1 /* 2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 3 * Copyright (C) 2016-2017 Milan Broz 4 * Copyright (C) 2016-2017 Mikulas Patocka 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-bio-record.h" 10 11 #include <linux/compiler.h> 12 #include <linux/module.h> 13 #include <linux/device-mapper.h> 14 #include <linux/dm-io.h> 15 #include <linux/vmalloc.h> 16 #include <linux/sort.h> 17 #include <linux/rbtree.h> 18 #include <linux/delay.h> 19 #include <linux/random.h> 20 #include <linux/reboot.h> 21 #include <crypto/hash.h> 22 #include <crypto/skcipher.h> 23 #include <linux/async_tx.h> 24 #include <linux/dm-bufio.h> 25 26 #define DM_MSG_PREFIX "integrity" 27 28 #define DEFAULT_INTERLEAVE_SECTORS 32768 29 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 30 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768 31 #define DEFAULT_BUFFER_SECTORS 128 32 #define DEFAULT_JOURNAL_WATERMARK 50 33 #define DEFAULT_SYNC_MSEC 10000 34 #define DEFAULT_MAX_JOURNAL_SECTORS 131072 35 #define MIN_LOG2_INTERLEAVE_SECTORS 3 36 #define MAX_LOG2_INTERLEAVE_SECTORS 31 37 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 38 #define RECALC_SECTORS 8192 39 #define RECALC_WRITE_SUPER 16 40 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */ 41 #define BITMAP_FLUSH_INTERVAL (10 * HZ) 42 #define DISCARD_FILLER 0xf6 43 44 /* 45 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 46 * so it should not be enabled in the official kernel 47 */ 48 //#define DEBUG_PRINT 49 //#define INTERNAL_VERIFY 50 51 /* 52 * On disk structures 53 */ 54 55 #define SB_MAGIC "integrt" 56 #define SB_VERSION_1 1 57 #define SB_VERSION_2 2 58 #define SB_VERSION_3 3 59 #define SB_VERSION_4 4 60 #define SB_SECTORS 8 61 #define MAX_SECTORS_PER_BLOCK 8 62 63 struct superblock { 64 __u8 magic[8]; 65 __u8 version; 66 __u8 log2_interleave_sectors; 67 __u16 integrity_tag_size; 68 __u32 journal_sections; 69 __u64 provided_data_sectors; /* userspace uses this value */ 70 __u32 flags; 71 __u8 log2_sectors_per_block; 72 __u8 log2_blocks_per_bitmap_bit; 73 __u8 pad[2]; 74 __u64 recalc_sector; 75 }; 76 77 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 78 #define SB_FLAG_RECALCULATING 0x2 79 #define SB_FLAG_DIRTY_BITMAP 0x4 80 #define SB_FLAG_FIXED_PADDING 0x8 81 82 #define JOURNAL_ENTRY_ROUNDUP 8 83 84 typedef __u64 commit_id_t; 85 #define JOURNAL_MAC_PER_SECTOR 8 86 87 struct journal_entry { 88 union { 89 struct { 90 __u32 sector_lo; 91 __u32 sector_hi; 92 } s; 93 __u64 sector; 94 } u; 95 commit_id_t last_bytes[0]; 96 /* __u8 tag[0]; */ 97 }; 98 99 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 100 101 #if BITS_PER_LONG == 64 102 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) 103 #else 104 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) 105 #endif 106 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 107 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 108 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0) 109 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 110 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0) 111 112 #define JOURNAL_BLOCK_SECTORS 8 113 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 114 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 115 116 struct journal_sector { 117 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 118 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 119 commit_id_t commit_id; 120 }; 121 122 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 123 124 #define METADATA_PADDING_SECTORS 8 125 126 #define N_COMMIT_IDS 4 127 128 static unsigned char prev_commit_seq(unsigned char seq) 129 { 130 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 131 } 132 133 static unsigned char next_commit_seq(unsigned char seq) 134 { 135 return (seq + 1) % N_COMMIT_IDS; 136 } 137 138 /* 139 * In-memory structures 140 */ 141 142 struct journal_node { 143 struct rb_node node; 144 sector_t sector; 145 }; 146 147 struct alg_spec { 148 char *alg_string; 149 char *key_string; 150 __u8 *key; 151 unsigned key_size; 152 }; 153 154 struct dm_integrity_c { 155 struct dm_dev *dev; 156 struct dm_dev *meta_dev; 157 unsigned tag_size; 158 __s8 log2_tag_size; 159 sector_t start; 160 mempool_t journal_io_mempool; 161 struct dm_io_client *io; 162 struct dm_bufio_client *bufio; 163 struct workqueue_struct *metadata_wq; 164 struct superblock *sb; 165 unsigned journal_pages; 166 unsigned n_bitmap_blocks; 167 168 struct page_list *journal; 169 struct page_list *journal_io; 170 struct page_list *journal_xor; 171 struct page_list *recalc_bitmap; 172 struct page_list *may_write_bitmap; 173 struct bitmap_block_status *bbs; 174 unsigned bitmap_flush_interval; 175 int synchronous_mode; 176 struct bio_list synchronous_bios; 177 struct delayed_work bitmap_flush_work; 178 179 struct crypto_skcipher *journal_crypt; 180 struct scatterlist **journal_scatterlist; 181 struct scatterlist **journal_io_scatterlist; 182 struct skcipher_request **sk_requests; 183 184 struct crypto_shash *journal_mac; 185 186 struct journal_node *journal_tree; 187 struct rb_root journal_tree_root; 188 189 sector_t provided_data_sectors; 190 191 unsigned short journal_entry_size; 192 unsigned char journal_entries_per_sector; 193 unsigned char journal_section_entries; 194 unsigned short journal_section_sectors; 195 unsigned journal_sections; 196 unsigned journal_entries; 197 sector_t data_device_sectors; 198 sector_t meta_device_sectors; 199 unsigned initial_sectors; 200 unsigned metadata_run; 201 __s8 log2_metadata_run; 202 __u8 log2_buffer_sectors; 203 __u8 sectors_per_block; 204 __u8 log2_blocks_per_bitmap_bit; 205 206 unsigned char mode; 207 208 int failed; 209 210 struct crypto_shash *internal_hash; 211 212 struct dm_target *ti; 213 214 /* these variables are locked with endio_wait.lock */ 215 struct rb_root in_progress; 216 struct list_head wait_list; 217 wait_queue_head_t endio_wait; 218 struct workqueue_struct *wait_wq; 219 struct workqueue_struct *offload_wq; 220 221 unsigned char commit_seq; 222 commit_id_t commit_ids[N_COMMIT_IDS]; 223 224 unsigned committed_section; 225 unsigned n_committed_sections; 226 227 unsigned uncommitted_section; 228 unsigned n_uncommitted_sections; 229 230 unsigned free_section; 231 unsigned char free_section_entry; 232 unsigned free_sectors; 233 234 unsigned free_sectors_threshold; 235 236 struct workqueue_struct *commit_wq; 237 struct work_struct commit_work; 238 239 struct workqueue_struct *writer_wq; 240 struct work_struct writer_work; 241 242 struct workqueue_struct *recalc_wq; 243 struct work_struct recalc_work; 244 u8 *recalc_buffer; 245 u8 *recalc_tags; 246 247 struct bio_list flush_bio_list; 248 249 unsigned long autocommit_jiffies; 250 struct timer_list autocommit_timer; 251 unsigned autocommit_msec; 252 253 wait_queue_head_t copy_to_journal_wait; 254 255 struct completion crypto_backoff; 256 257 bool journal_uptodate; 258 bool just_formatted; 259 bool recalculate_flag; 260 bool fix_padding; 261 bool discard; 262 263 struct alg_spec internal_hash_alg; 264 struct alg_spec journal_crypt_alg; 265 struct alg_spec journal_mac_alg; 266 267 atomic64_t number_of_mismatches; 268 269 struct notifier_block reboot_notifier; 270 }; 271 272 struct dm_integrity_range { 273 sector_t logical_sector; 274 sector_t n_sectors; 275 bool waiting; 276 union { 277 struct rb_node node; 278 struct { 279 struct task_struct *task; 280 struct list_head wait_entry; 281 }; 282 }; 283 }; 284 285 struct dm_integrity_io { 286 struct work_struct work; 287 288 struct dm_integrity_c *ic; 289 enum req_opf op; 290 bool fua; 291 292 struct dm_integrity_range range; 293 294 sector_t metadata_block; 295 unsigned metadata_offset; 296 297 atomic_t in_flight; 298 blk_status_t bi_status; 299 300 struct completion *completion; 301 302 struct dm_bio_details bio_details; 303 }; 304 305 struct journal_completion { 306 struct dm_integrity_c *ic; 307 atomic_t in_flight; 308 struct completion comp; 309 }; 310 311 struct journal_io { 312 struct dm_integrity_range range; 313 struct journal_completion *comp; 314 }; 315 316 struct bitmap_block_status { 317 struct work_struct work; 318 struct dm_integrity_c *ic; 319 unsigned idx; 320 unsigned long *bitmap; 321 struct bio_list bio_queue; 322 spinlock_t bio_queue_lock; 323 324 }; 325 326 static struct kmem_cache *journal_io_cache; 327 328 #define JOURNAL_IO_MEMPOOL 32 329 330 #ifdef DEBUG_PRINT 331 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 332 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...) 333 { 334 va_list args; 335 va_start(args, msg); 336 vprintk(msg, args); 337 va_end(args); 338 if (len) 339 pr_cont(":"); 340 while (len) { 341 pr_cont(" %02x", *bytes); 342 bytes++; 343 len--; 344 } 345 pr_cont("\n"); 346 } 347 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__) 348 #else 349 #define DEBUG_print(x, ...) do { } while (0) 350 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 351 #endif 352 353 static void dm_integrity_prepare(struct request *rq) 354 { 355 } 356 357 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes) 358 { 359 } 360 361 /* 362 * DM Integrity profile, protection is performed layer above (dm-crypt) 363 */ 364 static const struct blk_integrity_profile dm_integrity_profile = { 365 .name = "DM-DIF-EXT-TAG", 366 .generate_fn = NULL, 367 .verify_fn = NULL, 368 .prepare_fn = dm_integrity_prepare, 369 .complete_fn = dm_integrity_complete, 370 }; 371 372 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 373 static void integrity_bio_wait(struct work_struct *w); 374 static void dm_integrity_dtr(struct dm_target *ti); 375 376 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 377 { 378 if (err == -EILSEQ) 379 atomic64_inc(&ic->number_of_mismatches); 380 if (!cmpxchg(&ic->failed, 0, err)) 381 DMERR("Error on %s: %d", msg, err); 382 } 383 384 static int dm_integrity_failed(struct dm_integrity_c *ic) 385 { 386 return READ_ONCE(ic->failed); 387 } 388 389 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i, 390 unsigned j, unsigned char seq) 391 { 392 /* 393 * Xor the number with section and sector, so that if a piece of 394 * journal is written at wrong place, it is detected. 395 */ 396 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 397 } 398 399 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 400 sector_t *area, sector_t *offset) 401 { 402 if (!ic->meta_dev) { 403 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 404 *area = data_sector >> log2_interleave_sectors; 405 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1); 406 } else { 407 *area = 0; 408 *offset = data_sector; 409 } 410 } 411 412 #define sector_to_block(ic, n) \ 413 do { \ 414 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \ 415 (n) >>= (ic)->sb->log2_sectors_per_block; \ 416 } while (0) 417 418 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 419 sector_t offset, unsigned *metadata_offset) 420 { 421 __u64 ms; 422 unsigned mo; 423 424 ms = area << ic->sb->log2_interleave_sectors; 425 if (likely(ic->log2_metadata_run >= 0)) 426 ms += area << ic->log2_metadata_run; 427 else 428 ms += area * ic->metadata_run; 429 ms >>= ic->log2_buffer_sectors; 430 431 sector_to_block(ic, offset); 432 433 if (likely(ic->log2_tag_size >= 0)) { 434 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 435 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 436 } else { 437 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 438 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 439 } 440 *metadata_offset = mo; 441 return ms; 442 } 443 444 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 445 { 446 sector_t result; 447 448 if (ic->meta_dev) 449 return offset; 450 451 result = area << ic->sb->log2_interleave_sectors; 452 if (likely(ic->log2_metadata_run >= 0)) 453 result += (area + 1) << ic->log2_metadata_run; 454 else 455 result += (area + 1) * ic->metadata_run; 456 457 result += (sector_t)ic->initial_sectors + offset; 458 result += ic->start; 459 460 return result; 461 } 462 463 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr) 464 { 465 if (unlikely(*sec_ptr >= ic->journal_sections)) 466 *sec_ptr -= ic->journal_sections; 467 } 468 469 static void sb_set_version(struct dm_integrity_c *ic) 470 { 471 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) 472 ic->sb->version = SB_VERSION_4; 473 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) 474 ic->sb->version = SB_VERSION_3; 475 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 476 ic->sb->version = SB_VERSION_2; 477 else 478 ic->sb->version = SB_VERSION_1; 479 } 480 481 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags) 482 { 483 struct dm_io_request io_req; 484 struct dm_io_region io_loc; 485 486 io_req.bi_op = op; 487 io_req.bi_op_flags = op_flags; 488 io_req.mem.type = DM_IO_KMEM; 489 io_req.mem.ptr.addr = ic->sb; 490 io_req.notify.fn = NULL; 491 io_req.client = ic->io; 492 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 493 io_loc.sector = ic->start; 494 io_loc.count = SB_SECTORS; 495 496 if (op == REQ_OP_WRITE) 497 sb_set_version(ic); 498 499 return dm_io(&io_req, 1, &io_loc, NULL); 500 } 501 502 #define BITMAP_OP_TEST_ALL_SET 0 503 #define BITMAP_OP_TEST_ALL_CLEAR 1 504 #define BITMAP_OP_SET 2 505 #define BITMAP_OP_CLEAR 3 506 507 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap, 508 sector_t sector, sector_t n_sectors, int mode) 509 { 510 unsigned long bit, end_bit, this_end_bit, page, end_page; 511 unsigned long *data; 512 513 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) { 514 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)", 515 sector, 516 n_sectors, 517 ic->sb->log2_sectors_per_block, 518 ic->log2_blocks_per_bitmap_bit, 519 mode); 520 BUG(); 521 } 522 523 if (unlikely(!n_sectors)) 524 return true; 525 526 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 527 end_bit = (sector + n_sectors - 1) >> 528 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 529 530 page = bit / (PAGE_SIZE * 8); 531 bit %= PAGE_SIZE * 8; 532 533 end_page = end_bit / (PAGE_SIZE * 8); 534 end_bit %= PAGE_SIZE * 8; 535 536 repeat: 537 if (page < end_page) { 538 this_end_bit = PAGE_SIZE * 8 - 1; 539 } else { 540 this_end_bit = end_bit; 541 } 542 543 data = lowmem_page_address(bitmap[page].page); 544 545 if (mode == BITMAP_OP_TEST_ALL_SET) { 546 while (bit <= this_end_bit) { 547 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 548 do { 549 if (data[bit / BITS_PER_LONG] != -1) 550 return false; 551 bit += BITS_PER_LONG; 552 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 553 continue; 554 } 555 if (!test_bit(bit, data)) 556 return false; 557 bit++; 558 } 559 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) { 560 while (bit <= this_end_bit) { 561 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 562 do { 563 if (data[bit / BITS_PER_LONG] != 0) 564 return false; 565 bit += BITS_PER_LONG; 566 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 567 continue; 568 } 569 if (test_bit(bit, data)) 570 return false; 571 bit++; 572 } 573 } else if (mode == BITMAP_OP_SET) { 574 while (bit <= this_end_bit) { 575 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 576 do { 577 data[bit / BITS_PER_LONG] = -1; 578 bit += BITS_PER_LONG; 579 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 580 continue; 581 } 582 __set_bit(bit, data); 583 bit++; 584 } 585 } else if (mode == BITMAP_OP_CLEAR) { 586 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1) 587 clear_page(data); 588 else while (bit <= this_end_bit) { 589 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 590 do { 591 data[bit / BITS_PER_LONG] = 0; 592 bit += BITS_PER_LONG; 593 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 594 continue; 595 } 596 __clear_bit(bit, data); 597 bit++; 598 } 599 } else { 600 BUG(); 601 } 602 603 if (unlikely(page < end_page)) { 604 bit = 0; 605 page++; 606 goto repeat; 607 } 608 609 return true; 610 } 611 612 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src) 613 { 614 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 615 unsigned i; 616 617 for (i = 0; i < n_bitmap_pages; i++) { 618 unsigned long *dst_data = lowmem_page_address(dst[i].page); 619 unsigned long *src_data = lowmem_page_address(src[i].page); 620 copy_page(dst_data, src_data); 621 } 622 } 623 624 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector) 625 { 626 unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 627 unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8); 628 629 BUG_ON(bitmap_block >= ic->n_bitmap_blocks); 630 return &ic->bbs[bitmap_block]; 631 } 632 633 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset, 634 bool e, const char *function) 635 { 636 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 637 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 638 639 if (unlikely(section >= ic->journal_sections) || 640 unlikely(offset >= limit)) { 641 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)", 642 function, section, offset, ic->journal_sections, limit); 643 BUG(); 644 } 645 #endif 646 } 647 648 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset, 649 unsigned *pl_index, unsigned *pl_offset) 650 { 651 unsigned sector; 652 653 access_journal_check(ic, section, offset, false, "page_list_location"); 654 655 sector = section * ic->journal_section_sectors + offset; 656 657 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 658 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 659 } 660 661 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 662 unsigned section, unsigned offset, unsigned *n_sectors) 663 { 664 unsigned pl_index, pl_offset; 665 char *va; 666 667 page_list_location(ic, section, offset, &pl_index, &pl_offset); 668 669 if (n_sectors) 670 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 671 672 va = lowmem_page_address(pl[pl_index].page); 673 674 return (struct journal_sector *)(va + pl_offset); 675 } 676 677 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset) 678 { 679 return access_page_list(ic, ic->journal, section, offset, NULL); 680 } 681 682 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n) 683 { 684 unsigned rel_sector, offset; 685 struct journal_sector *js; 686 687 access_journal_check(ic, section, n, true, "access_journal_entry"); 688 689 rel_sector = n % JOURNAL_BLOCK_SECTORS; 690 offset = n / JOURNAL_BLOCK_SECTORS; 691 692 js = access_journal(ic, section, rel_sector); 693 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 694 } 695 696 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n) 697 { 698 n <<= ic->sb->log2_sectors_per_block; 699 700 n += JOURNAL_BLOCK_SECTORS; 701 702 access_journal_check(ic, section, n, false, "access_journal_data"); 703 704 return access_journal(ic, section, n); 705 } 706 707 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE]) 708 { 709 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 710 int r; 711 unsigned j, size; 712 713 desc->tfm = ic->journal_mac; 714 715 r = crypto_shash_init(desc); 716 if (unlikely(r)) { 717 dm_integrity_io_error(ic, "crypto_shash_init", r); 718 goto err; 719 } 720 721 for (j = 0; j < ic->journal_section_entries; j++) { 722 struct journal_entry *je = access_journal_entry(ic, section, j); 723 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector); 724 if (unlikely(r)) { 725 dm_integrity_io_error(ic, "crypto_shash_update", r); 726 goto err; 727 } 728 } 729 730 size = crypto_shash_digestsize(ic->journal_mac); 731 732 if (likely(size <= JOURNAL_MAC_SIZE)) { 733 r = crypto_shash_final(desc, result); 734 if (unlikely(r)) { 735 dm_integrity_io_error(ic, "crypto_shash_final", r); 736 goto err; 737 } 738 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 739 } else { 740 __u8 digest[HASH_MAX_DIGESTSIZE]; 741 742 if (WARN_ON(size > sizeof(digest))) { 743 dm_integrity_io_error(ic, "digest_size", -EINVAL); 744 goto err; 745 } 746 r = crypto_shash_final(desc, digest); 747 if (unlikely(r)) { 748 dm_integrity_io_error(ic, "crypto_shash_final", r); 749 goto err; 750 } 751 memcpy(result, digest, JOURNAL_MAC_SIZE); 752 } 753 754 return; 755 err: 756 memset(result, 0, JOURNAL_MAC_SIZE); 757 } 758 759 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr) 760 { 761 __u8 result[JOURNAL_MAC_SIZE]; 762 unsigned j; 763 764 if (!ic->journal_mac) 765 return; 766 767 section_mac(ic, section, result); 768 769 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 770 struct journal_sector *js = access_journal(ic, section, j); 771 772 if (likely(wr)) 773 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 774 else { 775 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) 776 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 777 } 778 } 779 } 780 781 static void complete_journal_op(void *context) 782 { 783 struct journal_completion *comp = context; 784 BUG_ON(!atomic_read(&comp->in_flight)); 785 if (likely(atomic_dec_and_test(&comp->in_flight))) 786 complete(&comp->comp); 787 } 788 789 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 790 unsigned n_sections, struct journal_completion *comp) 791 { 792 struct async_submit_ctl submit; 793 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 794 unsigned pl_index, pl_offset, section_index; 795 struct page_list *source_pl, *target_pl; 796 797 if (likely(encrypt)) { 798 source_pl = ic->journal; 799 target_pl = ic->journal_io; 800 } else { 801 source_pl = ic->journal_io; 802 target_pl = ic->journal; 803 } 804 805 page_list_location(ic, section, 0, &pl_index, &pl_offset); 806 807 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 808 809 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 810 811 section_index = pl_index; 812 813 do { 814 size_t this_step; 815 struct page *src_pages[2]; 816 struct page *dst_page; 817 818 while (unlikely(pl_index == section_index)) { 819 unsigned dummy; 820 if (likely(encrypt)) 821 rw_section_mac(ic, section, true); 822 section++; 823 n_sections--; 824 if (!n_sections) 825 break; 826 page_list_location(ic, section, 0, §ion_index, &dummy); 827 } 828 829 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 830 dst_page = target_pl[pl_index].page; 831 src_pages[0] = source_pl[pl_index].page; 832 src_pages[1] = ic->journal_xor[pl_index].page; 833 834 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 835 836 pl_index++; 837 pl_offset = 0; 838 n_bytes -= this_step; 839 } while (n_bytes); 840 841 BUG_ON(n_sections); 842 843 async_tx_issue_pending_all(); 844 } 845 846 static void complete_journal_encrypt(struct crypto_async_request *req, int err) 847 { 848 struct journal_completion *comp = req->data; 849 if (unlikely(err)) { 850 if (likely(err == -EINPROGRESS)) { 851 complete(&comp->ic->crypto_backoff); 852 return; 853 } 854 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 855 } 856 complete_journal_op(comp); 857 } 858 859 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 860 { 861 int r; 862 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 863 complete_journal_encrypt, comp); 864 if (likely(encrypt)) 865 r = crypto_skcipher_encrypt(req); 866 else 867 r = crypto_skcipher_decrypt(req); 868 if (likely(!r)) 869 return false; 870 if (likely(r == -EINPROGRESS)) 871 return true; 872 if (likely(r == -EBUSY)) { 873 wait_for_completion(&comp->ic->crypto_backoff); 874 reinit_completion(&comp->ic->crypto_backoff); 875 return true; 876 } 877 dm_integrity_io_error(comp->ic, "encrypt", r); 878 return false; 879 } 880 881 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 882 unsigned n_sections, struct journal_completion *comp) 883 { 884 struct scatterlist **source_sg; 885 struct scatterlist **target_sg; 886 887 atomic_add(2, &comp->in_flight); 888 889 if (likely(encrypt)) { 890 source_sg = ic->journal_scatterlist; 891 target_sg = ic->journal_io_scatterlist; 892 } else { 893 source_sg = ic->journal_io_scatterlist; 894 target_sg = ic->journal_scatterlist; 895 } 896 897 do { 898 struct skcipher_request *req; 899 unsigned ivsize; 900 char *iv; 901 902 if (likely(encrypt)) 903 rw_section_mac(ic, section, true); 904 905 req = ic->sk_requests[section]; 906 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 907 iv = req->iv; 908 909 memcpy(iv, iv + ivsize, ivsize); 910 911 req->src = source_sg[section]; 912 req->dst = target_sg[section]; 913 914 if (unlikely(do_crypt(encrypt, req, comp))) 915 atomic_inc(&comp->in_flight); 916 917 section++; 918 n_sections--; 919 } while (n_sections); 920 921 atomic_dec(&comp->in_flight); 922 complete_journal_op(comp); 923 } 924 925 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 926 unsigned n_sections, struct journal_completion *comp) 927 { 928 if (ic->journal_xor) 929 return xor_journal(ic, encrypt, section, n_sections, comp); 930 else 931 return crypt_journal(ic, encrypt, section, n_sections, comp); 932 } 933 934 static void complete_journal_io(unsigned long error, void *context) 935 { 936 struct journal_completion *comp = context; 937 if (unlikely(error != 0)) 938 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 939 complete_journal_op(comp); 940 } 941 942 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags, 943 unsigned sector, unsigned n_sectors, struct journal_completion *comp) 944 { 945 struct dm_io_request io_req; 946 struct dm_io_region io_loc; 947 unsigned pl_index, pl_offset; 948 int r; 949 950 if (unlikely(dm_integrity_failed(ic))) { 951 if (comp) 952 complete_journal_io(-1UL, comp); 953 return; 954 } 955 956 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 957 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 958 959 io_req.bi_op = op; 960 io_req.bi_op_flags = op_flags; 961 io_req.mem.type = DM_IO_PAGE_LIST; 962 if (ic->journal_io) 963 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 964 else 965 io_req.mem.ptr.pl = &ic->journal[pl_index]; 966 io_req.mem.offset = pl_offset; 967 if (likely(comp != NULL)) { 968 io_req.notify.fn = complete_journal_io; 969 io_req.notify.context = comp; 970 } else { 971 io_req.notify.fn = NULL; 972 } 973 io_req.client = ic->io; 974 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 975 io_loc.sector = ic->start + SB_SECTORS + sector; 976 io_loc.count = n_sectors; 977 978 r = dm_io(&io_req, 1, &io_loc, NULL); 979 if (unlikely(r)) { 980 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r); 981 if (comp) { 982 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 983 complete_journal_io(-1UL, comp); 984 } 985 } 986 } 987 988 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section, 989 unsigned n_sections, struct journal_completion *comp) 990 { 991 unsigned sector, n_sectors; 992 993 sector = section * ic->journal_section_sectors; 994 n_sectors = n_sections * ic->journal_section_sectors; 995 996 rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp); 997 } 998 999 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections) 1000 { 1001 struct journal_completion io_comp; 1002 struct journal_completion crypt_comp_1; 1003 struct journal_completion crypt_comp_2; 1004 unsigned i; 1005 1006 io_comp.ic = ic; 1007 init_completion(&io_comp.comp); 1008 1009 if (commit_start + commit_sections <= ic->journal_sections) { 1010 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 1011 if (ic->journal_io) { 1012 crypt_comp_1.ic = ic; 1013 init_completion(&crypt_comp_1.comp); 1014 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1015 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 1016 wait_for_completion_io(&crypt_comp_1.comp); 1017 } else { 1018 for (i = 0; i < commit_sections; i++) 1019 rw_section_mac(ic, commit_start + i, true); 1020 } 1021 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start, 1022 commit_sections, &io_comp); 1023 } else { 1024 unsigned to_end; 1025 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 1026 to_end = ic->journal_sections - commit_start; 1027 if (ic->journal_io) { 1028 crypt_comp_1.ic = ic; 1029 init_completion(&crypt_comp_1.comp); 1030 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1031 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 1032 if (try_wait_for_completion(&crypt_comp_1.comp)) { 1033 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1034 reinit_completion(&crypt_comp_1.comp); 1035 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1036 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 1037 wait_for_completion_io(&crypt_comp_1.comp); 1038 } else { 1039 crypt_comp_2.ic = ic; 1040 init_completion(&crypt_comp_2.comp); 1041 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 1042 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 1043 wait_for_completion_io(&crypt_comp_1.comp); 1044 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1045 wait_for_completion_io(&crypt_comp_2.comp); 1046 } 1047 } else { 1048 for (i = 0; i < to_end; i++) 1049 rw_section_mac(ic, commit_start + i, true); 1050 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); 1051 for (i = 0; i < commit_sections - to_end; i++) 1052 rw_section_mac(ic, i, true); 1053 } 1054 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp); 1055 } 1056 1057 wait_for_completion_io(&io_comp.comp); 1058 } 1059 1060 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset, 1061 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data) 1062 { 1063 struct dm_io_request io_req; 1064 struct dm_io_region io_loc; 1065 int r; 1066 unsigned sector, pl_index, pl_offset; 1067 1068 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1)); 1069 1070 if (unlikely(dm_integrity_failed(ic))) { 1071 fn(-1UL, data); 1072 return; 1073 } 1074 1075 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 1076 1077 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1078 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1079 1080 io_req.bi_op = REQ_OP_WRITE; 1081 io_req.bi_op_flags = 0; 1082 io_req.mem.type = DM_IO_PAGE_LIST; 1083 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1084 io_req.mem.offset = pl_offset; 1085 io_req.notify.fn = fn; 1086 io_req.notify.context = data; 1087 io_req.client = ic->io; 1088 io_loc.bdev = ic->dev->bdev; 1089 io_loc.sector = target; 1090 io_loc.count = n_sectors; 1091 1092 r = dm_io(&io_req, 1, &io_loc, NULL); 1093 if (unlikely(r)) { 1094 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1095 fn(-1UL, data); 1096 } 1097 } 1098 1099 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2) 1100 { 1101 return range1->logical_sector < range2->logical_sector + range2->n_sectors && 1102 range1->logical_sector + range1->n_sectors > range2->logical_sector; 1103 } 1104 1105 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting) 1106 { 1107 struct rb_node **n = &ic->in_progress.rb_node; 1108 struct rb_node *parent; 1109 1110 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1)); 1111 1112 if (likely(check_waiting)) { 1113 struct dm_integrity_range *range; 1114 list_for_each_entry(range, &ic->wait_list, wait_entry) { 1115 if (unlikely(ranges_overlap(range, new_range))) 1116 return false; 1117 } 1118 } 1119 1120 parent = NULL; 1121 1122 while (*n) { 1123 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 1124 1125 parent = *n; 1126 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) { 1127 n = &range->node.rb_left; 1128 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) { 1129 n = &range->node.rb_right; 1130 } else { 1131 return false; 1132 } 1133 } 1134 1135 rb_link_node(&new_range->node, parent, n); 1136 rb_insert_color(&new_range->node, &ic->in_progress); 1137 1138 return true; 1139 } 1140 1141 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1142 { 1143 rb_erase(&range->node, &ic->in_progress); 1144 while (unlikely(!list_empty(&ic->wait_list))) { 1145 struct dm_integrity_range *last_range = 1146 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry); 1147 struct task_struct *last_range_task; 1148 last_range_task = last_range->task; 1149 list_del(&last_range->wait_entry); 1150 if (!add_new_range(ic, last_range, false)) { 1151 last_range->task = last_range_task; 1152 list_add(&last_range->wait_entry, &ic->wait_list); 1153 break; 1154 } 1155 last_range->waiting = false; 1156 wake_up_process(last_range_task); 1157 } 1158 } 1159 1160 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1161 { 1162 unsigned long flags; 1163 1164 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1165 remove_range_unlocked(ic, range); 1166 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1167 } 1168 1169 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1170 { 1171 new_range->waiting = true; 1172 list_add_tail(&new_range->wait_entry, &ic->wait_list); 1173 new_range->task = current; 1174 do { 1175 __set_current_state(TASK_UNINTERRUPTIBLE); 1176 spin_unlock_irq(&ic->endio_wait.lock); 1177 io_schedule(); 1178 spin_lock_irq(&ic->endio_wait.lock); 1179 } while (unlikely(new_range->waiting)); 1180 } 1181 1182 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1183 { 1184 if (unlikely(!add_new_range(ic, new_range, true))) 1185 wait_and_add_new_range(ic, new_range); 1186 } 1187 1188 static void init_journal_node(struct journal_node *node) 1189 { 1190 RB_CLEAR_NODE(&node->node); 1191 node->sector = (sector_t)-1; 1192 } 1193 1194 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 1195 { 1196 struct rb_node **link; 1197 struct rb_node *parent; 1198 1199 node->sector = sector; 1200 BUG_ON(!RB_EMPTY_NODE(&node->node)); 1201 1202 link = &ic->journal_tree_root.rb_node; 1203 parent = NULL; 1204 1205 while (*link) { 1206 struct journal_node *j; 1207 parent = *link; 1208 j = container_of(parent, struct journal_node, node); 1209 if (sector < j->sector) 1210 link = &j->node.rb_left; 1211 else 1212 link = &j->node.rb_right; 1213 } 1214 1215 rb_link_node(&node->node, parent, link); 1216 rb_insert_color(&node->node, &ic->journal_tree_root); 1217 } 1218 1219 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 1220 { 1221 BUG_ON(RB_EMPTY_NODE(&node->node)); 1222 rb_erase(&node->node, &ic->journal_tree_root); 1223 init_journal_node(node); 1224 } 1225 1226 #define NOT_FOUND (-1U) 1227 1228 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 1229 { 1230 struct rb_node *n = ic->journal_tree_root.rb_node; 1231 unsigned found = NOT_FOUND; 1232 *next_sector = (sector_t)-1; 1233 while (n) { 1234 struct journal_node *j = container_of(n, struct journal_node, node); 1235 if (sector == j->sector) { 1236 found = j - ic->journal_tree; 1237 } 1238 if (sector < j->sector) { 1239 *next_sector = j->sector; 1240 n = j->node.rb_left; 1241 } else { 1242 n = j->node.rb_right; 1243 } 1244 } 1245 1246 return found; 1247 } 1248 1249 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector) 1250 { 1251 struct journal_node *node, *next_node; 1252 struct rb_node *next; 1253 1254 if (unlikely(pos >= ic->journal_entries)) 1255 return false; 1256 node = &ic->journal_tree[pos]; 1257 if (unlikely(RB_EMPTY_NODE(&node->node))) 1258 return false; 1259 if (unlikely(node->sector != sector)) 1260 return false; 1261 1262 next = rb_next(&node->node); 1263 if (unlikely(!next)) 1264 return true; 1265 1266 next_node = container_of(next, struct journal_node, node); 1267 return next_node->sector != sector; 1268 } 1269 1270 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 1271 { 1272 struct rb_node *next; 1273 struct journal_node *next_node; 1274 unsigned next_section; 1275 1276 BUG_ON(RB_EMPTY_NODE(&node->node)); 1277 1278 next = rb_next(&node->node); 1279 if (unlikely(!next)) 1280 return false; 1281 1282 next_node = container_of(next, struct journal_node, node); 1283 1284 if (next_node->sector != node->sector) 1285 return false; 1286 1287 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries; 1288 if (next_section >= ic->committed_section && 1289 next_section < ic->committed_section + ic->n_committed_sections) 1290 return true; 1291 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1292 return true; 1293 1294 return false; 1295 } 1296 1297 #define TAG_READ 0 1298 #define TAG_WRITE 1 1299 #define TAG_CMP 2 1300 1301 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1302 unsigned *metadata_offset, unsigned total_size, int op) 1303 { 1304 #define MAY_BE_FILLER 1 1305 #define MAY_BE_HASH 2 1306 unsigned hash_offset = 0; 1307 unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1308 1309 do { 1310 unsigned char *data, *dp; 1311 struct dm_buffer *b; 1312 unsigned to_copy; 1313 int r; 1314 1315 r = dm_integrity_failed(ic); 1316 if (unlikely(r)) 1317 return r; 1318 1319 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1320 if (IS_ERR(data)) 1321 return PTR_ERR(data); 1322 1323 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1324 dp = data + *metadata_offset; 1325 if (op == TAG_READ) { 1326 memcpy(tag, dp, to_copy); 1327 } else if (op == TAG_WRITE) { 1328 memcpy(dp, tag, to_copy); 1329 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); 1330 } else { 1331 /* e.g.: op == TAG_CMP */ 1332 1333 if (likely(is_power_of_2(ic->tag_size))) { 1334 if (unlikely(memcmp(dp, tag, to_copy))) 1335 if (unlikely(!ic->discard) || 1336 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) { 1337 goto thorough_test; 1338 } 1339 } else { 1340 unsigned i, ts; 1341 thorough_test: 1342 ts = total_size; 1343 1344 for (i = 0; i < to_copy; i++, ts--) { 1345 if (unlikely(dp[i] != tag[i])) 1346 may_be &= ~MAY_BE_HASH; 1347 if (likely(dp[i] != DISCARD_FILLER)) 1348 may_be &= ~MAY_BE_FILLER; 1349 hash_offset++; 1350 if (unlikely(hash_offset == ic->tag_size)) { 1351 if (unlikely(!may_be)) { 1352 dm_bufio_release(b); 1353 return ts; 1354 } 1355 hash_offset = 0; 1356 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1357 } 1358 } 1359 } 1360 } 1361 dm_bufio_release(b); 1362 1363 tag += to_copy; 1364 *metadata_offset += to_copy; 1365 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1366 (*metadata_block)++; 1367 *metadata_offset = 0; 1368 } 1369 1370 if (unlikely(!is_power_of_2(ic->tag_size))) { 1371 hash_offset = (hash_offset + to_copy) % ic->tag_size; 1372 } 1373 1374 total_size -= to_copy; 1375 } while (unlikely(total_size)); 1376 1377 return 0; 1378 #undef MAY_BE_FILLER 1379 #undef MAY_BE_HASH 1380 } 1381 1382 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic) 1383 { 1384 int r; 1385 r = dm_bufio_write_dirty_buffers(ic->bufio); 1386 if (unlikely(r)) 1387 dm_integrity_io_error(ic, "writing tags", r); 1388 } 1389 1390 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1391 { 1392 DECLARE_WAITQUEUE(wait, current); 1393 __add_wait_queue(&ic->endio_wait, &wait); 1394 __set_current_state(TASK_UNINTERRUPTIBLE); 1395 spin_unlock_irq(&ic->endio_wait.lock); 1396 io_schedule(); 1397 spin_lock_irq(&ic->endio_wait.lock); 1398 __remove_wait_queue(&ic->endio_wait, &wait); 1399 } 1400 1401 static void autocommit_fn(struct timer_list *t) 1402 { 1403 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer); 1404 1405 if (likely(!dm_integrity_failed(ic))) 1406 queue_work(ic->commit_wq, &ic->commit_work); 1407 } 1408 1409 static void schedule_autocommit(struct dm_integrity_c *ic) 1410 { 1411 if (!timer_pending(&ic->autocommit_timer)) 1412 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1413 } 1414 1415 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1416 { 1417 struct bio *bio; 1418 unsigned long flags; 1419 1420 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1421 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1422 bio_list_add(&ic->flush_bio_list, bio); 1423 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1424 1425 queue_work(ic->commit_wq, &ic->commit_work); 1426 } 1427 1428 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1429 { 1430 int r = dm_integrity_failed(ic); 1431 if (unlikely(r) && !bio->bi_status) 1432 bio->bi_status = errno_to_blk_status(r); 1433 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) { 1434 unsigned long flags; 1435 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1436 bio_list_add(&ic->synchronous_bios, bio); 1437 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 1438 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1439 return; 1440 } 1441 bio_endio(bio); 1442 } 1443 1444 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1445 { 1446 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1447 1448 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1449 submit_flush_bio(ic, dio); 1450 else 1451 do_endio(ic, bio); 1452 } 1453 1454 static void dec_in_flight(struct dm_integrity_io *dio) 1455 { 1456 if (atomic_dec_and_test(&dio->in_flight)) { 1457 struct dm_integrity_c *ic = dio->ic; 1458 struct bio *bio; 1459 1460 remove_range(ic, &dio->range); 1461 1462 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD)) 1463 schedule_autocommit(ic); 1464 1465 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1466 1467 if (unlikely(dio->bi_status) && !bio->bi_status) 1468 bio->bi_status = dio->bi_status; 1469 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1470 dio->range.logical_sector += dio->range.n_sectors; 1471 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1472 INIT_WORK(&dio->work, integrity_bio_wait); 1473 queue_work(ic->offload_wq, &dio->work); 1474 return; 1475 } 1476 do_endio_flush(ic, dio); 1477 } 1478 } 1479 1480 static void integrity_end_io(struct bio *bio) 1481 { 1482 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1483 1484 dm_bio_restore(&dio->bio_details, bio); 1485 if (bio->bi_integrity) 1486 bio->bi_opf |= REQ_INTEGRITY; 1487 1488 if (dio->completion) 1489 complete(dio->completion); 1490 1491 dec_in_flight(dio); 1492 } 1493 1494 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1495 const char *data, char *result) 1496 { 1497 __u64 sector_le = cpu_to_le64(sector); 1498 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1499 int r; 1500 unsigned digest_size; 1501 1502 req->tfm = ic->internal_hash; 1503 1504 r = crypto_shash_init(req); 1505 if (unlikely(r < 0)) { 1506 dm_integrity_io_error(ic, "crypto_shash_init", r); 1507 goto failed; 1508 } 1509 1510 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof sector_le); 1511 if (unlikely(r < 0)) { 1512 dm_integrity_io_error(ic, "crypto_shash_update", r); 1513 goto failed; 1514 } 1515 1516 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1517 if (unlikely(r < 0)) { 1518 dm_integrity_io_error(ic, "crypto_shash_update", r); 1519 goto failed; 1520 } 1521 1522 r = crypto_shash_final(req, result); 1523 if (unlikely(r < 0)) { 1524 dm_integrity_io_error(ic, "crypto_shash_final", r); 1525 goto failed; 1526 } 1527 1528 digest_size = crypto_shash_digestsize(ic->internal_hash); 1529 if (unlikely(digest_size < ic->tag_size)) 1530 memset(result + digest_size, 0, ic->tag_size - digest_size); 1531 1532 return; 1533 1534 failed: 1535 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1536 get_random_bytes(result, ic->tag_size); 1537 } 1538 1539 static void integrity_metadata(struct work_struct *w) 1540 { 1541 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1542 struct dm_integrity_c *ic = dio->ic; 1543 1544 int r; 1545 1546 if (ic->internal_hash) { 1547 struct bvec_iter iter; 1548 struct bio_vec bv; 1549 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1550 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1551 char *checksums; 1552 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1553 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1554 sector_t sector; 1555 unsigned sectors_to_process; 1556 sector_t save_metadata_block; 1557 unsigned save_metadata_offset; 1558 1559 if (unlikely(ic->mode == 'R')) 1560 goto skip_io; 1561 1562 if (likely(dio->op != REQ_OP_DISCARD)) 1563 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1564 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1565 else 1566 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1567 if (!checksums) { 1568 checksums = checksums_onstack; 1569 if (WARN_ON(extra_space && 1570 digest_size > sizeof(checksums_onstack))) { 1571 r = -EINVAL; 1572 goto error; 1573 } 1574 } 1575 1576 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1577 sector_t bi_sector = dio->bio_details.bi_iter.bi_sector; 1578 unsigned bi_size = dio->bio_details.bi_iter.bi_size; 1579 unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE; 1580 unsigned max_blocks = max_size / ic->tag_size; 1581 memset(checksums, DISCARD_FILLER, max_size); 1582 1583 while (bi_size) { 1584 unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1585 this_step_blocks = min(this_step_blocks, max_blocks); 1586 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1587 this_step_blocks * ic->tag_size, TAG_WRITE); 1588 if (unlikely(r)) { 1589 if (likely(checksums != checksums_onstack)) 1590 kfree(checksums); 1591 goto error; 1592 } 1593 1594 /*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) { 1595 printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size); 1596 printk("BUGG: this_step_blocks: %u\n", this_step_blocks); 1597 BUG(); 1598 }*/ 1599 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1600 bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block; 1601 } 1602 1603 if (likely(checksums != checksums_onstack)) 1604 kfree(checksums); 1605 goto skip_io; 1606 } 1607 1608 save_metadata_block = dio->metadata_block; 1609 save_metadata_offset = dio->metadata_offset; 1610 sector = dio->range.logical_sector; 1611 sectors_to_process = dio->range.n_sectors; 1612 1613 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) { 1614 unsigned pos; 1615 char *mem, *checksums_ptr; 1616 1617 again: 1618 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset; 1619 pos = 0; 1620 checksums_ptr = checksums; 1621 do { 1622 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1623 checksums_ptr += ic->tag_size; 1624 sectors_to_process -= ic->sectors_per_block; 1625 pos += ic->sectors_per_block << SECTOR_SHIFT; 1626 sector += ic->sectors_per_block; 1627 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack); 1628 kunmap_atomic(mem); 1629 1630 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1631 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE); 1632 if (unlikely(r)) { 1633 if (r > 0) { 1634 char b[BDEVNAME_SIZE]; 1635 DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", bio_devname(bio, b), 1636 (sector - ((r + ic->tag_size - 1) / ic->tag_size))); 1637 r = -EILSEQ; 1638 atomic64_inc(&ic->number_of_mismatches); 1639 } 1640 if (likely(checksums != checksums_onstack)) 1641 kfree(checksums); 1642 goto error; 1643 } 1644 1645 if (!sectors_to_process) 1646 break; 1647 1648 if (unlikely(pos < bv.bv_len)) { 1649 bv.bv_offset += pos; 1650 bv.bv_len -= pos; 1651 goto again; 1652 } 1653 } 1654 1655 if (likely(checksums != checksums_onstack)) 1656 kfree(checksums); 1657 } else { 1658 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity; 1659 1660 if (bip) { 1661 struct bio_vec biv; 1662 struct bvec_iter iter; 1663 unsigned data_to_process = dio->range.n_sectors; 1664 sector_to_block(ic, data_to_process); 1665 data_to_process *= ic->tag_size; 1666 1667 bip_for_each_vec(biv, bip, iter) { 1668 unsigned char *tag; 1669 unsigned this_len; 1670 1671 BUG_ON(PageHighMem(biv.bv_page)); 1672 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1673 this_len = min(biv.bv_len, data_to_process); 1674 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1675 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE); 1676 if (unlikely(r)) 1677 goto error; 1678 data_to_process -= this_len; 1679 if (!data_to_process) 1680 break; 1681 } 1682 } 1683 } 1684 skip_io: 1685 dec_in_flight(dio); 1686 return; 1687 error: 1688 dio->bi_status = errno_to_blk_status(r); 1689 dec_in_flight(dio); 1690 } 1691 1692 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1693 { 1694 struct dm_integrity_c *ic = ti->private; 1695 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1696 struct bio_integrity_payload *bip; 1697 1698 sector_t area, offset; 1699 1700 dio->ic = ic; 1701 dio->bi_status = 0; 1702 dio->op = bio_op(bio); 1703 1704 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1705 if (ti->max_io_len) { 1706 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector); 1707 unsigned log2_max_io_len = __fls(ti->max_io_len); 1708 sector_t start_boundary = sec >> log2_max_io_len; 1709 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len; 1710 if (start_boundary < end_boundary) { 1711 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1)); 1712 dm_accept_partial_bio(bio, len); 1713 } 1714 } 1715 } 1716 1717 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1718 submit_flush_bio(ic, dio); 1719 return DM_MAPIO_SUBMITTED; 1720 } 1721 1722 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1723 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA; 1724 if (unlikely(dio->fua)) { 1725 /* 1726 * Don't pass down the FUA flag because we have to flush 1727 * disk cache anyway. 1728 */ 1729 bio->bi_opf &= ~REQ_FUA; 1730 } 1731 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1732 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1733 dio->range.logical_sector, bio_sectors(bio), 1734 ic->provided_data_sectors); 1735 return DM_MAPIO_KILL; 1736 } 1737 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) { 1738 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1739 ic->sectors_per_block, 1740 dio->range.logical_sector, bio_sectors(bio)); 1741 return DM_MAPIO_KILL; 1742 } 1743 1744 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) { 1745 struct bvec_iter iter; 1746 struct bio_vec bv; 1747 bio_for_each_segment(bv, bio, iter) { 1748 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1749 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1750 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1751 return DM_MAPIO_KILL; 1752 } 1753 } 1754 } 1755 1756 bip = bio_integrity(bio); 1757 if (!ic->internal_hash) { 1758 if (bip) { 1759 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1760 if (ic->log2_tag_size >= 0) 1761 wanted_tag_size <<= ic->log2_tag_size; 1762 else 1763 wanted_tag_size *= ic->tag_size; 1764 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 1765 DMERR("Invalid integrity data size %u, expected %u", 1766 bip->bip_iter.bi_size, wanted_tag_size); 1767 return DM_MAPIO_KILL; 1768 } 1769 } 1770 } else { 1771 if (unlikely(bip != NULL)) { 1772 DMERR("Unexpected integrity data when using internal hash"); 1773 return DM_MAPIO_KILL; 1774 } 1775 } 1776 1777 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ)) 1778 return DM_MAPIO_KILL; 1779 1780 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1781 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1782 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 1783 1784 dm_integrity_map_continue(dio, true); 1785 return DM_MAPIO_SUBMITTED; 1786 } 1787 1788 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 1789 unsigned journal_section, unsigned journal_entry) 1790 { 1791 struct dm_integrity_c *ic = dio->ic; 1792 sector_t logical_sector; 1793 unsigned n_sectors; 1794 1795 logical_sector = dio->range.logical_sector; 1796 n_sectors = dio->range.n_sectors; 1797 do { 1798 struct bio_vec bv = bio_iovec(bio); 1799 char *mem; 1800 1801 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 1802 bv.bv_len = n_sectors << SECTOR_SHIFT; 1803 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 1804 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 1805 retry_kmap: 1806 mem = kmap_atomic(bv.bv_page); 1807 if (likely(dio->op == REQ_OP_WRITE)) 1808 flush_dcache_page(bv.bv_page); 1809 1810 do { 1811 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 1812 1813 if (unlikely(dio->op == REQ_OP_READ)) { 1814 struct journal_sector *js; 1815 char *mem_ptr; 1816 unsigned s; 1817 1818 if (unlikely(journal_entry_is_inprogress(je))) { 1819 flush_dcache_page(bv.bv_page); 1820 kunmap_atomic(mem); 1821 1822 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 1823 goto retry_kmap; 1824 } 1825 smp_rmb(); 1826 BUG_ON(journal_entry_get_sector(je) != logical_sector); 1827 js = access_journal_data(ic, journal_section, journal_entry); 1828 mem_ptr = mem + bv.bv_offset; 1829 s = 0; 1830 do { 1831 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 1832 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 1833 js++; 1834 mem_ptr += 1 << SECTOR_SHIFT; 1835 } while (++s < ic->sectors_per_block); 1836 #ifdef INTERNAL_VERIFY 1837 if (ic->internal_hash) { 1838 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1839 1840 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 1841 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 1842 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx", 1843 logical_sector); 1844 } 1845 } 1846 #endif 1847 } 1848 1849 if (!ic->internal_hash) { 1850 struct bio_integrity_payload *bip = bio_integrity(bio); 1851 unsigned tag_todo = ic->tag_size; 1852 char *tag_ptr = journal_entry_tag(ic, je); 1853 1854 if (bip) do { 1855 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 1856 unsigned tag_now = min(biv.bv_len, tag_todo); 1857 char *tag_addr; 1858 BUG_ON(PageHighMem(biv.bv_page)); 1859 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset; 1860 if (likely(dio->op == REQ_OP_WRITE)) 1861 memcpy(tag_ptr, tag_addr, tag_now); 1862 else 1863 memcpy(tag_addr, tag_ptr, tag_now); 1864 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 1865 tag_ptr += tag_now; 1866 tag_todo -= tag_now; 1867 } while (unlikely(tag_todo)); else { 1868 if (likely(dio->op == REQ_OP_WRITE)) 1869 memset(tag_ptr, 0, tag_todo); 1870 } 1871 } 1872 1873 if (likely(dio->op == REQ_OP_WRITE)) { 1874 struct journal_sector *js; 1875 unsigned s; 1876 1877 js = access_journal_data(ic, journal_section, journal_entry); 1878 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 1879 1880 s = 0; 1881 do { 1882 je->last_bytes[s] = js[s].commit_id; 1883 } while (++s < ic->sectors_per_block); 1884 1885 if (ic->internal_hash) { 1886 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1887 if (unlikely(digest_size > ic->tag_size)) { 1888 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 1889 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 1890 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 1891 } else 1892 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 1893 } 1894 1895 journal_entry_set_sector(je, logical_sector); 1896 } 1897 logical_sector += ic->sectors_per_block; 1898 1899 journal_entry++; 1900 if (unlikely(journal_entry == ic->journal_section_entries)) { 1901 journal_entry = 0; 1902 journal_section++; 1903 wraparound_section(ic, &journal_section); 1904 } 1905 1906 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 1907 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 1908 1909 if (unlikely(dio->op == REQ_OP_READ)) 1910 flush_dcache_page(bv.bv_page); 1911 kunmap_atomic(mem); 1912 } while (n_sectors); 1913 1914 if (likely(dio->op == REQ_OP_WRITE)) { 1915 smp_mb(); 1916 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 1917 wake_up(&ic->copy_to_journal_wait); 1918 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) { 1919 queue_work(ic->commit_wq, &ic->commit_work); 1920 } else { 1921 schedule_autocommit(ic); 1922 } 1923 } else { 1924 remove_range(ic, &dio->range); 1925 } 1926 1927 if (unlikely(bio->bi_iter.bi_size)) { 1928 sector_t area, offset; 1929 1930 dio->range.logical_sector = logical_sector; 1931 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1932 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1933 return true; 1934 } 1935 1936 return false; 1937 } 1938 1939 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 1940 { 1941 struct dm_integrity_c *ic = dio->ic; 1942 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1943 unsigned journal_section, journal_entry; 1944 unsigned journal_read_pos; 1945 struct completion read_comp; 1946 bool discard_retried = false; 1947 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ; 1948 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D') 1949 need_sync_io = true; 1950 1951 if (need_sync_io && from_map) { 1952 INIT_WORK(&dio->work, integrity_bio_wait); 1953 queue_work(ic->offload_wq, &dio->work); 1954 return; 1955 } 1956 1957 lock_retry: 1958 spin_lock_irq(&ic->endio_wait.lock); 1959 retry: 1960 if (unlikely(dm_integrity_failed(ic))) { 1961 spin_unlock_irq(&ic->endio_wait.lock); 1962 do_endio(ic, bio); 1963 return; 1964 } 1965 dio->range.n_sectors = bio_sectors(bio); 1966 journal_read_pos = NOT_FOUND; 1967 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) { 1968 if (dio->op == REQ_OP_WRITE) { 1969 unsigned next_entry, i, pos; 1970 unsigned ws, we, range_sectors; 1971 1972 dio->range.n_sectors = min(dio->range.n_sectors, 1973 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block); 1974 if (unlikely(!dio->range.n_sectors)) { 1975 if (from_map) 1976 goto offload_to_thread; 1977 sleep_on_endio_wait(ic); 1978 goto retry; 1979 } 1980 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 1981 ic->free_sectors -= range_sectors; 1982 journal_section = ic->free_section; 1983 journal_entry = ic->free_section_entry; 1984 1985 next_entry = ic->free_section_entry + range_sectors; 1986 ic->free_section_entry = next_entry % ic->journal_section_entries; 1987 ic->free_section += next_entry / ic->journal_section_entries; 1988 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 1989 wraparound_section(ic, &ic->free_section); 1990 1991 pos = journal_section * ic->journal_section_entries + journal_entry; 1992 ws = journal_section; 1993 we = journal_entry; 1994 i = 0; 1995 do { 1996 struct journal_entry *je; 1997 1998 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 1999 pos++; 2000 if (unlikely(pos >= ic->journal_entries)) 2001 pos = 0; 2002 2003 je = access_journal_entry(ic, ws, we); 2004 BUG_ON(!journal_entry_is_unused(je)); 2005 journal_entry_set_inprogress(je); 2006 we++; 2007 if (unlikely(we == ic->journal_section_entries)) { 2008 we = 0; 2009 ws++; 2010 wraparound_section(ic, &ws); 2011 } 2012 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 2013 2014 spin_unlock_irq(&ic->endio_wait.lock); 2015 goto journal_read_write; 2016 } else { 2017 sector_t next_sector; 2018 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2019 if (likely(journal_read_pos == NOT_FOUND)) { 2020 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 2021 dio->range.n_sectors = next_sector - dio->range.logical_sector; 2022 } else { 2023 unsigned i; 2024 unsigned jp = journal_read_pos + 1; 2025 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 2026 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 2027 break; 2028 } 2029 dio->range.n_sectors = i; 2030 } 2031 } 2032 } 2033 if (unlikely(!add_new_range(ic, &dio->range, true))) { 2034 /* 2035 * We must not sleep in the request routine because it could 2036 * stall bios on current->bio_list. 2037 * So, we offload the bio to a workqueue if we have to sleep. 2038 */ 2039 if (from_map) { 2040 offload_to_thread: 2041 spin_unlock_irq(&ic->endio_wait.lock); 2042 INIT_WORK(&dio->work, integrity_bio_wait); 2043 queue_work(ic->wait_wq, &dio->work); 2044 return; 2045 } 2046 if (journal_read_pos != NOT_FOUND) 2047 dio->range.n_sectors = ic->sectors_per_block; 2048 wait_and_add_new_range(ic, &dio->range); 2049 /* 2050 * wait_and_add_new_range drops the spinlock, so the journal 2051 * may have been changed arbitrarily. We need to recheck. 2052 * To simplify the code, we restrict I/O size to just one block. 2053 */ 2054 if (journal_read_pos != NOT_FOUND) { 2055 sector_t next_sector; 2056 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2057 if (unlikely(new_pos != journal_read_pos)) { 2058 remove_range_unlocked(ic, &dio->range); 2059 goto retry; 2060 } 2061 } 2062 } 2063 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) { 2064 sector_t next_sector; 2065 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2066 if (unlikely(new_pos != NOT_FOUND) || 2067 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) { 2068 remove_range_unlocked(ic, &dio->range); 2069 spin_unlock_irq(&ic->endio_wait.lock); 2070 queue_work(ic->commit_wq, &ic->commit_work); 2071 flush_workqueue(ic->commit_wq); 2072 queue_work(ic->writer_wq, &ic->writer_work); 2073 flush_workqueue(ic->writer_wq); 2074 discard_retried = true; 2075 goto lock_retry; 2076 } 2077 } 2078 spin_unlock_irq(&ic->endio_wait.lock); 2079 2080 if (unlikely(journal_read_pos != NOT_FOUND)) { 2081 journal_section = journal_read_pos / ic->journal_section_entries; 2082 journal_entry = journal_read_pos % ic->journal_section_entries; 2083 goto journal_read_write; 2084 } 2085 2086 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) { 2087 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2088 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2089 struct bitmap_block_status *bbs; 2090 2091 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector); 2092 spin_lock(&bbs->bio_queue_lock); 2093 bio_list_add(&bbs->bio_queue, bio); 2094 spin_unlock(&bbs->bio_queue_lock); 2095 queue_work(ic->writer_wq, &bbs->work); 2096 return; 2097 } 2098 } 2099 2100 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 2101 2102 if (need_sync_io) { 2103 init_completion(&read_comp); 2104 dio->completion = &read_comp; 2105 } else 2106 dio->completion = NULL; 2107 2108 dm_bio_record(&dio->bio_details, bio); 2109 bio_set_dev(bio, ic->dev->bdev); 2110 bio->bi_integrity = NULL; 2111 bio->bi_opf &= ~REQ_INTEGRITY; 2112 bio->bi_end_io = integrity_end_io; 2113 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 2114 2115 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) { 2116 integrity_metadata(&dio->work); 2117 dm_integrity_flush_buffers(ic); 2118 2119 dio->in_flight = (atomic_t)ATOMIC_INIT(1); 2120 dio->completion = NULL; 2121 2122 generic_make_request(bio); 2123 2124 return; 2125 } 2126 2127 generic_make_request(bio); 2128 2129 if (need_sync_io) { 2130 wait_for_completion_io(&read_comp); 2131 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 2132 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector)) 2133 goto skip_check; 2134 if (ic->mode == 'B') { 2135 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector, 2136 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2137 goto skip_check; 2138 } 2139 2140 if (likely(!bio->bi_status)) 2141 integrity_metadata(&dio->work); 2142 else 2143 skip_check: 2144 dec_in_flight(dio); 2145 2146 } else { 2147 INIT_WORK(&dio->work, integrity_metadata); 2148 queue_work(ic->metadata_wq, &dio->work); 2149 } 2150 2151 return; 2152 2153 journal_read_write: 2154 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 2155 goto lock_retry; 2156 2157 do_endio_flush(ic, dio); 2158 } 2159 2160 2161 static void integrity_bio_wait(struct work_struct *w) 2162 { 2163 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 2164 2165 dm_integrity_map_continue(dio, false); 2166 } 2167 2168 static void pad_uncommitted(struct dm_integrity_c *ic) 2169 { 2170 if (ic->free_section_entry) { 2171 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 2172 ic->free_section_entry = 0; 2173 ic->free_section++; 2174 wraparound_section(ic, &ic->free_section); 2175 ic->n_uncommitted_sections++; 2176 } 2177 if (WARN_ON(ic->journal_sections * ic->journal_section_entries != 2178 (ic->n_uncommitted_sections + ic->n_committed_sections) * 2179 ic->journal_section_entries + ic->free_sectors)) { 2180 DMCRIT("journal_sections %u, journal_section_entries %u, " 2181 "n_uncommitted_sections %u, n_committed_sections %u, " 2182 "journal_section_entries %u, free_sectors %u", 2183 ic->journal_sections, ic->journal_section_entries, 2184 ic->n_uncommitted_sections, ic->n_committed_sections, 2185 ic->journal_section_entries, ic->free_sectors); 2186 } 2187 } 2188 2189 static void integrity_commit(struct work_struct *w) 2190 { 2191 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 2192 unsigned commit_start, commit_sections; 2193 unsigned i, j, n; 2194 struct bio *flushes; 2195 2196 del_timer(&ic->autocommit_timer); 2197 2198 spin_lock_irq(&ic->endio_wait.lock); 2199 flushes = bio_list_get(&ic->flush_bio_list); 2200 if (unlikely(ic->mode != 'J')) { 2201 spin_unlock_irq(&ic->endio_wait.lock); 2202 dm_integrity_flush_buffers(ic); 2203 goto release_flush_bios; 2204 } 2205 2206 pad_uncommitted(ic); 2207 commit_start = ic->uncommitted_section; 2208 commit_sections = ic->n_uncommitted_sections; 2209 spin_unlock_irq(&ic->endio_wait.lock); 2210 2211 if (!commit_sections) 2212 goto release_flush_bios; 2213 2214 i = commit_start; 2215 for (n = 0; n < commit_sections; n++) { 2216 for (j = 0; j < ic->journal_section_entries; j++) { 2217 struct journal_entry *je; 2218 je = access_journal_entry(ic, i, j); 2219 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2220 } 2221 for (j = 0; j < ic->journal_section_sectors; j++) { 2222 struct journal_sector *js; 2223 js = access_journal(ic, i, j); 2224 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 2225 } 2226 i++; 2227 if (unlikely(i >= ic->journal_sections)) 2228 ic->commit_seq = next_commit_seq(ic->commit_seq); 2229 wraparound_section(ic, &i); 2230 } 2231 smp_rmb(); 2232 2233 write_journal(ic, commit_start, commit_sections); 2234 2235 spin_lock_irq(&ic->endio_wait.lock); 2236 ic->uncommitted_section += commit_sections; 2237 wraparound_section(ic, &ic->uncommitted_section); 2238 ic->n_uncommitted_sections -= commit_sections; 2239 ic->n_committed_sections += commit_sections; 2240 spin_unlock_irq(&ic->endio_wait.lock); 2241 2242 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2243 queue_work(ic->writer_wq, &ic->writer_work); 2244 2245 release_flush_bios: 2246 while (flushes) { 2247 struct bio *next = flushes->bi_next; 2248 flushes->bi_next = NULL; 2249 do_endio(ic, flushes); 2250 flushes = next; 2251 } 2252 } 2253 2254 static void complete_copy_from_journal(unsigned long error, void *context) 2255 { 2256 struct journal_io *io = context; 2257 struct journal_completion *comp = io->comp; 2258 struct dm_integrity_c *ic = comp->ic; 2259 remove_range(ic, &io->range); 2260 mempool_free(io, &ic->journal_io_mempool); 2261 if (unlikely(error != 0)) 2262 dm_integrity_io_error(ic, "copying from journal", -EIO); 2263 complete_journal_op(comp); 2264 } 2265 2266 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 2267 struct journal_entry *je) 2268 { 2269 unsigned s = 0; 2270 do { 2271 js->commit_id = je->last_bytes[s]; 2272 js++; 2273 } while (++s < ic->sectors_per_block); 2274 } 2275 2276 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start, 2277 unsigned write_sections, bool from_replay) 2278 { 2279 unsigned i, j, n; 2280 struct journal_completion comp; 2281 struct blk_plug plug; 2282 2283 blk_start_plug(&plug); 2284 2285 comp.ic = ic; 2286 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2287 init_completion(&comp.comp); 2288 2289 i = write_start; 2290 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 2291 #ifndef INTERNAL_VERIFY 2292 if (unlikely(from_replay)) 2293 #endif 2294 rw_section_mac(ic, i, false); 2295 for (j = 0; j < ic->journal_section_entries; j++) { 2296 struct journal_entry *je = access_journal_entry(ic, i, j); 2297 sector_t sec, area, offset; 2298 unsigned k, l, next_loop; 2299 sector_t metadata_block; 2300 unsigned metadata_offset; 2301 struct journal_io *io; 2302 2303 if (journal_entry_is_unused(je)) 2304 continue; 2305 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 2306 sec = journal_entry_get_sector(je); 2307 if (unlikely(from_replay)) { 2308 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) { 2309 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 2310 sec &= ~(sector_t)(ic->sectors_per_block - 1); 2311 } 2312 } 2313 if (unlikely(sec >= ic->provided_data_sectors)) 2314 continue; 2315 get_area_and_offset(ic, sec, &area, &offset); 2316 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 2317 for (k = j + 1; k < ic->journal_section_entries; k++) { 2318 struct journal_entry *je2 = access_journal_entry(ic, i, k); 2319 sector_t sec2, area2, offset2; 2320 if (journal_entry_is_unused(je2)) 2321 break; 2322 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 2323 sec2 = journal_entry_get_sector(je2); 2324 if (unlikely(sec2 >= ic->provided_data_sectors)) 2325 break; 2326 get_area_and_offset(ic, sec2, &area2, &offset2); 2327 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 2328 break; 2329 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 2330 } 2331 next_loop = k - 1; 2332 2333 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); 2334 io->comp = ∁ 2335 io->range.logical_sector = sec; 2336 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 2337 2338 spin_lock_irq(&ic->endio_wait.lock); 2339 add_new_range_and_wait(ic, &io->range); 2340 2341 if (likely(!from_replay)) { 2342 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 2343 2344 /* don't write if there is newer committed sector */ 2345 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 2346 struct journal_entry *je2 = access_journal_entry(ic, i, j); 2347 2348 journal_entry_set_unused(je2); 2349 remove_journal_node(ic, §ion_node[j]); 2350 j++; 2351 sec += ic->sectors_per_block; 2352 offset += ic->sectors_per_block; 2353 } 2354 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 2355 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 2356 2357 journal_entry_set_unused(je2); 2358 remove_journal_node(ic, §ion_node[k - 1]); 2359 k--; 2360 } 2361 if (j == k) { 2362 remove_range_unlocked(ic, &io->range); 2363 spin_unlock_irq(&ic->endio_wait.lock); 2364 mempool_free(io, &ic->journal_io_mempool); 2365 goto skip_io; 2366 } 2367 for (l = j; l < k; l++) { 2368 remove_journal_node(ic, §ion_node[l]); 2369 } 2370 } 2371 spin_unlock_irq(&ic->endio_wait.lock); 2372 2373 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2374 for (l = j; l < k; l++) { 2375 int r; 2376 struct journal_entry *je2 = access_journal_entry(ic, i, l); 2377 2378 if ( 2379 #ifndef INTERNAL_VERIFY 2380 unlikely(from_replay) && 2381 #endif 2382 ic->internal_hash) { 2383 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2384 2385 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 2386 (char *)access_journal_data(ic, i, l), test_tag); 2387 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) 2388 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 2389 } 2390 2391 journal_entry_set_unused(je2); 2392 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 2393 ic->tag_size, TAG_WRITE); 2394 if (unlikely(r)) { 2395 dm_integrity_io_error(ic, "reading tags", r); 2396 } 2397 } 2398 2399 atomic_inc(&comp.in_flight); 2400 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 2401 (k - j) << ic->sb->log2_sectors_per_block, 2402 get_data_sector(ic, area, offset), 2403 complete_copy_from_journal, io); 2404 skip_io: 2405 j = next_loop; 2406 } 2407 } 2408 2409 dm_bufio_write_dirty_buffers_async(ic->bufio); 2410 2411 blk_finish_plug(&plug); 2412 2413 complete_journal_op(&comp); 2414 wait_for_completion_io(&comp.comp); 2415 2416 dm_integrity_flush_buffers(ic); 2417 } 2418 2419 static void integrity_writer(struct work_struct *w) 2420 { 2421 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 2422 unsigned write_start, write_sections; 2423 2424 unsigned prev_free_sectors; 2425 2426 /* the following test is not needed, but it tests the replay code */ 2427 if (unlikely(dm_suspended(ic->ti)) && !ic->meta_dev) 2428 return; 2429 2430 spin_lock_irq(&ic->endio_wait.lock); 2431 write_start = ic->committed_section; 2432 write_sections = ic->n_committed_sections; 2433 spin_unlock_irq(&ic->endio_wait.lock); 2434 2435 if (!write_sections) 2436 return; 2437 2438 do_journal_write(ic, write_start, write_sections, false); 2439 2440 spin_lock_irq(&ic->endio_wait.lock); 2441 2442 ic->committed_section += write_sections; 2443 wraparound_section(ic, &ic->committed_section); 2444 ic->n_committed_sections -= write_sections; 2445 2446 prev_free_sectors = ic->free_sectors; 2447 ic->free_sectors += write_sections * ic->journal_section_entries; 2448 if (unlikely(!prev_free_sectors)) 2449 wake_up_locked(&ic->endio_wait); 2450 2451 spin_unlock_irq(&ic->endio_wait.lock); 2452 } 2453 2454 static void recalc_write_super(struct dm_integrity_c *ic) 2455 { 2456 int r; 2457 2458 dm_integrity_flush_buffers(ic); 2459 if (dm_integrity_failed(ic)) 2460 return; 2461 2462 r = sync_rw_sb(ic, REQ_OP_WRITE, 0); 2463 if (unlikely(r)) 2464 dm_integrity_io_error(ic, "writing superblock", r); 2465 } 2466 2467 static void integrity_recalc(struct work_struct *w) 2468 { 2469 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 2470 struct dm_integrity_range range; 2471 struct dm_io_request io_req; 2472 struct dm_io_region io_loc; 2473 sector_t area, offset; 2474 sector_t metadata_block; 2475 unsigned metadata_offset; 2476 sector_t logical_sector, n_sectors; 2477 __u8 *t; 2478 unsigned i; 2479 int r; 2480 unsigned super_counter = 0; 2481 2482 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector)); 2483 2484 spin_lock_irq(&ic->endio_wait.lock); 2485 2486 next_chunk: 2487 2488 if (unlikely(dm_suspended(ic->ti))) 2489 goto unlock_ret; 2490 2491 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 2492 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) { 2493 if (ic->mode == 'B') { 2494 DEBUG_print("queue_delayed_work: bitmap_flush_work\n"); 2495 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2496 } 2497 goto unlock_ret; 2498 } 2499 2500 get_area_and_offset(ic, range.logical_sector, &area, &offset); 2501 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector); 2502 if (!ic->meta_dev) 2503 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset); 2504 2505 add_new_range_and_wait(ic, &range); 2506 spin_unlock_irq(&ic->endio_wait.lock); 2507 logical_sector = range.logical_sector; 2508 n_sectors = range.n_sectors; 2509 2510 if (ic->mode == 'B') { 2511 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) { 2512 goto advance_and_next; 2513 } 2514 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, 2515 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2516 logical_sector += ic->sectors_per_block; 2517 n_sectors -= ic->sectors_per_block; 2518 cond_resched(); 2519 } 2520 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block, 2521 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2522 n_sectors -= ic->sectors_per_block; 2523 cond_resched(); 2524 } 2525 get_area_and_offset(ic, logical_sector, &area, &offset); 2526 } 2527 2528 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors); 2529 2530 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 2531 recalc_write_super(ic); 2532 if (ic->mode == 'B') { 2533 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2534 } 2535 super_counter = 0; 2536 } 2537 2538 if (unlikely(dm_integrity_failed(ic))) 2539 goto err; 2540 2541 io_req.bi_op = REQ_OP_READ; 2542 io_req.bi_op_flags = 0; 2543 io_req.mem.type = DM_IO_VMA; 2544 io_req.mem.ptr.addr = ic->recalc_buffer; 2545 io_req.notify.fn = NULL; 2546 io_req.client = ic->io; 2547 io_loc.bdev = ic->dev->bdev; 2548 io_loc.sector = get_data_sector(ic, area, offset); 2549 io_loc.count = n_sectors; 2550 2551 r = dm_io(&io_req, 1, &io_loc, NULL); 2552 if (unlikely(r)) { 2553 dm_integrity_io_error(ic, "reading data", r); 2554 goto err; 2555 } 2556 2557 t = ic->recalc_tags; 2558 for (i = 0; i < n_sectors; i += ic->sectors_per_block) { 2559 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t); 2560 t += ic->tag_size; 2561 } 2562 2563 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2564 2565 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE); 2566 if (unlikely(r)) { 2567 dm_integrity_io_error(ic, "writing tags", r); 2568 goto err; 2569 } 2570 2571 advance_and_next: 2572 cond_resched(); 2573 2574 spin_lock_irq(&ic->endio_wait.lock); 2575 remove_range_unlocked(ic, &range); 2576 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 2577 goto next_chunk; 2578 2579 err: 2580 remove_range(ic, &range); 2581 return; 2582 2583 unlock_ret: 2584 spin_unlock_irq(&ic->endio_wait.lock); 2585 2586 recalc_write_super(ic); 2587 } 2588 2589 static void bitmap_block_work(struct work_struct *w) 2590 { 2591 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work); 2592 struct dm_integrity_c *ic = bbs->ic; 2593 struct bio *bio; 2594 struct bio_list bio_queue; 2595 struct bio_list waiting; 2596 2597 bio_list_init(&waiting); 2598 2599 spin_lock(&bbs->bio_queue_lock); 2600 bio_queue = bbs->bio_queue; 2601 bio_list_init(&bbs->bio_queue); 2602 spin_unlock(&bbs->bio_queue_lock); 2603 2604 while ((bio = bio_list_pop(&bio_queue))) { 2605 struct dm_integrity_io *dio; 2606 2607 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2608 2609 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2610 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2611 remove_range(ic, &dio->range); 2612 INIT_WORK(&dio->work, integrity_bio_wait); 2613 queue_work(ic->offload_wq, &dio->work); 2614 } else { 2615 block_bitmap_op(ic, ic->journal, dio->range.logical_sector, 2616 dio->range.n_sectors, BITMAP_OP_SET); 2617 bio_list_add(&waiting, bio); 2618 } 2619 } 2620 2621 if (bio_list_empty(&waiting)) 2622 return; 2623 2624 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 2625 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), 2626 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL); 2627 2628 while ((bio = bio_list_pop(&waiting))) { 2629 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2630 2631 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2632 dio->range.n_sectors, BITMAP_OP_SET); 2633 2634 remove_range(ic, &dio->range); 2635 INIT_WORK(&dio->work, integrity_bio_wait); 2636 queue_work(ic->offload_wq, &dio->work); 2637 } 2638 2639 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2640 } 2641 2642 static void bitmap_flush_work(struct work_struct *work) 2643 { 2644 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work); 2645 struct dm_integrity_range range; 2646 unsigned long limit; 2647 struct bio *bio; 2648 2649 dm_integrity_flush_buffers(ic); 2650 2651 range.logical_sector = 0; 2652 range.n_sectors = ic->provided_data_sectors; 2653 2654 spin_lock_irq(&ic->endio_wait.lock); 2655 add_new_range_and_wait(ic, &range); 2656 spin_unlock_irq(&ic->endio_wait.lock); 2657 2658 dm_integrity_flush_buffers(ic); 2659 if (ic->meta_dev) 2660 blkdev_issue_flush(ic->dev->bdev, GFP_NOIO, NULL); 2661 2662 limit = ic->provided_data_sectors; 2663 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2664 limit = le64_to_cpu(ic->sb->recalc_sector) 2665 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit) 2666 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2667 } 2668 /*DEBUG_print("zeroing journal\n");*/ 2669 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR); 2670 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR); 2671 2672 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2673 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2674 2675 spin_lock_irq(&ic->endio_wait.lock); 2676 remove_range_unlocked(ic, &range); 2677 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) { 2678 bio_endio(bio); 2679 spin_unlock_irq(&ic->endio_wait.lock); 2680 spin_lock_irq(&ic->endio_wait.lock); 2681 } 2682 spin_unlock_irq(&ic->endio_wait.lock); 2683 } 2684 2685 2686 static void init_journal(struct dm_integrity_c *ic, unsigned start_section, 2687 unsigned n_sections, unsigned char commit_seq) 2688 { 2689 unsigned i, j, n; 2690 2691 if (!n_sections) 2692 return; 2693 2694 for (n = 0; n < n_sections; n++) { 2695 i = start_section + n; 2696 wraparound_section(ic, &i); 2697 for (j = 0; j < ic->journal_section_sectors; j++) { 2698 struct journal_sector *js = access_journal(ic, i, j); 2699 memset(&js->entries, 0, JOURNAL_SECTOR_DATA); 2700 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 2701 } 2702 for (j = 0; j < ic->journal_section_entries; j++) { 2703 struct journal_entry *je = access_journal_entry(ic, i, j); 2704 journal_entry_set_unused(je); 2705 } 2706 } 2707 2708 write_journal(ic, start_section, n_sections); 2709 } 2710 2711 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id) 2712 { 2713 unsigned char k; 2714 for (k = 0; k < N_COMMIT_IDS; k++) { 2715 if (dm_integrity_commit_id(ic, i, j, k) == id) 2716 return k; 2717 } 2718 dm_integrity_io_error(ic, "journal commit id", -EIO); 2719 return -EIO; 2720 } 2721 2722 static void replay_journal(struct dm_integrity_c *ic) 2723 { 2724 unsigned i, j; 2725 bool used_commit_ids[N_COMMIT_IDS]; 2726 unsigned max_commit_id_sections[N_COMMIT_IDS]; 2727 unsigned write_start, write_sections; 2728 unsigned continue_section; 2729 bool journal_empty; 2730 unsigned char unused, last_used, want_commit_seq; 2731 2732 if (ic->mode == 'R') 2733 return; 2734 2735 if (ic->journal_uptodate) 2736 return; 2737 2738 last_used = 0; 2739 write_start = 0; 2740 2741 if (!ic->just_formatted) { 2742 DEBUG_print("reading journal\n"); 2743 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL); 2744 if (ic->journal_io) 2745 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 2746 if (ic->journal_io) { 2747 struct journal_completion crypt_comp; 2748 crypt_comp.ic = ic; 2749 init_completion(&crypt_comp.comp); 2750 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 2751 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 2752 wait_for_completion(&crypt_comp.comp); 2753 } 2754 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 2755 } 2756 2757 if (dm_integrity_failed(ic)) 2758 goto clear_journal; 2759 2760 journal_empty = true; 2761 memset(used_commit_ids, 0, sizeof used_commit_ids); 2762 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections); 2763 for (i = 0; i < ic->journal_sections; i++) { 2764 for (j = 0; j < ic->journal_section_sectors; j++) { 2765 int k; 2766 struct journal_sector *js = access_journal(ic, i, j); 2767 k = find_commit_seq(ic, i, j, js->commit_id); 2768 if (k < 0) 2769 goto clear_journal; 2770 used_commit_ids[k] = true; 2771 max_commit_id_sections[k] = i; 2772 } 2773 if (journal_empty) { 2774 for (j = 0; j < ic->journal_section_entries; j++) { 2775 struct journal_entry *je = access_journal_entry(ic, i, j); 2776 if (!journal_entry_is_unused(je)) { 2777 journal_empty = false; 2778 break; 2779 } 2780 } 2781 } 2782 } 2783 2784 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 2785 unused = N_COMMIT_IDS - 1; 2786 while (unused && !used_commit_ids[unused - 1]) 2787 unused--; 2788 } else { 2789 for (unused = 0; unused < N_COMMIT_IDS; unused++) 2790 if (!used_commit_ids[unused]) 2791 break; 2792 if (unused == N_COMMIT_IDS) { 2793 dm_integrity_io_error(ic, "journal commit ids", -EIO); 2794 goto clear_journal; 2795 } 2796 } 2797 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 2798 unused, used_commit_ids[0], used_commit_ids[1], 2799 used_commit_ids[2], used_commit_ids[3]); 2800 2801 last_used = prev_commit_seq(unused); 2802 want_commit_seq = prev_commit_seq(last_used); 2803 2804 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 2805 journal_empty = true; 2806 2807 write_start = max_commit_id_sections[last_used] + 1; 2808 if (unlikely(write_start >= ic->journal_sections)) 2809 want_commit_seq = next_commit_seq(want_commit_seq); 2810 wraparound_section(ic, &write_start); 2811 2812 i = write_start; 2813 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 2814 for (j = 0; j < ic->journal_section_sectors; j++) { 2815 struct journal_sector *js = access_journal(ic, i, j); 2816 2817 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 2818 /* 2819 * This could be caused by crash during writing. 2820 * We won't replay the inconsistent part of the 2821 * journal. 2822 */ 2823 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 2824 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 2825 goto brk; 2826 } 2827 } 2828 i++; 2829 if (unlikely(i >= ic->journal_sections)) 2830 want_commit_seq = next_commit_seq(want_commit_seq); 2831 wraparound_section(ic, &i); 2832 } 2833 brk: 2834 2835 if (!journal_empty) { 2836 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 2837 write_sections, write_start, want_commit_seq); 2838 do_journal_write(ic, write_start, write_sections, true); 2839 } 2840 2841 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 2842 continue_section = write_start; 2843 ic->commit_seq = want_commit_seq; 2844 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 2845 } else { 2846 unsigned s; 2847 unsigned char erase_seq; 2848 clear_journal: 2849 DEBUG_print("clearing journal\n"); 2850 2851 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 2852 s = write_start; 2853 init_journal(ic, s, 1, erase_seq); 2854 s++; 2855 wraparound_section(ic, &s); 2856 if (ic->journal_sections >= 2) { 2857 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 2858 s += ic->journal_sections - 2; 2859 wraparound_section(ic, &s); 2860 init_journal(ic, s, 1, erase_seq); 2861 } 2862 2863 continue_section = 0; 2864 ic->commit_seq = next_commit_seq(erase_seq); 2865 } 2866 2867 ic->committed_section = continue_section; 2868 ic->n_committed_sections = 0; 2869 2870 ic->uncommitted_section = continue_section; 2871 ic->n_uncommitted_sections = 0; 2872 2873 ic->free_section = continue_section; 2874 ic->free_section_entry = 0; 2875 ic->free_sectors = ic->journal_entries; 2876 2877 ic->journal_tree_root = RB_ROOT; 2878 for (i = 0; i < ic->journal_entries; i++) 2879 init_journal_node(&ic->journal_tree[i]); 2880 } 2881 2882 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic) 2883 { 2884 DEBUG_print("dm_integrity_enter_synchronous_mode\n"); 2885 2886 if (ic->mode == 'B') { 2887 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1; 2888 ic->synchronous_mode = 1; 2889 2890 cancel_delayed_work_sync(&ic->bitmap_flush_work); 2891 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2892 flush_workqueue(ic->commit_wq); 2893 } 2894 } 2895 2896 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x) 2897 { 2898 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier); 2899 2900 DEBUG_print("dm_integrity_reboot\n"); 2901 2902 dm_integrity_enter_synchronous_mode(ic); 2903 2904 return NOTIFY_DONE; 2905 } 2906 2907 static void dm_integrity_postsuspend(struct dm_target *ti) 2908 { 2909 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2910 int r; 2911 2912 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier)); 2913 2914 del_timer_sync(&ic->autocommit_timer); 2915 2916 if (ic->recalc_wq) 2917 drain_workqueue(ic->recalc_wq); 2918 2919 if (ic->mode == 'B') 2920 cancel_delayed_work_sync(&ic->bitmap_flush_work); 2921 2922 queue_work(ic->commit_wq, &ic->commit_work); 2923 drain_workqueue(ic->commit_wq); 2924 2925 if (ic->mode == 'J') { 2926 if (ic->meta_dev) 2927 queue_work(ic->writer_wq, &ic->writer_work); 2928 drain_workqueue(ic->writer_wq); 2929 dm_integrity_flush_buffers(ic); 2930 } 2931 2932 if (ic->mode == 'B') { 2933 dm_integrity_flush_buffers(ic); 2934 #if 1 2935 /* set to 0 to test bitmap replay code */ 2936 init_journal(ic, 0, ic->journal_sections, 0); 2937 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 2938 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 2939 if (unlikely(r)) 2940 dm_integrity_io_error(ic, "writing superblock", r); 2941 #endif 2942 } 2943 2944 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 2945 2946 ic->journal_uptodate = true; 2947 } 2948 2949 static void dm_integrity_resume(struct dm_target *ti) 2950 { 2951 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 2952 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 2953 int r; 2954 2955 DEBUG_print("resume\n"); 2956 2957 if (ic->provided_data_sectors != old_provided_data_sectors) { 2958 if (ic->provided_data_sectors > old_provided_data_sectors && 2959 ic->mode == 'B' && 2960 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { 2961 rw_journal_sectors(ic, REQ_OP_READ, 0, 0, 2962 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2963 block_bitmap_op(ic, ic->journal, old_provided_data_sectors, 2964 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET); 2965 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2966 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2967 } 2968 2969 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 2970 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 2971 if (unlikely(r)) 2972 dm_integrity_io_error(ic, "writing superblock", r); 2973 } 2974 2975 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) { 2976 DEBUG_print("resume dirty_bitmap\n"); 2977 rw_journal_sectors(ic, REQ_OP_READ, 0, 0, 2978 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2979 if (ic->mode == 'B') { 2980 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { 2981 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal); 2982 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal); 2983 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, 2984 BITMAP_OP_TEST_ALL_CLEAR)) { 2985 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 2986 ic->sb->recalc_sector = cpu_to_le64(0); 2987 } 2988 } else { 2989 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n", 2990 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit); 2991 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 2992 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 2993 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 2994 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET); 2995 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 2996 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2997 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 2998 ic->sb->recalc_sector = cpu_to_le64(0); 2999 } 3000 } else { 3001 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3002 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) { 3003 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3004 ic->sb->recalc_sector = cpu_to_le64(0); 3005 } 3006 init_journal(ic, 0, ic->journal_sections, 0); 3007 replay_journal(ic); 3008 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3009 } 3010 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3011 if (unlikely(r)) 3012 dm_integrity_io_error(ic, "writing superblock", r); 3013 } else { 3014 replay_journal(ic); 3015 if (ic->mode == 'B') { 3016 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3017 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3018 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 3019 if (unlikely(r)) 3020 dm_integrity_io_error(ic, "writing superblock", r); 3021 3022 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3023 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3024 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3025 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 3026 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) { 3027 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector), 3028 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3029 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3030 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3031 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3032 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3033 } 3034 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, 3035 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3036 } 3037 } 3038 3039 DEBUG_print("testing recalc: %x\n", ic->sb->flags); 3040 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 3041 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector); 3042 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors); 3043 if (recalc_pos < ic->provided_data_sectors) { 3044 queue_work(ic->recalc_wq, &ic->recalc_work); 3045 } else if (recalc_pos > ic->provided_data_sectors) { 3046 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors); 3047 recalc_write_super(ic); 3048 } 3049 } 3050 3051 ic->reboot_notifier.notifier_call = dm_integrity_reboot; 3052 ic->reboot_notifier.next = NULL; 3053 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */ 3054 WARN_ON(register_reboot_notifier(&ic->reboot_notifier)); 3055 3056 #if 0 3057 /* set to 1 to stress test synchronous mode */ 3058 dm_integrity_enter_synchronous_mode(ic); 3059 #endif 3060 } 3061 3062 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 3063 unsigned status_flags, char *result, unsigned maxlen) 3064 { 3065 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 3066 unsigned arg_count; 3067 size_t sz = 0; 3068 3069 switch (type) { 3070 case STATUSTYPE_INFO: 3071 DMEMIT("%llu %llu", 3072 (unsigned long long)atomic64_read(&ic->number_of_mismatches), 3073 ic->provided_data_sectors); 3074 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3075 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector)); 3076 else 3077 DMEMIT(" -"); 3078 break; 3079 3080 case STATUSTYPE_TABLE: { 3081 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 3082 watermark_percentage += ic->journal_entries / 2; 3083 do_div(watermark_percentage, ic->journal_entries); 3084 arg_count = 3; 3085 arg_count += !!ic->meta_dev; 3086 arg_count += ic->sectors_per_block != 1; 3087 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)); 3088 arg_count += ic->discard; 3089 arg_count += ic->mode == 'J'; 3090 arg_count += ic->mode == 'J'; 3091 arg_count += ic->mode == 'B'; 3092 arg_count += ic->mode == 'B'; 3093 arg_count += !!ic->internal_hash_alg.alg_string; 3094 arg_count += !!ic->journal_crypt_alg.alg_string; 3095 arg_count += !!ic->journal_mac_alg.alg_string; 3096 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0; 3097 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start, 3098 ic->tag_size, ic->mode, arg_count); 3099 if (ic->meta_dev) 3100 DMEMIT(" meta_device:%s", ic->meta_dev->name); 3101 if (ic->sectors_per_block != 1) 3102 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 3103 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3104 DMEMIT(" recalculate"); 3105 if (ic->discard) 3106 DMEMIT(" allow_discards"); 3107 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 3108 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 3109 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 3110 if (ic->mode == 'J') { 3111 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage); 3112 DMEMIT(" commit_time:%u", ic->autocommit_msec); 3113 } 3114 if (ic->mode == 'B') { 3115 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit); 3116 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval)); 3117 } 3118 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) 3119 DMEMIT(" fix_padding"); 3120 3121 #define EMIT_ALG(a, n) \ 3122 do { \ 3123 if (ic->a.alg_string) { \ 3124 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 3125 if (ic->a.key_string) \ 3126 DMEMIT(":%s", ic->a.key_string);\ 3127 } \ 3128 } while (0) 3129 EMIT_ALG(internal_hash_alg, "internal_hash"); 3130 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 3131 EMIT_ALG(journal_mac_alg, "journal_mac"); 3132 break; 3133 } 3134 } 3135 } 3136 3137 static int dm_integrity_iterate_devices(struct dm_target *ti, 3138 iterate_devices_callout_fn fn, void *data) 3139 { 3140 struct dm_integrity_c *ic = ti->private; 3141 3142 if (!ic->meta_dev) 3143 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 3144 else 3145 return fn(ti, ic->dev, 0, ti->len, data); 3146 } 3147 3148 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 3149 { 3150 struct dm_integrity_c *ic = ti->private; 3151 3152 if (ic->sectors_per_block > 1) { 3153 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3154 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3155 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT); 3156 } 3157 } 3158 3159 static void calculate_journal_section_size(struct dm_integrity_c *ic) 3160 { 3161 unsigned sector_space = JOURNAL_SECTOR_DATA; 3162 3163 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 3164 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 3165 JOURNAL_ENTRY_ROUNDUP); 3166 3167 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 3168 sector_space -= JOURNAL_MAC_PER_SECTOR; 3169 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 3170 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 3171 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 3172 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 3173 } 3174 3175 static int calculate_device_limits(struct dm_integrity_c *ic) 3176 { 3177 __u64 initial_sectors; 3178 3179 calculate_journal_section_size(ic); 3180 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 3181 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX) 3182 return -EINVAL; 3183 ic->initial_sectors = initial_sectors; 3184 3185 if (!ic->meta_dev) { 3186 sector_t last_sector, last_area, last_offset; 3187 3188 /* we have to maintain excessive padding for compatibility with existing volumes */ 3189 __u64 metadata_run_padding = 3190 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ? 3191 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) : 3192 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS); 3193 3194 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 3195 metadata_run_padding) >> SECTOR_SHIFT; 3196 if (!(ic->metadata_run & (ic->metadata_run - 1))) 3197 ic->log2_metadata_run = __ffs(ic->metadata_run); 3198 else 3199 ic->log2_metadata_run = -1; 3200 3201 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 3202 last_sector = get_data_sector(ic, last_area, last_offset); 3203 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors) 3204 return -EINVAL; 3205 } else { 3206 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 3207 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1)) 3208 >> (ic->log2_buffer_sectors + SECTOR_SHIFT); 3209 meta_size <<= ic->log2_buffer_sectors; 3210 if (ic->initial_sectors + meta_size < ic->initial_sectors || 3211 ic->initial_sectors + meta_size > ic->meta_device_sectors) 3212 return -EINVAL; 3213 ic->metadata_run = 1; 3214 ic->log2_metadata_run = 0; 3215 } 3216 3217 return 0; 3218 } 3219 3220 static void get_provided_data_sectors(struct dm_integrity_c *ic) 3221 { 3222 if (!ic->meta_dev) { 3223 int test_bit; 3224 ic->provided_data_sectors = 0; 3225 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) { 3226 __u64 prev_data_sectors = ic->provided_data_sectors; 3227 3228 ic->provided_data_sectors |= (sector_t)1 << test_bit; 3229 if (calculate_device_limits(ic)) 3230 ic->provided_data_sectors = prev_data_sectors; 3231 } 3232 } else { 3233 ic->provided_data_sectors = ic->data_device_sectors; 3234 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1); 3235 } 3236 } 3237 3238 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors) 3239 { 3240 unsigned journal_sections; 3241 int test_bit; 3242 3243 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 3244 memcpy(ic->sb->magic, SB_MAGIC, 8); 3245 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 3246 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 3247 if (ic->journal_mac_alg.alg_string) 3248 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 3249 3250 calculate_journal_section_size(ic); 3251 journal_sections = journal_sectors / ic->journal_section_sectors; 3252 if (!journal_sections) 3253 journal_sections = 1; 3254 3255 if (!ic->meta_dev) { 3256 if (ic->fix_padding) 3257 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING); 3258 ic->sb->journal_sections = cpu_to_le32(journal_sections); 3259 if (!interleave_sectors) 3260 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3261 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 3262 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3263 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3264 3265 get_provided_data_sectors(ic); 3266 if (!ic->provided_data_sectors) 3267 return -EINVAL; 3268 } else { 3269 ic->sb->log2_interleave_sectors = 0; 3270 3271 get_provided_data_sectors(ic); 3272 if (!ic->provided_data_sectors) 3273 return -EINVAL; 3274 3275 try_smaller_buffer: 3276 ic->sb->journal_sections = cpu_to_le32(0); 3277 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) { 3278 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections); 3279 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit); 3280 if (test_journal_sections > journal_sections) 3281 continue; 3282 ic->sb->journal_sections = cpu_to_le32(test_journal_sections); 3283 if (calculate_device_limits(ic)) 3284 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections); 3285 3286 } 3287 if (!le32_to_cpu(ic->sb->journal_sections)) { 3288 if (ic->log2_buffer_sectors > 3) { 3289 ic->log2_buffer_sectors--; 3290 goto try_smaller_buffer; 3291 } 3292 return -EINVAL; 3293 } 3294 } 3295 3296 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3297 3298 sb_set_version(ic); 3299 3300 return 0; 3301 } 3302 3303 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic) 3304 { 3305 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table)); 3306 struct blk_integrity bi; 3307 3308 memset(&bi, 0, sizeof(bi)); 3309 bi.profile = &dm_integrity_profile; 3310 bi.tuple_size = ic->tag_size; 3311 bi.tag_size = bi.tuple_size; 3312 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 3313 3314 blk_integrity_register(disk, &bi); 3315 blk_queue_max_integrity_segments(disk->queue, UINT_MAX); 3316 } 3317 3318 static void dm_integrity_free_page_list(struct page_list *pl) 3319 { 3320 unsigned i; 3321 3322 if (!pl) 3323 return; 3324 for (i = 0; pl[i].page; i++) 3325 __free_page(pl[i].page); 3326 kvfree(pl); 3327 } 3328 3329 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages) 3330 { 3331 struct page_list *pl; 3332 unsigned i; 3333 3334 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO); 3335 if (!pl) 3336 return NULL; 3337 3338 for (i = 0; i < n_pages; i++) { 3339 pl[i].page = alloc_page(GFP_KERNEL); 3340 if (!pl[i].page) { 3341 dm_integrity_free_page_list(pl); 3342 return NULL; 3343 } 3344 if (i) 3345 pl[i - 1].next = &pl[i]; 3346 } 3347 pl[i].page = NULL; 3348 pl[i].next = NULL; 3349 3350 return pl; 3351 } 3352 3353 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 3354 { 3355 unsigned i; 3356 for (i = 0; i < ic->journal_sections; i++) 3357 kvfree(sl[i]); 3358 kvfree(sl); 3359 } 3360 3361 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, 3362 struct page_list *pl) 3363 { 3364 struct scatterlist **sl; 3365 unsigned i; 3366 3367 sl = kvmalloc_array(ic->journal_sections, 3368 sizeof(struct scatterlist *), 3369 GFP_KERNEL | __GFP_ZERO); 3370 if (!sl) 3371 return NULL; 3372 3373 for (i = 0; i < ic->journal_sections; i++) { 3374 struct scatterlist *s; 3375 unsigned start_index, start_offset; 3376 unsigned end_index, end_offset; 3377 unsigned n_pages; 3378 unsigned idx; 3379 3380 page_list_location(ic, i, 0, &start_index, &start_offset); 3381 page_list_location(ic, i, ic->journal_section_sectors - 1, 3382 &end_index, &end_offset); 3383 3384 n_pages = (end_index - start_index + 1); 3385 3386 s = kvmalloc_array(n_pages, sizeof(struct scatterlist), 3387 GFP_KERNEL); 3388 if (!s) { 3389 dm_integrity_free_journal_scatterlist(ic, sl); 3390 return NULL; 3391 } 3392 3393 sg_init_table(s, n_pages); 3394 for (idx = start_index; idx <= end_index; idx++) { 3395 char *va = lowmem_page_address(pl[idx].page); 3396 unsigned start = 0, end = PAGE_SIZE; 3397 if (idx == start_index) 3398 start = start_offset; 3399 if (idx == end_index) 3400 end = end_offset + (1 << SECTOR_SHIFT); 3401 sg_set_buf(&s[idx - start_index], va + start, end - start); 3402 } 3403 3404 sl[i] = s; 3405 } 3406 3407 return sl; 3408 } 3409 3410 static void free_alg(struct alg_spec *a) 3411 { 3412 kzfree(a->alg_string); 3413 kzfree(a->key); 3414 memset(a, 0, sizeof *a); 3415 } 3416 3417 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 3418 { 3419 char *k; 3420 3421 free_alg(a); 3422 3423 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 3424 if (!a->alg_string) 3425 goto nomem; 3426 3427 k = strchr(a->alg_string, ':'); 3428 if (k) { 3429 *k = 0; 3430 a->key_string = k + 1; 3431 if (strlen(a->key_string) & 1) 3432 goto inval; 3433 3434 a->key_size = strlen(a->key_string) / 2; 3435 a->key = kmalloc(a->key_size, GFP_KERNEL); 3436 if (!a->key) 3437 goto nomem; 3438 if (hex2bin(a->key, a->key_string, a->key_size)) 3439 goto inval; 3440 } 3441 3442 return 0; 3443 inval: 3444 *error = error_inval; 3445 return -EINVAL; 3446 nomem: 3447 *error = "Out of memory for an argument"; 3448 return -ENOMEM; 3449 } 3450 3451 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 3452 char *error_alg, char *error_key) 3453 { 3454 int r; 3455 3456 if (a->alg_string) { 3457 *hash = crypto_alloc_shash(a->alg_string, 0, 0); 3458 if (IS_ERR(*hash)) { 3459 *error = error_alg; 3460 r = PTR_ERR(*hash); 3461 *hash = NULL; 3462 return r; 3463 } 3464 3465 if (a->key) { 3466 r = crypto_shash_setkey(*hash, a->key, a->key_size); 3467 if (r) { 3468 *error = error_key; 3469 return r; 3470 } 3471 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { 3472 *error = error_key; 3473 return -ENOKEY; 3474 } 3475 } 3476 3477 return 0; 3478 } 3479 3480 static int create_journal(struct dm_integrity_c *ic, char **error) 3481 { 3482 int r = 0; 3483 unsigned i; 3484 __u64 journal_pages, journal_desc_size, journal_tree_size; 3485 unsigned char *crypt_data = NULL, *crypt_iv = NULL; 3486 struct skcipher_request *req = NULL; 3487 3488 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 3489 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 3490 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 3491 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 3492 3493 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 3494 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 3495 journal_desc_size = journal_pages * sizeof(struct page_list); 3496 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) { 3497 *error = "Journal doesn't fit into memory"; 3498 r = -ENOMEM; 3499 goto bad; 3500 } 3501 ic->journal_pages = journal_pages; 3502 3503 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages); 3504 if (!ic->journal) { 3505 *error = "Could not allocate memory for journal"; 3506 r = -ENOMEM; 3507 goto bad; 3508 } 3509 if (ic->journal_crypt_alg.alg_string) { 3510 unsigned ivsize, blocksize; 3511 struct journal_completion comp; 3512 3513 comp.ic = ic; 3514 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0); 3515 if (IS_ERR(ic->journal_crypt)) { 3516 *error = "Invalid journal cipher"; 3517 r = PTR_ERR(ic->journal_crypt); 3518 ic->journal_crypt = NULL; 3519 goto bad; 3520 } 3521 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 3522 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 3523 3524 if (ic->journal_crypt_alg.key) { 3525 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 3526 ic->journal_crypt_alg.key_size); 3527 if (r) { 3528 *error = "Error setting encryption key"; 3529 goto bad; 3530 } 3531 } 3532 DEBUG_print("cipher %s, block size %u iv size %u\n", 3533 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 3534 3535 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages); 3536 if (!ic->journal_io) { 3537 *error = "Could not allocate memory for journal io"; 3538 r = -ENOMEM; 3539 goto bad; 3540 } 3541 3542 if (blocksize == 1) { 3543 struct scatterlist *sg; 3544 3545 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3546 if (!req) { 3547 *error = "Could not allocate crypt request"; 3548 r = -ENOMEM; 3549 goto bad; 3550 } 3551 3552 crypt_iv = kzalloc(ivsize, GFP_KERNEL); 3553 if (!crypt_iv) { 3554 *error = "Could not allocate iv"; 3555 r = -ENOMEM; 3556 goto bad; 3557 } 3558 3559 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages); 3560 if (!ic->journal_xor) { 3561 *error = "Could not allocate memory for journal xor"; 3562 r = -ENOMEM; 3563 goto bad; 3564 } 3565 3566 sg = kvmalloc_array(ic->journal_pages + 1, 3567 sizeof(struct scatterlist), 3568 GFP_KERNEL); 3569 if (!sg) { 3570 *error = "Unable to allocate sg list"; 3571 r = -ENOMEM; 3572 goto bad; 3573 } 3574 sg_init_table(sg, ic->journal_pages + 1); 3575 for (i = 0; i < ic->journal_pages; i++) { 3576 char *va = lowmem_page_address(ic->journal_xor[i].page); 3577 clear_page(va); 3578 sg_set_buf(&sg[i], va, PAGE_SIZE); 3579 } 3580 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids); 3581 3582 skcipher_request_set_crypt(req, sg, sg, 3583 PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv); 3584 init_completion(&comp.comp); 3585 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3586 if (do_crypt(true, req, &comp)) 3587 wait_for_completion(&comp.comp); 3588 kvfree(sg); 3589 r = dm_integrity_failed(ic); 3590 if (r) { 3591 *error = "Unable to encrypt journal"; 3592 goto bad; 3593 } 3594 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 3595 3596 crypto_free_skcipher(ic->journal_crypt); 3597 ic->journal_crypt = NULL; 3598 } else { 3599 unsigned crypt_len = roundup(ivsize, blocksize); 3600 3601 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3602 if (!req) { 3603 *error = "Could not allocate crypt request"; 3604 r = -ENOMEM; 3605 goto bad; 3606 } 3607 3608 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 3609 if (!crypt_iv) { 3610 *error = "Could not allocate iv"; 3611 r = -ENOMEM; 3612 goto bad; 3613 } 3614 3615 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 3616 if (!crypt_data) { 3617 *error = "Unable to allocate crypt data"; 3618 r = -ENOMEM; 3619 goto bad; 3620 } 3621 3622 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 3623 if (!ic->journal_scatterlist) { 3624 *error = "Unable to allocate sg list"; 3625 r = -ENOMEM; 3626 goto bad; 3627 } 3628 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 3629 if (!ic->journal_io_scatterlist) { 3630 *error = "Unable to allocate sg list"; 3631 r = -ENOMEM; 3632 goto bad; 3633 } 3634 ic->sk_requests = kvmalloc_array(ic->journal_sections, 3635 sizeof(struct skcipher_request *), 3636 GFP_KERNEL | __GFP_ZERO); 3637 if (!ic->sk_requests) { 3638 *error = "Unable to allocate sk requests"; 3639 r = -ENOMEM; 3640 goto bad; 3641 } 3642 for (i = 0; i < ic->journal_sections; i++) { 3643 struct scatterlist sg; 3644 struct skcipher_request *section_req; 3645 __u32 section_le = cpu_to_le32(i); 3646 3647 memset(crypt_iv, 0x00, ivsize); 3648 memset(crypt_data, 0x00, crypt_len); 3649 memcpy(crypt_data, §ion_le, min((size_t)crypt_len, sizeof(section_le))); 3650 3651 sg_init_one(&sg, crypt_data, crypt_len); 3652 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); 3653 init_completion(&comp.comp); 3654 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3655 if (do_crypt(true, req, &comp)) 3656 wait_for_completion(&comp.comp); 3657 3658 r = dm_integrity_failed(ic); 3659 if (r) { 3660 *error = "Unable to generate iv"; 3661 goto bad; 3662 } 3663 3664 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3665 if (!section_req) { 3666 *error = "Unable to allocate crypt request"; 3667 r = -ENOMEM; 3668 goto bad; 3669 } 3670 section_req->iv = kmalloc_array(ivsize, 2, 3671 GFP_KERNEL); 3672 if (!section_req->iv) { 3673 skcipher_request_free(section_req); 3674 *error = "Unable to allocate iv"; 3675 r = -ENOMEM; 3676 goto bad; 3677 } 3678 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 3679 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 3680 ic->sk_requests[i] = section_req; 3681 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 3682 } 3683 } 3684 } 3685 3686 for (i = 0; i < N_COMMIT_IDS; i++) { 3687 unsigned j; 3688 retest_commit_id: 3689 for (j = 0; j < i; j++) { 3690 if (ic->commit_ids[j] == ic->commit_ids[i]) { 3691 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 3692 goto retest_commit_id; 3693 } 3694 } 3695 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 3696 } 3697 3698 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 3699 if (journal_tree_size > ULONG_MAX) { 3700 *error = "Journal doesn't fit into memory"; 3701 r = -ENOMEM; 3702 goto bad; 3703 } 3704 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 3705 if (!ic->journal_tree) { 3706 *error = "Could not allocate memory for journal tree"; 3707 r = -ENOMEM; 3708 } 3709 bad: 3710 kfree(crypt_data); 3711 kfree(crypt_iv); 3712 skcipher_request_free(req); 3713 3714 return r; 3715 } 3716 3717 /* 3718 * Construct a integrity mapping 3719 * 3720 * Arguments: 3721 * device 3722 * offset from the start of the device 3723 * tag size 3724 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode 3725 * number of optional arguments 3726 * optional arguments: 3727 * journal_sectors 3728 * interleave_sectors 3729 * buffer_sectors 3730 * journal_watermark 3731 * commit_time 3732 * meta_device 3733 * block_size 3734 * sectors_per_bit 3735 * bitmap_flush_interval 3736 * internal_hash 3737 * journal_crypt 3738 * journal_mac 3739 * recalculate 3740 */ 3741 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv) 3742 { 3743 struct dm_integrity_c *ic; 3744 char dummy; 3745 int r; 3746 unsigned extra_args; 3747 struct dm_arg_set as; 3748 static const struct dm_arg _args[] = { 3749 {0, 9, "Invalid number of feature args"}, 3750 }; 3751 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 3752 bool should_write_sb; 3753 __u64 threshold; 3754 unsigned long long start; 3755 __s8 log2_sectors_per_bitmap_bit = -1; 3756 __s8 log2_blocks_per_bitmap_bit; 3757 __u64 bits_in_journal; 3758 __u64 n_bitmap_bits; 3759 3760 #define DIRECT_ARGUMENTS 4 3761 3762 if (argc <= DIRECT_ARGUMENTS) { 3763 ti->error = "Invalid argument count"; 3764 return -EINVAL; 3765 } 3766 3767 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 3768 if (!ic) { 3769 ti->error = "Cannot allocate integrity context"; 3770 return -ENOMEM; 3771 } 3772 ti->private = ic; 3773 ti->per_io_data_size = sizeof(struct dm_integrity_io); 3774 ic->ti = ti; 3775 3776 ic->in_progress = RB_ROOT; 3777 INIT_LIST_HEAD(&ic->wait_list); 3778 init_waitqueue_head(&ic->endio_wait); 3779 bio_list_init(&ic->flush_bio_list); 3780 init_waitqueue_head(&ic->copy_to_journal_wait); 3781 init_completion(&ic->crypto_backoff); 3782 atomic64_set(&ic->number_of_mismatches, 0); 3783 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL; 3784 3785 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 3786 if (r) { 3787 ti->error = "Device lookup failed"; 3788 goto bad; 3789 } 3790 3791 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 3792 ti->error = "Invalid starting offset"; 3793 r = -EINVAL; 3794 goto bad; 3795 } 3796 ic->start = start; 3797 3798 if (strcmp(argv[2], "-")) { 3799 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 3800 ti->error = "Invalid tag size"; 3801 r = -EINVAL; 3802 goto bad; 3803 } 3804 } 3805 3806 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") || 3807 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) { 3808 ic->mode = argv[3][0]; 3809 } else { 3810 ti->error = "Invalid mode (expecting J, B, D, R)"; 3811 r = -EINVAL; 3812 goto bad; 3813 } 3814 3815 journal_sectors = 0; 3816 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3817 buffer_sectors = DEFAULT_BUFFER_SECTORS; 3818 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 3819 sync_msec = DEFAULT_SYNC_MSEC; 3820 ic->sectors_per_block = 1; 3821 3822 as.argc = argc - DIRECT_ARGUMENTS; 3823 as.argv = argv + DIRECT_ARGUMENTS; 3824 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 3825 if (r) 3826 goto bad; 3827 3828 while (extra_args--) { 3829 const char *opt_string; 3830 unsigned val; 3831 unsigned long long llval; 3832 opt_string = dm_shift_arg(&as); 3833 if (!opt_string) { 3834 r = -EINVAL; 3835 ti->error = "Not enough feature arguments"; 3836 goto bad; 3837 } 3838 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 3839 journal_sectors = val ? val : 1; 3840 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 3841 interleave_sectors = val; 3842 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 3843 buffer_sectors = val; 3844 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 3845 journal_watermark = val; 3846 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 3847 sync_msec = val; 3848 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) { 3849 if (ic->meta_dev) { 3850 dm_put_device(ti, ic->meta_dev); 3851 ic->meta_dev = NULL; 3852 } 3853 r = dm_get_device(ti, strchr(opt_string, ':') + 1, 3854 dm_table_get_mode(ti->table), &ic->meta_dev); 3855 if (r) { 3856 ti->error = "Device lookup failed"; 3857 goto bad; 3858 } 3859 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 3860 if (val < 1 << SECTOR_SHIFT || 3861 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 3862 (val & (val -1))) { 3863 r = -EINVAL; 3864 ti->error = "Invalid block_size argument"; 3865 goto bad; 3866 } 3867 ic->sectors_per_block = val >> SECTOR_SHIFT; 3868 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) { 3869 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval); 3870 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) { 3871 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) { 3872 r = -EINVAL; 3873 ti->error = "Invalid bitmap_flush_interval argument"; 3874 } 3875 ic->bitmap_flush_interval = msecs_to_jiffies(val); 3876 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 3877 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 3878 "Invalid internal_hash argument"); 3879 if (r) 3880 goto bad; 3881 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 3882 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 3883 "Invalid journal_crypt argument"); 3884 if (r) 3885 goto bad; 3886 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 3887 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 3888 "Invalid journal_mac argument"); 3889 if (r) 3890 goto bad; 3891 } else if (!strcmp(opt_string, "recalculate")) { 3892 ic->recalculate_flag = true; 3893 } else if (!strcmp(opt_string, "allow_discards")) { 3894 ic->discard = true; 3895 } else if (!strcmp(opt_string, "fix_padding")) { 3896 ic->fix_padding = true; 3897 } else { 3898 r = -EINVAL; 3899 ti->error = "Invalid argument"; 3900 goto bad; 3901 } 3902 } 3903 3904 ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT; 3905 if (!ic->meta_dev) 3906 ic->meta_device_sectors = ic->data_device_sectors; 3907 else 3908 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT; 3909 3910 if (!journal_sectors) { 3911 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 3912 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 3913 } 3914 3915 if (!buffer_sectors) 3916 buffer_sectors = 1; 3917 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT); 3918 3919 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 3920 "Invalid internal hash", "Error setting internal hash key"); 3921 if (r) 3922 goto bad; 3923 3924 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 3925 "Invalid journal mac", "Error setting journal mac key"); 3926 if (r) 3927 goto bad; 3928 3929 if (!ic->tag_size) { 3930 if (!ic->internal_hash) { 3931 ti->error = "Unknown tag size"; 3932 r = -EINVAL; 3933 goto bad; 3934 } 3935 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 3936 } 3937 if (ic->tag_size > MAX_TAG_SIZE) { 3938 ti->error = "Too big tag size"; 3939 r = -EINVAL; 3940 goto bad; 3941 } 3942 if (!(ic->tag_size & (ic->tag_size - 1))) 3943 ic->log2_tag_size = __ffs(ic->tag_size); 3944 else 3945 ic->log2_tag_size = -1; 3946 3947 if (ic->mode == 'B' && !ic->internal_hash) { 3948 r = -EINVAL; 3949 ti->error = "Bitmap mode can be only used with internal hash"; 3950 goto bad; 3951 } 3952 3953 if (ic->discard && !ic->internal_hash) { 3954 r = -EINVAL; 3955 ti->error = "Discard can be only used with internal hash"; 3956 goto bad; 3957 } 3958 3959 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 3960 ic->autocommit_msec = sync_msec; 3961 timer_setup(&ic->autocommit_timer, autocommit_fn, 0); 3962 3963 ic->io = dm_io_client_create(); 3964 if (IS_ERR(ic->io)) { 3965 r = PTR_ERR(ic->io); 3966 ic->io = NULL; 3967 ti->error = "Cannot allocate dm io"; 3968 goto bad; 3969 } 3970 3971 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); 3972 if (r) { 3973 ti->error = "Cannot allocate mempool"; 3974 goto bad; 3975 } 3976 3977 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 3978 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 3979 if (!ic->metadata_wq) { 3980 ti->error = "Cannot allocate workqueue"; 3981 r = -ENOMEM; 3982 goto bad; 3983 } 3984 3985 /* 3986 * If this workqueue were percpu, it would cause bio reordering 3987 * and reduced performance. 3988 */ 3989 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3990 if (!ic->wait_wq) { 3991 ti->error = "Cannot allocate workqueue"; 3992 r = -ENOMEM; 3993 goto bad; 3994 } 3995 3996 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM, 3997 METADATA_WORKQUEUE_MAX_ACTIVE); 3998 if (!ic->offload_wq) { 3999 ti->error = "Cannot allocate workqueue"; 4000 r = -ENOMEM; 4001 goto bad; 4002 } 4003 4004 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 4005 if (!ic->commit_wq) { 4006 ti->error = "Cannot allocate workqueue"; 4007 r = -ENOMEM; 4008 goto bad; 4009 } 4010 INIT_WORK(&ic->commit_work, integrity_commit); 4011 4012 if (ic->mode == 'J' || ic->mode == 'B') { 4013 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 4014 if (!ic->writer_wq) { 4015 ti->error = "Cannot allocate workqueue"; 4016 r = -ENOMEM; 4017 goto bad; 4018 } 4019 INIT_WORK(&ic->writer_work, integrity_writer); 4020 } 4021 4022 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 4023 if (!ic->sb) { 4024 r = -ENOMEM; 4025 ti->error = "Cannot allocate superblock area"; 4026 goto bad; 4027 } 4028 4029 r = sync_rw_sb(ic, REQ_OP_READ, 0); 4030 if (r) { 4031 ti->error = "Error reading superblock"; 4032 goto bad; 4033 } 4034 should_write_sb = false; 4035 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 4036 if (ic->mode != 'R') { 4037 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 4038 r = -EINVAL; 4039 ti->error = "The device is not initialized"; 4040 goto bad; 4041 } 4042 } 4043 4044 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 4045 if (r) { 4046 ti->error = "Could not initialize superblock"; 4047 goto bad; 4048 } 4049 if (ic->mode != 'R') 4050 should_write_sb = true; 4051 } 4052 4053 if (!ic->sb->version || ic->sb->version > SB_VERSION_4) { 4054 r = -EINVAL; 4055 ti->error = "Unknown version"; 4056 goto bad; 4057 } 4058 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 4059 r = -EINVAL; 4060 ti->error = "Tag size doesn't match the information in superblock"; 4061 goto bad; 4062 } 4063 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 4064 r = -EINVAL; 4065 ti->error = "Block size doesn't match the information in superblock"; 4066 goto bad; 4067 } 4068 if (!le32_to_cpu(ic->sb->journal_sections)) { 4069 r = -EINVAL; 4070 ti->error = "Corrupted superblock, journal_sections is 0"; 4071 goto bad; 4072 } 4073 /* make sure that ti->max_io_len doesn't overflow */ 4074 if (!ic->meta_dev) { 4075 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 4076 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 4077 r = -EINVAL; 4078 ti->error = "Invalid interleave_sectors in the superblock"; 4079 goto bad; 4080 } 4081 } else { 4082 if (ic->sb->log2_interleave_sectors) { 4083 r = -EINVAL; 4084 ti->error = "Invalid interleave_sectors in the superblock"; 4085 goto bad; 4086 } 4087 } 4088 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 4089 r = -EINVAL; 4090 ti->error = "Journal mac mismatch"; 4091 goto bad; 4092 } 4093 4094 get_provided_data_sectors(ic); 4095 if (!ic->provided_data_sectors) { 4096 r = -EINVAL; 4097 ti->error = "The device is too small"; 4098 goto bad; 4099 } 4100 4101 try_smaller_buffer: 4102 r = calculate_device_limits(ic); 4103 if (r) { 4104 if (ic->meta_dev) { 4105 if (ic->log2_buffer_sectors > 3) { 4106 ic->log2_buffer_sectors--; 4107 goto try_smaller_buffer; 4108 } 4109 } 4110 ti->error = "The device is too small"; 4111 goto bad; 4112 } 4113 4114 if (log2_sectors_per_bitmap_bit < 0) 4115 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT); 4116 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block) 4117 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block; 4118 4119 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3); 4120 if (bits_in_journal > UINT_MAX) 4121 bits_in_journal = UINT_MAX; 4122 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit) 4123 log2_sectors_per_bitmap_bit++; 4124 4125 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block; 4126 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4127 if (should_write_sb) { 4128 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4129 } 4130 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) 4131 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit; 4132 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8); 4133 4134 if (!ic->meta_dev) 4135 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run)); 4136 4137 if (ti->len > ic->provided_data_sectors) { 4138 r = -EINVAL; 4139 ti->error = "Not enough provided sectors for requested mapping size"; 4140 goto bad; 4141 } 4142 4143 4144 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 4145 threshold += 50; 4146 do_div(threshold, 100); 4147 ic->free_sectors_threshold = threshold; 4148 4149 DEBUG_print("initialized:\n"); 4150 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 4151 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 4152 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 4153 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 4154 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 4155 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections)); 4156 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 4157 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 4158 DEBUG_print(" data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT); 4159 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 4160 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 4161 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 4162 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors); 4163 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 4164 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal); 4165 4166 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) { 4167 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 4168 ic->sb->recalc_sector = cpu_to_le64(0); 4169 } 4170 4171 if (ic->internal_hash) { 4172 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1); 4173 if (!ic->recalc_wq ) { 4174 ti->error = "Cannot allocate workqueue"; 4175 r = -ENOMEM; 4176 goto bad; 4177 } 4178 INIT_WORK(&ic->recalc_work, integrity_recalc); 4179 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT); 4180 if (!ic->recalc_buffer) { 4181 ti->error = "Cannot allocate buffer for recalculating"; 4182 r = -ENOMEM; 4183 goto bad; 4184 } 4185 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block, 4186 ic->tag_size, GFP_KERNEL); 4187 if (!ic->recalc_tags) { 4188 ti->error = "Cannot allocate tags for recalculating"; 4189 r = -ENOMEM; 4190 goto bad; 4191 } 4192 } 4193 4194 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev, 4195 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL); 4196 if (IS_ERR(ic->bufio)) { 4197 r = PTR_ERR(ic->bufio); 4198 ti->error = "Cannot initialize dm-bufio"; 4199 ic->bufio = NULL; 4200 goto bad; 4201 } 4202 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 4203 4204 if (ic->mode != 'R') { 4205 r = create_journal(ic, &ti->error); 4206 if (r) 4207 goto bad; 4208 4209 } 4210 4211 if (ic->mode == 'B') { 4212 unsigned i; 4213 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 4214 4215 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4216 if (!ic->recalc_bitmap) { 4217 r = -ENOMEM; 4218 goto bad; 4219 } 4220 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4221 if (!ic->may_write_bitmap) { 4222 r = -ENOMEM; 4223 goto bad; 4224 } 4225 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL); 4226 if (!ic->bbs) { 4227 r = -ENOMEM; 4228 goto bad; 4229 } 4230 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work); 4231 for (i = 0; i < ic->n_bitmap_blocks; i++) { 4232 struct bitmap_block_status *bbs = &ic->bbs[i]; 4233 unsigned sector, pl_index, pl_offset; 4234 4235 INIT_WORK(&bbs->work, bitmap_block_work); 4236 bbs->ic = ic; 4237 bbs->idx = i; 4238 bio_list_init(&bbs->bio_queue); 4239 spin_lock_init(&bbs->bio_queue_lock); 4240 4241 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT); 4242 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 4243 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 4244 4245 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset; 4246 } 4247 } 4248 4249 if (should_write_sb) { 4250 int r; 4251 4252 init_journal(ic, 0, ic->journal_sections, 0); 4253 r = dm_integrity_failed(ic); 4254 if (unlikely(r)) { 4255 ti->error = "Error initializing journal"; 4256 goto bad; 4257 } 4258 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); 4259 if (r) { 4260 ti->error = "Error initializing superblock"; 4261 goto bad; 4262 } 4263 ic->just_formatted = true; 4264 } 4265 4266 if (!ic->meta_dev) { 4267 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 4268 if (r) 4269 goto bad; 4270 } 4271 if (ic->mode == 'B') { 4272 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8); 4273 if (!max_io_len) 4274 max_io_len = 1U << 31; 4275 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len); 4276 if (!ti->max_io_len || ti->max_io_len > max_io_len) { 4277 r = dm_set_target_max_io_len(ti, max_io_len); 4278 if (r) 4279 goto bad; 4280 } 4281 } 4282 4283 if (!ic->internal_hash) 4284 dm_integrity_set(ti, ic); 4285 4286 ti->num_flush_bios = 1; 4287 ti->flush_supported = true; 4288 if (ic->discard) 4289 ti->num_discard_bios = 1; 4290 4291 return 0; 4292 4293 bad: 4294 dm_integrity_dtr(ti); 4295 return r; 4296 } 4297 4298 static void dm_integrity_dtr(struct dm_target *ti) 4299 { 4300 struct dm_integrity_c *ic = ti->private; 4301 4302 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 4303 BUG_ON(!list_empty(&ic->wait_list)); 4304 4305 if (ic->metadata_wq) 4306 destroy_workqueue(ic->metadata_wq); 4307 if (ic->wait_wq) 4308 destroy_workqueue(ic->wait_wq); 4309 if (ic->offload_wq) 4310 destroy_workqueue(ic->offload_wq); 4311 if (ic->commit_wq) 4312 destroy_workqueue(ic->commit_wq); 4313 if (ic->writer_wq) 4314 destroy_workqueue(ic->writer_wq); 4315 if (ic->recalc_wq) 4316 destroy_workqueue(ic->recalc_wq); 4317 vfree(ic->recalc_buffer); 4318 kvfree(ic->recalc_tags); 4319 kvfree(ic->bbs); 4320 if (ic->bufio) 4321 dm_bufio_client_destroy(ic->bufio); 4322 mempool_exit(&ic->journal_io_mempool); 4323 if (ic->io) 4324 dm_io_client_destroy(ic->io); 4325 if (ic->dev) 4326 dm_put_device(ti, ic->dev); 4327 if (ic->meta_dev) 4328 dm_put_device(ti, ic->meta_dev); 4329 dm_integrity_free_page_list(ic->journal); 4330 dm_integrity_free_page_list(ic->journal_io); 4331 dm_integrity_free_page_list(ic->journal_xor); 4332 dm_integrity_free_page_list(ic->recalc_bitmap); 4333 dm_integrity_free_page_list(ic->may_write_bitmap); 4334 if (ic->journal_scatterlist) 4335 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 4336 if (ic->journal_io_scatterlist) 4337 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 4338 if (ic->sk_requests) { 4339 unsigned i; 4340 4341 for (i = 0; i < ic->journal_sections; i++) { 4342 struct skcipher_request *req = ic->sk_requests[i]; 4343 if (req) { 4344 kzfree(req->iv); 4345 skcipher_request_free(req); 4346 } 4347 } 4348 kvfree(ic->sk_requests); 4349 } 4350 kvfree(ic->journal_tree); 4351 if (ic->sb) 4352 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 4353 4354 if (ic->internal_hash) 4355 crypto_free_shash(ic->internal_hash); 4356 free_alg(&ic->internal_hash_alg); 4357 4358 if (ic->journal_crypt) 4359 crypto_free_skcipher(ic->journal_crypt); 4360 free_alg(&ic->journal_crypt_alg); 4361 4362 if (ic->journal_mac) 4363 crypto_free_shash(ic->journal_mac); 4364 free_alg(&ic->journal_mac_alg); 4365 4366 kfree(ic); 4367 } 4368 4369 static struct target_type integrity_target = { 4370 .name = "integrity", 4371 .version = {1, 6, 0}, 4372 .module = THIS_MODULE, 4373 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 4374 .ctr = dm_integrity_ctr, 4375 .dtr = dm_integrity_dtr, 4376 .map = dm_integrity_map, 4377 .postsuspend = dm_integrity_postsuspend, 4378 .resume = dm_integrity_resume, 4379 .status = dm_integrity_status, 4380 .iterate_devices = dm_integrity_iterate_devices, 4381 .io_hints = dm_integrity_io_hints, 4382 }; 4383 4384 static int __init dm_integrity_init(void) 4385 { 4386 int r; 4387 4388 journal_io_cache = kmem_cache_create("integrity_journal_io", 4389 sizeof(struct journal_io), 0, 0, NULL); 4390 if (!journal_io_cache) { 4391 DMERR("can't allocate journal io cache"); 4392 return -ENOMEM; 4393 } 4394 4395 r = dm_register_target(&integrity_target); 4396 4397 if (r < 0) 4398 DMERR("register failed %d", r); 4399 4400 return r; 4401 } 4402 4403 static void __exit dm_integrity_exit(void) 4404 { 4405 dm_unregister_target(&integrity_target); 4406 kmem_cache_destroy(journal_io_cache); 4407 } 4408 4409 module_init(dm_integrity_init); 4410 module_exit(dm_integrity_exit); 4411 4412 MODULE_AUTHOR("Milan Broz"); 4413 MODULE_AUTHOR("Mikulas Patocka"); 4414 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 4415 MODULE_LICENSE("GPL"); 4416