1 /* 2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 3 * Copyright (C) 2016-2017 Milan Broz 4 * Copyright (C) 2016-2017 Mikulas Patocka 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-bio-record.h" 10 11 #include <linux/compiler.h> 12 #include <linux/module.h> 13 #include <linux/device-mapper.h> 14 #include <linux/dm-io.h> 15 #include <linux/vmalloc.h> 16 #include <linux/sort.h> 17 #include <linux/rbtree.h> 18 #include <linux/delay.h> 19 #include <linux/random.h> 20 #include <linux/reboot.h> 21 #include <crypto/hash.h> 22 #include <crypto/skcipher.h> 23 #include <linux/async_tx.h> 24 #include <linux/dm-bufio.h> 25 26 #include "dm-audit.h" 27 28 #define DM_MSG_PREFIX "integrity" 29 30 #define DEFAULT_INTERLEAVE_SECTORS 32768 31 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 32 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768 33 #define DEFAULT_BUFFER_SECTORS 128 34 #define DEFAULT_JOURNAL_WATERMARK 50 35 #define DEFAULT_SYNC_MSEC 10000 36 #define DEFAULT_MAX_JOURNAL_SECTORS 131072 37 #define MIN_LOG2_INTERLEAVE_SECTORS 3 38 #define MAX_LOG2_INTERLEAVE_SECTORS 31 39 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 40 #define RECALC_SECTORS 32768 41 #define RECALC_WRITE_SUPER 16 42 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */ 43 #define BITMAP_FLUSH_INTERVAL (10 * HZ) 44 #define DISCARD_FILLER 0xf6 45 #define SALT_SIZE 16 46 47 /* 48 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 49 * so it should not be enabled in the official kernel 50 */ 51 //#define DEBUG_PRINT 52 //#define INTERNAL_VERIFY 53 54 /* 55 * On disk structures 56 */ 57 58 #define SB_MAGIC "integrt" 59 #define SB_VERSION_1 1 60 #define SB_VERSION_2 2 61 #define SB_VERSION_3 3 62 #define SB_VERSION_4 4 63 #define SB_VERSION_5 5 64 #define SB_SECTORS 8 65 #define MAX_SECTORS_PER_BLOCK 8 66 67 struct superblock { 68 __u8 magic[8]; 69 __u8 version; 70 __u8 log2_interleave_sectors; 71 __le16 integrity_tag_size; 72 __le32 journal_sections; 73 __le64 provided_data_sectors; /* userspace uses this value */ 74 __le32 flags; 75 __u8 log2_sectors_per_block; 76 __u8 log2_blocks_per_bitmap_bit; 77 __u8 pad[2]; 78 __le64 recalc_sector; 79 __u8 pad2[8]; 80 __u8 salt[SALT_SIZE]; 81 }; 82 83 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 84 #define SB_FLAG_RECALCULATING 0x2 85 #define SB_FLAG_DIRTY_BITMAP 0x4 86 #define SB_FLAG_FIXED_PADDING 0x8 87 #define SB_FLAG_FIXED_HMAC 0x10 88 89 #define JOURNAL_ENTRY_ROUNDUP 8 90 91 typedef __le64 commit_id_t; 92 #define JOURNAL_MAC_PER_SECTOR 8 93 94 struct journal_entry { 95 union { 96 struct { 97 __le32 sector_lo; 98 __le32 sector_hi; 99 } s; 100 __le64 sector; 101 } u; 102 commit_id_t last_bytes[]; 103 /* __u8 tag[0]; */ 104 }; 105 106 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 107 108 #if BITS_PER_LONG == 64 109 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) 110 #else 111 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) 112 #endif 113 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 114 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 115 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0) 116 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 117 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0) 118 119 #define JOURNAL_BLOCK_SECTORS 8 120 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 121 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 122 123 struct journal_sector { 124 struct_group(sectors, 125 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 126 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 127 ); 128 commit_id_t commit_id; 129 }; 130 131 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 132 133 #define METADATA_PADDING_SECTORS 8 134 135 #define N_COMMIT_IDS 4 136 137 static unsigned char prev_commit_seq(unsigned char seq) 138 { 139 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 140 } 141 142 static unsigned char next_commit_seq(unsigned char seq) 143 { 144 return (seq + 1) % N_COMMIT_IDS; 145 } 146 147 /* 148 * In-memory structures 149 */ 150 151 struct journal_node { 152 struct rb_node node; 153 sector_t sector; 154 }; 155 156 struct alg_spec { 157 char *alg_string; 158 char *key_string; 159 __u8 *key; 160 unsigned key_size; 161 }; 162 163 struct dm_integrity_c { 164 struct dm_dev *dev; 165 struct dm_dev *meta_dev; 166 unsigned tag_size; 167 __s8 log2_tag_size; 168 sector_t start; 169 mempool_t journal_io_mempool; 170 struct dm_io_client *io; 171 struct dm_bufio_client *bufio; 172 struct workqueue_struct *metadata_wq; 173 struct superblock *sb; 174 unsigned journal_pages; 175 unsigned n_bitmap_blocks; 176 177 struct page_list *journal; 178 struct page_list *journal_io; 179 struct page_list *journal_xor; 180 struct page_list *recalc_bitmap; 181 struct page_list *may_write_bitmap; 182 struct bitmap_block_status *bbs; 183 unsigned bitmap_flush_interval; 184 int synchronous_mode; 185 struct bio_list synchronous_bios; 186 struct delayed_work bitmap_flush_work; 187 188 struct crypto_skcipher *journal_crypt; 189 struct scatterlist **journal_scatterlist; 190 struct scatterlist **journal_io_scatterlist; 191 struct skcipher_request **sk_requests; 192 193 struct crypto_shash *journal_mac; 194 195 struct journal_node *journal_tree; 196 struct rb_root journal_tree_root; 197 198 sector_t provided_data_sectors; 199 200 unsigned short journal_entry_size; 201 unsigned char journal_entries_per_sector; 202 unsigned char journal_section_entries; 203 unsigned short journal_section_sectors; 204 unsigned journal_sections; 205 unsigned journal_entries; 206 sector_t data_device_sectors; 207 sector_t meta_device_sectors; 208 unsigned initial_sectors; 209 unsigned metadata_run; 210 __s8 log2_metadata_run; 211 __u8 log2_buffer_sectors; 212 __u8 sectors_per_block; 213 __u8 log2_blocks_per_bitmap_bit; 214 215 unsigned char mode; 216 217 int failed; 218 219 struct crypto_shash *internal_hash; 220 221 struct dm_target *ti; 222 223 /* these variables are locked with endio_wait.lock */ 224 struct rb_root in_progress; 225 struct list_head wait_list; 226 wait_queue_head_t endio_wait; 227 struct workqueue_struct *wait_wq; 228 struct workqueue_struct *offload_wq; 229 230 unsigned char commit_seq; 231 commit_id_t commit_ids[N_COMMIT_IDS]; 232 233 unsigned committed_section; 234 unsigned n_committed_sections; 235 236 unsigned uncommitted_section; 237 unsigned n_uncommitted_sections; 238 239 unsigned free_section; 240 unsigned char free_section_entry; 241 unsigned free_sectors; 242 243 unsigned free_sectors_threshold; 244 245 struct workqueue_struct *commit_wq; 246 struct work_struct commit_work; 247 248 struct workqueue_struct *writer_wq; 249 struct work_struct writer_work; 250 251 struct workqueue_struct *recalc_wq; 252 struct work_struct recalc_work; 253 u8 *recalc_buffer; 254 u8 *recalc_tags; 255 256 struct bio_list flush_bio_list; 257 258 unsigned long autocommit_jiffies; 259 struct timer_list autocommit_timer; 260 unsigned autocommit_msec; 261 262 wait_queue_head_t copy_to_journal_wait; 263 264 struct completion crypto_backoff; 265 266 bool journal_uptodate; 267 bool just_formatted; 268 bool recalculate_flag; 269 bool reset_recalculate_flag; 270 bool discard; 271 bool fix_padding; 272 bool fix_hmac; 273 bool legacy_recalculate; 274 275 struct alg_spec internal_hash_alg; 276 struct alg_spec journal_crypt_alg; 277 struct alg_spec journal_mac_alg; 278 279 atomic64_t number_of_mismatches; 280 281 struct notifier_block reboot_notifier; 282 }; 283 284 struct dm_integrity_range { 285 sector_t logical_sector; 286 sector_t n_sectors; 287 bool waiting; 288 union { 289 struct rb_node node; 290 struct { 291 struct task_struct *task; 292 struct list_head wait_entry; 293 }; 294 }; 295 }; 296 297 struct dm_integrity_io { 298 struct work_struct work; 299 300 struct dm_integrity_c *ic; 301 enum req_op op; 302 bool fua; 303 304 struct dm_integrity_range range; 305 306 sector_t metadata_block; 307 unsigned metadata_offset; 308 309 atomic_t in_flight; 310 blk_status_t bi_status; 311 312 struct completion *completion; 313 314 struct dm_bio_details bio_details; 315 }; 316 317 struct journal_completion { 318 struct dm_integrity_c *ic; 319 atomic_t in_flight; 320 struct completion comp; 321 }; 322 323 struct journal_io { 324 struct dm_integrity_range range; 325 struct journal_completion *comp; 326 }; 327 328 struct bitmap_block_status { 329 struct work_struct work; 330 struct dm_integrity_c *ic; 331 unsigned idx; 332 unsigned long *bitmap; 333 struct bio_list bio_queue; 334 spinlock_t bio_queue_lock; 335 336 }; 337 338 static struct kmem_cache *journal_io_cache; 339 340 #define JOURNAL_IO_MEMPOOL 32 341 342 #ifdef DEBUG_PRINT 343 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 344 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...) 345 { 346 va_list args; 347 va_start(args, msg); 348 vprintk(msg, args); 349 va_end(args); 350 if (len) 351 pr_cont(":"); 352 while (len) { 353 pr_cont(" %02x", *bytes); 354 bytes++; 355 len--; 356 } 357 pr_cont("\n"); 358 } 359 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__) 360 #else 361 #define DEBUG_print(x, ...) do { } while (0) 362 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 363 #endif 364 365 static void dm_integrity_prepare(struct request *rq) 366 { 367 } 368 369 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes) 370 { 371 } 372 373 /* 374 * DM Integrity profile, protection is performed layer above (dm-crypt) 375 */ 376 static const struct blk_integrity_profile dm_integrity_profile = { 377 .name = "DM-DIF-EXT-TAG", 378 .generate_fn = NULL, 379 .verify_fn = NULL, 380 .prepare_fn = dm_integrity_prepare, 381 .complete_fn = dm_integrity_complete, 382 }; 383 384 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 385 static void integrity_bio_wait(struct work_struct *w); 386 static void dm_integrity_dtr(struct dm_target *ti); 387 388 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 389 { 390 if (err == -EILSEQ) 391 atomic64_inc(&ic->number_of_mismatches); 392 if (!cmpxchg(&ic->failed, 0, err)) 393 DMERR("Error on %s: %d", msg, err); 394 } 395 396 static int dm_integrity_failed(struct dm_integrity_c *ic) 397 { 398 return READ_ONCE(ic->failed); 399 } 400 401 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic) 402 { 403 if (ic->legacy_recalculate) 404 return false; 405 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ? 406 ic->internal_hash_alg.key || ic->journal_mac_alg.key : 407 ic->internal_hash_alg.key && !ic->journal_mac_alg.key) 408 return true; 409 return false; 410 } 411 412 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i, 413 unsigned j, unsigned char seq) 414 { 415 /* 416 * Xor the number with section and sector, so that if a piece of 417 * journal is written at wrong place, it is detected. 418 */ 419 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 420 } 421 422 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 423 sector_t *area, sector_t *offset) 424 { 425 if (!ic->meta_dev) { 426 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 427 *area = data_sector >> log2_interleave_sectors; 428 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1); 429 } else { 430 *area = 0; 431 *offset = data_sector; 432 } 433 } 434 435 #define sector_to_block(ic, n) \ 436 do { \ 437 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \ 438 (n) >>= (ic)->sb->log2_sectors_per_block; \ 439 } while (0) 440 441 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 442 sector_t offset, unsigned *metadata_offset) 443 { 444 __u64 ms; 445 unsigned mo; 446 447 ms = area << ic->sb->log2_interleave_sectors; 448 if (likely(ic->log2_metadata_run >= 0)) 449 ms += area << ic->log2_metadata_run; 450 else 451 ms += area * ic->metadata_run; 452 ms >>= ic->log2_buffer_sectors; 453 454 sector_to_block(ic, offset); 455 456 if (likely(ic->log2_tag_size >= 0)) { 457 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 458 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 459 } else { 460 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 461 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 462 } 463 *metadata_offset = mo; 464 return ms; 465 } 466 467 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 468 { 469 sector_t result; 470 471 if (ic->meta_dev) 472 return offset; 473 474 result = area << ic->sb->log2_interleave_sectors; 475 if (likely(ic->log2_metadata_run >= 0)) 476 result += (area + 1) << ic->log2_metadata_run; 477 else 478 result += (area + 1) * ic->metadata_run; 479 480 result += (sector_t)ic->initial_sectors + offset; 481 result += ic->start; 482 483 return result; 484 } 485 486 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr) 487 { 488 if (unlikely(*sec_ptr >= ic->journal_sections)) 489 *sec_ptr -= ic->journal_sections; 490 } 491 492 static void sb_set_version(struct dm_integrity_c *ic) 493 { 494 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) 495 ic->sb->version = SB_VERSION_5; 496 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) 497 ic->sb->version = SB_VERSION_4; 498 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) 499 ic->sb->version = SB_VERSION_3; 500 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 501 ic->sb->version = SB_VERSION_2; 502 else 503 ic->sb->version = SB_VERSION_1; 504 } 505 506 static int sb_mac(struct dm_integrity_c *ic, bool wr) 507 { 508 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 509 int r; 510 unsigned size = crypto_shash_digestsize(ic->journal_mac); 511 512 if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) { 513 dm_integrity_io_error(ic, "digest is too long", -EINVAL); 514 return -EINVAL; 515 } 516 517 desc->tfm = ic->journal_mac; 518 519 r = crypto_shash_init(desc); 520 if (unlikely(r < 0)) { 521 dm_integrity_io_error(ic, "crypto_shash_init", r); 522 return r; 523 } 524 525 r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size); 526 if (unlikely(r < 0)) { 527 dm_integrity_io_error(ic, "crypto_shash_update", r); 528 return r; 529 } 530 531 if (likely(wr)) { 532 r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size); 533 if (unlikely(r < 0)) { 534 dm_integrity_io_error(ic, "crypto_shash_final", r); 535 return r; 536 } 537 } else { 538 __u8 result[HASH_MAX_DIGESTSIZE]; 539 r = crypto_shash_final(desc, result); 540 if (unlikely(r < 0)) { 541 dm_integrity_io_error(ic, "crypto_shash_final", r); 542 return r; 543 } 544 if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) { 545 dm_integrity_io_error(ic, "superblock mac", -EILSEQ); 546 dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0); 547 return -EILSEQ; 548 } 549 } 550 551 return 0; 552 } 553 554 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf) 555 { 556 struct dm_io_request io_req; 557 struct dm_io_region io_loc; 558 const enum req_op op = opf & REQ_OP_MASK; 559 int r; 560 561 io_req.bi_opf = opf; 562 io_req.mem.type = DM_IO_KMEM; 563 io_req.mem.ptr.addr = ic->sb; 564 io_req.notify.fn = NULL; 565 io_req.client = ic->io; 566 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 567 io_loc.sector = ic->start; 568 io_loc.count = SB_SECTORS; 569 570 if (op == REQ_OP_WRITE) { 571 sb_set_version(ic); 572 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 573 r = sb_mac(ic, true); 574 if (unlikely(r)) 575 return r; 576 } 577 } 578 579 r = dm_io(&io_req, 1, &io_loc, NULL); 580 if (unlikely(r)) 581 return r; 582 583 if (op == REQ_OP_READ) { 584 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 585 r = sb_mac(ic, false); 586 if (unlikely(r)) 587 return r; 588 } 589 } 590 591 return 0; 592 } 593 594 #define BITMAP_OP_TEST_ALL_SET 0 595 #define BITMAP_OP_TEST_ALL_CLEAR 1 596 #define BITMAP_OP_SET 2 597 #define BITMAP_OP_CLEAR 3 598 599 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap, 600 sector_t sector, sector_t n_sectors, int mode) 601 { 602 unsigned long bit, end_bit, this_end_bit, page, end_page; 603 unsigned long *data; 604 605 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) { 606 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)", 607 sector, 608 n_sectors, 609 ic->sb->log2_sectors_per_block, 610 ic->log2_blocks_per_bitmap_bit, 611 mode); 612 BUG(); 613 } 614 615 if (unlikely(!n_sectors)) 616 return true; 617 618 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 619 end_bit = (sector + n_sectors - 1) >> 620 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 621 622 page = bit / (PAGE_SIZE * 8); 623 bit %= PAGE_SIZE * 8; 624 625 end_page = end_bit / (PAGE_SIZE * 8); 626 end_bit %= PAGE_SIZE * 8; 627 628 repeat: 629 if (page < end_page) { 630 this_end_bit = PAGE_SIZE * 8 - 1; 631 } else { 632 this_end_bit = end_bit; 633 } 634 635 data = lowmem_page_address(bitmap[page].page); 636 637 if (mode == BITMAP_OP_TEST_ALL_SET) { 638 while (bit <= this_end_bit) { 639 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 640 do { 641 if (data[bit / BITS_PER_LONG] != -1) 642 return false; 643 bit += BITS_PER_LONG; 644 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 645 continue; 646 } 647 if (!test_bit(bit, data)) 648 return false; 649 bit++; 650 } 651 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) { 652 while (bit <= this_end_bit) { 653 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 654 do { 655 if (data[bit / BITS_PER_LONG] != 0) 656 return false; 657 bit += BITS_PER_LONG; 658 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 659 continue; 660 } 661 if (test_bit(bit, data)) 662 return false; 663 bit++; 664 } 665 } else if (mode == BITMAP_OP_SET) { 666 while (bit <= this_end_bit) { 667 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 668 do { 669 data[bit / BITS_PER_LONG] = -1; 670 bit += BITS_PER_LONG; 671 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 672 continue; 673 } 674 __set_bit(bit, data); 675 bit++; 676 } 677 } else if (mode == BITMAP_OP_CLEAR) { 678 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1) 679 clear_page(data); 680 else while (bit <= this_end_bit) { 681 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 682 do { 683 data[bit / BITS_PER_LONG] = 0; 684 bit += BITS_PER_LONG; 685 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 686 continue; 687 } 688 __clear_bit(bit, data); 689 bit++; 690 } 691 } else { 692 BUG(); 693 } 694 695 if (unlikely(page < end_page)) { 696 bit = 0; 697 page++; 698 goto repeat; 699 } 700 701 return true; 702 } 703 704 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src) 705 { 706 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 707 unsigned i; 708 709 for (i = 0; i < n_bitmap_pages; i++) { 710 unsigned long *dst_data = lowmem_page_address(dst[i].page); 711 unsigned long *src_data = lowmem_page_address(src[i].page); 712 copy_page(dst_data, src_data); 713 } 714 } 715 716 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector) 717 { 718 unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 719 unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8); 720 721 BUG_ON(bitmap_block >= ic->n_bitmap_blocks); 722 return &ic->bbs[bitmap_block]; 723 } 724 725 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset, 726 bool e, const char *function) 727 { 728 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 729 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 730 731 if (unlikely(section >= ic->journal_sections) || 732 unlikely(offset >= limit)) { 733 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)", 734 function, section, offset, ic->journal_sections, limit); 735 BUG(); 736 } 737 #endif 738 } 739 740 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset, 741 unsigned *pl_index, unsigned *pl_offset) 742 { 743 unsigned sector; 744 745 access_journal_check(ic, section, offset, false, "page_list_location"); 746 747 sector = section * ic->journal_section_sectors + offset; 748 749 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 750 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 751 } 752 753 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 754 unsigned section, unsigned offset, unsigned *n_sectors) 755 { 756 unsigned pl_index, pl_offset; 757 char *va; 758 759 page_list_location(ic, section, offset, &pl_index, &pl_offset); 760 761 if (n_sectors) 762 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 763 764 va = lowmem_page_address(pl[pl_index].page); 765 766 return (struct journal_sector *)(va + pl_offset); 767 } 768 769 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset) 770 { 771 return access_page_list(ic, ic->journal, section, offset, NULL); 772 } 773 774 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n) 775 { 776 unsigned rel_sector, offset; 777 struct journal_sector *js; 778 779 access_journal_check(ic, section, n, true, "access_journal_entry"); 780 781 rel_sector = n % JOURNAL_BLOCK_SECTORS; 782 offset = n / JOURNAL_BLOCK_SECTORS; 783 784 js = access_journal(ic, section, rel_sector); 785 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 786 } 787 788 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n) 789 { 790 n <<= ic->sb->log2_sectors_per_block; 791 792 n += JOURNAL_BLOCK_SECTORS; 793 794 access_journal_check(ic, section, n, false, "access_journal_data"); 795 796 return access_journal(ic, section, n); 797 } 798 799 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE]) 800 { 801 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 802 int r; 803 unsigned j, size; 804 805 desc->tfm = ic->journal_mac; 806 807 r = crypto_shash_init(desc); 808 if (unlikely(r < 0)) { 809 dm_integrity_io_error(ic, "crypto_shash_init", r); 810 goto err; 811 } 812 813 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 814 __le64 section_le; 815 816 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE); 817 if (unlikely(r < 0)) { 818 dm_integrity_io_error(ic, "crypto_shash_update", r); 819 goto err; 820 } 821 822 section_le = cpu_to_le64(section); 823 r = crypto_shash_update(desc, (__u8 *)§ion_le, sizeof section_le); 824 if (unlikely(r < 0)) { 825 dm_integrity_io_error(ic, "crypto_shash_update", r); 826 goto err; 827 } 828 } 829 830 for (j = 0; j < ic->journal_section_entries; j++) { 831 struct journal_entry *je = access_journal_entry(ic, section, j); 832 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector); 833 if (unlikely(r < 0)) { 834 dm_integrity_io_error(ic, "crypto_shash_update", r); 835 goto err; 836 } 837 } 838 839 size = crypto_shash_digestsize(ic->journal_mac); 840 841 if (likely(size <= JOURNAL_MAC_SIZE)) { 842 r = crypto_shash_final(desc, result); 843 if (unlikely(r < 0)) { 844 dm_integrity_io_error(ic, "crypto_shash_final", r); 845 goto err; 846 } 847 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 848 } else { 849 __u8 digest[HASH_MAX_DIGESTSIZE]; 850 851 if (WARN_ON(size > sizeof(digest))) { 852 dm_integrity_io_error(ic, "digest_size", -EINVAL); 853 goto err; 854 } 855 r = crypto_shash_final(desc, digest); 856 if (unlikely(r < 0)) { 857 dm_integrity_io_error(ic, "crypto_shash_final", r); 858 goto err; 859 } 860 memcpy(result, digest, JOURNAL_MAC_SIZE); 861 } 862 863 return; 864 err: 865 memset(result, 0, JOURNAL_MAC_SIZE); 866 } 867 868 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr) 869 { 870 __u8 result[JOURNAL_MAC_SIZE]; 871 unsigned j; 872 873 if (!ic->journal_mac) 874 return; 875 876 section_mac(ic, section, result); 877 878 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 879 struct journal_sector *js = access_journal(ic, section, j); 880 881 if (likely(wr)) 882 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 883 else { 884 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) { 885 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 886 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0); 887 } 888 } 889 } 890 } 891 892 static void complete_journal_op(void *context) 893 { 894 struct journal_completion *comp = context; 895 BUG_ON(!atomic_read(&comp->in_flight)); 896 if (likely(atomic_dec_and_test(&comp->in_flight))) 897 complete(&comp->comp); 898 } 899 900 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 901 unsigned n_sections, struct journal_completion *comp) 902 { 903 struct async_submit_ctl submit; 904 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 905 unsigned pl_index, pl_offset, section_index; 906 struct page_list *source_pl, *target_pl; 907 908 if (likely(encrypt)) { 909 source_pl = ic->journal; 910 target_pl = ic->journal_io; 911 } else { 912 source_pl = ic->journal_io; 913 target_pl = ic->journal; 914 } 915 916 page_list_location(ic, section, 0, &pl_index, &pl_offset); 917 918 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 919 920 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 921 922 section_index = pl_index; 923 924 do { 925 size_t this_step; 926 struct page *src_pages[2]; 927 struct page *dst_page; 928 929 while (unlikely(pl_index == section_index)) { 930 unsigned dummy; 931 if (likely(encrypt)) 932 rw_section_mac(ic, section, true); 933 section++; 934 n_sections--; 935 if (!n_sections) 936 break; 937 page_list_location(ic, section, 0, §ion_index, &dummy); 938 } 939 940 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 941 dst_page = target_pl[pl_index].page; 942 src_pages[0] = source_pl[pl_index].page; 943 src_pages[1] = ic->journal_xor[pl_index].page; 944 945 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 946 947 pl_index++; 948 pl_offset = 0; 949 n_bytes -= this_step; 950 } while (n_bytes); 951 952 BUG_ON(n_sections); 953 954 async_tx_issue_pending_all(); 955 } 956 957 static void complete_journal_encrypt(struct crypto_async_request *req, int err) 958 { 959 struct journal_completion *comp = req->data; 960 if (unlikely(err)) { 961 if (likely(err == -EINPROGRESS)) { 962 complete(&comp->ic->crypto_backoff); 963 return; 964 } 965 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 966 } 967 complete_journal_op(comp); 968 } 969 970 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 971 { 972 int r; 973 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 974 complete_journal_encrypt, comp); 975 if (likely(encrypt)) 976 r = crypto_skcipher_encrypt(req); 977 else 978 r = crypto_skcipher_decrypt(req); 979 if (likely(!r)) 980 return false; 981 if (likely(r == -EINPROGRESS)) 982 return true; 983 if (likely(r == -EBUSY)) { 984 wait_for_completion(&comp->ic->crypto_backoff); 985 reinit_completion(&comp->ic->crypto_backoff); 986 return true; 987 } 988 dm_integrity_io_error(comp->ic, "encrypt", r); 989 return false; 990 } 991 992 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 993 unsigned n_sections, struct journal_completion *comp) 994 { 995 struct scatterlist **source_sg; 996 struct scatterlist **target_sg; 997 998 atomic_add(2, &comp->in_flight); 999 1000 if (likely(encrypt)) { 1001 source_sg = ic->journal_scatterlist; 1002 target_sg = ic->journal_io_scatterlist; 1003 } else { 1004 source_sg = ic->journal_io_scatterlist; 1005 target_sg = ic->journal_scatterlist; 1006 } 1007 1008 do { 1009 struct skcipher_request *req; 1010 unsigned ivsize; 1011 char *iv; 1012 1013 if (likely(encrypt)) 1014 rw_section_mac(ic, section, true); 1015 1016 req = ic->sk_requests[section]; 1017 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 1018 iv = req->iv; 1019 1020 memcpy(iv, iv + ivsize, ivsize); 1021 1022 req->src = source_sg[section]; 1023 req->dst = target_sg[section]; 1024 1025 if (unlikely(do_crypt(encrypt, req, comp))) 1026 atomic_inc(&comp->in_flight); 1027 1028 section++; 1029 n_sections--; 1030 } while (n_sections); 1031 1032 atomic_dec(&comp->in_flight); 1033 complete_journal_op(comp); 1034 } 1035 1036 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, 1037 unsigned n_sections, struct journal_completion *comp) 1038 { 1039 if (ic->journal_xor) 1040 return xor_journal(ic, encrypt, section, n_sections, comp); 1041 else 1042 return crypt_journal(ic, encrypt, section, n_sections, comp); 1043 } 1044 1045 static void complete_journal_io(unsigned long error, void *context) 1046 { 1047 struct journal_completion *comp = context; 1048 if (unlikely(error != 0)) 1049 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 1050 complete_journal_op(comp); 1051 } 1052 1053 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf, 1054 unsigned sector, unsigned n_sectors, 1055 struct journal_completion *comp) 1056 { 1057 struct dm_io_request io_req; 1058 struct dm_io_region io_loc; 1059 unsigned pl_index, pl_offset; 1060 int r; 1061 1062 if (unlikely(dm_integrity_failed(ic))) { 1063 if (comp) 1064 complete_journal_io(-1UL, comp); 1065 return; 1066 } 1067 1068 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1069 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1070 1071 io_req.bi_opf = opf; 1072 io_req.mem.type = DM_IO_PAGE_LIST; 1073 if (ic->journal_io) 1074 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 1075 else 1076 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1077 io_req.mem.offset = pl_offset; 1078 if (likely(comp != NULL)) { 1079 io_req.notify.fn = complete_journal_io; 1080 io_req.notify.context = comp; 1081 } else { 1082 io_req.notify.fn = NULL; 1083 } 1084 io_req.client = ic->io; 1085 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 1086 io_loc.sector = ic->start + SB_SECTORS + sector; 1087 io_loc.count = n_sectors; 1088 1089 r = dm_io(&io_req, 1, &io_loc, NULL); 1090 if (unlikely(r)) { 1091 dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ? 1092 "reading journal" : "writing journal", r); 1093 if (comp) { 1094 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1095 complete_journal_io(-1UL, comp); 1096 } 1097 } 1098 } 1099 1100 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf, 1101 unsigned section, unsigned n_sections, 1102 struct journal_completion *comp) 1103 { 1104 unsigned sector, n_sectors; 1105 1106 sector = section * ic->journal_section_sectors; 1107 n_sectors = n_sections * ic->journal_section_sectors; 1108 1109 rw_journal_sectors(ic, opf, sector, n_sectors, comp); 1110 } 1111 1112 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections) 1113 { 1114 struct journal_completion io_comp; 1115 struct journal_completion crypt_comp_1; 1116 struct journal_completion crypt_comp_2; 1117 unsigned i; 1118 1119 io_comp.ic = ic; 1120 init_completion(&io_comp.comp); 1121 1122 if (commit_start + commit_sections <= ic->journal_sections) { 1123 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 1124 if (ic->journal_io) { 1125 crypt_comp_1.ic = ic; 1126 init_completion(&crypt_comp_1.comp); 1127 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1128 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 1129 wait_for_completion_io(&crypt_comp_1.comp); 1130 } else { 1131 for (i = 0; i < commit_sections; i++) 1132 rw_section_mac(ic, commit_start + i, true); 1133 } 1134 rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start, 1135 commit_sections, &io_comp); 1136 } else { 1137 unsigned to_end; 1138 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 1139 to_end = ic->journal_sections - commit_start; 1140 if (ic->journal_io) { 1141 crypt_comp_1.ic = ic; 1142 init_completion(&crypt_comp_1.comp); 1143 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1144 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 1145 if (try_wait_for_completion(&crypt_comp_1.comp)) { 1146 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 1147 commit_start, to_end, &io_comp); 1148 reinit_completion(&crypt_comp_1.comp); 1149 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1150 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 1151 wait_for_completion_io(&crypt_comp_1.comp); 1152 } else { 1153 crypt_comp_2.ic = ic; 1154 init_completion(&crypt_comp_2.comp); 1155 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 1156 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 1157 wait_for_completion_io(&crypt_comp_1.comp); 1158 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp); 1159 wait_for_completion_io(&crypt_comp_2.comp); 1160 } 1161 } else { 1162 for (i = 0; i < to_end; i++) 1163 rw_section_mac(ic, commit_start + i, true); 1164 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp); 1165 for (i = 0; i < commit_sections - to_end; i++) 1166 rw_section_mac(ic, i, true); 1167 } 1168 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp); 1169 } 1170 1171 wait_for_completion_io(&io_comp.comp); 1172 } 1173 1174 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset, 1175 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data) 1176 { 1177 struct dm_io_request io_req; 1178 struct dm_io_region io_loc; 1179 int r; 1180 unsigned sector, pl_index, pl_offset; 1181 1182 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1)); 1183 1184 if (unlikely(dm_integrity_failed(ic))) { 1185 fn(-1UL, data); 1186 return; 1187 } 1188 1189 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 1190 1191 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1192 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1193 1194 io_req.bi_opf = REQ_OP_WRITE; 1195 io_req.mem.type = DM_IO_PAGE_LIST; 1196 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1197 io_req.mem.offset = pl_offset; 1198 io_req.notify.fn = fn; 1199 io_req.notify.context = data; 1200 io_req.client = ic->io; 1201 io_loc.bdev = ic->dev->bdev; 1202 io_loc.sector = target; 1203 io_loc.count = n_sectors; 1204 1205 r = dm_io(&io_req, 1, &io_loc, NULL); 1206 if (unlikely(r)) { 1207 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1208 fn(-1UL, data); 1209 } 1210 } 1211 1212 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2) 1213 { 1214 return range1->logical_sector < range2->logical_sector + range2->n_sectors && 1215 range1->logical_sector + range1->n_sectors > range2->logical_sector; 1216 } 1217 1218 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting) 1219 { 1220 struct rb_node **n = &ic->in_progress.rb_node; 1221 struct rb_node *parent; 1222 1223 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1)); 1224 1225 if (likely(check_waiting)) { 1226 struct dm_integrity_range *range; 1227 list_for_each_entry(range, &ic->wait_list, wait_entry) { 1228 if (unlikely(ranges_overlap(range, new_range))) 1229 return false; 1230 } 1231 } 1232 1233 parent = NULL; 1234 1235 while (*n) { 1236 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 1237 1238 parent = *n; 1239 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) { 1240 n = &range->node.rb_left; 1241 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) { 1242 n = &range->node.rb_right; 1243 } else { 1244 return false; 1245 } 1246 } 1247 1248 rb_link_node(&new_range->node, parent, n); 1249 rb_insert_color(&new_range->node, &ic->in_progress); 1250 1251 return true; 1252 } 1253 1254 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1255 { 1256 rb_erase(&range->node, &ic->in_progress); 1257 while (unlikely(!list_empty(&ic->wait_list))) { 1258 struct dm_integrity_range *last_range = 1259 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry); 1260 struct task_struct *last_range_task; 1261 last_range_task = last_range->task; 1262 list_del(&last_range->wait_entry); 1263 if (!add_new_range(ic, last_range, false)) { 1264 last_range->task = last_range_task; 1265 list_add(&last_range->wait_entry, &ic->wait_list); 1266 break; 1267 } 1268 last_range->waiting = false; 1269 wake_up_process(last_range_task); 1270 } 1271 } 1272 1273 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1274 { 1275 unsigned long flags; 1276 1277 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1278 remove_range_unlocked(ic, range); 1279 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1280 } 1281 1282 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1283 { 1284 new_range->waiting = true; 1285 list_add_tail(&new_range->wait_entry, &ic->wait_list); 1286 new_range->task = current; 1287 do { 1288 __set_current_state(TASK_UNINTERRUPTIBLE); 1289 spin_unlock_irq(&ic->endio_wait.lock); 1290 io_schedule(); 1291 spin_lock_irq(&ic->endio_wait.lock); 1292 } while (unlikely(new_range->waiting)); 1293 } 1294 1295 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1296 { 1297 if (unlikely(!add_new_range(ic, new_range, true))) 1298 wait_and_add_new_range(ic, new_range); 1299 } 1300 1301 static void init_journal_node(struct journal_node *node) 1302 { 1303 RB_CLEAR_NODE(&node->node); 1304 node->sector = (sector_t)-1; 1305 } 1306 1307 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 1308 { 1309 struct rb_node **link; 1310 struct rb_node *parent; 1311 1312 node->sector = sector; 1313 BUG_ON(!RB_EMPTY_NODE(&node->node)); 1314 1315 link = &ic->journal_tree_root.rb_node; 1316 parent = NULL; 1317 1318 while (*link) { 1319 struct journal_node *j; 1320 parent = *link; 1321 j = container_of(parent, struct journal_node, node); 1322 if (sector < j->sector) 1323 link = &j->node.rb_left; 1324 else 1325 link = &j->node.rb_right; 1326 } 1327 1328 rb_link_node(&node->node, parent, link); 1329 rb_insert_color(&node->node, &ic->journal_tree_root); 1330 } 1331 1332 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 1333 { 1334 BUG_ON(RB_EMPTY_NODE(&node->node)); 1335 rb_erase(&node->node, &ic->journal_tree_root); 1336 init_journal_node(node); 1337 } 1338 1339 #define NOT_FOUND (-1U) 1340 1341 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 1342 { 1343 struct rb_node *n = ic->journal_tree_root.rb_node; 1344 unsigned found = NOT_FOUND; 1345 *next_sector = (sector_t)-1; 1346 while (n) { 1347 struct journal_node *j = container_of(n, struct journal_node, node); 1348 if (sector == j->sector) { 1349 found = j - ic->journal_tree; 1350 } 1351 if (sector < j->sector) { 1352 *next_sector = j->sector; 1353 n = j->node.rb_left; 1354 } else { 1355 n = j->node.rb_right; 1356 } 1357 } 1358 1359 return found; 1360 } 1361 1362 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector) 1363 { 1364 struct journal_node *node, *next_node; 1365 struct rb_node *next; 1366 1367 if (unlikely(pos >= ic->journal_entries)) 1368 return false; 1369 node = &ic->journal_tree[pos]; 1370 if (unlikely(RB_EMPTY_NODE(&node->node))) 1371 return false; 1372 if (unlikely(node->sector != sector)) 1373 return false; 1374 1375 next = rb_next(&node->node); 1376 if (unlikely(!next)) 1377 return true; 1378 1379 next_node = container_of(next, struct journal_node, node); 1380 return next_node->sector != sector; 1381 } 1382 1383 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 1384 { 1385 struct rb_node *next; 1386 struct journal_node *next_node; 1387 unsigned next_section; 1388 1389 BUG_ON(RB_EMPTY_NODE(&node->node)); 1390 1391 next = rb_next(&node->node); 1392 if (unlikely(!next)) 1393 return false; 1394 1395 next_node = container_of(next, struct journal_node, node); 1396 1397 if (next_node->sector != node->sector) 1398 return false; 1399 1400 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries; 1401 if (next_section >= ic->committed_section && 1402 next_section < ic->committed_section + ic->n_committed_sections) 1403 return true; 1404 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1405 return true; 1406 1407 return false; 1408 } 1409 1410 #define TAG_READ 0 1411 #define TAG_WRITE 1 1412 #define TAG_CMP 2 1413 1414 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1415 unsigned *metadata_offset, unsigned total_size, int op) 1416 { 1417 #define MAY_BE_FILLER 1 1418 #define MAY_BE_HASH 2 1419 unsigned hash_offset = 0; 1420 unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1421 1422 do { 1423 unsigned char *data, *dp; 1424 struct dm_buffer *b; 1425 unsigned to_copy; 1426 int r; 1427 1428 r = dm_integrity_failed(ic); 1429 if (unlikely(r)) 1430 return r; 1431 1432 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1433 if (IS_ERR(data)) 1434 return PTR_ERR(data); 1435 1436 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1437 dp = data + *metadata_offset; 1438 if (op == TAG_READ) { 1439 memcpy(tag, dp, to_copy); 1440 } else if (op == TAG_WRITE) { 1441 if (memcmp(dp, tag, to_copy)) { 1442 memcpy(dp, tag, to_copy); 1443 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); 1444 } 1445 } else { 1446 /* e.g.: op == TAG_CMP */ 1447 1448 if (likely(is_power_of_2(ic->tag_size))) { 1449 if (unlikely(memcmp(dp, tag, to_copy))) 1450 if (unlikely(!ic->discard) || 1451 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) { 1452 goto thorough_test; 1453 } 1454 } else { 1455 unsigned i, ts; 1456 thorough_test: 1457 ts = total_size; 1458 1459 for (i = 0; i < to_copy; i++, ts--) { 1460 if (unlikely(dp[i] != tag[i])) 1461 may_be &= ~MAY_BE_HASH; 1462 if (likely(dp[i] != DISCARD_FILLER)) 1463 may_be &= ~MAY_BE_FILLER; 1464 hash_offset++; 1465 if (unlikely(hash_offset == ic->tag_size)) { 1466 if (unlikely(!may_be)) { 1467 dm_bufio_release(b); 1468 return ts; 1469 } 1470 hash_offset = 0; 1471 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); 1472 } 1473 } 1474 } 1475 } 1476 dm_bufio_release(b); 1477 1478 tag += to_copy; 1479 *metadata_offset += to_copy; 1480 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1481 (*metadata_block)++; 1482 *metadata_offset = 0; 1483 } 1484 1485 if (unlikely(!is_power_of_2(ic->tag_size))) { 1486 hash_offset = (hash_offset + to_copy) % ic->tag_size; 1487 } 1488 1489 total_size -= to_copy; 1490 } while (unlikely(total_size)); 1491 1492 return 0; 1493 #undef MAY_BE_FILLER 1494 #undef MAY_BE_HASH 1495 } 1496 1497 struct flush_request { 1498 struct dm_io_request io_req; 1499 struct dm_io_region io_reg; 1500 struct dm_integrity_c *ic; 1501 struct completion comp; 1502 }; 1503 1504 static void flush_notify(unsigned long error, void *fr_) 1505 { 1506 struct flush_request *fr = fr_; 1507 if (unlikely(error != 0)) 1508 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO); 1509 complete(&fr->comp); 1510 } 1511 1512 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data) 1513 { 1514 int r; 1515 1516 struct flush_request fr; 1517 1518 if (!ic->meta_dev) 1519 flush_data = false; 1520 if (flush_data) { 1521 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC, 1522 fr.io_req.mem.type = DM_IO_KMEM, 1523 fr.io_req.mem.ptr.addr = NULL, 1524 fr.io_req.notify.fn = flush_notify, 1525 fr.io_req.notify.context = &fr; 1526 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio), 1527 fr.io_reg.bdev = ic->dev->bdev, 1528 fr.io_reg.sector = 0, 1529 fr.io_reg.count = 0, 1530 fr.ic = ic; 1531 init_completion(&fr.comp); 1532 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL); 1533 BUG_ON(r); 1534 } 1535 1536 r = dm_bufio_write_dirty_buffers(ic->bufio); 1537 if (unlikely(r)) 1538 dm_integrity_io_error(ic, "writing tags", r); 1539 1540 if (flush_data) 1541 wait_for_completion(&fr.comp); 1542 } 1543 1544 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1545 { 1546 DECLARE_WAITQUEUE(wait, current); 1547 __add_wait_queue(&ic->endio_wait, &wait); 1548 __set_current_state(TASK_UNINTERRUPTIBLE); 1549 spin_unlock_irq(&ic->endio_wait.lock); 1550 io_schedule(); 1551 spin_lock_irq(&ic->endio_wait.lock); 1552 __remove_wait_queue(&ic->endio_wait, &wait); 1553 } 1554 1555 static void autocommit_fn(struct timer_list *t) 1556 { 1557 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer); 1558 1559 if (likely(!dm_integrity_failed(ic))) 1560 queue_work(ic->commit_wq, &ic->commit_work); 1561 } 1562 1563 static void schedule_autocommit(struct dm_integrity_c *ic) 1564 { 1565 if (!timer_pending(&ic->autocommit_timer)) 1566 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1567 } 1568 1569 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1570 { 1571 struct bio *bio; 1572 unsigned long flags; 1573 1574 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1575 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1576 bio_list_add(&ic->flush_bio_list, bio); 1577 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1578 1579 queue_work(ic->commit_wq, &ic->commit_work); 1580 } 1581 1582 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1583 { 1584 int r = dm_integrity_failed(ic); 1585 if (unlikely(r) && !bio->bi_status) 1586 bio->bi_status = errno_to_blk_status(r); 1587 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) { 1588 unsigned long flags; 1589 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1590 bio_list_add(&ic->synchronous_bios, bio); 1591 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 1592 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1593 return; 1594 } 1595 bio_endio(bio); 1596 } 1597 1598 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1599 { 1600 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1601 1602 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1603 submit_flush_bio(ic, dio); 1604 else 1605 do_endio(ic, bio); 1606 } 1607 1608 static void dec_in_flight(struct dm_integrity_io *dio) 1609 { 1610 if (atomic_dec_and_test(&dio->in_flight)) { 1611 struct dm_integrity_c *ic = dio->ic; 1612 struct bio *bio; 1613 1614 remove_range(ic, &dio->range); 1615 1616 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD)) 1617 schedule_autocommit(ic); 1618 1619 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1620 1621 if (unlikely(dio->bi_status) && !bio->bi_status) 1622 bio->bi_status = dio->bi_status; 1623 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1624 dio->range.logical_sector += dio->range.n_sectors; 1625 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1626 INIT_WORK(&dio->work, integrity_bio_wait); 1627 queue_work(ic->offload_wq, &dio->work); 1628 return; 1629 } 1630 do_endio_flush(ic, dio); 1631 } 1632 } 1633 1634 static void integrity_end_io(struct bio *bio) 1635 { 1636 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1637 1638 dm_bio_restore(&dio->bio_details, bio); 1639 if (bio->bi_integrity) 1640 bio->bi_opf |= REQ_INTEGRITY; 1641 1642 if (dio->completion) 1643 complete(dio->completion); 1644 1645 dec_in_flight(dio); 1646 } 1647 1648 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1649 const char *data, char *result) 1650 { 1651 __le64 sector_le = cpu_to_le64(sector); 1652 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1653 int r; 1654 unsigned digest_size; 1655 1656 req->tfm = ic->internal_hash; 1657 1658 r = crypto_shash_init(req); 1659 if (unlikely(r < 0)) { 1660 dm_integrity_io_error(ic, "crypto_shash_init", r); 1661 goto failed; 1662 } 1663 1664 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 1665 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE); 1666 if (unlikely(r < 0)) { 1667 dm_integrity_io_error(ic, "crypto_shash_update", r); 1668 goto failed; 1669 } 1670 } 1671 1672 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof sector_le); 1673 if (unlikely(r < 0)) { 1674 dm_integrity_io_error(ic, "crypto_shash_update", r); 1675 goto failed; 1676 } 1677 1678 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1679 if (unlikely(r < 0)) { 1680 dm_integrity_io_error(ic, "crypto_shash_update", r); 1681 goto failed; 1682 } 1683 1684 r = crypto_shash_final(req, result); 1685 if (unlikely(r < 0)) { 1686 dm_integrity_io_error(ic, "crypto_shash_final", r); 1687 goto failed; 1688 } 1689 1690 digest_size = crypto_shash_digestsize(ic->internal_hash); 1691 if (unlikely(digest_size < ic->tag_size)) 1692 memset(result + digest_size, 0, ic->tag_size - digest_size); 1693 1694 return; 1695 1696 failed: 1697 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1698 get_random_bytes(result, ic->tag_size); 1699 } 1700 1701 static void integrity_metadata(struct work_struct *w) 1702 { 1703 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1704 struct dm_integrity_c *ic = dio->ic; 1705 1706 int r; 1707 1708 if (ic->internal_hash) { 1709 struct bvec_iter iter; 1710 struct bio_vec bv; 1711 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 1712 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1713 char *checksums; 1714 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1715 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1716 sector_t sector; 1717 unsigned sectors_to_process; 1718 1719 if (unlikely(ic->mode == 'R')) 1720 goto skip_io; 1721 1722 if (likely(dio->op != REQ_OP_DISCARD)) 1723 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1724 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1725 else 1726 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1727 if (!checksums) { 1728 checksums = checksums_onstack; 1729 if (WARN_ON(extra_space && 1730 digest_size > sizeof(checksums_onstack))) { 1731 r = -EINVAL; 1732 goto error; 1733 } 1734 } 1735 1736 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1737 sector_t bi_sector = dio->bio_details.bi_iter.bi_sector; 1738 unsigned bi_size = dio->bio_details.bi_iter.bi_size; 1739 unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE; 1740 unsigned max_blocks = max_size / ic->tag_size; 1741 memset(checksums, DISCARD_FILLER, max_size); 1742 1743 while (bi_size) { 1744 unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1745 this_step_blocks = min(this_step_blocks, max_blocks); 1746 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1747 this_step_blocks * ic->tag_size, TAG_WRITE); 1748 if (unlikely(r)) { 1749 if (likely(checksums != checksums_onstack)) 1750 kfree(checksums); 1751 goto error; 1752 } 1753 1754 /*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) { 1755 printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size); 1756 printk("BUGG: this_step_blocks: %u\n", this_step_blocks); 1757 BUG(); 1758 }*/ 1759 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1760 bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block; 1761 } 1762 1763 if (likely(checksums != checksums_onstack)) 1764 kfree(checksums); 1765 goto skip_io; 1766 } 1767 1768 sector = dio->range.logical_sector; 1769 sectors_to_process = dio->range.n_sectors; 1770 1771 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) { 1772 unsigned pos; 1773 char *mem, *checksums_ptr; 1774 1775 again: 1776 mem = bvec_kmap_local(&bv); 1777 pos = 0; 1778 checksums_ptr = checksums; 1779 do { 1780 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1781 checksums_ptr += ic->tag_size; 1782 sectors_to_process -= ic->sectors_per_block; 1783 pos += ic->sectors_per_block << SECTOR_SHIFT; 1784 sector += ic->sectors_per_block; 1785 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack); 1786 kunmap_local(mem); 1787 1788 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1789 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE); 1790 if (unlikely(r)) { 1791 if (r > 0) { 1792 sector_t s; 1793 1794 s = sector - ((r + ic->tag_size - 1) / ic->tag_size); 1795 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx", 1796 bio->bi_bdev, s); 1797 r = -EILSEQ; 1798 atomic64_inc(&ic->number_of_mismatches); 1799 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum", 1800 bio, s, 0); 1801 } 1802 if (likely(checksums != checksums_onstack)) 1803 kfree(checksums); 1804 goto error; 1805 } 1806 1807 if (!sectors_to_process) 1808 break; 1809 1810 if (unlikely(pos < bv.bv_len)) { 1811 bv.bv_offset += pos; 1812 bv.bv_len -= pos; 1813 goto again; 1814 } 1815 } 1816 1817 if (likely(checksums != checksums_onstack)) 1818 kfree(checksums); 1819 } else { 1820 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity; 1821 1822 if (bip) { 1823 struct bio_vec biv; 1824 struct bvec_iter iter; 1825 unsigned data_to_process = dio->range.n_sectors; 1826 sector_to_block(ic, data_to_process); 1827 data_to_process *= ic->tag_size; 1828 1829 bip_for_each_vec(biv, bip, iter) { 1830 unsigned char *tag; 1831 unsigned this_len; 1832 1833 BUG_ON(PageHighMem(biv.bv_page)); 1834 tag = bvec_virt(&biv); 1835 this_len = min(biv.bv_len, data_to_process); 1836 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1837 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE); 1838 if (unlikely(r)) 1839 goto error; 1840 data_to_process -= this_len; 1841 if (!data_to_process) 1842 break; 1843 } 1844 } 1845 } 1846 skip_io: 1847 dec_in_flight(dio); 1848 return; 1849 error: 1850 dio->bi_status = errno_to_blk_status(r); 1851 dec_in_flight(dio); 1852 } 1853 1854 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1855 { 1856 struct dm_integrity_c *ic = ti->private; 1857 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1858 struct bio_integrity_payload *bip; 1859 1860 sector_t area, offset; 1861 1862 dio->ic = ic; 1863 dio->bi_status = 0; 1864 dio->op = bio_op(bio); 1865 1866 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1867 if (ti->max_io_len) { 1868 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector); 1869 unsigned log2_max_io_len = __fls(ti->max_io_len); 1870 sector_t start_boundary = sec >> log2_max_io_len; 1871 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len; 1872 if (start_boundary < end_boundary) { 1873 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1)); 1874 dm_accept_partial_bio(bio, len); 1875 } 1876 } 1877 } 1878 1879 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1880 submit_flush_bio(ic, dio); 1881 return DM_MAPIO_SUBMITTED; 1882 } 1883 1884 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1885 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA; 1886 if (unlikely(dio->fua)) { 1887 /* 1888 * Don't pass down the FUA flag because we have to flush 1889 * disk cache anyway. 1890 */ 1891 bio->bi_opf &= ~REQ_FUA; 1892 } 1893 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1894 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1895 dio->range.logical_sector, bio_sectors(bio), 1896 ic->provided_data_sectors); 1897 return DM_MAPIO_KILL; 1898 } 1899 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) { 1900 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1901 ic->sectors_per_block, 1902 dio->range.logical_sector, bio_sectors(bio)); 1903 return DM_MAPIO_KILL; 1904 } 1905 1906 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) { 1907 struct bvec_iter iter; 1908 struct bio_vec bv; 1909 bio_for_each_segment(bv, bio, iter) { 1910 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1911 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1912 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1913 return DM_MAPIO_KILL; 1914 } 1915 } 1916 } 1917 1918 bip = bio_integrity(bio); 1919 if (!ic->internal_hash) { 1920 if (bip) { 1921 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1922 if (ic->log2_tag_size >= 0) 1923 wanted_tag_size <<= ic->log2_tag_size; 1924 else 1925 wanted_tag_size *= ic->tag_size; 1926 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 1927 DMERR("Invalid integrity data size %u, expected %u", 1928 bip->bip_iter.bi_size, wanted_tag_size); 1929 return DM_MAPIO_KILL; 1930 } 1931 } 1932 } else { 1933 if (unlikely(bip != NULL)) { 1934 DMERR("Unexpected integrity data when using internal hash"); 1935 return DM_MAPIO_KILL; 1936 } 1937 } 1938 1939 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ)) 1940 return DM_MAPIO_KILL; 1941 1942 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1943 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 1944 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 1945 1946 dm_integrity_map_continue(dio, true); 1947 return DM_MAPIO_SUBMITTED; 1948 } 1949 1950 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 1951 unsigned journal_section, unsigned journal_entry) 1952 { 1953 struct dm_integrity_c *ic = dio->ic; 1954 sector_t logical_sector; 1955 unsigned n_sectors; 1956 1957 logical_sector = dio->range.logical_sector; 1958 n_sectors = dio->range.n_sectors; 1959 do { 1960 struct bio_vec bv = bio_iovec(bio); 1961 char *mem; 1962 1963 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 1964 bv.bv_len = n_sectors << SECTOR_SHIFT; 1965 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 1966 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 1967 retry_kmap: 1968 mem = kmap_local_page(bv.bv_page); 1969 if (likely(dio->op == REQ_OP_WRITE)) 1970 flush_dcache_page(bv.bv_page); 1971 1972 do { 1973 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 1974 1975 if (unlikely(dio->op == REQ_OP_READ)) { 1976 struct journal_sector *js; 1977 char *mem_ptr; 1978 unsigned s; 1979 1980 if (unlikely(journal_entry_is_inprogress(je))) { 1981 flush_dcache_page(bv.bv_page); 1982 kunmap_local(mem); 1983 1984 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 1985 goto retry_kmap; 1986 } 1987 smp_rmb(); 1988 BUG_ON(journal_entry_get_sector(je) != logical_sector); 1989 js = access_journal_data(ic, journal_section, journal_entry); 1990 mem_ptr = mem + bv.bv_offset; 1991 s = 0; 1992 do { 1993 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 1994 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 1995 js++; 1996 mem_ptr += 1 << SECTOR_SHIFT; 1997 } while (++s < ic->sectors_per_block); 1998 #ifdef INTERNAL_VERIFY 1999 if (ic->internal_hash) { 2000 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2001 2002 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 2003 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 2004 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx", 2005 logical_sector); 2006 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum", 2007 bio, logical_sector, 0); 2008 } 2009 } 2010 #endif 2011 } 2012 2013 if (!ic->internal_hash) { 2014 struct bio_integrity_payload *bip = bio_integrity(bio); 2015 unsigned tag_todo = ic->tag_size; 2016 char *tag_ptr = journal_entry_tag(ic, je); 2017 2018 if (bip) do { 2019 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 2020 unsigned tag_now = min(biv.bv_len, tag_todo); 2021 char *tag_addr; 2022 BUG_ON(PageHighMem(biv.bv_page)); 2023 tag_addr = bvec_virt(&biv); 2024 if (likely(dio->op == REQ_OP_WRITE)) 2025 memcpy(tag_ptr, tag_addr, tag_now); 2026 else 2027 memcpy(tag_addr, tag_ptr, tag_now); 2028 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 2029 tag_ptr += tag_now; 2030 tag_todo -= tag_now; 2031 } while (unlikely(tag_todo)); else { 2032 if (likely(dio->op == REQ_OP_WRITE)) 2033 memset(tag_ptr, 0, tag_todo); 2034 } 2035 } 2036 2037 if (likely(dio->op == REQ_OP_WRITE)) { 2038 struct journal_sector *js; 2039 unsigned s; 2040 2041 js = access_journal_data(ic, journal_section, journal_entry); 2042 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 2043 2044 s = 0; 2045 do { 2046 je->last_bytes[s] = js[s].commit_id; 2047 } while (++s < ic->sectors_per_block); 2048 2049 if (ic->internal_hash) { 2050 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); 2051 if (unlikely(digest_size > ic->tag_size)) { 2052 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 2053 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 2054 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 2055 } else 2056 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 2057 } 2058 2059 journal_entry_set_sector(je, logical_sector); 2060 } 2061 logical_sector += ic->sectors_per_block; 2062 2063 journal_entry++; 2064 if (unlikely(journal_entry == ic->journal_section_entries)) { 2065 journal_entry = 0; 2066 journal_section++; 2067 wraparound_section(ic, &journal_section); 2068 } 2069 2070 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 2071 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 2072 2073 if (unlikely(dio->op == REQ_OP_READ)) 2074 flush_dcache_page(bv.bv_page); 2075 kunmap_local(mem); 2076 } while (n_sectors); 2077 2078 if (likely(dio->op == REQ_OP_WRITE)) { 2079 smp_mb(); 2080 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 2081 wake_up(&ic->copy_to_journal_wait); 2082 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) { 2083 queue_work(ic->commit_wq, &ic->commit_work); 2084 } else { 2085 schedule_autocommit(ic); 2086 } 2087 } else { 2088 remove_range(ic, &dio->range); 2089 } 2090 2091 if (unlikely(bio->bi_iter.bi_size)) { 2092 sector_t area, offset; 2093 2094 dio->range.logical_sector = logical_sector; 2095 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 2096 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 2097 return true; 2098 } 2099 2100 return false; 2101 } 2102 2103 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 2104 { 2105 struct dm_integrity_c *ic = dio->ic; 2106 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 2107 unsigned journal_section, journal_entry; 2108 unsigned journal_read_pos; 2109 struct completion read_comp; 2110 bool discard_retried = false; 2111 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ; 2112 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D') 2113 need_sync_io = true; 2114 2115 if (need_sync_io && from_map) { 2116 INIT_WORK(&dio->work, integrity_bio_wait); 2117 queue_work(ic->offload_wq, &dio->work); 2118 return; 2119 } 2120 2121 lock_retry: 2122 spin_lock_irq(&ic->endio_wait.lock); 2123 retry: 2124 if (unlikely(dm_integrity_failed(ic))) { 2125 spin_unlock_irq(&ic->endio_wait.lock); 2126 do_endio(ic, bio); 2127 return; 2128 } 2129 dio->range.n_sectors = bio_sectors(bio); 2130 journal_read_pos = NOT_FOUND; 2131 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) { 2132 if (dio->op == REQ_OP_WRITE) { 2133 unsigned next_entry, i, pos; 2134 unsigned ws, we, range_sectors; 2135 2136 dio->range.n_sectors = min(dio->range.n_sectors, 2137 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block); 2138 if (unlikely(!dio->range.n_sectors)) { 2139 if (from_map) 2140 goto offload_to_thread; 2141 sleep_on_endio_wait(ic); 2142 goto retry; 2143 } 2144 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 2145 ic->free_sectors -= range_sectors; 2146 journal_section = ic->free_section; 2147 journal_entry = ic->free_section_entry; 2148 2149 next_entry = ic->free_section_entry + range_sectors; 2150 ic->free_section_entry = next_entry % ic->journal_section_entries; 2151 ic->free_section += next_entry / ic->journal_section_entries; 2152 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 2153 wraparound_section(ic, &ic->free_section); 2154 2155 pos = journal_section * ic->journal_section_entries + journal_entry; 2156 ws = journal_section; 2157 we = journal_entry; 2158 i = 0; 2159 do { 2160 struct journal_entry *je; 2161 2162 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 2163 pos++; 2164 if (unlikely(pos >= ic->journal_entries)) 2165 pos = 0; 2166 2167 je = access_journal_entry(ic, ws, we); 2168 BUG_ON(!journal_entry_is_unused(je)); 2169 journal_entry_set_inprogress(je); 2170 we++; 2171 if (unlikely(we == ic->journal_section_entries)) { 2172 we = 0; 2173 ws++; 2174 wraparound_section(ic, &ws); 2175 } 2176 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 2177 2178 spin_unlock_irq(&ic->endio_wait.lock); 2179 goto journal_read_write; 2180 } else { 2181 sector_t next_sector; 2182 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2183 if (likely(journal_read_pos == NOT_FOUND)) { 2184 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 2185 dio->range.n_sectors = next_sector - dio->range.logical_sector; 2186 } else { 2187 unsigned i; 2188 unsigned jp = journal_read_pos + 1; 2189 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 2190 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 2191 break; 2192 } 2193 dio->range.n_sectors = i; 2194 } 2195 } 2196 } 2197 if (unlikely(!add_new_range(ic, &dio->range, true))) { 2198 /* 2199 * We must not sleep in the request routine because it could 2200 * stall bios on current->bio_list. 2201 * So, we offload the bio to a workqueue if we have to sleep. 2202 */ 2203 if (from_map) { 2204 offload_to_thread: 2205 spin_unlock_irq(&ic->endio_wait.lock); 2206 INIT_WORK(&dio->work, integrity_bio_wait); 2207 queue_work(ic->wait_wq, &dio->work); 2208 return; 2209 } 2210 if (journal_read_pos != NOT_FOUND) 2211 dio->range.n_sectors = ic->sectors_per_block; 2212 wait_and_add_new_range(ic, &dio->range); 2213 /* 2214 * wait_and_add_new_range drops the spinlock, so the journal 2215 * may have been changed arbitrarily. We need to recheck. 2216 * To simplify the code, we restrict I/O size to just one block. 2217 */ 2218 if (journal_read_pos != NOT_FOUND) { 2219 sector_t next_sector; 2220 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2221 if (unlikely(new_pos != journal_read_pos)) { 2222 remove_range_unlocked(ic, &dio->range); 2223 goto retry; 2224 } 2225 } 2226 } 2227 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) { 2228 sector_t next_sector; 2229 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2230 if (unlikely(new_pos != NOT_FOUND) || 2231 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) { 2232 remove_range_unlocked(ic, &dio->range); 2233 spin_unlock_irq(&ic->endio_wait.lock); 2234 queue_work(ic->commit_wq, &ic->commit_work); 2235 flush_workqueue(ic->commit_wq); 2236 queue_work(ic->writer_wq, &ic->writer_work); 2237 flush_workqueue(ic->writer_wq); 2238 discard_retried = true; 2239 goto lock_retry; 2240 } 2241 } 2242 spin_unlock_irq(&ic->endio_wait.lock); 2243 2244 if (unlikely(journal_read_pos != NOT_FOUND)) { 2245 journal_section = journal_read_pos / ic->journal_section_entries; 2246 journal_entry = journal_read_pos % ic->journal_section_entries; 2247 goto journal_read_write; 2248 } 2249 2250 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) { 2251 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2252 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2253 struct bitmap_block_status *bbs; 2254 2255 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector); 2256 spin_lock(&bbs->bio_queue_lock); 2257 bio_list_add(&bbs->bio_queue, bio); 2258 spin_unlock(&bbs->bio_queue_lock); 2259 queue_work(ic->writer_wq, &bbs->work); 2260 return; 2261 } 2262 } 2263 2264 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 2265 2266 if (need_sync_io) { 2267 init_completion(&read_comp); 2268 dio->completion = &read_comp; 2269 } else 2270 dio->completion = NULL; 2271 2272 dm_bio_record(&dio->bio_details, bio); 2273 bio_set_dev(bio, ic->dev->bdev); 2274 bio->bi_integrity = NULL; 2275 bio->bi_opf &= ~REQ_INTEGRITY; 2276 bio->bi_end_io = integrity_end_io; 2277 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 2278 2279 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) { 2280 integrity_metadata(&dio->work); 2281 dm_integrity_flush_buffers(ic, false); 2282 2283 dio->in_flight = (atomic_t)ATOMIC_INIT(1); 2284 dio->completion = NULL; 2285 2286 submit_bio_noacct(bio); 2287 2288 return; 2289 } 2290 2291 submit_bio_noacct(bio); 2292 2293 if (need_sync_io) { 2294 wait_for_completion_io(&read_comp); 2295 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 2296 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector)) 2297 goto skip_check; 2298 if (ic->mode == 'B') { 2299 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector, 2300 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2301 goto skip_check; 2302 } 2303 2304 if (likely(!bio->bi_status)) 2305 integrity_metadata(&dio->work); 2306 else 2307 skip_check: 2308 dec_in_flight(dio); 2309 2310 } else { 2311 INIT_WORK(&dio->work, integrity_metadata); 2312 queue_work(ic->metadata_wq, &dio->work); 2313 } 2314 2315 return; 2316 2317 journal_read_write: 2318 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 2319 goto lock_retry; 2320 2321 do_endio_flush(ic, dio); 2322 } 2323 2324 2325 static void integrity_bio_wait(struct work_struct *w) 2326 { 2327 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 2328 2329 dm_integrity_map_continue(dio, false); 2330 } 2331 2332 static void pad_uncommitted(struct dm_integrity_c *ic) 2333 { 2334 if (ic->free_section_entry) { 2335 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 2336 ic->free_section_entry = 0; 2337 ic->free_section++; 2338 wraparound_section(ic, &ic->free_section); 2339 ic->n_uncommitted_sections++; 2340 } 2341 if (WARN_ON(ic->journal_sections * ic->journal_section_entries != 2342 (ic->n_uncommitted_sections + ic->n_committed_sections) * 2343 ic->journal_section_entries + ic->free_sectors)) { 2344 DMCRIT("journal_sections %u, journal_section_entries %u, " 2345 "n_uncommitted_sections %u, n_committed_sections %u, " 2346 "journal_section_entries %u, free_sectors %u", 2347 ic->journal_sections, ic->journal_section_entries, 2348 ic->n_uncommitted_sections, ic->n_committed_sections, 2349 ic->journal_section_entries, ic->free_sectors); 2350 } 2351 } 2352 2353 static void integrity_commit(struct work_struct *w) 2354 { 2355 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 2356 unsigned commit_start, commit_sections; 2357 unsigned i, j, n; 2358 struct bio *flushes; 2359 2360 del_timer(&ic->autocommit_timer); 2361 2362 spin_lock_irq(&ic->endio_wait.lock); 2363 flushes = bio_list_get(&ic->flush_bio_list); 2364 if (unlikely(ic->mode != 'J')) { 2365 spin_unlock_irq(&ic->endio_wait.lock); 2366 dm_integrity_flush_buffers(ic, true); 2367 goto release_flush_bios; 2368 } 2369 2370 pad_uncommitted(ic); 2371 commit_start = ic->uncommitted_section; 2372 commit_sections = ic->n_uncommitted_sections; 2373 spin_unlock_irq(&ic->endio_wait.lock); 2374 2375 if (!commit_sections) 2376 goto release_flush_bios; 2377 2378 i = commit_start; 2379 for (n = 0; n < commit_sections; n++) { 2380 for (j = 0; j < ic->journal_section_entries; j++) { 2381 struct journal_entry *je; 2382 je = access_journal_entry(ic, i, j); 2383 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2384 } 2385 for (j = 0; j < ic->journal_section_sectors; j++) { 2386 struct journal_sector *js; 2387 js = access_journal(ic, i, j); 2388 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 2389 } 2390 i++; 2391 if (unlikely(i >= ic->journal_sections)) 2392 ic->commit_seq = next_commit_seq(ic->commit_seq); 2393 wraparound_section(ic, &i); 2394 } 2395 smp_rmb(); 2396 2397 write_journal(ic, commit_start, commit_sections); 2398 2399 spin_lock_irq(&ic->endio_wait.lock); 2400 ic->uncommitted_section += commit_sections; 2401 wraparound_section(ic, &ic->uncommitted_section); 2402 ic->n_uncommitted_sections -= commit_sections; 2403 ic->n_committed_sections += commit_sections; 2404 spin_unlock_irq(&ic->endio_wait.lock); 2405 2406 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2407 queue_work(ic->writer_wq, &ic->writer_work); 2408 2409 release_flush_bios: 2410 while (flushes) { 2411 struct bio *next = flushes->bi_next; 2412 flushes->bi_next = NULL; 2413 do_endio(ic, flushes); 2414 flushes = next; 2415 } 2416 } 2417 2418 static void complete_copy_from_journal(unsigned long error, void *context) 2419 { 2420 struct journal_io *io = context; 2421 struct journal_completion *comp = io->comp; 2422 struct dm_integrity_c *ic = comp->ic; 2423 remove_range(ic, &io->range); 2424 mempool_free(io, &ic->journal_io_mempool); 2425 if (unlikely(error != 0)) 2426 dm_integrity_io_error(ic, "copying from journal", -EIO); 2427 complete_journal_op(comp); 2428 } 2429 2430 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 2431 struct journal_entry *je) 2432 { 2433 unsigned s = 0; 2434 do { 2435 js->commit_id = je->last_bytes[s]; 2436 js++; 2437 } while (++s < ic->sectors_per_block); 2438 } 2439 2440 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start, 2441 unsigned write_sections, bool from_replay) 2442 { 2443 unsigned i, j, n; 2444 struct journal_completion comp; 2445 struct blk_plug plug; 2446 2447 blk_start_plug(&plug); 2448 2449 comp.ic = ic; 2450 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2451 init_completion(&comp.comp); 2452 2453 i = write_start; 2454 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 2455 #ifndef INTERNAL_VERIFY 2456 if (unlikely(from_replay)) 2457 #endif 2458 rw_section_mac(ic, i, false); 2459 for (j = 0; j < ic->journal_section_entries; j++) { 2460 struct journal_entry *je = access_journal_entry(ic, i, j); 2461 sector_t sec, area, offset; 2462 unsigned k, l, next_loop; 2463 sector_t metadata_block; 2464 unsigned metadata_offset; 2465 struct journal_io *io; 2466 2467 if (journal_entry_is_unused(je)) 2468 continue; 2469 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 2470 sec = journal_entry_get_sector(je); 2471 if (unlikely(from_replay)) { 2472 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) { 2473 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 2474 sec &= ~(sector_t)(ic->sectors_per_block - 1); 2475 } 2476 if (unlikely(sec >= ic->provided_data_sectors)) { 2477 journal_entry_set_unused(je); 2478 continue; 2479 } 2480 } 2481 get_area_and_offset(ic, sec, &area, &offset); 2482 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 2483 for (k = j + 1; k < ic->journal_section_entries; k++) { 2484 struct journal_entry *je2 = access_journal_entry(ic, i, k); 2485 sector_t sec2, area2, offset2; 2486 if (journal_entry_is_unused(je2)) 2487 break; 2488 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 2489 sec2 = journal_entry_get_sector(je2); 2490 if (unlikely(sec2 >= ic->provided_data_sectors)) 2491 break; 2492 get_area_and_offset(ic, sec2, &area2, &offset2); 2493 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 2494 break; 2495 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 2496 } 2497 next_loop = k - 1; 2498 2499 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); 2500 io->comp = ∁ 2501 io->range.logical_sector = sec; 2502 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 2503 2504 spin_lock_irq(&ic->endio_wait.lock); 2505 add_new_range_and_wait(ic, &io->range); 2506 2507 if (likely(!from_replay)) { 2508 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 2509 2510 /* don't write if there is newer committed sector */ 2511 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 2512 struct journal_entry *je2 = access_journal_entry(ic, i, j); 2513 2514 journal_entry_set_unused(je2); 2515 remove_journal_node(ic, §ion_node[j]); 2516 j++; 2517 sec += ic->sectors_per_block; 2518 offset += ic->sectors_per_block; 2519 } 2520 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 2521 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 2522 2523 journal_entry_set_unused(je2); 2524 remove_journal_node(ic, §ion_node[k - 1]); 2525 k--; 2526 } 2527 if (j == k) { 2528 remove_range_unlocked(ic, &io->range); 2529 spin_unlock_irq(&ic->endio_wait.lock); 2530 mempool_free(io, &ic->journal_io_mempool); 2531 goto skip_io; 2532 } 2533 for (l = j; l < k; l++) { 2534 remove_journal_node(ic, §ion_node[l]); 2535 } 2536 } 2537 spin_unlock_irq(&ic->endio_wait.lock); 2538 2539 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2540 for (l = j; l < k; l++) { 2541 int r; 2542 struct journal_entry *je2 = access_journal_entry(ic, i, l); 2543 2544 if ( 2545 #ifndef INTERNAL_VERIFY 2546 unlikely(from_replay) && 2547 #endif 2548 ic->internal_hash) { 2549 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2550 2551 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 2552 (char *)access_journal_data(ic, i, l), test_tag); 2553 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) { 2554 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 2555 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0); 2556 } 2557 } 2558 2559 journal_entry_set_unused(je2); 2560 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 2561 ic->tag_size, TAG_WRITE); 2562 if (unlikely(r)) { 2563 dm_integrity_io_error(ic, "reading tags", r); 2564 } 2565 } 2566 2567 atomic_inc(&comp.in_flight); 2568 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 2569 (k - j) << ic->sb->log2_sectors_per_block, 2570 get_data_sector(ic, area, offset), 2571 complete_copy_from_journal, io); 2572 skip_io: 2573 j = next_loop; 2574 } 2575 } 2576 2577 dm_bufio_write_dirty_buffers_async(ic->bufio); 2578 2579 blk_finish_plug(&plug); 2580 2581 complete_journal_op(&comp); 2582 wait_for_completion_io(&comp.comp); 2583 2584 dm_integrity_flush_buffers(ic, true); 2585 } 2586 2587 static void integrity_writer(struct work_struct *w) 2588 { 2589 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 2590 unsigned write_start, write_sections; 2591 2592 unsigned prev_free_sectors; 2593 2594 /* the following test is not needed, but it tests the replay code */ 2595 if (unlikely(dm_post_suspending(ic->ti)) && !ic->meta_dev) 2596 return; 2597 2598 spin_lock_irq(&ic->endio_wait.lock); 2599 write_start = ic->committed_section; 2600 write_sections = ic->n_committed_sections; 2601 spin_unlock_irq(&ic->endio_wait.lock); 2602 2603 if (!write_sections) 2604 return; 2605 2606 do_journal_write(ic, write_start, write_sections, false); 2607 2608 spin_lock_irq(&ic->endio_wait.lock); 2609 2610 ic->committed_section += write_sections; 2611 wraparound_section(ic, &ic->committed_section); 2612 ic->n_committed_sections -= write_sections; 2613 2614 prev_free_sectors = ic->free_sectors; 2615 ic->free_sectors += write_sections * ic->journal_section_entries; 2616 if (unlikely(!prev_free_sectors)) 2617 wake_up_locked(&ic->endio_wait); 2618 2619 spin_unlock_irq(&ic->endio_wait.lock); 2620 } 2621 2622 static void recalc_write_super(struct dm_integrity_c *ic) 2623 { 2624 int r; 2625 2626 dm_integrity_flush_buffers(ic, false); 2627 if (dm_integrity_failed(ic)) 2628 return; 2629 2630 r = sync_rw_sb(ic, REQ_OP_WRITE); 2631 if (unlikely(r)) 2632 dm_integrity_io_error(ic, "writing superblock", r); 2633 } 2634 2635 static void integrity_recalc(struct work_struct *w) 2636 { 2637 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 2638 struct dm_integrity_range range; 2639 struct dm_io_request io_req; 2640 struct dm_io_region io_loc; 2641 sector_t area, offset; 2642 sector_t metadata_block; 2643 unsigned metadata_offset; 2644 sector_t logical_sector, n_sectors; 2645 __u8 *t; 2646 unsigned i; 2647 int r; 2648 unsigned super_counter = 0; 2649 2650 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector)); 2651 2652 spin_lock_irq(&ic->endio_wait.lock); 2653 2654 next_chunk: 2655 2656 if (unlikely(dm_post_suspending(ic->ti))) 2657 goto unlock_ret; 2658 2659 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 2660 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) { 2661 if (ic->mode == 'B') { 2662 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 2663 DEBUG_print("queue_delayed_work: bitmap_flush_work\n"); 2664 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 2665 } 2666 goto unlock_ret; 2667 } 2668 2669 get_area_and_offset(ic, range.logical_sector, &area, &offset); 2670 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector); 2671 if (!ic->meta_dev) 2672 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset); 2673 2674 add_new_range_and_wait(ic, &range); 2675 spin_unlock_irq(&ic->endio_wait.lock); 2676 logical_sector = range.logical_sector; 2677 n_sectors = range.n_sectors; 2678 2679 if (ic->mode == 'B') { 2680 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) { 2681 goto advance_and_next; 2682 } 2683 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, 2684 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2685 logical_sector += ic->sectors_per_block; 2686 n_sectors -= ic->sectors_per_block; 2687 cond_resched(); 2688 } 2689 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block, 2690 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 2691 n_sectors -= ic->sectors_per_block; 2692 cond_resched(); 2693 } 2694 get_area_and_offset(ic, logical_sector, &area, &offset); 2695 } 2696 2697 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors); 2698 2699 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 2700 recalc_write_super(ic); 2701 if (ic->mode == 'B') { 2702 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2703 } 2704 super_counter = 0; 2705 } 2706 2707 if (unlikely(dm_integrity_failed(ic))) 2708 goto err; 2709 2710 io_req.bi_opf = REQ_OP_READ; 2711 io_req.mem.type = DM_IO_VMA; 2712 io_req.mem.ptr.addr = ic->recalc_buffer; 2713 io_req.notify.fn = NULL; 2714 io_req.client = ic->io; 2715 io_loc.bdev = ic->dev->bdev; 2716 io_loc.sector = get_data_sector(ic, area, offset); 2717 io_loc.count = n_sectors; 2718 2719 r = dm_io(&io_req, 1, &io_loc, NULL); 2720 if (unlikely(r)) { 2721 dm_integrity_io_error(ic, "reading data", r); 2722 goto err; 2723 } 2724 2725 t = ic->recalc_tags; 2726 for (i = 0; i < n_sectors; i += ic->sectors_per_block) { 2727 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t); 2728 t += ic->tag_size; 2729 } 2730 2731 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2732 2733 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE); 2734 if (unlikely(r)) { 2735 dm_integrity_io_error(ic, "writing tags", r); 2736 goto err; 2737 } 2738 2739 if (ic->mode == 'B') { 2740 sector_t start, end; 2741 start = (range.logical_sector >> 2742 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 2743 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2744 end = ((range.logical_sector + range.n_sectors) >> 2745 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 2746 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2747 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR); 2748 } 2749 2750 advance_and_next: 2751 cond_resched(); 2752 2753 spin_lock_irq(&ic->endio_wait.lock); 2754 remove_range_unlocked(ic, &range); 2755 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 2756 goto next_chunk; 2757 2758 err: 2759 remove_range(ic, &range); 2760 return; 2761 2762 unlock_ret: 2763 spin_unlock_irq(&ic->endio_wait.lock); 2764 2765 recalc_write_super(ic); 2766 } 2767 2768 static void bitmap_block_work(struct work_struct *w) 2769 { 2770 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work); 2771 struct dm_integrity_c *ic = bbs->ic; 2772 struct bio *bio; 2773 struct bio_list bio_queue; 2774 struct bio_list waiting; 2775 2776 bio_list_init(&waiting); 2777 2778 spin_lock(&bbs->bio_queue_lock); 2779 bio_queue = bbs->bio_queue; 2780 bio_list_init(&bbs->bio_queue); 2781 spin_unlock(&bbs->bio_queue_lock); 2782 2783 while ((bio = bio_list_pop(&bio_queue))) { 2784 struct dm_integrity_io *dio; 2785 2786 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2787 2788 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2789 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2790 remove_range(ic, &dio->range); 2791 INIT_WORK(&dio->work, integrity_bio_wait); 2792 queue_work(ic->offload_wq, &dio->work); 2793 } else { 2794 block_bitmap_op(ic, ic->journal, dio->range.logical_sector, 2795 dio->range.n_sectors, BITMAP_OP_SET); 2796 bio_list_add(&waiting, bio); 2797 } 2798 } 2799 2800 if (bio_list_empty(&waiting)) 2801 return; 2802 2803 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 2804 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), 2805 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL); 2806 2807 while ((bio = bio_list_pop(&waiting))) { 2808 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2809 2810 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2811 dio->range.n_sectors, BITMAP_OP_SET); 2812 2813 remove_range(ic, &dio->range); 2814 INIT_WORK(&dio->work, integrity_bio_wait); 2815 queue_work(ic->offload_wq, &dio->work); 2816 } 2817 2818 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 2819 } 2820 2821 static void bitmap_flush_work(struct work_struct *work) 2822 { 2823 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work); 2824 struct dm_integrity_range range; 2825 unsigned long limit; 2826 struct bio *bio; 2827 2828 dm_integrity_flush_buffers(ic, false); 2829 2830 range.logical_sector = 0; 2831 range.n_sectors = ic->provided_data_sectors; 2832 2833 spin_lock_irq(&ic->endio_wait.lock); 2834 add_new_range_and_wait(ic, &range); 2835 spin_unlock_irq(&ic->endio_wait.lock); 2836 2837 dm_integrity_flush_buffers(ic, true); 2838 2839 limit = ic->provided_data_sectors; 2840 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 2841 limit = le64_to_cpu(ic->sb->recalc_sector) 2842 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit) 2843 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 2844 } 2845 /*DEBUG_print("zeroing journal\n");*/ 2846 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR); 2847 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR); 2848 2849 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 2850 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 2851 2852 spin_lock_irq(&ic->endio_wait.lock); 2853 remove_range_unlocked(ic, &range); 2854 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) { 2855 bio_endio(bio); 2856 spin_unlock_irq(&ic->endio_wait.lock); 2857 spin_lock_irq(&ic->endio_wait.lock); 2858 } 2859 spin_unlock_irq(&ic->endio_wait.lock); 2860 } 2861 2862 2863 static void init_journal(struct dm_integrity_c *ic, unsigned start_section, 2864 unsigned n_sections, unsigned char commit_seq) 2865 { 2866 unsigned i, j, n; 2867 2868 if (!n_sections) 2869 return; 2870 2871 for (n = 0; n < n_sections; n++) { 2872 i = start_section + n; 2873 wraparound_section(ic, &i); 2874 for (j = 0; j < ic->journal_section_sectors; j++) { 2875 struct journal_sector *js = access_journal(ic, i, j); 2876 BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA); 2877 memset(&js->sectors, 0, sizeof(js->sectors)); 2878 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 2879 } 2880 for (j = 0; j < ic->journal_section_entries; j++) { 2881 struct journal_entry *je = access_journal_entry(ic, i, j); 2882 journal_entry_set_unused(je); 2883 } 2884 } 2885 2886 write_journal(ic, start_section, n_sections); 2887 } 2888 2889 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id) 2890 { 2891 unsigned char k; 2892 for (k = 0; k < N_COMMIT_IDS; k++) { 2893 if (dm_integrity_commit_id(ic, i, j, k) == id) 2894 return k; 2895 } 2896 dm_integrity_io_error(ic, "journal commit id", -EIO); 2897 return -EIO; 2898 } 2899 2900 static void replay_journal(struct dm_integrity_c *ic) 2901 { 2902 unsigned i, j; 2903 bool used_commit_ids[N_COMMIT_IDS]; 2904 unsigned max_commit_id_sections[N_COMMIT_IDS]; 2905 unsigned write_start, write_sections; 2906 unsigned continue_section; 2907 bool journal_empty; 2908 unsigned char unused, last_used, want_commit_seq; 2909 2910 if (ic->mode == 'R') 2911 return; 2912 2913 if (ic->journal_uptodate) 2914 return; 2915 2916 last_used = 0; 2917 write_start = 0; 2918 2919 if (!ic->just_formatted) { 2920 DEBUG_print("reading journal\n"); 2921 rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL); 2922 if (ic->journal_io) 2923 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 2924 if (ic->journal_io) { 2925 struct journal_completion crypt_comp; 2926 crypt_comp.ic = ic; 2927 init_completion(&crypt_comp.comp); 2928 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 2929 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 2930 wait_for_completion(&crypt_comp.comp); 2931 } 2932 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 2933 } 2934 2935 if (dm_integrity_failed(ic)) 2936 goto clear_journal; 2937 2938 journal_empty = true; 2939 memset(used_commit_ids, 0, sizeof used_commit_ids); 2940 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections); 2941 for (i = 0; i < ic->journal_sections; i++) { 2942 for (j = 0; j < ic->journal_section_sectors; j++) { 2943 int k; 2944 struct journal_sector *js = access_journal(ic, i, j); 2945 k = find_commit_seq(ic, i, j, js->commit_id); 2946 if (k < 0) 2947 goto clear_journal; 2948 used_commit_ids[k] = true; 2949 max_commit_id_sections[k] = i; 2950 } 2951 if (journal_empty) { 2952 for (j = 0; j < ic->journal_section_entries; j++) { 2953 struct journal_entry *je = access_journal_entry(ic, i, j); 2954 if (!journal_entry_is_unused(je)) { 2955 journal_empty = false; 2956 break; 2957 } 2958 } 2959 } 2960 } 2961 2962 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 2963 unused = N_COMMIT_IDS - 1; 2964 while (unused && !used_commit_ids[unused - 1]) 2965 unused--; 2966 } else { 2967 for (unused = 0; unused < N_COMMIT_IDS; unused++) 2968 if (!used_commit_ids[unused]) 2969 break; 2970 if (unused == N_COMMIT_IDS) { 2971 dm_integrity_io_error(ic, "journal commit ids", -EIO); 2972 goto clear_journal; 2973 } 2974 } 2975 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 2976 unused, used_commit_ids[0], used_commit_ids[1], 2977 used_commit_ids[2], used_commit_ids[3]); 2978 2979 last_used = prev_commit_seq(unused); 2980 want_commit_seq = prev_commit_seq(last_used); 2981 2982 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 2983 journal_empty = true; 2984 2985 write_start = max_commit_id_sections[last_used] + 1; 2986 if (unlikely(write_start >= ic->journal_sections)) 2987 want_commit_seq = next_commit_seq(want_commit_seq); 2988 wraparound_section(ic, &write_start); 2989 2990 i = write_start; 2991 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 2992 for (j = 0; j < ic->journal_section_sectors; j++) { 2993 struct journal_sector *js = access_journal(ic, i, j); 2994 2995 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 2996 /* 2997 * This could be caused by crash during writing. 2998 * We won't replay the inconsistent part of the 2999 * journal. 3000 */ 3001 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 3002 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 3003 goto brk; 3004 } 3005 } 3006 i++; 3007 if (unlikely(i >= ic->journal_sections)) 3008 want_commit_seq = next_commit_seq(want_commit_seq); 3009 wraparound_section(ic, &i); 3010 } 3011 brk: 3012 3013 if (!journal_empty) { 3014 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 3015 write_sections, write_start, want_commit_seq); 3016 do_journal_write(ic, write_start, write_sections, true); 3017 } 3018 3019 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 3020 continue_section = write_start; 3021 ic->commit_seq = want_commit_seq; 3022 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 3023 } else { 3024 unsigned s; 3025 unsigned char erase_seq; 3026 clear_journal: 3027 DEBUG_print("clearing journal\n"); 3028 3029 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 3030 s = write_start; 3031 init_journal(ic, s, 1, erase_seq); 3032 s++; 3033 wraparound_section(ic, &s); 3034 if (ic->journal_sections >= 2) { 3035 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 3036 s += ic->journal_sections - 2; 3037 wraparound_section(ic, &s); 3038 init_journal(ic, s, 1, erase_seq); 3039 } 3040 3041 continue_section = 0; 3042 ic->commit_seq = next_commit_seq(erase_seq); 3043 } 3044 3045 ic->committed_section = continue_section; 3046 ic->n_committed_sections = 0; 3047 3048 ic->uncommitted_section = continue_section; 3049 ic->n_uncommitted_sections = 0; 3050 3051 ic->free_section = continue_section; 3052 ic->free_section_entry = 0; 3053 ic->free_sectors = ic->journal_entries; 3054 3055 ic->journal_tree_root = RB_ROOT; 3056 for (i = 0; i < ic->journal_entries; i++) 3057 init_journal_node(&ic->journal_tree[i]); 3058 } 3059 3060 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic) 3061 { 3062 DEBUG_print("dm_integrity_enter_synchronous_mode\n"); 3063 3064 if (ic->mode == 'B') { 3065 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1; 3066 ic->synchronous_mode = 1; 3067 3068 cancel_delayed_work_sync(&ic->bitmap_flush_work); 3069 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 3070 flush_workqueue(ic->commit_wq); 3071 } 3072 } 3073 3074 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x) 3075 { 3076 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier); 3077 3078 DEBUG_print("dm_integrity_reboot\n"); 3079 3080 dm_integrity_enter_synchronous_mode(ic); 3081 3082 return NOTIFY_DONE; 3083 } 3084 3085 static void dm_integrity_postsuspend(struct dm_target *ti) 3086 { 3087 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 3088 int r; 3089 3090 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier)); 3091 3092 del_timer_sync(&ic->autocommit_timer); 3093 3094 if (ic->recalc_wq) 3095 drain_workqueue(ic->recalc_wq); 3096 3097 if (ic->mode == 'B') 3098 cancel_delayed_work_sync(&ic->bitmap_flush_work); 3099 3100 queue_work(ic->commit_wq, &ic->commit_work); 3101 drain_workqueue(ic->commit_wq); 3102 3103 if (ic->mode == 'J') { 3104 if (ic->meta_dev) 3105 queue_work(ic->writer_wq, &ic->writer_work); 3106 drain_workqueue(ic->writer_wq); 3107 dm_integrity_flush_buffers(ic, true); 3108 } 3109 3110 if (ic->mode == 'B') { 3111 dm_integrity_flush_buffers(ic, true); 3112 #if 1 3113 /* set to 0 to test bitmap replay code */ 3114 init_journal(ic, 0, ic->journal_sections, 0); 3115 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3116 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3117 if (unlikely(r)) 3118 dm_integrity_io_error(ic, "writing superblock", r); 3119 #endif 3120 } 3121 3122 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 3123 3124 ic->journal_uptodate = true; 3125 } 3126 3127 static void dm_integrity_resume(struct dm_target *ti) 3128 { 3129 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 3130 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 3131 int r; 3132 3133 DEBUG_print("resume\n"); 3134 3135 if (ic->provided_data_sectors != old_provided_data_sectors) { 3136 if (ic->provided_data_sectors > old_provided_data_sectors && 3137 ic->mode == 'B' && 3138 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { 3139 rw_journal_sectors(ic, REQ_OP_READ, 0, 3140 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3141 block_bitmap_op(ic, ic->journal, old_provided_data_sectors, 3142 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET); 3143 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3144 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3145 } 3146 3147 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3148 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3149 if (unlikely(r)) 3150 dm_integrity_io_error(ic, "writing superblock", r); 3151 } 3152 3153 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) { 3154 DEBUG_print("resume dirty_bitmap\n"); 3155 rw_journal_sectors(ic, REQ_OP_READ, 0, 3156 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3157 if (ic->mode == 'B') { 3158 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3159 !ic->reset_recalculate_flag) { 3160 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal); 3161 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal); 3162 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, 3163 BITMAP_OP_TEST_ALL_CLEAR)) { 3164 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3165 ic->sb->recalc_sector = cpu_to_le64(0); 3166 } 3167 } else { 3168 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n", 3169 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit); 3170 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3171 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3172 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3173 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3174 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3175 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3176 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3177 ic->sb->recalc_sector = cpu_to_le64(0); 3178 } 3179 } else { 3180 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3181 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) || 3182 ic->reset_recalculate_flag) { 3183 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3184 ic->sb->recalc_sector = cpu_to_le64(0); 3185 } 3186 init_journal(ic, 0, ic->journal_sections, 0); 3187 replay_journal(ic); 3188 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3189 } 3190 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3191 if (unlikely(r)) 3192 dm_integrity_io_error(ic, "writing superblock", r); 3193 } else { 3194 replay_journal(ic); 3195 if (ic->reset_recalculate_flag) { 3196 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3197 ic->sb->recalc_sector = cpu_to_le64(0); 3198 } 3199 if (ic->mode == 'B') { 3200 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3201 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3202 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3203 if (unlikely(r)) 3204 dm_integrity_io_error(ic, "writing superblock", r); 3205 3206 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3207 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3208 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3209 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 3210 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) { 3211 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector), 3212 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3213 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3214 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3215 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3216 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3217 } 3218 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3219 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3220 } 3221 } 3222 3223 DEBUG_print("testing recalc: %x\n", ic->sb->flags); 3224 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 3225 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector); 3226 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors); 3227 if (recalc_pos < ic->provided_data_sectors) { 3228 queue_work(ic->recalc_wq, &ic->recalc_work); 3229 } else if (recalc_pos > ic->provided_data_sectors) { 3230 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors); 3231 recalc_write_super(ic); 3232 } 3233 } 3234 3235 ic->reboot_notifier.notifier_call = dm_integrity_reboot; 3236 ic->reboot_notifier.next = NULL; 3237 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */ 3238 WARN_ON(register_reboot_notifier(&ic->reboot_notifier)); 3239 3240 #if 0 3241 /* set to 1 to stress test synchronous mode */ 3242 dm_integrity_enter_synchronous_mode(ic); 3243 #endif 3244 } 3245 3246 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 3247 unsigned status_flags, char *result, unsigned maxlen) 3248 { 3249 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; 3250 unsigned arg_count; 3251 size_t sz = 0; 3252 3253 switch (type) { 3254 case STATUSTYPE_INFO: 3255 DMEMIT("%llu %llu", 3256 (unsigned long long)atomic64_read(&ic->number_of_mismatches), 3257 ic->provided_data_sectors); 3258 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3259 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector)); 3260 else 3261 DMEMIT(" -"); 3262 break; 3263 3264 case STATUSTYPE_TABLE: { 3265 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 3266 watermark_percentage += ic->journal_entries / 2; 3267 do_div(watermark_percentage, ic->journal_entries); 3268 arg_count = 3; 3269 arg_count += !!ic->meta_dev; 3270 arg_count += ic->sectors_per_block != 1; 3271 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)); 3272 arg_count += ic->reset_recalculate_flag; 3273 arg_count += ic->discard; 3274 arg_count += ic->mode == 'J'; 3275 arg_count += ic->mode == 'J'; 3276 arg_count += ic->mode == 'B'; 3277 arg_count += ic->mode == 'B'; 3278 arg_count += !!ic->internal_hash_alg.alg_string; 3279 arg_count += !!ic->journal_crypt_alg.alg_string; 3280 arg_count += !!ic->journal_mac_alg.alg_string; 3281 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0; 3282 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0; 3283 arg_count += ic->legacy_recalculate; 3284 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start, 3285 ic->tag_size, ic->mode, arg_count); 3286 if (ic->meta_dev) 3287 DMEMIT(" meta_device:%s", ic->meta_dev->name); 3288 if (ic->sectors_per_block != 1) 3289 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 3290 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3291 DMEMIT(" recalculate"); 3292 if (ic->reset_recalculate_flag) 3293 DMEMIT(" reset_recalculate"); 3294 if (ic->discard) 3295 DMEMIT(" allow_discards"); 3296 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 3297 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 3298 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 3299 if (ic->mode == 'J') { 3300 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage); 3301 DMEMIT(" commit_time:%u", ic->autocommit_msec); 3302 } 3303 if (ic->mode == 'B') { 3304 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit); 3305 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval)); 3306 } 3307 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) 3308 DMEMIT(" fix_padding"); 3309 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) 3310 DMEMIT(" fix_hmac"); 3311 if (ic->legacy_recalculate) 3312 DMEMIT(" legacy_recalculate"); 3313 3314 #define EMIT_ALG(a, n) \ 3315 do { \ 3316 if (ic->a.alg_string) { \ 3317 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 3318 if (ic->a.key_string) \ 3319 DMEMIT(":%s", ic->a.key_string);\ 3320 } \ 3321 } while (0) 3322 EMIT_ALG(internal_hash_alg, "internal_hash"); 3323 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 3324 EMIT_ALG(journal_mac_alg, "journal_mac"); 3325 break; 3326 } 3327 case STATUSTYPE_IMA: 3328 DMEMIT_TARGET_NAME_VERSION(ti->type); 3329 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c", 3330 ic->dev->name, ic->start, ic->tag_size, ic->mode); 3331 3332 if (ic->meta_dev) 3333 DMEMIT(",meta_device=%s", ic->meta_dev->name); 3334 if (ic->sectors_per_block != 1) 3335 DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT); 3336 3337 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ? 3338 'y' : 'n'); 3339 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n'); 3340 DMEMIT(",fix_padding=%c", 3341 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n'); 3342 DMEMIT(",fix_hmac=%c", 3343 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n'); 3344 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n'); 3345 3346 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS); 3347 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors); 3348 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors); 3349 DMEMIT(";"); 3350 break; 3351 } 3352 } 3353 3354 static int dm_integrity_iterate_devices(struct dm_target *ti, 3355 iterate_devices_callout_fn fn, void *data) 3356 { 3357 struct dm_integrity_c *ic = ti->private; 3358 3359 if (!ic->meta_dev) 3360 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 3361 else 3362 return fn(ti, ic->dev, 0, ti->len, data); 3363 } 3364 3365 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 3366 { 3367 struct dm_integrity_c *ic = ti->private; 3368 3369 if (ic->sectors_per_block > 1) { 3370 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3371 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3372 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT); 3373 } 3374 } 3375 3376 static void calculate_journal_section_size(struct dm_integrity_c *ic) 3377 { 3378 unsigned sector_space = JOURNAL_SECTOR_DATA; 3379 3380 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 3381 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 3382 JOURNAL_ENTRY_ROUNDUP); 3383 3384 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 3385 sector_space -= JOURNAL_MAC_PER_SECTOR; 3386 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 3387 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 3388 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 3389 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 3390 } 3391 3392 static int calculate_device_limits(struct dm_integrity_c *ic) 3393 { 3394 __u64 initial_sectors; 3395 3396 calculate_journal_section_size(ic); 3397 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 3398 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX) 3399 return -EINVAL; 3400 ic->initial_sectors = initial_sectors; 3401 3402 if (!ic->meta_dev) { 3403 sector_t last_sector, last_area, last_offset; 3404 3405 /* we have to maintain excessive padding for compatibility with existing volumes */ 3406 __u64 metadata_run_padding = 3407 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ? 3408 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) : 3409 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS); 3410 3411 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 3412 metadata_run_padding) >> SECTOR_SHIFT; 3413 if (!(ic->metadata_run & (ic->metadata_run - 1))) 3414 ic->log2_metadata_run = __ffs(ic->metadata_run); 3415 else 3416 ic->log2_metadata_run = -1; 3417 3418 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 3419 last_sector = get_data_sector(ic, last_area, last_offset); 3420 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors) 3421 return -EINVAL; 3422 } else { 3423 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 3424 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1)) 3425 >> (ic->log2_buffer_sectors + SECTOR_SHIFT); 3426 meta_size <<= ic->log2_buffer_sectors; 3427 if (ic->initial_sectors + meta_size < ic->initial_sectors || 3428 ic->initial_sectors + meta_size > ic->meta_device_sectors) 3429 return -EINVAL; 3430 ic->metadata_run = 1; 3431 ic->log2_metadata_run = 0; 3432 } 3433 3434 return 0; 3435 } 3436 3437 static void get_provided_data_sectors(struct dm_integrity_c *ic) 3438 { 3439 if (!ic->meta_dev) { 3440 int test_bit; 3441 ic->provided_data_sectors = 0; 3442 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) { 3443 __u64 prev_data_sectors = ic->provided_data_sectors; 3444 3445 ic->provided_data_sectors |= (sector_t)1 << test_bit; 3446 if (calculate_device_limits(ic)) 3447 ic->provided_data_sectors = prev_data_sectors; 3448 } 3449 } else { 3450 ic->provided_data_sectors = ic->data_device_sectors; 3451 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1); 3452 } 3453 } 3454 3455 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors) 3456 { 3457 unsigned journal_sections; 3458 int test_bit; 3459 3460 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 3461 memcpy(ic->sb->magic, SB_MAGIC, 8); 3462 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 3463 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 3464 if (ic->journal_mac_alg.alg_string) 3465 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 3466 3467 calculate_journal_section_size(ic); 3468 journal_sections = journal_sectors / ic->journal_section_sectors; 3469 if (!journal_sections) 3470 journal_sections = 1; 3471 3472 if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) { 3473 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC); 3474 get_random_bytes(ic->sb->salt, SALT_SIZE); 3475 } 3476 3477 if (!ic->meta_dev) { 3478 if (ic->fix_padding) 3479 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING); 3480 ic->sb->journal_sections = cpu_to_le32(journal_sections); 3481 if (!interleave_sectors) 3482 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 3483 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 3484 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3485 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 3486 3487 get_provided_data_sectors(ic); 3488 if (!ic->provided_data_sectors) 3489 return -EINVAL; 3490 } else { 3491 ic->sb->log2_interleave_sectors = 0; 3492 3493 get_provided_data_sectors(ic); 3494 if (!ic->provided_data_sectors) 3495 return -EINVAL; 3496 3497 try_smaller_buffer: 3498 ic->sb->journal_sections = cpu_to_le32(0); 3499 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) { 3500 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections); 3501 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit); 3502 if (test_journal_sections > journal_sections) 3503 continue; 3504 ic->sb->journal_sections = cpu_to_le32(test_journal_sections); 3505 if (calculate_device_limits(ic)) 3506 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections); 3507 3508 } 3509 if (!le32_to_cpu(ic->sb->journal_sections)) { 3510 if (ic->log2_buffer_sectors > 3) { 3511 ic->log2_buffer_sectors--; 3512 goto try_smaller_buffer; 3513 } 3514 return -EINVAL; 3515 } 3516 } 3517 3518 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3519 3520 sb_set_version(ic); 3521 3522 return 0; 3523 } 3524 3525 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic) 3526 { 3527 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table)); 3528 struct blk_integrity bi; 3529 3530 memset(&bi, 0, sizeof(bi)); 3531 bi.profile = &dm_integrity_profile; 3532 bi.tuple_size = ic->tag_size; 3533 bi.tag_size = bi.tuple_size; 3534 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 3535 3536 blk_integrity_register(disk, &bi); 3537 blk_queue_max_integrity_segments(disk->queue, UINT_MAX); 3538 } 3539 3540 static void dm_integrity_free_page_list(struct page_list *pl) 3541 { 3542 unsigned i; 3543 3544 if (!pl) 3545 return; 3546 for (i = 0; pl[i].page; i++) 3547 __free_page(pl[i].page); 3548 kvfree(pl); 3549 } 3550 3551 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages) 3552 { 3553 struct page_list *pl; 3554 unsigned i; 3555 3556 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO); 3557 if (!pl) 3558 return NULL; 3559 3560 for (i = 0; i < n_pages; i++) { 3561 pl[i].page = alloc_page(GFP_KERNEL); 3562 if (!pl[i].page) { 3563 dm_integrity_free_page_list(pl); 3564 return NULL; 3565 } 3566 if (i) 3567 pl[i - 1].next = &pl[i]; 3568 } 3569 pl[i].page = NULL; 3570 pl[i].next = NULL; 3571 3572 return pl; 3573 } 3574 3575 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 3576 { 3577 unsigned i; 3578 for (i = 0; i < ic->journal_sections; i++) 3579 kvfree(sl[i]); 3580 kvfree(sl); 3581 } 3582 3583 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, 3584 struct page_list *pl) 3585 { 3586 struct scatterlist **sl; 3587 unsigned i; 3588 3589 sl = kvmalloc_array(ic->journal_sections, 3590 sizeof(struct scatterlist *), 3591 GFP_KERNEL | __GFP_ZERO); 3592 if (!sl) 3593 return NULL; 3594 3595 for (i = 0; i < ic->journal_sections; i++) { 3596 struct scatterlist *s; 3597 unsigned start_index, start_offset; 3598 unsigned end_index, end_offset; 3599 unsigned n_pages; 3600 unsigned idx; 3601 3602 page_list_location(ic, i, 0, &start_index, &start_offset); 3603 page_list_location(ic, i, ic->journal_section_sectors - 1, 3604 &end_index, &end_offset); 3605 3606 n_pages = (end_index - start_index + 1); 3607 3608 s = kvmalloc_array(n_pages, sizeof(struct scatterlist), 3609 GFP_KERNEL); 3610 if (!s) { 3611 dm_integrity_free_journal_scatterlist(ic, sl); 3612 return NULL; 3613 } 3614 3615 sg_init_table(s, n_pages); 3616 for (idx = start_index; idx <= end_index; idx++) { 3617 char *va = lowmem_page_address(pl[idx].page); 3618 unsigned start = 0, end = PAGE_SIZE; 3619 if (idx == start_index) 3620 start = start_offset; 3621 if (idx == end_index) 3622 end = end_offset + (1 << SECTOR_SHIFT); 3623 sg_set_buf(&s[idx - start_index], va + start, end - start); 3624 } 3625 3626 sl[i] = s; 3627 } 3628 3629 return sl; 3630 } 3631 3632 static void free_alg(struct alg_spec *a) 3633 { 3634 kfree_sensitive(a->alg_string); 3635 kfree_sensitive(a->key); 3636 memset(a, 0, sizeof *a); 3637 } 3638 3639 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 3640 { 3641 char *k; 3642 3643 free_alg(a); 3644 3645 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 3646 if (!a->alg_string) 3647 goto nomem; 3648 3649 k = strchr(a->alg_string, ':'); 3650 if (k) { 3651 *k = 0; 3652 a->key_string = k + 1; 3653 if (strlen(a->key_string) & 1) 3654 goto inval; 3655 3656 a->key_size = strlen(a->key_string) / 2; 3657 a->key = kmalloc(a->key_size, GFP_KERNEL); 3658 if (!a->key) 3659 goto nomem; 3660 if (hex2bin(a->key, a->key_string, a->key_size)) 3661 goto inval; 3662 } 3663 3664 return 0; 3665 inval: 3666 *error = error_inval; 3667 return -EINVAL; 3668 nomem: 3669 *error = "Out of memory for an argument"; 3670 return -ENOMEM; 3671 } 3672 3673 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 3674 char *error_alg, char *error_key) 3675 { 3676 int r; 3677 3678 if (a->alg_string) { 3679 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 3680 if (IS_ERR(*hash)) { 3681 *error = error_alg; 3682 r = PTR_ERR(*hash); 3683 *hash = NULL; 3684 return r; 3685 } 3686 3687 if (a->key) { 3688 r = crypto_shash_setkey(*hash, a->key, a->key_size); 3689 if (r) { 3690 *error = error_key; 3691 return r; 3692 } 3693 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { 3694 *error = error_key; 3695 return -ENOKEY; 3696 } 3697 } 3698 3699 return 0; 3700 } 3701 3702 static int create_journal(struct dm_integrity_c *ic, char **error) 3703 { 3704 int r = 0; 3705 unsigned i; 3706 __u64 journal_pages, journal_desc_size, journal_tree_size; 3707 unsigned char *crypt_data = NULL, *crypt_iv = NULL; 3708 struct skcipher_request *req = NULL; 3709 3710 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 3711 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 3712 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 3713 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 3714 3715 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 3716 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 3717 journal_desc_size = journal_pages * sizeof(struct page_list); 3718 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) { 3719 *error = "Journal doesn't fit into memory"; 3720 r = -ENOMEM; 3721 goto bad; 3722 } 3723 ic->journal_pages = journal_pages; 3724 3725 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages); 3726 if (!ic->journal) { 3727 *error = "Could not allocate memory for journal"; 3728 r = -ENOMEM; 3729 goto bad; 3730 } 3731 if (ic->journal_crypt_alg.alg_string) { 3732 unsigned ivsize, blocksize; 3733 struct journal_completion comp; 3734 3735 comp.ic = ic; 3736 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 3737 if (IS_ERR(ic->journal_crypt)) { 3738 *error = "Invalid journal cipher"; 3739 r = PTR_ERR(ic->journal_crypt); 3740 ic->journal_crypt = NULL; 3741 goto bad; 3742 } 3743 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 3744 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 3745 3746 if (ic->journal_crypt_alg.key) { 3747 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 3748 ic->journal_crypt_alg.key_size); 3749 if (r) { 3750 *error = "Error setting encryption key"; 3751 goto bad; 3752 } 3753 } 3754 DEBUG_print("cipher %s, block size %u iv size %u\n", 3755 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 3756 3757 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages); 3758 if (!ic->journal_io) { 3759 *error = "Could not allocate memory for journal io"; 3760 r = -ENOMEM; 3761 goto bad; 3762 } 3763 3764 if (blocksize == 1) { 3765 struct scatterlist *sg; 3766 3767 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3768 if (!req) { 3769 *error = "Could not allocate crypt request"; 3770 r = -ENOMEM; 3771 goto bad; 3772 } 3773 3774 crypt_iv = kzalloc(ivsize, GFP_KERNEL); 3775 if (!crypt_iv) { 3776 *error = "Could not allocate iv"; 3777 r = -ENOMEM; 3778 goto bad; 3779 } 3780 3781 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages); 3782 if (!ic->journal_xor) { 3783 *error = "Could not allocate memory for journal xor"; 3784 r = -ENOMEM; 3785 goto bad; 3786 } 3787 3788 sg = kvmalloc_array(ic->journal_pages + 1, 3789 sizeof(struct scatterlist), 3790 GFP_KERNEL); 3791 if (!sg) { 3792 *error = "Unable to allocate sg list"; 3793 r = -ENOMEM; 3794 goto bad; 3795 } 3796 sg_init_table(sg, ic->journal_pages + 1); 3797 for (i = 0; i < ic->journal_pages; i++) { 3798 char *va = lowmem_page_address(ic->journal_xor[i].page); 3799 clear_page(va); 3800 sg_set_buf(&sg[i], va, PAGE_SIZE); 3801 } 3802 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids); 3803 3804 skcipher_request_set_crypt(req, sg, sg, 3805 PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv); 3806 init_completion(&comp.comp); 3807 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3808 if (do_crypt(true, req, &comp)) 3809 wait_for_completion(&comp.comp); 3810 kvfree(sg); 3811 r = dm_integrity_failed(ic); 3812 if (r) { 3813 *error = "Unable to encrypt journal"; 3814 goto bad; 3815 } 3816 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 3817 3818 crypto_free_skcipher(ic->journal_crypt); 3819 ic->journal_crypt = NULL; 3820 } else { 3821 unsigned crypt_len = roundup(ivsize, blocksize); 3822 3823 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3824 if (!req) { 3825 *error = "Could not allocate crypt request"; 3826 r = -ENOMEM; 3827 goto bad; 3828 } 3829 3830 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 3831 if (!crypt_iv) { 3832 *error = "Could not allocate iv"; 3833 r = -ENOMEM; 3834 goto bad; 3835 } 3836 3837 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 3838 if (!crypt_data) { 3839 *error = "Unable to allocate crypt data"; 3840 r = -ENOMEM; 3841 goto bad; 3842 } 3843 3844 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 3845 if (!ic->journal_scatterlist) { 3846 *error = "Unable to allocate sg list"; 3847 r = -ENOMEM; 3848 goto bad; 3849 } 3850 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 3851 if (!ic->journal_io_scatterlist) { 3852 *error = "Unable to allocate sg list"; 3853 r = -ENOMEM; 3854 goto bad; 3855 } 3856 ic->sk_requests = kvmalloc_array(ic->journal_sections, 3857 sizeof(struct skcipher_request *), 3858 GFP_KERNEL | __GFP_ZERO); 3859 if (!ic->sk_requests) { 3860 *error = "Unable to allocate sk requests"; 3861 r = -ENOMEM; 3862 goto bad; 3863 } 3864 for (i = 0; i < ic->journal_sections; i++) { 3865 struct scatterlist sg; 3866 struct skcipher_request *section_req; 3867 __le32 section_le = cpu_to_le32(i); 3868 3869 memset(crypt_iv, 0x00, ivsize); 3870 memset(crypt_data, 0x00, crypt_len); 3871 memcpy(crypt_data, §ion_le, min((size_t)crypt_len, sizeof(section_le))); 3872 3873 sg_init_one(&sg, crypt_data, crypt_len); 3874 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); 3875 init_completion(&comp.comp); 3876 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 3877 if (do_crypt(true, req, &comp)) 3878 wait_for_completion(&comp.comp); 3879 3880 r = dm_integrity_failed(ic); 3881 if (r) { 3882 *error = "Unable to generate iv"; 3883 goto bad; 3884 } 3885 3886 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 3887 if (!section_req) { 3888 *error = "Unable to allocate crypt request"; 3889 r = -ENOMEM; 3890 goto bad; 3891 } 3892 section_req->iv = kmalloc_array(ivsize, 2, 3893 GFP_KERNEL); 3894 if (!section_req->iv) { 3895 skcipher_request_free(section_req); 3896 *error = "Unable to allocate iv"; 3897 r = -ENOMEM; 3898 goto bad; 3899 } 3900 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 3901 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 3902 ic->sk_requests[i] = section_req; 3903 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 3904 } 3905 } 3906 } 3907 3908 for (i = 0; i < N_COMMIT_IDS; i++) { 3909 unsigned j; 3910 retest_commit_id: 3911 for (j = 0; j < i; j++) { 3912 if (ic->commit_ids[j] == ic->commit_ids[i]) { 3913 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 3914 goto retest_commit_id; 3915 } 3916 } 3917 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 3918 } 3919 3920 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 3921 if (journal_tree_size > ULONG_MAX) { 3922 *error = "Journal doesn't fit into memory"; 3923 r = -ENOMEM; 3924 goto bad; 3925 } 3926 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 3927 if (!ic->journal_tree) { 3928 *error = "Could not allocate memory for journal tree"; 3929 r = -ENOMEM; 3930 } 3931 bad: 3932 kfree(crypt_data); 3933 kfree(crypt_iv); 3934 skcipher_request_free(req); 3935 3936 return r; 3937 } 3938 3939 /* 3940 * Construct a integrity mapping 3941 * 3942 * Arguments: 3943 * device 3944 * offset from the start of the device 3945 * tag size 3946 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode 3947 * number of optional arguments 3948 * optional arguments: 3949 * journal_sectors 3950 * interleave_sectors 3951 * buffer_sectors 3952 * journal_watermark 3953 * commit_time 3954 * meta_device 3955 * block_size 3956 * sectors_per_bit 3957 * bitmap_flush_interval 3958 * internal_hash 3959 * journal_crypt 3960 * journal_mac 3961 * recalculate 3962 */ 3963 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv) 3964 { 3965 struct dm_integrity_c *ic; 3966 char dummy; 3967 int r; 3968 unsigned extra_args; 3969 struct dm_arg_set as; 3970 static const struct dm_arg _args[] = { 3971 {0, 18, "Invalid number of feature args"}, 3972 }; 3973 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 3974 bool should_write_sb; 3975 __u64 threshold; 3976 unsigned long long start; 3977 __s8 log2_sectors_per_bitmap_bit = -1; 3978 __s8 log2_blocks_per_bitmap_bit; 3979 __u64 bits_in_journal; 3980 __u64 n_bitmap_bits; 3981 3982 #define DIRECT_ARGUMENTS 4 3983 3984 if (argc <= DIRECT_ARGUMENTS) { 3985 ti->error = "Invalid argument count"; 3986 return -EINVAL; 3987 } 3988 3989 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 3990 if (!ic) { 3991 ti->error = "Cannot allocate integrity context"; 3992 return -ENOMEM; 3993 } 3994 ti->private = ic; 3995 ti->per_io_data_size = sizeof(struct dm_integrity_io); 3996 ic->ti = ti; 3997 3998 ic->in_progress = RB_ROOT; 3999 INIT_LIST_HEAD(&ic->wait_list); 4000 init_waitqueue_head(&ic->endio_wait); 4001 bio_list_init(&ic->flush_bio_list); 4002 init_waitqueue_head(&ic->copy_to_journal_wait); 4003 init_completion(&ic->crypto_backoff); 4004 atomic64_set(&ic->number_of_mismatches, 0); 4005 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL; 4006 4007 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 4008 if (r) { 4009 ti->error = "Device lookup failed"; 4010 goto bad; 4011 } 4012 4013 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 4014 ti->error = "Invalid starting offset"; 4015 r = -EINVAL; 4016 goto bad; 4017 } 4018 ic->start = start; 4019 4020 if (strcmp(argv[2], "-")) { 4021 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 4022 ti->error = "Invalid tag size"; 4023 r = -EINVAL; 4024 goto bad; 4025 } 4026 } 4027 4028 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") || 4029 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) { 4030 ic->mode = argv[3][0]; 4031 } else { 4032 ti->error = "Invalid mode (expecting J, B, D, R)"; 4033 r = -EINVAL; 4034 goto bad; 4035 } 4036 4037 journal_sectors = 0; 4038 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 4039 buffer_sectors = DEFAULT_BUFFER_SECTORS; 4040 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 4041 sync_msec = DEFAULT_SYNC_MSEC; 4042 ic->sectors_per_block = 1; 4043 4044 as.argc = argc - DIRECT_ARGUMENTS; 4045 as.argv = argv + DIRECT_ARGUMENTS; 4046 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 4047 if (r) 4048 goto bad; 4049 4050 while (extra_args--) { 4051 const char *opt_string; 4052 unsigned val; 4053 unsigned long long llval; 4054 opt_string = dm_shift_arg(&as); 4055 if (!opt_string) { 4056 r = -EINVAL; 4057 ti->error = "Not enough feature arguments"; 4058 goto bad; 4059 } 4060 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 4061 journal_sectors = val ? val : 1; 4062 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 4063 interleave_sectors = val; 4064 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 4065 buffer_sectors = val; 4066 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 4067 journal_watermark = val; 4068 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 4069 sync_msec = val; 4070 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) { 4071 if (ic->meta_dev) { 4072 dm_put_device(ti, ic->meta_dev); 4073 ic->meta_dev = NULL; 4074 } 4075 r = dm_get_device(ti, strchr(opt_string, ':') + 1, 4076 dm_table_get_mode(ti->table), &ic->meta_dev); 4077 if (r) { 4078 ti->error = "Device lookup failed"; 4079 goto bad; 4080 } 4081 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 4082 if (val < 1 << SECTOR_SHIFT || 4083 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 4084 (val & (val -1))) { 4085 r = -EINVAL; 4086 ti->error = "Invalid block_size argument"; 4087 goto bad; 4088 } 4089 ic->sectors_per_block = val >> SECTOR_SHIFT; 4090 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) { 4091 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval); 4092 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) { 4093 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) { 4094 r = -EINVAL; 4095 ti->error = "Invalid bitmap_flush_interval argument"; 4096 goto bad; 4097 } 4098 ic->bitmap_flush_interval = msecs_to_jiffies(val); 4099 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 4100 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 4101 "Invalid internal_hash argument"); 4102 if (r) 4103 goto bad; 4104 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 4105 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 4106 "Invalid journal_crypt argument"); 4107 if (r) 4108 goto bad; 4109 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 4110 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 4111 "Invalid journal_mac argument"); 4112 if (r) 4113 goto bad; 4114 } else if (!strcmp(opt_string, "recalculate")) { 4115 ic->recalculate_flag = true; 4116 } else if (!strcmp(opt_string, "reset_recalculate")) { 4117 ic->recalculate_flag = true; 4118 ic->reset_recalculate_flag = true; 4119 } else if (!strcmp(opt_string, "allow_discards")) { 4120 ic->discard = true; 4121 } else if (!strcmp(opt_string, "fix_padding")) { 4122 ic->fix_padding = true; 4123 } else if (!strcmp(opt_string, "fix_hmac")) { 4124 ic->fix_hmac = true; 4125 } else if (!strcmp(opt_string, "legacy_recalculate")) { 4126 ic->legacy_recalculate = true; 4127 } else { 4128 r = -EINVAL; 4129 ti->error = "Invalid argument"; 4130 goto bad; 4131 } 4132 } 4133 4134 ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev); 4135 if (!ic->meta_dev) 4136 ic->meta_device_sectors = ic->data_device_sectors; 4137 else 4138 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev); 4139 4140 if (!journal_sectors) { 4141 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 4142 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 4143 } 4144 4145 if (!buffer_sectors) 4146 buffer_sectors = 1; 4147 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT); 4148 4149 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 4150 "Invalid internal hash", "Error setting internal hash key"); 4151 if (r) 4152 goto bad; 4153 4154 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 4155 "Invalid journal mac", "Error setting journal mac key"); 4156 if (r) 4157 goto bad; 4158 4159 if (!ic->tag_size) { 4160 if (!ic->internal_hash) { 4161 ti->error = "Unknown tag size"; 4162 r = -EINVAL; 4163 goto bad; 4164 } 4165 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 4166 } 4167 if (ic->tag_size > MAX_TAG_SIZE) { 4168 ti->error = "Too big tag size"; 4169 r = -EINVAL; 4170 goto bad; 4171 } 4172 if (!(ic->tag_size & (ic->tag_size - 1))) 4173 ic->log2_tag_size = __ffs(ic->tag_size); 4174 else 4175 ic->log2_tag_size = -1; 4176 4177 if (ic->mode == 'B' && !ic->internal_hash) { 4178 r = -EINVAL; 4179 ti->error = "Bitmap mode can be only used with internal hash"; 4180 goto bad; 4181 } 4182 4183 if (ic->discard && !ic->internal_hash) { 4184 r = -EINVAL; 4185 ti->error = "Discard can be only used with internal hash"; 4186 goto bad; 4187 } 4188 4189 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 4190 ic->autocommit_msec = sync_msec; 4191 timer_setup(&ic->autocommit_timer, autocommit_fn, 0); 4192 4193 ic->io = dm_io_client_create(); 4194 if (IS_ERR(ic->io)) { 4195 r = PTR_ERR(ic->io); 4196 ic->io = NULL; 4197 ti->error = "Cannot allocate dm io"; 4198 goto bad; 4199 } 4200 4201 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); 4202 if (r) { 4203 ti->error = "Cannot allocate mempool"; 4204 goto bad; 4205 } 4206 4207 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 4208 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 4209 if (!ic->metadata_wq) { 4210 ti->error = "Cannot allocate workqueue"; 4211 r = -ENOMEM; 4212 goto bad; 4213 } 4214 4215 /* 4216 * If this workqueue were percpu, it would cause bio reordering 4217 * and reduced performance. 4218 */ 4219 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4220 if (!ic->wait_wq) { 4221 ti->error = "Cannot allocate workqueue"; 4222 r = -ENOMEM; 4223 goto bad; 4224 } 4225 4226 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM, 4227 METADATA_WORKQUEUE_MAX_ACTIVE); 4228 if (!ic->offload_wq) { 4229 ti->error = "Cannot allocate workqueue"; 4230 r = -ENOMEM; 4231 goto bad; 4232 } 4233 4234 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 4235 if (!ic->commit_wq) { 4236 ti->error = "Cannot allocate workqueue"; 4237 r = -ENOMEM; 4238 goto bad; 4239 } 4240 INIT_WORK(&ic->commit_work, integrity_commit); 4241 4242 if (ic->mode == 'J' || ic->mode == 'B') { 4243 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 4244 if (!ic->writer_wq) { 4245 ti->error = "Cannot allocate workqueue"; 4246 r = -ENOMEM; 4247 goto bad; 4248 } 4249 INIT_WORK(&ic->writer_work, integrity_writer); 4250 } 4251 4252 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 4253 if (!ic->sb) { 4254 r = -ENOMEM; 4255 ti->error = "Cannot allocate superblock area"; 4256 goto bad; 4257 } 4258 4259 r = sync_rw_sb(ic, REQ_OP_READ); 4260 if (r) { 4261 ti->error = "Error reading superblock"; 4262 goto bad; 4263 } 4264 should_write_sb = false; 4265 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 4266 if (ic->mode != 'R') { 4267 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 4268 r = -EINVAL; 4269 ti->error = "The device is not initialized"; 4270 goto bad; 4271 } 4272 } 4273 4274 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 4275 if (r) { 4276 ti->error = "Could not initialize superblock"; 4277 goto bad; 4278 } 4279 if (ic->mode != 'R') 4280 should_write_sb = true; 4281 } 4282 4283 if (!ic->sb->version || ic->sb->version > SB_VERSION_5) { 4284 r = -EINVAL; 4285 ti->error = "Unknown version"; 4286 goto bad; 4287 } 4288 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 4289 r = -EINVAL; 4290 ti->error = "Tag size doesn't match the information in superblock"; 4291 goto bad; 4292 } 4293 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 4294 r = -EINVAL; 4295 ti->error = "Block size doesn't match the information in superblock"; 4296 goto bad; 4297 } 4298 if (!le32_to_cpu(ic->sb->journal_sections)) { 4299 r = -EINVAL; 4300 ti->error = "Corrupted superblock, journal_sections is 0"; 4301 goto bad; 4302 } 4303 /* make sure that ti->max_io_len doesn't overflow */ 4304 if (!ic->meta_dev) { 4305 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 4306 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 4307 r = -EINVAL; 4308 ti->error = "Invalid interleave_sectors in the superblock"; 4309 goto bad; 4310 } 4311 } else { 4312 if (ic->sb->log2_interleave_sectors) { 4313 r = -EINVAL; 4314 ti->error = "Invalid interleave_sectors in the superblock"; 4315 goto bad; 4316 } 4317 } 4318 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 4319 r = -EINVAL; 4320 ti->error = "Journal mac mismatch"; 4321 goto bad; 4322 } 4323 4324 get_provided_data_sectors(ic); 4325 if (!ic->provided_data_sectors) { 4326 r = -EINVAL; 4327 ti->error = "The device is too small"; 4328 goto bad; 4329 } 4330 4331 try_smaller_buffer: 4332 r = calculate_device_limits(ic); 4333 if (r) { 4334 if (ic->meta_dev) { 4335 if (ic->log2_buffer_sectors > 3) { 4336 ic->log2_buffer_sectors--; 4337 goto try_smaller_buffer; 4338 } 4339 } 4340 ti->error = "The device is too small"; 4341 goto bad; 4342 } 4343 4344 if (log2_sectors_per_bitmap_bit < 0) 4345 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT); 4346 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block) 4347 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block; 4348 4349 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3); 4350 if (bits_in_journal > UINT_MAX) 4351 bits_in_journal = UINT_MAX; 4352 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit) 4353 log2_sectors_per_bitmap_bit++; 4354 4355 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block; 4356 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4357 if (should_write_sb) { 4358 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4359 } 4360 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) 4361 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit; 4362 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8); 4363 4364 if (!ic->meta_dev) 4365 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run)); 4366 4367 if (ti->len > ic->provided_data_sectors) { 4368 r = -EINVAL; 4369 ti->error = "Not enough provided sectors for requested mapping size"; 4370 goto bad; 4371 } 4372 4373 4374 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 4375 threshold += 50; 4376 do_div(threshold, 100); 4377 ic->free_sectors_threshold = threshold; 4378 4379 DEBUG_print("initialized:\n"); 4380 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 4381 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 4382 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 4383 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 4384 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 4385 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections)); 4386 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 4387 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 4388 DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev)); 4389 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 4390 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 4391 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 4392 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors); 4393 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 4394 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal); 4395 4396 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) { 4397 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 4398 ic->sb->recalc_sector = cpu_to_le64(0); 4399 } 4400 4401 if (ic->internal_hash) { 4402 size_t recalc_tags_size; 4403 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1); 4404 if (!ic->recalc_wq ) { 4405 ti->error = "Cannot allocate workqueue"; 4406 r = -ENOMEM; 4407 goto bad; 4408 } 4409 INIT_WORK(&ic->recalc_work, integrity_recalc); 4410 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT); 4411 if (!ic->recalc_buffer) { 4412 ti->error = "Cannot allocate buffer for recalculating"; 4413 r = -ENOMEM; 4414 goto bad; 4415 } 4416 recalc_tags_size = (RECALC_SECTORS >> ic->sb->log2_sectors_per_block) * ic->tag_size; 4417 if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size) 4418 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size; 4419 ic->recalc_tags = kvmalloc(recalc_tags_size, GFP_KERNEL); 4420 if (!ic->recalc_tags) { 4421 ti->error = "Cannot allocate tags for recalculating"; 4422 r = -ENOMEM; 4423 goto bad; 4424 } 4425 } else { 4426 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 4427 ti->error = "Recalculate can only be specified with internal_hash"; 4428 r = -EINVAL; 4429 goto bad; 4430 } 4431 } 4432 4433 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 4434 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors && 4435 dm_integrity_disable_recalculate(ic)) { 4436 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\""; 4437 r = -EOPNOTSUPP; 4438 goto bad; 4439 } 4440 4441 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev, 4442 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0); 4443 if (IS_ERR(ic->bufio)) { 4444 r = PTR_ERR(ic->bufio); 4445 ti->error = "Cannot initialize dm-bufio"; 4446 ic->bufio = NULL; 4447 goto bad; 4448 } 4449 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 4450 4451 if (ic->mode != 'R') { 4452 r = create_journal(ic, &ti->error); 4453 if (r) 4454 goto bad; 4455 4456 } 4457 4458 if (ic->mode == 'B') { 4459 unsigned i; 4460 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 4461 4462 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4463 if (!ic->recalc_bitmap) { 4464 r = -ENOMEM; 4465 goto bad; 4466 } 4467 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 4468 if (!ic->may_write_bitmap) { 4469 r = -ENOMEM; 4470 goto bad; 4471 } 4472 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL); 4473 if (!ic->bbs) { 4474 r = -ENOMEM; 4475 goto bad; 4476 } 4477 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work); 4478 for (i = 0; i < ic->n_bitmap_blocks; i++) { 4479 struct bitmap_block_status *bbs = &ic->bbs[i]; 4480 unsigned sector, pl_index, pl_offset; 4481 4482 INIT_WORK(&bbs->work, bitmap_block_work); 4483 bbs->ic = ic; 4484 bbs->idx = i; 4485 bio_list_init(&bbs->bio_queue); 4486 spin_lock_init(&bbs->bio_queue_lock); 4487 4488 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT); 4489 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 4490 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 4491 4492 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset; 4493 } 4494 } 4495 4496 if (should_write_sb) { 4497 init_journal(ic, 0, ic->journal_sections, 0); 4498 r = dm_integrity_failed(ic); 4499 if (unlikely(r)) { 4500 ti->error = "Error initializing journal"; 4501 goto bad; 4502 } 4503 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 4504 if (r) { 4505 ti->error = "Error initializing superblock"; 4506 goto bad; 4507 } 4508 ic->just_formatted = true; 4509 } 4510 4511 if (!ic->meta_dev) { 4512 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 4513 if (r) 4514 goto bad; 4515 } 4516 if (ic->mode == 'B') { 4517 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8); 4518 if (!max_io_len) 4519 max_io_len = 1U << 31; 4520 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len); 4521 if (!ti->max_io_len || ti->max_io_len > max_io_len) { 4522 r = dm_set_target_max_io_len(ti, max_io_len); 4523 if (r) 4524 goto bad; 4525 } 4526 } 4527 4528 if (!ic->internal_hash) 4529 dm_integrity_set(ti, ic); 4530 4531 ti->num_flush_bios = 1; 4532 ti->flush_supported = true; 4533 if (ic->discard) 4534 ti->num_discard_bios = 1; 4535 4536 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1); 4537 return 0; 4538 4539 bad: 4540 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0); 4541 dm_integrity_dtr(ti); 4542 return r; 4543 } 4544 4545 static void dm_integrity_dtr(struct dm_target *ti) 4546 { 4547 struct dm_integrity_c *ic = ti->private; 4548 4549 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 4550 BUG_ON(!list_empty(&ic->wait_list)); 4551 4552 if (ic->metadata_wq) 4553 destroy_workqueue(ic->metadata_wq); 4554 if (ic->wait_wq) 4555 destroy_workqueue(ic->wait_wq); 4556 if (ic->offload_wq) 4557 destroy_workqueue(ic->offload_wq); 4558 if (ic->commit_wq) 4559 destroy_workqueue(ic->commit_wq); 4560 if (ic->writer_wq) 4561 destroy_workqueue(ic->writer_wq); 4562 if (ic->recalc_wq) 4563 destroy_workqueue(ic->recalc_wq); 4564 vfree(ic->recalc_buffer); 4565 kvfree(ic->recalc_tags); 4566 kvfree(ic->bbs); 4567 if (ic->bufio) 4568 dm_bufio_client_destroy(ic->bufio); 4569 mempool_exit(&ic->journal_io_mempool); 4570 if (ic->io) 4571 dm_io_client_destroy(ic->io); 4572 if (ic->dev) 4573 dm_put_device(ti, ic->dev); 4574 if (ic->meta_dev) 4575 dm_put_device(ti, ic->meta_dev); 4576 dm_integrity_free_page_list(ic->journal); 4577 dm_integrity_free_page_list(ic->journal_io); 4578 dm_integrity_free_page_list(ic->journal_xor); 4579 dm_integrity_free_page_list(ic->recalc_bitmap); 4580 dm_integrity_free_page_list(ic->may_write_bitmap); 4581 if (ic->journal_scatterlist) 4582 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 4583 if (ic->journal_io_scatterlist) 4584 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 4585 if (ic->sk_requests) { 4586 unsigned i; 4587 4588 for (i = 0; i < ic->journal_sections; i++) { 4589 struct skcipher_request *req = ic->sk_requests[i]; 4590 if (req) { 4591 kfree_sensitive(req->iv); 4592 skcipher_request_free(req); 4593 } 4594 } 4595 kvfree(ic->sk_requests); 4596 } 4597 kvfree(ic->journal_tree); 4598 if (ic->sb) 4599 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 4600 4601 if (ic->internal_hash) 4602 crypto_free_shash(ic->internal_hash); 4603 free_alg(&ic->internal_hash_alg); 4604 4605 if (ic->journal_crypt) 4606 crypto_free_skcipher(ic->journal_crypt); 4607 free_alg(&ic->journal_crypt_alg); 4608 4609 if (ic->journal_mac) 4610 crypto_free_shash(ic->journal_mac); 4611 free_alg(&ic->journal_mac_alg); 4612 4613 kfree(ic); 4614 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1); 4615 } 4616 4617 static struct target_type integrity_target = { 4618 .name = "integrity", 4619 .version = {1, 10, 0}, 4620 .module = THIS_MODULE, 4621 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 4622 .ctr = dm_integrity_ctr, 4623 .dtr = dm_integrity_dtr, 4624 .map = dm_integrity_map, 4625 .postsuspend = dm_integrity_postsuspend, 4626 .resume = dm_integrity_resume, 4627 .status = dm_integrity_status, 4628 .iterate_devices = dm_integrity_iterate_devices, 4629 .io_hints = dm_integrity_io_hints, 4630 }; 4631 4632 static int __init dm_integrity_init(void) 4633 { 4634 int r; 4635 4636 journal_io_cache = kmem_cache_create("integrity_journal_io", 4637 sizeof(struct journal_io), 0, 0, NULL); 4638 if (!journal_io_cache) { 4639 DMERR("can't allocate journal io cache"); 4640 return -ENOMEM; 4641 } 4642 4643 r = dm_register_target(&integrity_target); 4644 4645 if (r < 0) 4646 DMERR("register failed %d", r); 4647 4648 return r; 4649 } 4650 4651 static void __exit dm_integrity_exit(void) 4652 { 4653 dm_unregister_target(&integrity_target); 4654 kmem_cache_destroy(journal_io_cache); 4655 } 4656 4657 module_init(dm_integrity_init); 4658 module_exit(dm_integrity_exit); 4659 4660 MODULE_AUTHOR("Milan Broz"); 4661 MODULE_AUTHOR("Mikulas Patocka"); 4662 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 4663 MODULE_LICENSE("GPL"); 4664