1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 4 * Copyright (C) 2016-2017 Milan Broz 5 * Copyright (C) 2016-2017 Mikulas Patocka 6 * 7 * This file is released under the GPL. 8 */ 9 10 #include "dm-bio-record.h" 11 12 #include <linux/compiler.h> 13 #include <linux/module.h> 14 #include <linux/device-mapper.h> 15 #include <linux/dm-io.h> 16 #include <linux/vmalloc.h> 17 #include <linux/sort.h> 18 #include <linux/rbtree.h> 19 #include <linux/delay.h> 20 #include <linux/random.h> 21 #include <linux/reboot.h> 22 #include <crypto/hash.h> 23 #include <crypto/skcipher.h> 24 #include <linux/async_tx.h> 25 #include <linux/dm-bufio.h> 26 27 #include "dm-audit.h" 28 29 #define DM_MSG_PREFIX "integrity" 30 31 #define DEFAULT_INTERLEAVE_SECTORS 32768 32 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 33 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768 34 #define DEFAULT_BUFFER_SECTORS 128 35 #define DEFAULT_JOURNAL_WATERMARK 50 36 #define DEFAULT_SYNC_MSEC 10000 37 #define DEFAULT_MAX_JOURNAL_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192) 38 #define MIN_LOG2_INTERLEAVE_SECTORS 3 39 #define MAX_LOG2_INTERLEAVE_SECTORS 31 40 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 41 #define RECALC_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048) 42 #define RECALC_WRITE_SUPER 16 43 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */ 44 #define BITMAP_FLUSH_INTERVAL (10 * HZ) 45 #define DISCARD_FILLER 0xf6 46 #define SALT_SIZE 16 47 48 /* 49 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 50 * so it should not be enabled in the official kernel 51 */ 52 //#define DEBUG_PRINT 53 //#define INTERNAL_VERIFY 54 55 /* 56 * On disk structures 57 */ 58 59 #define SB_MAGIC "integrt" 60 #define SB_VERSION_1 1 61 #define SB_VERSION_2 2 62 #define SB_VERSION_3 3 63 #define SB_VERSION_4 4 64 #define SB_VERSION_5 5 65 #define SB_SECTORS 8 66 #define MAX_SECTORS_PER_BLOCK 8 67 68 struct superblock { 69 __u8 magic[8]; 70 __u8 version; 71 __u8 log2_interleave_sectors; 72 __le16 integrity_tag_size; 73 __le32 journal_sections; 74 __le64 provided_data_sectors; /* userspace uses this value */ 75 __le32 flags; 76 __u8 log2_sectors_per_block; 77 __u8 log2_blocks_per_bitmap_bit; 78 __u8 pad[2]; 79 __le64 recalc_sector; 80 __u8 pad2[8]; 81 __u8 salt[SALT_SIZE]; 82 }; 83 84 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 85 #define SB_FLAG_RECALCULATING 0x2 86 #define SB_FLAG_DIRTY_BITMAP 0x4 87 #define SB_FLAG_FIXED_PADDING 0x8 88 #define SB_FLAG_FIXED_HMAC 0x10 89 90 #define JOURNAL_ENTRY_ROUNDUP 8 91 92 typedef __le64 commit_id_t; 93 #define JOURNAL_MAC_PER_SECTOR 8 94 95 struct journal_entry { 96 union { 97 struct { 98 __le32 sector_lo; 99 __le32 sector_hi; 100 } s; 101 __le64 sector; 102 } u; 103 commit_id_t last_bytes[]; 104 /* __u8 tag[0]; */ 105 }; 106 107 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 108 109 #if BITS_PER_LONG == 64 110 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) 111 #else 112 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) 113 #endif 114 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 115 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 116 #define journal_entry_set_unused(je) ((je)->u.s.sector_hi = cpu_to_le32(-1)) 117 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 118 #define journal_entry_set_inprogress(je) ((je)->u.s.sector_hi = cpu_to_le32(-2)) 119 120 #define JOURNAL_BLOCK_SECTORS 8 121 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 122 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 123 124 struct journal_sector { 125 struct_group(sectors, 126 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 127 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 128 ); 129 commit_id_t commit_id; 130 }; 131 132 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 133 134 #define METADATA_PADDING_SECTORS 8 135 136 #define N_COMMIT_IDS 4 137 138 static unsigned char prev_commit_seq(unsigned char seq) 139 { 140 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 141 } 142 143 static unsigned char next_commit_seq(unsigned char seq) 144 { 145 return (seq + 1) % N_COMMIT_IDS; 146 } 147 148 /* 149 * In-memory structures 150 */ 151 152 struct journal_node { 153 struct rb_node node; 154 sector_t sector; 155 }; 156 157 struct alg_spec { 158 char *alg_string; 159 char *key_string; 160 __u8 *key; 161 unsigned int key_size; 162 }; 163 164 struct dm_integrity_c { 165 struct dm_dev *dev; 166 struct dm_dev *meta_dev; 167 unsigned int tag_size; 168 __s8 log2_tag_size; 169 sector_t start; 170 mempool_t journal_io_mempool; 171 struct dm_io_client *io; 172 struct dm_bufio_client *bufio; 173 struct workqueue_struct *metadata_wq; 174 struct superblock *sb; 175 unsigned int journal_pages; 176 unsigned int n_bitmap_blocks; 177 178 struct page_list *journal; 179 struct page_list *journal_io; 180 struct page_list *journal_xor; 181 struct page_list *recalc_bitmap; 182 struct page_list *may_write_bitmap; 183 struct bitmap_block_status *bbs; 184 unsigned int bitmap_flush_interval; 185 int synchronous_mode; 186 struct bio_list synchronous_bios; 187 struct delayed_work bitmap_flush_work; 188 189 struct crypto_skcipher *journal_crypt; 190 struct scatterlist **journal_scatterlist; 191 struct scatterlist **journal_io_scatterlist; 192 struct skcipher_request **sk_requests; 193 194 struct crypto_shash *journal_mac; 195 196 struct journal_node *journal_tree; 197 struct rb_root journal_tree_root; 198 199 sector_t provided_data_sectors; 200 201 unsigned short journal_entry_size; 202 unsigned char journal_entries_per_sector; 203 unsigned char journal_section_entries; 204 unsigned short journal_section_sectors; 205 unsigned int journal_sections; 206 unsigned int journal_entries; 207 sector_t data_device_sectors; 208 sector_t meta_device_sectors; 209 unsigned int initial_sectors; 210 unsigned int metadata_run; 211 __s8 log2_metadata_run; 212 __u8 log2_buffer_sectors; 213 __u8 sectors_per_block; 214 __u8 log2_blocks_per_bitmap_bit; 215 216 unsigned char mode; 217 218 int failed; 219 220 struct crypto_shash *internal_hash; 221 222 struct dm_target *ti; 223 224 /* these variables are locked with endio_wait.lock */ 225 struct rb_root in_progress; 226 struct list_head wait_list; 227 wait_queue_head_t endio_wait; 228 struct workqueue_struct *wait_wq; 229 struct workqueue_struct *offload_wq; 230 231 unsigned char commit_seq; 232 commit_id_t commit_ids[N_COMMIT_IDS]; 233 234 unsigned int committed_section; 235 unsigned int n_committed_sections; 236 237 unsigned int uncommitted_section; 238 unsigned int n_uncommitted_sections; 239 240 unsigned int free_section; 241 unsigned char free_section_entry; 242 unsigned int free_sectors; 243 244 unsigned int free_sectors_threshold; 245 246 struct workqueue_struct *commit_wq; 247 struct work_struct commit_work; 248 249 struct workqueue_struct *writer_wq; 250 struct work_struct writer_work; 251 252 struct workqueue_struct *recalc_wq; 253 struct work_struct recalc_work; 254 255 struct bio_list flush_bio_list; 256 257 unsigned long autocommit_jiffies; 258 struct timer_list autocommit_timer; 259 unsigned int autocommit_msec; 260 261 wait_queue_head_t copy_to_journal_wait; 262 263 struct completion crypto_backoff; 264 265 bool wrote_to_journal; 266 bool journal_uptodate; 267 bool just_formatted; 268 bool recalculate_flag; 269 bool reset_recalculate_flag; 270 bool discard; 271 bool fix_padding; 272 bool fix_hmac; 273 bool legacy_recalculate; 274 275 struct alg_spec internal_hash_alg; 276 struct alg_spec journal_crypt_alg; 277 struct alg_spec journal_mac_alg; 278 279 atomic64_t number_of_mismatches; 280 281 struct notifier_block reboot_notifier; 282 }; 283 284 struct dm_integrity_range { 285 sector_t logical_sector; 286 sector_t n_sectors; 287 bool waiting; 288 union { 289 struct rb_node node; 290 struct { 291 struct task_struct *task; 292 struct list_head wait_entry; 293 }; 294 }; 295 }; 296 297 struct dm_integrity_io { 298 struct work_struct work; 299 300 struct dm_integrity_c *ic; 301 enum req_op op; 302 bool fua; 303 304 struct dm_integrity_range range; 305 306 sector_t metadata_block; 307 unsigned int metadata_offset; 308 309 atomic_t in_flight; 310 blk_status_t bi_status; 311 312 struct completion *completion; 313 314 struct dm_bio_details bio_details; 315 }; 316 317 struct journal_completion { 318 struct dm_integrity_c *ic; 319 atomic_t in_flight; 320 struct completion comp; 321 }; 322 323 struct journal_io { 324 struct dm_integrity_range range; 325 struct journal_completion *comp; 326 }; 327 328 struct bitmap_block_status { 329 struct work_struct work; 330 struct dm_integrity_c *ic; 331 unsigned int idx; 332 unsigned long *bitmap; 333 struct bio_list bio_queue; 334 spinlock_t bio_queue_lock; 335 336 }; 337 338 static struct kmem_cache *journal_io_cache; 339 340 #define JOURNAL_IO_MEMPOOL 32 341 342 #ifdef DEBUG_PRINT 343 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 344 #define DEBUG_bytes(bytes, len, msg, ...) printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \ 345 len ? ": " : "", len, bytes) 346 #else 347 #define DEBUG_print(x, ...) do { } while (0) 348 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 349 #endif 350 351 static void dm_integrity_prepare(struct request *rq) 352 { 353 } 354 355 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes) 356 { 357 } 358 359 /* 360 * DM Integrity profile, protection is performed layer above (dm-crypt) 361 */ 362 static const struct blk_integrity_profile dm_integrity_profile = { 363 .name = "DM-DIF-EXT-TAG", 364 .generate_fn = NULL, 365 .verify_fn = NULL, 366 .prepare_fn = dm_integrity_prepare, 367 .complete_fn = dm_integrity_complete, 368 }; 369 370 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 371 static void integrity_bio_wait(struct work_struct *w); 372 static void dm_integrity_dtr(struct dm_target *ti); 373 374 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 375 { 376 if (err == -EILSEQ) 377 atomic64_inc(&ic->number_of_mismatches); 378 if (!cmpxchg(&ic->failed, 0, err)) 379 DMERR("Error on %s: %d", msg, err); 380 } 381 382 static int dm_integrity_failed(struct dm_integrity_c *ic) 383 { 384 return READ_ONCE(ic->failed); 385 } 386 387 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic) 388 { 389 if (ic->legacy_recalculate) 390 return false; 391 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ? 392 ic->internal_hash_alg.key || ic->journal_mac_alg.key : 393 ic->internal_hash_alg.key && !ic->journal_mac_alg.key) 394 return true; 395 return false; 396 } 397 398 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i, 399 unsigned int j, unsigned char seq) 400 { 401 /* 402 * Xor the number with section and sector, so that if a piece of 403 * journal is written at wrong place, it is detected. 404 */ 405 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 406 } 407 408 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 409 sector_t *area, sector_t *offset) 410 { 411 if (!ic->meta_dev) { 412 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 413 *area = data_sector >> log2_interleave_sectors; 414 *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1); 415 } else { 416 *area = 0; 417 *offset = data_sector; 418 } 419 } 420 421 #define sector_to_block(ic, n) \ 422 do { \ 423 BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1)); \ 424 (n) >>= (ic)->sb->log2_sectors_per_block; \ 425 } while (0) 426 427 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 428 sector_t offset, unsigned int *metadata_offset) 429 { 430 __u64 ms; 431 unsigned int mo; 432 433 ms = area << ic->sb->log2_interleave_sectors; 434 if (likely(ic->log2_metadata_run >= 0)) 435 ms += area << ic->log2_metadata_run; 436 else 437 ms += area * ic->metadata_run; 438 ms >>= ic->log2_buffer_sectors; 439 440 sector_to_block(ic, offset); 441 442 if (likely(ic->log2_tag_size >= 0)) { 443 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 444 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 445 } else { 446 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 447 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 448 } 449 *metadata_offset = mo; 450 return ms; 451 } 452 453 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 454 { 455 sector_t result; 456 457 if (ic->meta_dev) 458 return offset; 459 460 result = area << ic->sb->log2_interleave_sectors; 461 if (likely(ic->log2_metadata_run >= 0)) 462 result += (area + 1) << ic->log2_metadata_run; 463 else 464 result += (area + 1) * ic->metadata_run; 465 466 result += (sector_t)ic->initial_sectors + offset; 467 result += ic->start; 468 469 return result; 470 } 471 472 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr) 473 { 474 if (unlikely(*sec_ptr >= ic->journal_sections)) 475 *sec_ptr -= ic->journal_sections; 476 } 477 478 static void sb_set_version(struct dm_integrity_c *ic) 479 { 480 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) 481 ic->sb->version = SB_VERSION_5; 482 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) 483 ic->sb->version = SB_VERSION_4; 484 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) 485 ic->sb->version = SB_VERSION_3; 486 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 487 ic->sb->version = SB_VERSION_2; 488 else 489 ic->sb->version = SB_VERSION_1; 490 } 491 492 static int sb_mac(struct dm_integrity_c *ic, bool wr) 493 { 494 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 495 int r; 496 unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac); 497 __u8 *sb = (__u8 *)ic->sb; 498 __u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size; 499 500 if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT) { 501 dm_integrity_io_error(ic, "digest is too long", -EINVAL); 502 return -EINVAL; 503 } 504 505 desc->tfm = ic->journal_mac; 506 507 if (likely(wr)) { 508 r = crypto_shash_digest(desc, sb, mac - sb, mac); 509 if (unlikely(r < 0)) { 510 dm_integrity_io_error(ic, "crypto_shash_digest", r); 511 return r; 512 } 513 } else { 514 __u8 actual_mac[HASH_MAX_DIGESTSIZE]; 515 516 r = crypto_shash_digest(desc, sb, mac - sb, actual_mac); 517 if (unlikely(r < 0)) { 518 dm_integrity_io_error(ic, "crypto_shash_digest", r); 519 return r; 520 } 521 if (memcmp(mac, actual_mac, mac_size)) { 522 dm_integrity_io_error(ic, "superblock mac", -EILSEQ); 523 dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0); 524 return -EILSEQ; 525 } 526 } 527 528 return 0; 529 } 530 531 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf) 532 { 533 struct dm_io_request io_req; 534 struct dm_io_region io_loc; 535 const enum req_op op = opf & REQ_OP_MASK; 536 int r; 537 538 io_req.bi_opf = opf; 539 io_req.mem.type = DM_IO_KMEM; 540 io_req.mem.ptr.addr = ic->sb; 541 io_req.notify.fn = NULL; 542 io_req.client = ic->io; 543 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 544 io_loc.sector = ic->start; 545 io_loc.count = SB_SECTORS; 546 547 if (op == REQ_OP_WRITE) { 548 sb_set_version(ic); 549 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 550 r = sb_mac(ic, true); 551 if (unlikely(r)) 552 return r; 553 } 554 } 555 556 r = dm_io(&io_req, 1, &io_loc, NULL); 557 if (unlikely(r)) 558 return r; 559 560 if (op == REQ_OP_READ) { 561 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 562 r = sb_mac(ic, false); 563 if (unlikely(r)) 564 return r; 565 } 566 } 567 568 return 0; 569 } 570 571 #define BITMAP_OP_TEST_ALL_SET 0 572 #define BITMAP_OP_TEST_ALL_CLEAR 1 573 #define BITMAP_OP_SET 2 574 #define BITMAP_OP_CLEAR 3 575 576 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap, 577 sector_t sector, sector_t n_sectors, int mode) 578 { 579 unsigned long bit, end_bit, this_end_bit, page, end_page; 580 unsigned long *data; 581 582 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) { 583 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)", 584 sector, 585 n_sectors, 586 ic->sb->log2_sectors_per_block, 587 ic->log2_blocks_per_bitmap_bit, 588 mode); 589 BUG(); 590 } 591 592 if (unlikely(!n_sectors)) 593 return true; 594 595 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 596 end_bit = (sector + n_sectors - 1) >> 597 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 598 599 page = bit / (PAGE_SIZE * 8); 600 bit %= PAGE_SIZE * 8; 601 602 end_page = end_bit / (PAGE_SIZE * 8); 603 end_bit %= PAGE_SIZE * 8; 604 605 repeat: 606 if (page < end_page) 607 this_end_bit = PAGE_SIZE * 8 - 1; 608 else 609 this_end_bit = end_bit; 610 611 data = lowmem_page_address(bitmap[page].page); 612 613 if (mode == BITMAP_OP_TEST_ALL_SET) { 614 while (bit <= this_end_bit) { 615 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 616 do { 617 if (data[bit / BITS_PER_LONG] != -1) 618 return false; 619 bit += BITS_PER_LONG; 620 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 621 continue; 622 } 623 if (!test_bit(bit, data)) 624 return false; 625 bit++; 626 } 627 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) { 628 while (bit <= this_end_bit) { 629 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 630 do { 631 if (data[bit / BITS_PER_LONG] != 0) 632 return false; 633 bit += BITS_PER_LONG; 634 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 635 continue; 636 } 637 if (test_bit(bit, data)) 638 return false; 639 bit++; 640 } 641 } else if (mode == BITMAP_OP_SET) { 642 while (bit <= this_end_bit) { 643 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 644 do { 645 data[bit / BITS_PER_LONG] = -1; 646 bit += BITS_PER_LONG; 647 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 648 continue; 649 } 650 __set_bit(bit, data); 651 bit++; 652 } 653 } else if (mode == BITMAP_OP_CLEAR) { 654 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1) 655 clear_page(data); 656 else { 657 while (bit <= this_end_bit) { 658 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 659 do { 660 data[bit / BITS_PER_LONG] = 0; 661 bit += BITS_PER_LONG; 662 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 663 continue; 664 } 665 __clear_bit(bit, data); 666 bit++; 667 } 668 } 669 } else { 670 BUG(); 671 } 672 673 if (unlikely(page < end_page)) { 674 bit = 0; 675 page++; 676 goto repeat; 677 } 678 679 return true; 680 } 681 682 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src) 683 { 684 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 685 unsigned int i; 686 687 for (i = 0; i < n_bitmap_pages; i++) { 688 unsigned long *dst_data = lowmem_page_address(dst[i].page); 689 unsigned long *src_data = lowmem_page_address(src[i].page); 690 691 copy_page(dst_data, src_data); 692 } 693 } 694 695 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector) 696 { 697 unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 698 unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8); 699 700 BUG_ON(bitmap_block >= ic->n_bitmap_blocks); 701 return &ic->bbs[bitmap_block]; 702 } 703 704 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset, 705 bool e, const char *function) 706 { 707 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 708 unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 709 710 if (unlikely(section >= ic->journal_sections) || 711 unlikely(offset >= limit)) { 712 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)", 713 function, section, offset, ic->journal_sections, limit); 714 BUG(); 715 } 716 #endif 717 } 718 719 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset, 720 unsigned int *pl_index, unsigned int *pl_offset) 721 { 722 unsigned int sector; 723 724 access_journal_check(ic, section, offset, false, "page_list_location"); 725 726 sector = section * ic->journal_section_sectors + offset; 727 728 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 729 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 730 } 731 732 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 733 unsigned int section, unsigned int offset, unsigned int *n_sectors) 734 { 735 unsigned int pl_index, pl_offset; 736 char *va; 737 738 page_list_location(ic, section, offset, &pl_index, &pl_offset); 739 740 if (n_sectors) 741 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 742 743 va = lowmem_page_address(pl[pl_index].page); 744 745 return (struct journal_sector *)(va + pl_offset); 746 } 747 748 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset) 749 { 750 return access_page_list(ic, ic->journal, section, offset, NULL); 751 } 752 753 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n) 754 { 755 unsigned int rel_sector, offset; 756 struct journal_sector *js; 757 758 access_journal_check(ic, section, n, true, "access_journal_entry"); 759 760 rel_sector = n % JOURNAL_BLOCK_SECTORS; 761 offset = n / JOURNAL_BLOCK_SECTORS; 762 763 js = access_journal(ic, section, rel_sector); 764 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 765 } 766 767 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n) 768 { 769 n <<= ic->sb->log2_sectors_per_block; 770 771 n += JOURNAL_BLOCK_SECTORS; 772 773 access_journal_check(ic, section, n, false, "access_journal_data"); 774 775 return access_journal(ic, section, n); 776 } 777 778 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE]) 779 { 780 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 781 int r; 782 unsigned int j, size; 783 784 desc->tfm = ic->journal_mac; 785 786 r = crypto_shash_init(desc); 787 if (unlikely(r < 0)) { 788 dm_integrity_io_error(ic, "crypto_shash_init", r); 789 goto err; 790 } 791 792 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 793 __le64 section_le; 794 795 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE); 796 if (unlikely(r < 0)) { 797 dm_integrity_io_error(ic, "crypto_shash_update", r); 798 goto err; 799 } 800 801 section_le = cpu_to_le64(section); 802 r = crypto_shash_update(desc, (__u8 *)§ion_le, sizeof(section_le)); 803 if (unlikely(r < 0)) { 804 dm_integrity_io_error(ic, "crypto_shash_update", r); 805 goto err; 806 } 807 } 808 809 for (j = 0; j < ic->journal_section_entries; j++) { 810 struct journal_entry *je = access_journal_entry(ic, section, j); 811 812 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector)); 813 if (unlikely(r < 0)) { 814 dm_integrity_io_error(ic, "crypto_shash_update", r); 815 goto err; 816 } 817 } 818 819 size = crypto_shash_digestsize(ic->journal_mac); 820 821 if (likely(size <= JOURNAL_MAC_SIZE)) { 822 r = crypto_shash_final(desc, result); 823 if (unlikely(r < 0)) { 824 dm_integrity_io_error(ic, "crypto_shash_final", r); 825 goto err; 826 } 827 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 828 } else { 829 __u8 digest[HASH_MAX_DIGESTSIZE]; 830 831 if (WARN_ON(size > sizeof(digest))) { 832 dm_integrity_io_error(ic, "digest_size", -EINVAL); 833 goto err; 834 } 835 r = crypto_shash_final(desc, digest); 836 if (unlikely(r < 0)) { 837 dm_integrity_io_error(ic, "crypto_shash_final", r); 838 goto err; 839 } 840 memcpy(result, digest, JOURNAL_MAC_SIZE); 841 } 842 843 return; 844 err: 845 memset(result, 0, JOURNAL_MAC_SIZE); 846 } 847 848 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr) 849 { 850 __u8 result[JOURNAL_MAC_SIZE]; 851 unsigned int j; 852 853 if (!ic->journal_mac) 854 return; 855 856 section_mac(ic, section, result); 857 858 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 859 struct journal_sector *js = access_journal(ic, section, j); 860 861 if (likely(wr)) 862 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 863 else { 864 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) { 865 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 866 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0); 867 } 868 } 869 } 870 } 871 872 static void complete_journal_op(void *context) 873 { 874 struct journal_completion *comp = context; 875 876 BUG_ON(!atomic_read(&comp->in_flight)); 877 if (likely(atomic_dec_and_test(&comp->in_flight))) 878 complete(&comp->comp); 879 } 880 881 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section, 882 unsigned int n_sections, struct journal_completion *comp) 883 { 884 struct async_submit_ctl submit; 885 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 886 unsigned int pl_index, pl_offset, section_index; 887 struct page_list *source_pl, *target_pl; 888 889 if (likely(encrypt)) { 890 source_pl = ic->journal; 891 target_pl = ic->journal_io; 892 } else { 893 source_pl = ic->journal_io; 894 target_pl = ic->journal; 895 } 896 897 page_list_location(ic, section, 0, &pl_index, &pl_offset); 898 899 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 900 901 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 902 903 section_index = pl_index; 904 905 do { 906 size_t this_step; 907 struct page *src_pages[2]; 908 struct page *dst_page; 909 910 while (unlikely(pl_index == section_index)) { 911 unsigned int dummy; 912 913 if (likely(encrypt)) 914 rw_section_mac(ic, section, true); 915 section++; 916 n_sections--; 917 if (!n_sections) 918 break; 919 page_list_location(ic, section, 0, §ion_index, &dummy); 920 } 921 922 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 923 dst_page = target_pl[pl_index].page; 924 src_pages[0] = source_pl[pl_index].page; 925 src_pages[1] = ic->journal_xor[pl_index].page; 926 927 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 928 929 pl_index++; 930 pl_offset = 0; 931 n_bytes -= this_step; 932 } while (n_bytes); 933 934 BUG_ON(n_sections); 935 936 async_tx_issue_pending_all(); 937 } 938 939 static void complete_journal_encrypt(void *data, int err) 940 { 941 struct journal_completion *comp = data; 942 943 if (unlikely(err)) { 944 if (likely(err == -EINPROGRESS)) { 945 complete(&comp->ic->crypto_backoff); 946 return; 947 } 948 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 949 } 950 complete_journal_op(comp); 951 } 952 953 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 954 { 955 int r; 956 957 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 958 complete_journal_encrypt, comp); 959 if (likely(encrypt)) 960 r = crypto_skcipher_encrypt(req); 961 else 962 r = crypto_skcipher_decrypt(req); 963 if (likely(!r)) 964 return false; 965 if (likely(r == -EINPROGRESS)) 966 return true; 967 if (likely(r == -EBUSY)) { 968 wait_for_completion(&comp->ic->crypto_backoff); 969 reinit_completion(&comp->ic->crypto_backoff); 970 return true; 971 } 972 dm_integrity_io_error(comp->ic, "encrypt", r); 973 return false; 974 } 975 976 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section, 977 unsigned int n_sections, struct journal_completion *comp) 978 { 979 struct scatterlist **source_sg; 980 struct scatterlist **target_sg; 981 982 atomic_add(2, &comp->in_flight); 983 984 if (likely(encrypt)) { 985 source_sg = ic->journal_scatterlist; 986 target_sg = ic->journal_io_scatterlist; 987 } else { 988 source_sg = ic->journal_io_scatterlist; 989 target_sg = ic->journal_scatterlist; 990 } 991 992 do { 993 struct skcipher_request *req; 994 unsigned int ivsize; 995 char *iv; 996 997 if (likely(encrypt)) 998 rw_section_mac(ic, section, true); 999 1000 req = ic->sk_requests[section]; 1001 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 1002 iv = req->iv; 1003 1004 memcpy(iv, iv + ivsize, ivsize); 1005 1006 req->src = source_sg[section]; 1007 req->dst = target_sg[section]; 1008 1009 if (unlikely(do_crypt(encrypt, req, comp))) 1010 atomic_inc(&comp->in_flight); 1011 1012 section++; 1013 n_sections--; 1014 } while (n_sections); 1015 1016 atomic_dec(&comp->in_flight); 1017 complete_journal_op(comp); 1018 } 1019 1020 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section, 1021 unsigned int n_sections, struct journal_completion *comp) 1022 { 1023 if (ic->journal_xor) 1024 return xor_journal(ic, encrypt, section, n_sections, comp); 1025 else 1026 return crypt_journal(ic, encrypt, section, n_sections, comp); 1027 } 1028 1029 static void complete_journal_io(unsigned long error, void *context) 1030 { 1031 struct journal_completion *comp = context; 1032 1033 if (unlikely(error != 0)) 1034 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 1035 complete_journal_op(comp); 1036 } 1037 1038 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf, 1039 unsigned int sector, unsigned int n_sectors, 1040 struct journal_completion *comp) 1041 { 1042 struct dm_io_request io_req; 1043 struct dm_io_region io_loc; 1044 unsigned int pl_index, pl_offset; 1045 int r; 1046 1047 if (unlikely(dm_integrity_failed(ic))) { 1048 if (comp) 1049 complete_journal_io(-1UL, comp); 1050 return; 1051 } 1052 1053 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1054 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1055 1056 io_req.bi_opf = opf; 1057 io_req.mem.type = DM_IO_PAGE_LIST; 1058 if (ic->journal_io) 1059 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 1060 else 1061 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1062 io_req.mem.offset = pl_offset; 1063 if (likely(comp != NULL)) { 1064 io_req.notify.fn = complete_journal_io; 1065 io_req.notify.context = comp; 1066 } else { 1067 io_req.notify.fn = NULL; 1068 } 1069 io_req.client = ic->io; 1070 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 1071 io_loc.sector = ic->start + SB_SECTORS + sector; 1072 io_loc.count = n_sectors; 1073 1074 r = dm_io(&io_req, 1, &io_loc, NULL); 1075 if (unlikely(r)) { 1076 dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ? 1077 "reading journal" : "writing journal", r); 1078 if (comp) { 1079 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1080 complete_journal_io(-1UL, comp); 1081 } 1082 } 1083 } 1084 1085 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf, 1086 unsigned int section, unsigned int n_sections, 1087 struct journal_completion *comp) 1088 { 1089 unsigned int sector, n_sectors; 1090 1091 sector = section * ic->journal_section_sectors; 1092 n_sectors = n_sections * ic->journal_section_sectors; 1093 1094 rw_journal_sectors(ic, opf, sector, n_sectors, comp); 1095 } 1096 1097 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections) 1098 { 1099 struct journal_completion io_comp; 1100 struct journal_completion crypt_comp_1; 1101 struct journal_completion crypt_comp_2; 1102 unsigned int i; 1103 1104 io_comp.ic = ic; 1105 init_completion(&io_comp.comp); 1106 1107 if (commit_start + commit_sections <= ic->journal_sections) { 1108 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 1109 if (ic->journal_io) { 1110 crypt_comp_1.ic = ic; 1111 init_completion(&crypt_comp_1.comp); 1112 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1113 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 1114 wait_for_completion_io(&crypt_comp_1.comp); 1115 } else { 1116 for (i = 0; i < commit_sections; i++) 1117 rw_section_mac(ic, commit_start + i, true); 1118 } 1119 rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start, 1120 commit_sections, &io_comp); 1121 } else { 1122 unsigned int to_end; 1123 1124 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 1125 to_end = ic->journal_sections - commit_start; 1126 if (ic->journal_io) { 1127 crypt_comp_1.ic = ic; 1128 init_completion(&crypt_comp_1.comp); 1129 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1130 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 1131 if (try_wait_for_completion(&crypt_comp_1.comp)) { 1132 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 1133 commit_start, to_end, &io_comp); 1134 reinit_completion(&crypt_comp_1.comp); 1135 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1136 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 1137 wait_for_completion_io(&crypt_comp_1.comp); 1138 } else { 1139 crypt_comp_2.ic = ic; 1140 init_completion(&crypt_comp_2.comp); 1141 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 1142 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 1143 wait_for_completion_io(&crypt_comp_1.comp); 1144 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp); 1145 wait_for_completion_io(&crypt_comp_2.comp); 1146 } 1147 } else { 1148 for (i = 0; i < to_end; i++) 1149 rw_section_mac(ic, commit_start + i, true); 1150 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp); 1151 for (i = 0; i < commit_sections - to_end; i++) 1152 rw_section_mac(ic, i, true); 1153 } 1154 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp); 1155 } 1156 1157 wait_for_completion_io(&io_comp.comp); 1158 } 1159 1160 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset, 1161 unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data) 1162 { 1163 struct dm_io_request io_req; 1164 struct dm_io_region io_loc; 1165 int r; 1166 unsigned int sector, pl_index, pl_offset; 1167 1168 BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1)); 1169 1170 if (unlikely(dm_integrity_failed(ic))) { 1171 fn(-1UL, data); 1172 return; 1173 } 1174 1175 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 1176 1177 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1178 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1179 1180 io_req.bi_opf = REQ_OP_WRITE; 1181 io_req.mem.type = DM_IO_PAGE_LIST; 1182 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1183 io_req.mem.offset = pl_offset; 1184 io_req.notify.fn = fn; 1185 io_req.notify.context = data; 1186 io_req.client = ic->io; 1187 io_loc.bdev = ic->dev->bdev; 1188 io_loc.sector = target; 1189 io_loc.count = n_sectors; 1190 1191 r = dm_io(&io_req, 1, &io_loc, NULL); 1192 if (unlikely(r)) { 1193 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1194 fn(-1UL, data); 1195 } 1196 } 1197 1198 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2) 1199 { 1200 return range1->logical_sector < range2->logical_sector + range2->n_sectors && 1201 range1->logical_sector + range1->n_sectors > range2->logical_sector; 1202 } 1203 1204 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting) 1205 { 1206 struct rb_node **n = &ic->in_progress.rb_node; 1207 struct rb_node *parent; 1208 1209 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1)); 1210 1211 if (likely(check_waiting)) { 1212 struct dm_integrity_range *range; 1213 1214 list_for_each_entry(range, &ic->wait_list, wait_entry) { 1215 if (unlikely(ranges_overlap(range, new_range))) 1216 return false; 1217 } 1218 } 1219 1220 parent = NULL; 1221 1222 while (*n) { 1223 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 1224 1225 parent = *n; 1226 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) 1227 n = &range->node.rb_left; 1228 else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) 1229 n = &range->node.rb_right; 1230 else 1231 return false; 1232 } 1233 1234 rb_link_node(&new_range->node, parent, n); 1235 rb_insert_color(&new_range->node, &ic->in_progress); 1236 1237 return true; 1238 } 1239 1240 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1241 { 1242 rb_erase(&range->node, &ic->in_progress); 1243 while (unlikely(!list_empty(&ic->wait_list))) { 1244 struct dm_integrity_range *last_range = 1245 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry); 1246 struct task_struct *last_range_task; 1247 1248 last_range_task = last_range->task; 1249 list_del(&last_range->wait_entry); 1250 if (!add_new_range(ic, last_range, false)) { 1251 last_range->task = last_range_task; 1252 list_add(&last_range->wait_entry, &ic->wait_list); 1253 break; 1254 } 1255 last_range->waiting = false; 1256 wake_up_process(last_range_task); 1257 } 1258 } 1259 1260 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1261 { 1262 unsigned long flags; 1263 1264 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1265 remove_range_unlocked(ic, range); 1266 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1267 } 1268 1269 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1270 { 1271 new_range->waiting = true; 1272 list_add_tail(&new_range->wait_entry, &ic->wait_list); 1273 new_range->task = current; 1274 do { 1275 __set_current_state(TASK_UNINTERRUPTIBLE); 1276 spin_unlock_irq(&ic->endio_wait.lock); 1277 io_schedule(); 1278 spin_lock_irq(&ic->endio_wait.lock); 1279 } while (unlikely(new_range->waiting)); 1280 } 1281 1282 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1283 { 1284 if (unlikely(!add_new_range(ic, new_range, true))) 1285 wait_and_add_new_range(ic, new_range); 1286 } 1287 1288 static void init_journal_node(struct journal_node *node) 1289 { 1290 RB_CLEAR_NODE(&node->node); 1291 node->sector = (sector_t)-1; 1292 } 1293 1294 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 1295 { 1296 struct rb_node **link; 1297 struct rb_node *parent; 1298 1299 node->sector = sector; 1300 BUG_ON(!RB_EMPTY_NODE(&node->node)); 1301 1302 link = &ic->journal_tree_root.rb_node; 1303 parent = NULL; 1304 1305 while (*link) { 1306 struct journal_node *j; 1307 1308 parent = *link; 1309 j = container_of(parent, struct journal_node, node); 1310 if (sector < j->sector) 1311 link = &j->node.rb_left; 1312 else 1313 link = &j->node.rb_right; 1314 } 1315 1316 rb_link_node(&node->node, parent, link); 1317 rb_insert_color(&node->node, &ic->journal_tree_root); 1318 } 1319 1320 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 1321 { 1322 BUG_ON(RB_EMPTY_NODE(&node->node)); 1323 rb_erase(&node->node, &ic->journal_tree_root); 1324 init_journal_node(node); 1325 } 1326 1327 #define NOT_FOUND (-1U) 1328 1329 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 1330 { 1331 struct rb_node *n = ic->journal_tree_root.rb_node; 1332 unsigned int found = NOT_FOUND; 1333 1334 *next_sector = (sector_t)-1; 1335 while (n) { 1336 struct journal_node *j = container_of(n, struct journal_node, node); 1337 1338 if (sector == j->sector) 1339 found = j - ic->journal_tree; 1340 1341 if (sector < j->sector) { 1342 *next_sector = j->sector; 1343 n = j->node.rb_left; 1344 } else 1345 n = j->node.rb_right; 1346 } 1347 1348 return found; 1349 } 1350 1351 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector) 1352 { 1353 struct journal_node *node, *next_node; 1354 struct rb_node *next; 1355 1356 if (unlikely(pos >= ic->journal_entries)) 1357 return false; 1358 node = &ic->journal_tree[pos]; 1359 if (unlikely(RB_EMPTY_NODE(&node->node))) 1360 return false; 1361 if (unlikely(node->sector != sector)) 1362 return false; 1363 1364 next = rb_next(&node->node); 1365 if (unlikely(!next)) 1366 return true; 1367 1368 next_node = container_of(next, struct journal_node, node); 1369 return next_node->sector != sector; 1370 } 1371 1372 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 1373 { 1374 struct rb_node *next; 1375 struct journal_node *next_node; 1376 unsigned int next_section; 1377 1378 BUG_ON(RB_EMPTY_NODE(&node->node)); 1379 1380 next = rb_next(&node->node); 1381 if (unlikely(!next)) 1382 return false; 1383 1384 next_node = container_of(next, struct journal_node, node); 1385 1386 if (next_node->sector != node->sector) 1387 return false; 1388 1389 next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries; 1390 if (next_section >= ic->committed_section && 1391 next_section < ic->committed_section + ic->n_committed_sections) 1392 return true; 1393 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1394 return true; 1395 1396 return false; 1397 } 1398 1399 #define TAG_READ 0 1400 #define TAG_WRITE 1 1401 #define TAG_CMP 2 1402 1403 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1404 unsigned int *metadata_offset, unsigned int total_size, int op) 1405 { 1406 #define MAY_BE_FILLER 1 1407 #define MAY_BE_HASH 2 1408 unsigned int hash_offset = 0; 1409 unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1410 1411 do { 1412 unsigned char *data, *dp; 1413 struct dm_buffer *b; 1414 unsigned int to_copy; 1415 int r; 1416 1417 r = dm_integrity_failed(ic); 1418 if (unlikely(r)) 1419 return r; 1420 1421 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1422 if (IS_ERR(data)) 1423 return PTR_ERR(data); 1424 1425 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1426 dp = data + *metadata_offset; 1427 if (op == TAG_READ) { 1428 memcpy(tag, dp, to_copy); 1429 } else if (op == TAG_WRITE) { 1430 if (memcmp(dp, tag, to_copy)) { 1431 memcpy(dp, tag, to_copy); 1432 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); 1433 } 1434 } else { 1435 /* e.g.: op == TAG_CMP */ 1436 1437 if (likely(is_power_of_2(ic->tag_size))) { 1438 if (unlikely(memcmp(dp, tag, to_copy))) 1439 if (unlikely(!ic->discard) || 1440 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) { 1441 goto thorough_test; 1442 } 1443 } else { 1444 unsigned int i, ts; 1445 thorough_test: 1446 ts = total_size; 1447 1448 for (i = 0; i < to_copy; i++, ts--) { 1449 if (unlikely(dp[i] != tag[i])) 1450 may_be &= ~MAY_BE_HASH; 1451 if (likely(dp[i] != DISCARD_FILLER)) 1452 may_be &= ~MAY_BE_FILLER; 1453 hash_offset++; 1454 if (unlikely(hash_offset == ic->tag_size)) { 1455 if (unlikely(!may_be)) { 1456 dm_bufio_release(b); 1457 return ts; 1458 } 1459 hash_offset = 0; 1460 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1461 } 1462 } 1463 } 1464 } 1465 dm_bufio_release(b); 1466 1467 tag += to_copy; 1468 *metadata_offset += to_copy; 1469 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1470 (*metadata_block)++; 1471 *metadata_offset = 0; 1472 } 1473 1474 if (unlikely(!is_power_of_2(ic->tag_size))) 1475 hash_offset = (hash_offset + to_copy) % ic->tag_size; 1476 1477 total_size -= to_copy; 1478 } while (unlikely(total_size)); 1479 1480 return 0; 1481 #undef MAY_BE_FILLER 1482 #undef MAY_BE_HASH 1483 } 1484 1485 struct flush_request { 1486 struct dm_io_request io_req; 1487 struct dm_io_region io_reg; 1488 struct dm_integrity_c *ic; 1489 struct completion comp; 1490 }; 1491 1492 static void flush_notify(unsigned long error, void *fr_) 1493 { 1494 struct flush_request *fr = fr_; 1495 1496 if (unlikely(error != 0)) 1497 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO); 1498 complete(&fr->comp); 1499 } 1500 1501 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data) 1502 { 1503 int r; 1504 struct flush_request fr; 1505 1506 if (!ic->meta_dev) 1507 flush_data = false; 1508 if (flush_data) { 1509 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC, 1510 fr.io_req.mem.type = DM_IO_KMEM, 1511 fr.io_req.mem.ptr.addr = NULL, 1512 fr.io_req.notify.fn = flush_notify, 1513 fr.io_req.notify.context = &fr; 1514 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio), 1515 fr.io_reg.bdev = ic->dev->bdev, 1516 fr.io_reg.sector = 0, 1517 fr.io_reg.count = 0, 1518 fr.ic = ic; 1519 init_completion(&fr.comp); 1520 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL); 1521 BUG_ON(r); 1522 } 1523 1524 r = dm_bufio_write_dirty_buffers(ic->bufio); 1525 if (unlikely(r)) 1526 dm_integrity_io_error(ic, "writing tags", r); 1527 1528 if (flush_data) 1529 wait_for_completion(&fr.comp); 1530 } 1531 1532 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1533 { 1534 DECLARE_WAITQUEUE(wait, current); 1535 1536 __add_wait_queue(&ic->endio_wait, &wait); 1537 __set_current_state(TASK_UNINTERRUPTIBLE); 1538 spin_unlock_irq(&ic->endio_wait.lock); 1539 io_schedule(); 1540 spin_lock_irq(&ic->endio_wait.lock); 1541 __remove_wait_queue(&ic->endio_wait, &wait); 1542 } 1543 1544 static void autocommit_fn(struct timer_list *t) 1545 { 1546 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer); 1547 1548 if (likely(!dm_integrity_failed(ic))) 1549 queue_work(ic->commit_wq, &ic->commit_work); 1550 } 1551 1552 static void schedule_autocommit(struct dm_integrity_c *ic) 1553 { 1554 if (!timer_pending(&ic->autocommit_timer)) 1555 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1556 } 1557 1558 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1559 { 1560 struct bio *bio; 1561 unsigned long flags; 1562 1563 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1564 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1565 bio_list_add(&ic->flush_bio_list, bio); 1566 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1567 1568 queue_work(ic->commit_wq, &ic->commit_work); 1569 } 1570 1571 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1572 { 1573 int r; 1574 1575 r = dm_integrity_failed(ic); 1576 if (unlikely(r) && !bio->bi_status) 1577 bio->bi_status = errno_to_blk_status(r); 1578 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) { 1579 unsigned long flags; 1580 1581 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1582 bio_list_add(&ic->synchronous_bios, bio); 1583 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 1584 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1585 return; 1586 } 1587 bio_endio(bio); 1588 } 1589 1590 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1591 { 1592 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1593 1594 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1595 submit_flush_bio(ic, dio); 1596 else 1597 do_endio(ic, bio); 1598 } 1599 1600 static void dec_in_flight(struct dm_integrity_io *dio) 1601 { 1602 if (atomic_dec_and_test(&dio->in_flight)) { 1603 struct dm_integrity_c *ic = dio->ic; 1604 struct bio *bio; 1605 1606 remove_range(ic, &dio->range); 1607 1608 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD)) 1609 schedule_autocommit(ic); 1610 1611 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1612 if (unlikely(dio->bi_status) && !bio->bi_status) 1613 bio->bi_status = dio->bi_status; 1614 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1615 dio->range.logical_sector += dio->range.n_sectors; 1616 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1617 INIT_WORK(&dio->work, integrity_bio_wait); 1618 queue_work(ic->offload_wq, &dio->work); 1619 return; 1620 } 1621 do_endio_flush(ic, dio); 1622 } 1623 } 1624 1625 static void integrity_end_io(struct bio *bio) 1626 { 1627 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1628 1629 dm_bio_restore(&dio->bio_details, bio); 1630 if (bio->bi_integrity) 1631 bio->bi_opf |= REQ_INTEGRITY; 1632 1633 if (dio->completion) 1634 complete(dio->completion); 1635 1636 dec_in_flight(dio); 1637 } 1638 1639 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1640 const char *data, char *result) 1641 { 1642 __le64 sector_le = cpu_to_le64(sector); 1643 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1644 int r; 1645 unsigned int digest_size; 1646 1647 req->tfm = ic->internal_hash; 1648 1649 r = crypto_shash_init(req); 1650 if (unlikely(r < 0)) { 1651 dm_integrity_io_error(ic, "crypto_shash_init", r); 1652 goto failed; 1653 } 1654 1655 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 1656 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE); 1657 if (unlikely(r < 0)) { 1658 dm_integrity_io_error(ic, "crypto_shash_update", r); 1659 goto failed; 1660 } 1661 } 1662 1663 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof(sector_le)); 1664 if (unlikely(r < 0)) { 1665 dm_integrity_io_error(ic, "crypto_shash_update", r); 1666 goto failed; 1667 } 1668 1669 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1670 if (unlikely(r < 0)) { 1671 dm_integrity_io_error(ic, "crypto_shash_update", r); 1672 goto failed; 1673 } 1674 1675 r = crypto_shash_final(req, result); 1676 if (unlikely(r < 0)) { 1677 dm_integrity_io_error(ic, "crypto_shash_final", r); 1678 goto failed; 1679 } 1680 1681 digest_size = crypto_shash_digestsize(ic->internal_hash); 1682 if (unlikely(digest_size < ic->tag_size)) 1683 memset(result + digest_size, 0, ic->tag_size - digest_size); 1684 1685 return; 1686 1687 failed: 1688 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1689 get_random_bytes(result, ic->tag_size); 1690 } 1691 1692 static void integrity_metadata(struct work_struct *w) 1693 { 1694 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1695 struct dm_integrity_c *ic = dio->ic; 1696 1697 int r; 1698 1699 if (ic->internal_hash) { 1700 struct bvec_iter iter; 1701 struct bio_vec bv; 1702 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash); 1703 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1704 char *checksums; 1705 unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1706 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1707 sector_t sector; 1708 unsigned int sectors_to_process; 1709 1710 if (unlikely(ic->mode == 'R')) 1711 goto skip_io; 1712 1713 if (likely(dio->op != REQ_OP_DISCARD)) 1714 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1715 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1716 else 1717 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1718 if (!checksums) { 1719 checksums = checksums_onstack; 1720 if (WARN_ON(extra_space && 1721 digest_size > sizeof(checksums_onstack))) { 1722 r = -EINVAL; 1723 goto error; 1724 } 1725 } 1726 1727 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1728 unsigned int bi_size = dio->bio_details.bi_iter.bi_size; 1729 unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE; 1730 unsigned int max_blocks = max_size / ic->tag_size; 1731 1732 memset(checksums, DISCARD_FILLER, max_size); 1733 1734 while (bi_size) { 1735 unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1736 1737 this_step_blocks = min(this_step_blocks, max_blocks); 1738 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1739 this_step_blocks * ic->tag_size, TAG_WRITE); 1740 if (unlikely(r)) { 1741 if (likely(checksums != checksums_onstack)) 1742 kfree(checksums); 1743 goto error; 1744 } 1745 1746 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1747 } 1748 1749 if (likely(checksums != checksums_onstack)) 1750 kfree(checksums); 1751 goto skip_io; 1752 } 1753 1754 sector = dio->range.logical_sector; 1755 sectors_to_process = dio->range.n_sectors; 1756 1757 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) { 1758 struct bio_vec bv_copy = bv; 1759 unsigned int pos; 1760 char *mem, *checksums_ptr; 1761 1762 again: 1763 mem = bvec_kmap_local(&bv_copy); 1764 pos = 0; 1765 checksums_ptr = checksums; 1766 do { 1767 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1768 checksums_ptr += ic->tag_size; 1769 sectors_to_process -= ic->sectors_per_block; 1770 pos += ic->sectors_per_block << SECTOR_SHIFT; 1771 sector += ic->sectors_per_block; 1772 } while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack); 1773 kunmap_local(mem); 1774 1775 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1776 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE); 1777 if (unlikely(r)) { 1778 if (r > 0) { 1779 sector_t s; 1780 1781 s = sector - ((r + ic->tag_size - 1) / ic->tag_size); 1782 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx", 1783 bio->bi_bdev, s); 1784 r = -EILSEQ; 1785 atomic64_inc(&ic->number_of_mismatches); 1786 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum", 1787 bio, s, 0); 1788 } 1789 if (likely(checksums != checksums_onstack)) 1790 kfree(checksums); 1791 goto error; 1792 } 1793 1794 if (!sectors_to_process) 1795 break; 1796 1797 if (unlikely(pos < bv_copy.bv_len)) { 1798 bv_copy.bv_offset += pos; 1799 bv_copy.bv_len -= pos; 1800 goto again; 1801 } 1802 } 1803 1804 if (likely(checksums != checksums_onstack)) 1805 kfree(checksums); 1806 } else { 1807 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity; 1808 1809 if (bip) { 1810 struct bio_vec biv; 1811 struct bvec_iter iter; 1812 unsigned int data_to_process = dio->range.n_sectors; 1813 1814 sector_to_block(ic, data_to_process); 1815 data_to_process *= ic->tag_size; 1816 1817 bip_for_each_vec(biv, bip, iter) { 1818 unsigned char *tag; 1819 unsigned int this_len; 1820 1821 BUG_ON(PageHighMem(biv.bv_page)); 1822 tag = bvec_virt(&biv); 1823 this_len = min(biv.bv_len, data_to_process); 1824 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1825 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE); 1826 if (unlikely(r)) 1827 goto error; 1828 data_to_process -= this_len; 1829 if (!data_to_process) 1830 break; 1831 } 1832 } 1833 } 1834 skip_io: 1835 dec_in_flight(dio); 1836 return; 1837 error: 1838 dio->bi_status = errno_to_blk_status(r); 1839 dec_in_flight(dio); 1840 } 1841 1842 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1843 { 1844 struct dm_integrity_c *ic = ti->private; 1845 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1846 struct bio_integrity_payload *bip; 1847 1848 sector_t area, offset; 1849 1850 dio->ic = ic; 1851 dio->bi_status = 0; 1852 dio->op = bio_op(bio); 1853 1854 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1855 if (ti->max_io_len) { 1856 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector); 1857 unsigned int log2_max_io_len = __fls(ti->max_io_len); 1858 sector_t start_boundary = sec >> log2_max_io_len; 1859 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len; 1860 1861 if (start_boundary < end_boundary) { 1862 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1)); 1863 1864 dm_accept_partial_bio(bio, len); 1865 } 1866 } 1867 } 1868 1869 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1870 submit_flush_bio(ic, dio); 1871 return DM_MAPIO_SUBMITTED; 1872 } 1873 1874 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1875 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA; 1876 if (unlikely(dio->fua)) { 1877 /* 1878 * Don't pass down the FUA flag because we have to flush 1879 * disk cache anyway. 1880 */ 1881 bio->bi_opf &= ~REQ_FUA; 1882 } 1883 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1884 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1885 dio->range.logical_sector, bio_sectors(bio), 1886 ic->provided_data_sectors); 1887 return DM_MAPIO_KILL; 1888 } 1889 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) { 1890 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1891 ic->sectors_per_block, 1892 dio->range.logical_sector, bio_sectors(bio)); 1893 return DM_MAPIO_KILL; 1894 } 1895 1896 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) { 1897 struct bvec_iter iter; 1898 struct bio_vec bv; 1899 1900 bio_for_each_segment(bv, bio, iter) { 1901 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1902 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1903 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1904 return DM_MAPIO_KILL; 1905 } 1906 } 1907 } 1908 1909 bip = bio_integrity(bio); 1910 if (!ic->internal_hash) { 1911 if (bip) { 1912 unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1913 1914 if (ic->log2_tag_size >= 0) 1915 wanted_tag_size <<= ic->log2_tag_size; 1916 else 1917 wanted_tag_size *= ic->tag_size; 1918 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 1919 DMERR("Invalid integrity data size %u, expected %u", 1920 bip->bip_iter.bi_size, wanted_tag_size); 1921 return DM_MAPIO_KILL; 1922 } 1923 } 1924 } else { 1925 if (unlikely(bip != NULL)) { 1926 DMERR("Unexpected integrity data when using internal hash"); 1927 return DM_MAPIO_KILL; 1928 } 1929 } 1930 1931 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ)) 1932 return DM_MAPIO_KILL; 1933 1934 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1935 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1936 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 1937 1938 dm_integrity_map_continue(dio, true); 1939 return DM_MAPIO_SUBMITTED; 1940 } 1941 1942 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 1943 unsigned int journal_section, unsigned int journal_entry) 1944 { 1945 struct dm_integrity_c *ic = dio->ic; 1946 sector_t logical_sector; 1947 unsigned int n_sectors; 1948 1949 logical_sector = dio->range.logical_sector; 1950 n_sectors = dio->range.n_sectors; 1951 do { 1952 struct bio_vec bv = bio_iovec(bio); 1953 char *mem; 1954 1955 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 1956 bv.bv_len = n_sectors << SECTOR_SHIFT; 1957 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 1958 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 1959 retry_kmap: 1960 mem = kmap_local_page(bv.bv_page); 1961 if (likely(dio->op == REQ_OP_WRITE)) 1962 flush_dcache_page(bv.bv_page); 1963 1964 do { 1965 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 1966 1967 if (unlikely(dio->op == REQ_OP_READ)) { 1968 struct journal_sector *js; 1969 char *mem_ptr; 1970 unsigned int s; 1971 1972 if (unlikely(journal_entry_is_inprogress(je))) { 1973 flush_dcache_page(bv.bv_page); 1974 kunmap_local(mem); 1975 1976 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 1977 goto retry_kmap; 1978 } 1979 smp_rmb(); 1980 BUG_ON(journal_entry_get_sector(je) != logical_sector); 1981 js = access_journal_data(ic, journal_section, journal_entry); 1982 mem_ptr = mem + bv.bv_offset; 1983 s = 0; 1984 do { 1985 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 1986 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 1987 js++; 1988 mem_ptr += 1 << SECTOR_SHIFT; 1989 } while (++s < ic->sectors_per_block); 1990 #ifdef INTERNAL_VERIFY 1991 if (ic->internal_hash) { 1992 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1993 1994 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 1995 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 1996 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx", 1997 logical_sector); 1998 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum", 1999 bio, logical_sector, 0); 2000 } 2001 } 2002 #endif 2003 } 2004 2005 if (!ic->internal_hash) { 2006 struct bio_integrity_payload *bip = bio_integrity(bio); 2007 unsigned int tag_todo = ic->tag_size; 2008 char *tag_ptr = journal_entry_tag(ic, je); 2009 2010 if (bip) { 2011 do { 2012 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 2013 unsigned int tag_now = min(biv.bv_len, tag_todo); 2014 char *tag_addr; 2015 2016 BUG_ON(PageHighMem(biv.bv_page)); 2017 tag_addr = bvec_virt(&biv); 2018 if (likely(dio->op == REQ_OP_WRITE)) 2019 memcpy(tag_ptr, tag_addr, tag_now); 2020 else 2021 memcpy(tag_addr, tag_ptr, tag_now); 2022 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 2023 tag_ptr += tag_now; 2024 tag_todo -= tag_now; 2025 } while (unlikely(tag_todo)); 2026 } else if (likely(dio->op == REQ_OP_WRITE)) 2027 memset(tag_ptr, 0, tag_todo); 2028 } 2029 2030 if (likely(dio->op == REQ_OP_WRITE)) { 2031 struct journal_sector *js; 2032 unsigned int s; 2033 2034 js = access_journal_data(ic, journal_section, journal_entry); 2035 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 2036 2037 s = 0; 2038 do { 2039 je->last_bytes[s] = js[s].commit_id; 2040 } while (++s < ic->sectors_per_block); 2041 2042 if (ic->internal_hash) { 2043 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash); 2044 2045 if (unlikely(digest_size > ic->tag_size)) { 2046 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 2047 2048 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 2049 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 2050 } else 2051 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 2052 } 2053 2054 journal_entry_set_sector(je, logical_sector); 2055 } 2056 logical_sector += ic->sectors_per_block; 2057 2058 journal_entry++; 2059 if (unlikely(journal_entry == ic->journal_section_entries)) { 2060 journal_entry = 0; 2061 journal_section++; 2062 wraparound_section(ic, &journal_section); 2063 } 2064 2065 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 2066 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 2067 2068 if (unlikely(dio->op == REQ_OP_READ)) 2069 flush_dcache_page(bv.bv_page); 2070 kunmap_local(mem); 2071 } while (n_sectors); 2072 2073 if (likely(dio->op == REQ_OP_WRITE)) { 2074 smp_mb(); 2075 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 2076 wake_up(&ic->copy_to_journal_wait); 2077 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2078 queue_work(ic->commit_wq, &ic->commit_work); 2079 else 2080 schedule_autocommit(ic); 2081 } else 2082 remove_range(ic, &dio->range); 2083 2084 if (unlikely(bio->bi_iter.bi_size)) { 2085 sector_t area, offset; 2086 2087 dio->range.logical_sector = logical_sector; 2088 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 2089 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 2090 return true; 2091 } 2092 2093 return false; 2094 } 2095 2096 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 2097 { 2098 struct dm_integrity_c *ic = dio->ic; 2099 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 2100 unsigned int journal_section, journal_entry; 2101 unsigned int journal_read_pos; 2102 struct completion read_comp; 2103 bool discard_retried = false; 2104 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ; 2105 2106 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D') 2107 need_sync_io = true; 2108 2109 if (need_sync_io && from_map) { 2110 INIT_WORK(&dio->work, integrity_bio_wait); 2111 queue_work(ic->offload_wq, &dio->work); 2112 return; 2113 } 2114 2115 lock_retry: 2116 spin_lock_irq(&ic->endio_wait.lock); 2117 retry: 2118 if (unlikely(dm_integrity_failed(ic))) { 2119 spin_unlock_irq(&ic->endio_wait.lock); 2120 do_endio(ic, bio); 2121 return; 2122 } 2123 dio->range.n_sectors = bio_sectors(bio); 2124 journal_read_pos = NOT_FOUND; 2125 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) { 2126 if (dio->op == REQ_OP_WRITE) { 2127 unsigned int next_entry, i, pos; 2128 unsigned int ws, we, range_sectors; 2129 2130 dio->range.n_sectors = min(dio->range.n_sectors, 2131 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block); 2132 if (unlikely(!dio->range.n_sectors)) { 2133 if (from_map) 2134 goto offload_to_thread; 2135 sleep_on_endio_wait(ic); 2136 goto retry; 2137 } 2138 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 2139 ic->free_sectors -= range_sectors; 2140 journal_section = ic->free_section; 2141 journal_entry = ic->free_section_entry; 2142 2143 next_entry = ic->free_section_entry + range_sectors; 2144 ic->free_section_entry = next_entry % ic->journal_section_entries; 2145 ic->free_section += next_entry / ic->journal_section_entries; 2146 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 2147 wraparound_section(ic, &ic->free_section); 2148 2149 pos = journal_section * ic->journal_section_entries + journal_entry; 2150 ws = journal_section; 2151 we = journal_entry; 2152 i = 0; 2153 do { 2154 struct journal_entry *je; 2155 2156 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 2157 pos++; 2158 if (unlikely(pos >= ic->journal_entries)) 2159 pos = 0; 2160 2161 je = access_journal_entry(ic, ws, we); 2162 BUG_ON(!journal_entry_is_unused(je)); 2163 journal_entry_set_inprogress(je); 2164 we++; 2165 if (unlikely(we == ic->journal_section_entries)) { 2166 we = 0; 2167 ws++; 2168 wraparound_section(ic, &ws); 2169 } 2170 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 2171 2172 spin_unlock_irq(&ic->endio_wait.lock); 2173 goto journal_read_write; 2174 } else { 2175 sector_t next_sector; 2176 2177 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2178 if (likely(journal_read_pos == NOT_FOUND)) { 2179 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 2180 dio->range.n_sectors = next_sector - dio->range.logical_sector; 2181 } else { 2182 unsigned int i; 2183 unsigned int jp = journal_read_pos + 1; 2184 2185 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 2186 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 2187 break; 2188 } 2189 dio->range.n_sectors = i; 2190 } 2191 } 2192 } 2193 if (unlikely(!add_new_range(ic, &dio->range, true))) { 2194 /* 2195 * We must not sleep in the request routine because it could 2196 * stall bios on current->bio_list. 2197 * So, we offload the bio to a workqueue if we have to sleep. 2198 */ 2199 if (from_map) { 2200 offload_to_thread: 2201 spin_unlock_irq(&ic->endio_wait.lock); 2202 INIT_WORK(&dio->work, integrity_bio_wait); 2203 queue_work(ic->wait_wq, &dio->work); 2204 return; 2205 } 2206 if (journal_read_pos != NOT_FOUND) 2207 dio->range.n_sectors = ic->sectors_per_block; 2208 wait_and_add_new_range(ic, &dio->range); 2209 /* 2210 * wait_and_add_new_range drops the spinlock, so the journal 2211 * may have been changed arbitrarily. We need to recheck. 2212 * To simplify the code, we restrict I/O size to just one block. 2213 */ 2214 if (journal_read_pos != NOT_FOUND) { 2215 sector_t next_sector; 2216 unsigned int new_pos; 2217 2218 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2219 if (unlikely(new_pos != journal_read_pos)) { 2220 remove_range_unlocked(ic, &dio->range); 2221 goto retry; 2222 } 2223 } 2224 } 2225 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) { 2226 sector_t next_sector; 2227 unsigned int new_pos; 2228 2229 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2230 if (unlikely(new_pos != NOT_FOUND) || 2231 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) { 2232 remove_range_unlocked(ic, &dio->range); 2233 spin_unlock_irq(&ic->endio_wait.lock); 2234 queue_work(ic->commit_wq, &ic->commit_work); 2235 flush_workqueue(ic->commit_wq); 2236 queue_work(ic->writer_wq, &ic->writer_work); 2237 flush_workqueue(ic->writer_wq); 2238 discard_retried = true; 2239 goto lock_retry; 2240 } 2241 } 2242 spin_unlock_irq(&ic->endio_wait.lock); 2243 2244 if (unlikely(journal_read_pos != NOT_FOUND)) { 2245 journal_section = journal_read_pos / ic->journal_section_entries; 2246 journal_entry = journal_read_pos % ic->journal_section_entries; 2247 goto journal_read_write; 2248 } 2249 2250 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) { 2251 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2252 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2253 struct bitmap_block_status *bbs; 2254 2255 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector); 2256 spin_lock(&bbs->bio_queue_lock); 2257 bio_list_add(&bbs->bio_queue, bio); 2258 spin_unlock(&bbs->bio_queue_lock); 2259 queue_work(ic->writer_wq, &bbs->work); 2260 return; 2261 } 2262 } 2263 2264 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 2265 2266 if (need_sync_io) { 2267 init_completion(&read_comp); 2268 dio->completion = &read_comp; 2269 } else 2270 dio->completion = NULL; 2271 2272 dm_bio_record(&dio->bio_details, bio); 2273 bio_set_dev(bio, ic->dev->bdev); 2274 bio->bi_integrity = NULL; 2275 bio->bi_opf &= ~REQ_INTEGRITY; 2276 bio->bi_end_io = integrity_end_io; 2277 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 2278 2279 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) { 2280 integrity_metadata(&dio->work); 2281 dm_integrity_flush_buffers(ic, false); 2282 2283 dio->in_flight = (atomic_t)ATOMIC_INIT(1); 2284 dio->completion = NULL; 2285 2286 submit_bio_noacct(bio); 2287 2288 return; 2289 } 2290 2291 submit_bio_noacct(bio); 2292 2293 if (need_sync_io) { 2294 wait_for_completion_io(&read_comp); 2295 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 2296 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector)) 2297 goto skip_check; 2298 if (ic->mode == 'B') { 2299 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector, 2300 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2301 goto skip_check; 2302 } 2303 2304 if (likely(!bio->bi_status)) 2305 integrity_metadata(&dio->work); 2306 else 2307 skip_check: 2308 dec_in_flight(dio); 2309 } else { 2310 INIT_WORK(&dio->work, integrity_metadata); 2311 queue_work(ic->metadata_wq, &dio->work); 2312 } 2313 2314 return; 2315 2316 journal_read_write: 2317 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 2318 goto lock_retry; 2319 2320 do_endio_flush(ic, dio); 2321 } 2322 2323 2324 static void integrity_bio_wait(struct work_struct *w) 2325 { 2326 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 2327 2328 dm_integrity_map_continue(dio, false); 2329 } 2330 2331 static void pad_uncommitted(struct dm_integrity_c *ic) 2332 { 2333 if (ic->free_section_entry) { 2334 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 2335 ic->free_section_entry = 0; 2336 ic->free_section++; 2337 wraparound_section(ic, &ic->free_section); 2338 ic->n_uncommitted_sections++; 2339 } 2340 if (WARN_ON(ic->journal_sections * ic->journal_section_entries != 2341 (ic->n_uncommitted_sections + ic->n_committed_sections) * 2342 ic->journal_section_entries + ic->free_sectors)) { 2343 DMCRIT("journal_sections %u, journal_section_entries %u, " 2344 "n_uncommitted_sections %u, n_committed_sections %u, " 2345 "journal_section_entries %u, free_sectors %u", 2346 ic->journal_sections, ic->journal_section_entries, 2347 ic->n_uncommitted_sections, ic->n_committed_sections, 2348 ic->journal_section_entries, ic->free_sectors); 2349 } 2350 } 2351 2352 static void integrity_commit(struct work_struct *w) 2353 { 2354 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 2355 unsigned int commit_start, commit_sections; 2356 unsigned int i, j, n; 2357 struct bio *flushes; 2358 2359 del_timer(&ic->autocommit_timer); 2360 2361 spin_lock_irq(&ic->endio_wait.lock); 2362 flushes = bio_list_get(&ic->flush_bio_list); 2363 if (unlikely(ic->mode != 'J')) { 2364 spin_unlock_irq(&ic->endio_wait.lock); 2365 dm_integrity_flush_buffers(ic, true); 2366 goto release_flush_bios; 2367 } 2368 2369 pad_uncommitted(ic); 2370 commit_start = ic->uncommitted_section; 2371 commit_sections = ic->n_uncommitted_sections; 2372 spin_unlock_irq(&ic->endio_wait.lock); 2373 2374 if (!commit_sections) 2375 goto release_flush_bios; 2376 2377 ic->wrote_to_journal = true; 2378 2379 i = commit_start; 2380 for (n = 0; n < commit_sections; n++) { 2381 for (j = 0; j < ic->journal_section_entries; j++) { 2382 struct journal_entry *je; 2383 2384 je = access_journal_entry(ic, i, j); 2385 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2386 } 2387 for (j = 0; j < ic->journal_section_sectors; j++) { 2388 struct journal_sector *js; 2389 2390 js = access_journal(ic, i, j); 2391 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 2392 } 2393 i++; 2394 if (unlikely(i >= ic->journal_sections)) 2395 ic->commit_seq = next_commit_seq(ic->commit_seq); 2396 wraparound_section(ic, &i); 2397 } 2398 smp_rmb(); 2399 2400 write_journal(ic, commit_start, commit_sections); 2401 2402 spin_lock_irq(&ic->endio_wait.lock); 2403 ic->uncommitted_section += commit_sections; 2404 wraparound_section(ic, &ic->uncommitted_section); 2405 ic->n_uncommitted_sections -= commit_sections; 2406 ic->n_committed_sections += commit_sections; 2407 spin_unlock_irq(&ic->endio_wait.lock); 2408 2409 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2410 queue_work(ic->writer_wq, &ic->writer_work); 2411 2412 release_flush_bios: 2413 while (flushes) { 2414 struct bio *next = flushes->bi_next; 2415 2416 flushes->bi_next = NULL; 2417 do_endio(ic, flushes); 2418 flushes = next; 2419 } 2420 } 2421 2422 static void complete_copy_from_journal(unsigned long error, void *context) 2423 { 2424 struct journal_io *io = context; 2425 struct journal_completion *comp = io->comp; 2426 struct dm_integrity_c *ic = comp->ic; 2427 2428 remove_range(ic, &io->range); 2429 mempool_free(io, &ic->journal_io_mempool); 2430 if (unlikely(error != 0)) 2431 dm_integrity_io_error(ic, "copying from journal", -EIO); 2432 complete_journal_op(comp); 2433 } 2434 2435 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 2436 struct journal_entry *je) 2437 { 2438 unsigned int s = 0; 2439 2440 do { 2441 js->commit_id = je->last_bytes[s]; 2442 js++; 2443 } while (++s < ic->sectors_per_block); 2444 } 2445 2446 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start, 2447 unsigned int write_sections, bool from_replay) 2448 { 2449 unsigned int i, j, n; 2450 struct journal_completion comp; 2451 struct blk_plug plug; 2452 2453 blk_start_plug(&plug); 2454 2455 comp.ic = ic; 2456 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2457 init_completion(&comp.comp); 2458 2459 i = write_start; 2460 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 2461 #ifndef INTERNAL_VERIFY 2462 if (unlikely(from_replay)) 2463 #endif 2464 rw_section_mac(ic, i, false); 2465 for (j = 0; j < ic->journal_section_entries; j++) { 2466 struct journal_entry *je = access_journal_entry(ic, i, j); 2467 sector_t sec, area, offset; 2468 unsigned int k, l, next_loop; 2469 sector_t metadata_block; 2470 unsigned int metadata_offset; 2471 struct journal_io *io; 2472 2473 if (journal_entry_is_unused(je)) 2474 continue; 2475 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 2476 sec = journal_entry_get_sector(je); 2477 if (unlikely(from_replay)) { 2478 if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) { 2479 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 2480 sec &= ~(sector_t)(ic->sectors_per_block - 1); 2481 } 2482 if (unlikely(sec >= ic->provided_data_sectors)) { 2483 journal_entry_set_unused(je); 2484 continue; 2485 } 2486 } 2487 get_area_and_offset(ic, sec, &area, &offset); 2488 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 2489 for (k = j + 1; k < ic->journal_section_entries; k++) { 2490 struct journal_entry *je2 = access_journal_entry(ic, i, k); 2491 sector_t sec2, area2, offset2; 2492 2493 if (journal_entry_is_unused(je2)) 2494 break; 2495 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 2496 sec2 = journal_entry_get_sector(je2); 2497 if (unlikely(sec2 >= ic->provided_data_sectors)) 2498 break; 2499 get_area_and_offset(ic, sec2, &area2, &offset2); 2500 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 2501 break; 2502 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 2503 } 2504 next_loop = k - 1; 2505 2506 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); 2507 io->comp = ∁ 2508 io->range.logical_sector = sec; 2509 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 2510 2511 spin_lock_irq(&ic->endio_wait.lock); 2512 add_new_range_and_wait(ic, &io->range); 2513 2514 if (likely(!from_replay)) { 2515 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 2516 2517 /* don't write if there is newer committed sector */ 2518 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 2519 struct journal_entry *je2 = access_journal_entry(ic, i, j); 2520 2521 journal_entry_set_unused(je2); 2522 remove_journal_node(ic, §ion_node[j]); 2523 j++; 2524 sec += ic->sectors_per_block; 2525 offset += ic->sectors_per_block; 2526 } 2527 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 2528 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 2529 2530 journal_entry_set_unused(je2); 2531 remove_journal_node(ic, §ion_node[k - 1]); 2532 k--; 2533 } 2534 if (j == k) { 2535 remove_range_unlocked(ic, &io->range); 2536 spin_unlock_irq(&ic->endio_wait.lock); 2537 mempool_free(io, &ic->journal_io_mempool); 2538 goto skip_io; 2539 } 2540 for (l = j; l < k; l++) 2541 remove_journal_node(ic, §ion_node[l]); 2542 } 2543 spin_unlock_irq(&ic->endio_wait.lock); 2544 2545 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2546 for (l = j; l < k; l++) { 2547 int r; 2548 struct journal_entry *je2 = access_journal_entry(ic, i, l); 2549 2550 if ( 2551 #ifndef INTERNAL_VERIFY 2552 unlikely(from_replay) && 2553 #endif 2554 ic->internal_hash) { 2555 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2556 2557 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 2558 (char *)access_journal_data(ic, i, l), test_tag); 2559 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) { 2560 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 2561 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0); 2562 } 2563 } 2564 2565 journal_entry_set_unused(je2); 2566 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 2567 ic->tag_size, TAG_WRITE); 2568 if (unlikely(r)) 2569 dm_integrity_io_error(ic, "reading tags", r); 2570 } 2571 2572 atomic_inc(&comp.in_flight); 2573 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 2574 (k - j) << ic->sb->log2_sectors_per_block, 2575 get_data_sector(ic, area, offset), 2576 complete_copy_from_journal, io); 2577 skip_io: 2578 j = next_loop; 2579 } 2580 } 2581 2582 dm_bufio_write_dirty_buffers_async(ic->bufio); 2583 2584 blk_finish_plug(&plug); 2585 2586 complete_journal_op(&comp); 2587 wait_for_completion_io(&comp.comp); 2588 2589 dm_integrity_flush_buffers(ic, true); 2590 } 2591 2592 static void integrity_writer(struct work_struct *w) 2593 { 2594 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 2595 unsigned int write_start, write_sections; 2596 unsigned int prev_free_sectors; 2597 2598 spin_lock_irq(&ic->endio_wait.lock); 2599 write_start = ic->committed_section; 2600 write_sections = ic->n_committed_sections; 2601 spin_unlock_irq(&ic->endio_wait.lock); 2602 2603 if (!write_sections) 2604 return; 2605 2606 do_journal_write(ic, write_start, write_sections, false); 2607 2608 spin_lock_irq(&ic->endio_wait.lock); 2609 2610 ic->committed_section += write_sections; 2611 wraparound_section(ic, &ic->committed_section); 2612 ic->n_committed_sections -= write_sections; 2613 2614 prev_free_sectors = ic->free_sectors; 2615 ic->free_sectors += write_sections * ic->journal_section_entries; 2616 if (unlikely(!prev_free_sectors)) 2617 wake_up_locked(&ic->endio_wait); 2618 2619 spin_unlock_irq(&ic->endio_wait.lock); 2620 } 2621 2622 static void recalc_write_super(struct dm_integrity_c *ic) 2623 { 2624 int r; 2625 2626 dm_integrity_flush_buffers(ic, false); 2627 if (dm_integrity_failed(ic)) 2628 return; 2629 2630 r = sync_rw_sb(ic, REQ_OP_WRITE); 2631 if (unlikely(r)) 2632 dm_integrity_io_error(ic, "writing superblock", r); 2633 } 2634 2635 static void integrity_recalc(struct work_struct *w) 2636 { 2637 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 2638 size_t recalc_tags_size; 2639 u8 *recalc_buffer = NULL; 2640 u8 *recalc_tags = NULL; 2641 struct dm_integrity_range range; 2642 struct dm_io_request io_req; 2643 struct dm_io_region io_loc; 2644 sector_t area, offset; 2645 sector_t metadata_block; 2646 unsigned int metadata_offset; 2647 sector_t logical_sector, n_sectors; 2648 __u8 *t; 2649 unsigned int i; 2650 int r; 2651 unsigned int super_counter = 0; 2652 unsigned recalc_sectors = RECALC_SECTORS; 2653 2654 retry: 2655 recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO); 2656 if (!recalc_buffer) { 2657 oom: 2658 recalc_sectors >>= 1; 2659 if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block) 2660 goto retry; 2661 DMCRIT("out of memory for recalculate buffer - recalculation disabled"); 2662 goto free_ret; 2663 } 2664 recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 2665 if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size) 2666 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size; 2667 recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO); 2668 if (!recalc_tags) { 2669 vfree(recalc_buffer); 2670 recalc_buffer = NULL; 2671 goto oom; 2672 } 2673 2674 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector)); 2675 2676 spin_lock_irq(&ic->endio_wait.lock); 2677 2678 next_chunk: 2679 2680 if (unlikely(dm_post_suspending(ic->ti))) 2681 goto unlock_ret; 2682 2683 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 2684 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) { 2685 if (ic->mode == 'B') { 2686 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 2687 DEBUG_print("queue_delayed_work: bitmap_flush_work\n"); 2688 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2689 } 2690 goto unlock_ret; 2691 } 2692 2693 get_area_and_offset(ic, range.logical_sector, &area, &offset); 2694 range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector); 2695 if (!ic->meta_dev) 2696 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset); 2697 2698 add_new_range_and_wait(ic, &range); 2699 spin_unlock_irq(&ic->endio_wait.lock); 2700 logical_sector = range.logical_sector; 2701 n_sectors = range.n_sectors; 2702 2703 if (ic->mode == 'B') { 2704 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2705 goto advance_and_next; 2706 2707 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, 2708 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2709 logical_sector += ic->sectors_per_block; 2710 n_sectors -= ic->sectors_per_block; 2711 cond_resched(); 2712 } 2713 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block, 2714 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2715 n_sectors -= ic->sectors_per_block; 2716 cond_resched(); 2717 } 2718 get_area_and_offset(ic, logical_sector, &area, &offset); 2719 } 2720 2721 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors); 2722 2723 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 2724 recalc_write_super(ic); 2725 if (ic->mode == 'B') 2726 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2727 2728 super_counter = 0; 2729 } 2730 2731 if (unlikely(dm_integrity_failed(ic))) 2732 goto err; 2733 2734 io_req.bi_opf = REQ_OP_READ; 2735 io_req.mem.type = DM_IO_VMA; 2736 io_req.mem.ptr.addr = recalc_buffer; 2737 io_req.notify.fn = NULL; 2738 io_req.client = ic->io; 2739 io_loc.bdev = ic->dev->bdev; 2740 io_loc.sector = get_data_sector(ic, area, offset); 2741 io_loc.count = n_sectors; 2742 2743 r = dm_io(&io_req, 1, &io_loc, NULL); 2744 if (unlikely(r)) { 2745 dm_integrity_io_error(ic, "reading data", r); 2746 goto err; 2747 } 2748 2749 t = recalc_tags; 2750 for (i = 0; i < n_sectors; i += ic->sectors_per_block) { 2751 integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t); 2752 t += ic->tag_size; 2753 } 2754 2755 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2756 2757 r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE); 2758 if (unlikely(r)) { 2759 dm_integrity_io_error(ic, "writing tags", r); 2760 goto err; 2761 } 2762 2763 if (ic->mode == 'B') { 2764 sector_t start, end; 2765 2766 start = (range.logical_sector >> 2767 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 2768 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2769 end = ((range.logical_sector + range.n_sectors) >> 2770 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 2771 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2772 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR); 2773 } 2774 2775 advance_and_next: 2776 cond_resched(); 2777 2778 spin_lock_irq(&ic->endio_wait.lock); 2779 remove_range_unlocked(ic, &range); 2780 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 2781 goto next_chunk; 2782 2783 err: 2784 remove_range(ic, &range); 2785 goto free_ret; 2786 2787 unlock_ret: 2788 spin_unlock_irq(&ic->endio_wait.lock); 2789 2790 recalc_write_super(ic); 2791 2792 free_ret: 2793 vfree(recalc_buffer); 2794 kvfree(recalc_tags); 2795 } 2796 2797 static void bitmap_block_work(struct work_struct *w) 2798 { 2799 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work); 2800 struct dm_integrity_c *ic = bbs->ic; 2801 struct bio *bio; 2802 struct bio_list bio_queue; 2803 struct bio_list waiting; 2804 2805 bio_list_init(&waiting); 2806 2807 spin_lock(&bbs->bio_queue_lock); 2808 bio_queue = bbs->bio_queue; 2809 bio_list_init(&bbs->bio_queue); 2810 spin_unlock(&bbs->bio_queue_lock); 2811 2812 while ((bio = bio_list_pop(&bio_queue))) { 2813 struct dm_integrity_io *dio; 2814 2815 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2816 2817 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2818 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2819 remove_range(ic, &dio->range); 2820 INIT_WORK(&dio->work, integrity_bio_wait); 2821 queue_work(ic->offload_wq, &dio->work); 2822 } else { 2823 block_bitmap_op(ic, ic->journal, dio->range.logical_sector, 2824 dio->range.n_sectors, BITMAP_OP_SET); 2825 bio_list_add(&waiting, bio); 2826 } 2827 } 2828 2829 if (bio_list_empty(&waiting)) 2830 return; 2831 2832 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 2833 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), 2834 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL); 2835 2836 while ((bio = bio_list_pop(&waiting))) { 2837 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2838 2839 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2840 dio->range.n_sectors, BITMAP_OP_SET); 2841 2842 remove_range(ic, &dio->range); 2843 INIT_WORK(&dio->work, integrity_bio_wait); 2844 queue_work(ic->offload_wq, &dio->work); 2845 } 2846 2847 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2848 } 2849 2850 static void bitmap_flush_work(struct work_struct *work) 2851 { 2852 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work); 2853 struct dm_integrity_range range; 2854 unsigned long limit; 2855 struct bio *bio; 2856 2857 dm_integrity_flush_buffers(ic, false); 2858 2859 range.logical_sector = 0; 2860 range.n_sectors = ic->provided_data_sectors; 2861 2862 spin_lock_irq(&ic->endio_wait.lock); 2863 add_new_range_and_wait(ic, &range); 2864 spin_unlock_irq(&ic->endio_wait.lock); 2865 2866 dm_integrity_flush_buffers(ic, true); 2867 2868 limit = ic->provided_data_sectors; 2869 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2870 limit = le64_to_cpu(ic->sb->recalc_sector) 2871 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit) 2872 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2873 } 2874 /*DEBUG_print("zeroing journal\n");*/ 2875 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR); 2876 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR); 2877 2878 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 2879 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2880 2881 spin_lock_irq(&ic->endio_wait.lock); 2882 remove_range_unlocked(ic, &range); 2883 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) { 2884 bio_endio(bio); 2885 spin_unlock_irq(&ic->endio_wait.lock); 2886 spin_lock_irq(&ic->endio_wait.lock); 2887 } 2888 spin_unlock_irq(&ic->endio_wait.lock); 2889 } 2890 2891 2892 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section, 2893 unsigned int n_sections, unsigned char commit_seq) 2894 { 2895 unsigned int i, j, n; 2896 2897 if (!n_sections) 2898 return; 2899 2900 for (n = 0; n < n_sections; n++) { 2901 i = start_section + n; 2902 wraparound_section(ic, &i); 2903 for (j = 0; j < ic->journal_section_sectors; j++) { 2904 struct journal_sector *js = access_journal(ic, i, j); 2905 2906 BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA); 2907 memset(&js->sectors, 0, sizeof(js->sectors)); 2908 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 2909 } 2910 for (j = 0; j < ic->journal_section_entries; j++) { 2911 struct journal_entry *je = access_journal_entry(ic, i, j); 2912 2913 journal_entry_set_unused(je); 2914 } 2915 } 2916 2917 write_journal(ic, start_section, n_sections); 2918 } 2919 2920 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id) 2921 { 2922 unsigned char k; 2923 2924 for (k = 0; k < N_COMMIT_IDS; k++) { 2925 if (dm_integrity_commit_id(ic, i, j, k) == id) 2926 return k; 2927 } 2928 dm_integrity_io_error(ic, "journal commit id", -EIO); 2929 return -EIO; 2930 } 2931 2932 static void replay_journal(struct dm_integrity_c *ic) 2933 { 2934 unsigned int i, j; 2935 bool used_commit_ids[N_COMMIT_IDS]; 2936 unsigned int max_commit_id_sections[N_COMMIT_IDS]; 2937 unsigned int write_start, write_sections; 2938 unsigned int continue_section; 2939 bool journal_empty; 2940 unsigned char unused, last_used, want_commit_seq; 2941 2942 if (ic->mode == 'R') 2943 return; 2944 2945 if (ic->journal_uptodate) 2946 return; 2947 2948 last_used = 0; 2949 write_start = 0; 2950 2951 if (!ic->just_formatted) { 2952 DEBUG_print("reading journal\n"); 2953 rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL); 2954 if (ic->journal_io) 2955 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 2956 if (ic->journal_io) { 2957 struct journal_completion crypt_comp; 2958 2959 crypt_comp.ic = ic; 2960 init_completion(&crypt_comp.comp); 2961 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 2962 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 2963 wait_for_completion(&crypt_comp.comp); 2964 } 2965 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 2966 } 2967 2968 if (dm_integrity_failed(ic)) 2969 goto clear_journal; 2970 2971 journal_empty = true; 2972 memset(used_commit_ids, 0, sizeof(used_commit_ids)); 2973 memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections)); 2974 for (i = 0; i < ic->journal_sections; i++) { 2975 for (j = 0; j < ic->journal_section_sectors; j++) { 2976 int k; 2977 struct journal_sector *js = access_journal(ic, i, j); 2978 2979 k = find_commit_seq(ic, i, j, js->commit_id); 2980 if (k < 0) 2981 goto clear_journal; 2982 used_commit_ids[k] = true; 2983 max_commit_id_sections[k] = i; 2984 } 2985 if (journal_empty) { 2986 for (j = 0; j < ic->journal_section_entries; j++) { 2987 struct journal_entry *je = access_journal_entry(ic, i, j); 2988 2989 if (!journal_entry_is_unused(je)) { 2990 journal_empty = false; 2991 break; 2992 } 2993 } 2994 } 2995 } 2996 2997 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 2998 unused = N_COMMIT_IDS - 1; 2999 while (unused && !used_commit_ids[unused - 1]) 3000 unused--; 3001 } else { 3002 for (unused = 0; unused < N_COMMIT_IDS; unused++) 3003 if (!used_commit_ids[unused]) 3004 break; 3005 if (unused == N_COMMIT_IDS) { 3006 dm_integrity_io_error(ic, "journal commit ids", -EIO); 3007 goto clear_journal; 3008 } 3009 } 3010 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 3011 unused, used_commit_ids[0], used_commit_ids[1], 3012 used_commit_ids[2], used_commit_ids[3]); 3013 3014 last_used = prev_commit_seq(unused); 3015 want_commit_seq = prev_commit_seq(last_used); 3016 3017 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 3018 journal_empty = true; 3019 3020 write_start = max_commit_id_sections[last_used] + 1; 3021 if (unlikely(write_start >= ic->journal_sections)) 3022 want_commit_seq = next_commit_seq(want_commit_seq); 3023 wraparound_section(ic, &write_start); 3024 3025 i = write_start; 3026 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 3027 for (j = 0; j < ic->journal_section_sectors; j++) { 3028 struct journal_sector *js = access_journal(ic, i, j); 3029 3030 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 3031 /* 3032 * This could be caused by crash during writing. 3033 * We won't replay the inconsistent part of the 3034 * journal. 3035 */ 3036 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 3037 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 3038 goto brk; 3039 } 3040 } 3041 i++; 3042 if (unlikely(i >= ic->journal_sections)) 3043 want_commit_seq = next_commit_seq(want_commit_seq); 3044 wraparound_section(ic, &i); 3045 } 3046 brk: 3047 3048 if (!journal_empty) { 3049 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 3050 write_sections, write_start, want_commit_seq); 3051 do_journal_write(ic, write_start, write_sections, true); 3052 } 3053 3054 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 3055 continue_section = write_start; 3056 ic->commit_seq = want_commit_seq; 3057 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 3058 } else { 3059 unsigned int s; 3060 unsigned char erase_seq; 3061 3062 clear_journal: 3063 DEBUG_print("clearing journal\n"); 3064 3065 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 3066 s = write_start; 3067 init_journal(ic, s, 1, erase_seq); 3068 s++; 3069 wraparound_section(ic, &s); 3070 if (ic->journal_sections >= 2) { 3071 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 3072 s += ic->journal_sections - 2; 3073 wraparound_section(ic, &s); 3074 init_journal(ic, s, 1, erase_seq); 3075 } 3076 3077 continue_section = 0; 3078 ic->commit_seq = next_commit_seq(erase_seq); 3079 } 3080 3081 ic->committed_section = continue_section; 3082 ic->n_committed_sections = 0; 3083 3084 ic->uncommitted_section = continue_section; 3085 ic->n_uncommitted_sections = 0; 3086 3087 ic->free_section = continue_section; 3088 ic->free_section_entry = 0; 3089 ic->free_sectors = ic->journal_entries; 3090 3091 ic->journal_tree_root = RB_ROOT; 3092 for (i = 0; i < ic->journal_entries; i++) 3093 init_journal_node(&ic->journal_tree[i]); 3094 } 3095 3096 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic) 3097 { 3098 DEBUG_print("%s\n", __func__); 3099 3100 if (ic->mode == 'B') { 3101 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1; 3102 ic->synchronous_mode = 1; 3103 3104 cancel_delayed_work_sync(&ic->bitmap_flush_work); 3105 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 3106 flush_workqueue(ic->commit_wq); 3107 } 3108 } 3109 3110 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x) 3111 { 3112 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier); 3113 3114 DEBUG_print("%s\n", __func__); 3115 3116 dm_integrity_enter_synchronous_mode(ic); 3117 3118 return NOTIFY_DONE; 3119 } 3120 3121 static void dm_integrity_postsuspend(struct dm_target *ti) 3122 { 3123 struct dm_integrity_c *ic = ti->private; 3124 int r; 3125 3126 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier)); 3127 3128 del_timer_sync(&ic->autocommit_timer); 3129 3130 if (ic->recalc_wq) 3131 drain_workqueue(ic->recalc_wq); 3132 3133 if (ic->mode == 'B') 3134 cancel_delayed_work_sync(&ic->bitmap_flush_work); 3135 3136 queue_work(ic->commit_wq, &ic->commit_work); 3137 drain_workqueue(ic->commit_wq); 3138 3139 if (ic->mode == 'J') { 3140 queue_work(ic->writer_wq, &ic->writer_work); 3141 drain_workqueue(ic->writer_wq); 3142 dm_integrity_flush_buffers(ic, true); 3143 if (ic->wrote_to_journal) { 3144 init_journal(ic, ic->free_section, 3145 ic->journal_sections - ic->free_section, ic->commit_seq); 3146 if (ic->free_section) { 3147 init_journal(ic, 0, ic->free_section, 3148 next_commit_seq(ic->commit_seq)); 3149 } 3150 } 3151 } 3152 3153 if (ic->mode == 'B') { 3154 dm_integrity_flush_buffers(ic, true); 3155 #if 1 3156 /* set to 0 to test bitmap replay code */ 3157 init_journal(ic, 0, ic->journal_sections, 0); 3158 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3159 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3160 if (unlikely(r)) 3161 dm_integrity_io_error(ic, "writing superblock", r); 3162 #endif 3163 } 3164 3165 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 3166 3167 ic->journal_uptodate = true; 3168 } 3169 3170 static void dm_integrity_resume(struct dm_target *ti) 3171 { 3172 struct dm_integrity_c *ic = ti->private; 3173 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 3174 int r; 3175 3176 DEBUG_print("resume\n"); 3177 3178 ic->wrote_to_journal = false; 3179 3180 if (ic->provided_data_sectors != old_provided_data_sectors) { 3181 if (ic->provided_data_sectors > old_provided_data_sectors && 3182 ic->mode == 'B' && 3183 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { 3184 rw_journal_sectors(ic, REQ_OP_READ, 0, 3185 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3186 block_bitmap_op(ic, ic->journal, old_provided_data_sectors, 3187 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET); 3188 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3189 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3190 } 3191 3192 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3193 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3194 if (unlikely(r)) 3195 dm_integrity_io_error(ic, "writing superblock", r); 3196 } 3197 3198 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) { 3199 DEBUG_print("resume dirty_bitmap\n"); 3200 rw_journal_sectors(ic, REQ_OP_READ, 0, 3201 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3202 if (ic->mode == 'B') { 3203 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3204 !ic->reset_recalculate_flag) { 3205 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal); 3206 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal); 3207 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, 3208 BITMAP_OP_TEST_ALL_CLEAR)) { 3209 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3210 ic->sb->recalc_sector = cpu_to_le64(0); 3211 } 3212 } else { 3213 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n", 3214 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit); 3215 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3216 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3217 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3218 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3219 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3220 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3221 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3222 ic->sb->recalc_sector = cpu_to_le64(0); 3223 } 3224 } else { 3225 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3226 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) || 3227 ic->reset_recalculate_flag) { 3228 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3229 ic->sb->recalc_sector = cpu_to_le64(0); 3230 } 3231 init_journal(ic, 0, ic->journal_sections, 0); 3232 replay_journal(ic); 3233 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3234 } 3235 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3236 if (unlikely(r)) 3237 dm_integrity_io_error(ic, "writing superblock", r); 3238 } else { 3239 replay_journal(ic); 3240 if (ic->reset_recalculate_flag) { 3241 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3242 ic->sb->recalc_sector = cpu_to_le64(0); 3243 } 3244 if (ic->mode == 'B') { 3245 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3246 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3247 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3248 if (unlikely(r)) 3249 dm_integrity_io_error(ic, "writing superblock", r); 3250 3251 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3252 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3253 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3254 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 3255 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) { 3256 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector), 3257 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3258 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3259 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3260 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3261 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3262 } 3263 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3264 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3265 } 3266 } 3267 3268 DEBUG_print("testing recalc: %x\n", ic->sb->flags); 3269 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 3270 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector); 3271 3272 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors); 3273 if (recalc_pos < ic->provided_data_sectors) { 3274 queue_work(ic->recalc_wq, &ic->recalc_work); 3275 } else if (recalc_pos > ic->provided_data_sectors) { 3276 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors); 3277 recalc_write_super(ic); 3278 } 3279 } 3280 3281 ic->reboot_notifier.notifier_call = dm_integrity_reboot; 3282 ic->reboot_notifier.next = NULL; 3283 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */ 3284 WARN_ON(register_reboot_notifier(&ic->reboot_notifier)); 3285 3286 #if 0 3287 /* set to 1 to stress test synchronous mode */ 3288 dm_integrity_enter_synchronous_mode(ic); 3289 #endif 3290 } 3291 3292 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 3293 unsigned int status_flags, char *result, unsigned int maxlen) 3294 { 3295 struct dm_integrity_c *ic = ti->private; 3296 unsigned int arg_count; 3297 size_t sz = 0; 3298 3299 switch (type) { 3300 case STATUSTYPE_INFO: 3301 DMEMIT("%llu %llu", 3302 (unsigned long long)atomic64_read(&ic->number_of_mismatches), 3303 ic->provided_data_sectors); 3304 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3305 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector)); 3306 else 3307 DMEMIT(" -"); 3308 break; 3309 3310 case STATUSTYPE_TABLE: { 3311 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 3312 3313 watermark_percentage += ic->journal_entries / 2; 3314 do_div(watermark_percentage, ic->journal_entries); 3315 arg_count = 3; 3316 arg_count += !!ic->meta_dev; 3317 arg_count += ic->sectors_per_block != 1; 3318 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)); 3319 arg_count += ic->reset_recalculate_flag; 3320 arg_count += ic->discard; 3321 arg_count += ic->mode == 'J'; 3322 arg_count += ic->mode == 'J'; 3323 arg_count += ic->mode == 'B'; 3324 arg_count += ic->mode == 'B'; 3325 arg_count += !!ic->internal_hash_alg.alg_string; 3326 arg_count += !!ic->journal_crypt_alg.alg_string; 3327 arg_count += !!ic->journal_mac_alg.alg_string; 3328 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0; 3329 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0; 3330 arg_count += ic->legacy_recalculate; 3331 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start, 3332 ic->tag_size, ic->mode, arg_count); 3333 if (ic->meta_dev) 3334 DMEMIT(" meta_device:%s", ic->meta_dev->name); 3335 if (ic->sectors_per_block != 1) 3336 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 3337 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3338 DMEMIT(" recalculate"); 3339 if (ic->reset_recalculate_flag) 3340 DMEMIT(" reset_recalculate"); 3341 if (ic->discard) 3342 DMEMIT(" allow_discards"); 3343 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 3344 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 3345 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 3346 if (ic->mode == 'J') { 3347 DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage); 3348 DMEMIT(" commit_time:%u", ic->autocommit_msec); 3349 } 3350 if (ic->mode == 'B') { 3351 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit); 3352 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval)); 3353 } 3354 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) 3355 DMEMIT(" fix_padding"); 3356 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) 3357 DMEMIT(" fix_hmac"); 3358 if (ic->legacy_recalculate) 3359 DMEMIT(" legacy_recalculate"); 3360 3361 #define EMIT_ALG(a, n) \ 3362 do { \ 3363 if (ic->a.alg_string) { \ 3364 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 3365 if (ic->a.key_string) \ 3366 DMEMIT(":%s", ic->a.key_string);\ 3367 } \ 3368 } while (0) 3369 EMIT_ALG(internal_hash_alg, "internal_hash"); 3370 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 3371 EMIT_ALG(journal_mac_alg, "journal_mac"); 3372 break; 3373 } 3374 case STATUSTYPE_IMA: 3375 DMEMIT_TARGET_NAME_VERSION(ti->type); 3376 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c", 3377 ic->dev->name, ic->start, ic->tag_size, ic->mode); 3378 3379 if (ic->meta_dev) 3380 DMEMIT(",meta_device=%s", ic->meta_dev->name); 3381 if (ic->sectors_per_block != 1) 3382 DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT); 3383 3384 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ? 3385 'y' : 'n'); 3386 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n'); 3387 DMEMIT(",fix_padding=%c", 3388 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n'); 3389 DMEMIT(",fix_hmac=%c", 3390 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n'); 3391 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n'); 3392 3393 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS); 3394 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors); 3395 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors); 3396 DMEMIT(";"); 3397 break; 3398 } 3399 } 3400 3401 static int dm_integrity_iterate_devices(struct dm_target *ti, 3402 iterate_devices_callout_fn fn, void *data) 3403 { 3404 struct dm_integrity_c *ic = ti->private; 3405 3406 if (!ic->meta_dev) 3407 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 3408 else 3409 return fn(ti, ic->dev, 0, ti->len, data); 3410 } 3411 3412 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 3413 { 3414 struct dm_integrity_c *ic = ti->private; 3415 3416 if (ic->sectors_per_block > 1) { 3417 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3418 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3419 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT); 3420 limits->dma_alignment = limits->logical_block_size - 1; 3421 } 3422 } 3423 3424 static void calculate_journal_section_size(struct dm_integrity_c *ic) 3425 { 3426 unsigned int sector_space = JOURNAL_SECTOR_DATA; 3427 3428 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 3429 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 3430 JOURNAL_ENTRY_ROUNDUP); 3431 3432 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 3433 sector_space -= JOURNAL_MAC_PER_SECTOR; 3434 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 3435 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 3436 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 3437 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 3438 } 3439 3440 static int calculate_device_limits(struct dm_integrity_c *ic) 3441 { 3442 __u64 initial_sectors; 3443 3444 calculate_journal_section_size(ic); 3445 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 3446 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX) 3447 return -EINVAL; 3448 ic->initial_sectors = initial_sectors; 3449 3450 if (!ic->meta_dev) { 3451 sector_t last_sector, last_area, last_offset; 3452 3453 /* we have to maintain excessive padding for compatibility with existing volumes */ 3454 __u64 metadata_run_padding = 3455 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ? 3456 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) : 3457 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS); 3458 3459 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 3460 metadata_run_padding) >> SECTOR_SHIFT; 3461 if (!(ic->metadata_run & (ic->metadata_run - 1))) 3462 ic->log2_metadata_run = __ffs(ic->metadata_run); 3463 else 3464 ic->log2_metadata_run = -1; 3465 3466 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 3467 last_sector = get_data_sector(ic, last_area, last_offset); 3468 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors) 3469 return -EINVAL; 3470 } else { 3471 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 3472 3473 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1)) 3474 >> (ic->log2_buffer_sectors + SECTOR_SHIFT); 3475 meta_size <<= ic->log2_buffer_sectors; 3476 if (ic->initial_sectors + meta_size < ic->initial_sectors || 3477 ic->initial_sectors + meta_size > ic->meta_device_sectors) 3478 return -EINVAL; 3479 ic->metadata_run = 1; 3480 ic->log2_metadata_run = 0; 3481 } 3482 3483 return 0; 3484 } 3485 3486 static void get_provided_data_sectors(struct dm_integrity_c *ic) 3487 { 3488 if (!ic->meta_dev) { 3489 int test_bit; 3490 3491 ic->provided_data_sectors = 0; 3492 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) { 3493 __u64 prev_data_sectors = ic->provided_data_sectors; 3494 3495 ic->provided_data_sectors |= (sector_t)1 << test_bit; 3496 if (calculate_device_limits(ic)) 3497 ic->provided_data_sectors = prev_data_sectors; 3498 } 3499 } else { 3500 ic->provided_data_sectors = ic->data_device_sectors; 3501 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1); 3502 } 3503 } 3504 3505 static int initialize_superblock(struct dm_integrity_c *ic, 3506 unsigned int journal_sectors, unsigned int interleave_sectors) 3507 { 3508 unsigned int journal_sections; 3509 int test_bit; 3510 3511 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 3512 memcpy(ic->sb->magic, SB_MAGIC, 8); 3513 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 3514 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 3515 if (ic->journal_mac_alg.alg_string) 3516 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 3517 3518 calculate_journal_section_size(ic); 3519 journal_sections = journal_sectors / ic->journal_section_sectors; 3520 if (!journal_sections) 3521 journal_sections = 1; 3522 3523 if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) { 3524 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC); 3525 get_random_bytes(ic->sb->salt, SALT_SIZE); 3526 } 3527 3528 if (!ic->meta_dev) { 3529 if (ic->fix_padding) 3530 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING); 3531 ic->sb->journal_sections = cpu_to_le32(journal_sections); 3532 if (!interleave_sectors) 3533 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3534 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 3535 ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3536 ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3537 3538 get_provided_data_sectors(ic); 3539 if (!ic->provided_data_sectors) 3540 return -EINVAL; 3541 } else { 3542 ic->sb->log2_interleave_sectors = 0; 3543 3544 get_provided_data_sectors(ic); 3545 if (!ic->provided_data_sectors) 3546 return -EINVAL; 3547 3548 try_smaller_buffer: 3549 ic->sb->journal_sections = cpu_to_le32(0); 3550 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) { 3551 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections); 3552 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit); 3553 3554 if (test_journal_sections > journal_sections) 3555 continue; 3556 ic->sb->journal_sections = cpu_to_le32(test_journal_sections); 3557 if (calculate_device_limits(ic)) 3558 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections); 3559 3560 } 3561 if (!le32_to_cpu(ic->sb->journal_sections)) { 3562 if (ic->log2_buffer_sectors > 3) { 3563 ic->log2_buffer_sectors--; 3564 goto try_smaller_buffer; 3565 } 3566 return -EINVAL; 3567 } 3568 } 3569 3570 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3571 3572 sb_set_version(ic); 3573 3574 return 0; 3575 } 3576 3577 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic) 3578 { 3579 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table)); 3580 struct blk_integrity bi; 3581 3582 memset(&bi, 0, sizeof(bi)); 3583 bi.profile = &dm_integrity_profile; 3584 bi.tuple_size = ic->tag_size; 3585 bi.tag_size = bi.tuple_size; 3586 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 3587 3588 blk_integrity_register(disk, &bi); 3589 blk_queue_max_integrity_segments(disk->queue, UINT_MAX); 3590 } 3591 3592 static void dm_integrity_free_page_list(struct page_list *pl) 3593 { 3594 unsigned int i; 3595 3596 if (!pl) 3597 return; 3598 for (i = 0; pl[i].page; i++) 3599 __free_page(pl[i].page); 3600 kvfree(pl); 3601 } 3602 3603 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages) 3604 { 3605 struct page_list *pl; 3606 unsigned int i; 3607 3608 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO); 3609 if (!pl) 3610 return NULL; 3611 3612 for (i = 0; i < n_pages; i++) { 3613 pl[i].page = alloc_page(GFP_KERNEL); 3614 if (!pl[i].page) { 3615 dm_integrity_free_page_list(pl); 3616 return NULL; 3617 } 3618 if (i) 3619 pl[i - 1].next = &pl[i]; 3620 } 3621 pl[i].page = NULL; 3622 pl[i].next = NULL; 3623 3624 return pl; 3625 } 3626 3627 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 3628 { 3629 unsigned int i; 3630 3631 for (i = 0; i < ic->journal_sections; i++) 3632 kvfree(sl[i]); 3633 kvfree(sl); 3634 } 3635 3636 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, 3637 struct page_list *pl) 3638 { 3639 struct scatterlist **sl; 3640 unsigned int i; 3641 3642 sl = kvmalloc_array(ic->journal_sections, 3643 sizeof(struct scatterlist *), 3644 GFP_KERNEL | __GFP_ZERO); 3645 if (!sl) 3646 return NULL; 3647 3648 for (i = 0; i < ic->journal_sections; i++) { 3649 struct scatterlist *s; 3650 unsigned int start_index, start_offset; 3651 unsigned int end_index, end_offset; 3652 unsigned int n_pages; 3653 unsigned int idx; 3654 3655 page_list_location(ic, i, 0, &start_index, &start_offset); 3656 page_list_location(ic, i, ic->journal_section_sectors - 1, 3657 &end_index, &end_offset); 3658 3659 n_pages = (end_index - start_index + 1); 3660 3661 s = kvmalloc_array(n_pages, sizeof(struct scatterlist), 3662 GFP_KERNEL); 3663 if (!s) { 3664 dm_integrity_free_journal_scatterlist(ic, sl); 3665 return NULL; 3666 } 3667 3668 sg_init_table(s, n_pages); 3669 for (idx = start_index; idx <= end_index; idx++) { 3670 char *va = lowmem_page_address(pl[idx].page); 3671 unsigned int start = 0, end = PAGE_SIZE; 3672 3673 if (idx == start_index) 3674 start = start_offset; 3675 if (idx == end_index) 3676 end = end_offset + (1 << SECTOR_SHIFT); 3677 sg_set_buf(&s[idx - start_index], va + start, end - start); 3678 } 3679 3680 sl[i] = s; 3681 } 3682 3683 return sl; 3684 } 3685 3686 static void free_alg(struct alg_spec *a) 3687 { 3688 kfree_sensitive(a->alg_string); 3689 kfree_sensitive(a->key); 3690 memset(a, 0, sizeof(*a)); 3691 } 3692 3693 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 3694 { 3695 char *k; 3696 3697 free_alg(a); 3698 3699 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 3700 if (!a->alg_string) 3701 goto nomem; 3702 3703 k = strchr(a->alg_string, ':'); 3704 if (k) { 3705 *k = 0; 3706 a->key_string = k + 1; 3707 if (strlen(a->key_string) & 1) 3708 goto inval; 3709 3710 a->key_size = strlen(a->key_string) / 2; 3711 a->key = kmalloc(a->key_size, GFP_KERNEL); 3712 if (!a->key) 3713 goto nomem; 3714 if (hex2bin(a->key, a->key_string, a->key_size)) 3715 goto inval; 3716 } 3717 3718 return 0; 3719 inval: 3720 *error = error_inval; 3721 return -EINVAL; 3722 nomem: 3723 *error = "Out of memory for an argument"; 3724 return -ENOMEM; 3725 } 3726 3727 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 3728 char *error_alg, char *error_key) 3729 { 3730 int r; 3731 3732 if (a->alg_string) { 3733 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 3734 if (IS_ERR(*hash)) { 3735 *error = error_alg; 3736 r = PTR_ERR(*hash); 3737 *hash = NULL; 3738 return r; 3739 } 3740 3741 if (a->key) { 3742 r = crypto_shash_setkey(*hash, a->key, a->key_size); 3743 if (r) { 3744 *error = error_key; 3745 return r; 3746 } 3747 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { 3748 *error = error_key; 3749 return -ENOKEY; 3750 } 3751 } 3752 3753 return 0; 3754 } 3755 3756 static int create_journal(struct dm_integrity_c *ic, char **error) 3757 { 3758 int r = 0; 3759 unsigned int i; 3760 __u64 journal_pages, journal_desc_size, journal_tree_size; 3761 unsigned char *crypt_data = NULL, *crypt_iv = NULL; 3762 struct skcipher_request *req = NULL; 3763 3764 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 3765 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 3766 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 3767 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 3768 3769 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 3770 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 3771 journal_desc_size = journal_pages * sizeof(struct page_list); 3772 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) { 3773 *error = "Journal doesn't fit into memory"; 3774 r = -ENOMEM; 3775 goto bad; 3776 } 3777 ic->journal_pages = journal_pages; 3778 3779 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages); 3780 if (!ic->journal) { 3781 *error = "Could not allocate memory for journal"; 3782 r = -ENOMEM; 3783 goto bad; 3784 } 3785 if (ic->journal_crypt_alg.alg_string) { 3786 unsigned int ivsize, blocksize; 3787 struct journal_completion comp; 3788 3789 comp.ic = ic; 3790 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 3791 if (IS_ERR(ic->journal_crypt)) { 3792 *error = "Invalid journal cipher"; 3793 r = PTR_ERR(ic->journal_crypt); 3794 ic->journal_crypt = NULL; 3795 goto bad; 3796 } 3797 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 3798 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 3799 3800 if (ic->journal_crypt_alg.key) { 3801 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 3802 ic->journal_crypt_alg.key_size); 3803 if (r) { 3804 *error = "Error setting encryption key"; 3805 goto bad; 3806 } 3807 } 3808 DEBUG_print("cipher %s, block size %u iv size %u\n", 3809 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 3810 3811 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages); 3812 if (!ic->journal_io) { 3813 *error = "Could not allocate memory for journal io"; 3814 r = -ENOMEM; 3815 goto bad; 3816 } 3817 3818 if (blocksize == 1) { 3819 struct scatterlist *sg; 3820 3821 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3822 if (!req) { 3823 *error = "Could not allocate crypt request"; 3824 r = -ENOMEM; 3825 goto bad; 3826 } 3827 3828 crypt_iv = kzalloc(ivsize, GFP_KERNEL); 3829 if (!crypt_iv) { 3830 *error = "Could not allocate iv"; 3831 r = -ENOMEM; 3832 goto bad; 3833 } 3834 3835 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages); 3836 if (!ic->journal_xor) { 3837 *error = "Could not allocate memory for journal xor"; 3838 r = -ENOMEM; 3839 goto bad; 3840 } 3841 3842 sg = kvmalloc_array(ic->journal_pages + 1, 3843 sizeof(struct scatterlist), 3844 GFP_KERNEL); 3845 if (!sg) { 3846 *error = "Unable to allocate sg list"; 3847 r = -ENOMEM; 3848 goto bad; 3849 } 3850 sg_init_table(sg, ic->journal_pages + 1); 3851 for (i = 0; i < ic->journal_pages; i++) { 3852 char *va = lowmem_page_address(ic->journal_xor[i].page); 3853 3854 clear_page(va); 3855 sg_set_buf(&sg[i], va, PAGE_SIZE); 3856 } 3857 sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids)); 3858 3859 skcipher_request_set_crypt(req, sg, sg, 3860 PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv); 3861 init_completion(&comp.comp); 3862 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3863 if (do_crypt(true, req, &comp)) 3864 wait_for_completion(&comp.comp); 3865 kvfree(sg); 3866 r = dm_integrity_failed(ic); 3867 if (r) { 3868 *error = "Unable to encrypt journal"; 3869 goto bad; 3870 } 3871 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 3872 3873 crypto_free_skcipher(ic->journal_crypt); 3874 ic->journal_crypt = NULL; 3875 } else { 3876 unsigned int crypt_len = roundup(ivsize, blocksize); 3877 3878 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3879 if (!req) { 3880 *error = "Could not allocate crypt request"; 3881 r = -ENOMEM; 3882 goto bad; 3883 } 3884 3885 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 3886 if (!crypt_iv) { 3887 *error = "Could not allocate iv"; 3888 r = -ENOMEM; 3889 goto bad; 3890 } 3891 3892 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 3893 if (!crypt_data) { 3894 *error = "Unable to allocate crypt data"; 3895 r = -ENOMEM; 3896 goto bad; 3897 } 3898 3899 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 3900 if (!ic->journal_scatterlist) { 3901 *error = "Unable to allocate sg list"; 3902 r = -ENOMEM; 3903 goto bad; 3904 } 3905 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 3906 if (!ic->journal_io_scatterlist) { 3907 *error = "Unable to allocate sg list"; 3908 r = -ENOMEM; 3909 goto bad; 3910 } 3911 ic->sk_requests = kvmalloc_array(ic->journal_sections, 3912 sizeof(struct skcipher_request *), 3913 GFP_KERNEL | __GFP_ZERO); 3914 if (!ic->sk_requests) { 3915 *error = "Unable to allocate sk requests"; 3916 r = -ENOMEM; 3917 goto bad; 3918 } 3919 for (i = 0; i < ic->journal_sections; i++) { 3920 struct scatterlist sg; 3921 struct skcipher_request *section_req; 3922 __le32 section_le = cpu_to_le32(i); 3923 3924 memset(crypt_iv, 0x00, ivsize); 3925 memset(crypt_data, 0x00, crypt_len); 3926 memcpy(crypt_data, §ion_le, min_t(size_t, crypt_len, sizeof(section_le))); 3927 3928 sg_init_one(&sg, crypt_data, crypt_len); 3929 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); 3930 init_completion(&comp.comp); 3931 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3932 if (do_crypt(true, req, &comp)) 3933 wait_for_completion(&comp.comp); 3934 3935 r = dm_integrity_failed(ic); 3936 if (r) { 3937 *error = "Unable to generate iv"; 3938 goto bad; 3939 } 3940 3941 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3942 if (!section_req) { 3943 *error = "Unable to allocate crypt request"; 3944 r = -ENOMEM; 3945 goto bad; 3946 } 3947 section_req->iv = kmalloc_array(ivsize, 2, 3948 GFP_KERNEL); 3949 if (!section_req->iv) { 3950 skcipher_request_free(section_req); 3951 *error = "Unable to allocate iv"; 3952 r = -ENOMEM; 3953 goto bad; 3954 } 3955 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 3956 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 3957 ic->sk_requests[i] = section_req; 3958 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 3959 } 3960 } 3961 } 3962 3963 for (i = 0; i < N_COMMIT_IDS; i++) { 3964 unsigned int j; 3965 3966 retest_commit_id: 3967 for (j = 0; j < i; j++) { 3968 if (ic->commit_ids[j] == ic->commit_ids[i]) { 3969 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 3970 goto retest_commit_id; 3971 } 3972 } 3973 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 3974 } 3975 3976 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 3977 if (journal_tree_size > ULONG_MAX) { 3978 *error = "Journal doesn't fit into memory"; 3979 r = -ENOMEM; 3980 goto bad; 3981 } 3982 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 3983 if (!ic->journal_tree) { 3984 *error = "Could not allocate memory for journal tree"; 3985 r = -ENOMEM; 3986 } 3987 bad: 3988 kfree(crypt_data); 3989 kfree(crypt_iv); 3990 skcipher_request_free(req); 3991 3992 return r; 3993 } 3994 3995 /* 3996 * Construct a integrity mapping 3997 * 3998 * Arguments: 3999 * device 4000 * offset from the start of the device 4001 * tag size 4002 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode 4003 * number of optional arguments 4004 * optional arguments: 4005 * journal_sectors 4006 * interleave_sectors 4007 * buffer_sectors 4008 * journal_watermark 4009 * commit_time 4010 * meta_device 4011 * block_size 4012 * sectors_per_bit 4013 * bitmap_flush_interval 4014 * internal_hash 4015 * journal_crypt 4016 * journal_mac 4017 * recalculate 4018 */ 4019 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv) 4020 { 4021 struct dm_integrity_c *ic; 4022 char dummy; 4023 int r; 4024 unsigned int extra_args; 4025 struct dm_arg_set as; 4026 static const struct dm_arg _args[] = { 4027 {0, 18, "Invalid number of feature args"}, 4028 }; 4029 unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 4030 bool should_write_sb; 4031 __u64 threshold; 4032 unsigned long long start; 4033 __s8 log2_sectors_per_bitmap_bit = -1; 4034 __s8 log2_blocks_per_bitmap_bit; 4035 __u64 bits_in_journal; 4036 __u64 n_bitmap_bits; 4037 4038 #define DIRECT_ARGUMENTS 4 4039 4040 if (argc <= DIRECT_ARGUMENTS) { 4041 ti->error = "Invalid argument count"; 4042 return -EINVAL; 4043 } 4044 4045 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 4046 if (!ic) { 4047 ti->error = "Cannot allocate integrity context"; 4048 return -ENOMEM; 4049 } 4050 ti->private = ic; 4051 ti->per_io_data_size = sizeof(struct dm_integrity_io); 4052 ic->ti = ti; 4053 4054 ic->in_progress = RB_ROOT; 4055 INIT_LIST_HEAD(&ic->wait_list); 4056 init_waitqueue_head(&ic->endio_wait); 4057 bio_list_init(&ic->flush_bio_list); 4058 init_waitqueue_head(&ic->copy_to_journal_wait); 4059 init_completion(&ic->crypto_backoff); 4060 atomic64_set(&ic->number_of_mismatches, 0); 4061 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL; 4062 4063 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 4064 if (r) { 4065 ti->error = "Device lookup failed"; 4066 goto bad; 4067 } 4068 4069 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 4070 ti->error = "Invalid starting offset"; 4071 r = -EINVAL; 4072 goto bad; 4073 } 4074 ic->start = start; 4075 4076 if (strcmp(argv[2], "-")) { 4077 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 4078 ti->error = "Invalid tag size"; 4079 r = -EINVAL; 4080 goto bad; 4081 } 4082 } 4083 4084 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") || 4085 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) { 4086 ic->mode = argv[3][0]; 4087 } else { 4088 ti->error = "Invalid mode (expecting J, B, D, R)"; 4089 r = -EINVAL; 4090 goto bad; 4091 } 4092 4093 journal_sectors = 0; 4094 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 4095 buffer_sectors = DEFAULT_BUFFER_SECTORS; 4096 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 4097 sync_msec = DEFAULT_SYNC_MSEC; 4098 ic->sectors_per_block = 1; 4099 4100 as.argc = argc - DIRECT_ARGUMENTS; 4101 as.argv = argv + DIRECT_ARGUMENTS; 4102 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 4103 if (r) 4104 goto bad; 4105 4106 while (extra_args--) { 4107 const char *opt_string; 4108 unsigned int val; 4109 unsigned long long llval; 4110 4111 opt_string = dm_shift_arg(&as); 4112 if (!opt_string) { 4113 r = -EINVAL; 4114 ti->error = "Not enough feature arguments"; 4115 goto bad; 4116 } 4117 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 4118 journal_sectors = val ? val : 1; 4119 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 4120 interleave_sectors = val; 4121 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 4122 buffer_sectors = val; 4123 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 4124 journal_watermark = val; 4125 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 4126 sync_msec = val; 4127 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) { 4128 if (ic->meta_dev) { 4129 dm_put_device(ti, ic->meta_dev); 4130 ic->meta_dev = NULL; 4131 } 4132 r = dm_get_device(ti, strchr(opt_string, ':') + 1, 4133 dm_table_get_mode(ti->table), &ic->meta_dev); 4134 if (r) { 4135 ti->error = "Device lookup failed"; 4136 goto bad; 4137 } 4138 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 4139 if (val < 1 << SECTOR_SHIFT || 4140 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 4141 (val & (val - 1))) { 4142 r = -EINVAL; 4143 ti->error = "Invalid block_size argument"; 4144 goto bad; 4145 } 4146 ic->sectors_per_block = val >> SECTOR_SHIFT; 4147 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) { 4148 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval); 4149 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) { 4150 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) { 4151 r = -EINVAL; 4152 ti->error = "Invalid bitmap_flush_interval argument"; 4153 goto bad; 4154 } 4155 ic->bitmap_flush_interval = msecs_to_jiffies(val); 4156 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 4157 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 4158 "Invalid internal_hash argument"); 4159 if (r) 4160 goto bad; 4161 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 4162 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 4163 "Invalid journal_crypt argument"); 4164 if (r) 4165 goto bad; 4166 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 4167 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 4168 "Invalid journal_mac argument"); 4169 if (r) 4170 goto bad; 4171 } else if (!strcmp(opt_string, "recalculate")) { 4172 ic->recalculate_flag = true; 4173 } else if (!strcmp(opt_string, "reset_recalculate")) { 4174 ic->recalculate_flag = true; 4175 ic->reset_recalculate_flag = true; 4176 } else if (!strcmp(opt_string, "allow_discards")) { 4177 ic->discard = true; 4178 } else if (!strcmp(opt_string, "fix_padding")) { 4179 ic->fix_padding = true; 4180 } else if (!strcmp(opt_string, "fix_hmac")) { 4181 ic->fix_hmac = true; 4182 } else if (!strcmp(opt_string, "legacy_recalculate")) { 4183 ic->legacy_recalculate = true; 4184 } else { 4185 r = -EINVAL; 4186 ti->error = "Invalid argument"; 4187 goto bad; 4188 } 4189 } 4190 4191 ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev); 4192 if (!ic->meta_dev) 4193 ic->meta_device_sectors = ic->data_device_sectors; 4194 else 4195 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev); 4196 4197 if (!journal_sectors) { 4198 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 4199 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 4200 } 4201 4202 if (!buffer_sectors) 4203 buffer_sectors = 1; 4204 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT); 4205 4206 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 4207 "Invalid internal hash", "Error setting internal hash key"); 4208 if (r) 4209 goto bad; 4210 4211 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 4212 "Invalid journal mac", "Error setting journal mac key"); 4213 if (r) 4214 goto bad; 4215 4216 if (!ic->tag_size) { 4217 if (!ic->internal_hash) { 4218 ti->error = "Unknown tag size"; 4219 r = -EINVAL; 4220 goto bad; 4221 } 4222 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 4223 } 4224 if (ic->tag_size > MAX_TAG_SIZE) { 4225 ti->error = "Too big tag size"; 4226 r = -EINVAL; 4227 goto bad; 4228 } 4229 if (!(ic->tag_size & (ic->tag_size - 1))) 4230 ic->log2_tag_size = __ffs(ic->tag_size); 4231 else 4232 ic->log2_tag_size = -1; 4233 4234 if (ic->mode == 'B' && !ic->internal_hash) { 4235 r = -EINVAL; 4236 ti->error = "Bitmap mode can be only used with internal hash"; 4237 goto bad; 4238 } 4239 4240 if (ic->discard && !ic->internal_hash) { 4241 r = -EINVAL; 4242 ti->error = "Discard can be only used with internal hash"; 4243 goto bad; 4244 } 4245 4246 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 4247 ic->autocommit_msec = sync_msec; 4248 timer_setup(&ic->autocommit_timer, autocommit_fn, 0); 4249 4250 ic->io = dm_io_client_create(); 4251 if (IS_ERR(ic->io)) { 4252 r = PTR_ERR(ic->io); 4253 ic->io = NULL; 4254 ti->error = "Cannot allocate dm io"; 4255 goto bad; 4256 } 4257 4258 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); 4259 if (r) { 4260 ti->error = "Cannot allocate mempool"; 4261 goto bad; 4262 } 4263 4264 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 4265 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 4266 if (!ic->metadata_wq) { 4267 ti->error = "Cannot allocate workqueue"; 4268 r = -ENOMEM; 4269 goto bad; 4270 } 4271 4272 /* 4273 * If this workqueue weren't ordered, it would cause bio reordering 4274 * and reduced performance. 4275 */ 4276 ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM); 4277 if (!ic->wait_wq) { 4278 ti->error = "Cannot allocate workqueue"; 4279 r = -ENOMEM; 4280 goto bad; 4281 } 4282 4283 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM, 4284 METADATA_WORKQUEUE_MAX_ACTIVE); 4285 if (!ic->offload_wq) { 4286 ti->error = "Cannot allocate workqueue"; 4287 r = -ENOMEM; 4288 goto bad; 4289 } 4290 4291 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 4292 if (!ic->commit_wq) { 4293 ti->error = "Cannot allocate workqueue"; 4294 r = -ENOMEM; 4295 goto bad; 4296 } 4297 INIT_WORK(&ic->commit_work, integrity_commit); 4298 4299 if (ic->mode == 'J' || ic->mode == 'B') { 4300 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 4301 if (!ic->writer_wq) { 4302 ti->error = "Cannot allocate workqueue"; 4303 r = -ENOMEM; 4304 goto bad; 4305 } 4306 INIT_WORK(&ic->writer_work, integrity_writer); 4307 } 4308 4309 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 4310 if (!ic->sb) { 4311 r = -ENOMEM; 4312 ti->error = "Cannot allocate superblock area"; 4313 goto bad; 4314 } 4315 4316 r = sync_rw_sb(ic, REQ_OP_READ); 4317 if (r) { 4318 ti->error = "Error reading superblock"; 4319 goto bad; 4320 } 4321 should_write_sb = false; 4322 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 4323 if (ic->mode != 'R') { 4324 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 4325 r = -EINVAL; 4326 ti->error = "The device is not initialized"; 4327 goto bad; 4328 } 4329 } 4330 4331 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 4332 if (r) { 4333 ti->error = "Could not initialize superblock"; 4334 goto bad; 4335 } 4336 if (ic->mode != 'R') 4337 should_write_sb = true; 4338 } 4339 4340 if (!ic->sb->version || ic->sb->version > SB_VERSION_5) { 4341 r = -EINVAL; 4342 ti->error = "Unknown version"; 4343 goto bad; 4344 } 4345 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 4346 r = -EINVAL; 4347 ti->error = "Tag size doesn't match the information in superblock"; 4348 goto bad; 4349 } 4350 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 4351 r = -EINVAL; 4352 ti->error = "Block size doesn't match the information in superblock"; 4353 goto bad; 4354 } 4355 if (!le32_to_cpu(ic->sb->journal_sections)) { 4356 r = -EINVAL; 4357 ti->error = "Corrupted superblock, journal_sections is 0"; 4358 goto bad; 4359 } 4360 /* make sure that ti->max_io_len doesn't overflow */ 4361 if (!ic->meta_dev) { 4362 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 4363 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 4364 r = -EINVAL; 4365 ti->error = "Invalid interleave_sectors in the superblock"; 4366 goto bad; 4367 } 4368 } else { 4369 if (ic->sb->log2_interleave_sectors) { 4370 r = -EINVAL; 4371 ti->error = "Invalid interleave_sectors in the superblock"; 4372 goto bad; 4373 } 4374 } 4375 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 4376 r = -EINVAL; 4377 ti->error = "Journal mac mismatch"; 4378 goto bad; 4379 } 4380 4381 get_provided_data_sectors(ic); 4382 if (!ic->provided_data_sectors) { 4383 r = -EINVAL; 4384 ti->error = "The device is too small"; 4385 goto bad; 4386 } 4387 4388 try_smaller_buffer: 4389 r = calculate_device_limits(ic); 4390 if (r) { 4391 if (ic->meta_dev) { 4392 if (ic->log2_buffer_sectors > 3) { 4393 ic->log2_buffer_sectors--; 4394 goto try_smaller_buffer; 4395 } 4396 } 4397 ti->error = "The device is too small"; 4398 goto bad; 4399 } 4400 4401 if (log2_sectors_per_bitmap_bit < 0) 4402 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT); 4403 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block) 4404 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block; 4405 4406 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3); 4407 if (bits_in_journal > UINT_MAX) 4408 bits_in_journal = UINT_MAX; 4409 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit) 4410 log2_sectors_per_bitmap_bit++; 4411 4412 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block; 4413 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4414 if (should_write_sb) 4415 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4416 4417 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) 4418 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit; 4419 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8); 4420 4421 if (!ic->meta_dev) 4422 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run)); 4423 4424 if (ti->len > ic->provided_data_sectors) { 4425 r = -EINVAL; 4426 ti->error = "Not enough provided sectors for requested mapping size"; 4427 goto bad; 4428 } 4429 4430 4431 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 4432 threshold += 50; 4433 do_div(threshold, 100); 4434 ic->free_sectors_threshold = threshold; 4435 4436 DEBUG_print("initialized:\n"); 4437 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 4438 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 4439 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 4440 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 4441 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 4442 DEBUG_print(" journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections)); 4443 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 4444 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 4445 DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev)); 4446 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 4447 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 4448 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 4449 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors); 4450 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 4451 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal); 4452 4453 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) { 4454 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 4455 ic->sb->recalc_sector = cpu_to_le64(0); 4456 } 4457 4458 if (ic->internal_hash) { 4459 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1); 4460 if (!ic->recalc_wq) { 4461 ti->error = "Cannot allocate workqueue"; 4462 r = -ENOMEM; 4463 goto bad; 4464 } 4465 INIT_WORK(&ic->recalc_work, integrity_recalc); 4466 } else { 4467 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 4468 ti->error = "Recalculate can only be specified with internal_hash"; 4469 r = -EINVAL; 4470 goto bad; 4471 } 4472 } 4473 4474 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 4475 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors && 4476 dm_integrity_disable_recalculate(ic)) { 4477 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\""; 4478 r = -EOPNOTSUPP; 4479 goto bad; 4480 } 4481 4482 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev, 4483 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0); 4484 if (IS_ERR(ic->bufio)) { 4485 r = PTR_ERR(ic->bufio); 4486 ti->error = "Cannot initialize dm-bufio"; 4487 ic->bufio = NULL; 4488 goto bad; 4489 } 4490 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 4491 4492 if (ic->mode != 'R') { 4493 r = create_journal(ic, &ti->error); 4494 if (r) 4495 goto bad; 4496 4497 } 4498 4499 if (ic->mode == 'B') { 4500 unsigned int i; 4501 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 4502 4503 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4504 if (!ic->recalc_bitmap) { 4505 r = -ENOMEM; 4506 goto bad; 4507 } 4508 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4509 if (!ic->may_write_bitmap) { 4510 r = -ENOMEM; 4511 goto bad; 4512 } 4513 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL); 4514 if (!ic->bbs) { 4515 r = -ENOMEM; 4516 goto bad; 4517 } 4518 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work); 4519 for (i = 0; i < ic->n_bitmap_blocks; i++) { 4520 struct bitmap_block_status *bbs = &ic->bbs[i]; 4521 unsigned int sector, pl_index, pl_offset; 4522 4523 INIT_WORK(&bbs->work, bitmap_block_work); 4524 bbs->ic = ic; 4525 bbs->idx = i; 4526 bio_list_init(&bbs->bio_queue); 4527 spin_lock_init(&bbs->bio_queue_lock); 4528 4529 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT); 4530 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 4531 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 4532 4533 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset; 4534 } 4535 } 4536 4537 if (should_write_sb) { 4538 init_journal(ic, 0, ic->journal_sections, 0); 4539 r = dm_integrity_failed(ic); 4540 if (unlikely(r)) { 4541 ti->error = "Error initializing journal"; 4542 goto bad; 4543 } 4544 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 4545 if (r) { 4546 ti->error = "Error initializing superblock"; 4547 goto bad; 4548 } 4549 ic->just_formatted = true; 4550 } 4551 4552 if (!ic->meta_dev) { 4553 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 4554 if (r) 4555 goto bad; 4556 } 4557 if (ic->mode == 'B') { 4558 unsigned int max_io_len; 4559 4560 max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8); 4561 if (!max_io_len) 4562 max_io_len = 1U << 31; 4563 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len); 4564 if (!ti->max_io_len || ti->max_io_len > max_io_len) { 4565 r = dm_set_target_max_io_len(ti, max_io_len); 4566 if (r) 4567 goto bad; 4568 } 4569 } 4570 4571 if (!ic->internal_hash) 4572 dm_integrity_set(ti, ic); 4573 4574 ti->num_flush_bios = 1; 4575 ti->flush_supported = true; 4576 if (ic->discard) 4577 ti->num_discard_bios = 1; 4578 4579 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1); 4580 return 0; 4581 4582 bad: 4583 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0); 4584 dm_integrity_dtr(ti); 4585 return r; 4586 } 4587 4588 static void dm_integrity_dtr(struct dm_target *ti) 4589 { 4590 struct dm_integrity_c *ic = ti->private; 4591 4592 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 4593 BUG_ON(!list_empty(&ic->wait_list)); 4594 4595 if (ic->mode == 'B') 4596 cancel_delayed_work_sync(&ic->bitmap_flush_work); 4597 if (ic->metadata_wq) 4598 destroy_workqueue(ic->metadata_wq); 4599 if (ic->wait_wq) 4600 destroy_workqueue(ic->wait_wq); 4601 if (ic->offload_wq) 4602 destroy_workqueue(ic->offload_wq); 4603 if (ic->commit_wq) 4604 destroy_workqueue(ic->commit_wq); 4605 if (ic->writer_wq) 4606 destroy_workqueue(ic->writer_wq); 4607 if (ic->recalc_wq) 4608 destroy_workqueue(ic->recalc_wq); 4609 kvfree(ic->bbs); 4610 if (ic->bufio) 4611 dm_bufio_client_destroy(ic->bufio); 4612 mempool_exit(&ic->journal_io_mempool); 4613 if (ic->io) 4614 dm_io_client_destroy(ic->io); 4615 if (ic->dev) 4616 dm_put_device(ti, ic->dev); 4617 if (ic->meta_dev) 4618 dm_put_device(ti, ic->meta_dev); 4619 dm_integrity_free_page_list(ic->journal); 4620 dm_integrity_free_page_list(ic->journal_io); 4621 dm_integrity_free_page_list(ic->journal_xor); 4622 dm_integrity_free_page_list(ic->recalc_bitmap); 4623 dm_integrity_free_page_list(ic->may_write_bitmap); 4624 if (ic->journal_scatterlist) 4625 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 4626 if (ic->journal_io_scatterlist) 4627 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 4628 if (ic->sk_requests) { 4629 unsigned int i; 4630 4631 for (i = 0; i < ic->journal_sections; i++) { 4632 struct skcipher_request *req; 4633 4634 req = ic->sk_requests[i]; 4635 if (req) { 4636 kfree_sensitive(req->iv); 4637 skcipher_request_free(req); 4638 } 4639 } 4640 kvfree(ic->sk_requests); 4641 } 4642 kvfree(ic->journal_tree); 4643 if (ic->sb) 4644 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 4645 4646 if (ic->internal_hash) 4647 crypto_free_shash(ic->internal_hash); 4648 free_alg(&ic->internal_hash_alg); 4649 4650 if (ic->journal_crypt) 4651 crypto_free_skcipher(ic->journal_crypt); 4652 free_alg(&ic->journal_crypt_alg); 4653 4654 if (ic->journal_mac) 4655 crypto_free_shash(ic->journal_mac); 4656 free_alg(&ic->journal_mac_alg); 4657 4658 kfree(ic); 4659 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1); 4660 } 4661 4662 static struct target_type integrity_target = { 4663 .name = "integrity", 4664 .version = {1, 10, 0}, 4665 .module = THIS_MODULE, 4666 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 4667 .ctr = dm_integrity_ctr, 4668 .dtr = dm_integrity_dtr, 4669 .map = dm_integrity_map, 4670 .postsuspend = dm_integrity_postsuspend, 4671 .resume = dm_integrity_resume, 4672 .status = dm_integrity_status, 4673 .iterate_devices = dm_integrity_iterate_devices, 4674 .io_hints = dm_integrity_io_hints, 4675 }; 4676 4677 static int __init dm_integrity_init(void) 4678 { 4679 int r; 4680 4681 journal_io_cache = kmem_cache_create("integrity_journal_io", 4682 sizeof(struct journal_io), 0, 0, NULL); 4683 if (!journal_io_cache) { 4684 DMERR("can't allocate journal io cache"); 4685 return -ENOMEM; 4686 } 4687 4688 r = dm_register_target(&integrity_target); 4689 if (r < 0) { 4690 kmem_cache_destroy(journal_io_cache); 4691 return r; 4692 } 4693 4694 return 0; 4695 } 4696 4697 static void __exit dm_integrity_exit(void) 4698 { 4699 dm_unregister_target(&integrity_target); 4700 kmem_cache_destroy(journal_io_cache); 4701 } 4702 4703 module_init(dm_integrity_init); 4704 module_exit(dm_integrity_exit); 4705 4706 MODULE_AUTHOR("Milan Broz"); 4707 MODULE_AUTHOR("Mikulas Patocka"); 4708 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 4709 MODULE_LICENSE("GPL"); 4710