 struct journal_completion comp; 3696 3697 comp.ic = ic; 3698 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 3699 if (IS_ERR(ic->journal_crypt)) { 3700 *error = "Invalid journal cipher"; 3701 r = PTR_ERR(ic->journal_crypt); 3702 ic->journal_crypt = NULL; 3703 goto bad; 3704 } 3705 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 3706 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 3707 3708 if (ic->journal_crypt_alg.key) { 3709 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 3710 ic->journal_crypt_alg.key_size); 3711 if (r) { 3712 *error = "Error setting encryption key"; 3713 goto bad; 3714 } 3715 } 3716 DEBUG_print("cipher %s, block size %u iv size %u\n", 3717 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 3718 3719 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages); 3720 if (!ic->journal_io) { 3721 *error = "Could not allocate memory for journal io"; 3722 r = -ENOMEM; 3723 goto bad; 3724 } 3725 3726 if (blocksize == 1) { 3727 struct scatterlist *sg; 3728 3729 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3730 if (!req) { 3731 *error = "Could not allocate crypt request"; 3732 r = -ENOMEM; 3733 goto bad; 3734 } 3735 3736 crypt_iv = kzalloc(ivsize, GFP_KERNEL); 3737 if (!crypt_iv) { 3738 *error = "Could not allocate iv"; 3739 r = -ENOMEM; 3740 goto bad; 3741 } 3742 3743 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages); 3744 if (!ic->journal_xor) { 3745 *error = "Could not allocate memory for journal xor"; 3746 r = -ENOMEM; 3747 goto bad; 3748 } 3749 3750 sg = kvmalloc_array(ic->journal_pages + 1, 3751 sizeof(struct scatterlist), 3752 GFP_KERNEL); 3753 if (!sg) { 3754 *error = "Unable to allocate sg list"; 3755 r = -ENOMEM; 3756 goto bad; 3757 } 3758 sg_init_table(sg, ic->journal_pages + 1); 3759 for (i = 0; i < ic->journal_pages; i++) { 3760 char *va = lowmem_page_address(ic->journal_xor[i].page); 3761 clear_page(va); 3762 sg_set_buf(&sg[i], va, PAGE_SIZE); 3763 } 3764 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids); 3765 3766 skcipher_request_set_crypt(req, sg, sg, 3767 PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv); 3768 init_completion(&comp.comp); 3769 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3770 if (do_crypt(true, req, &comp)) 3771 wait_for_completion(&comp.comp); 3772 kvfree(sg); 3773 r = dm_integrity_failed(ic); 3774 if (r) { 3775 *error = "Unable to encrypt journal"; 3776 goto bad; 3777 } 3778 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 3779 3780 crypto_free_skcipher(ic->journal_crypt); 3781 ic->journal_crypt = NULL; 3782 } else { 3783 unsigned crypt_len = roundup(ivsize, blocksize); 3784 3785 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3786 if (!req) { 3787 *error = "Could not allocate crypt request"; 3788 r = -ENOMEM; 3789 goto bad; 3790 } 3791 3792 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 3793 if (!crypt_iv) { 3794 *error = "Could not allocate iv"; 3795 r = -ENOMEM; 3796 goto bad; 3797 } 3798 3799 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 3800 if (!crypt_data) { 3801 *error = "Unable to allocate crypt data"; 3802 r = -ENOMEM; 3803 goto bad; 3804 } 3805 3806 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 3807 if (!ic->journal_scatterlist) { 3808 *error = "Unable to allocate sg list"; 3809 r = -ENOMEM; 3810 goto bad; 3811 } 3812 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 3813 if (!ic->journal_io_scatterlist) { 3814 *error = "Unable to allocate sg list"; 3815 r = -ENOMEM; 3816 goto bad; 3817 } 3818 ic->sk_requests = kvmalloc_array(ic->journal_sections, 3819 sizeof(struct skcipher_request *), 3820 GFP_KERNEL | __GFP_ZERO); 3821 if (!ic->sk_requests) { 3822 *error = "Unable to allocate sk requests"; 3823 r = -ENOMEM; 3824 goto bad; 3825 } 3826 for (i = 0; i < ic->journal_sections; i++) { 3827 struct scatterlist sg; 3828 struct skcipher_request *section_req; 3829 __u32 section_le = cpu_to_le32(i); 3830 3831 memset(crypt_iv, 0x00, ivsize); 3832 memset(crypt_data, 0x00, crypt_len); 3833 memcpy(crypt_data, §ion_le, min((size_t)crypt_len, sizeof(section_le))); 3834 3835 sg_init_one(&sg, crypt_data, crypt_len); 3836 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); 3837 init_completion(&comp.comp); 3838 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3839 if (do_crypt(true, req, &comp)) 3840 wait_for_completion(&comp.comp); 3841 3842 r = dm_integrity_failed(ic); 3843 if (r) { 3844 *error = "Unable to generate iv"; 3845 goto bad; 3846 } 3847 3848 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3849 if (!section_req) { 3850 *error = "Unable to allocate crypt request"; 3851 r = -ENOMEM; 3852 goto bad; 3853 } 3854 section_req->iv = kmalloc_array(ivsize, 2, 3855 GFP_KERNEL); 3856 if (!section_req->iv) { 3857 skcipher_request_free(section_req); 3858 *error = "Unable to allocate iv"; 3859 r = -ENOMEM; 3860 goto bad; 3861 } 3862 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 3863 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 3864 ic->sk_requests[i] = section_req; 3865 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 3866 } 3867 } 3868 } 3869 3870 for (i = 0; i < N_COMMIT_IDS; i++) { 3871 unsigned j; 3872 retest_commit_id: 3873 for (j = 0; j < i; j++) { 3874 if (ic->commit_ids[j] == ic->commit_ids[i]) { 3875 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 3876 goto retest_commit_id; 3877 } 3878 } 3879 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 3880 } 3881 3882 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 3883 if (journal_tree_size > ULONG_MAX) { 3884 *error = "Journal doesn't fit into memory"; 3885 r = -ENOMEM; 3886 goto bad; 3887 } 3888 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 3889 if (!ic->journal_tree) { 3890 *error = "Could not allocate memory for journal tree"; 3891 r = -ENOMEM; 3892 } 3893 bad: 3894 kfree(crypt_data); 3895 kfree(crypt_iv); 3896 skcipher_request_free(req); 3897 3898 return r; 3899 } 3900 3901 /* 3902 * Construct a integrity mapping 3903 * 3904 * Arguments: 3905 * device 3906 * offset from the start of the device 3907 * tag size 3908 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode 3909 * number of optional arguments 3910 * optional arguments: 3911 * journal_sectors 3912 * interleave_sectors 3913 * buffer_sectors 3914 * journal_watermark 3915 * commit_time 3916 * meta_device 3917 * block_size 3918 * sectors_per_bit 3919 * bitmap_flush_interval 3920 * internal_hash 3921 * journal_crypt 3922 * journal_mac 3923 * recalculate 3924 */ 3925 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv) 3926 { 3927 struct dm_integrity_c *ic; 3928 char dummy; 3929 int r; 3930 unsigned extra_args; 3931 struct dm_arg_set as; 3932 static const struct dm_arg _args[] = { 3933 {0, 18, "Invalid number of feature args"}, 3934 }; 3935 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 3936 bool should_write_sb; 3937 __u64 threshold; 3938 unsigned long long start; 3939 __s8 log2_sectors_per_bitmap_bit = -1; 3940 __s8 log2_blocks_per_bitmap_bit; 3941 __u64 bits_in_journal; 3942 __u64 n_bitmap_bits; 3943 3944 #define DIRECT_ARGUMENTS 4 3945 3946 if (argc <= DIRECT_ARGUMENTS) { 3947 ti->error = "Invalid argument count"; 3948 return -EINVAL; 3949 } 3950 3951 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 3952 if (!ic) { 3953 ti->error = "Cannot allocate integrity context"; 3954 return -ENOMEM; 3955 } 3956 ti->private = ic; 3957 ti->per_io_data_size = sizeof(struct dm_integrity_io); 3958 ic->ti = ti; 3959 3960 ic->in_progress = RB_ROOT; 3961 INIT_LIST_HEAD(&ic->wait_list); 3962 init_waitqueue_head(&ic->endio_wait); 3963 bio_list_init(&ic->flush_bio_list); 3964 init_waitqueue_head(&ic->copy_to_journal_wait); 3965 init_completion(&ic->crypto_backoff); 3966 atomic64_set(&ic->number_of_mismatches, 0); 3967 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL; 3968 3969 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 3970 if (r) { 3971 ti->error = "Device lookup failed"; 3972 goto bad; 3973 } 3974 3975 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 3976 ti->error = "Invalid starting offset"; 3977 r = -EINVAL; 3978 goto bad; 3979 } 3980 ic->start = start; 3981 3982 if (strcmp(argv[2], "-")) { 3983 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 3984 ti->error = "Invalid tag size"; 3985 r = -EINVAL; 3986 goto bad; 3987 } 3988 } 3989 3990 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") || 3991 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) { 3992 ic->mode = argv[3][0]; 3993 } else { 3994 ti->error = "Invalid mode (expecting J, B, D, R)"; 3995 r = -EINVAL; 3996 goto bad; 3997 } 3998 3999 journal_sectors = 0; 4000 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 4001 buffer_sectors = DEFAULT_BUFFER_SECTORS; 4002 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 4003 sync_msec = DEFAULT_SYNC_MSEC; 4004 ic->sectors_per_block = 1; 4005 4006 as.argc = argc - DIRECT_ARGUMENTS; 4007 as.argv = argv + DIRECT_ARGUMENTS; 4008 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 4009 if (r) 4010 goto bad; 4011 4012 while (extra_args--) { 4013 const char *opt_string; 4014 unsigned val; 4015 unsigned long long llval; 4016 opt_string = dm_shift_arg(&as); 4017 if (!opt_string) { 4018 r = -EINVAL; 4019 ti->error = "Not enough feature arguments"; 4020 goto bad; 4021 } 4022 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 4023 journal_sectors = val ? val : 1; 4024 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 4025 interleave_sectors = val; 4026 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 4027 buffer_sectors = val; 4028 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 4029 journal_watermark = val; 4030 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 4031 sync_msec = val; 4032 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) { 4033 if (ic->meta_dev) { 4034 dm_put_device(ti, ic->meta_dev); 4035 ic->meta_dev = NULL; 4036 } 4037 r = dm_get_device(ti, strchr(opt_string, ':') + 1, 4038 dm_table_get_mode(ti->table), &ic->meta_dev); 4039 if (r) { 4040 ti->error = "Device lookup failed"; 4041 goto bad; 4042 } 4043 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 4044 if (val < 1 << SECTOR_SHIFT || 4045 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 4046 (val & (val -1))) { 4047 r = -EINVAL; 4048 ti->error = "Invalid block_size argument"; 4049 goto bad; 4050 } 4051 ic->sectors_per_block = val >> SECTOR_SHIFT; 4052 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) { 4053 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval); 4054 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) { 4055 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) { 4056 r = -EINVAL; 4057 ti->error = "Invalid bitmap_flush_interval argument"; 4058 goto bad; 4059 } 4060 ic->bitmap_flush_interval = msecs_to_jiffies(val); 4061 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 4062 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 4063 "Invalid internal_hash argument"); 4064 if (r) 4065 goto bad; 4066 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 4067 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 4068 "Invalid journal_crypt argument"); 4069 if (r) 4070 goto bad; 4071 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 4072 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 4073 "Invalid journal_mac argument"); 4074 if (r) 4075 goto bad; 4076 } else if (!strcmp(opt_string, "recalculate")) { 4077 ic->recalculate_flag = true; 4078 } else if (!strcmp(opt_string, "reset_recalculate")) { 4079 ic->recalculate_flag = true; 4080 ic->reset_recalculate_flag = true; 4081 } else if (!strcmp(opt_string, "allow_discards")) { 4082 ic->discard = true; 4083 } else if (!strcmp(opt_string, "fix_padding")) { 4084 ic->fix_padding = true; 4085 } else if (!strcmp(opt_string, "fix_hmac")) { 4086 ic->fix_hmac = true; 4087 } else if (!strcmp(opt_string, "legacy_recalculate")) { 4088 ic->legacy_recalculate = true; 4089 } else { 4090 r = -EINVAL; 4091 ti->error = "Invalid argument"; 4092 goto bad; 4093 } 4094 } 4095 4096 ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT; 4097 if (!ic->meta_dev) 4098 ic->meta_device_sectors = ic->data_device_sectors; 4099 else 4100 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT; 4101 4102 if (!journal_sectors) { 4103 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 4104 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 4105 } 4106 4107 if (!buffer_sectors) 4108 buffer_sectors = 1; 4109 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT); 4110 4111 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 4112 "Invalid internal hash", "Error setting internal hash key"); 4113 if (r) 4114 goto bad; 4115 4116 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 4117 "Invalid journal mac", "Error setting journal mac key"); 4118 if (r) 4119 goto bad; 4120 4121 if (!ic->tag_size) { 4122 if (!ic->internal_hash) { 4123 ti->error = "Unknown tag size"; 4124 r = -EINVAL; 4125 goto bad; 4126 } 4127 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 4128 } 4129 if (ic->tag_size > MAX_TAG_SIZE) { 4130 ti->error = "Too big tag size"; 4131 r = -EINVAL; 4132 goto bad; 4133 } 4134 if (!(ic->tag_size & (ic->tag_size - 1))) 4135 ic->log2_tag_size = __ffs(ic->tag_size); 4136 else 4137 ic->log2_tag_size = -1; 4138 4139 if (ic->mode == 'B' && !ic->internal_hash) { 4140 r = -EINVAL; 4141 ti->error = "Bitmap mode can be only used with internal hash"; 4142 goto bad; 4143 } 4144 4145 if (ic->discard && !ic->internal_hash) { 4146 r = -EINVAL; 4147 ti->error = "Discard can be only used with internal hash"; 4148 goto bad; 4149 } 4150 4151 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 4152 ic->autocommit_msec = sync_msec; 4153 timer_setup(&ic->autocommit_timer, autocommit_fn, 0); 4154 4155 ic->io = dm_io_client_create(); 4156 if (IS_ERR(ic->io)) { 4157 r = PTR_ERR(ic->io); 4158 ic->io = NULL; 4159 ti->error = "Cannot allocate dm io"; 4160 goto bad; 4161 } 4162 4163 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); 4164 if (r) { 4165 ti->error = "Cannot allocate mempool"; 4166 goto bad; 4167 } 4168 4169 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 4170 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 4171 if (!ic->metadata_wq) { 4172 ti->error = "Cannot allocate workqueue"; 4173 r = -ENOMEM; 4174 goto bad; 4175 } 4176 4177 /* 4178 * If this workqueue were percpu, it would cause bio reordering 4179 * and reduced performance. 4180 */ 4181 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4182 if (!ic->wait_wq) { 4183 ti->error = "Cannot allocate workqueue"; 4184 r = -ENOMEM; 4185 goto bad; 4186 } 4187 4188 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM, 4189 METADATA_WORKQUEUE_MAX_ACTIVE); 4190 if (!ic->offload_wq) { 4191 ti->error = "Cannot allocate workqueue"; 4192 r = -ENOMEM; 4193 goto bad; 4194 } 4195 4196 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 4197 if (!ic->commit_wq) { 4198 ti->error = "Cannot allocate workqueue"; 4199 r = -ENOMEM; 4200 goto bad; 4201 } 4202 INIT_WORK(&ic->commit_work, integrity_commit); 4203 4204 if (ic->mode == 'J' || ic->mode == 'B') { 4205 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 4206 if (!ic->writer_wq) { 4207 ti->error = "Cannot allocate workqueue"; 4208 r = -ENOMEM; 4209 goto bad; 4210 } 4211 INIT_WORK(&ic->writer_work, integrity_writer); 4212 } 4213 4214 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 4215 if (!ic->sb) { 4216 r = -ENOMEM; 4217 ti->error = "Cannot allocate superblock area"; 4218 goto bad; 4219 } 4220 4221 r = sync_rw_sb(ic, REQ_OP_READ, 0); 4222 if (r) { 4223 ti->error = "Error reading superblock"; 4224 goto bad; 4225 } 4226 should_write_sb = false; 4227 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 4228 if (ic->mode != 'R') { 4229 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 4230 r = -EINVAL; 4231 ti->error = "The device is not initialized"; 4232 goto bad; 4233 } 4234 } 4235 4236 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 4237 if (r) { 4238 ti->error = "Could not initialize superblock"; 4239 goto bad; 4240 } 4241 if (ic->mode != 'R') 4242 should_write_sb = true; 4243 } 4244 4245 if (!ic->sb->version || ic->sb->version > SB_VERSION_5) { 4246 r = -EINVAL; 4247 ti->error = "Unknown version"; 4248 goto bad; 4249 } 4250 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 4251 r = -EINVAL; 4252 ti->error = "Tag size doesn't match the information in superblock"; 4253 goto bad; 4254 } 4255 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 4256 r = -EINVAL; 4257 ti->error = "Block size doesn't match the information in superblock"; 4258 goto bad; 4259 } 4260 if (!le32_to_cpu(ic->sb->journal_sections)) { 4261 r = -EINVAL; 4262 ti->error = "Corrupted superblock, journal_sections is 0"; 4263 goto bad; 4264 } 4265 /* make sure that ti->max_io_len doesn't overflow */ 4266 if (!ic->meta_dev) { 4267 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 4268 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 4269 r = -EINVAL; 4270 ti->error = "Invalid interleave_sectors in the superblock"; 4271 goto bad; 4272 } 4273 } else { 4274 if (ic->sb->log2_interleave_sectors) { 4275 r = -EINVAL; 4276 ti->error = "Invalid interleave_sectors in the superblock"; 4277 goto bad; 4278 } 4279 } 4280 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 4281 r = -EINVAL; 4282 ti->error = "Journal mac mismatch"; 4283 goto bad; 4284 } 4285 4286 get_provided_data_sectors(ic); 4287 if (!ic->provided_data_sectors) { 4288 r = -EINVAL; 4289 ti->error = "The device is too small"; 4290 goto bad; 4291 } 4292 4293 try_smaller_buffer: 4294 r = calculate_device_limits(ic); 4295 if (r) { 4296 if (ic->meta_dev) { 4297 if (ic->log2_buffer_sectors > 3) { 4298 ic->log2_buffer_sectors--; 4299 goto try_smaller_buffer; 4300 } 4301 } 4302 ti->error = "The device is too small"; 4303 goto bad; 4304 } 4305 4306 if (log2_sectors_per_bitmap_bit < 0) 4307 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT); 4308 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block) 4309 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block; 4310 4311 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3); 4312 if (bits_in_journal > UINT_MAX) 4313 bits_in_journal = UINT_MAX; 4314 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit) 4315 log2_sectors_per_bitmap_bit++; 4316 4317 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block; 4318 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4319 if (should_write_sb) { 4320 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4321 } 4322 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) 4323 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit; 4324 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8); 4325 4326 if (!ic->meta_dev) 4327 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run)); 4328 4329 if (ti->len > ic->provided_data_sectors) { 4330 r = -EINVAL; 4331 ti->error = "Not enough provided sectors for requested mapping size"; 4332 goto bad; 4333 } 4334 4335 4336 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 4337 threshold += 50; 4338 do_div(threshold, 100); 4339 ic->free_sectors_threshold = threshold; 4340 4341 DEBUG_print("initialized:\n"); 4342 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 4343 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 4344 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 4345 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 4346 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 4347 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections)); 4348 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 4349 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 4350 DEBUG_print(" data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT); 4351 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 4352 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 4353 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 4354 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors); 4355 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 4356 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal); 4357 4358 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) { 4359 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 4360 ic->sb->recalc_sector = cpu_to_le64(0); 4361 } 4362 4363 if (ic->internal_hash) { 4364 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1); 4365 if (!ic->recalc_wq ) { 4366 ti->error = "Cannot allocate workqueue"; 4367 r = -ENOMEM; 4368 goto bad; 4369 } 4370 INIT_WORK(&ic->recalc_work, integrity_recalc); 4371 if (!ic->discard) { 4372 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT); 4373 if (!ic->recalc_buffer) { 4374 ti->error = "Cannot allocate buffer for recalculating"; 4375 r = -ENOMEM; 4376 goto bad; 4377 } 4378 } 4379 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block, 4380 ic->tag_size, GFP_KERNEL); 4381 if (!ic->recalc_tags) { 4382 ti->error = "Cannot allocate tags for recalculating"; 4383 r = -ENOMEM; 4384 goto bad; 4385 } 4386 if (ic->discard) 4387 memset(ic->recalc_tags, DISCARD_FILLER, 4388 (RECALC_SECTORS >> ic->sb->log2_sectors_per_block) * ic->tag_size); 4389 } else { 4390 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 4391 ti->error = "Recalculate can only be specified with internal_hash"; 4392 r = -EINVAL; 4393 goto bad; 4394 } 4395 } 4396 4397 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 4398 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors && 4399 dm_integrity_disable_recalculate(ic)) { 4400 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\""; 4401 r = -EOPNOTSUPP; 4402 goto bad; 4403 } 4404 4405 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev, 4406 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL); 4407 if (IS_ERR(ic->bufio)) { 4408 r = PTR_ERR(ic->bufio); 4409 ti->error = "Cannot initialize dm-bufio"; 4410 ic->bufio = NULL; 4411 goto bad; 4412 } 4413 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 4414 4415 if (ic->mode != 'R') { 4416 r = create_journal(ic, &ti->error); 4417 if (r) 4418 goto bad; 4419 4420 } 4421 4422 if (ic->mode == 'B') { 4423 unsigned i; 4424 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 4425 4426 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4427 if (!ic->recalc_bitmap) { 4428 r = -ENOMEM; 4429 goto bad; 4430 } 4431 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4432 if (!ic->may_write_bitmap) { 4433 r = -ENOMEM; 4434 goto bad; 4435 } 4436 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL); 4437 if (!ic->bbs) { 4438 r = -ENOMEM; 4439 goto bad; 4440 } 4441 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work); 4442 for (i = 0; i < ic->n_bitmap_blocks; i++) { 4443 struct bitmap_block_status *bbs = &ic->bbs[i]; 4444 unsigned sector, pl_index, pl_offset; 4445 4446 INIT_WORK(&bbs->work, bitmap_block_work); 4447 bbs->ic = ic; 4448 bbs->idx = i; 4449 bio_list_init(&bbs->bio_queue); 4450 spin_lock_init(&bbs->bio_queue_lock); 4451 4452 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT); 4453 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 4454 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 4455 4456 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset; 4457 } 4458 } 4459 4460 if (should_write_sb) { 4461 int r; 4462 4463 init_journal(ic, 0, ic->journal_sections, 0); 4464 r = dm_integrity_failed(ic); 4465 if (unlikely(r)) { 4466 ti->error = "Error initializing journal"; 4467 goto bad; 4468 } 4469 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 4470 if (r) { 4471 ti->error = "Error initializing superblock"; 4472 goto bad; 4473 } 4474 ic->just_formatted = true; 4475 } 4476 4477 if (!ic->meta_dev) { 4478 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 4479 if (r) 4480 goto bad; 4481 } 4482 if (ic->mode == 'B') { 4483 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8); 4484 if (!max_io_len) 4485 max_io_len = 1U << 31; 4486 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len); 4487 if (!ti->max_io_len || ti->max_io_len > max_io_len) { 4488 r = dm_set_target_max_io_len(ti, max_io_len); 4489 if (r) 4490 goto bad; 4491 } 4492 } 4493 4494 if (!ic->internal_hash) 4495 dm_integrity_set(ti, ic); 4496 4497 ti->num_flush_bios = 1; 4498 ti->flush_supported = true; 4499 if (ic->discard) 4500 ti->num_discard_bios = 1; 4501 4502 return 0; 4503 4504 bad: 4505 dm_integrity_dtr(ti); 4506 return r; 4507 } 4508 4509 static void dm_integrity_dtr(struct dm_target *ti) 4510 { 4511 struct dm_integrity_c *ic = ti->private; 4512 4513 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 4514 BUG_ON(!list_empty(&ic->wait_list)); 4515 4516 if (ic->metadata_wq) 4517 destroy_workqueue(ic->metadata_wq); 4518 if (ic->wait_wq) 4519 destroy_workqueue(ic->wait_wq); 4520 if (ic->offload_wq) 4521 destroy_workqueue(ic->offload_wq); 4522 if (ic->commit_wq) 4523 destroy_workqueue(ic->commit_wq); 4524 if (ic->writer_wq) 4525 destroy_workqueue(ic->writer_wq); 4526 if (ic->recalc_wq) 4527 destroy_workqueue(ic->recalc_wq); 4528 vfree(ic->recalc_buffer); 4529 kvfree(ic->recalc_tags); 4530 kvfree(ic->bbs); 4531 if (ic->bufio) 4532 dm_bufio_client_destroy(ic->bufio); 4533 mempool_exit(&ic->journal_io_mempool); 4534 if (ic->io) 4535 dm_io_client_destroy(ic->io); 4536 if (ic->dev) 4537 dm_put_device(ti, ic->dev); 4538 if (ic->meta_dev) 4539 dm_put_device(ti, ic->meta_dev); 4540 dm_integrity_free_page_list(ic->journal); 4541 dm_integrity_free_page_list(ic->journal_io); 4542 dm_integrity_free_page_list(ic->journal_xor); 4543 dm_integrity_free_page_list(ic->recalc_bitmap); 4544 dm_integrity_free_page_list(ic->may_write_bitmap); 4545 if (ic->journal_scatterlist) 4546 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 4547 if (ic->journal_io_scatterlist) 4548 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 4549 if (ic->sk_requests) { 4550 unsigned i; 4551 4552 for (i = 0; i < ic->journal_sections; i++) { 4553 struct skcipher_request *req = ic->sk_requests[i]; 4554 if (req) { 4555 kfree_sensitive(req->iv); 4556 skcipher_request_free(req); 4557 } 4558 } 4559 kvfree(ic->sk_requests); 4560 } 4561 kvfree(ic->journal_tree); 4562 if (ic->sb) 4563 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 4564 4565 if (ic->internal_hash) 4566 crypto_free_shash(ic->internal_hash); 4567 free_alg(&ic->internal_hash_alg); 4568 4569 if (ic->journal_crypt) 4570 crypto_free_skcipher(ic->journal_crypt); 4571 free_alg(&ic->journal_crypt_alg); 4572 4573 if (ic->journal_mac) 4574 crypto_free_shash(ic->journal_mac); 4575 free_alg(&ic->journal_mac_alg); 4576 4577 kfree(ic); 4578 } 4579 4580 static struct target_type integrity_target = { 4581 .name = "integrity", 4582 .version = {1, 9, 0}, 4583 .module = THIS_MODULE, 4584 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 4585 .ctr = dm_integrity_ctr, 4586 .dtr = dm_integrity_dtr, 4587 .map = dm_integrity_map, 4588 .postsuspend = dm_integrity_postsuspend, 4589 .resume = dm_integrity_resume, 4590 .status = dm_integrity_status, 4591 .iterate_devices = dm_integrity_iterate_devices, 4592 .io_hints = dm_integrity_io_hints, 4593 }; 4594 4595 static int __init dm_integrity_init(void) 4596 { 4597 int r; 4598 4599 journal_io_cache = kmem_cache_create("integrity_journal_io", 4600 sizeof(struct journal_io), 0, 0, NULL); 4601 if (!journal_io_cache) { 4602 DMERR("can't allocate journal io cache"); 4603 return -ENOMEM; 4604 } 4605 4606 r = dm_register_target(&integrity_target); 4607 4608 if (r < 0) 4609 DMERR("register failed %d", r); 4610 4611 return r; 4612 } 4613 4614 static void __exit dm_integrity_exit(void) 4615 { 4616 dm_unregister_target(&integrity_target); 4617 kmem_cache_destroy(journal_io_cache); 4618 } 4619 4620 module_init(dm_integrity_init); 4621 module_exit(dm_integrity_exit); 4622 4623 MODULE_AUTHOR("Milan Broz"); 4624 MODULE_AUTHOR("Mikulas Patocka"); 4625 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 4626 MODULE_LICENSE("GPL"); 4627