xref: /linux/drivers/md/dm-integrity.c (revision 53ed0af4964229595b60594b35334d006d411ef0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4  * Copyright (C) 2016-2017 Milan Broz
5  * Copyright (C) 2016-2017 Mikulas Patocka
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include "dm-bio-record.h"
11 
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <linux/async_tx.h>
25 #include <linux/dm-bufio.h>
26 
27 #include "dm-audit.h"
28 
29 #define DM_MSG_PREFIX "integrity"
30 
31 #define DEFAULT_INTERLEAVE_SECTORS	32768
32 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
33 #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
34 #define DEFAULT_BUFFER_SECTORS		128
35 #define DEFAULT_JOURNAL_WATERMARK	50
36 #define DEFAULT_SYNC_MSEC		10000
37 #define DEFAULT_MAX_JOURNAL_SECTORS	(IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
38 #define MIN_LOG2_INTERLEAVE_SECTORS	3
39 #define MAX_LOG2_INTERLEAVE_SECTORS	31
40 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
41 #define RECALC_SECTORS			(IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
42 #define RECALC_WRITE_SUPER		16
43 #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
44 #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
45 #define DISCARD_FILLER			0xf6
46 #define SALT_SIZE			16
47 
48 /*
49  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
50  * so it should not be enabled in the official kernel
51  */
52 //#define DEBUG_PRINT
53 //#define INTERNAL_VERIFY
54 
55 /*
56  * On disk structures
57  */
58 
59 #define SB_MAGIC			"integrt"
60 #define SB_VERSION_1			1
61 #define SB_VERSION_2			2
62 #define SB_VERSION_3			3
63 #define SB_VERSION_4			4
64 #define SB_VERSION_5			5
65 #define SB_SECTORS			8
66 #define MAX_SECTORS_PER_BLOCK		8
67 
68 struct superblock {
69 	__u8 magic[8];
70 	__u8 version;
71 	__u8 log2_interleave_sectors;
72 	__le16 integrity_tag_size;
73 	__le32 journal_sections;
74 	__le64 provided_data_sectors;	/* userspace uses this value */
75 	__le32 flags;
76 	__u8 log2_sectors_per_block;
77 	__u8 log2_blocks_per_bitmap_bit;
78 	__u8 pad[2];
79 	__le64 recalc_sector;
80 	__u8 pad2[8];
81 	__u8 salt[SALT_SIZE];
82 };
83 
84 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
85 #define SB_FLAG_RECALCULATING		0x2
86 #define SB_FLAG_DIRTY_BITMAP		0x4
87 #define SB_FLAG_FIXED_PADDING		0x8
88 #define SB_FLAG_FIXED_HMAC		0x10
89 
90 #define	JOURNAL_ENTRY_ROUNDUP		8
91 
92 typedef __le64 commit_id_t;
93 #define JOURNAL_MAC_PER_SECTOR		8
94 
95 struct journal_entry {
96 	union {
97 		struct {
98 			__le32 sector_lo;
99 			__le32 sector_hi;
100 		} s;
101 		__le64 sector;
102 	} u;
103 	commit_id_t last_bytes[];
104 	/* __u8 tag[0]; */
105 };
106 
107 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
108 
109 #if BITS_PER_LONG == 64
110 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
111 #else
112 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
113 #endif
114 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
115 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
116 #define journal_entry_set_unused(je)		((je)->u.s.sector_hi = cpu_to_le32(-1))
117 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
118 #define journal_entry_set_inprogress(je)	((je)->u.s.sector_hi = cpu_to_le32(-2))
119 
120 #define JOURNAL_BLOCK_SECTORS		8
121 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
122 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
123 
124 struct journal_sector {
125 	struct_group(sectors,
126 		__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
127 		__u8 mac[JOURNAL_MAC_PER_SECTOR];
128 	);
129 	commit_id_t commit_id;
130 };
131 
132 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
133 
134 #define METADATA_PADDING_SECTORS	8
135 
136 #define N_COMMIT_IDS			4
137 
138 static unsigned char prev_commit_seq(unsigned char seq)
139 {
140 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
141 }
142 
143 static unsigned char next_commit_seq(unsigned char seq)
144 {
145 	return (seq + 1) % N_COMMIT_IDS;
146 }
147 
148 /*
149  * In-memory structures
150  */
151 
152 struct journal_node {
153 	struct rb_node node;
154 	sector_t sector;
155 };
156 
157 struct alg_spec {
158 	char *alg_string;
159 	char *key_string;
160 	__u8 *key;
161 	unsigned int key_size;
162 };
163 
164 struct dm_integrity_c {
165 	struct dm_dev *dev;
166 	struct dm_dev *meta_dev;
167 	unsigned int tag_size;
168 	__s8 log2_tag_size;
169 	sector_t start;
170 	mempool_t journal_io_mempool;
171 	struct dm_io_client *io;
172 	struct dm_bufio_client *bufio;
173 	struct workqueue_struct *metadata_wq;
174 	struct superblock *sb;
175 	unsigned int journal_pages;
176 	unsigned int n_bitmap_blocks;
177 
178 	struct page_list *journal;
179 	struct page_list *journal_io;
180 	struct page_list *journal_xor;
181 	struct page_list *recalc_bitmap;
182 	struct page_list *may_write_bitmap;
183 	struct bitmap_block_status *bbs;
184 	unsigned int bitmap_flush_interval;
185 	int synchronous_mode;
186 	struct bio_list synchronous_bios;
187 	struct delayed_work bitmap_flush_work;
188 
189 	struct crypto_skcipher *journal_crypt;
190 	struct scatterlist **journal_scatterlist;
191 	struct scatterlist **journal_io_scatterlist;
192 	struct skcipher_request **sk_requests;
193 
194 	struct crypto_shash *journal_mac;
195 
196 	struct journal_node *journal_tree;
197 	struct rb_root journal_tree_root;
198 
199 	sector_t provided_data_sectors;
200 
201 	unsigned short journal_entry_size;
202 	unsigned char journal_entries_per_sector;
203 	unsigned char journal_section_entries;
204 	unsigned short journal_section_sectors;
205 	unsigned int journal_sections;
206 	unsigned int journal_entries;
207 	sector_t data_device_sectors;
208 	sector_t meta_device_sectors;
209 	unsigned int initial_sectors;
210 	unsigned int metadata_run;
211 	__s8 log2_metadata_run;
212 	__u8 log2_buffer_sectors;
213 	__u8 sectors_per_block;
214 	__u8 log2_blocks_per_bitmap_bit;
215 
216 	unsigned char mode;
217 
218 	int failed;
219 
220 	struct crypto_shash *internal_hash;
221 
222 	struct dm_target *ti;
223 
224 	/* these variables are locked with endio_wait.lock */
225 	struct rb_root in_progress;
226 	struct list_head wait_list;
227 	wait_queue_head_t endio_wait;
228 	struct workqueue_struct *wait_wq;
229 	struct workqueue_struct *offload_wq;
230 
231 	unsigned char commit_seq;
232 	commit_id_t commit_ids[N_COMMIT_IDS];
233 
234 	unsigned int committed_section;
235 	unsigned int n_committed_sections;
236 
237 	unsigned int uncommitted_section;
238 	unsigned int n_uncommitted_sections;
239 
240 	unsigned int free_section;
241 	unsigned char free_section_entry;
242 	unsigned int free_sectors;
243 
244 	unsigned int free_sectors_threshold;
245 
246 	struct workqueue_struct *commit_wq;
247 	struct work_struct commit_work;
248 
249 	struct workqueue_struct *writer_wq;
250 	struct work_struct writer_work;
251 
252 	struct workqueue_struct *recalc_wq;
253 	struct work_struct recalc_work;
254 
255 	struct bio_list flush_bio_list;
256 
257 	unsigned long autocommit_jiffies;
258 	struct timer_list autocommit_timer;
259 	unsigned int autocommit_msec;
260 
261 	wait_queue_head_t copy_to_journal_wait;
262 
263 	struct completion crypto_backoff;
264 
265 	bool wrote_to_journal;
266 	bool journal_uptodate;
267 	bool just_formatted;
268 	bool recalculate_flag;
269 	bool reset_recalculate_flag;
270 	bool discard;
271 	bool fix_padding;
272 	bool fix_hmac;
273 	bool legacy_recalculate;
274 
275 	struct alg_spec internal_hash_alg;
276 	struct alg_spec journal_crypt_alg;
277 	struct alg_spec journal_mac_alg;
278 
279 	atomic64_t number_of_mismatches;
280 
281 	mempool_t recheck_pool;
282 
283 	struct notifier_block reboot_notifier;
284 };
285 
286 struct dm_integrity_range {
287 	sector_t logical_sector;
288 	sector_t n_sectors;
289 	bool waiting;
290 	union {
291 		struct rb_node node;
292 		struct {
293 			struct task_struct *task;
294 			struct list_head wait_entry;
295 		};
296 	};
297 };
298 
299 struct dm_integrity_io {
300 	struct work_struct work;
301 
302 	struct dm_integrity_c *ic;
303 	enum req_op op;
304 	bool fua;
305 
306 	struct dm_integrity_range range;
307 
308 	sector_t metadata_block;
309 	unsigned int metadata_offset;
310 
311 	atomic_t in_flight;
312 	blk_status_t bi_status;
313 
314 	struct completion *completion;
315 
316 	struct dm_bio_details bio_details;
317 };
318 
319 struct journal_completion {
320 	struct dm_integrity_c *ic;
321 	atomic_t in_flight;
322 	struct completion comp;
323 };
324 
325 struct journal_io {
326 	struct dm_integrity_range range;
327 	struct journal_completion *comp;
328 };
329 
330 struct bitmap_block_status {
331 	struct work_struct work;
332 	struct dm_integrity_c *ic;
333 	unsigned int idx;
334 	unsigned long *bitmap;
335 	struct bio_list bio_queue;
336 	spinlock_t bio_queue_lock;
337 
338 };
339 
340 static struct kmem_cache *journal_io_cache;
341 
342 #define JOURNAL_IO_MEMPOOL	32
343 
344 #ifdef DEBUG_PRINT
345 #define DEBUG_print(x, ...)			printk(KERN_DEBUG x, ##__VA_ARGS__)
346 #define DEBUG_bytes(bytes, len, msg, ...)	printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
347 						       len ? ": " : "", len, bytes)
348 #else
349 #define DEBUG_print(x, ...)			do { } while (0)
350 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
351 #endif
352 
353 static void dm_integrity_prepare(struct request *rq)
354 {
355 }
356 
357 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
358 {
359 }
360 
361 /*
362  * DM Integrity profile, protection is performed layer above (dm-crypt)
363  */
364 static const struct blk_integrity_profile dm_integrity_profile = {
365 	.name			= "DM-DIF-EXT-TAG",
366 	.generate_fn		= NULL,
367 	.verify_fn		= NULL,
368 	.prepare_fn		= dm_integrity_prepare,
369 	.complete_fn		= dm_integrity_complete,
370 };
371 
372 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
373 static void integrity_bio_wait(struct work_struct *w);
374 static void dm_integrity_dtr(struct dm_target *ti);
375 
376 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
377 {
378 	if (err == -EILSEQ)
379 		atomic64_inc(&ic->number_of_mismatches);
380 	if (!cmpxchg(&ic->failed, 0, err))
381 		DMERR("Error on %s: %d", msg, err);
382 }
383 
384 static int dm_integrity_failed(struct dm_integrity_c *ic)
385 {
386 	return READ_ONCE(ic->failed);
387 }
388 
389 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
390 {
391 	if (ic->legacy_recalculate)
392 		return false;
393 	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
394 	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
395 	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
396 		return true;
397 	return false;
398 }
399 
400 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
401 					  unsigned int j, unsigned char seq)
402 {
403 	/*
404 	 * Xor the number with section and sector, so that if a piece of
405 	 * journal is written at wrong place, it is detected.
406 	 */
407 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
408 }
409 
410 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
411 				sector_t *area, sector_t *offset)
412 {
413 	if (!ic->meta_dev) {
414 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
415 		*area = data_sector >> log2_interleave_sectors;
416 		*offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
417 	} else {
418 		*area = 0;
419 		*offset = data_sector;
420 	}
421 }
422 
423 #define sector_to_block(ic, n)						\
424 do {									\
425 	BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1));		\
426 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
427 } while (0)
428 
429 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
430 					    sector_t offset, unsigned int *metadata_offset)
431 {
432 	__u64 ms;
433 	unsigned int mo;
434 
435 	ms = area << ic->sb->log2_interleave_sectors;
436 	if (likely(ic->log2_metadata_run >= 0))
437 		ms += area << ic->log2_metadata_run;
438 	else
439 		ms += area * ic->metadata_run;
440 	ms >>= ic->log2_buffer_sectors;
441 
442 	sector_to_block(ic, offset);
443 
444 	if (likely(ic->log2_tag_size >= 0)) {
445 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
446 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
447 	} else {
448 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
449 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
450 	}
451 	*metadata_offset = mo;
452 	return ms;
453 }
454 
455 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
456 {
457 	sector_t result;
458 
459 	if (ic->meta_dev)
460 		return offset;
461 
462 	result = area << ic->sb->log2_interleave_sectors;
463 	if (likely(ic->log2_metadata_run >= 0))
464 		result += (area + 1) << ic->log2_metadata_run;
465 	else
466 		result += (area + 1) * ic->metadata_run;
467 
468 	result += (sector_t)ic->initial_sectors + offset;
469 	result += ic->start;
470 
471 	return result;
472 }
473 
474 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
475 {
476 	if (unlikely(*sec_ptr >= ic->journal_sections))
477 		*sec_ptr -= ic->journal_sections;
478 }
479 
480 static void sb_set_version(struct dm_integrity_c *ic)
481 {
482 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
483 		ic->sb->version = SB_VERSION_5;
484 	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
485 		ic->sb->version = SB_VERSION_4;
486 	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
487 		ic->sb->version = SB_VERSION_3;
488 	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
489 		ic->sb->version = SB_VERSION_2;
490 	else
491 		ic->sb->version = SB_VERSION_1;
492 }
493 
494 static int sb_mac(struct dm_integrity_c *ic, bool wr)
495 {
496 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
497 	int r;
498 	unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac);
499 	__u8 *sb = (__u8 *)ic->sb;
500 	__u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size;
501 
502 	if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT) {
503 		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
504 		return -EINVAL;
505 	}
506 
507 	desc->tfm = ic->journal_mac;
508 
509 	if (likely(wr)) {
510 		r = crypto_shash_digest(desc, sb, mac - sb, mac);
511 		if (unlikely(r < 0)) {
512 			dm_integrity_io_error(ic, "crypto_shash_digest", r);
513 			return r;
514 		}
515 	} else {
516 		__u8 actual_mac[HASH_MAX_DIGESTSIZE];
517 
518 		r = crypto_shash_digest(desc, sb, mac - sb, actual_mac);
519 		if (unlikely(r < 0)) {
520 			dm_integrity_io_error(ic, "crypto_shash_digest", r);
521 			return r;
522 		}
523 		if (memcmp(mac, actual_mac, mac_size)) {
524 			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
525 			dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
526 			return -EILSEQ;
527 		}
528 	}
529 
530 	return 0;
531 }
532 
533 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
534 {
535 	struct dm_io_request io_req;
536 	struct dm_io_region io_loc;
537 	const enum req_op op = opf & REQ_OP_MASK;
538 	int r;
539 
540 	io_req.bi_opf = opf;
541 	io_req.mem.type = DM_IO_KMEM;
542 	io_req.mem.ptr.addr = ic->sb;
543 	io_req.notify.fn = NULL;
544 	io_req.client = ic->io;
545 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
546 	io_loc.sector = ic->start;
547 	io_loc.count = SB_SECTORS;
548 
549 	if (op == REQ_OP_WRITE) {
550 		sb_set_version(ic);
551 		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
552 			r = sb_mac(ic, true);
553 			if (unlikely(r))
554 				return r;
555 		}
556 	}
557 
558 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
559 	if (unlikely(r))
560 		return r;
561 
562 	if (op == REQ_OP_READ) {
563 		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
564 			r = sb_mac(ic, false);
565 			if (unlikely(r))
566 				return r;
567 		}
568 	}
569 
570 	return 0;
571 }
572 
573 #define BITMAP_OP_TEST_ALL_SET		0
574 #define BITMAP_OP_TEST_ALL_CLEAR	1
575 #define BITMAP_OP_SET			2
576 #define BITMAP_OP_CLEAR			3
577 
578 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
579 			    sector_t sector, sector_t n_sectors, int mode)
580 {
581 	unsigned long bit, end_bit, this_end_bit, page, end_page;
582 	unsigned long *data;
583 
584 	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
585 		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
586 			sector,
587 			n_sectors,
588 			ic->sb->log2_sectors_per_block,
589 			ic->log2_blocks_per_bitmap_bit,
590 			mode);
591 		BUG();
592 	}
593 
594 	if (unlikely(!n_sectors))
595 		return true;
596 
597 	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
598 	end_bit = (sector + n_sectors - 1) >>
599 		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
600 
601 	page = bit / (PAGE_SIZE * 8);
602 	bit %= PAGE_SIZE * 8;
603 
604 	end_page = end_bit / (PAGE_SIZE * 8);
605 	end_bit %= PAGE_SIZE * 8;
606 
607 repeat:
608 	if (page < end_page)
609 		this_end_bit = PAGE_SIZE * 8 - 1;
610 	else
611 		this_end_bit = end_bit;
612 
613 	data = lowmem_page_address(bitmap[page].page);
614 
615 	if (mode == BITMAP_OP_TEST_ALL_SET) {
616 		while (bit <= this_end_bit) {
617 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
618 				do {
619 					if (data[bit / BITS_PER_LONG] != -1)
620 						return false;
621 					bit += BITS_PER_LONG;
622 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
623 				continue;
624 			}
625 			if (!test_bit(bit, data))
626 				return false;
627 			bit++;
628 		}
629 	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
630 		while (bit <= this_end_bit) {
631 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
632 				do {
633 					if (data[bit / BITS_PER_LONG] != 0)
634 						return false;
635 					bit += BITS_PER_LONG;
636 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
637 				continue;
638 			}
639 			if (test_bit(bit, data))
640 				return false;
641 			bit++;
642 		}
643 	} else if (mode == BITMAP_OP_SET) {
644 		while (bit <= this_end_bit) {
645 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
646 				do {
647 					data[bit / BITS_PER_LONG] = -1;
648 					bit += BITS_PER_LONG;
649 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
650 				continue;
651 			}
652 			__set_bit(bit, data);
653 			bit++;
654 		}
655 	} else if (mode == BITMAP_OP_CLEAR) {
656 		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
657 			clear_page(data);
658 		else {
659 			while (bit <= this_end_bit) {
660 				if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
661 					do {
662 						data[bit / BITS_PER_LONG] = 0;
663 						bit += BITS_PER_LONG;
664 					} while (this_end_bit >= bit + BITS_PER_LONG - 1);
665 					continue;
666 				}
667 				__clear_bit(bit, data);
668 				bit++;
669 			}
670 		}
671 	} else {
672 		BUG();
673 	}
674 
675 	if (unlikely(page < end_page)) {
676 		bit = 0;
677 		page++;
678 		goto repeat;
679 	}
680 
681 	return true;
682 }
683 
684 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
685 {
686 	unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
687 	unsigned int i;
688 
689 	for (i = 0; i < n_bitmap_pages; i++) {
690 		unsigned long *dst_data = lowmem_page_address(dst[i].page);
691 		unsigned long *src_data = lowmem_page_address(src[i].page);
692 
693 		copy_page(dst_data, src_data);
694 	}
695 }
696 
697 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
698 {
699 	unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
700 	unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
701 
702 	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
703 	return &ic->bbs[bitmap_block];
704 }
705 
706 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
707 				 bool e, const char *function)
708 {
709 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
710 	unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
711 
712 	if (unlikely(section >= ic->journal_sections) ||
713 	    unlikely(offset >= limit)) {
714 		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
715 		       function, section, offset, ic->journal_sections, limit);
716 		BUG();
717 	}
718 #endif
719 }
720 
721 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
722 			       unsigned int *pl_index, unsigned int *pl_offset)
723 {
724 	unsigned int sector;
725 
726 	access_journal_check(ic, section, offset, false, "page_list_location");
727 
728 	sector = section * ic->journal_section_sectors + offset;
729 
730 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
731 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
732 }
733 
734 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
735 					       unsigned int section, unsigned int offset, unsigned int *n_sectors)
736 {
737 	unsigned int pl_index, pl_offset;
738 	char *va;
739 
740 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
741 
742 	if (n_sectors)
743 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
744 
745 	va = lowmem_page_address(pl[pl_index].page);
746 
747 	return (struct journal_sector *)(va + pl_offset);
748 }
749 
750 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
751 {
752 	return access_page_list(ic, ic->journal, section, offset, NULL);
753 }
754 
755 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
756 {
757 	unsigned int rel_sector, offset;
758 	struct journal_sector *js;
759 
760 	access_journal_check(ic, section, n, true, "access_journal_entry");
761 
762 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
763 	offset = n / JOURNAL_BLOCK_SECTORS;
764 
765 	js = access_journal(ic, section, rel_sector);
766 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
767 }
768 
769 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
770 {
771 	n <<= ic->sb->log2_sectors_per_block;
772 
773 	n += JOURNAL_BLOCK_SECTORS;
774 
775 	access_journal_check(ic, section, n, false, "access_journal_data");
776 
777 	return access_journal(ic, section, n);
778 }
779 
780 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
781 {
782 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
783 	int r;
784 	unsigned int j, size;
785 
786 	desc->tfm = ic->journal_mac;
787 
788 	r = crypto_shash_init(desc);
789 	if (unlikely(r < 0)) {
790 		dm_integrity_io_error(ic, "crypto_shash_init", r);
791 		goto err;
792 	}
793 
794 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
795 		__le64 section_le;
796 
797 		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
798 		if (unlikely(r < 0)) {
799 			dm_integrity_io_error(ic, "crypto_shash_update", r);
800 			goto err;
801 		}
802 
803 		section_le = cpu_to_le64(section);
804 		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof(section_le));
805 		if (unlikely(r < 0)) {
806 			dm_integrity_io_error(ic, "crypto_shash_update", r);
807 			goto err;
808 		}
809 	}
810 
811 	for (j = 0; j < ic->journal_section_entries; j++) {
812 		struct journal_entry *je = access_journal_entry(ic, section, j);
813 
814 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
815 		if (unlikely(r < 0)) {
816 			dm_integrity_io_error(ic, "crypto_shash_update", r);
817 			goto err;
818 		}
819 	}
820 
821 	size = crypto_shash_digestsize(ic->journal_mac);
822 
823 	if (likely(size <= JOURNAL_MAC_SIZE)) {
824 		r = crypto_shash_final(desc, result);
825 		if (unlikely(r < 0)) {
826 			dm_integrity_io_error(ic, "crypto_shash_final", r);
827 			goto err;
828 		}
829 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
830 	} else {
831 		__u8 digest[HASH_MAX_DIGESTSIZE];
832 
833 		if (WARN_ON(size > sizeof(digest))) {
834 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
835 			goto err;
836 		}
837 		r = crypto_shash_final(desc, digest);
838 		if (unlikely(r < 0)) {
839 			dm_integrity_io_error(ic, "crypto_shash_final", r);
840 			goto err;
841 		}
842 		memcpy(result, digest, JOURNAL_MAC_SIZE);
843 	}
844 
845 	return;
846 err:
847 	memset(result, 0, JOURNAL_MAC_SIZE);
848 }
849 
850 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
851 {
852 	__u8 result[JOURNAL_MAC_SIZE];
853 	unsigned int j;
854 
855 	if (!ic->journal_mac)
856 		return;
857 
858 	section_mac(ic, section, result);
859 
860 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
861 		struct journal_sector *js = access_journal(ic, section, j);
862 
863 		if (likely(wr))
864 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
865 		else {
866 			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
867 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
868 				dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
869 			}
870 		}
871 	}
872 }
873 
874 static void complete_journal_op(void *context)
875 {
876 	struct journal_completion *comp = context;
877 
878 	BUG_ON(!atomic_read(&comp->in_flight));
879 	if (likely(atomic_dec_and_test(&comp->in_flight)))
880 		complete(&comp->comp);
881 }
882 
883 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
884 			unsigned int n_sections, struct journal_completion *comp)
885 {
886 	struct async_submit_ctl submit;
887 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
888 	unsigned int pl_index, pl_offset, section_index;
889 	struct page_list *source_pl, *target_pl;
890 
891 	if (likely(encrypt)) {
892 		source_pl = ic->journal;
893 		target_pl = ic->journal_io;
894 	} else {
895 		source_pl = ic->journal_io;
896 		target_pl = ic->journal;
897 	}
898 
899 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
900 
901 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
902 
903 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
904 
905 	section_index = pl_index;
906 
907 	do {
908 		size_t this_step;
909 		struct page *src_pages[2];
910 		struct page *dst_page;
911 
912 		while (unlikely(pl_index == section_index)) {
913 			unsigned int dummy;
914 
915 			if (likely(encrypt))
916 				rw_section_mac(ic, section, true);
917 			section++;
918 			n_sections--;
919 			if (!n_sections)
920 				break;
921 			page_list_location(ic, section, 0, &section_index, &dummy);
922 		}
923 
924 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
925 		dst_page = target_pl[pl_index].page;
926 		src_pages[0] = source_pl[pl_index].page;
927 		src_pages[1] = ic->journal_xor[pl_index].page;
928 
929 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
930 
931 		pl_index++;
932 		pl_offset = 0;
933 		n_bytes -= this_step;
934 	} while (n_bytes);
935 
936 	BUG_ON(n_sections);
937 
938 	async_tx_issue_pending_all();
939 }
940 
941 static void complete_journal_encrypt(void *data, int err)
942 {
943 	struct journal_completion *comp = data;
944 
945 	if (unlikely(err)) {
946 		if (likely(err == -EINPROGRESS)) {
947 			complete(&comp->ic->crypto_backoff);
948 			return;
949 		}
950 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
951 	}
952 	complete_journal_op(comp);
953 }
954 
955 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
956 {
957 	int r;
958 
959 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
960 				      complete_journal_encrypt, comp);
961 	if (likely(encrypt))
962 		r = crypto_skcipher_encrypt(req);
963 	else
964 		r = crypto_skcipher_decrypt(req);
965 	if (likely(!r))
966 		return false;
967 	if (likely(r == -EINPROGRESS))
968 		return true;
969 	if (likely(r == -EBUSY)) {
970 		wait_for_completion(&comp->ic->crypto_backoff);
971 		reinit_completion(&comp->ic->crypto_backoff);
972 		return true;
973 	}
974 	dm_integrity_io_error(comp->ic, "encrypt", r);
975 	return false;
976 }
977 
978 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
979 			  unsigned int n_sections, struct journal_completion *comp)
980 {
981 	struct scatterlist **source_sg;
982 	struct scatterlist **target_sg;
983 
984 	atomic_add(2, &comp->in_flight);
985 
986 	if (likely(encrypt)) {
987 		source_sg = ic->journal_scatterlist;
988 		target_sg = ic->journal_io_scatterlist;
989 	} else {
990 		source_sg = ic->journal_io_scatterlist;
991 		target_sg = ic->journal_scatterlist;
992 	}
993 
994 	do {
995 		struct skcipher_request *req;
996 		unsigned int ivsize;
997 		char *iv;
998 
999 		if (likely(encrypt))
1000 			rw_section_mac(ic, section, true);
1001 
1002 		req = ic->sk_requests[section];
1003 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1004 		iv = req->iv;
1005 
1006 		memcpy(iv, iv + ivsize, ivsize);
1007 
1008 		req->src = source_sg[section];
1009 		req->dst = target_sg[section];
1010 
1011 		if (unlikely(do_crypt(encrypt, req, comp)))
1012 			atomic_inc(&comp->in_flight);
1013 
1014 		section++;
1015 		n_sections--;
1016 	} while (n_sections);
1017 
1018 	atomic_dec(&comp->in_flight);
1019 	complete_journal_op(comp);
1020 }
1021 
1022 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1023 			    unsigned int n_sections, struct journal_completion *comp)
1024 {
1025 	if (ic->journal_xor)
1026 		return xor_journal(ic, encrypt, section, n_sections, comp);
1027 	else
1028 		return crypt_journal(ic, encrypt, section, n_sections, comp);
1029 }
1030 
1031 static void complete_journal_io(unsigned long error, void *context)
1032 {
1033 	struct journal_completion *comp = context;
1034 
1035 	if (unlikely(error != 0))
1036 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1037 	complete_journal_op(comp);
1038 }
1039 
1040 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1041 			       unsigned int sector, unsigned int n_sectors,
1042 			       struct journal_completion *comp)
1043 {
1044 	struct dm_io_request io_req;
1045 	struct dm_io_region io_loc;
1046 	unsigned int pl_index, pl_offset;
1047 	int r;
1048 
1049 	if (unlikely(dm_integrity_failed(ic))) {
1050 		if (comp)
1051 			complete_journal_io(-1UL, comp);
1052 		return;
1053 	}
1054 
1055 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1056 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1057 
1058 	io_req.bi_opf = opf;
1059 	io_req.mem.type = DM_IO_PAGE_LIST;
1060 	if (ic->journal_io)
1061 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1062 	else
1063 		io_req.mem.ptr.pl = &ic->journal[pl_index];
1064 	io_req.mem.offset = pl_offset;
1065 	if (likely(comp != NULL)) {
1066 		io_req.notify.fn = complete_journal_io;
1067 		io_req.notify.context = comp;
1068 	} else {
1069 		io_req.notify.fn = NULL;
1070 	}
1071 	io_req.client = ic->io;
1072 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1073 	io_loc.sector = ic->start + SB_SECTORS + sector;
1074 	io_loc.count = n_sectors;
1075 
1076 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1077 	if (unlikely(r)) {
1078 		dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1079 				      "reading journal" : "writing journal", r);
1080 		if (comp) {
1081 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1082 			complete_journal_io(-1UL, comp);
1083 		}
1084 	}
1085 }
1086 
1087 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1088 		       unsigned int section, unsigned int n_sections,
1089 		       struct journal_completion *comp)
1090 {
1091 	unsigned int sector, n_sectors;
1092 
1093 	sector = section * ic->journal_section_sectors;
1094 	n_sectors = n_sections * ic->journal_section_sectors;
1095 
1096 	rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1097 }
1098 
1099 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1100 {
1101 	struct journal_completion io_comp;
1102 	struct journal_completion crypt_comp_1;
1103 	struct journal_completion crypt_comp_2;
1104 	unsigned int i;
1105 
1106 	io_comp.ic = ic;
1107 	init_completion(&io_comp.comp);
1108 
1109 	if (commit_start + commit_sections <= ic->journal_sections) {
1110 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1111 		if (ic->journal_io) {
1112 			crypt_comp_1.ic = ic;
1113 			init_completion(&crypt_comp_1.comp);
1114 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1115 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1116 			wait_for_completion_io(&crypt_comp_1.comp);
1117 		} else {
1118 			for (i = 0; i < commit_sections; i++)
1119 				rw_section_mac(ic, commit_start + i, true);
1120 		}
1121 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1122 			   commit_sections, &io_comp);
1123 	} else {
1124 		unsigned int to_end;
1125 
1126 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1127 		to_end = ic->journal_sections - commit_start;
1128 		if (ic->journal_io) {
1129 			crypt_comp_1.ic = ic;
1130 			init_completion(&crypt_comp_1.comp);
1131 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1132 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1133 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1134 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1135 					   commit_start, to_end, &io_comp);
1136 				reinit_completion(&crypt_comp_1.comp);
1137 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1138 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1139 				wait_for_completion_io(&crypt_comp_1.comp);
1140 			} else {
1141 				crypt_comp_2.ic = ic;
1142 				init_completion(&crypt_comp_2.comp);
1143 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1144 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1145 				wait_for_completion_io(&crypt_comp_1.comp);
1146 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1147 				wait_for_completion_io(&crypt_comp_2.comp);
1148 			}
1149 		} else {
1150 			for (i = 0; i < to_end; i++)
1151 				rw_section_mac(ic, commit_start + i, true);
1152 			rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1153 			for (i = 0; i < commit_sections - to_end; i++)
1154 				rw_section_mac(ic, i, true);
1155 		}
1156 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1157 	}
1158 
1159 	wait_for_completion_io(&io_comp.comp);
1160 }
1161 
1162 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1163 			      unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1164 {
1165 	struct dm_io_request io_req;
1166 	struct dm_io_region io_loc;
1167 	int r;
1168 	unsigned int sector, pl_index, pl_offset;
1169 
1170 	BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1171 
1172 	if (unlikely(dm_integrity_failed(ic))) {
1173 		fn(-1UL, data);
1174 		return;
1175 	}
1176 
1177 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1178 
1179 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1180 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1181 
1182 	io_req.bi_opf = REQ_OP_WRITE;
1183 	io_req.mem.type = DM_IO_PAGE_LIST;
1184 	io_req.mem.ptr.pl = &ic->journal[pl_index];
1185 	io_req.mem.offset = pl_offset;
1186 	io_req.notify.fn = fn;
1187 	io_req.notify.context = data;
1188 	io_req.client = ic->io;
1189 	io_loc.bdev = ic->dev->bdev;
1190 	io_loc.sector = target;
1191 	io_loc.count = n_sectors;
1192 
1193 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1194 	if (unlikely(r)) {
1195 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1196 		fn(-1UL, data);
1197 	}
1198 }
1199 
1200 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1201 {
1202 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1203 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1204 }
1205 
1206 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1207 {
1208 	struct rb_node **n = &ic->in_progress.rb_node;
1209 	struct rb_node *parent;
1210 
1211 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1212 
1213 	if (likely(check_waiting)) {
1214 		struct dm_integrity_range *range;
1215 
1216 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1217 			if (unlikely(ranges_overlap(range, new_range)))
1218 				return false;
1219 		}
1220 	}
1221 
1222 	parent = NULL;
1223 
1224 	while (*n) {
1225 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1226 
1227 		parent = *n;
1228 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1229 			n = &range->node.rb_left;
1230 		else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1231 			n = &range->node.rb_right;
1232 		else
1233 			return false;
1234 	}
1235 
1236 	rb_link_node(&new_range->node, parent, n);
1237 	rb_insert_color(&new_range->node, &ic->in_progress);
1238 
1239 	return true;
1240 }
1241 
1242 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1243 {
1244 	rb_erase(&range->node, &ic->in_progress);
1245 	while (unlikely(!list_empty(&ic->wait_list))) {
1246 		struct dm_integrity_range *last_range =
1247 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1248 		struct task_struct *last_range_task;
1249 
1250 		last_range_task = last_range->task;
1251 		list_del(&last_range->wait_entry);
1252 		if (!add_new_range(ic, last_range, false)) {
1253 			last_range->task = last_range_task;
1254 			list_add(&last_range->wait_entry, &ic->wait_list);
1255 			break;
1256 		}
1257 		last_range->waiting = false;
1258 		wake_up_process(last_range_task);
1259 	}
1260 }
1261 
1262 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1263 {
1264 	unsigned long flags;
1265 
1266 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1267 	remove_range_unlocked(ic, range);
1268 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1269 }
1270 
1271 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1272 {
1273 	new_range->waiting = true;
1274 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1275 	new_range->task = current;
1276 	do {
1277 		__set_current_state(TASK_UNINTERRUPTIBLE);
1278 		spin_unlock_irq(&ic->endio_wait.lock);
1279 		io_schedule();
1280 		spin_lock_irq(&ic->endio_wait.lock);
1281 	} while (unlikely(new_range->waiting));
1282 }
1283 
1284 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1285 {
1286 	if (unlikely(!add_new_range(ic, new_range, true)))
1287 		wait_and_add_new_range(ic, new_range);
1288 }
1289 
1290 static void init_journal_node(struct journal_node *node)
1291 {
1292 	RB_CLEAR_NODE(&node->node);
1293 	node->sector = (sector_t)-1;
1294 }
1295 
1296 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1297 {
1298 	struct rb_node **link;
1299 	struct rb_node *parent;
1300 
1301 	node->sector = sector;
1302 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1303 
1304 	link = &ic->journal_tree_root.rb_node;
1305 	parent = NULL;
1306 
1307 	while (*link) {
1308 		struct journal_node *j;
1309 
1310 		parent = *link;
1311 		j = container_of(parent, struct journal_node, node);
1312 		if (sector < j->sector)
1313 			link = &j->node.rb_left;
1314 		else
1315 			link = &j->node.rb_right;
1316 	}
1317 
1318 	rb_link_node(&node->node, parent, link);
1319 	rb_insert_color(&node->node, &ic->journal_tree_root);
1320 }
1321 
1322 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1323 {
1324 	BUG_ON(RB_EMPTY_NODE(&node->node));
1325 	rb_erase(&node->node, &ic->journal_tree_root);
1326 	init_journal_node(node);
1327 }
1328 
1329 #define NOT_FOUND	(-1U)
1330 
1331 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1332 {
1333 	struct rb_node *n = ic->journal_tree_root.rb_node;
1334 	unsigned int found = NOT_FOUND;
1335 
1336 	*next_sector = (sector_t)-1;
1337 	while (n) {
1338 		struct journal_node *j = container_of(n, struct journal_node, node);
1339 
1340 		if (sector == j->sector)
1341 			found = j - ic->journal_tree;
1342 
1343 		if (sector < j->sector) {
1344 			*next_sector = j->sector;
1345 			n = j->node.rb_left;
1346 		} else
1347 			n = j->node.rb_right;
1348 	}
1349 
1350 	return found;
1351 }
1352 
1353 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1354 {
1355 	struct journal_node *node, *next_node;
1356 	struct rb_node *next;
1357 
1358 	if (unlikely(pos >= ic->journal_entries))
1359 		return false;
1360 	node = &ic->journal_tree[pos];
1361 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1362 		return false;
1363 	if (unlikely(node->sector != sector))
1364 		return false;
1365 
1366 	next = rb_next(&node->node);
1367 	if (unlikely(!next))
1368 		return true;
1369 
1370 	next_node = container_of(next, struct journal_node, node);
1371 	return next_node->sector != sector;
1372 }
1373 
1374 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1375 {
1376 	struct rb_node *next;
1377 	struct journal_node *next_node;
1378 	unsigned int next_section;
1379 
1380 	BUG_ON(RB_EMPTY_NODE(&node->node));
1381 
1382 	next = rb_next(&node->node);
1383 	if (unlikely(!next))
1384 		return false;
1385 
1386 	next_node = container_of(next, struct journal_node, node);
1387 
1388 	if (next_node->sector != node->sector)
1389 		return false;
1390 
1391 	next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1392 	if (next_section >= ic->committed_section &&
1393 	    next_section < ic->committed_section + ic->n_committed_sections)
1394 		return true;
1395 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1396 		return true;
1397 
1398 	return false;
1399 }
1400 
1401 #define TAG_READ	0
1402 #define TAG_WRITE	1
1403 #define TAG_CMP		2
1404 
1405 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1406 			       unsigned int *metadata_offset, unsigned int total_size, int op)
1407 {
1408 #define MAY_BE_FILLER		1
1409 #define MAY_BE_HASH		2
1410 	unsigned int hash_offset = 0;
1411 	unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1412 
1413 	do {
1414 		unsigned char *data, *dp;
1415 		struct dm_buffer *b;
1416 		unsigned int to_copy;
1417 		int r;
1418 
1419 		r = dm_integrity_failed(ic);
1420 		if (unlikely(r))
1421 			return r;
1422 
1423 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1424 		if (IS_ERR(data))
1425 			return PTR_ERR(data);
1426 
1427 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1428 		dp = data + *metadata_offset;
1429 		if (op == TAG_READ) {
1430 			memcpy(tag, dp, to_copy);
1431 		} else if (op == TAG_WRITE) {
1432 			if (memcmp(dp, tag, to_copy)) {
1433 				memcpy(dp, tag, to_copy);
1434 				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1435 			}
1436 		} else {
1437 			/* e.g.: op == TAG_CMP */
1438 
1439 			if (likely(is_power_of_2(ic->tag_size))) {
1440 				if (unlikely(memcmp(dp, tag, to_copy)))
1441 					if (unlikely(!ic->discard) ||
1442 					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1443 						goto thorough_test;
1444 				}
1445 			} else {
1446 				unsigned int i, ts;
1447 thorough_test:
1448 				ts = total_size;
1449 
1450 				for (i = 0; i < to_copy; i++, ts--) {
1451 					if (unlikely(dp[i] != tag[i]))
1452 						may_be &= ~MAY_BE_HASH;
1453 					if (likely(dp[i] != DISCARD_FILLER))
1454 						may_be &= ~MAY_BE_FILLER;
1455 					hash_offset++;
1456 					if (unlikely(hash_offset == ic->tag_size)) {
1457 						if (unlikely(!may_be)) {
1458 							dm_bufio_release(b);
1459 							return ts;
1460 						}
1461 						hash_offset = 0;
1462 						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1463 					}
1464 				}
1465 			}
1466 		}
1467 		dm_bufio_release(b);
1468 
1469 		tag += to_copy;
1470 		*metadata_offset += to_copy;
1471 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1472 			(*metadata_block)++;
1473 			*metadata_offset = 0;
1474 		}
1475 
1476 		if (unlikely(!is_power_of_2(ic->tag_size)))
1477 			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1478 
1479 		total_size -= to_copy;
1480 	} while (unlikely(total_size));
1481 
1482 	return 0;
1483 #undef MAY_BE_FILLER
1484 #undef MAY_BE_HASH
1485 }
1486 
1487 struct flush_request {
1488 	struct dm_io_request io_req;
1489 	struct dm_io_region io_reg;
1490 	struct dm_integrity_c *ic;
1491 	struct completion comp;
1492 };
1493 
1494 static void flush_notify(unsigned long error, void *fr_)
1495 {
1496 	struct flush_request *fr = fr_;
1497 
1498 	if (unlikely(error != 0))
1499 		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1500 	complete(&fr->comp);
1501 }
1502 
1503 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1504 {
1505 	int r;
1506 	struct flush_request fr;
1507 
1508 	if (!ic->meta_dev)
1509 		flush_data = false;
1510 	if (flush_data) {
1511 		fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1512 		fr.io_req.mem.type = DM_IO_KMEM,
1513 		fr.io_req.mem.ptr.addr = NULL,
1514 		fr.io_req.notify.fn = flush_notify,
1515 		fr.io_req.notify.context = &fr;
1516 		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1517 		fr.io_reg.bdev = ic->dev->bdev,
1518 		fr.io_reg.sector = 0,
1519 		fr.io_reg.count = 0,
1520 		fr.ic = ic;
1521 		init_completion(&fr.comp);
1522 		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL, IOPRIO_DEFAULT);
1523 		BUG_ON(r);
1524 	}
1525 
1526 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1527 	if (unlikely(r))
1528 		dm_integrity_io_error(ic, "writing tags", r);
1529 
1530 	if (flush_data)
1531 		wait_for_completion(&fr.comp);
1532 }
1533 
1534 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1535 {
1536 	DECLARE_WAITQUEUE(wait, current);
1537 
1538 	__add_wait_queue(&ic->endio_wait, &wait);
1539 	__set_current_state(TASK_UNINTERRUPTIBLE);
1540 	spin_unlock_irq(&ic->endio_wait.lock);
1541 	io_schedule();
1542 	spin_lock_irq(&ic->endio_wait.lock);
1543 	__remove_wait_queue(&ic->endio_wait, &wait);
1544 }
1545 
1546 static void autocommit_fn(struct timer_list *t)
1547 {
1548 	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1549 
1550 	if (likely(!dm_integrity_failed(ic)))
1551 		queue_work(ic->commit_wq, &ic->commit_work);
1552 }
1553 
1554 static void schedule_autocommit(struct dm_integrity_c *ic)
1555 {
1556 	if (!timer_pending(&ic->autocommit_timer))
1557 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1558 }
1559 
1560 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1561 {
1562 	struct bio *bio;
1563 	unsigned long flags;
1564 
1565 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1566 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1567 	bio_list_add(&ic->flush_bio_list, bio);
1568 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1569 
1570 	queue_work(ic->commit_wq, &ic->commit_work);
1571 }
1572 
1573 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1574 {
1575 	int r;
1576 
1577 	r = dm_integrity_failed(ic);
1578 	if (unlikely(r) && !bio->bi_status)
1579 		bio->bi_status = errno_to_blk_status(r);
1580 	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1581 		unsigned long flags;
1582 
1583 		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1584 		bio_list_add(&ic->synchronous_bios, bio);
1585 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1586 		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1587 		return;
1588 	}
1589 	bio_endio(bio);
1590 }
1591 
1592 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1593 {
1594 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1595 
1596 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1597 		submit_flush_bio(ic, dio);
1598 	else
1599 		do_endio(ic, bio);
1600 }
1601 
1602 static void dec_in_flight(struct dm_integrity_io *dio)
1603 {
1604 	if (atomic_dec_and_test(&dio->in_flight)) {
1605 		struct dm_integrity_c *ic = dio->ic;
1606 		struct bio *bio;
1607 
1608 		remove_range(ic, &dio->range);
1609 
1610 		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1611 			schedule_autocommit(ic);
1612 
1613 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1614 		if (unlikely(dio->bi_status) && !bio->bi_status)
1615 			bio->bi_status = dio->bi_status;
1616 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1617 			dio->range.logical_sector += dio->range.n_sectors;
1618 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1619 			INIT_WORK(&dio->work, integrity_bio_wait);
1620 			queue_work(ic->offload_wq, &dio->work);
1621 			return;
1622 		}
1623 		do_endio_flush(ic, dio);
1624 	}
1625 }
1626 
1627 static void integrity_end_io(struct bio *bio)
1628 {
1629 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1630 
1631 	dm_bio_restore(&dio->bio_details, bio);
1632 	if (bio->bi_integrity)
1633 		bio->bi_opf |= REQ_INTEGRITY;
1634 
1635 	if (dio->completion)
1636 		complete(dio->completion);
1637 
1638 	dec_in_flight(dio);
1639 }
1640 
1641 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1642 				      const char *data, char *result)
1643 {
1644 	__le64 sector_le = cpu_to_le64(sector);
1645 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1646 	int r;
1647 	unsigned int digest_size;
1648 
1649 	req->tfm = ic->internal_hash;
1650 
1651 	r = crypto_shash_init(req);
1652 	if (unlikely(r < 0)) {
1653 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1654 		goto failed;
1655 	}
1656 
1657 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1658 		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1659 		if (unlikely(r < 0)) {
1660 			dm_integrity_io_error(ic, "crypto_shash_update", r);
1661 			goto failed;
1662 		}
1663 	}
1664 
1665 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof(sector_le));
1666 	if (unlikely(r < 0)) {
1667 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1668 		goto failed;
1669 	}
1670 
1671 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1672 	if (unlikely(r < 0)) {
1673 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1674 		goto failed;
1675 	}
1676 
1677 	r = crypto_shash_final(req, result);
1678 	if (unlikely(r < 0)) {
1679 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1680 		goto failed;
1681 	}
1682 
1683 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1684 	if (unlikely(digest_size < ic->tag_size))
1685 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1686 
1687 	return;
1688 
1689 failed:
1690 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1691 	get_random_bytes(result, ic->tag_size);
1692 }
1693 
1694 static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum)
1695 {
1696 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1697 	struct dm_integrity_c *ic = dio->ic;
1698 	struct bvec_iter iter;
1699 	struct bio_vec bv;
1700 	sector_t sector, logical_sector, area, offset;
1701 	struct page *page;
1702 
1703 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1704 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset,
1705 							     &dio->metadata_offset);
1706 	sector = get_data_sector(ic, area, offset);
1707 	logical_sector = dio->range.logical_sector;
1708 
1709 	page = mempool_alloc(&ic->recheck_pool, GFP_NOIO);
1710 
1711 	__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1712 		unsigned pos = 0;
1713 
1714 		do {
1715 			sector_t alignment;
1716 			char *mem;
1717 			char *buffer = page_to_virt(page);
1718 			int r;
1719 			struct dm_io_request io_req;
1720 			struct dm_io_region io_loc;
1721 			io_req.bi_opf = REQ_OP_READ;
1722 			io_req.mem.type = DM_IO_KMEM;
1723 			io_req.mem.ptr.addr = buffer;
1724 			io_req.notify.fn = NULL;
1725 			io_req.client = ic->io;
1726 			io_loc.bdev = ic->dev->bdev;
1727 			io_loc.sector = sector;
1728 			io_loc.count = ic->sectors_per_block;
1729 
1730 			/* Align the bio to logical block size */
1731 			alignment = dio->range.logical_sector | bio_sectors(bio) | (PAGE_SIZE >> SECTOR_SHIFT);
1732 			alignment &= -alignment;
1733 			io_loc.sector = round_down(io_loc.sector, alignment);
1734 			io_loc.count += sector - io_loc.sector;
1735 			buffer += (sector - io_loc.sector) << SECTOR_SHIFT;
1736 			io_loc.count = round_up(io_loc.count, alignment);
1737 
1738 			r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1739 			if (unlikely(r)) {
1740 				dio->bi_status = errno_to_blk_status(r);
1741 				goto free_ret;
1742 			}
1743 
1744 			integrity_sector_checksum(ic, logical_sector, buffer, checksum);
1745 			r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block,
1746 						&dio->metadata_offset, ic->tag_size, TAG_CMP);
1747 			if (r) {
1748 				if (r > 0) {
1749 					DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1750 						    bio->bi_bdev, logical_sector);
1751 					atomic64_inc(&ic->number_of_mismatches);
1752 					dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1753 							 bio, logical_sector, 0);
1754 					r = -EILSEQ;
1755 				}
1756 				dio->bi_status = errno_to_blk_status(r);
1757 				goto free_ret;
1758 			}
1759 
1760 			mem = bvec_kmap_local(&bv);
1761 			memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT);
1762 			kunmap_local(mem);
1763 
1764 			pos += ic->sectors_per_block << SECTOR_SHIFT;
1765 			sector += ic->sectors_per_block;
1766 			logical_sector += ic->sectors_per_block;
1767 		} while (pos < bv.bv_len);
1768 	}
1769 free_ret:
1770 	mempool_free(page, &ic->recheck_pool);
1771 }
1772 
1773 static void integrity_metadata(struct work_struct *w)
1774 {
1775 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1776 	struct dm_integrity_c *ic = dio->ic;
1777 
1778 	int r;
1779 
1780 	if (ic->internal_hash) {
1781 		struct bvec_iter iter;
1782 		struct bio_vec bv;
1783 		unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1784 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1785 		char *checksums;
1786 		unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1787 		char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1788 		sector_t sector;
1789 		unsigned int sectors_to_process;
1790 
1791 		if (unlikely(ic->mode == 'R'))
1792 			goto skip_io;
1793 
1794 		if (likely(dio->op != REQ_OP_DISCARD))
1795 			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1796 					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1797 		else
1798 			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1799 		if (!checksums) {
1800 			checksums = checksums_onstack;
1801 			if (WARN_ON(extra_space &&
1802 				    digest_size > sizeof(checksums_onstack))) {
1803 				r = -EINVAL;
1804 				goto error;
1805 			}
1806 		}
1807 
1808 		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1809 			unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1810 			unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1811 			unsigned int max_blocks = max_size / ic->tag_size;
1812 
1813 			memset(checksums, DISCARD_FILLER, max_size);
1814 
1815 			while (bi_size) {
1816 				unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1817 
1818 				this_step_blocks = min(this_step_blocks, max_blocks);
1819 				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1820 							this_step_blocks * ic->tag_size, TAG_WRITE);
1821 				if (unlikely(r)) {
1822 					if (likely(checksums != checksums_onstack))
1823 						kfree(checksums);
1824 					goto error;
1825 				}
1826 
1827 				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1828 			}
1829 
1830 			if (likely(checksums != checksums_onstack))
1831 				kfree(checksums);
1832 			goto skip_io;
1833 		}
1834 
1835 		sector = dio->range.logical_sector;
1836 		sectors_to_process = dio->range.n_sectors;
1837 
1838 		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1839 			struct bio_vec bv_copy = bv;
1840 			unsigned int pos;
1841 			char *mem, *checksums_ptr;
1842 
1843 again:
1844 			mem = bvec_kmap_local(&bv_copy);
1845 			pos = 0;
1846 			checksums_ptr = checksums;
1847 			do {
1848 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1849 				checksums_ptr += ic->tag_size;
1850 				sectors_to_process -= ic->sectors_per_block;
1851 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1852 				sector += ic->sectors_per_block;
1853 			} while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1854 			kunmap_local(mem);
1855 
1856 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1857 						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1858 			if (unlikely(r)) {
1859 				if (likely(checksums != checksums_onstack))
1860 					kfree(checksums);
1861 				if (r > 0) {
1862 					integrity_recheck(dio, checksums_onstack);
1863 					goto skip_io;
1864 				}
1865 				goto error;
1866 			}
1867 
1868 			if (!sectors_to_process)
1869 				break;
1870 
1871 			if (unlikely(pos < bv_copy.bv_len)) {
1872 				bv_copy.bv_offset += pos;
1873 				bv_copy.bv_len -= pos;
1874 				goto again;
1875 			}
1876 		}
1877 
1878 		if (likely(checksums != checksums_onstack))
1879 			kfree(checksums);
1880 	} else {
1881 		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1882 
1883 		if (bip) {
1884 			struct bio_vec biv;
1885 			struct bvec_iter iter;
1886 			unsigned int data_to_process = dio->range.n_sectors;
1887 
1888 			sector_to_block(ic, data_to_process);
1889 			data_to_process *= ic->tag_size;
1890 
1891 			bip_for_each_vec(biv, bip, iter) {
1892 				unsigned char *tag;
1893 				unsigned int this_len;
1894 
1895 				BUG_ON(PageHighMem(biv.bv_page));
1896 				tag = bvec_virt(&biv);
1897 				this_len = min(biv.bv_len, data_to_process);
1898 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1899 							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1900 				if (unlikely(r))
1901 					goto error;
1902 				data_to_process -= this_len;
1903 				if (!data_to_process)
1904 					break;
1905 			}
1906 		}
1907 	}
1908 skip_io:
1909 	dec_in_flight(dio);
1910 	return;
1911 error:
1912 	dio->bi_status = errno_to_blk_status(r);
1913 	dec_in_flight(dio);
1914 }
1915 
1916 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1917 {
1918 	struct dm_integrity_c *ic = ti->private;
1919 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1920 	struct bio_integrity_payload *bip;
1921 
1922 	sector_t area, offset;
1923 
1924 	dio->ic = ic;
1925 	dio->bi_status = 0;
1926 	dio->op = bio_op(bio);
1927 
1928 	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1929 		if (ti->max_io_len) {
1930 			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1931 			unsigned int log2_max_io_len = __fls(ti->max_io_len);
1932 			sector_t start_boundary = sec >> log2_max_io_len;
1933 			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1934 
1935 			if (start_boundary < end_boundary) {
1936 				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1937 
1938 				dm_accept_partial_bio(bio, len);
1939 			}
1940 		}
1941 	}
1942 
1943 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1944 		submit_flush_bio(ic, dio);
1945 		return DM_MAPIO_SUBMITTED;
1946 	}
1947 
1948 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1949 	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1950 	if (unlikely(dio->fua)) {
1951 		/*
1952 		 * Don't pass down the FUA flag because we have to flush
1953 		 * disk cache anyway.
1954 		 */
1955 		bio->bi_opf &= ~REQ_FUA;
1956 	}
1957 	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1958 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1959 		      dio->range.logical_sector, bio_sectors(bio),
1960 		      ic->provided_data_sectors);
1961 		return DM_MAPIO_KILL;
1962 	}
1963 	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1964 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1965 		      ic->sectors_per_block,
1966 		      dio->range.logical_sector, bio_sectors(bio));
1967 		return DM_MAPIO_KILL;
1968 	}
1969 
1970 	if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1971 		struct bvec_iter iter;
1972 		struct bio_vec bv;
1973 
1974 		bio_for_each_segment(bv, bio, iter) {
1975 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1976 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1977 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1978 				return DM_MAPIO_KILL;
1979 			}
1980 		}
1981 	}
1982 
1983 	bip = bio_integrity(bio);
1984 	if (!ic->internal_hash) {
1985 		if (bip) {
1986 			unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1987 
1988 			if (ic->log2_tag_size >= 0)
1989 				wanted_tag_size <<= ic->log2_tag_size;
1990 			else
1991 				wanted_tag_size *= ic->tag_size;
1992 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1993 				DMERR("Invalid integrity data size %u, expected %u",
1994 				      bip->bip_iter.bi_size, wanted_tag_size);
1995 				return DM_MAPIO_KILL;
1996 			}
1997 		}
1998 	} else {
1999 		if (unlikely(bip != NULL)) {
2000 			DMERR("Unexpected integrity data when using internal hash");
2001 			return DM_MAPIO_KILL;
2002 		}
2003 	}
2004 
2005 	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
2006 		return DM_MAPIO_KILL;
2007 
2008 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2009 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2010 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
2011 
2012 	dm_integrity_map_continue(dio, true);
2013 	return DM_MAPIO_SUBMITTED;
2014 }
2015 
2016 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
2017 				 unsigned int journal_section, unsigned int journal_entry)
2018 {
2019 	struct dm_integrity_c *ic = dio->ic;
2020 	sector_t logical_sector;
2021 	unsigned int n_sectors;
2022 
2023 	logical_sector = dio->range.logical_sector;
2024 	n_sectors = dio->range.n_sectors;
2025 	do {
2026 		struct bio_vec bv = bio_iovec(bio);
2027 		char *mem;
2028 
2029 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
2030 			bv.bv_len = n_sectors << SECTOR_SHIFT;
2031 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
2032 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
2033 retry_kmap:
2034 		mem = kmap_local_page(bv.bv_page);
2035 		if (likely(dio->op == REQ_OP_WRITE))
2036 			flush_dcache_page(bv.bv_page);
2037 
2038 		do {
2039 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
2040 
2041 			if (unlikely(dio->op == REQ_OP_READ)) {
2042 				struct journal_sector *js;
2043 				char *mem_ptr;
2044 				unsigned int s;
2045 
2046 				if (unlikely(journal_entry_is_inprogress(je))) {
2047 					flush_dcache_page(bv.bv_page);
2048 					kunmap_local(mem);
2049 
2050 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2051 					goto retry_kmap;
2052 				}
2053 				smp_rmb();
2054 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
2055 				js = access_journal_data(ic, journal_section, journal_entry);
2056 				mem_ptr = mem + bv.bv_offset;
2057 				s = 0;
2058 				do {
2059 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2060 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2061 					js++;
2062 					mem_ptr += 1 << SECTOR_SHIFT;
2063 				} while (++s < ic->sectors_per_block);
2064 #ifdef INTERNAL_VERIFY
2065 				if (ic->internal_hash) {
2066 					char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2067 
2068 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2069 					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2070 						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2071 							    logical_sector);
2072 						dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2073 								 bio, logical_sector, 0);
2074 					}
2075 				}
2076 #endif
2077 			}
2078 
2079 			if (!ic->internal_hash) {
2080 				struct bio_integrity_payload *bip = bio_integrity(bio);
2081 				unsigned int tag_todo = ic->tag_size;
2082 				char *tag_ptr = journal_entry_tag(ic, je);
2083 
2084 				if (bip) {
2085 					do {
2086 						struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2087 						unsigned int tag_now = min(biv.bv_len, tag_todo);
2088 						char *tag_addr;
2089 
2090 						BUG_ON(PageHighMem(biv.bv_page));
2091 						tag_addr = bvec_virt(&biv);
2092 						if (likely(dio->op == REQ_OP_WRITE))
2093 							memcpy(tag_ptr, tag_addr, tag_now);
2094 						else
2095 							memcpy(tag_addr, tag_ptr, tag_now);
2096 						bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2097 						tag_ptr += tag_now;
2098 						tag_todo -= tag_now;
2099 					} while (unlikely(tag_todo));
2100 				} else if (likely(dio->op == REQ_OP_WRITE))
2101 					memset(tag_ptr, 0, tag_todo);
2102 			}
2103 
2104 			if (likely(dio->op == REQ_OP_WRITE)) {
2105 				struct journal_sector *js;
2106 				unsigned int s;
2107 
2108 				js = access_journal_data(ic, journal_section, journal_entry);
2109 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2110 
2111 				s = 0;
2112 				do {
2113 					je->last_bytes[s] = js[s].commit_id;
2114 				} while (++s < ic->sectors_per_block);
2115 
2116 				if (ic->internal_hash) {
2117 					unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2118 
2119 					if (unlikely(digest_size > ic->tag_size)) {
2120 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2121 
2122 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2123 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2124 					} else
2125 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2126 				}
2127 
2128 				journal_entry_set_sector(je, logical_sector);
2129 			}
2130 			logical_sector += ic->sectors_per_block;
2131 
2132 			journal_entry++;
2133 			if (unlikely(journal_entry == ic->journal_section_entries)) {
2134 				journal_entry = 0;
2135 				journal_section++;
2136 				wraparound_section(ic, &journal_section);
2137 			}
2138 
2139 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2140 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2141 
2142 		if (unlikely(dio->op == REQ_OP_READ))
2143 			flush_dcache_page(bv.bv_page);
2144 		kunmap_local(mem);
2145 	} while (n_sectors);
2146 
2147 	if (likely(dio->op == REQ_OP_WRITE)) {
2148 		smp_mb();
2149 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2150 			wake_up(&ic->copy_to_journal_wait);
2151 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2152 			queue_work(ic->commit_wq, &ic->commit_work);
2153 		else
2154 			schedule_autocommit(ic);
2155 	} else
2156 		remove_range(ic, &dio->range);
2157 
2158 	if (unlikely(bio->bi_iter.bi_size)) {
2159 		sector_t area, offset;
2160 
2161 		dio->range.logical_sector = logical_sector;
2162 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2163 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2164 		return true;
2165 	}
2166 
2167 	return false;
2168 }
2169 
2170 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2171 {
2172 	struct dm_integrity_c *ic = dio->ic;
2173 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2174 	unsigned int journal_section, journal_entry;
2175 	unsigned int journal_read_pos;
2176 	struct completion read_comp;
2177 	bool discard_retried = false;
2178 	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2179 
2180 	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2181 		need_sync_io = true;
2182 
2183 	if (need_sync_io && from_map) {
2184 		INIT_WORK(&dio->work, integrity_bio_wait);
2185 		queue_work(ic->offload_wq, &dio->work);
2186 		return;
2187 	}
2188 
2189 lock_retry:
2190 	spin_lock_irq(&ic->endio_wait.lock);
2191 retry:
2192 	if (unlikely(dm_integrity_failed(ic))) {
2193 		spin_unlock_irq(&ic->endio_wait.lock);
2194 		do_endio(ic, bio);
2195 		return;
2196 	}
2197 	dio->range.n_sectors = bio_sectors(bio);
2198 	journal_read_pos = NOT_FOUND;
2199 	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2200 		if (dio->op == REQ_OP_WRITE) {
2201 			unsigned int next_entry, i, pos;
2202 			unsigned int ws, we, range_sectors;
2203 
2204 			dio->range.n_sectors = min(dio->range.n_sectors,
2205 						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2206 			if (unlikely(!dio->range.n_sectors)) {
2207 				if (from_map)
2208 					goto offload_to_thread;
2209 				sleep_on_endio_wait(ic);
2210 				goto retry;
2211 			}
2212 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2213 			ic->free_sectors -= range_sectors;
2214 			journal_section = ic->free_section;
2215 			journal_entry = ic->free_section_entry;
2216 
2217 			next_entry = ic->free_section_entry + range_sectors;
2218 			ic->free_section_entry = next_entry % ic->journal_section_entries;
2219 			ic->free_section += next_entry / ic->journal_section_entries;
2220 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2221 			wraparound_section(ic, &ic->free_section);
2222 
2223 			pos = journal_section * ic->journal_section_entries + journal_entry;
2224 			ws = journal_section;
2225 			we = journal_entry;
2226 			i = 0;
2227 			do {
2228 				struct journal_entry *je;
2229 
2230 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2231 				pos++;
2232 				if (unlikely(pos >= ic->journal_entries))
2233 					pos = 0;
2234 
2235 				je = access_journal_entry(ic, ws, we);
2236 				BUG_ON(!journal_entry_is_unused(je));
2237 				journal_entry_set_inprogress(je);
2238 				we++;
2239 				if (unlikely(we == ic->journal_section_entries)) {
2240 					we = 0;
2241 					ws++;
2242 					wraparound_section(ic, &ws);
2243 				}
2244 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2245 
2246 			spin_unlock_irq(&ic->endio_wait.lock);
2247 			goto journal_read_write;
2248 		} else {
2249 			sector_t next_sector;
2250 
2251 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2252 			if (likely(journal_read_pos == NOT_FOUND)) {
2253 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2254 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2255 			} else {
2256 				unsigned int i;
2257 				unsigned int jp = journal_read_pos + 1;
2258 
2259 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2260 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2261 						break;
2262 				}
2263 				dio->range.n_sectors = i;
2264 			}
2265 		}
2266 	}
2267 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2268 		/*
2269 		 * We must not sleep in the request routine because it could
2270 		 * stall bios on current->bio_list.
2271 		 * So, we offload the bio to a workqueue if we have to sleep.
2272 		 */
2273 		if (from_map) {
2274 offload_to_thread:
2275 			spin_unlock_irq(&ic->endio_wait.lock);
2276 			INIT_WORK(&dio->work, integrity_bio_wait);
2277 			queue_work(ic->wait_wq, &dio->work);
2278 			return;
2279 		}
2280 		if (journal_read_pos != NOT_FOUND)
2281 			dio->range.n_sectors = ic->sectors_per_block;
2282 		wait_and_add_new_range(ic, &dio->range);
2283 		/*
2284 		 * wait_and_add_new_range drops the spinlock, so the journal
2285 		 * may have been changed arbitrarily. We need to recheck.
2286 		 * To simplify the code, we restrict I/O size to just one block.
2287 		 */
2288 		if (journal_read_pos != NOT_FOUND) {
2289 			sector_t next_sector;
2290 			unsigned int new_pos;
2291 
2292 			new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2293 			if (unlikely(new_pos != journal_read_pos)) {
2294 				remove_range_unlocked(ic, &dio->range);
2295 				goto retry;
2296 			}
2297 		}
2298 	}
2299 	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2300 		sector_t next_sector;
2301 		unsigned int new_pos;
2302 
2303 		new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2304 		if (unlikely(new_pos != NOT_FOUND) ||
2305 		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2306 			remove_range_unlocked(ic, &dio->range);
2307 			spin_unlock_irq(&ic->endio_wait.lock);
2308 			queue_work(ic->commit_wq, &ic->commit_work);
2309 			flush_workqueue(ic->commit_wq);
2310 			queue_work(ic->writer_wq, &ic->writer_work);
2311 			flush_workqueue(ic->writer_wq);
2312 			discard_retried = true;
2313 			goto lock_retry;
2314 		}
2315 	}
2316 	spin_unlock_irq(&ic->endio_wait.lock);
2317 
2318 	if (unlikely(journal_read_pos != NOT_FOUND)) {
2319 		journal_section = journal_read_pos / ic->journal_section_entries;
2320 		journal_entry = journal_read_pos % ic->journal_section_entries;
2321 		goto journal_read_write;
2322 	}
2323 
2324 	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2325 		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2326 				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2327 			struct bitmap_block_status *bbs;
2328 
2329 			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2330 			spin_lock(&bbs->bio_queue_lock);
2331 			bio_list_add(&bbs->bio_queue, bio);
2332 			spin_unlock(&bbs->bio_queue_lock);
2333 			queue_work(ic->writer_wq, &bbs->work);
2334 			return;
2335 		}
2336 	}
2337 
2338 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2339 
2340 	if (need_sync_io) {
2341 		init_completion(&read_comp);
2342 		dio->completion = &read_comp;
2343 	} else
2344 		dio->completion = NULL;
2345 
2346 	dm_bio_record(&dio->bio_details, bio);
2347 	bio_set_dev(bio, ic->dev->bdev);
2348 	bio->bi_integrity = NULL;
2349 	bio->bi_opf &= ~REQ_INTEGRITY;
2350 	bio->bi_end_io = integrity_end_io;
2351 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2352 
2353 	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2354 		integrity_metadata(&dio->work);
2355 		dm_integrity_flush_buffers(ic, false);
2356 
2357 		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2358 		dio->completion = NULL;
2359 
2360 		submit_bio_noacct(bio);
2361 
2362 		return;
2363 	}
2364 
2365 	submit_bio_noacct(bio);
2366 
2367 	if (need_sync_io) {
2368 		wait_for_completion_io(&read_comp);
2369 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2370 		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2371 			goto skip_check;
2372 		if (ic->mode == 'B') {
2373 			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2374 					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2375 				goto skip_check;
2376 		}
2377 
2378 		if (likely(!bio->bi_status))
2379 			integrity_metadata(&dio->work);
2380 		else
2381 skip_check:
2382 			dec_in_flight(dio);
2383 	} else {
2384 		INIT_WORK(&dio->work, integrity_metadata);
2385 		queue_work(ic->metadata_wq, &dio->work);
2386 	}
2387 
2388 	return;
2389 
2390 journal_read_write:
2391 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2392 		goto lock_retry;
2393 
2394 	do_endio_flush(ic, dio);
2395 }
2396 
2397 
2398 static void integrity_bio_wait(struct work_struct *w)
2399 {
2400 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2401 
2402 	dm_integrity_map_continue(dio, false);
2403 }
2404 
2405 static void pad_uncommitted(struct dm_integrity_c *ic)
2406 {
2407 	if (ic->free_section_entry) {
2408 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2409 		ic->free_section_entry = 0;
2410 		ic->free_section++;
2411 		wraparound_section(ic, &ic->free_section);
2412 		ic->n_uncommitted_sections++;
2413 	}
2414 	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2415 		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2416 		    ic->journal_section_entries + ic->free_sectors)) {
2417 		DMCRIT("journal_sections %u, journal_section_entries %u, "
2418 		       "n_uncommitted_sections %u, n_committed_sections %u, "
2419 		       "journal_section_entries %u, free_sectors %u",
2420 		       ic->journal_sections, ic->journal_section_entries,
2421 		       ic->n_uncommitted_sections, ic->n_committed_sections,
2422 		       ic->journal_section_entries, ic->free_sectors);
2423 	}
2424 }
2425 
2426 static void integrity_commit(struct work_struct *w)
2427 {
2428 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2429 	unsigned int commit_start, commit_sections;
2430 	unsigned int i, j, n;
2431 	struct bio *flushes;
2432 
2433 	del_timer(&ic->autocommit_timer);
2434 
2435 	spin_lock_irq(&ic->endio_wait.lock);
2436 	flushes = bio_list_get(&ic->flush_bio_list);
2437 	if (unlikely(ic->mode != 'J')) {
2438 		spin_unlock_irq(&ic->endio_wait.lock);
2439 		dm_integrity_flush_buffers(ic, true);
2440 		goto release_flush_bios;
2441 	}
2442 
2443 	pad_uncommitted(ic);
2444 	commit_start = ic->uncommitted_section;
2445 	commit_sections = ic->n_uncommitted_sections;
2446 	spin_unlock_irq(&ic->endio_wait.lock);
2447 
2448 	if (!commit_sections)
2449 		goto release_flush_bios;
2450 
2451 	ic->wrote_to_journal = true;
2452 
2453 	i = commit_start;
2454 	for (n = 0; n < commit_sections; n++) {
2455 		for (j = 0; j < ic->journal_section_entries; j++) {
2456 			struct journal_entry *je;
2457 
2458 			je = access_journal_entry(ic, i, j);
2459 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2460 		}
2461 		for (j = 0; j < ic->journal_section_sectors; j++) {
2462 			struct journal_sector *js;
2463 
2464 			js = access_journal(ic, i, j);
2465 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2466 		}
2467 		i++;
2468 		if (unlikely(i >= ic->journal_sections))
2469 			ic->commit_seq = next_commit_seq(ic->commit_seq);
2470 		wraparound_section(ic, &i);
2471 	}
2472 	smp_rmb();
2473 
2474 	write_journal(ic, commit_start, commit_sections);
2475 
2476 	spin_lock_irq(&ic->endio_wait.lock);
2477 	ic->uncommitted_section += commit_sections;
2478 	wraparound_section(ic, &ic->uncommitted_section);
2479 	ic->n_uncommitted_sections -= commit_sections;
2480 	ic->n_committed_sections += commit_sections;
2481 	spin_unlock_irq(&ic->endio_wait.lock);
2482 
2483 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2484 		queue_work(ic->writer_wq, &ic->writer_work);
2485 
2486 release_flush_bios:
2487 	while (flushes) {
2488 		struct bio *next = flushes->bi_next;
2489 
2490 		flushes->bi_next = NULL;
2491 		do_endio(ic, flushes);
2492 		flushes = next;
2493 	}
2494 }
2495 
2496 static void complete_copy_from_journal(unsigned long error, void *context)
2497 {
2498 	struct journal_io *io = context;
2499 	struct journal_completion *comp = io->comp;
2500 	struct dm_integrity_c *ic = comp->ic;
2501 
2502 	remove_range(ic, &io->range);
2503 	mempool_free(io, &ic->journal_io_mempool);
2504 	if (unlikely(error != 0))
2505 		dm_integrity_io_error(ic, "copying from journal", -EIO);
2506 	complete_journal_op(comp);
2507 }
2508 
2509 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2510 			       struct journal_entry *je)
2511 {
2512 	unsigned int s = 0;
2513 
2514 	do {
2515 		js->commit_id = je->last_bytes[s];
2516 		js++;
2517 	} while (++s < ic->sectors_per_block);
2518 }
2519 
2520 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2521 			     unsigned int write_sections, bool from_replay)
2522 {
2523 	unsigned int i, j, n;
2524 	struct journal_completion comp;
2525 	struct blk_plug plug;
2526 
2527 	blk_start_plug(&plug);
2528 
2529 	comp.ic = ic;
2530 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2531 	init_completion(&comp.comp);
2532 
2533 	i = write_start;
2534 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2535 #ifndef INTERNAL_VERIFY
2536 		if (unlikely(from_replay))
2537 #endif
2538 			rw_section_mac(ic, i, false);
2539 		for (j = 0; j < ic->journal_section_entries; j++) {
2540 			struct journal_entry *je = access_journal_entry(ic, i, j);
2541 			sector_t sec, area, offset;
2542 			unsigned int k, l, next_loop;
2543 			sector_t metadata_block;
2544 			unsigned int metadata_offset;
2545 			struct journal_io *io;
2546 
2547 			if (journal_entry_is_unused(je))
2548 				continue;
2549 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2550 			sec = journal_entry_get_sector(je);
2551 			if (unlikely(from_replay)) {
2552 				if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2553 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2554 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2555 				}
2556 				if (unlikely(sec >= ic->provided_data_sectors)) {
2557 					journal_entry_set_unused(je);
2558 					continue;
2559 				}
2560 			}
2561 			get_area_and_offset(ic, sec, &area, &offset);
2562 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2563 			for (k = j + 1; k < ic->journal_section_entries; k++) {
2564 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2565 				sector_t sec2, area2, offset2;
2566 
2567 				if (journal_entry_is_unused(je2))
2568 					break;
2569 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2570 				sec2 = journal_entry_get_sector(je2);
2571 				if (unlikely(sec2 >= ic->provided_data_sectors))
2572 					break;
2573 				get_area_and_offset(ic, sec2, &area2, &offset2);
2574 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2575 					break;
2576 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2577 			}
2578 			next_loop = k - 1;
2579 
2580 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2581 			io->comp = &comp;
2582 			io->range.logical_sector = sec;
2583 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2584 
2585 			spin_lock_irq(&ic->endio_wait.lock);
2586 			add_new_range_and_wait(ic, &io->range);
2587 
2588 			if (likely(!from_replay)) {
2589 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2590 
2591 				/* don't write if there is newer committed sector */
2592 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2593 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2594 
2595 					journal_entry_set_unused(je2);
2596 					remove_journal_node(ic, &section_node[j]);
2597 					j++;
2598 					sec += ic->sectors_per_block;
2599 					offset += ic->sectors_per_block;
2600 				}
2601 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2602 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2603 
2604 					journal_entry_set_unused(je2);
2605 					remove_journal_node(ic, &section_node[k - 1]);
2606 					k--;
2607 				}
2608 				if (j == k) {
2609 					remove_range_unlocked(ic, &io->range);
2610 					spin_unlock_irq(&ic->endio_wait.lock);
2611 					mempool_free(io, &ic->journal_io_mempool);
2612 					goto skip_io;
2613 				}
2614 				for (l = j; l < k; l++)
2615 					remove_journal_node(ic, &section_node[l]);
2616 			}
2617 			spin_unlock_irq(&ic->endio_wait.lock);
2618 
2619 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2620 			for (l = j; l < k; l++) {
2621 				int r;
2622 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2623 
2624 				if (
2625 #ifndef INTERNAL_VERIFY
2626 				    unlikely(from_replay) &&
2627 #endif
2628 				    ic->internal_hash) {
2629 					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2630 
2631 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2632 								  (char *)access_journal_data(ic, i, l), test_tag);
2633 					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2634 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2635 						dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2636 					}
2637 				}
2638 
2639 				journal_entry_set_unused(je2);
2640 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2641 							ic->tag_size, TAG_WRITE);
2642 				if (unlikely(r))
2643 					dm_integrity_io_error(ic, "reading tags", r);
2644 			}
2645 
2646 			atomic_inc(&comp.in_flight);
2647 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2648 					  (k - j) << ic->sb->log2_sectors_per_block,
2649 					  get_data_sector(ic, area, offset),
2650 					  complete_copy_from_journal, io);
2651 skip_io:
2652 			j = next_loop;
2653 		}
2654 	}
2655 
2656 	dm_bufio_write_dirty_buffers_async(ic->bufio);
2657 
2658 	blk_finish_plug(&plug);
2659 
2660 	complete_journal_op(&comp);
2661 	wait_for_completion_io(&comp.comp);
2662 
2663 	dm_integrity_flush_buffers(ic, true);
2664 }
2665 
2666 static void integrity_writer(struct work_struct *w)
2667 {
2668 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2669 	unsigned int write_start, write_sections;
2670 	unsigned int prev_free_sectors;
2671 
2672 	spin_lock_irq(&ic->endio_wait.lock);
2673 	write_start = ic->committed_section;
2674 	write_sections = ic->n_committed_sections;
2675 	spin_unlock_irq(&ic->endio_wait.lock);
2676 
2677 	if (!write_sections)
2678 		return;
2679 
2680 	do_journal_write(ic, write_start, write_sections, false);
2681 
2682 	spin_lock_irq(&ic->endio_wait.lock);
2683 
2684 	ic->committed_section += write_sections;
2685 	wraparound_section(ic, &ic->committed_section);
2686 	ic->n_committed_sections -= write_sections;
2687 
2688 	prev_free_sectors = ic->free_sectors;
2689 	ic->free_sectors += write_sections * ic->journal_section_entries;
2690 	if (unlikely(!prev_free_sectors))
2691 		wake_up_locked(&ic->endio_wait);
2692 
2693 	spin_unlock_irq(&ic->endio_wait.lock);
2694 }
2695 
2696 static void recalc_write_super(struct dm_integrity_c *ic)
2697 {
2698 	int r;
2699 
2700 	dm_integrity_flush_buffers(ic, false);
2701 	if (dm_integrity_failed(ic))
2702 		return;
2703 
2704 	r = sync_rw_sb(ic, REQ_OP_WRITE);
2705 	if (unlikely(r))
2706 		dm_integrity_io_error(ic, "writing superblock", r);
2707 }
2708 
2709 static void integrity_recalc(struct work_struct *w)
2710 {
2711 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2712 	size_t recalc_tags_size;
2713 	u8 *recalc_buffer = NULL;
2714 	u8 *recalc_tags = NULL;
2715 	struct dm_integrity_range range;
2716 	struct dm_io_request io_req;
2717 	struct dm_io_region io_loc;
2718 	sector_t area, offset;
2719 	sector_t metadata_block;
2720 	unsigned int metadata_offset;
2721 	sector_t logical_sector, n_sectors;
2722 	__u8 *t;
2723 	unsigned int i;
2724 	int r;
2725 	unsigned int super_counter = 0;
2726 	unsigned recalc_sectors = RECALC_SECTORS;
2727 
2728 retry:
2729 	recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
2730 	if (!recalc_buffer) {
2731 oom:
2732 		recalc_sectors >>= 1;
2733 		if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
2734 			goto retry;
2735 		DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2736 		goto free_ret;
2737 	}
2738 	recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2739 	if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
2740 		recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
2741 	recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
2742 	if (!recalc_tags) {
2743 		vfree(recalc_buffer);
2744 		recalc_buffer = NULL;
2745 		goto oom;
2746 	}
2747 
2748 	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2749 
2750 	spin_lock_irq(&ic->endio_wait.lock);
2751 
2752 next_chunk:
2753 
2754 	if (unlikely(dm_post_suspending(ic->ti)))
2755 		goto unlock_ret;
2756 
2757 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2758 	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2759 		if (ic->mode == 'B') {
2760 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2761 			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2762 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2763 		}
2764 		goto unlock_ret;
2765 	}
2766 
2767 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2768 	range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
2769 	if (!ic->meta_dev)
2770 		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2771 
2772 	add_new_range_and_wait(ic, &range);
2773 	spin_unlock_irq(&ic->endio_wait.lock);
2774 	logical_sector = range.logical_sector;
2775 	n_sectors = range.n_sectors;
2776 
2777 	if (ic->mode == 'B') {
2778 		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2779 			goto advance_and_next;
2780 
2781 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2782 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2783 			logical_sector += ic->sectors_per_block;
2784 			n_sectors -= ic->sectors_per_block;
2785 			cond_resched();
2786 		}
2787 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2788 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2789 			n_sectors -= ic->sectors_per_block;
2790 			cond_resched();
2791 		}
2792 		get_area_and_offset(ic, logical_sector, &area, &offset);
2793 	}
2794 
2795 	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2796 
2797 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2798 		recalc_write_super(ic);
2799 		if (ic->mode == 'B')
2800 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2801 
2802 		super_counter = 0;
2803 	}
2804 
2805 	if (unlikely(dm_integrity_failed(ic)))
2806 		goto err;
2807 
2808 	io_req.bi_opf = REQ_OP_READ;
2809 	io_req.mem.type = DM_IO_VMA;
2810 	io_req.mem.ptr.addr = recalc_buffer;
2811 	io_req.notify.fn = NULL;
2812 	io_req.client = ic->io;
2813 	io_loc.bdev = ic->dev->bdev;
2814 	io_loc.sector = get_data_sector(ic, area, offset);
2815 	io_loc.count = n_sectors;
2816 
2817 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
2818 	if (unlikely(r)) {
2819 		dm_integrity_io_error(ic, "reading data", r);
2820 		goto err;
2821 	}
2822 
2823 	t = recalc_tags;
2824 	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2825 		integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
2826 		t += ic->tag_size;
2827 	}
2828 
2829 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2830 
2831 	r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
2832 	if (unlikely(r)) {
2833 		dm_integrity_io_error(ic, "writing tags", r);
2834 		goto err;
2835 	}
2836 
2837 	if (ic->mode == 'B') {
2838 		sector_t start, end;
2839 
2840 		start = (range.logical_sector >>
2841 			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2842 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2843 		end = ((range.logical_sector + range.n_sectors) >>
2844 		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2845 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2846 		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2847 	}
2848 
2849 advance_and_next:
2850 	cond_resched();
2851 
2852 	spin_lock_irq(&ic->endio_wait.lock);
2853 	remove_range_unlocked(ic, &range);
2854 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2855 	goto next_chunk;
2856 
2857 err:
2858 	remove_range(ic, &range);
2859 	goto free_ret;
2860 
2861 unlock_ret:
2862 	spin_unlock_irq(&ic->endio_wait.lock);
2863 
2864 	recalc_write_super(ic);
2865 
2866 free_ret:
2867 	vfree(recalc_buffer);
2868 	kvfree(recalc_tags);
2869 }
2870 
2871 static void bitmap_block_work(struct work_struct *w)
2872 {
2873 	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2874 	struct dm_integrity_c *ic = bbs->ic;
2875 	struct bio *bio;
2876 	struct bio_list bio_queue;
2877 	struct bio_list waiting;
2878 
2879 	bio_list_init(&waiting);
2880 
2881 	spin_lock(&bbs->bio_queue_lock);
2882 	bio_queue = bbs->bio_queue;
2883 	bio_list_init(&bbs->bio_queue);
2884 	spin_unlock(&bbs->bio_queue_lock);
2885 
2886 	while ((bio = bio_list_pop(&bio_queue))) {
2887 		struct dm_integrity_io *dio;
2888 
2889 		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2890 
2891 		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2892 				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2893 			remove_range(ic, &dio->range);
2894 			INIT_WORK(&dio->work, integrity_bio_wait);
2895 			queue_work(ic->offload_wq, &dio->work);
2896 		} else {
2897 			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2898 					dio->range.n_sectors, BITMAP_OP_SET);
2899 			bio_list_add(&waiting, bio);
2900 		}
2901 	}
2902 
2903 	if (bio_list_empty(&waiting))
2904 		return;
2905 
2906 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2907 			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2908 			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2909 
2910 	while ((bio = bio_list_pop(&waiting))) {
2911 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2912 
2913 		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2914 				dio->range.n_sectors, BITMAP_OP_SET);
2915 
2916 		remove_range(ic, &dio->range);
2917 		INIT_WORK(&dio->work, integrity_bio_wait);
2918 		queue_work(ic->offload_wq, &dio->work);
2919 	}
2920 
2921 	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2922 }
2923 
2924 static void bitmap_flush_work(struct work_struct *work)
2925 {
2926 	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2927 	struct dm_integrity_range range;
2928 	unsigned long limit;
2929 	struct bio *bio;
2930 
2931 	dm_integrity_flush_buffers(ic, false);
2932 
2933 	range.logical_sector = 0;
2934 	range.n_sectors = ic->provided_data_sectors;
2935 
2936 	spin_lock_irq(&ic->endio_wait.lock);
2937 	add_new_range_and_wait(ic, &range);
2938 	spin_unlock_irq(&ic->endio_wait.lock);
2939 
2940 	dm_integrity_flush_buffers(ic, true);
2941 
2942 	limit = ic->provided_data_sectors;
2943 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2944 		limit = le64_to_cpu(ic->sb->recalc_sector)
2945 			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2946 			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2947 	}
2948 	/*DEBUG_print("zeroing journal\n");*/
2949 	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2950 	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2951 
2952 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2953 			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2954 
2955 	spin_lock_irq(&ic->endio_wait.lock);
2956 	remove_range_unlocked(ic, &range);
2957 	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2958 		bio_endio(bio);
2959 		spin_unlock_irq(&ic->endio_wait.lock);
2960 		spin_lock_irq(&ic->endio_wait.lock);
2961 	}
2962 	spin_unlock_irq(&ic->endio_wait.lock);
2963 }
2964 
2965 
2966 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2967 			 unsigned int n_sections, unsigned char commit_seq)
2968 {
2969 	unsigned int i, j, n;
2970 
2971 	if (!n_sections)
2972 		return;
2973 
2974 	for (n = 0; n < n_sections; n++) {
2975 		i = start_section + n;
2976 		wraparound_section(ic, &i);
2977 		for (j = 0; j < ic->journal_section_sectors; j++) {
2978 			struct journal_sector *js = access_journal(ic, i, j);
2979 
2980 			BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2981 			memset(&js->sectors, 0, sizeof(js->sectors));
2982 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2983 		}
2984 		for (j = 0; j < ic->journal_section_entries; j++) {
2985 			struct journal_entry *je = access_journal_entry(ic, i, j);
2986 
2987 			journal_entry_set_unused(je);
2988 		}
2989 	}
2990 
2991 	write_journal(ic, start_section, n_sections);
2992 }
2993 
2994 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
2995 {
2996 	unsigned char k;
2997 
2998 	for (k = 0; k < N_COMMIT_IDS; k++) {
2999 		if (dm_integrity_commit_id(ic, i, j, k) == id)
3000 			return k;
3001 	}
3002 	dm_integrity_io_error(ic, "journal commit id", -EIO);
3003 	return -EIO;
3004 }
3005 
3006 static void replay_journal(struct dm_integrity_c *ic)
3007 {
3008 	unsigned int i, j;
3009 	bool used_commit_ids[N_COMMIT_IDS];
3010 	unsigned int max_commit_id_sections[N_COMMIT_IDS];
3011 	unsigned int write_start, write_sections;
3012 	unsigned int continue_section;
3013 	bool journal_empty;
3014 	unsigned char unused, last_used, want_commit_seq;
3015 
3016 	if (ic->mode == 'R')
3017 		return;
3018 
3019 	if (ic->journal_uptodate)
3020 		return;
3021 
3022 	last_used = 0;
3023 	write_start = 0;
3024 
3025 	if (!ic->just_formatted) {
3026 		DEBUG_print("reading journal\n");
3027 		rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
3028 		if (ic->journal_io)
3029 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
3030 		if (ic->journal_io) {
3031 			struct journal_completion crypt_comp;
3032 
3033 			crypt_comp.ic = ic;
3034 			init_completion(&crypt_comp.comp);
3035 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
3036 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
3037 			wait_for_completion(&crypt_comp.comp);
3038 		}
3039 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
3040 	}
3041 
3042 	if (dm_integrity_failed(ic))
3043 		goto clear_journal;
3044 
3045 	journal_empty = true;
3046 	memset(used_commit_ids, 0, sizeof(used_commit_ids));
3047 	memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
3048 	for (i = 0; i < ic->journal_sections; i++) {
3049 		for (j = 0; j < ic->journal_section_sectors; j++) {
3050 			int k;
3051 			struct journal_sector *js = access_journal(ic, i, j);
3052 
3053 			k = find_commit_seq(ic, i, j, js->commit_id);
3054 			if (k < 0)
3055 				goto clear_journal;
3056 			used_commit_ids[k] = true;
3057 			max_commit_id_sections[k] = i;
3058 		}
3059 		if (journal_empty) {
3060 			for (j = 0; j < ic->journal_section_entries; j++) {
3061 				struct journal_entry *je = access_journal_entry(ic, i, j);
3062 
3063 				if (!journal_entry_is_unused(je)) {
3064 					journal_empty = false;
3065 					break;
3066 				}
3067 			}
3068 		}
3069 	}
3070 
3071 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3072 		unused = N_COMMIT_IDS - 1;
3073 		while (unused && !used_commit_ids[unused - 1])
3074 			unused--;
3075 	} else {
3076 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
3077 			if (!used_commit_ids[unused])
3078 				break;
3079 		if (unused == N_COMMIT_IDS) {
3080 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
3081 			goto clear_journal;
3082 		}
3083 	}
3084 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3085 		    unused, used_commit_ids[0], used_commit_ids[1],
3086 		    used_commit_ids[2], used_commit_ids[3]);
3087 
3088 	last_used = prev_commit_seq(unused);
3089 	want_commit_seq = prev_commit_seq(last_used);
3090 
3091 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3092 		journal_empty = true;
3093 
3094 	write_start = max_commit_id_sections[last_used] + 1;
3095 	if (unlikely(write_start >= ic->journal_sections))
3096 		want_commit_seq = next_commit_seq(want_commit_seq);
3097 	wraparound_section(ic, &write_start);
3098 
3099 	i = write_start;
3100 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3101 		for (j = 0; j < ic->journal_section_sectors; j++) {
3102 			struct journal_sector *js = access_journal(ic, i, j);
3103 
3104 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3105 				/*
3106 				 * This could be caused by crash during writing.
3107 				 * We won't replay the inconsistent part of the
3108 				 * journal.
3109 				 */
3110 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3111 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3112 				goto brk;
3113 			}
3114 		}
3115 		i++;
3116 		if (unlikely(i >= ic->journal_sections))
3117 			want_commit_seq = next_commit_seq(want_commit_seq);
3118 		wraparound_section(ic, &i);
3119 	}
3120 brk:
3121 
3122 	if (!journal_empty) {
3123 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3124 			    write_sections, write_start, want_commit_seq);
3125 		do_journal_write(ic, write_start, write_sections, true);
3126 	}
3127 
3128 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3129 		continue_section = write_start;
3130 		ic->commit_seq = want_commit_seq;
3131 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3132 	} else {
3133 		unsigned int s;
3134 		unsigned char erase_seq;
3135 
3136 clear_journal:
3137 		DEBUG_print("clearing journal\n");
3138 
3139 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3140 		s = write_start;
3141 		init_journal(ic, s, 1, erase_seq);
3142 		s++;
3143 		wraparound_section(ic, &s);
3144 		if (ic->journal_sections >= 2) {
3145 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3146 			s += ic->journal_sections - 2;
3147 			wraparound_section(ic, &s);
3148 			init_journal(ic, s, 1, erase_seq);
3149 		}
3150 
3151 		continue_section = 0;
3152 		ic->commit_seq = next_commit_seq(erase_seq);
3153 	}
3154 
3155 	ic->committed_section = continue_section;
3156 	ic->n_committed_sections = 0;
3157 
3158 	ic->uncommitted_section = continue_section;
3159 	ic->n_uncommitted_sections = 0;
3160 
3161 	ic->free_section = continue_section;
3162 	ic->free_section_entry = 0;
3163 	ic->free_sectors = ic->journal_entries;
3164 
3165 	ic->journal_tree_root = RB_ROOT;
3166 	for (i = 0; i < ic->journal_entries; i++)
3167 		init_journal_node(&ic->journal_tree[i]);
3168 }
3169 
3170 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3171 {
3172 	DEBUG_print("%s\n", __func__);
3173 
3174 	if (ic->mode == 'B') {
3175 		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3176 		ic->synchronous_mode = 1;
3177 
3178 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3179 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3180 		flush_workqueue(ic->commit_wq);
3181 	}
3182 }
3183 
3184 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3185 {
3186 	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3187 
3188 	DEBUG_print("%s\n", __func__);
3189 
3190 	dm_integrity_enter_synchronous_mode(ic);
3191 
3192 	return NOTIFY_DONE;
3193 }
3194 
3195 static void dm_integrity_postsuspend(struct dm_target *ti)
3196 {
3197 	struct dm_integrity_c *ic = ti->private;
3198 	int r;
3199 
3200 	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3201 
3202 	del_timer_sync(&ic->autocommit_timer);
3203 
3204 	if (ic->recalc_wq)
3205 		drain_workqueue(ic->recalc_wq);
3206 
3207 	if (ic->mode == 'B')
3208 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3209 
3210 	queue_work(ic->commit_wq, &ic->commit_work);
3211 	drain_workqueue(ic->commit_wq);
3212 
3213 	if (ic->mode == 'J') {
3214 		queue_work(ic->writer_wq, &ic->writer_work);
3215 		drain_workqueue(ic->writer_wq);
3216 		dm_integrity_flush_buffers(ic, true);
3217 		if (ic->wrote_to_journal) {
3218 			init_journal(ic, ic->free_section,
3219 				     ic->journal_sections - ic->free_section, ic->commit_seq);
3220 			if (ic->free_section) {
3221 				init_journal(ic, 0, ic->free_section,
3222 					     next_commit_seq(ic->commit_seq));
3223 			}
3224 		}
3225 	}
3226 
3227 	if (ic->mode == 'B') {
3228 		dm_integrity_flush_buffers(ic, true);
3229 #if 1
3230 		/* set to 0 to test bitmap replay code */
3231 		init_journal(ic, 0, ic->journal_sections, 0);
3232 		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3233 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3234 		if (unlikely(r))
3235 			dm_integrity_io_error(ic, "writing superblock", r);
3236 #endif
3237 	}
3238 
3239 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3240 
3241 	ic->journal_uptodate = true;
3242 }
3243 
3244 static void dm_integrity_resume(struct dm_target *ti)
3245 {
3246 	struct dm_integrity_c *ic = ti->private;
3247 	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3248 	int r;
3249 
3250 	DEBUG_print("resume\n");
3251 
3252 	ic->wrote_to_journal = false;
3253 
3254 	if (ic->provided_data_sectors != old_provided_data_sectors) {
3255 		if (ic->provided_data_sectors > old_provided_data_sectors &&
3256 		    ic->mode == 'B' &&
3257 		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3258 			rw_journal_sectors(ic, REQ_OP_READ, 0,
3259 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3260 			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3261 					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3262 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3263 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3264 		}
3265 
3266 		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3267 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3268 		if (unlikely(r))
3269 			dm_integrity_io_error(ic, "writing superblock", r);
3270 	}
3271 
3272 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3273 		DEBUG_print("resume dirty_bitmap\n");
3274 		rw_journal_sectors(ic, REQ_OP_READ, 0,
3275 				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3276 		if (ic->mode == 'B') {
3277 			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3278 			    !ic->reset_recalculate_flag) {
3279 				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3280 				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3281 				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3282 						     BITMAP_OP_TEST_ALL_CLEAR)) {
3283 					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3284 					ic->sb->recalc_sector = cpu_to_le64(0);
3285 				}
3286 			} else {
3287 				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3288 					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3289 				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3290 				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3291 				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3292 				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3293 				rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3294 						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3295 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3296 				ic->sb->recalc_sector = cpu_to_le64(0);
3297 			}
3298 		} else {
3299 			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3300 			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3301 			    ic->reset_recalculate_flag) {
3302 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3303 				ic->sb->recalc_sector = cpu_to_le64(0);
3304 			}
3305 			init_journal(ic, 0, ic->journal_sections, 0);
3306 			replay_journal(ic);
3307 			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3308 		}
3309 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3310 		if (unlikely(r))
3311 			dm_integrity_io_error(ic, "writing superblock", r);
3312 	} else {
3313 		replay_journal(ic);
3314 		if (ic->reset_recalculate_flag) {
3315 			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3316 			ic->sb->recalc_sector = cpu_to_le64(0);
3317 		}
3318 		if (ic->mode == 'B') {
3319 			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3320 			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3321 			r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3322 			if (unlikely(r))
3323 				dm_integrity_io_error(ic, "writing superblock", r);
3324 
3325 			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3326 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3327 			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3328 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3329 			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3330 				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3331 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3332 				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3333 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3334 				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3335 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3336 			}
3337 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3338 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3339 		}
3340 	}
3341 
3342 	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3343 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3344 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3345 
3346 		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3347 		if (recalc_pos < ic->provided_data_sectors) {
3348 			queue_work(ic->recalc_wq, &ic->recalc_work);
3349 		} else if (recalc_pos > ic->provided_data_sectors) {
3350 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3351 			recalc_write_super(ic);
3352 		}
3353 	}
3354 
3355 	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3356 	ic->reboot_notifier.next = NULL;
3357 	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3358 	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3359 
3360 #if 0
3361 	/* set to 1 to stress test synchronous mode */
3362 	dm_integrity_enter_synchronous_mode(ic);
3363 #endif
3364 }
3365 
3366 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3367 				unsigned int status_flags, char *result, unsigned int maxlen)
3368 {
3369 	struct dm_integrity_c *ic = ti->private;
3370 	unsigned int arg_count;
3371 	size_t sz = 0;
3372 
3373 	switch (type) {
3374 	case STATUSTYPE_INFO:
3375 		DMEMIT("%llu %llu",
3376 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3377 			ic->provided_data_sectors);
3378 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3379 			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3380 		else
3381 			DMEMIT(" -");
3382 		break;
3383 
3384 	case STATUSTYPE_TABLE: {
3385 		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3386 
3387 		watermark_percentage += ic->journal_entries / 2;
3388 		do_div(watermark_percentage, ic->journal_entries);
3389 		arg_count = 3;
3390 		arg_count += !!ic->meta_dev;
3391 		arg_count += ic->sectors_per_block != 1;
3392 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3393 		arg_count += ic->reset_recalculate_flag;
3394 		arg_count += ic->discard;
3395 		arg_count += ic->mode == 'J';
3396 		arg_count += ic->mode == 'J';
3397 		arg_count += ic->mode == 'B';
3398 		arg_count += ic->mode == 'B';
3399 		arg_count += !!ic->internal_hash_alg.alg_string;
3400 		arg_count += !!ic->journal_crypt_alg.alg_string;
3401 		arg_count += !!ic->journal_mac_alg.alg_string;
3402 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3403 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3404 		arg_count += ic->legacy_recalculate;
3405 		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3406 		       ic->tag_size, ic->mode, arg_count);
3407 		if (ic->meta_dev)
3408 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3409 		if (ic->sectors_per_block != 1)
3410 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3411 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3412 			DMEMIT(" recalculate");
3413 		if (ic->reset_recalculate_flag)
3414 			DMEMIT(" reset_recalculate");
3415 		if (ic->discard)
3416 			DMEMIT(" allow_discards");
3417 		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3418 		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3419 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3420 		if (ic->mode == 'J') {
3421 			DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3422 			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3423 		}
3424 		if (ic->mode == 'B') {
3425 			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3426 			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3427 		}
3428 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3429 			DMEMIT(" fix_padding");
3430 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3431 			DMEMIT(" fix_hmac");
3432 		if (ic->legacy_recalculate)
3433 			DMEMIT(" legacy_recalculate");
3434 
3435 #define EMIT_ALG(a, n)							\
3436 		do {							\
3437 			if (ic->a.alg_string) {				\
3438 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3439 				if (ic->a.key_string)			\
3440 					DMEMIT(":%s", ic->a.key_string);\
3441 			}						\
3442 		} while (0)
3443 		EMIT_ALG(internal_hash_alg, "internal_hash");
3444 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3445 		EMIT_ALG(journal_mac_alg, "journal_mac");
3446 		break;
3447 	}
3448 	case STATUSTYPE_IMA:
3449 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3450 		DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3451 			ic->dev->name, ic->start, ic->tag_size, ic->mode);
3452 
3453 		if (ic->meta_dev)
3454 			DMEMIT(",meta_device=%s", ic->meta_dev->name);
3455 		if (ic->sectors_per_block != 1)
3456 			DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3457 
3458 		DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3459 		       'y' : 'n');
3460 		DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3461 		DMEMIT(",fix_padding=%c",
3462 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3463 		DMEMIT(",fix_hmac=%c",
3464 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3465 		DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3466 
3467 		DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3468 		DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3469 		DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3470 		DMEMIT(";");
3471 		break;
3472 	}
3473 }
3474 
3475 static int dm_integrity_iterate_devices(struct dm_target *ti,
3476 					iterate_devices_callout_fn fn, void *data)
3477 {
3478 	struct dm_integrity_c *ic = ti->private;
3479 
3480 	if (!ic->meta_dev)
3481 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3482 	else
3483 		return fn(ti, ic->dev, 0, ti->len, data);
3484 }
3485 
3486 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3487 {
3488 	struct dm_integrity_c *ic = ti->private;
3489 
3490 	if (ic->sectors_per_block > 1) {
3491 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3492 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3493 		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3494 		limits->dma_alignment = limits->logical_block_size - 1;
3495 	}
3496 	limits->max_integrity_segments = USHRT_MAX;
3497 }
3498 
3499 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3500 {
3501 	unsigned int sector_space = JOURNAL_SECTOR_DATA;
3502 
3503 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3504 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3505 					 JOURNAL_ENTRY_ROUNDUP);
3506 
3507 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3508 		sector_space -= JOURNAL_MAC_PER_SECTOR;
3509 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3510 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3511 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3512 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3513 }
3514 
3515 static int calculate_device_limits(struct dm_integrity_c *ic)
3516 {
3517 	__u64 initial_sectors;
3518 
3519 	calculate_journal_section_size(ic);
3520 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3521 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3522 		return -EINVAL;
3523 	ic->initial_sectors = initial_sectors;
3524 
3525 	if (!ic->meta_dev) {
3526 		sector_t last_sector, last_area, last_offset;
3527 
3528 		/* we have to maintain excessive padding for compatibility with existing volumes */
3529 		__u64 metadata_run_padding =
3530 			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3531 			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3532 			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3533 
3534 		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3535 					    metadata_run_padding) >> SECTOR_SHIFT;
3536 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3537 			ic->log2_metadata_run = __ffs(ic->metadata_run);
3538 		else
3539 			ic->log2_metadata_run = -1;
3540 
3541 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3542 		last_sector = get_data_sector(ic, last_area, last_offset);
3543 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3544 			return -EINVAL;
3545 	} else {
3546 		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3547 
3548 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3549 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3550 		meta_size <<= ic->log2_buffer_sectors;
3551 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3552 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3553 			return -EINVAL;
3554 		ic->metadata_run = 1;
3555 		ic->log2_metadata_run = 0;
3556 	}
3557 
3558 	return 0;
3559 }
3560 
3561 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3562 {
3563 	if (!ic->meta_dev) {
3564 		int test_bit;
3565 
3566 		ic->provided_data_sectors = 0;
3567 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3568 			__u64 prev_data_sectors = ic->provided_data_sectors;
3569 
3570 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3571 			if (calculate_device_limits(ic))
3572 				ic->provided_data_sectors = prev_data_sectors;
3573 		}
3574 	} else {
3575 		ic->provided_data_sectors = ic->data_device_sectors;
3576 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3577 	}
3578 }
3579 
3580 static int initialize_superblock(struct dm_integrity_c *ic,
3581 				 unsigned int journal_sectors, unsigned int interleave_sectors)
3582 {
3583 	unsigned int journal_sections;
3584 	int test_bit;
3585 
3586 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3587 	memcpy(ic->sb->magic, SB_MAGIC, 8);
3588 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3589 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3590 	if (ic->journal_mac_alg.alg_string)
3591 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3592 
3593 	calculate_journal_section_size(ic);
3594 	journal_sections = journal_sectors / ic->journal_section_sectors;
3595 	if (!journal_sections)
3596 		journal_sections = 1;
3597 
3598 	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3599 		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3600 		get_random_bytes(ic->sb->salt, SALT_SIZE);
3601 	}
3602 
3603 	if (!ic->meta_dev) {
3604 		if (ic->fix_padding)
3605 			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3606 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3607 		if (!interleave_sectors)
3608 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3609 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3610 		ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3611 		ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3612 
3613 		get_provided_data_sectors(ic);
3614 		if (!ic->provided_data_sectors)
3615 			return -EINVAL;
3616 	} else {
3617 		ic->sb->log2_interleave_sectors = 0;
3618 
3619 		get_provided_data_sectors(ic);
3620 		if (!ic->provided_data_sectors)
3621 			return -EINVAL;
3622 
3623 try_smaller_buffer:
3624 		ic->sb->journal_sections = cpu_to_le32(0);
3625 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3626 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3627 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3628 
3629 			if (test_journal_sections > journal_sections)
3630 				continue;
3631 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3632 			if (calculate_device_limits(ic))
3633 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3634 
3635 		}
3636 		if (!le32_to_cpu(ic->sb->journal_sections)) {
3637 			if (ic->log2_buffer_sectors > 3) {
3638 				ic->log2_buffer_sectors--;
3639 				goto try_smaller_buffer;
3640 			}
3641 			return -EINVAL;
3642 		}
3643 	}
3644 
3645 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3646 
3647 	sb_set_version(ic);
3648 
3649 	return 0;
3650 }
3651 
3652 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3653 {
3654 	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3655 	struct blk_integrity bi;
3656 
3657 	memset(&bi, 0, sizeof(bi));
3658 	bi.profile = &dm_integrity_profile;
3659 	bi.tuple_size = ic->tag_size;
3660 	bi.tag_size = bi.tuple_size;
3661 	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3662 
3663 	blk_integrity_register(disk, &bi);
3664 }
3665 
3666 static void dm_integrity_free_page_list(struct page_list *pl)
3667 {
3668 	unsigned int i;
3669 
3670 	if (!pl)
3671 		return;
3672 	for (i = 0; pl[i].page; i++)
3673 		__free_page(pl[i].page);
3674 	kvfree(pl);
3675 }
3676 
3677 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3678 {
3679 	struct page_list *pl;
3680 	unsigned int i;
3681 
3682 	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3683 	if (!pl)
3684 		return NULL;
3685 
3686 	for (i = 0; i < n_pages; i++) {
3687 		pl[i].page = alloc_page(GFP_KERNEL);
3688 		if (!pl[i].page) {
3689 			dm_integrity_free_page_list(pl);
3690 			return NULL;
3691 		}
3692 		if (i)
3693 			pl[i - 1].next = &pl[i];
3694 	}
3695 	pl[i].page = NULL;
3696 	pl[i].next = NULL;
3697 
3698 	return pl;
3699 }
3700 
3701 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3702 {
3703 	unsigned int i;
3704 
3705 	for (i = 0; i < ic->journal_sections; i++)
3706 		kvfree(sl[i]);
3707 	kvfree(sl);
3708 }
3709 
3710 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3711 								   struct page_list *pl)
3712 {
3713 	struct scatterlist **sl;
3714 	unsigned int i;
3715 
3716 	sl = kvmalloc_array(ic->journal_sections,
3717 			    sizeof(struct scatterlist *),
3718 			    GFP_KERNEL | __GFP_ZERO);
3719 	if (!sl)
3720 		return NULL;
3721 
3722 	for (i = 0; i < ic->journal_sections; i++) {
3723 		struct scatterlist *s;
3724 		unsigned int start_index, start_offset;
3725 		unsigned int end_index, end_offset;
3726 		unsigned int n_pages;
3727 		unsigned int idx;
3728 
3729 		page_list_location(ic, i, 0, &start_index, &start_offset);
3730 		page_list_location(ic, i, ic->journal_section_sectors - 1,
3731 				   &end_index, &end_offset);
3732 
3733 		n_pages = (end_index - start_index + 1);
3734 
3735 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3736 				   GFP_KERNEL);
3737 		if (!s) {
3738 			dm_integrity_free_journal_scatterlist(ic, sl);
3739 			return NULL;
3740 		}
3741 
3742 		sg_init_table(s, n_pages);
3743 		for (idx = start_index; idx <= end_index; idx++) {
3744 			char *va = lowmem_page_address(pl[idx].page);
3745 			unsigned int start = 0, end = PAGE_SIZE;
3746 
3747 			if (idx == start_index)
3748 				start = start_offset;
3749 			if (idx == end_index)
3750 				end = end_offset + (1 << SECTOR_SHIFT);
3751 			sg_set_buf(&s[idx - start_index], va + start, end - start);
3752 		}
3753 
3754 		sl[i] = s;
3755 	}
3756 
3757 	return sl;
3758 }
3759 
3760 static void free_alg(struct alg_spec *a)
3761 {
3762 	kfree_sensitive(a->alg_string);
3763 	kfree_sensitive(a->key);
3764 	memset(a, 0, sizeof(*a));
3765 }
3766 
3767 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3768 {
3769 	char *k;
3770 
3771 	free_alg(a);
3772 
3773 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3774 	if (!a->alg_string)
3775 		goto nomem;
3776 
3777 	k = strchr(a->alg_string, ':');
3778 	if (k) {
3779 		*k = 0;
3780 		a->key_string = k + 1;
3781 		if (strlen(a->key_string) & 1)
3782 			goto inval;
3783 
3784 		a->key_size = strlen(a->key_string) / 2;
3785 		a->key = kmalloc(a->key_size, GFP_KERNEL);
3786 		if (!a->key)
3787 			goto nomem;
3788 		if (hex2bin(a->key, a->key_string, a->key_size))
3789 			goto inval;
3790 	}
3791 
3792 	return 0;
3793 inval:
3794 	*error = error_inval;
3795 	return -EINVAL;
3796 nomem:
3797 	*error = "Out of memory for an argument";
3798 	return -ENOMEM;
3799 }
3800 
3801 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3802 		   char *error_alg, char *error_key)
3803 {
3804 	int r;
3805 
3806 	if (a->alg_string) {
3807 		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3808 		if (IS_ERR(*hash)) {
3809 			*error = error_alg;
3810 			r = PTR_ERR(*hash);
3811 			*hash = NULL;
3812 			return r;
3813 		}
3814 
3815 		if (a->key) {
3816 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3817 			if (r) {
3818 				*error = error_key;
3819 				return r;
3820 			}
3821 		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3822 			*error = error_key;
3823 			return -ENOKEY;
3824 		}
3825 	}
3826 
3827 	return 0;
3828 }
3829 
3830 static int create_journal(struct dm_integrity_c *ic, char **error)
3831 {
3832 	int r = 0;
3833 	unsigned int i;
3834 	__u64 journal_pages, journal_desc_size, journal_tree_size;
3835 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3836 	struct skcipher_request *req = NULL;
3837 
3838 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3839 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3840 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3841 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3842 
3843 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3844 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3845 	journal_desc_size = journal_pages * sizeof(struct page_list);
3846 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3847 		*error = "Journal doesn't fit into memory";
3848 		r = -ENOMEM;
3849 		goto bad;
3850 	}
3851 	ic->journal_pages = journal_pages;
3852 
3853 	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3854 	if (!ic->journal) {
3855 		*error = "Could not allocate memory for journal";
3856 		r = -ENOMEM;
3857 		goto bad;
3858 	}
3859 	if (ic->journal_crypt_alg.alg_string) {
3860 		unsigned int ivsize, blocksize;
3861 		struct journal_completion comp;
3862 
3863 		comp.ic = ic;
3864 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3865 		if (IS_ERR(ic->journal_crypt)) {
3866 			*error = "Invalid journal cipher";
3867 			r = PTR_ERR(ic->journal_crypt);
3868 			ic->journal_crypt = NULL;
3869 			goto bad;
3870 		}
3871 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3872 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3873 
3874 		if (ic->journal_crypt_alg.key) {
3875 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3876 						   ic->journal_crypt_alg.key_size);
3877 			if (r) {
3878 				*error = "Error setting encryption key";
3879 				goto bad;
3880 			}
3881 		}
3882 		DEBUG_print("cipher %s, block size %u iv size %u\n",
3883 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3884 
3885 		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3886 		if (!ic->journal_io) {
3887 			*error = "Could not allocate memory for journal io";
3888 			r = -ENOMEM;
3889 			goto bad;
3890 		}
3891 
3892 		if (blocksize == 1) {
3893 			struct scatterlist *sg;
3894 
3895 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3896 			if (!req) {
3897 				*error = "Could not allocate crypt request";
3898 				r = -ENOMEM;
3899 				goto bad;
3900 			}
3901 
3902 			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3903 			if (!crypt_iv) {
3904 				*error = "Could not allocate iv";
3905 				r = -ENOMEM;
3906 				goto bad;
3907 			}
3908 
3909 			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3910 			if (!ic->journal_xor) {
3911 				*error = "Could not allocate memory for journal xor";
3912 				r = -ENOMEM;
3913 				goto bad;
3914 			}
3915 
3916 			sg = kvmalloc_array(ic->journal_pages + 1,
3917 					    sizeof(struct scatterlist),
3918 					    GFP_KERNEL);
3919 			if (!sg) {
3920 				*error = "Unable to allocate sg list";
3921 				r = -ENOMEM;
3922 				goto bad;
3923 			}
3924 			sg_init_table(sg, ic->journal_pages + 1);
3925 			for (i = 0; i < ic->journal_pages; i++) {
3926 				char *va = lowmem_page_address(ic->journal_xor[i].page);
3927 
3928 				clear_page(va);
3929 				sg_set_buf(&sg[i], va, PAGE_SIZE);
3930 			}
3931 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
3932 
3933 			skcipher_request_set_crypt(req, sg, sg,
3934 						   PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
3935 			init_completion(&comp.comp);
3936 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3937 			if (do_crypt(true, req, &comp))
3938 				wait_for_completion(&comp.comp);
3939 			kvfree(sg);
3940 			r = dm_integrity_failed(ic);
3941 			if (r) {
3942 				*error = "Unable to encrypt journal";
3943 				goto bad;
3944 			}
3945 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3946 
3947 			crypto_free_skcipher(ic->journal_crypt);
3948 			ic->journal_crypt = NULL;
3949 		} else {
3950 			unsigned int crypt_len = roundup(ivsize, blocksize);
3951 
3952 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3953 			if (!req) {
3954 				*error = "Could not allocate crypt request";
3955 				r = -ENOMEM;
3956 				goto bad;
3957 			}
3958 
3959 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3960 			if (!crypt_iv) {
3961 				*error = "Could not allocate iv";
3962 				r = -ENOMEM;
3963 				goto bad;
3964 			}
3965 
3966 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3967 			if (!crypt_data) {
3968 				*error = "Unable to allocate crypt data";
3969 				r = -ENOMEM;
3970 				goto bad;
3971 			}
3972 
3973 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3974 			if (!ic->journal_scatterlist) {
3975 				*error = "Unable to allocate sg list";
3976 				r = -ENOMEM;
3977 				goto bad;
3978 			}
3979 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3980 			if (!ic->journal_io_scatterlist) {
3981 				*error = "Unable to allocate sg list";
3982 				r = -ENOMEM;
3983 				goto bad;
3984 			}
3985 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3986 							 sizeof(struct skcipher_request *),
3987 							 GFP_KERNEL | __GFP_ZERO);
3988 			if (!ic->sk_requests) {
3989 				*error = "Unable to allocate sk requests";
3990 				r = -ENOMEM;
3991 				goto bad;
3992 			}
3993 			for (i = 0; i < ic->journal_sections; i++) {
3994 				struct scatterlist sg;
3995 				struct skcipher_request *section_req;
3996 				__le32 section_le = cpu_to_le32(i);
3997 
3998 				memset(crypt_iv, 0x00, ivsize);
3999 				memset(crypt_data, 0x00, crypt_len);
4000 				memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
4001 
4002 				sg_init_one(&sg, crypt_data, crypt_len);
4003 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
4004 				init_completion(&comp.comp);
4005 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
4006 				if (do_crypt(true, req, &comp))
4007 					wait_for_completion(&comp.comp);
4008 
4009 				r = dm_integrity_failed(ic);
4010 				if (r) {
4011 					*error = "Unable to generate iv";
4012 					goto bad;
4013 				}
4014 
4015 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4016 				if (!section_req) {
4017 					*error = "Unable to allocate crypt request";
4018 					r = -ENOMEM;
4019 					goto bad;
4020 				}
4021 				section_req->iv = kmalloc_array(ivsize, 2,
4022 								GFP_KERNEL);
4023 				if (!section_req->iv) {
4024 					skcipher_request_free(section_req);
4025 					*error = "Unable to allocate iv";
4026 					r = -ENOMEM;
4027 					goto bad;
4028 				}
4029 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
4030 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
4031 				ic->sk_requests[i] = section_req;
4032 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
4033 			}
4034 		}
4035 	}
4036 
4037 	for (i = 0; i < N_COMMIT_IDS; i++) {
4038 		unsigned int j;
4039 
4040 retest_commit_id:
4041 		for (j = 0; j < i; j++) {
4042 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
4043 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
4044 				goto retest_commit_id;
4045 			}
4046 		}
4047 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
4048 	}
4049 
4050 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
4051 	if (journal_tree_size > ULONG_MAX) {
4052 		*error = "Journal doesn't fit into memory";
4053 		r = -ENOMEM;
4054 		goto bad;
4055 	}
4056 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
4057 	if (!ic->journal_tree) {
4058 		*error = "Could not allocate memory for journal tree";
4059 		r = -ENOMEM;
4060 	}
4061 bad:
4062 	kfree(crypt_data);
4063 	kfree(crypt_iv);
4064 	skcipher_request_free(req);
4065 
4066 	return r;
4067 }
4068 
4069 /*
4070  * Construct a integrity mapping
4071  *
4072  * Arguments:
4073  *	device
4074  *	offset from the start of the device
4075  *	tag size
4076  *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4077  *	number of optional arguments
4078  *	optional arguments:
4079  *		journal_sectors
4080  *		interleave_sectors
4081  *		buffer_sectors
4082  *		journal_watermark
4083  *		commit_time
4084  *		meta_device
4085  *		block_size
4086  *		sectors_per_bit
4087  *		bitmap_flush_interval
4088  *		internal_hash
4089  *		journal_crypt
4090  *		journal_mac
4091  *		recalculate
4092  */
4093 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4094 {
4095 	struct dm_integrity_c *ic;
4096 	char dummy;
4097 	int r;
4098 	unsigned int extra_args;
4099 	struct dm_arg_set as;
4100 	static const struct dm_arg _args[] = {
4101 		{0, 18, "Invalid number of feature args"},
4102 	};
4103 	unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4104 	bool should_write_sb;
4105 	__u64 threshold;
4106 	unsigned long long start;
4107 	__s8 log2_sectors_per_bitmap_bit = -1;
4108 	__s8 log2_blocks_per_bitmap_bit;
4109 	__u64 bits_in_journal;
4110 	__u64 n_bitmap_bits;
4111 
4112 #define DIRECT_ARGUMENTS	4
4113 
4114 	if (argc <= DIRECT_ARGUMENTS) {
4115 		ti->error = "Invalid argument count";
4116 		return -EINVAL;
4117 	}
4118 
4119 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4120 	if (!ic) {
4121 		ti->error = "Cannot allocate integrity context";
4122 		return -ENOMEM;
4123 	}
4124 	ti->private = ic;
4125 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
4126 	ic->ti = ti;
4127 
4128 	ic->in_progress = RB_ROOT;
4129 	INIT_LIST_HEAD(&ic->wait_list);
4130 	init_waitqueue_head(&ic->endio_wait);
4131 	bio_list_init(&ic->flush_bio_list);
4132 	init_waitqueue_head(&ic->copy_to_journal_wait);
4133 	init_completion(&ic->crypto_backoff);
4134 	atomic64_set(&ic->number_of_mismatches, 0);
4135 	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4136 
4137 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4138 	if (r) {
4139 		ti->error = "Device lookup failed";
4140 		goto bad;
4141 	}
4142 
4143 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4144 		ti->error = "Invalid starting offset";
4145 		r = -EINVAL;
4146 		goto bad;
4147 	}
4148 	ic->start = start;
4149 
4150 	if (strcmp(argv[2], "-")) {
4151 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4152 			ti->error = "Invalid tag size";
4153 			r = -EINVAL;
4154 			goto bad;
4155 		}
4156 	}
4157 
4158 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4159 	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4160 		ic->mode = argv[3][0];
4161 	} else {
4162 		ti->error = "Invalid mode (expecting J, B, D, R)";
4163 		r = -EINVAL;
4164 		goto bad;
4165 	}
4166 
4167 	journal_sectors = 0;
4168 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4169 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
4170 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4171 	sync_msec = DEFAULT_SYNC_MSEC;
4172 	ic->sectors_per_block = 1;
4173 
4174 	as.argc = argc - DIRECT_ARGUMENTS;
4175 	as.argv = argv + DIRECT_ARGUMENTS;
4176 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4177 	if (r)
4178 		goto bad;
4179 
4180 	while (extra_args--) {
4181 		const char *opt_string;
4182 		unsigned int val;
4183 		unsigned long long llval;
4184 
4185 		opt_string = dm_shift_arg(&as);
4186 		if (!opt_string) {
4187 			r = -EINVAL;
4188 			ti->error = "Not enough feature arguments";
4189 			goto bad;
4190 		}
4191 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4192 			journal_sectors = val ? val : 1;
4193 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4194 			interleave_sectors = val;
4195 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4196 			buffer_sectors = val;
4197 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4198 			journal_watermark = val;
4199 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4200 			sync_msec = val;
4201 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4202 			if (ic->meta_dev) {
4203 				dm_put_device(ti, ic->meta_dev);
4204 				ic->meta_dev = NULL;
4205 			}
4206 			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4207 					  dm_table_get_mode(ti->table), &ic->meta_dev);
4208 			if (r) {
4209 				ti->error = "Device lookup failed";
4210 				goto bad;
4211 			}
4212 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4213 			if (val < 1 << SECTOR_SHIFT ||
4214 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4215 			    (val & (val - 1))) {
4216 				r = -EINVAL;
4217 				ti->error = "Invalid block_size argument";
4218 				goto bad;
4219 			}
4220 			ic->sectors_per_block = val >> SECTOR_SHIFT;
4221 		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4222 			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4223 		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4224 			if ((uint64_t)val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4225 				r = -EINVAL;
4226 				ti->error = "Invalid bitmap_flush_interval argument";
4227 				goto bad;
4228 			}
4229 			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4230 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4231 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4232 					    "Invalid internal_hash argument");
4233 			if (r)
4234 				goto bad;
4235 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4236 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4237 					    "Invalid journal_crypt argument");
4238 			if (r)
4239 				goto bad;
4240 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4241 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4242 					    "Invalid journal_mac argument");
4243 			if (r)
4244 				goto bad;
4245 		} else if (!strcmp(opt_string, "recalculate")) {
4246 			ic->recalculate_flag = true;
4247 		} else if (!strcmp(opt_string, "reset_recalculate")) {
4248 			ic->recalculate_flag = true;
4249 			ic->reset_recalculate_flag = true;
4250 		} else if (!strcmp(opt_string, "allow_discards")) {
4251 			ic->discard = true;
4252 		} else if (!strcmp(opt_string, "fix_padding")) {
4253 			ic->fix_padding = true;
4254 		} else if (!strcmp(opt_string, "fix_hmac")) {
4255 			ic->fix_hmac = true;
4256 		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4257 			ic->legacy_recalculate = true;
4258 		} else {
4259 			r = -EINVAL;
4260 			ti->error = "Invalid argument";
4261 			goto bad;
4262 		}
4263 	}
4264 
4265 	ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4266 	if (!ic->meta_dev)
4267 		ic->meta_device_sectors = ic->data_device_sectors;
4268 	else
4269 		ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4270 
4271 	if (!journal_sectors) {
4272 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4273 				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4274 	}
4275 
4276 	if (!buffer_sectors)
4277 		buffer_sectors = 1;
4278 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4279 
4280 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4281 		    "Invalid internal hash", "Error setting internal hash key");
4282 	if (r)
4283 		goto bad;
4284 
4285 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4286 		    "Invalid journal mac", "Error setting journal mac key");
4287 	if (r)
4288 		goto bad;
4289 
4290 	if (!ic->tag_size) {
4291 		if (!ic->internal_hash) {
4292 			ti->error = "Unknown tag size";
4293 			r = -EINVAL;
4294 			goto bad;
4295 		}
4296 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4297 	}
4298 	if (ic->tag_size > MAX_TAG_SIZE) {
4299 		ti->error = "Too big tag size";
4300 		r = -EINVAL;
4301 		goto bad;
4302 	}
4303 	if (!(ic->tag_size & (ic->tag_size - 1)))
4304 		ic->log2_tag_size = __ffs(ic->tag_size);
4305 	else
4306 		ic->log2_tag_size = -1;
4307 
4308 	if (ic->mode == 'B' && !ic->internal_hash) {
4309 		r = -EINVAL;
4310 		ti->error = "Bitmap mode can be only used with internal hash";
4311 		goto bad;
4312 	}
4313 
4314 	if (ic->discard && !ic->internal_hash) {
4315 		r = -EINVAL;
4316 		ti->error = "Discard can be only used with internal hash";
4317 		goto bad;
4318 	}
4319 
4320 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4321 	ic->autocommit_msec = sync_msec;
4322 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4323 
4324 	ic->io = dm_io_client_create();
4325 	if (IS_ERR(ic->io)) {
4326 		r = PTR_ERR(ic->io);
4327 		ic->io = NULL;
4328 		ti->error = "Cannot allocate dm io";
4329 		goto bad;
4330 	}
4331 
4332 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4333 	if (r) {
4334 		ti->error = "Cannot allocate mempool";
4335 		goto bad;
4336 	}
4337 
4338 	r = mempool_init_page_pool(&ic->recheck_pool, 1, 0);
4339 	if (r) {
4340 		ti->error = "Cannot allocate mempool";
4341 		goto bad;
4342 	}
4343 
4344 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4345 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4346 	if (!ic->metadata_wq) {
4347 		ti->error = "Cannot allocate workqueue";
4348 		r = -ENOMEM;
4349 		goto bad;
4350 	}
4351 
4352 	/*
4353 	 * If this workqueue weren't ordered, it would cause bio reordering
4354 	 * and reduced performance.
4355 	 */
4356 	ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4357 	if (!ic->wait_wq) {
4358 		ti->error = "Cannot allocate workqueue";
4359 		r = -ENOMEM;
4360 		goto bad;
4361 	}
4362 
4363 	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4364 					  METADATA_WORKQUEUE_MAX_ACTIVE);
4365 	if (!ic->offload_wq) {
4366 		ti->error = "Cannot allocate workqueue";
4367 		r = -ENOMEM;
4368 		goto bad;
4369 	}
4370 
4371 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4372 	if (!ic->commit_wq) {
4373 		ti->error = "Cannot allocate workqueue";
4374 		r = -ENOMEM;
4375 		goto bad;
4376 	}
4377 	INIT_WORK(&ic->commit_work, integrity_commit);
4378 
4379 	if (ic->mode == 'J' || ic->mode == 'B') {
4380 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4381 		if (!ic->writer_wq) {
4382 			ti->error = "Cannot allocate workqueue";
4383 			r = -ENOMEM;
4384 			goto bad;
4385 		}
4386 		INIT_WORK(&ic->writer_work, integrity_writer);
4387 	}
4388 
4389 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4390 	if (!ic->sb) {
4391 		r = -ENOMEM;
4392 		ti->error = "Cannot allocate superblock area";
4393 		goto bad;
4394 	}
4395 
4396 	r = sync_rw_sb(ic, REQ_OP_READ);
4397 	if (r) {
4398 		ti->error = "Error reading superblock";
4399 		goto bad;
4400 	}
4401 	should_write_sb = false;
4402 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4403 		if (ic->mode != 'R') {
4404 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4405 				r = -EINVAL;
4406 				ti->error = "The device is not initialized";
4407 				goto bad;
4408 			}
4409 		}
4410 
4411 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4412 		if (r) {
4413 			ti->error = "Could not initialize superblock";
4414 			goto bad;
4415 		}
4416 		if (ic->mode != 'R')
4417 			should_write_sb = true;
4418 	}
4419 
4420 	if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4421 		r = -EINVAL;
4422 		ti->error = "Unknown version";
4423 		goto bad;
4424 	}
4425 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4426 		r = -EINVAL;
4427 		ti->error = "Tag size doesn't match the information in superblock";
4428 		goto bad;
4429 	}
4430 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4431 		r = -EINVAL;
4432 		ti->error = "Block size doesn't match the information in superblock";
4433 		goto bad;
4434 	}
4435 	if (!le32_to_cpu(ic->sb->journal_sections)) {
4436 		r = -EINVAL;
4437 		ti->error = "Corrupted superblock, journal_sections is 0";
4438 		goto bad;
4439 	}
4440 	/* make sure that ti->max_io_len doesn't overflow */
4441 	if (!ic->meta_dev) {
4442 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4443 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4444 			r = -EINVAL;
4445 			ti->error = "Invalid interleave_sectors in the superblock";
4446 			goto bad;
4447 		}
4448 	} else {
4449 		if (ic->sb->log2_interleave_sectors) {
4450 			r = -EINVAL;
4451 			ti->error = "Invalid interleave_sectors in the superblock";
4452 			goto bad;
4453 		}
4454 	}
4455 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4456 		r = -EINVAL;
4457 		ti->error = "Journal mac mismatch";
4458 		goto bad;
4459 	}
4460 
4461 	get_provided_data_sectors(ic);
4462 	if (!ic->provided_data_sectors) {
4463 		r = -EINVAL;
4464 		ti->error = "The device is too small";
4465 		goto bad;
4466 	}
4467 
4468 try_smaller_buffer:
4469 	r = calculate_device_limits(ic);
4470 	if (r) {
4471 		if (ic->meta_dev) {
4472 			if (ic->log2_buffer_sectors > 3) {
4473 				ic->log2_buffer_sectors--;
4474 				goto try_smaller_buffer;
4475 			}
4476 		}
4477 		ti->error = "The device is too small";
4478 		goto bad;
4479 	}
4480 
4481 	if (log2_sectors_per_bitmap_bit < 0)
4482 		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4483 	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4484 		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4485 
4486 	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4487 	if (bits_in_journal > UINT_MAX)
4488 		bits_in_journal = UINT_MAX;
4489 	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4490 		log2_sectors_per_bitmap_bit++;
4491 
4492 	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4493 	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4494 	if (should_write_sb)
4495 		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4496 
4497 	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4498 				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4499 	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4500 
4501 	if (!ic->meta_dev)
4502 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4503 
4504 	if (ti->len > ic->provided_data_sectors) {
4505 		r = -EINVAL;
4506 		ti->error = "Not enough provided sectors for requested mapping size";
4507 		goto bad;
4508 	}
4509 
4510 
4511 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4512 	threshold += 50;
4513 	do_div(threshold, 100);
4514 	ic->free_sectors_threshold = threshold;
4515 
4516 	DEBUG_print("initialized:\n");
4517 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4518 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4519 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4520 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4521 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4522 	DEBUG_print("	journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4523 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4524 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4525 	DEBUG_print("	data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4526 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4527 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4528 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4529 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4530 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4531 	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4532 
4533 	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4534 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4535 		ic->sb->recalc_sector = cpu_to_le64(0);
4536 	}
4537 
4538 	if (ic->internal_hash) {
4539 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4540 		if (!ic->recalc_wq) {
4541 			ti->error = "Cannot allocate workqueue";
4542 			r = -ENOMEM;
4543 			goto bad;
4544 		}
4545 		INIT_WORK(&ic->recalc_work, integrity_recalc);
4546 	} else {
4547 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4548 			ti->error = "Recalculate can only be specified with internal_hash";
4549 			r = -EINVAL;
4550 			goto bad;
4551 		}
4552 	}
4553 
4554 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4555 	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4556 	    dm_integrity_disable_recalculate(ic)) {
4557 		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4558 		r = -EOPNOTSUPP;
4559 		goto bad;
4560 	}
4561 
4562 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4563 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4564 	if (IS_ERR(ic->bufio)) {
4565 		r = PTR_ERR(ic->bufio);
4566 		ti->error = "Cannot initialize dm-bufio";
4567 		ic->bufio = NULL;
4568 		goto bad;
4569 	}
4570 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4571 
4572 	if (ic->mode != 'R') {
4573 		r = create_journal(ic, &ti->error);
4574 		if (r)
4575 			goto bad;
4576 
4577 	}
4578 
4579 	if (ic->mode == 'B') {
4580 		unsigned int i;
4581 		unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4582 
4583 		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4584 		if (!ic->recalc_bitmap) {
4585 			r = -ENOMEM;
4586 			goto bad;
4587 		}
4588 		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4589 		if (!ic->may_write_bitmap) {
4590 			r = -ENOMEM;
4591 			goto bad;
4592 		}
4593 		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4594 		if (!ic->bbs) {
4595 			r = -ENOMEM;
4596 			goto bad;
4597 		}
4598 		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4599 		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4600 			struct bitmap_block_status *bbs = &ic->bbs[i];
4601 			unsigned int sector, pl_index, pl_offset;
4602 
4603 			INIT_WORK(&bbs->work, bitmap_block_work);
4604 			bbs->ic = ic;
4605 			bbs->idx = i;
4606 			bio_list_init(&bbs->bio_queue);
4607 			spin_lock_init(&bbs->bio_queue_lock);
4608 
4609 			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4610 			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4611 			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4612 
4613 			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4614 		}
4615 	}
4616 
4617 	if (should_write_sb) {
4618 		init_journal(ic, 0, ic->journal_sections, 0);
4619 		r = dm_integrity_failed(ic);
4620 		if (unlikely(r)) {
4621 			ti->error = "Error initializing journal";
4622 			goto bad;
4623 		}
4624 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4625 		if (r) {
4626 			ti->error = "Error initializing superblock";
4627 			goto bad;
4628 		}
4629 		ic->just_formatted = true;
4630 	}
4631 
4632 	if (!ic->meta_dev) {
4633 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4634 		if (r)
4635 			goto bad;
4636 	}
4637 	if (ic->mode == 'B') {
4638 		unsigned int max_io_len;
4639 
4640 		max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4641 		if (!max_io_len)
4642 			max_io_len = 1U << 31;
4643 		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4644 		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4645 			r = dm_set_target_max_io_len(ti, max_io_len);
4646 			if (r)
4647 				goto bad;
4648 		}
4649 	}
4650 
4651 	if (!ic->internal_hash)
4652 		dm_integrity_set(ti, ic);
4653 
4654 	ti->num_flush_bios = 1;
4655 	ti->flush_supported = true;
4656 	if (ic->discard)
4657 		ti->num_discard_bios = 1;
4658 
4659 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4660 	return 0;
4661 
4662 bad:
4663 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4664 	dm_integrity_dtr(ti);
4665 	return r;
4666 }
4667 
4668 static void dm_integrity_dtr(struct dm_target *ti)
4669 {
4670 	struct dm_integrity_c *ic = ti->private;
4671 
4672 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4673 	BUG_ON(!list_empty(&ic->wait_list));
4674 
4675 	if (ic->mode == 'B')
4676 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
4677 	if (ic->metadata_wq)
4678 		destroy_workqueue(ic->metadata_wq);
4679 	if (ic->wait_wq)
4680 		destroy_workqueue(ic->wait_wq);
4681 	if (ic->offload_wq)
4682 		destroy_workqueue(ic->offload_wq);
4683 	if (ic->commit_wq)
4684 		destroy_workqueue(ic->commit_wq);
4685 	if (ic->writer_wq)
4686 		destroy_workqueue(ic->writer_wq);
4687 	if (ic->recalc_wq)
4688 		destroy_workqueue(ic->recalc_wq);
4689 	kvfree(ic->bbs);
4690 	if (ic->bufio)
4691 		dm_bufio_client_destroy(ic->bufio);
4692 	mempool_exit(&ic->recheck_pool);
4693 	mempool_exit(&ic->journal_io_mempool);
4694 	if (ic->io)
4695 		dm_io_client_destroy(ic->io);
4696 	if (ic->dev)
4697 		dm_put_device(ti, ic->dev);
4698 	if (ic->meta_dev)
4699 		dm_put_device(ti, ic->meta_dev);
4700 	dm_integrity_free_page_list(ic->journal);
4701 	dm_integrity_free_page_list(ic->journal_io);
4702 	dm_integrity_free_page_list(ic->journal_xor);
4703 	dm_integrity_free_page_list(ic->recalc_bitmap);
4704 	dm_integrity_free_page_list(ic->may_write_bitmap);
4705 	if (ic->journal_scatterlist)
4706 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4707 	if (ic->journal_io_scatterlist)
4708 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4709 	if (ic->sk_requests) {
4710 		unsigned int i;
4711 
4712 		for (i = 0; i < ic->journal_sections; i++) {
4713 			struct skcipher_request *req;
4714 
4715 			req = ic->sk_requests[i];
4716 			if (req) {
4717 				kfree_sensitive(req->iv);
4718 				skcipher_request_free(req);
4719 			}
4720 		}
4721 		kvfree(ic->sk_requests);
4722 	}
4723 	kvfree(ic->journal_tree);
4724 	if (ic->sb)
4725 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4726 
4727 	if (ic->internal_hash)
4728 		crypto_free_shash(ic->internal_hash);
4729 	free_alg(&ic->internal_hash_alg);
4730 
4731 	if (ic->journal_crypt)
4732 		crypto_free_skcipher(ic->journal_crypt);
4733 	free_alg(&ic->journal_crypt_alg);
4734 
4735 	if (ic->journal_mac)
4736 		crypto_free_shash(ic->journal_mac);
4737 	free_alg(&ic->journal_mac_alg);
4738 
4739 	kfree(ic);
4740 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4741 }
4742 
4743 static struct target_type integrity_target = {
4744 	.name			= "integrity",
4745 	.version		= {1, 11, 0},
4746 	.module			= THIS_MODULE,
4747 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4748 	.ctr			= dm_integrity_ctr,
4749 	.dtr			= dm_integrity_dtr,
4750 	.map			= dm_integrity_map,
4751 	.postsuspend		= dm_integrity_postsuspend,
4752 	.resume			= dm_integrity_resume,
4753 	.status			= dm_integrity_status,
4754 	.iterate_devices	= dm_integrity_iterate_devices,
4755 	.io_hints		= dm_integrity_io_hints,
4756 };
4757 
4758 static int __init dm_integrity_init(void)
4759 {
4760 	int r;
4761 
4762 	journal_io_cache = kmem_cache_create("integrity_journal_io",
4763 					     sizeof(struct journal_io), 0, 0, NULL);
4764 	if (!journal_io_cache) {
4765 		DMERR("can't allocate journal io cache");
4766 		return -ENOMEM;
4767 	}
4768 
4769 	r = dm_register_target(&integrity_target);
4770 	if (r < 0) {
4771 		kmem_cache_destroy(journal_io_cache);
4772 		return r;
4773 	}
4774 
4775 	return 0;
4776 }
4777 
4778 static void __exit dm_integrity_exit(void)
4779 {
4780 	dm_unregister_target(&integrity_target);
4781 	kmem_cache_destroy(journal_io_cache);
4782 }
4783 
4784 module_init(dm_integrity_init);
4785 module_exit(dm_integrity_exit);
4786 
4787 MODULE_AUTHOR("Milan Broz");
4788 MODULE_AUTHOR("Mikulas Patocka");
4789 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4790 MODULE_LICENSE("GPL");
4791