xref: /linux/drivers/md/dm-integrity.c (revision 55223394d56bab42ebac71ba52e0fd8bfdc6fc07)
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include <linux/compiler.h>
10 #include <linux/module.h>
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/vmalloc.h>
14 #include <linux/sort.h>
15 #include <linux/rbtree.h>
16 #include <linux/delay.h>
17 #include <linux/random.h>
18 #include <crypto/hash.h>
19 #include <crypto/skcipher.h>
20 #include <linux/async_tx.h>
21 #include <linux/dm-bufio.h>
22 
23 #define DM_MSG_PREFIX "integrity"
24 
25 #define DEFAULT_INTERLEAVE_SECTORS	32768
26 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
27 #define DEFAULT_BUFFER_SECTORS		128
28 #define DEFAULT_JOURNAL_WATERMARK	50
29 #define DEFAULT_SYNC_MSEC		10000
30 #define DEFAULT_MAX_JOURNAL_SECTORS	131072
31 #define MIN_LOG2_INTERLEAVE_SECTORS	3
32 #define MAX_LOG2_INTERLEAVE_SECTORS	31
33 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
34 #define RECALC_SECTORS			8192
35 #define RECALC_WRITE_SUPER		16
36 
37 /*
38  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
39  * so it should not be enabled in the official kernel
40  */
41 //#define DEBUG_PRINT
42 //#define INTERNAL_VERIFY
43 
44 /*
45  * On disk structures
46  */
47 
48 #define SB_MAGIC			"integrt"
49 #define SB_VERSION_1			1
50 #define SB_VERSION_2			2
51 #define SB_SECTORS			8
52 #define MAX_SECTORS_PER_BLOCK		8
53 
54 struct superblock {
55 	__u8 magic[8];
56 	__u8 version;
57 	__u8 log2_interleave_sectors;
58 	__u16 integrity_tag_size;
59 	__u32 journal_sections;
60 	__u64 provided_data_sectors;	/* userspace uses this value */
61 	__u32 flags;
62 	__u8 log2_sectors_per_block;
63 	__u8 pad[3];
64 	__u64 recalc_sector;
65 };
66 
67 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
68 #define SB_FLAG_RECALCULATING		0x2
69 
70 #define	JOURNAL_ENTRY_ROUNDUP		8
71 
72 typedef __u64 commit_id_t;
73 #define JOURNAL_MAC_PER_SECTOR		8
74 
75 struct journal_entry {
76 	union {
77 		struct {
78 			__u32 sector_lo;
79 			__u32 sector_hi;
80 		} s;
81 		__u64 sector;
82 	} u;
83 	commit_id_t last_bytes[0];
84 	/* __u8 tag[0]; */
85 };
86 
87 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
88 
89 #if BITS_PER_LONG == 64
90 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
91 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
92 #elif defined(CONFIG_LBDAF)
93 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
94 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
95 #else
96 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32(0)); } while (0)
97 #define journal_entry_get_sector(je)		le32_to_cpu((je)->u.s.sector_lo)
98 #endif
99 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
100 #define journal_entry_set_unused(je)		do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
101 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
102 #define journal_entry_set_inprogress(je)	do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
103 
104 #define JOURNAL_BLOCK_SECTORS		8
105 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
106 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
107 
108 struct journal_sector {
109 	__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
110 	__u8 mac[JOURNAL_MAC_PER_SECTOR];
111 	commit_id_t commit_id;
112 };
113 
114 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
115 
116 #define METADATA_PADDING_SECTORS	8
117 
118 #define N_COMMIT_IDS			4
119 
120 static unsigned char prev_commit_seq(unsigned char seq)
121 {
122 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
123 }
124 
125 static unsigned char next_commit_seq(unsigned char seq)
126 {
127 	return (seq + 1) % N_COMMIT_IDS;
128 }
129 
130 /*
131  * In-memory structures
132  */
133 
134 struct journal_node {
135 	struct rb_node node;
136 	sector_t sector;
137 };
138 
139 struct alg_spec {
140 	char *alg_string;
141 	char *key_string;
142 	__u8 *key;
143 	unsigned key_size;
144 };
145 
146 struct dm_integrity_c {
147 	struct dm_dev *dev;
148 	struct dm_dev *meta_dev;
149 	unsigned tag_size;
150 	__s8 log2_tag_size;
151 	sector_t start;
152 	mempool_t journal_io_mempool;
153 	struct dm_io_client *io;
154 	struct dm_bufio_client *bufio;
155 	struct workqueue_struct *metadata_wq;
156 	struct superblock *sb;
157 	unsigned journal_pages;
158 	struct page_list *journal;
159 	struct page_list *journal_io;
160 	struct page_list *journal_xor;
161 
162 	struct crypto_skcipher *journal_crypt;
163 	struct scatterlist **journal_scatterlist;
164 	struct scatterlist **journal_io_scatterlist;
165 	struct skcipher_request **sk_requests;
166 
167 	struct crypto_shash *journal_mac;
168 
169 	struct journal_node *journal_tree;
170 	struct rb_root journal_tree_root;
171 
172 	sector_t provided_data_sectors;
173 
174 	unsigned short journal_entry_size;
175 	unsigned char journal_entries_per_sector;
176 	unsigned char journal_section_entries;
177 	unsigned short journal_section_sectors;
178 	unsigned journal_sections;
179 	unsigned journal_entries;
180 	sector_t data_device_sectors;
181 	sector_t meta_device_sectors;
182 	unsigned initial_sectors;
183 	unsigned metadata_run;
184 	__s8 log2_metadata_run;
185 	__u8 log2_buffer_sectors;
186 	__u8 sectors_per_block;
187 
188 	unsigned char mode;
189 	int suspending;
190 
191 	int failed;
192 
193 	struct crypto_shash *internal_hash;
194 
195 	/* these variables are locked with endio_wait.lock */
196 	struct rb_root in_progress;
197 	struct list_head wait_list;
198 	wait_queue_head_t endio_wait;
199 	struct workqueue_struct *wait_wq;
200 
201 	unsigned char commit_seq;
202 	commit_id_t commit_ids[N_COMMIT_IDS];
203 
204 	unsigned committed_section;
205 	unsigned n_committed_sections;
206 
207 	unsigned uncommitted_section;
208 	unsigned n_uncommitted_sections;
209 
210 	unsigned free_section;
211 	unsigned char free_section_entry;
212 	unsigned free_sectors;
213 
214 	unsigned free_sectors_threshold;
215 
216 	struct workqueue_struct *commit_wq;
217 	struct work_struct commit_work;
218 
219 	struct workqueue_struct *writer_wq;
220 	struct work_struct writer_work;
221 
222 	struct workqueue_struct *recalc_wq;
223 	struct work_struct recalc_work;
224 	u8 *recalc_buffer;
225 	u8 *recalc_tags;
226 
227 	struct bio_list flush_bio_list;
228 
229 	unsigned long autocommit_jiffies;
230 	struct timer_list autocommit_timer;
231 	unsigned autocommit_msec;
232 
233 	wait_queue_head_t copy_to_journal_wait;
234 
235 	struct completion crypto_backoff;
236 
237 	bool journal_uptodate;
238 	bool just_formatted;
239 
240 	struct alg_spec internal_hash_alg;
241 	struct alg_spec journal_crypt_alg;
242 	struct alg_spec journal_mac_alg;
243 
244 	atomic64_t number_of_mismatches;
245 };
246 
247 struct dm_integrity_range {
248 	sector_t logical_sector;
249 	unsigned n_sectors;
250 	bool waiting;
251 	union {
252 		struct rb_node node;
253 		struct {
254 			struct task_struct *task;
255 			struct list_head wait_entry;
256 		};
257 	};
258 };
259 
260 struct dm_integrity_io {
261 	struct work_struct work;
262 
263 	struct dm_integrity_c *ic;
264 	bool write;
265 	bool fua;
266 
267 	struct dm_integrity_range range;
268 
269 	sector_t metadata_block;
270 	unsigned metadata_offset;
271 
272 	atomic_t in_flight;
273 	blk_status_t bi_status;
274 
275 	struct completion *completion;
276 
277 	struct gendisk *orig_bi_disk;
278 	u8 orig_bi_partno;
279 	bio_end_io_t *orig_bi_end_io;
280 	struct bio_integrity_payload *orig_bi_integrity;
281 	struct bvec_iter orig_bi_iter;
282 };
283 
284 struct journal_completion {
285 	struct dm_integrity_c *ic;
286 	atomic_t in_flight;
287 	struct completion comp;
288 };
289 
290 struct journal_io {
291 	struct dm_integrity_range range;
292 	struct journal_completion *comp;
293 };
294 
295 static struct kmem_cache *journal_io_cache;
296 
297 #define JOURNAL_IO_MEMPOOL	32
298 
299 #ifdef DEBUG_PRINT
300 #define DEBUG_print(x, ...)	printk(KERN_DEBUG x, ##__VA_ARGS__)
301 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
302 {
303 	va_list args;
304 	va_start(args, msg);
305 	vprintk(msg, args);
306 	va_end(args);
307 	if (len)
308 		pr_cont(":");
309 	while (len) {
310 		pr_cont(" %02x", *bytes);
311 		bytes++;
312 		len--;
313 	}
314 	pr_cont("\n");
315 }
316 #define DEBUG_bytes(bytes, len, msg, ...)	__DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
317 #else
318 #define DEBUG_print(x, ...)			do { } while (0)
319 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
320 #endif
321 
322 /*
323  * DM Integrity profile, protection is performed layer above (dm-crypt)
324  */
325 static const struct blk_integrity_profile dm_integrity_profile = {
326 	.name			= "DM-DIF-EXT-TAG",
327 	.generate_fn		= NULL,
328 	.verify_fn		= NULL,
329 };
330 
331 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
332 static void integrity_bio_wait(struct work_struct *w);
333 static void dm_integrity_dtr(struct dm_target *ti);
334 
335 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
336 {
337 	if (err == -EILSEQ)
338 		atomic64_inc(&ic->number_of_mismatches);
339 	if (!cmpxchg(&ic->failed, 0, err))
340 		DMERR("Error on %s: %d", msg, err);
341 }
342 
343 static int dm_integrity_failed(struct dm_integrity_c *ic)
344 {
345 	return READ_ONCE(ic->failed);
346 }
347 
348 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
349 					  unsigned j, unsigned char seq)
350 {
351 	/*
352 	 * Xor the number with section and sector, so that if a piece of
353 	 * journal is written at wrong place, it is detected.
354 	 */
355 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
356 }
357 
358 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
359 				sector_t *area, sector_t *offset)
360 {
361 	if (!ic->meta_dev) {
362 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
363 		*area = data_sector >> log2_interleave_sectors;
364 		*offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
365 	} else {
366 		*area = 0;
367 		*offset = data_sector;
368 	}
369 }
370 
371 #define sector_to_block(ic, n)						\
372 do {									\
373 	BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));		\
374 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
375 } while (0)
376 
377 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
378 					    sector_t offset, unsigned *metadata_offset)
379 {
380 	__u64 ms;
381 	unsigned mo;
382 
383 	ms = area << ic->sb->log2_interleave_sectors;
384 	if (likely(ic->log2_metadata_run >= 0))
385 		ms += area << ic->log2_metadata_run;
386 	else
387 		ms += area * ic->metadata_run;
388 	ms >>= ic->log2_buffer_sectors;
389 
390 	sector_to_block(ic, offset);
391 
392 	if (likely(ic->log2_tag_size >= 0)) {
393 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
394 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
395 	} else {
396 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
397 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
398 	}
399 	*metadata_offset = mo;
400 	return ms;
401 }
402 
403 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
404 {
405 	sector_t result;
406 
407 	if (ic->meta_dev)
408 		return offset;
409 
410 	result = area << ic->sb->log2_interleave_sectors;
411 	if (likely(ic->log2_metadata_run >= 0))
412 		result += (area + 1) << ic->log2_metadata_run;
413 	else
414 		result += (area + 1) * ic->metadata_run;
415 
416 	result += (sector_t)ic->initial_sectors + offset;
417 	result += ic->start;
418 
419 	return result;
420 }
421 
422 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
423 {
424 	if (unlikely(*sec_ptr >= ic->journal_sections))
425 		*sec_ptr -= ic->journal_sections;
426 }
427 
428 static void sb_set_version(struct dm_integrity_c *ic)
429 {
430 	if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
431 		ic->sb->version = SB_VERSION_2;
432 	else
433 		ic->sb->version = SB_VERSION_1;
434 }
435 
436 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
437 {
438 	struct dm_io_request io_req;
439 	struct dm_io_region io_loc;
440 
441 	io_req.bi_op = op;
442 	io_req.bi_op_flags = op_flags;
443 	io_req.mem.type = DM_IO_KMEM;
444 	io_req.mem.ptr.addr = ic->sb;
445 	io_req.notify.fn = NULL;
446 	io_req.client = ic->io;
447 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
448 	io_loc.sector = ic->start;
449 	io_loc.count = SB_SECTORS;
450 
451 	return dm_io(&io_req, 1, &io_loc, NULL);
452 }
453 
454 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
455 				 bool e, const char *function)
456 {
457 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
458 	unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
459 
460 	if (unlikely(section >= ic->journal_sections) ||
461 	    unlikely(offset >= limit)) {
462 		printk(KERN_CRIT "%s: invalid access at (%u,%u), limit (%u,%u)\n",
463 			function, section, offset, ic->journal_sections, limit);
464 		BUG();
465 	}
466 #endif
467 }
468 
469 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
470 			       unsigned *pl_index, unsigned *pl_offset)
471 {
472 	unsigned sector;
473 
474 	access_journal_check(ic, section, offset, false, "page_list_location");
475 
476 	sector = section * ic->journal_section_sectors + offset;
477 
478 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
479 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
480 }
481 
482 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
483 					       unsigned section, unsigned offset, unsigned *n_sectors)
484 {
485 	unsigned pl_index, pl_offset;
486 	char *va;
487 
488 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
489 
490 	if (n_sectors)
491 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
492 
493 	va = lowmem_page_address(pl[pl_index].page);
494 
495 	return (struct journal_sector *)(va + pl_offset);
496 }
497 
498 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
499 {
500 	return access_page_list(ic, ic->journal, section, offset, NULL);
501 }
502 
503 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
504 {
505 	unsigned rel_sector, offset;
506 	struct journal_sector *js;
507 
508 	access_journal_check(ic, section, n, true, "access_journal_entry");
509 
510 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
511 	offset = n / JOURNAL_BLOCK_SECTORS;
512 
513 	js = access_journal(ic, section, rel_sector);
514 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
515 }
516 
517 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
518 {
519 	n <<= ic->sb->log2_sectors_per_block;
520 
521 	n += JOURNAL_BLOCK_SECTORS;
522 
523 	access_journal_check(ic, section, n, false, "access_journal_data");
524 
525 	return access_journal(ic, section, n);
526 }
527 
528 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
529 {
530 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
531 	int r;
532 	unsigned j, size;
533 
534 	desc->tfm = ic->journal_mac;
535 	desc->flags = 0;
536 
537 	r = crypto_shash_init(desc);
538 	if (unlikely(r)) {
539 		dm_integrity_io_error(ic, "crypto_shash_init", r);
540 		goto err;
541 	}
542 
543 	for (j = 0; j < ic->journal_section_entries; j++) {
544 		struct journal_entry *je = access_journal_entry(ic, section, j);
545 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
546 		if (unlikely(r)) {
547 			dm_integrity_io_error(ic, "crypto_shash_update", r);
548 			goto err;
549 		}
550 	}
551 
552 	size = crypto_shash_digestsize(ic->journal_mac);
553 
554 	if (likely(size <= JOURNAL_MAC_SIZE)) {
555 		r = crypto_shash_final(desc, result);
556 		if (unlikely(r)) {
557 			dm_integrity_io_error(ic, "crypto_shash_final", r);
558 			goto err;
559 		}
560 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
561 	} else {
562 		__u8 digest[HASH_MAX_DIGESTSIZE];
563 
564 		if (WARN_ON(size > sizeof(digest))) {
565 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
566 			goto err;
567 		}
568 		r = crypto_shash_final(desc, digest);
569 		if (unlikely(r)) {
570 			dm_integrity_io_error(ic, "crypto_shash_final", r);
571 			goto err;
572 		}
573 		memcpy(result, digest, JOURNAL_MAC_SIZE);
574 	}
575 
576 	return;
577 err:
578 	memset(result, 0, JOURNAL_MAC_SIZE);
579 }
580 
581 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
582 {
583 	__u8 result[JOURNAL_MAC_SIZE];
584 	unsigned j;
585 
586 	if (!ic->journal_mac)
587 		return;
588 
589 	section_mac(ic, section, result);
590 
591 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
592 		struct journal_sector *js = access_journal(ic, section, j);
593 
594 		if (likely(wr))
595 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
596 		else {
597 			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
598 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
599 		}
600 	}
601 }
602 
603 static void complete_journal_op(void *context)
604 {
605 	struct journal_completion *comp = context;
606 	BUG_ON(!atomic_read(&comp->in_flight));
607 	if (likely(atomic_dec_and_test(&comp->in_flight)))
608 		complete(&comp->comp);
609 }
610 
611 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
612 			unsigned n_sections, struct journal_completion *comp)
613 {
614 	struct async_submit_ctl submit;
615 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
616 	unsigned pl_index, pl_offset, section_index;
617 	struct page_list *source_pl, *target_pl;
618 
619 	if (likely(encrypt)) {
620 		source_pl = ic->journal;
621 		target_pl = ic->journal_io;
622 	} else {
623 		source_pl = ic->journal_io;
624 		target_pl = ic->journal;
625 	}
626 
627 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
628 
629 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
630 
631 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
632 
633 	section_index = pl_index;
634 
635 	do {
636 		size_t this_step;
637 		struct page *src_pages[2];
638 		struct page *dst_page;
639 
640 		while (unlikely(pl_index == section_index)) {
641 			unsigned dummy;
642 			if (likely(encrypt))
643 				rw_section_mac(ic, section, true);
644 			section++;
645 			n_sections--;
646 			if (!n_sections)
647 				break;
648 			page_list_location(ic, section, 0, &section_index, &dummy);
649 		}
650 
651 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
652 		dst_page = target_pl[pl_index].page;
653 		src_pages[0] = source_pl[pl_index].page;
654 		src_pages[1] = ic->journal_xor[pl_index].page;
655 
656 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
657 
658 		pl_index++;
659 		pl_offset = 0;
660 		n_bytes -= this_step;
661 	} while (n_bytes);
662 
663 	BUG_ON(n_sections);
664 
665 	async_tx_issue_pending_all();
666 }
667 
668 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
669 {
670 	struct journal_completion *comp = req->data;
671 	if (unlikely(err)) {
672 		if (likely(err == -EINPROGRESS)) {
673 			complete(&comp->ic->crypto_backoff);
674 			return;
675 		}
676 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
677 	}
678 	complete_journal_op(comp);
679 }
680 
681 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
682 {
683 	int r;
684 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
685 				      complete_journal_encrypt, comp);
686 	if (likely(encrypt))
687 		r = crypto_skcipher_encrypt(req);
688 	else
689 		r = crypto_skcipher_decrypt(req);
690 	if (likely(!r))
691 		return false;
692 	if (likely(r == -EINPROGRESS))
693 		return true;
694 	if (likely(r == -EBUSY)) {
695 		wait_for_completion(&comp->ic->crypto_backoff);
696 		reinit_completion(&comp->ic->crypto_backoff);
697 		return true;
698 	}
699 	dm_integrity_io_error(comp->ic, "encrypt", r);
700 	return false;
701 }
702 
703 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
704 			  unsigned n_sections, struct journal_completion *comp)
705 {
706 	struct scatterlist **source_sg;
707 	struct scatterlist **target_sg;
708 
709 	atomic_add(2, &comp->in_flight);
710 
711 	if (likely(encrypt)) {
712 		source_sg = ic->journal_scatterlist;
713 		target_sg = ic->journal_io_scatterlist;
714 	} else {
715 		source_sg = ic->journal_io_scatterlist;
716 		target_sg = ic->journal_scatterlist;
717 	}
718 
719 	do {
720 		struct skcipher_request *req;
721 		unsigned ivsize;
722 		char *iv;
723 
724 		if (likely(encrypt))
725 			rw_section_mac(ic, section, true);
726 
727 		req = ic->sk_requests[section];
728 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
729 		iv = req->iv;
730 
731 		memcpy(iv, iv + ivsize, ivsize);
732 
733 		req->src = source_sg[section];
734 		req->dst = target_sg[section];
735 
736 		if (unlikely(do_crypt(encrypt, req, comp)))
737 			atomic_inc(&comp->in_flight);
738 
739 		section++;
740 		n_sections--;
741 	} while (n_sections);
742 
743 	atomic_dec(&comp->in_flight);
744 	complete_journal_op(comp);
745 }
746 
747 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
748 			    unsigned n_sections, struct journal_completion *comp)
749 {
750 	if (ic->journal_xor)
751 		return xor_journal(ic, encrypt, section, n_sections, comp);
752 	else
753 		return crypt_journal(ic, encrypt, section, n_sections, comp);
754 }
755 
756 static void complete_journal_io(unsigned long error, void *context)
757 {
758 	struct journal_completion *comp = context;
759 	if (unlikely(error != 0))
760 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
761 	complete_journal_op(comp);
762 }
763 
764 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
765 		       unsigned n_sections, struct journal_completion *comp)
766 {
767 	struct dm_io_request io_req;
768 	struct dm_io_region io_loc;
769 	unsigned sector, n_sectors, pl_index, pl_offset;
770 	int r;
771 
772 	if (unlikely(dm_integrity_failed(ic))) {
773 		if (comp)
774 			complete_journal_io(-1UL, comp);
775 		return;
776 	}
777 
778 	sector = section * ic->journal_section_sectors;
779 	n_sectors = n_sections * ic->journal_section_sectors;
780 
781 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
782 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
783 
784 	io_req.bi_op = op;
785 	io_req.bi_op_flags = op_flags;
786 	io_req.mem.type = DM_IO_PAGE_LIST;
787 	if (ic->journal_io)
788 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
789 	else
790 		io_req.mem.ptr.pl = &ic->journal[pl_index];
791 	io_req.mem.offset = pl_offset;
792 	if (likely(comp != NULL)) {
793 		io_req.notify.fn = complete_journal_io;
794 		io_req.notify.context = comp;
795 	} else {
796 		io_req.notify.fn = NULL;
797 	}
798 	io_req.client = ic->io;
799 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
800 	io_loc.sector = ic->start + SB_SECTORS + sector;
801 	io_loc.count = n_sectors;
802 
803 	r = dm_io(&io_req, 1, &io_loc, NULL);
804 	if (unlikely(r)) {
805 		dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
806 		if (comp) {
807 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
808 			complete_journal_io(-1UL, comp);
809 		}
810 	}
811 }
812 
813 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
814 {
815 	struct journal_completion io_comp;
816 	struct journal_completion crypt_comp_1;
817 	struct journal_completion crypt_comp_2;
818 	unsigned i;
819 
820 	io_comp.ic = ic;
821 	init_completion(&io_comp.comp);
822 
823 	if (commit_start + commit_sections <= ic->journal_sections) {
824 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
825 		if (ic->journal_io) {
826 			crypt_comp_1.ic = ic;
827 			init_completion(&crypt_comp_1.comp);
828 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
829 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
830 			wait_for_completion_io(&crypt_comp_1.comp);
831 		} else {
832 			for (i = 0; i < commit_sections; i++)
833 				rw_section_mac(ic, commit_start + i, true);
834 		}
835 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
836 			   commit_sections, &io_comp);
837 	} else {
838 		unsigned to_end;
839 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
840 		to_end = ic->journal_sections - commit_start;
841 		if (ic->journal_io) {
842 			crypt_comp_1.ic = ic;
843 			init_completion(&crypt_comp_1.comp);
844 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
845 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
846 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
847 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
848 				reinit_completion(&crypt_comp_1.comp);
849 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
850 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
851 				wait_for_completion_io(&crypt_comp_1.comp);
852 			} else {
853 				crypt_comp_2.ic = ic;
854 				init_completion(&crypt_comp_2.comp);
855 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
856 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
857 				wait_for_completion_io(&crypt_comp_1.comp);
858 				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
859 				wait_for_completion_io(&crypt_comp_2.comp);
860 			}
861 		} else {
862 			for (i = 0; i < to_end; i++)
863 				rw_section_mac(ic, commit_start + i, true);
864 			rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
865 			for (i = 0; i < commit_sections - to_end; i++)
866 				rw_section_mac(ic, i, true);
867 		}
868 		rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
869 	}
870 
871 	wait_for_completion_io(&io_comp.comp);
872 }
873 
874 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
875 			      unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
876 {
877 	struct dm_io_request io_req;
878 	struct dm_io_region io_loc;
879 	int r;
880 	unsigned sector, pl_index, pl_offset;
881 
882 	BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
883 
884 	if (unlikely(dm_integrity_failed(ic))) {
885 		fn(-1UL, data);
886 		return;
887 	}
888 
889 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
890 
891 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
892 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
893 
894 	io_req.bi_op = REQ_OP_WRITE;
895 	io_req.bi_op_flags = 0;
896 	io_req.mem.type = DM_IO_PAGE_LIST;
897 	io_req.mem.ptr.pl = &ic->journal[pl_index];
898 	io_req.mem.offset = pl_offset;
899 	io_req.notify.fn = fn;
900 	io_req.notify.context = data;
901 	io_req.client = ic->io;
902 	io_loc.bdev = ic->dev->bdev;
903 	io_loc.sector = target;
904 	io_loc.count = n_sectors;
905 
906 	r = dm_io(&io_req, 1, &io_loc, NULL);
907 	if (unlikely(r)) {
908 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
909 		fn(-1UL, data);
910 	}
911 }
912 
913 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
914 {
915 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
916 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
917 }
918 
919 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
920 {
921 	struct rb_node **n = &ic->in_progress.rb_node;
922 	struct rb_node *parent;
923 
924 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
925 
926 	if (likely(check_waiting)) {
927 		struct dm_integrity_range *range;
928 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
929 			if (unlikely(ranges_overlap(range, new_range)))
930 				return false;
931 		}
932 	}
933 
934 	parent = NULL;
935 
936 	while (*n) {
937 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
938 
939 		parent = *n;
940 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
941 			n = &range->node.rb_left;
942 		} else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
943 			n = &range->node.rb_right;
944 		} else {
945 			return false;
946 		}
947 	}
948 
949 	rb_link_node(&new_range->node, parent, n);
950 	rb_insert_color(&new_range->node, &ic->in_progress);
951 
952 	return true;
953 }
954 
955 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
956 {
957 	rb_erase(&range->node, &ic->in_progress);
958 	while (unlikely(!list_empty(&ic->wait_list))) {
959 		struct dm_integrity_range *last_range =
960 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
961 		struct task_struct *last_range_task;
962 		last_range_task = last_range->task;
963 		list_del(&last_range->wait_entry);
964 		if (!add_new_range(ic, last_range, false)) {
965 			last_range->task = last_range_task;
966 			list_add(&last_range->wait_entry, &ic->wait_list);
967 			break;
968 		}
969 		last_range->waiting = false;
970 		wake_up_process(last_range_task);
971 	}
972 }
973 
974 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
975 {
976 	unsigned long flags;
977 
978 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
979 	remove_range_unlocked(ic, range);
980 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
981 }
982 
983 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
984 {
985 	new_range->waiting = true;
986 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
987 	new_range->task = current;
988 	do {
989 		__set_current_state(TASK_UNINTERRUPTIBLE);
990 		spin_unlock_irq(&ic->endio_wait.lock);
991 		io_schedule();
992 		spin_lock_irq(&ic->endio_wait.lock);
993 	} while (unlikely(new_range->waiting));
994 }
995 
996 static void init_journal_node(struct journal_node *node)
997 {
998 	RB_CLEAR_NODE(&node->node);
999 	node->sector = (sector_t)-1;
1000 }
1001 
1002 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1003 {
1004 	struct rb_node **link;
1005 	struct rb_node *parent;
1006 
1007 	node->sector = sector;
1008 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1009 
1010 	link = &ic->journal_tree_root.rb_node;
1011 	parent = NULL;
1012 
1013 	while (*link) {
1014 		struct journal_node *j;
1015 		parent = *link;
1016 		j = container_of(parent, struct journal_node, node);
1017 		if (sector < j->sector)
1018 			link = &j->node.rb_left;
1019 		else
1020 			link = &j->node.rb_right;
1021 	}
1022 
1023 	rb_link_node(&node->node, parent, link);
1024 	rb_insert_color(&node->node, &ic->journal_tree_root);
1025 }
1026 
1027 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1028 {
1029 	BUG_ON(RB_EMPTY_NODE(&node->node));
1030 	rb_erase(&node->node, &ic->journal_tree_root);
1031 	init_journal_node(node);
1032 }
1033 
1034 #define NOT_FOUND	(-1U)
1035 
1036 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1037 {
1038 	struct rb_node *n = ic->journal_tree_root.rb_node;
1039 	unsigned found = NOT_FOUND;
1040 	*next_sector = (sector_t)-1;
1041 	while (n) {
1042 		struct journal_node *j = container_of(n, struct journal_node, node);
1043 		if (sector == j->sector) {
1044 			found = j - ic->journal_tree;
1045 		}
1046 		if (sector < j->sector) {
1047 			*next_sector = j->sector;
1048 			n = j->node.rb_left;
1049 		} else {
1050 			n = j->node.rb_right;
1051 		}
1052 	}
1053 
1054 	return found;
1055 }
1056 
1057 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1058 {
1059 	struct journal_node *node, *next_node;
1060 	struct rb_node *next;
1061 
1062 	if (unlikely(pos >= ic->journal_entries))
1063 		return false;
1064 	node = &ic->journal_tree[pos];
1065 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1066 		return false;
1067 	if (unlikely(node->sector != sector))
1068 		return false;
1069 
1070 	next = rb_next(&node->node);
1071 	if (unlikely(!next))
1072 		return true;
1073 
1074 	next_node = container_of(next, struct journal_node, node);
1075 	return next_node->sector != sector;
1076 }
1077 
1078 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1079 {
1080 	struct rb_node *next;
1081 	struct journal_node *next_node;
1082 	unsigned next_section;
1083 
1084 	BUG_ON(RB_EMPTY_NODE(&node->node));
1085 
1086 	next = rb_next(&node->node);
1087 	if (unlikely(!next))
1088 		return false;
1089 
1090 	next_node = container_of(next, struct journal_node, node);
1091 
1092 	if (next_node->sector != node->sector)
1093 		return false;
1094 
1095 	next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1096 	if (next_section >= ic->committed_section &&
1097 	    next_section < ic->committed_section + ic->n_committed_sections)
1098 		return true;
1099 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1100 		return true;
1101 
1102 	return false;
1103 }
1104 
1105 #define TAG_READ	0
1106 #define TAG_WRITE	1
1107 #define TAG_CMP		2
1108 
1109 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1110 			       unsigned *metadata_offset, unsigned total_size, int op)
1111 {
1112 	do {
1113 		unsigned char *data, *dp;
1114 		struct dm_buffer *b;
1115 		unsigned to_copy;
1116 		int r;
1117 
1118 		r = dm_integrity_failed(ic);
1119 		if (unlikely(r))
1120 			return r;
1121 
1122 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1123 		if (IS_ERR(data))
1124 			return PTR_ERR(data);
1125 
1126 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1127 		dp = data + *metadata_offset;
1128 		if (op == TAG_READ) {
1129 			memcpy(tag, dp, to_copy);
1130 		} else if (op == TAG_WRITE) {
1131 			memcpy(dp, tag, to_copy);
1132 			dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1133 		} else  {
1134 			/* e.g.: op == TAG_CMP */
1135 			if (unlikely(memcmp(dp, tag, to_copy))) {
1136 				unsigned i;
1137 
1138 				for (i = 0; i < to_copy; i++) {
1139 					if (dp[i] != tag[i])
1140 						break;
1141 					total_size--;
1142 				}
1143 				dm_bufio_release(b);
1144 				return total_size;
1145 			}
1146 		}
1147 		dm_bufio_release(b);
1148 
1149 		tag += to_copy;
1150 		*metadata_offset += to_copy;
1151 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1152 			(*metadata_block)++;
1153 			*metadata_offset = 0;
1154 		}
1155 		total_size -= to_copy;
1156 	} while (unlikely(total_size));
1157 
1158 	return 0;
1159 }
1160 
1161 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1162 {
1163 	int r;
1164 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1165 	if (unlikely(r))
1166 		dm_integrity_io_error(ic, "writing tags", r);
1167 }
1168 
1169 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1170 {
1171 	DECLARE_WAITQUEUE(wait, current);
1172 	__add_wait_queue(&ic->endio_wait, &wait);
1173 	__set_current_state(TASK_UNINTERRUPTIBLE);
1174 	spin_unlock_irq(&ic->endio_wait.lock);
1175 	io_schedule();
1176 	spin_lock_irq(&ic->endio_wait.lock);
1177 	__remove_wait_queue(&ic->endio_wait, &wait);
1178 }
1179 
1180 static void autocommit_fn(struct timer_list *t)
1181 {
1182 	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1183 
1184 	if (likely(!dm_integrity_failed(ic)))
1185 		queue_work(ic->commit_wq, &ic->commit_work);
1186 }
1187 
1188 static void schedule_autocommit(struct dm_integrity_c *ic)
1189 {
1190 	if (!timer_pending(&ic->autocommit_timer))
1191 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1192 }
1193 
1194 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1195 {
1196 	struct bio *bio;
1197 	unsigned long flags;
1198 
1199 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1200 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1201 	bio_list_add(&ic->flush_bio_list, bio);
1202 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1203 
1204 	queue_work(ic->commit_wq, &ic->commit_work);
1205 }
1206 
1207 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1208 {
1209 	int r = dm_integrity_failed(ic);
1210 	if (unlikely(r) && !bio->bi_status)
1211 		bio->bi_status = errno_to_blk_status(r);
1212 	bio_endio(bio);
1213 }
1214 
1215 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1216 {
1217 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1218 
1219 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1220 		submit_flush_bio(ic, dio);
1221 	else
1222 		do_endio(ic, bio);
1223 }
1224 
1225 static void dec_in_flight(struct dm_integrity_io *dio)
1226 {
1227 	if (atomic_dec_and_test(&dio->in_flight)) {
1228 		struct dm_integrity_c *ic = dio->ic;
1229 		struct bio *bio;
1230 
1231 		remove_range(ic, &dio->range);
1232 
1233 		if (unlikely(dio->write))
1234 			schedule_autocommit(ic);
1235 
1236 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1237 
1238 		if (unlikely(dio->bi_status) && !bio->bi_status)
1239 			bio->bi_status = dio->bi_status;
1240 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1241 			dio->range.logical_sector += dio->range.n_sectors;
1242 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1243 			INIT_WORK(&dio->work, integrity_bio_wait);
1244 			queue_work(ic->wait_wq, &dio->work);
1245 			return;
1246 		}
1247 		do_endio_flush(ic, dio);
1248 	}
1249 }
1250 
1251 static void integrity_end_io(struct bio *bio)
1252 {
1253 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1254 
1255 	bio->bi_iter = dio->orig_bi_iter;
1256 	bio->bi_disk = dio->orig_bi_disk;
1257 	bio->bi_partno = dio->orig_bi_partno;
1258 	if (dio->orig_bi_integrity) {
1259 		bio->bi_integrity = dio->orig_bi_integrity;
1260 		bio->bi_opf |= REQ_INTEGRITY;
1261 	}
1262 	bio->bi_end_io = dio->orig_bi_end_io;
1263 
1264 	if (dio->completion)
1265 		complete(dio->completion);
1266 
1267 	dec_in_flight(dio);
1268 }
1269 
1270 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1271 				      const char *data, char *result)
1272 {
1273 	__u64 sector_le = cpu_to_le64(sector);
1274 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1275 	int r;
1276 	unsigned digest_size;
1277 
1278 	req->tfm = ic->internal_hash;
1279 	req->flags = 0;
1280 
1281 	r = crypto_shash_init(req);
1282 	if (unlikely(r < 0)) {
1283 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1284 		goto failed;
1285 	}
1286 
1287 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1288 	if (unlikely(r < 0)) {
1289 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1290 		goto failed;
1291 	}
1292 
1293 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1294 	if (unlikely(r < 0)) {
1295 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1296 		goto failed;
1297 	}
1298 
1299 	r = crypto_shash_final(req, result);
1300 	if (unlikely(r < 0)) {
1301 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1302 		goto failed;
1303 	}
1304 
1305 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1306 	if (unlikely(digest_size < ic->tag_size))
1307 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1308 
1309 	return;
1310 
1311 failed:
1312 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1313 	get_random_bytes(result, ic->tag_size);
1314 }
1315 
1316 static void integrity_metadata(struct work_struct *w)
1317 {
1318 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1319 	struct dm_integrity_c *ic = dio->ic;
1320 
1321 	int r;
1322 
1323 	if (ic->internal_hash) {
1324 		struct bvec_iter iter;
1325 		struct bio_vec bv;
1326 		unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1327 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1328 		char *checksums;
1329 		unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1330 		char checksums_onstack[HASH_MAX_DIGESTSIZE];
1331 		unsigned sectors_to_process = dio->range.n_sectors;
1332 		sector_t sector = dio->range.logical_sector;
1333 
1334 		if (unlikely(ic->mode == 'R'))
1335 			goto skip_io;
1336 
1337 		checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1338 				    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1339 		if (!checksums) {
1340 			checksums = checksums_onstack;
1341 			if (WARN_ON(extra_space &&
1342 				    digest_size > sizeof(checksums_onstack))) {
1343 				r = -EINVAL;
1344 				goto error;
1345 			}
1346 		}
1347 
1348 		__bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) {
1349 			unsigned pos;
1350 			char *mem, *checksums_ptr;
1351 
1352 again:
1353 			mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1354 			pos = 0;
1355 			checksums_ptr = checksums;
1356 			do {
1357 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1358 				checksums_ptr += ic->tag_size;
1359 				sectors_to_process -= ic->sectors_per_block;
1360 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1361 				sector += ic->sectors_per_block;
1362 			} while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1363 			kunmap_atomic(mem);
1364 
1365 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1366 						checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
1367 			if (unlikely(r)) {
1368 				if (r > 0) {
1369 					DMERR_LIMIT("Checksum failed at sector 0x%llx",
1370 						    (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1371 					r = -EILSEQ;
1372 					atomic64_inc(&ic->number_of_mismatches);
1373 				}
1374 				if (likely(checksums != checksums_onstack))
1375 					kfree(checksums);
1376 				goto error;
1377 			}
1378 
1379 			if (!sectors_to_process)
1380 				break;
1381 
1382 			if (unlikely(pos < bv.bv_len)) {
1383 				bv.bv_offset += pos;
1384 				bv.bv_len -= pos;
1385 				goto again;
1386 			}
1387 		}
1388 
1389 		if (likely(checksums != checksums_onstack))
1390 			kfree(checksums);
1391 	} else {
1392 		struct bio_integrity_payload *bip = dio->orig_bi_integrity;
1393 
1394 		if (bip) {
1395 			struct bio_vec biv;
1396 			struct bvec_iter iter;
1397 			unsigned data_to_process = dio->range.n_sectors;
1398 			sector_to_block(ic, data_to_process);
1399 			data_to_process *= ic->tag_size;
1400 
1401 			bip_for_each_vec(biv, bip, iter) {
1402 				unsigned char *tag;
1403 				unsigned this_len;
1404 
1405 				BUG_ON(PageHighMem(biv.bv_page));
1406 				tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1407 				this_len = min(biv.bv_len, data_to_process);
1408 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1409 							this_len, !dio->write ? TAG_READ : TAG_WRITE);
1410 				if (unlikely(r))
1411 					goto error;
1412 				data_to_process -= this_len;
1413 				if (!data_to_process)
1414 					break;
1415 			}
1416 		}
1417 	}
1418 skip_io:
1419 	dec_in_flight(dio);
1420 	return;
1421 error:
1422 	dio->bi_status = errno_to_blk_status(r);
1423 	dec_in_flight(dio);
1424 }
1425 
1426 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1427 {
1428 	struct dm_integrity_c *ic = ti->private;
1429 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1430 	struct bio_integrity_payload *bip;
1431 
1432 	sector_t area, offset;
1433 
1434 	dio->ic = ic;
1435 	dio->bi_status = 0;
1436 
1437 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1438 		submit_flush_bio(ic, dio);
1439 		return DM_MAPIO_SUBMITTED;
1440 	}
1441 
1442 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1443 	dio->write = bio_op(bio) == REQ_OP_WRITE;
1444 	dio->fua = dio->write && bio->bi_opf & REQ_FUA;
1445 	if (unlikely(dio->fua)) {
1446 		/*
1447 		 * Don't pass down the FUA flag because we have to flush
1448 		 * disk cache anyway.
1449 		 */
1450 		bio->bi_opf &= ~REQ_FUA;
1451 	}
1452 	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1453 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1454 		      (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
1455 		      (unsigned long long)ic->provided_data_sectors);
1456 		return DM_MAPIO_KILL;
1457 	}
1458 	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1459 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1460 		      ic->sectors_per_block,
1461 		      (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
1462 		return DM_MAPIO_KILL;
1463 	}
1464 
1465 	if (ic->sectors_per_block > 1) {
1466 		struct bvec_iter iter;
1467 		struct bio_vec bv;
1468 		bio_for_each_segment(bv, bio, iter) {
1469 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1470 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1471 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1472 				return DM_MAPIO_KILL;
1473 			}
1474 		}
1475 	}
1476 
1477 	bip = bio_integrity(bio);
1478 	if (!ic->internal_hash) {
1479 		if (bip) {
1480 			unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1481 			if (ic->log2_tag_size >= 0)
1482 				wanted_tag_size <<= ic->log2_tag_size;
1483 			else
1484 				wanted_tag_size *= ic->tag_size;
1485 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1486 				DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size);
1487 				return DM_MAPIO_KILL;
1488 			}
1489 		}
1490 	} else {
1491 		if (unlikely(bip != NULL)) {
1492 			DMERR("Unexpected integrity data when using internal hash");
1493 			return DM_MAPIO_KILL;
1494 		}
1495 	}
1496 
1497 	if (unlikely(ic->mode == 'R') && unlikely(dio->write))
1498 		return DM_MAPIO_KILL;
1499 
1500 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1501 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1502 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1503 
1504 	dm_integrity_map_continue(dio, true);
1505 	return DM_MAPIO_SUBMITTED;
1506 }
1507 
1508 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1509 				 unsigned journal_section, unsigned journal_entry)
1510 {
1511 	struct dm_integrity_c *ic = dio->ic;
1512 	sector_t logical_sector;
1513 	unsigned n_sectors;
1514 
1515 	logical_sector = dio->range.logical_sector;
1516 	n_sectors = dio->range.n_sectors;
1517 	do {
1518 		struct bio_vec bv = bio_iovec(bio);
1519 		char *mem;
1520 
1521 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1522 			bv.bv_len = n_sectors << SECTOR_SHIFT;
1523 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1524 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1525 retry_kmap:
1526 		mem = kmap_atomic(bv.bv_page);
1527 		if (likely(dio->write))
1528 			flush_dcache_page(bv.bv_page);
1529 
1530 		do {
1531 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1532 
1533 			if (unlikely(!dio->write)) {
1534 				struct journal_sector *js;
1535 				char *mem_ptr;
1536 				unsigned s;
1537 
1538 				if (unlikely(journal_entry_is_inprogress(je))) {
1539 					flush_dcache_page(bv.bv_page);
1540 					kunmap_atomic(mem);
1541 
1542 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1543 					goto retry_kmap;
1544 				}
1545 				smp_rmb();
1546 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
1547 				js = access_journal_data(ic, journal_section, journal_entry);
1548 				mem_ptr = mem + bv.bv_offset;
1549 				s = 0;
1550 				do {
1551 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1552 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1553 					js++;
1554 					mem_ptr += 1 << SECTOR_SHIFT;
1555 				} while (++s < ic->sectors_per_block);
1556 #ifdef INTERNAL_VERIFY
1557 				if (ic->internal_hash) {
1558 					char checksums_onstack[max(HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1559 
1560 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1561 					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1562 						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1563 							    (unsigned long long)logical_sector);
1564 					}
1565 				}
1566 #endif
1567 			}
1568 
1569 			if (!ic->internal_hash) {
1570 				struct bio_integrity_payload *bip = bio_integrity(bio);
1571 				unsigned tag_todo = ic->tag_size;
1572 				char *tag_ptr = journal_entry_tag(ic, je);
1573 
1574 				if (bip) do {
1575 					struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1576 					unsigned tag_now = min(biv.bv_len, tag_todo);
1577 					char *tag_addr;
1578 					BUG_ON(PageHighMem(biv.bv_page));
1579 					tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1580 					if (likely(dio->write))
1581 						memcpy(tag_ptr, tag_addr, tag_now);
1582 					else
1583 						memcpy(tag_addr, tag_ptr, tag_now);
1584 					bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1585 					tag_ptr += tag_now;
1586 					tag_todo -= tag_now;
1587 				} while (unlikely(tag_todo)); else {
1588 					if (likely(dio->write))
1589 						memset(tag_ptr, 0, tag_todo);
1590 				}
1591 			}
1592 
1593 			if (likely(dio->write)) {
1594 				struct journal_sector *js;
1595 				unsigned s;
1596 
1597 				js = access_journal_data(ic, journal_section, journal_entry);
1598 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1599 
1600 				s = 0;
1601 				do {
1602 					je->last_bytes[s] = js[s].commit_id;
1603 				} while (++s < ic->sectors_per_block);
1604 
1605 				if (ic->internal_hash) {
1606 					unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1607 					if (unlikely(digest_size > ic->tag_size)) {
1608 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
1609 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1610 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1611 					} else
1612 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1613 				}
1614 
1615 				journal_entry_set_sector(je, logical_sector);
1616 			}
1617 			logical_sector += ic->sectors_per_block;
1618 
1619 			journal_entry++;
1620 			if (unlikely(journal_entry == ic->journal_section_entries)) {
1621 				journal_entry = 0;
1622 				journal_section++;
1623 				wraparound_section(ic, &journal_section);
1624 			}
1625 
1626 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1627 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1628 
1629 		if (unlikely(!dio->write))
1630 			flush_dcache_page(bv.bv_page);
1631 		kunmap_atomic(mem);
1632 	} while (n_sectors);
1633 
1634 	if (likely(dio->write)) {
1635 		smp_mb();
1636 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1637 			wake_up(&ic->copy_to_journal_wait);
1638 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1639 			queue_work(ic->commit_wq, &ic->commit_work);
1640 		} else {
1641 			schedule_autocommit(ic);
1642 		}
1643 	} else {
1644 		remove_range(ic, &dio->range);
1645 	}
1646 
1647 	if (unlikely(bio->bi_iter.bi_size)) {
1648 		sector_t area, offset;
1649 
1650 		dio->range.logical_sector = logical_sector;
1651 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1652 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1653 		return true;
1654 	}
1655 
1656 	return false;
1657 }
1658 
1659 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1660 {
1661 	struct dm_integrity_c *ic = dio->ic;
1662 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1663 	unsigned journal_section, journal_entry;
1664 	unsigned journal_read_pos;
1665 	struct completion read_comp;
1666 	bool need_sync_io = ic->internal_hash && !dio->write;
1667 
1668 	if (need_sync_io && from_map) {
1669 		INIT_WORK(&dio->work, integrity_bio_wait);
1670 		queue_work(ic->metadata_wq, &dio->work);
1671 		return;
1672 	}
1673 
1674 lock_retry:
1675 	spin_lock_irq(&ic->endio_wait.lock);
1676 retry:
1677 	if (unlikely(dm_integrity_failed(ic))) {
1678 		spin_unlock_irq(&ic->endio_wait.lock);
1679 		do_endio(ic, bio);
1680 		return;
1681 	}
1682 	dio->range.n_sectors = bio_sectors(bio);
1683 	journal_read_pos = NOT_FOUND;
1684 	if (likely(ic->mode == 'J')) {
1685 		if (dio->write) {
1686 			unsigned next_entry, i, pos;
1687 			unsigned ws, we, range_sectors;
1688 
1689 			dio->range.n_sectors = min(dio->range.n_sectors,
1690 						   ic->free_sectors << ic->sb->log2_sectors_per_block);
1691 			if (unlikely(!dio->range.n_sectors)) {
1692 				if (from_map)
1693 					goto offload_to_thread;
1694 				sleep_on_endio_wait(ic);
1695 				goto retry;
1696 			}
1697 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1698 			ic->free_sectors -= range_sectors;
1699 			journal_section = ic->free_section;
1700 			journal_entry = ic->free_section_entry;
1701 
1702 			next_entry = ic->free_section_entry + range_sectors;
1703 			ic->free_section_entry = next_entry % ic->journal_section_entries;
1704 			ic->free_section += next_entry / ic->journal_section_entries;
1705 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1706 			wraparound_section(ic, &ic->free_section);
1707 
1708 			pos = journal_section * ic->journal_section_entries + journal_entry;
1709 			ws = journal_section;
1710 			we = journal_entry;
1711 			i = 0;
1712 			do {
1713 				struct journal_entry *je;
1714 
1715 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1716 				pos++;
1717 				if (unlikely(pos >= ic->journal_entries))
1718 					pos = 0;
1719 
1720 				je = access_journal_entry(ic, ws, we);
1721 				BUG_ON(!journal_entry_is_unused(je));
1722 				journal_entry_set_inprogress(je);
1723 				we++;
1724 				if (unlikely(we == ic->journal_section_entries)) {
1725 					we = 0;
1726 					ws++;
1727 					wraparound_section(ic, &ws);
1728 				}
1729 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
1730 
1731 			spin_unlock_irq(&ic->endio_wait.lock);
1732 			goto journal_read_write;
1733 		} else {
1734 			sector_t next_sector;
1735 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1736 			if (likely(journal_read_pos == NOT_FOUND)) {
1737 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
1738 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
1739 			} else {
1740 				unsigned i;
1741 				unsigned jp = journal_read_pos + 1;
1742 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
1743 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
1744 						break;
1745 				}
1746 				dio->range.n_sectors = i;
1747 			}
1748 		}
1749 	}
1750 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
1751 		/*
1752 		 * We must not sleep in the request routine because it could
1753 		 * stall bios on current->bio_list.
1754 		 * So, we offload the bio to a workqueue if we have to sleep.
1755 		 */
1756 		if (from_map) {
1757 offload_to_thread:
1758 			spin_unlock_irq(&ic->endio_wait.lock);
1759 			INIT_WORK(&dio->work, integrity_bio_wait);
1760 			queue_work(ic->wait_wq, &dio->work);
1761 			return;
1762 		}
1763 		wait_and_add_new_range(ic, &dio->range);
1764 	}
1765 	spin_unlock_irq(&ic->endio_wait.lock);
1766 
1767 	if (unlikely(journal_read_pos != NOT_FOUND)) {
1768 		journal_section = journal_read_pos / ic->journal_section_entries;
1769 		journal_entry = journal_read_pos % ic->journal_section_entries;
1770 		goto journal_read_write;
1771 	}
1772 
1773 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
1774 
1775 	if (need_sync_io) {
1776 		init_completion(&read_comp);
1777 		dio->completion = &read_comp;
1778 	} else
1779 		dio->completion = NULL;
1780 
1781 	dio->orig_bi_iter = bio->bi_iter;
1782 
1783 	dio->orig_bi_disk = bio->bi_disk;
1784 	dio->orig_bi_partno = bio->bi_partno;
1785 	bio_set_dev(bio, ic->dev->bdev);
1786 
1787 	dio->orig_bi_integrity = bio_integrity(bio);
1788 	bio->bi_integrity = NULL;
1789 	bio->bi_opf &= ~REQ_INTEGRITY;
1790 
1791 	dio->orig_bi_end_io = bio->bi_end_io;
1792 	bio->bi_end_io = integrity_end_io;
1793 
1794 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
1795 	generic_make_request(bio);
1796 
1797 	if (need_sync_io) {
1798 		wait_for_completion_io(&read_comp);
1799 		if (unlikely(ic->recalc_wq != NULL) &&
1800 		    ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
1801 		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
1802 			goto skip_check;
1803 		if (likely(!bio->bi_status))
1804 			integrity_metadata(&dio->work);
1805 		else
1806 skip_check:
1807 			dec_in_flight(dio);
1808 
1809 	} else {
1810 		INIT_WORK(&dio->work, integrity_metadata);
1811 		queue_work(ic->metadata_wq, &dio->work);
1812 	}
1813 
1814 	return;
1815 
1816 journal_read_write:
1817 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
1818 		goto lock_retry;
1819 
1820 	do_endio_flush(ic, dio);
1821 }
1822 
1823 
1824 static void integrity_bio_wait(struct work_struct *w)
1825 {
1826 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1827 
1828 	dm_integrity_map_continue(dio, false);
1829 }
1830 
1831 static void pad_uncommitted(struct dm_integrity_c *ic)
1832 {
1833 	if (ic->free_section_entry) {
1834 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
1835 		ic->free_section_entry = 0;
1836 		ic->free_section++;
1837 		wraparound_section(ic, &ic->free_section);
1838 		ic->n_uncommitted_sections++;
1839 	}
1840 	WARN_ON(ic->journal_sections * ic->journal_section_entries !=
1841 		(ic->n_uncommitted_sections + ic->n_committed_sections) * ic->journal_section_entries + ic->free_sectors);
1842 }
1843 
1844 static void integrity_commit(struct work_struct *w)
1845 {
1846 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
1847 	unsigned commit_start, commit_sections;
1848 	unsigned i, j, n;
1849 	struct bio *flushes;
1850 
1851 	del_timer(&ic->autocommit_timer);
1852 
1853 	spin_lock_irq(&ic->endio_wait.lock);
1854 	flushes = bio_list_get(&ic->flush_bio_list);
1855 	if (unlikely(ic->mode != 'J')) {
1856 		spin_unlock_irq(&ic->endio_wait.lock);
1857 		dm_integrity_flush_buffers(ic);
1858 		goto release_flush_bios;
1859 	}
1860 
1861 	pad_uncommitted(ic);
1862 	commit_start = ic->uncommitted_section;
1863 	commit_sections = ic->n_uncommitted_sections;
1864 	spin_unlock_irq(&ic->endio_wait.lock);
1865 
1866 	if (!commit_sections)
1867 		goto release_flush_bios;
1868 
1869 	i = commit_start;
1870 	for (n = 0; n < commit_sections; n++) {
1871 		for (j = 0; j < ic->journal_section_entries; j++) {
1872 			struct journal_entry *je;
1873 			je = access_journal_entry(ic, i, j);
1874 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1875 		}
1876 		for (j = 0; j < ic->journal_section_sectors; j++) {
1877 			struct journal_sector *js;
1878 			js = access_journal(ic, i, j);
1879 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
1880 		}
1881 		i++;
1882 		if (unlikely(i >= ic->journal_sections))
1883 			ic->commit_seq = next_commit_seq(ic->commit_seq);
1884 		wraparound_section(ic, &i);
1885 	}
1886 	smp_rmb();
1887 
1888 	write_journal(ic, commit_start, commit_sections);
1889 
1890 	spin_lock_irq(&ic->endio_wait.lock);
1891 	ic->uncommitted_section += commit_sections;
1892 	wraparound_section(ic, &ic->uncommitted_section);
1893 	ic->n_uncommitted_sections -= commit_sections;
1894 	ic->n_committed_sections += commit_sections;
1895 	spin_unlock_irq(&ic->endio_wait.lock);
1896 
1897 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
1898 		queue_work(ic->writer_wq, &ic->writer_work);
1899 
1900 release_flush_bios:
1901 	while (flushes) {
1902 		struct bio *next = flushes->bi_next;
1903 		flushes->bi_next = NULL;
1904 		do_endio(ic, flushes);
1905 		flushes = next;
1906 	}
1907 }
1908 
1909 static void complete_copy_from_journal(unsigned long error, void *context)
1910 {
1911 	struct journal_io *io = context;
1912 	struct journal_completion *comp = io->comp;
1913 	struct dm_integrity_c *ic = comp->ic;
1914 	remove_range(ic, &io->range);
1915 	mempool_free(io, &ic->journal_io_mempool);
1916 	if (unlikely(error != 0))
1917 		dm_integrity_io_error(ic, "copying from journal", -EIO);
1918 	complete_journal_op(comp);
1919 }
1920 
1921 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
1922 			       struct journal_entry *je)
1923 {
1924 	unsigned s = 0;
1925 	do {
1926 		js->commit_id = je->last_bytes[s];
1927 		js++;
1928 	} while (++s < ic->sectors_per_block);
1929 }
1930 
1931 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
1932 			     unsigned write_sections, bool from_replay)
1933 {
1934 	unsigned i, j, n;
1935 	struct journal_completion comp;
1936 	struct blk_plug plug;
1937 
1938 	blk_start_plug(&plug);
1939 
1940 	comp.ic = ic;
1941 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1942 	init_completion(&comp.comp);
1943 
1944 	i = write_start;
1945 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
1946 #ifndef INTERNAL_VERIFY
1947 		if (unlikely(from_replay))
1948 #endif
1949 			rw_section_mac(ic, i, false);
1950 		for (j = 0; j < ic->journal_section_entries; j++) {
1951 			struct journal_entry *je = access_journal_entry(ic, i, j);
1952 			sector_t sec, area, offset;
1953 			unsigned k, l, next_loop;
1954 			sector_t metadata_block;
1955 			unsigned metadata_offset;
1956 			struct journal_io *io;
1957 
1958 			if (journal_entry_is_unused(je))
1959 				continue;
1960 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
1961 			sec = journal_entry_get_sector(je);
1962 			if (unlikely(from_replay)) {
1963 				if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
1964 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
1965 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
1966 				}
1967 			}
1968 			get_area_and_offset(ic, sec, &area, &offset);
1969 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
1970 			for (k = j + 1; k < ic->journal_section_entries; k++) {
1971 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
1972 				sector_t sec2, area2, offset2;
1973 				if (journal_entry_is_unused(je2))
1974 					break;
1975 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
1976 				sec2 = journal_entry_get_sector(je2);
1977 				get_area_and_offset(ic, sec2, &area2, &offset2);
1978 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
1979 					break;
1980 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
1981 			}
1982 			next_loop = k - 1;
1983 
1984 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
1985 			io->comp = &comp;
1986 			io->range.logical_sector = sec;
1987 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
1988 
1989 			spin_lock_irq(&ic->endio_wait.lock);
1990 			if (unlikely(!add_new_range(ic, &io->range, true)))
1991 				wait_and_add_new_range(ic, &io->range);
1992 
1993 			if (likely(!from_replay)) {
1994 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
1995 
1996 				/* don't write if there is newer committed sector */
1997 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
1998 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
1999 
2000 					journal_entry_set_unused(je2);
2001 					remove_journal_node(ic, &section_node[j]);
2002 					j++;
2003 					sec += ic->sectors_per_block;
2004 					offset += ic->sectors_per_block;
2005 				}
2006 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2007 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2008 
2009 					journal_entry_set_unused(je2);
2010 					remove_journal_node(ic, &section_node[k - 1]);
2011 					k--;
2012 				}
2013 				if (j == k) {
2014 					remove_range_unlocked(ic, &io->range);
2015 					spin_unlock_irq(&ic->endio_wait.lock);
2016 					mempool_free(io, &ic->journal_io_mempool);
2017 					goto skip_io;
2018 				}
2019 				for (l = j; l < k; l++) {
2020 					remove_journal_node(ic, &section_node[l]);
2021 				}
2022 			}
2023 			spin_unlock_irq(&ic->endio_wait.lock);
2024 
2025 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2026 			for (l = j; l < k; l++) {
2027 				int r;
2028 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2029 
2030 				if (
2031 #ifndef INTERNAL_VERIFY
2032 				    unlikely(from_replay) &&
2033 #endif
2034 				    ic->internal_hash) {
2035 					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2036 
2037 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2038 								  (char *)access_journal_data(ic, i, l), test_tag);
2039 					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2040 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2041 				}
2042 
2043 				journal_entry_set_unused(je2);
2044 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2045 							ic->tag_size, TAG_WRITE);
2046 				if (unlikely(r)) {
2047 					dm_integrity_io_error(ic, "reading tags", r);
2048 				}
2049 			}
2050 
2051 			atomic_inc(&comp.in_flight);
2052 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2053 					  (k - j) << ic->sb->log2_sectors_per_block,
2054 					  get_data_sector(ic, area, offset),
2055 					  complete_copy_from_journal, io);
2056 skip_io:
2057 			j = next_loop;
2058 		}
2059 	}
2060 
2061 	dm_bufio_write_dirty_buffers_async(ic->bufio);
2062 
2063 	blk_finish_plug(&plug);
2064 
2065 	complete_journal_op(&comp);
2066 	wait_for_completion_io(&comp.comp);
2067 
2068 	dm_integrity_flush_buffers(ic);
2069 }
2070 
2071 static void integrity_writer(struct work_struct *w)
2072 {
2073 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2074 	unsigned write_start, write_sections;
2075 
2076 	unsigned prev_free_sectors;
2077 
2078 	/* the following test is not needed, but it tests the replay code */
2079 	if (READ_ONCE(ic->suspending) && !ic->meta_dev)
2080 		return;
2081 
2082 	spin_lock_irq(&ic->endio_wait.lock);
2083 	write_start = ic->committed_section;
2084 	write_sections = ic->n_committed_sections;
2085 	spin_unlock_irq(&ic->endio_wait.lock);
2086 
2087 	if (!write_sections)
2088 		return;
2089 
2090 	do_journal_write(ic, write_start, write_sections, false);
2091 
2092 	spin_lock_irq(&ic->endio_wait.lock);
2093 
2094 	ic->committed_section += write_sections;
2095 	wraparound_section(ic, &ic->committed_section);
2096 	ic->n_committed_sections -= write_sections;
2097 
2098 	prev_free_sectors = ic->free_sectors;
2099 	ic->free_sectors += write_sections * ic->journal_section_entries;
2100 	if (unlikely(!prev_free_sectors))
2101 		wake_up_locked(&ic->endio_wait);
2102 
2103 	spin_unlock_irq(&ic->endio_wait.lock);
2104 }
2105 
2106 static void recalc_write_super(struct dm_integrity_c *ic)
2107 {
2108 	int r;
2109 
2110 	dm_integrity_flush_buffers(ic);
2111 	if (dm_integrity_failed(ic))
2112 		return;
2113 
2114 	sb_set_version(ic);
2115 	r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2116 	if (unlikely(r))
2117 		dm_integrity_io_error(ic, "writing superblock", r);
2118 }
2119 
2120 static void integrity_recalc(struct work_struct *w)
2121 {
2122 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2123 	struct dm_integrity_range range;
2124 	struct dm_io_request io_req;
2125 	struct dm_io_region io_loc;
2126 	sector_t area, offset;
2127 	sector_t metadata_block;
2128 	unsigned metadata_offset;
2129 	__u8 *t;
2130 	unsigned i;
2131 	int r;
2132 	unsigned super_counter = 0;
2133 
2134 	spin_lock_irq(&ic->endio_wait.lock);
2135 
2136 next_chunk:
2137 
2138 	if (unlikely(READ_ONCE(ic->suspending)))
2139 		goto unlock_ret;
2140 
2141 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2142 	if (unlikely(range.logical_sector >= ic->provided_data_sectors))
2143 		goto unlock_ret;
2144 
2145 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2146 	range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2147 	if (!ic->meta_dev)
2148 		range.n_sectors = min(range.n_sectors, (1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2149 
2150 	if (unlikely(!add_new_range(ic, &range, true)))
2151 		wait_and_add_new_range(ic, &range);
2152 
2153 	spin_unlock_irq(&ic->endio_wait.lock);
2154 
2155 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2156 		recalc_write_super(ic);
2157 		super_counter = 0;
2158 	}
2159 
2160 	if (unlikely(dm_integrity_failed(ic)))
2161 		goto err;
2162 
2163 	io_req.bi_op = REQ_OP_READ;
2164 	io_req.bi_op_flags = 0;
2165 	io_req.mem.type = DM_IO_VMA;
2166 	io_req.mem.ptr.addr = ic->recalc_buffer;
2167 	io_req.notify.fn = NULL;
2168 	io_req.client = ic->io;
2169 	io_loc.bdev = ic->dev->bdev;
2170 	io_loc.sector = get_data_sector(ic, area, offset);
2171 	io_loc.count = range.n_sectors;
2172 
2173 	r = dm_io(&io_req, 1, &io_loc, NULL);
2174 	if (unlikely(r)) {
2175 		dm_integrity_io_error(ic, "reading data", r);
2176 		goto err;
2177 	}
2178 
2179 	t = ic->recalc_tags;
2180 	for (i = 0; i < range.n_sectors; i += ic->sectors_per_block) {
2181 		integrity_sector_checksum(ic, range.logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2182 		t += ic->tag_size;
2183 	}
2184 
2185 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2186 
2187 	r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2188 	if (unlikely(r)) {
2189 		dm_integrity_io_error(ic, "writing tags", r);
2190 		goto err;
2191 	}
2192 
2193 	spin_lock_irq(&ic->endio_wait.lock);
2194 	remove_range_unlocked(ic, &range);
2195 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2196 	goto next_chunk;
2197 
2198 err:
2199 	remove_range(ic, &range);
2200 	return;
2201 
2202 unlock_ret:
2203 	spin_unlock_irq(&ic->endio_wait.lock);
2204 
2205 	recalc_write_super(ic);
2206 }
2207 
2208 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2209 			 unsigned n_sections, unsigned char commit_seq)
2210 {
2211 	unsigned i, j, n;
2212 
2213 	if (!n_sections)
2214 		return;
2215 
2216 	for (n = 0; n < n_sections; n++) {
2217 		i = start_section + n;
2218 		wraparound_section(ic, &i);
2219 		for (j = 0; j < ic->journal_section_sectors; j++) {
2220 			struct journal_sector *js = access_journal(ic, i, j);
2221 			memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2222 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2223 		}
2224 		for (j = 0; j < ic->journal_section_entries; j++) {
2225 			struct journal_entry *je = access_journal_entry(ic, i, j);
2226 			journal_entry_set_unused(je);
2227 		}
2228 	}
2229 
2230 	write_journal(ic, start_section, n_sections);
2231 }
2232 
2233 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2234 {
2235 	unsigned char k;
2236 	for (k = 0; k < N_COMMIT_IDS; k++) {
2237 		if (dm_integrity_commit_id(ic, i, j, k) == id)
2238 			return k;
2239 	}
2240 	dm_integrity_io_error(ic, "journal commit id", -EIO);
2241 	return -EIO;
2242 }
2243 
2244 static void replay_journal(struct dm_integrity_c *ic)
2245 {
2246 	unsigned i, j;
2247 	bool used_commit_ids[N_COMMIT_IDS];
2248 	unsigned max_commit_id_sections[N_COMMIT_IDS];
2249 	unsigned write_start, write_sections;
2250 	unsigned continue_section;
2251 	bool journal_empty;
2252 	unsigned char unused, last_used, want_commit_seq;
2253 
2254 	if (ic->mode == 'R')
2255 		return;
2256 
2257 	if (ic->journal_uptodate)
2258 		return;
2259 
2260 	last_used = 0;
2261 	write_start = 0;
2262 
2263 	if (!ic->just_formatted) {
2264 		DEBUG_print("reading journal\n");
2265 		rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2266 		if (ic->journal_io)
2267 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2268 		if (ic->journal_io) {
2269 			struct journal_completion crypt_comp;
2270 			crypt_comp.ic = ic;
2271 			init_completion(&crypt_comp.comp);
2272 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2273 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2274 			wait_for_completion(&crypt_comp.comp);
2275 		}
2276 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2277 	}
2278 
2279 	if (dm_integrity_failed(ic))
2280 		goto clear_journal;
2281 
2282 	journal_empty = true;
2283 	memset(used_commit_ids, 0, sizeof used_commit_ids);
2284 	memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2285 	for (i = 0; i < ic->journal_sections; i++) {
2286 		for (j = 0; j < ic->journal_section_sectors; j++) {
2287 			int k;
2288 			struct journal_sector *js = access_journal(ic, i, j);
2289 			k = find_commit_seq(ic, i, j, js->commit_id);
2290 			if (k < 0)
2291 				goto clear_journal;
2292 			used_commit_ids[k] = true;
2293 			max_commit_id_sections[k] = i;
2294 		}
2295 		if (journal_empty) {
2296 			for (j = 0; j < ic->journal_section_entries; j++) {
2297 				struct journal_entry *je = access_journal_entry(ic, i, j);
2298 				if (!journal_entry_is_unused(je)) {
2299 					journal_empty = false;
2300 					break;
2301 				}
2302 			}
2303 		}
2304 	}
2305 
2306 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2307 		unused = N_COMMIT_IDS - 1;
2308 		while (unused && !used_commit_ids[unused - 1])
2309 			unused--;
2310 	} else {
2311 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
2312 			if (!used_commit_ids[unused])
2313 				break;
2314 		if (unused == N_COMMIT_IDS) {
2315 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
2316 			goto clear_journal;
2317 		}
2318 	}
2319 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2320 		    unused, used_commit_ids[0], used_commit_ids[1],
2321 		    used_commit_ids[2], used_commit_ids[3]);
2322 
2323 	last_used = prev_commit_seq(unused);
2324 	want_commit_seq = prev_commit_seq(last_used);
2325 
2326 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2327 		journal_empty = true;
2328 
2329 	write_start = max_commit_id_sections[last_used] + 1;
2330 	if (unlikely(write_start >= ic->journal_sections))
2331 		want_commit_seq = next_commit_seq(want_commit_seq);
2332 	wraparound_section(ic, &write_start);
2333 
2334 	i = write_start;
2335 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2336 		for (j = 0; j < ic->journal_section_sectors; j++) {
2337 			struct journal_sector *js = access_journal(ic, i, j);
2338 
2339 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2340 				/*
2341 				 * This could be caused by crash during writing.
2342 				 * We won't replay the inconsistent part of the
2343 				 * journal.
2344 				 */
2345 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2346 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2347 				goto brk;
2348 			}
2349 		}
2350 		i++;
2351 		if (unlikely(i >= ic->journal_sections))
2352 			want_commit_seq = next_commit_seq(want_commit_seq);
2353 		wraparound_section(ic, &i);
2354 	}
2355 brk:
2356 
2357 	if (!journal_empty) {
2358 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2359 			    write_sections, write_start, want_commit_seq);
2360 		do_journal_write(ic, write_start, write_sections, true);
2361 	}
2362 
2363 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2364 		continue_section = write_start;
2365 		ic->commit_seq = want_commit_seq;
2366 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2367 	} else {
2368 		unsigned s;
2369 		unsigned char erase_seq;
2370 clear_journal:
2371 		DEBUG_print("clearing journal\n");
2372 
2373 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2374 		s = write_start;
2375 		init_journal(ic, s, 1, erase_seq);
2376 		s++;
2377 		wraparound_section(ic, &s);
2378 		if (ic->journal_sections >= 2) {
2379 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2380 			s += ic->journal_sections - 2;
2381 			wraparound_section(ic, &s);
2382 			init_journal(ic, s, 1, erase_seq);
2383 		}
2384 
2385 		continue_section = 0;
2386 		ic->commit_seq = next_commit_seq(erase_seq);
2387 	}
2388 
2389 	ic->committed_section = continue_section;
2390 	ic->n_committed_sections = 0;
2391 
2392 	ic->uncommitted_section = continue_section;
2393 	ic->n_uncommitted_sections = 0;
2394 
2395 	ic->free_section = continue_section;
2396 	ic->free_section_entry = 0;
2397 	ic->free_sectors = ic->journal_entries;
2398 
2399 	ic->journal_tree_root = RB_ROOT;
2400 	for (i = 0; i < ic->journal_entries; i++)
2401 		init_journal_node(&ic->journal_tree[i]);
2402 }
2403 
2404 static void dm_integrity_postsuspend(struct dm_target *ti)
2405 {
2406 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2407 
2408 	del_timer_sync(&ic->autocommit_timer);
2409 
2410 	WRITE_ONCE(ic->suspending, 1);
2411 
2412 	if (ic->recalc_wq)
2413 		drain_workqueue(ic->recalc_wq);
2414 
2415 	queue_work(ic->commit_wq, &ic->commit_work);
2416 	drain_workqueue(ic->commit_wq);
2417 
2418 	if (ic->mode == 'J') {
2419 		if (ic->meta_dev)
2420 			queue_work(ic->writer_wq, &ic->writer_work);
2421 		drain_workqueue(ic->writer_wq);
2422 		dm_integrity_flush_buffers(ic);
2423 	}
2424 
2425 	WRITE_ONCE(ic->suspending, 0);
2426 
2427 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2428 
2429 	ic->journal_uptodate = true;
2430 }
2431 
2432 static void dm_integrity_resume(struct dm_target *ti)
2433 {
2434 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2435 
2436 	replay_journal(ic);
2437 
2438 	if (ic->recalc_wq && ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2439 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
2440 		if (recalc_pos < ic->provided_data_sectors) {
2441 			queue_work(ic->recalc_wq, &ic->recalc_work);
2442 		} else if (recalc_pos > ic->provided_data_sectors) {
2443 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
2444 			recalc_write_super(ic);
2445 		}
2446 	}
2447 }
2448 
2449 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
2450 				unsigned status_flags, char *result, unsigned maxlen)
2451 {
2452 	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2453 	unsigned arg_count;
2454 	size_t sz = 0;
2455 
2456 	switch (type) {
2457 	case STATUSTYPE_INFO:
2458 		DMEMIT("%llu %llu",
2459 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
2460 			(unsigned long long)ic->provided_data_sectors);
2461 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2462 			DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector));
2463 		else
2464 			DMEMIT(" -");
2465 		break;
2466 
2467 	case STATUSTYPE_TABLE: {
2468 		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
2469 		watermark_percentage += ic->journal_entries / 2;
2470 		do_div(watermark_percentage, ic->journal_entries);
2471 		arg_count = 5;
2472 		arg_count += !!ic->meta_dev;
2473 		arg_count += ic->sectors_per_block != 1;
2474 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
2475 		arg_count += !!ic->internal_hash_alg.alg_string;
2476 		arg_count += !!ic->journal_crypt_alg.alg_string;
2477 		arg_count += !!ic->journal_mac_alg.alg_string;
2478 		DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
2479 		       ic->tag_size, ic->mode, arg_count);
2480 		if (ic->meta_dev)
2481 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
2482 		if (ic->sectors_per_block != 1)
2483 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
2484 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2485 			DMEMIT(" recalculate");
2486 		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
2487 		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
2488 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
2489 		DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
2490 		DMEMIT(" commit_time:%u", ic->autocommit_msec);
2491 
2492 #define EMIT_ALG(a, n)							\
2493 		do {							\
2494 			if (ic->a.alg_string) {				\
2495 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
2496 				if (ic->a.key_string)			\
2497 					DMEMIT(":%s", ic->a.key_string);\
2498 			}						\
2499 		} while (0)
2500 		EMIT_ALG(internal_hash_alg, "internal_hash");
2501 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
2502 		EMIT_ALG(journal_mac_alg, "journal_mac");
2503 		break;
2504 	}
2505 	}
2506 }
2507 
2508 static int dm_integrity_iterate_devices(struct dm_target *ti,
2509 					iterate_devices_callout_fn fn, void *data)
2510 {
2511 	struct dm_integrity_c *ic = ti->private;
2512 
2513 	if (!ic->meta_dev)
2514 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
2515 	else
2516 		return fn(ti, ic->dev, 0, ti->len, data);
2517 }
2518 
2519 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
2520 {
2521 	struct dm_integrity_c *ic = ti->private;
2522 
2523 	if (ic->sectors_per_block > 1) {
2524 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2525 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2526 		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
2527 	}
2528 }
2529 
2530 static void calculate_journal_section_size(struct dm_integrity_c *ic)
2531 {
2532 	unsigned sector_space = JOURNAL_SECTOR_DATA;
2533 
2534 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
2535 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
2536 					 JOURNAL_ENTRY_ROUNDUP);
2537 
2538 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
2539 		sector_space -= JOURNAL_MAC_PER_SECTOR;
2540 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
2541 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
2542 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
2543 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
2544 }
2545 
2546 static int calculate_device_limits(struct dm_integrity_c *ic)
2547 {
2548 	__u64 initial_sectors;
2549 
2550 	calculate_journal_section_size(ic);
2551 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
2552 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
2553 		return -EINVAL;
2554 	ic->initial_sectors = initial_sectors;
2555 
2556 	if (!ic->meta_dev) {
2557 		sector_t last_sector, last_area, last_offset;
2558 
2559 		ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
2560 					   (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
2561 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
2562 			ic->log2_metadata_run = __ffs(ic->metadata_run);
2563 		else
2564 			ic->log2_metadata_run = -1;
2565 
2566 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
2567 		last_sector = get_data_sector(ic, last_area, last_offset);
2568 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
2569 			return -EINVAL;
2570 	} else {
2571 		__u64 meta_size = ic->provided_data_sectors * ic->tag_size;
2572 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
2573 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
2574 		meta_size <<= ic->log2_buffer_sectors;
2575 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
2576 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
2577 			return -EINVAL;
2578 		ic->metadata_run = 1;
2579 		ic->log2_metadata_run = 0;
2580 	}
2581 
2582 	return 0;
2583 }
2584 
2585 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
2586 {
2587 	unsigned journal_sections;
2588 	int test_bit;
2589 
2590 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
2591 	memcpy(ic->sb->magic, SB_MAGIC, 8);
2592 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
2593 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
2594 	if (ic->journal_mac_alg.alg_string)
2595 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
2596 
2597 	calculate_journal_section_size(ic);
2598 	journal_sections = journal_sectors / ic->journal_section_sectors;
2599 	if (!journal_sections)
2600 		journal_sections = 1;
2601 
2602 	if (!ic->meta_dev) {
2603 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
2604 		if (!interleave_sectors)
2605 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
2606 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
2607 		ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2608 		ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2609 
2610 		ic->provided_data_sectors = 0;
2611 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
2612 			__u64 prev_data_sectors = ic->provided_data_sectors;
2613 
2614 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
2615 			if (calculate_device_limits(ic))
2616 				ic->provided_data_sectors = prev_data_sectors;
2617 		}
2618 		if (!ic->provided_data_sectors)
2619 			return -EINVAL;
2620 	} else {
2621 		ic->sb->log2_interleave_sectors = 0;
2622 		ic->provided_data_sectors = ic->data_device_sectors;
2623 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
2624 
2625 try_smaller_buffer:
2626 		ic->sb->journal_sections = cpu_to_le32(0);
2627 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
2628 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
2629 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
2630 			if (test_journal_sections > journal_sections)
2631 				continue;
2632 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
2633 			if (calculate_device_limits(ic))
2634 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
2635 
2636 		}
2637 		if (!le32_to_cpu(ic->sb->journal_sections)) {
2638 			if (ic->log2_buffer_sectors > 3) {
2639 				ic->log2_buffer_sectors--;
2640 				goto try_smaller_buffer;
2641 			}
2642 			return -EINVAL;
2643 		}
2644 	}
2645 
2646 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
2647 
2648 	sb_set_version(ic);
2649 
2650 	return 0;
2651 }
2652 
2653 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
2654 {
2655 	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
2656 	struct blk_integrity bi;
2657 
2658 	memset(&bi, 0, sizeof(bi));
2659 	bi.profile = &dm_integrity_profile;
2660 	bi.tuple_size = ic->tag_size;
2661 	bi.tag_size = bi.tuple_size;
2662 	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
2663 
2664 	blk_integrity_register(disk, &bi);
2665 	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
2666 }
2667 
2668 static void dm_integrity_free_page_list(struct dm_integrity_c *ic, struct page_list *pl)
2669 {
2670 	unsigned i;
2671 
2672 	if (!pl)
2673 		return;
2674 	for (i = 0; i < ic->journal_pages; i++)
2675 		if (pl[i].page)
2676 			__free_page(pl[i].page);
2677 	kvfree(pl);
2678 }
2679 
2680 static struct page_list *dm_integrity_alloc_page_list(struct dm_integrity_c *ic)
2681 {
2682 	size_t page_list_desc_size = ic->journal_pages * sizeof(struct page_list);
2683 	struct page_list *pl;
2684 	unsigned i;
2685 
2686 	pl = kvmalloc(page_list_desc_size, GFP_KERNEL | __GFP_ZERO);
2687 	if (!pl)
2688 		return NULL;
2689 
2690 	for (i = 0; i < ic->journal_pages; i++) {
2691 		pl[i].page = alloc_page(GFP_KERNEL);
2692 		if (!pl[i].page) {
2693 			dm_integrity_free_page_list(ic, pl);
2694 			return NULL;
2695 		}
2696 		if (i)
2697 			pl[i - 1].next = &pl[i];
2698 	}
2699 
2700 	return pl;
2701 }
2702 
2703 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
2704 {
2705 	unsigned i;
2706 	for (i = 0; i < ic->journal_sections; i++)
2707 		kvfree(sl[i]);
2708 	kvfree(sl);
2709 }
2710 
2711 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, struct page_list *pl)
2712 {
2713 	struct scatterlist **sl;
2714 	unsigned i;
2715 
2716 	sl = kvmalloc_array(ic->journal_sections,
2717 			    sizeof(struct scatterlist *),
2718 			    GFP_KERNEL | __GFP_ZERO);
2719 	if (!sl)
2720 		return NULL;
2721 
2722 	for (i = 0; i < ic->journal_sections; i++) {
2723 		struct scatterlist *s;
2724 		unsigned start_index, start_offset;
2725 		unsigned end_index, end_offset;
2726 		unsigned n_pages;
2727 		unsigned idx;
2728 
2729 		page_list_location(ic, i, 0, &start_index, &start_offset);
2730 		page_list_location(ic, i, ic->journal_section_sectors - 1, &end_index, &end_offset);
2731 
2732 		n_pages = (end_index - start_index + 1);
2733 
2734 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
2735 				   GFP_KERNEL);
2736 		if (!s) {
2737 			dm_integrity_free_journal_scatterlist(ic, sl);
2738 			return NULL;
2739 		}
2740 
2741 		sg_init_table(s, n_pages);
2742 		for (idx = start_index; idx <= end_index; idx++) {
2743 			char *va = lowmem_page_address(pl[idx].page);
2744 			unsigned start = 0, end = PAGE_SIZE;
2745 			if (idx == start_index)
2746 				start = start_offset;
2747 			if (idx == end_index)
2748 				end = end_offset + (1 << SECTOR_SHIFT);
2749 			sg_set_buf(&s[idx - start_index], va + start, end - start);
2750 		}
2751 
2752 		sl[i] = s;
2753 	}
2754 
2755 	return sl;
2756 }
2757 
2758 static void free_alg(struct alg_spec *a)
2759 {
2760 	kzfree(a->alg_string);
2761 	kzfree(a->key);
2762 	memset(a, 0, sizeof *a);
2763 }
2764 
2765 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
2766 {
2767 	char *k;
2768 
2769 	free_alg(a);
2770 
2771 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
2772 	if (!a->alg_string)
2773 		goto nomem;
2774 
2775 	k = strchr(a->alg_string, ':');
2776 	if (k) {
2777 		*k = 0;
2778 		a->key_string = k + 1;
2779 		if (strlen(a->key_string) & 1)
2780 			goto inval;
2781 
2782 		a->key_size = strlen(a->key_string) / 2;
2783 		a->key = kmalloc(a->key_size, GFP_KERNEL);
2784 		if (!a->key)
2785 			goto nomem;
2786 		if (hex2bin(a->key, a->key_string, a->key_size))
2787 			goto inval;
2788 	}
2789 
2790 	return 0;
2791 inval:
2792 	*error = error_inval;
2793 	return -EINVAL;
2794 nomem:
2795 	*error = "Out of memory for an argument";
2796 	return -ENOMEM;
2797 }
2798 
2799 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
2800 		   char *error_alg, char *error_key)
2801 {
2802 	int r;
2803 
2804 	if (a->alg_string) {
2805 		*hash = crypto_alloc_shash(a->alg_string, 0, 0);
2806 		if (IS_ERR(*hash)) {
2807 			*error = error_alg;
2808 			r = PTR_ERR(*hash);
2809 			*hash = NULL;
2810 			return r;
2811 		}
2812 
2813 		if (a->key) {
2814 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
2815 			if (r) {
2816 				*error = error_key;
2817 				return r;
2818 			}
2819 		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
2820 			*error = error_key;
2821 			return -ENOKEY;
2822 		}
2823 	}
2824 
2825 	return 0;
2826 }
2827 
2828 static int create_journal(struct dm_integrity_c *ic, char **error)
2829 {
2830 	int r = 0;
2831 	unsigned i;
2832 	__u64 journal_pages, journal_desc_size, journal_tree_size;
2833 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
2834 	struct skcipher_request *req = NULL;
2835 
2836 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
2837 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
2838 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
2839 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
2840 
2841 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
2842 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
2843 	journal_desc_size = journal_pages * sizeof(struct page_list);
2844 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
2845 		*error = "Journal doesn't fit into memory";
2846 		r = -ENOMEM;
2847 		goto bad;
2848 	}
2849 	ic->journal_pages = journal_pages;
2850 
2851 	ic->journal = dm_integrity_alloc_page_list(ic);
2852 	if (!ic->journal) {
2853 		*error = "Could not allocate memory for journal";
2854 		r = -ENOMEM;
2855 		goto bad;
2856 	}
2857 	if (ic->journal_crypt_alg.alg_string) {
2858 		unsigned ivsize, blocksize;
2859 		struct journal_completion comp;
2860 
2861 		comp.ic = ic;
2862 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
2863 		if (IS_ERR(ic->journal_crypt)) {
2864 			*error = "Invalid journal cipher";
2865 			r = PTR_ERR(ic->journal_crypt);
2866 			ic->journal_crypt = NULL;
2867 			goto bad;
2868 		}
2869 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
2870 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
2871 
2872 		if (ic->journal_crypt_alg.key) {
2873 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
2874 						   ic->journal_crypt_alg.key_size);
2875 			if (r) {
2876 				*error = "Error setting encryption key";
2877 				goto bad;
2878 			}
2879 		}
2880 		DEBUG_print("cipher %s, block size %u iv size %u\n",
2881 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
2882 
2883 		ic->journal_io = dm_integrity_alloc_page_list(ic);
2884 		if (!ic->journal_io) {
2885 			*error = "Could not allocate memory for journal io";
2886 			r = -ENOMEM;
2887 			goto bad;
2888 		}
2889 
2890 		if (blocksize == 1) {
2891 			struct scatterlist *sg;
2892 
2893 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2894 			if (!req) {
2895 				*error = "Could not allocate crypt request";
2896 				r = -ENOMEM;
2897 				goto bad;
2898 			}
2899 
2900 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
2901 			if (!crypt_iv) {
2902 				*error = "Could not allocate iv";
2903 				r = -ENOMEM;
2904 				goto bad;
2905 			}
2906 
2907 			ic->journal_xor = dm_integrity_alloc_page_list(ic);
2908 			if (!ic->journal_xor) {
2909 				*error = "Could not allocate memory for journal xor";
2910 				r = -ENOMEM;
2911 				goto bad;
2912 			}
2913 
2914 			sg = kvmalloc_array(ic->journal_pages + 1,
2915 					    sizeof(struct scatterlist),
2916 					    GFP_KERNEL);
2917 			if (!sg) {
2918 				*error = "Unable to allocate sg list";
2919 				r = -ENOMEM;
2920 				goto bad;
2921 			}
2922 			sg_init_table(sg, ic->journal_pages + 1);
2923 			for (i = 0; i < ic->journal_pages; i++) {
2924 				char *va = lowmem_page_address(ic->journal_xor[i].page);
2925 				clear_page(va);
2926 				sg_set_buf(&sg[i], va, PAGE_SIZE);
2927 			}
2928 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
2929 			memset(crypt_iv, 0x00, ivsize);
2930 
2931 			skcipher_request_set_crypt(req, sg, sg, PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
2932 			init_completion(&comp.comp);
2933 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2934 			if (do_crypt(true, req, &comp))
2935 				wait_for_completion(&comp.comp);
2936 			kvfree(sg);
2937 			r = dm_integrity_failed(ic);
2938 			if (r) {
2939 				*error = "Unable to encrypt journal";
2940 				goto bad;
2941 			}
2942 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
2943 
2944 			crypto_free_skcipher(ic->journal_crypt);
2945 			ic->journal_crypt = NULL;
2946 		} else {
2947 			unsigned crypt_len = roundup(ivsize, blocksize);
2948 
2949 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2950 			if (!req) {
2951 				*error = "Could not allocate crypt request";
2952 				r = -ENOMEM;
2953 				goto bad;
2954 			}
2955 
2956 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
2957 			if (!crypt_iv) {
2958 				*error = "Could not allocate iv";
2959 				r = -ENOMEM;
2960 				goto bad;
2961 			}
2962 
2963 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
2964 			if (!crypt_data) {
2965 				*error = "Unable to allocate crypt data";
2966 				r = -ENOMEM;
2967 				goto bad;
2968 			}
2969 
2970 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
2971 			if (!ic->journal_scatterlist) {
2972 				*error = "Unable to allocate sg list";
2973 				r = -ENOMEM;
2974 				goto bad;
2975 			}
2976 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
2977 			if (!ic->journal_io_scatterlist) {
2978 				*error = "Unable to allocate sg list";
2979 				r = -ENOMEM;
2980 				goto bad;
2981 			}
2982 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
2983 							 sizeof(struct skcipher_request *),
2984 							 GFP_KERNEL | __GFP_ZERO);
2985 			if (!ic->sk_requests) {
2986 				*error = "Unable to allocate sk requests";
2987 				r = -ENOMEM;
2988 				goto bad;
2989 			}
2990 			for (i = 0; i < ic->journal_sections; i++) {
2991 				struct scatterlist sg;
2992 				struct skcipher_request *section_req;
2993 				__u32 section_le = cpu_to_le32(i);
2994 
2995 				memset(crypt_iv, 0x00, ivsize);
2996 				memset(crypt_data, 0x00, crypt_len);
2997 				memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
2998 
2999 				sg_init_one(&sg, crypt_data, crypt_len);
3000 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3001 				init_completion(&comp.comp);
3002 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3003 				if (do_crypt(true, req, &comp))
3004 					wait_for_completion(&comp.comp);
3005 
3006 				r = dm_integrity_failed(ic);
3007 				if (r) {
3008 					*error = "Unable to generate iv";
3009 					goto bad;
3010 				}
3011 
3012 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3013 				if (!section_req) {
3014 					*error = "Unable to allocate crypt request";
3015 					r = -ENOMEM;
3016 					goto bad;
3017 				}
3018 				section_req->iv = kmalloc_array(ivsize, 2,
3019 								GFP_KERNEL);
3020 				if (!section_req->iv) {
3021 					skcipher_request_free(section_req);
3022 					*error = "Unable to allocate iv";
3023 					r = -ENOMEM;
3024 					goto bad;
3025 				}
3026 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3027 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3028 				ic->sk_requests[i] = section_req;
3029 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3030 			}
3031 		}
3032 	}
3033 
3034 	for (i = 0; i < N_COMMIT_IDS; i++) {
3035 		unsigned j;
3036 retest_commit_id:
3037 		for (j = 0; j < i; j++) {
3038 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
3039 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3040 				goto retest_commit_id;
3041 			}
3042 		}
3043 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3044 	}
3045 
3046 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3047 	if (journal_tree_size > ULONG_MAX) {
3048 		*error = "Journal doesn't fit into memory";
3049 		r = -ENOMEM;
3050 		goto bad;
3051 	}
3052 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3053 	if (!ic->journal_tree) {
3054 		*error = "Could not allocate memory for journal tree";
3055 		r = -ENOMEM;
3056 	}
3057 bad:
3058 	kfree(crypt_data);
3059 	kfree(crypt_iv);
3060 	skcipher_request_free(req);
3061 
3062 	return r;
3063 }
3064 
3065 /*
3066  * Construct a integrity mapping
3067  *
3068  * Arguments:
3069  *	device
3070  *	offset from the start of the device
3071  *	tag size
3072  *	D - direct writes, J - journal writes, R - recovery mode
3073  *	number of optional arguments
3074  *	optional arguments:
3075  *		journal_sectors
3076  *		interleave_sectors
3077  *		buffer_sectors
3078  *		journal_watermark
3079  *		commit_time
3080  *		internal_hash
3081  *		journal_crypt
3082  *		journal_mac
3083  *		block_size
3084  */
3085 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3086 {
3087 	struct dm_integrity_c *ic;
3088 	char dummy;
3089 	int r;
3090 	unsigned extra_args;
3091 	struct dm_arg_set as;
3092 	static const struct dm_arg _args[] = {
3093 		{0, 9, "Invalid number of feature args"},
3094 	};
3095 	unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3096 	bool recalculate;
3097 	bool should_write_sb;
3098 	__u64 threshold;
3099 	unsigned long long start;
3100 
3101 #define DIRECT_ARGUMENTS	4
3102 
3103 	if (argc <= DIRECT_ARGUMENTS) {
3104 		ti->error = "Invalid argument count";
3105 		return -EINVAL;
3106 	}
3107 
3108 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3109 	if (!ic) {
3110 		ti->error = "Cannot allocate integrity context";
3111 		return -ENOMEM;
3112 	}
3113 	ti->private = ic;
3114 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
3115 
3116 	ic->in_progress = RB_ROOT;
3117 	INIT_LIST_HEAD(&ic->wait_list);
3118 	init_waitqueue_head(&ic->endio_wait);
3119 	bio_list_init(&ic->flush_bio_list);
3120 	init_waitqueue_head(&ic->copy_to_journal_wait);
3121 	init_completion(&ic->crypto_backoff);
3122 	atomic64_set(&ic->number_of_mismatches, 0);
3123 
3124 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3125 	if (r) {
3126 		ti->error = "Device lookup failed";
3127 		goto bad;
3128 	}
3129 
3130 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3131 		ti->error = "Invalid starting offset";
3132 		r = -EINVAL;
3133 		goto bad;
3134 	}
3135 	ic->start = start;
3136 
3137 	if (strcmp(argv[2], "-")) {
3138 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3139 			ti->error = "Invalid tag size";
3140 			r = -EINVAL;
3141 			goto bad;
3142 		}
3143 	}
3144 
3145 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "D") || !strcmp(argv[3], "R"))
3146 		ic->mode = argv[3][0];
3147 	else {
3148 		ti->error = "Invalid mode (expecting J, D, R)";
3149 		r = -EINVAL;
3150 		goto bad;
3151 	}
3152 
3153 	journal_sectors = 0;
3154 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3155 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
3156 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3157 	sync_msec = DEFAULT_SYNC_MSEC;
3158 	recalculate = false;
3159 	ic->sectors_per_block = 1;
3160 
3161 	as.argc = argc - DIRECT_ARGUMENTS;
3162 	as.argv = argv + DIRECT_ARGUMENTS;
3163 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
3164 	if (r)
3165 		goto bad;
3166 
3167 	while (extra_args--) {
3168 		const char *opt_string;
3169 		unsigned val;
3170 		opt_string = dm_shift_arg(&as);
3171 		if (!opt_string) {
3172 			r = -EINVAL;
3173 			ti->error = "Not enough feature arguments";
3174 			goto bad;
3175 		}
3176 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
3177 			journal_sectors = val ? val : 1;
3178 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
3179 			interleave_sectors = val;
3180 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
3181 			buffer_sectors = val;
3182 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
3183 			journal_watermark = val;
3184 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
3185 			sync_msec = val;
3186 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
3187 			if (ic->meta_dev) {
3188 				dm_put_device(ti, ic->meta_dev);
3189 				ic->meta_dev = NULL;
3190 			}
3191 			r = dm_get_device(ti, strchr(opt_string, ':') + 1, dm_table_get_mode(ti->table), &ic->meta_dev);
3192 			if (r) {
3193 				ti->error = "Device lookup failed";
3194 				goto bad;
3195 			}
3196 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
3197 			if (val < 1 << SECTOR_SHIFT ||
3198 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
3199 			    (val & (val -1))) {
3200 				r = -EINVAL;
3201 				ti->error = "Invalid block_size argument";
3202 				goto bad;
3203 			}
3204 			ic->sectors_per_block = val >> SECTOR_SHIFT;
3205 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
3206 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
3207 					    "Invalid internal_hash argument");
3208 			if (r)
3209 				goto bad;
3210 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
3211 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
3212 					    "Invalid journal_crypt argument");
3213 			if (r)
3214 				goto bad;
3215 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
3216 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg,  &ti->error,
3217 					    "Invalid journal_mac argument");
3218 			if (r)
3219 				goto bad;
3220 		} else if (!strcmp(opt_string, "recalculate")) {
3221 			recalculate = true;
3222 		} else {
3223 			r = -EINVAL;
3224 			ti->error = "Invalid argument";
3225 			goto bad;
3226 		}
3227 	}
3228 
3229 	ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
3230 	if (!ic->meta_dev)
3231 		ic->meta_device_sectors = ic->data_device_sectors;
3232 	else
3233 		ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
3234 
3235 	if (!journal_sectors) {
3236 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
3237 			ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
3238 	}
3239 
3240 	if (!buffer_sectors)
3241 		buffer_sectors = 1;
3242 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
3243 
3244 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
3245 		    "Invalid internal hash", "Error setting internal hash key");
3246 	if (r)
3247 		goto bad;
3248 
3249 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
3250 		    "Invalid journal mac", "Error setting journal mac key");
3251 	if (r)
3252 		goto bad;
3253 
3254 	if (!ic->tag_size) {
3255 		if (!ic->internal_hash) {
3256 			ti->error = "Unknown tag size";
3257 			r = -EINVAL;
3258 			goto bad;
3259 		}
3260 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
3261 	}
3262 	if (ic->tag_size > MAX_TAG_SIZE) {
3263 		ti->error = "Too big tag size";
3264 		r = -EINVAL;
3265 		goto bad;
3266 	}
3267 	if (!(ic->tag_size & (ic->tag_size - 1)))
3268 		ic->log2_tag_size = __ffs(ic->tag_size);
3269 	else
3270 		ic->log2_tag_size = -1;
3271 
3272 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
3273 	ic->autocommit_msec = sync_msec;
3274 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
3275 
3276 	ic->io = dm_io_client_create();
3277 	if (IS_ERR(ic->io)) {
3278 		r = PTR_ERR(ic->io);
3279 		ic->io = NULL;
3280 		ti->error = "Cannot allocate dm io";
3281 		goto bad;
3282 	}
3283 
3284 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
3285 	if (r) {
3286 		ti->error = "Cannot allocate mempool";
3287 		goto bad;
3288 	}
3289 
3290 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
3291 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
3292 	if (!ic->metadata_wq) {
3293 		ti->error = "Cannot allocate workqueue";
3294 		r = -ENOMEM;
3295 		goto bad;
3296 	}
3297 
3298 	/*
3299 	 * If this workqueue were percpu, it would cause bio reordering
3300 	 * and reduced performance.
3301 	 */
3302 	ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3303 	if (!ic->wait_wq) {
3304 		ti->error = "Cannot allocate workqueue";
3305 		r = -ENOMEM;
3306 		goto bad;
3307 	}
3308 
3309 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
3310 	if (!ic->commit_wq) {
3311 		ti->error = "Cannot allocate workqueue";
3312 		r = -ENOMEM;
3313 		goto bad;
3314 	}
3315 	INIT_WORK(&ic->commit_work, integrity_commit);
3316 
3317 	if (ic->mode == 'J') {
3318 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
3319 		if (!ic->writer_wq) {
3320 			ti->error = "Cannot allocate workqueue";
3321 			r = -ENOMEM;
3322 			goto bad;
3323 		}
3324 		INIT_WORK(&ic->writer_work, integrity_writer);
3325 	}
3326 
3327 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
3328 	if (!ic->sb) {
3329 		r = -ENOMEM;
3330 		ti->error = "Cannot allocate superblock area";
3331 		goto bad;
3332 	}
3333 
3334 	r = sync_rw_sb(ic, REQ_OP_READ, 0);
3335 	if (r) {
3336 		ti->error = "Error reading superblock";
3337 		goto bad;
3338 	}
3339 	should_write_sb = false;
3340 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
3341 		if (ic->mode != 'R') {
3342 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
3343 				r = -EINVAL;
3344 				ti->error = "The device is not initialized";
3345 				goto bad;
3346 			}
3347 		}
3348 
3349 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
3350 		if (r) {
3351 			ti->error = "Could not initialize superblock";
3352 			goto bad;
3353 		}
3354 		if (ic->mode != 'R')
3355 			should_write_sb = true;
3356 	}
3357 
3358 	if (!ic->sb->version || ic->sb->version > SB_VERSION_2) {
3359 		r = -EINVAL;
3360 		ti->error = "Unknown version";
3361 		goto bad;
3362 	}
3363 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
3364 		r = -EINVAL;
3365 		ti->error = "Tag size doesn't match the information in superblock";
3366 		goto bad;
3367 	}
3368 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
3369 		r = -EINVAL;
3370 		ti->error = "Block size doesn't match the information in superblock";
3371 		goto bad;
3372 	}
3373 	if (!le32_to_cpu(ic->sb->journal_sections)) {
3374 		r = -EINVAL;
3375 		ti->error = "Corrupted superblock, journal_sections is 0";
3376 		goto bad;
3377 	}
3378 	/* make sure that ti->max_io_len doesn't overflow */
3379 	if (!ic->meta_dev) {
3380 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
3381 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
3382 			r = -EINVAL;
3383 			ti->error = "Invalid interleave_sectors in the superblock";
3384 			goto bad;
3385 		}
3386 	} else {
3387 		if (ic->sb->log2_interleave_sectors) {
3388 			r = -EINVAL;
3389 			ti->error = "Invalid interleave_sectors in the superblock";
3390 			goto bad;
3391 		}
3392 	}
3393 	ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3394 	if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
3395 		/* test for overflow */
3396 		r = -EINVAL;
3397 		ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
3398 		goto bad;
3399 	}
3400 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
3401 		r = -EINVAL;
3402 		ti->error = "Journal mac mismatch";
3403 		goto bad;
3404 	}
3405 
3406 try_smaller_buffer:
3407 	r = calculate_device_limits(ic);
3408 	if (r) {
3409 		if (ic->meta_dev) {
3410 			if (ic->log2_buffer_sectors > 3) {
3411 				ic->log2_buffer_sectors--;
3412 				goto try_smaller_buffer;
3413 			}
3414 		}
3415 		ti->error = "The device is too small";
3416 		goto bad;
3417 	}
3418 	if (!ic->meta_dev)
3419 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
3420 
3421 	if (ti->len > ic->provided_data_sectors) {
3422 		r = -EINVAL;
3423 		ti->error = "Not enough provided sectors for requested mapping size";
3424 		goto bad;
3425 	}
3426 
3427 
3428 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
3429 	threshold += 50;
3430 	do_div(threshold, 100);
3431 	ic->free_sectors_threshold = threshold;
3432 
3433 	DEBUG_print("initialized:\n");
3434 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
3435 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
3436 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
3437 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
3438 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
3439 	DEBUG_print("	journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
3440 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
3441 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
3442 	DEBUG_print("	device_sectors 0x%llx\n", (unsigned long long)ic->device_sectors);
3443 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
3444 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
3445 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
3446 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors,
3447 		    (unsigned long long)ic->provided_data_sectors);
3448 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
3449 
3450 	if (recalculate && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
3451 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3452 		ic->sb->recalc_sector = cpu_to_le64(0);
3453 	}
3454 
3455 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3456 		if (!ic->internal_hash) {
3457 			r = -EINVAL;
3458 			ti->error = "Recalculate is only valid with internal hash";
3459 			goto bad;
3460 		}
3461 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
3462 		if (!ic->recalc_wq ) {
3463 			ti->error = "Cannot allocate workqueue";
3464 			r = -ENOMEM;
3465 			goto bad;
3466 		}
3467 		INIT_WORK(&ic->recalc_work, integrity_recalc);
3468 		ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
3469 		if (!ic->recalc_buffer) {
3470 			ti->error = "Cannot allocate buffer for recalculating";
3471 			r = -ENOMEM;
3472 			goto bad;
3473 		}
3474 		ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
3475 						 ic->tag_size, GFP_KERNEL);
3476 		if (!ic->recalc_tags) {
3477 			ti->error = "Cannot allocate tags for recalculating";
3478 			r = -ENOMEM;
3479 			goto bad;
3480 		}
3481 	}
3482 
3483 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
3484 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
3485 	if (IS_ERR(ic->bufio)) {
3486 		r = PTR_ERR(ic->bufio);
3487 		ti->error = "Cannot initialize dm-bufio";
3488 		ic->bufio = NULL;
3489 		goto bad;
3490 	}
3491 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
3492 
3493 	if (ic->mode != 'R') {
3494 		r = create_journal(ic, &ti->error);
3495 		if (r)
3496 			goto bad;
3497 	}
3498 
3499 	if (should_write_sb) {
3500 		int r;
3501 
3502 		init_journal(ic, 0, ic->journal_sections, 0);
3503 		r = dm_integrity_failed(ic);
3504 		if (unlikely(r)) {
3505 			ti->error = "Error initializing journal";
3506 			goto bad;
3507 		}
3508 		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3509 		if (r) {
3510 			ti->error = "Error initializing superblock";
3511 			goto bad;
3512 		}
3513 		ic->just_formatted = true;
3514 	}
3515 
3516 	if (!ic->meta_dev) {
3517 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
3518 		if (r)
3519 			goto bad;
3520 	}
3521 
3522 	if (!ic->internal_hash)
3523 		dm_integrity_set(ti, ic);
3524 
3525 	ti->num_flush_bios = 1;
3526 	ti->flush_supported = true;
3527 
3528 	return 0;
3529 bad:
3530 	dm_integrity_dtr(ti);
3531 	return r;
3532 }
3533 
3534 static void dm_integrity_dtr(struct dm_target *ti)
3535 {
3536 	struct dm_integrity_c *ic = ti->private;
3537 
3538 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3539 	BUG_ON(!list_empty(&ic->wait_list));
3540 
3541 	if (ic->metadata_wq)
3542 		destroy_workqueue(ic->metadata_wq);
3543 	if (ic->wait_wq)
3544 		destroy_workqueue(ic->wait_wq);
3545 	if (ic->commit_wq)
3546 		destroy_workqueue(ic->commit_wq);
3547 	if (ic->writer_wq)
3548 		destroy_workqueue(ic->writer_wq);
3549 	if (ic->recalc_wq)
3550 		destroy_workqueue(ic->recalc_wq);
3551 	if (ic->recalc_buffer)
3552 		vfree(ic->recalc_buffer);
3553 	if (ic->recalc_tags)
3554 		kvfree(ic->recalc_tags);
3555 	if (ic->bufio)
3556 		dm_bufio_client_destroy(ic->bufio);
3557 	mempool_exit(&ic->journal_io_mempool);
3558 	if (ic->io)
3559 		dm_io_client_destroy(ic->io);
3560 	if (ic->dev)
3561 		dm_put_device(ti, ic->dev);
3562 	if (ic->meta_dev)
3563 		dm_put_device(ti, ic->meta_dev);
3564 	dm_integrity_free_page_list(ic, ic->journal);
3565 	dm_integrity_free_page_list(ic, ic->journal_io);
3566 	dm_integrity_free_page_list(ic, ic->journal_xor);
3567 	if (ic->journal_scatterlist)
3568 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
3569 	if (ic->journal_io_scatterlist)
3570 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
3571 	if (ic->sk_requests) {
3572 		unsigned i;
3573 
3574 		for (i = 0; i < ic->journal_sections; i++) {
3575 			struct skcipher_request *req = ic->sk_requests[i];
3576 			if (req) {
3577 				kzfree(req->iv);
3578 				skcipher_request_free(req);
3579 			}
3580 		}
3581 		kvfree(ic->sk_requests);
3582 	}
3583 	kvfree(ic->journal_tree);
3584 	if (ic->sb)
3585 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
3586 
3587 	if (ic->internal_hash)
3588 		crypto_free_shash(ic->internal_hash);
3589 	free_alg(&ic->internal_hash_alg);
3590 
3591 	if (ic->journal_crypt)
3592 		crypto_free_skcipher(ic->journal_crypt);
3593 	free_alg(&ic->journal_crypt_alg);
3594 
3595 	if (ic->journal_mac)
3596 		crypto_free_shash(ic->journal_mac);
3597 	free_alg(&ic->journal_mac_alg);
3598 
3599 	kfree(ic);
3600 }
3601 
3602 static struct target_type integrity_target = {
3603 	.name			= "integrity",
3604 	.version		= {1, 2, 0},
3605 	.module			= THIS_MODULE,
3606 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
3607 	.ctr			= dm_integrity_ctr,
3608 	.dtr			= dm_integrity_dtr,
3609 	.map			= dm_integrity_map,
3610 	.postsuspend		= dm_integrity_postsuspend,
3611 	.resume			= dm_integrity_resume,
3612 	.status			= dm_integrity_status,
3613 	.iterate_devices	= dm_integrity_iterate_devices,
3614 	.io_hints		= dm_integrity_io_hints,
3615 };
3616 
3617 static int __init dm_integrity_init(void)
3618 {
3619 	int r;
3620 
3621 	journal_io_cache = kmem_cache_create("integrity_journal_io",
3622 					     sizeof(struct journal_io), 0, 0, NULL);
3623 	if (!journal_io_cache) {
3624 		DMERR("can't allocate journal io cache");
3625 		return -ENOMEM;
3626 	}
3627 
3628 	r = dm_register_target(&integrity_target);
3629 
3630 	if (r < 0)
3631 		DMERR("register failed %d", r);
3632 
3633 	return r;
3634 }
3635 
3636 static void __exit dm_integrity_exit(void)
3637 {
3638 	dm_unregister_target(&integrity_target);
3639 	kmem_cache_destroy(journal_io_cache);
3640 }
3641 
3642 module_init(dm_integrity_init);
3643 module_exit(dm_integrity_exit);
3644 
3645 MODULE_AUTHOR("Milan Broz");
3646 MODULE_AUTHOR("Mikulas Patocka");
3647 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
3648 MODULE_LICENSE("GPL");
3649