1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 4 * Copyright (C) 2016-2017 Milan Broz 5 * Copyright (C) 2016-2017 Mikulas Patocka 6 * 7 * This file is released under the GPL. 8 */ 9 10 #include "dm-bio-record.h" 11 12 #include <linux/compiler.h> 13 #include <linux/module.h> 14 #include <linux/device-mapper.h> 15 #include <linux/dm-io.h> 16 #include <linux/vmalloc.h> 17 #include <linux/sort.h> 18 #include <linux/rbtree.h> 19 #include <linux/delay.h> 20 #include <linux/random.h> 21 #include <linux/reboot.h> 22 #include <crypto/hash.h> 23 #include <crypto/skcipher.h> 24 #include <crypto/utils.h> 25 #include <linux/async_tx.h> 26 #include <linux/dm-bufio.h> 27 28 #include "dm-audit.h" 29 30 #define DM_MSG_PREFIX "integrity" 31 32 #define DEFAULT_INTERLEAVE_SECTORS 32768 33 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 34 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768 35 #define DEFAULT_BUFFER_SECTORS 128 36 #define DEFAULT_JOURNAL_WATERMARK 50 37 #define DEFAULT_SYNC_MSEC 10000 38 #define DEFAULT_MAX_JOURNAL_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192) 39 #define MIN_LOG2_INTERLEAVE_SECTORS 3 40 #define MAX_LOG2_INTERLEAVE_SECTORS 31 41 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 42 #define RECALC_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048) 43 #define RECALC_WRITE_SUPER 16 44 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */ 45 #define BITMAP_FLUSH_INTERVAL (10 * HZ) 46 #define DISCARD_FILLER 0xf6 47 #define SALT_SIZE 16 48 #define RECHECK_POOL_SIZE 256 49 50 /* 51 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 52 * so it should not be enabled in the official kernel 53 */ 54 //#define DEBUG_PRINT 55 //#define INTERNAL_VERIFY 56 57 /* 58 * On disk structures 59 */ 60 61 #define SB_MAGIC "integrt" 62 #define SB_VERSION_1 1 63 #define SB_VERSION_2 2 64 #define SB_VERSION_3 3 65 #define SB_VERSION_4 4 66 #define SB_VERSION_5 5 67 #define SB_VERSION_6 6 68 #define SB_SECTORS 8 69 #define MAX_SECTORS_PER_BLOCK 8 70 71 struct superblock { 72 __u8 magic[8]; 73 __u8 version; 74 __u8 log2_interleave_sectors; 75 __le16 integrity_tag_size; 76 __le32 journal_sections; 77 __le64 provided_data_sectors; /* userspace uses this value */ 78 __le32 flags; 79 __u8 log2_sectors_per_block; 80 __u8 log2_blocks_per_bitmap_bit; 81 __u8 pad[2]; 82 __le64 recalc_sector; 83 __u8 pad2[8]; 84 __u8 salt[SALT_SIZE]; 85 }; 86 87 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 88 #define SB_FLAG_RECALCULATING 0x2 89 #define SB_FLAG_DIRTY_BITMAP 0x4 90 #define SB_FLAG_FIXED_PADDING 0x8 91 #define SB_FLAG_FIXED_HMAC 0x10 92 #define SB_FLAG_INLINE 0x20 93 94 #define JOURNAL_ENTRY_ROUNDUP 8 95 96 typedef __le64 commit_id_t; 97 #define JOURNAL_MAC_PER_SECTOR 8 98 99 struct journal_entry { 100 union { 101 struct { 102 __le32 sector_lo; 103 __le32 sector_hi; 104 } s; 105 __le64 sector; 106 } u; 107 commit_id_t last_bytes[]; 108 /* __u8 tag[0]; */ 109 }; 110 111 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 112 113 #if BITS_PER_LONG == 64 114 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) 115 #else 116 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) 117 #endif 118 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 119 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 120 #define journal_entry_set_unused(je) ((je)->u.s.sector_hi = cpu_to_le32(-1)) 121 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 122 #define journal_entry_set_inprogress(je) ((je)->u.s.sector_hi = cpu_to_le32(-2)) 123 124 #define JOURNAL_BLOCK_SECTORS 8 125 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 126 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 127 128 struct journal_sector { 129 struct_group(sectors, 130 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 131 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 132 ); 133 commit_id_t commit_id; 134 }; 135 136 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 137 138 #define METADATA_PADDING_SECTORS 8 139 140 #define N_COMMIT_IDS 4 141 142 static unsigned char prev_commit_seq(unsigned char seq) 143 { 144 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 145 } 146 147 static unsigned char next_commit_seq(unsigned char seq) 148 { 149 return (seq + 1) % N_COMMIT_IDS; 150 } 151 152 /* 153 * In-memory structures 154 */ 155 156 struct journal_node { 157 struct rb_node node; 158 sector_t sector; 159 }; 160 161 struct alg_spec { 162 char *alg_string; 163 char *key_string; 164 __u8 *key; 165 unsigned int key_size; 166 }; 167 168 struct dm_integrity_c { 169 struct dm_dev *dev; 170 struct dm_dev *meta_dev; 171 unsigned int tag_size; 172 __s8 log2_tag_size; 173 unsigned int tuple_size; 174 sector_t start; 175 mempool_t journal_io_mempool; 176 struct dm_io_client *io; 177 struct dm_bufio_client *bufio; 178 struct workqueue_struct *metadata_wq; 179 struct superblock *sb; 180 unsigned int journal_pages; 181 unsigned int n_bitmap_blocks; 182 183 struct page_list *journal; 184 struct page_list *journal_io; 185 struct page_list *journal_xor; 186 struct page_list *recalc_bitmap; 187 struct page_list *may_write_bitmap; 188 struct bitmap_block_status *bbs; 189 unsigned int bitmap_flush_interval; 190 int synchronous_mode; 191 struct bio_list synchronous_bios; 192 struct delayed_work bitmap_flush_work; 193 194 struct crypto_skcipher *journal_crypt; 195 struct scatterlist **journal_scatterlist; 196 struct scatterlist **journal_io_scatterlist; 197 struct skcipher_request **sk_requests; 198 199 struct crypto_shash *journal_mac; 200 201 struct journal_node *journal_tree; 202 struct rb_root journal_tree_root; 203 204 sector_t provided_data_sectors; 205 206 unsigned short journal_entry_size; 207 unsigned char journal_entries_per_sector; 208 unsigned char journal_section_entries; 209 unsigned short journal_section_sectors; 210 unsigned int journal_sections; 211 unsigned int journal_entries; 212 sector_t data_device_sectors; 213 sector_t meta_device_sectors; 214 unsigned int initial_sectors; 215 unsigned int metadata_run; 216 __s8 log2_metadata_run; 217 __u8 log2_buffer_sectors; 218 __u8 sectors_per_block; 219 __u8 log2_blocks_per_bitmap_bit; 220 221 unsigned char mode; 222 223 int failed; 224 225 struct crypto_shash *internal_hash; 226 227 struct dm_target *ti; 228 229 /* these variables are locked with endio_wait.lock */ 230 struct rb_root in_progress; 231 struct list_head wait_list; 232 wait_queue_head_t endio_wait; 233 struct workqueue_struct *wait_wq; 234 struct workqueue_struct *offload_wq; 235 236 unsigned char commit_seq; 237 commit_id_t commit_ids[N_COMMIT_IDS]; 238 239 unsigned int committed_section; 240 unsigned int n_committed_sections; 241 242 unsigned int uncommitted_section; 243 unsigned int n_uncommitted_sections; 244 245 unsigned int free_section; 246 unsigned char free_section_entry; 247 unsigned int free_sectors; 248 249 unsigned int free_sectors_threshold; 250 251 struct workqueue_struct *commit_wq; 252 struct work_struct commit_work; 253 254 struct workqueue_struct *writer_wq; 255 struct work_struct writer_work; 256 257 struct workqueue_struct *recalc_wq; 258 struct work_struct recalc_work; 259 260 struct bio_list flush_bio_list; 261 262 unsigned long autocommit_jiffies; 263 struct timer_list autocommit_timer; 264 unsigned int autocommit_msec; 265 266 wait_queue_head_t copy_to_journal_wait; 267 268 struct completion crypto_backoff; 269 270 bool wrote_to_journal; 271 bool journal_uptodate; 272 bool just_formatted; 273 bool recalculate_flag; 274 bool reset_recalculate_flag; 275 bool discard; 276 bool fix_padding; 277 bool fix_hmac; 278 bool legacy_recalculate; 279 280 struct alg_spec internal_hash_alg; 281 struct alg_spec journal_crypt_alg; 282 struct alg_spec journal_mac_alg; 283 284 atomic64_t number_of_mismatches; 285 286 mempool_t recheck_pool; 287 struct bio_set recheck_bios; 288 struct bio_set recalc_bios; 289 290 struct notifier_block reboot_notifier; 291 }; 292 293 struct dm_integrity_range { 294 sector_t logical_sector; 295 sector_t n_sectors; 296 bool waiting; 297 union { 298 struct rb_node node; 299 struct { 300 struct task_struct *task; 301 struct list_head wait_entry; 302 }; 303 }; 304 }; 305 306 struct dm_integrity_io { 307 struct work_struct work; 308 309 struct dm_integrity_c *ic; 310 enum req_op op; 311 bool fua; 312 313 struct dm_integrity_range range; 314 315 sector_t metadata_block; 316 unsigned int metadata_offset; 317 318 atomic_t in_flight; 319 blk_status_t bi_status; 320 321 struct completion *completion; 322 323 struct dm_bio_details bio_details; 324 325 char *integrity_payload; 326 unsigned payload_len; 327 bool integrity_payload_from_mempool; 328 bool integrity_range_locked; 329 }; 330 331 struct journal_completion { 332 struct dm_integrity_c *ic; 333 atomic_t in_flight; 334 struct completion comp; 335 }; 336 337 struct journal_io { 338 struct dm_integrity_range range; 339 struct journal_completion *comp; 340 }; 341 342 struct bitmap_block_status { 343 struct work_struct work; 344 struct dm_integrity_c *ic; 345 unsigned int idx; 346 unsigned long *bitmap; 347 struct bio_list bio_queue; 348 spinlock_t bio_queue_lock; 349 350 }; 351 352 static struct kmem_cache *journal_io_cache; 353 354 #define JOURNAL_IO_MEMPOOL 32 355 356 #ifdef DEBUG_PRINT 357 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 358 #define DEBUG_bytes(bytes, len, msg, ...) printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \ 359 len ? ": " : "", len, bytes) 360 #else 361 #define DEBUG_print(x, ...) do { } while (0) 362 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 363 #endif 364 365 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 366 static int dm_integrity_map_inline(struct dm_integrity_io *dio, bool from_map); 367 static void integrity_bio_wait(struct work_struct *w); 368 static void dm_integrity_dtr(struct dm_target *ti); 369 370 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 371 { 372 if (err == -EILSEQ) 373 atomic64_inc(&ic->number_of_mismatches); 374 if (!cmpxchg(&ic->failed, 0, err)) 375 DMERR("Error on %s: %d", msg, err); 376 } 377 378 static int dm_integrity_failed(struct dm_integrity_c *ic) 379 { 380 return READ_ONCE(ic->failed); 381 } 382 383 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic) 384 { 385 if (ic->legacy_recalculate) 386 return false; 387 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ? 388 ic->internal_hash_alg.key || ic->journal_mac_alg.key : 389 ic->internal_hash_alg.key && !ic->journal_mac_alg.key) 390 return true; 391 return false; 392 } 393 394 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i, 395 unsigned int j, unsigned char seq) 396 { 397 /* 398 * Xor the number with section and sector, so that if a piece of 399 * journal is written at wrong place, it is detected. 400 */ 401 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 402 } 403 404 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 405 sector_t *area, sector_t *offset) 406 { 407 if (!ic->meta_dev) { 408 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 409 *area = data_sector >> log2_interleave_sectors; 410 *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1); 411 } else { 412 *area = 0; 413 *offset = data_sector; 414 } 415 } 416 417 #define sector_to_block(ic, n) \ 418 do { \ 419 BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1)); \ 420 (n) >>= (ic)->sb->log2_sectors_per_block; \ 421 } while (0) 422 423 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 424 sector_t offset, unsigned int *metadata_offset) 425 { 426 __u64 ms; 427 unsigned int mo; 428 429 ms = area << ic->sb->log2_interleave_sectors; 430 if (likely(ic->log2_metadata_run >= 0)) 431 ms += area << ic->log2_metadata_run; 432 else 433 ms += area * ic->metadata_run; 434 ms >>= ic->log2_buffer_sectors; 435 436 sector_to_block(ic, offset); 437 438 if (likely(ic->log2_tag_size >= 0)) { 439 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 440 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 441 } else { 442 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 443 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 444 } 445 *metadata_offset = mo; 446 return ms; 447 } 448 449 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 450 { 451 sector_t result; 452 453 if (ic->meta_dev) 454 return offset; 455 456 result = area << ic->sb->log2_interleave_sectors; 457 if (likely(ic->log2_metadata_run >= 0)) 458 result += (area + 1) << ic->log2_metadata_run; 459 else 460 result += (area + 1) * ic->metadata_run; 461 462 result += (sector_t)ic->initial_sectors + offset; 463 result += ic->start; 464 465 return result; 466 } 467 468 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr) 469 { 470 if (unlikely(*sec_ptr >= ic->journal_sections)) 471 *sec_ptr -= ic->journal_sections; 472 } 473 474 static void sb_set_version(struct dm_integrity_c *ic) 475 { 476 if (ic->sb->flags & cpu_to_le32(SB_FLAG_INLINE)) 477 ic->sb->version = SB_VERSION_6; 478 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) 479 ic->sb->version = SB_VERSION_5; 480 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) 481 ic->sb->version = SB_VERSION_4; 482 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) 483 ic->sb->version = SB_VERSION_3; 484 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 485 ic->sb->version = SB_VERSION_2; 486 else 487 ic->sb->version = SB_VERSION_1; 488 } 489 490 static int sb_mac(struct dm_integrity_c *ic, bool wr) 491 { 492 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 493 int r; 494 unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac); 495 __u8 *sb = (__u8 *)ic->sb; 496 __u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size; 497 498 if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT || 499 mac_size > HASH_MAX_DIGESTSIZE) { 500 dm_integrity_io_error(ic, "digest is too long", -EINVAL); 501 return -EINVAL; 502 } 503 504 desc->tfm = ic->journal_mac; 505 506 if (likely(wr)) { 507 r = crypto_shash_digest(desc, sb, mac - sb, mac); 508 if (unlikely(r < 0)) { 509 dm_integrity_io_error(ic, "crypto_shash_digest", r); 510 return r; 511 } 512 } else { 513 __u8 actual_mac[HASH_MAX_DIGESTSIZE]; 514 515 r = crypto_shash_digest(desc, sb, mac - sb, actual_mac); 516 if (unlikely(r < 0)) { 517 dm_integrity_io_error(ic, "crypto_shash_digest", r); 518 return r; 519 } 520 if (crypto_memneq(mac, actual_mac, mac_size)) { 521 dm_integrity_io_error(ic, "superblock mac", -EILSEQ); 522 dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0); 523 return -EILSEQ; 524 } 525 } 526 527 return 0; 528 } 529 530 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf) 531 { 532 struct dm_io_request io_req; 533 struct dm_io_region io_loc; 534 const enum req_op op = opf & REQ_OP_MASK; 535 int r; 536 537 io_req.bi_opf = opf; 538 io_req.mem.type = DM_IO_KMEM; 539 io_req.mem.ptr.addr = ic->sb; 540 io_req.notify.fn = NULL; 541 io_req.client = ic->io; 542 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 543 io_loc.sector = ic->start; 544 io_loc.count = SB_SECTORS; 545 546 if (op == REQ_OP_WRITE) { 547 sb_set_version(ic); 548 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 549 r = sb_mac(ic, true); 550 if (unlikely(r)) 551 return r; 552 } 553 } 554 555 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 556 if (unlikely(r)) 557 return r; 558 559 if (op == REQ_OP_READ) { 560 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 561 r = sb_mac(ic, false); 562 if (unlikely(r)) 563 return r; 564 } 565 } 566 567 return 0; 568 } 569 570 #define BITMAP_OP_TEST_ALL_SET 0 571 #define BITMAP_OP_TEST_ALL_CLEAR 1 572 #define BITMAP_OP_SET 2 573 #define BITMAP_OP_CLEAR 3 574 575 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap, 576 sector_t sector, sector_t n_sectors, int mode) 577 { 578 unsigned long bit, end_bit, this_end_bit, page, end_page; 579 unsigned long *data; 580 581 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) { 582 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)", 583 sector, 584 n_sectors, 585 ic->sb->log2_sectors_per_block, 586 ic->log2_blocks_per_bitmap_bit, 587 mode); 588 BUG(); 589 } 590 591 if (unlikely(!n_sectors)) 592 return true; 593 594 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 595 end_bit = (sector + n_sectors - 1) >> 596 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 597 598 page = bit / (PAGE_SIZE * 8); 599 bit %= PAGE_SIZE * 8; 600 601 end_page = end_bit / (PAGE_SIZE * 8); 602 end_bit %= PAGE_SIZE * 8; 603 604 repeat: 605 if (page < end_page) 606 this_end_bit = PAGE_SIZE * 8 - 1; 607 else 608 this_end_bit = end_bit; 609 610 data = lowmem_page_address(bitmap[page].page); 611 612 if (mode == BITMAP_OP_TEST_ALL_SET) { 613 while (bit <= this_end_bit) { 614 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 615 do { 616 if (data[bit / BITS_PER_LONG] != -1) 617 return false; 618 bit += BITS_PER_LONG; 619 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 620 continue; 621 } 622 if (!test_bit(bit, data)) 623 return false; 624 bit++; 625 } 626 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) { 627 while (bit <= this_end_bit) { 628 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 629 do { 630 if (data[bit / BITS_PER_LONG] != 0) 631 return false; 632 bit += BITS_PER_LONG; 633 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 634 continue; 635 } 636 if (test_bit(bit, data)) 637 return false; 638 bit++; 639 } 640 } else if (mode == BITMAP_OP_SET) { 641 while (bit <= this_end_bit) { 642 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 643 do { 644 data[bit / BITS_PER_LONG] = -1; 645 bit += BITS_PER_LONG; 646 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 647 continue; 648 } 649 __set_bit(bit, data); 650 bit++; 651 } 652 } else if (mode == BITMAP_OP_CLEAR) { 653 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1) 654 clear_page(data); 655 else { 656 while (bit <= this_end_bit) { 657 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 658 do { 659 data[bit / BITS_PER_LONG] = 0; 660 bit += BITS_PER_LONG; 661 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 662 continue; 663 } 664 __clear_bit(bit, data); 665 bit++; 666 } 667 } 668 } else { 669 BUG(); 670 } 671 672 if (unlikely(page < end_page)) { 673 bit = 0; 674 page++; 675 goto repeat; 676 } 677 678 return true; 679 } 680 681 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src) 682 { 683 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 684 unsigned int i; 685 686 for (i = 0; i < n_bitmap_pages; i++) { 687 unsigned long *dst_data = lowmem_page_address(dst[i].page); 688 unsigned long *src_data = lowmem_page_address(src[i].page); 689 690 copy_page(dst_data, src_data); 691 } 692 } 693 694 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector) 695 { 696 unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 697 unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8); 698 699 BUG_ON(bitmap_block >= ic->n_bitmap_blocks); 700 return &ic->bbs[bitmap_block]; 701 } 702 703 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset, 704 bool e, const char *function) 705 { 706 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 707 unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 708 709 if (unlikely(section >= ic->journal_sections) || 710 unlikely(offset >= limit)) { 711 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)", 712 function, section, offset, ic->journal_sections, limit); 713 BUG(); 714 } 715 #endif 716 } 717 718 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset, 719 unsigned int *pl_index, unsigned int *pl_offset) 720 { 721 unsigned int sector; 722 723 access_journal_check(ic, section, offset, false, "page_list_location"); 724 725 sector = section * ic->journal_section_sectors + offset; 726 727 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 728 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 729 } 730 731 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 732 unsigned int section, unsigned int offset, unsigned int *n_sectors) 733 { 734 unsigned int pl_index, pl_offset; 735 char *va; 736 737 page_list_location(ic, section, offset, &pl_index, &pl_offset); 738 739 if (n_sectors) 740 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 741 742 va = lowmem_page_address(pl[pl_index].page); 743 744 return (struct journal_sector *)(va + pl_offset); 745 } 746 747 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset) 748 { 749 return access_page_list(ic, ic->journal, section, offset, NULL); 750 } 751 752 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n) 753 { 754 unsigned int rel_sector, offset; 755 struct journal_sector *js; 756 757 access_journal_check(ic, section, n, true, "access_journal_entry"); 758 759 rel_sector = n % JOURNAL_BLOCK_SECTORS; 760 offset = n / JOURNAL_BLOCK_SECTORS; 761 762 js = access_journal(ic, section, rel_sector); 763 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 764 } 765 766 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n) 767 { 768 n <<= ic->sb->log2_sectors_per_block; 769 770 n += JOURNAL_BLOCK_SECTORS; 771 772 access_journal_check(ic, section, n, false, "access_journal_data"); 773 774 return access_journal(ic, section, n); 775 } 776 777 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE]) 778 { 779 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 780 int r; 781 unsigned int j, size; 782 783 desc->tfm = ic->journal_mac; 784 785 r = crypto_shash_init(desc); 786 if (unlikely(r < 0)) { 787 dm_integrity_io_error(ic, "crypto_shash_init", r); 788 goto err; 789 } 790 791 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 792 __le64 section_le; 793 794 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE); 795 if (unlikely(r < 0)) { 796 dm_integrity_io_error(ic, "crypto_shash_update", r); 797 goto err; 798 } 799 800 section_le = cpu_to_le64(section); 801 r = crypto_shash_update(desc, (__u8 *)§ion_le, sizeof(section_le)); 802 if (unlikely(r < 0)) { 803 dm_integrity_io_error(ic, "crypto_shash_update", r); 804 goto err; 805 } 806 } 807 808 for (j = 0; j < ic->journal_section_entries; j++) { 809 struct journal_entry *je = access_journal_entry(ic, section, j); 810 811 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector)); 812 if (unlikely(r < 0)) { 813 dm_integrity_io_error(ic, "crypto_shash_update", r); 814 goto err; 815 } 816 } 817 818 size = crypto_shash_digestsize(ic->journal_mac); 819 820 if (likely(size <= JOURNAL_MAC_SIZE)) { 821 r = crypto_shash_final(desc, result); 822 if (unlikely(r < 0)) { 823 dm_integrity_io_error(ic, "crypto_shash_final", r); 824 goto err; 825 } 826 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 827 } else { 828 __u8 digest[HASH_MAX_DIGESTSIZE]; 829 830 if (WARN_ON(size > sizeof(digest))) { 831 dm_integrity_io_error(ic, "digest_size", -EINVAL); 832 goto err; 833 } 834 r = crypto_shash_final(desc, digest); 835 if (unlikely(r < 0)) { 836 dm_integrity_io_error(ic, "crypto_shash_final", r); 837 goto err; 838 } 839 memcpy(result, digest, JOURNAL_MAC_SIZE); 840 } 841 842 return; 843 err: 844 memset(result, 0, JOURNAL_MAC_SIZE); 845 } 846 847 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr) 848 { 849 __u8 result[JOURNAL_MAC_SIZE]; 850 unsigned int j; 851 852 if (!ic->journal_mac) 853 return; 854 855 section_mac(ic, section, result); 856 857 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 858 struct journal_sector *js = access_journal(ic, section, j); 859 860 if (likely(wr)) 861 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 862 else { 863 if (crypto_memneq(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) { 864 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 865 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0); 866 } 867 } 868 } 869 } 870 871 static void complete_journal_op(void *context) 872 { 873 struct journal_completion *comp = context; 874 875 BUG_ON(!atomic_read(&comp->in_flight)); 876 if (likely(atomic_dec_and_test(&comp->in_flight))) 877 complete(&comp->comp); 878 } 879 880 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section, 881 unsigned int n_sections, struct journal_completion *comp) 882 { 883 struct async_submit_ctl submit; 884 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 885 unsigned int pl_index, pl_offset, section_index; 886 struct page_list *source_pl, *target_pl; 887 888 if (likely(encrypt)) { 889 source_pl = ic->journal; 890 target_pl = ic->journal_io; 891 } else { 892 source_pl = ic->journal_io; 893 target_pl = ic->journal; 894 } 895 896 page_list_location(ic, section, 0, &pl_index, &pl_offset); 897 898 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 899 900 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 901 902 section_index = pl_index; 903 904 do { 905 size_t this_step; 906 struct page *src_pages[2]; 907 struct page *dst_page; 908 909 while (unlikely(pl_index == section_index)) { 910 unsigned int dummy; 911 912 if (likely(encrypt)) 913 rw_section_mac(ic, section, true); 914 section++; 915 n_sections--; 916 if (!n_sections) 917 break; 918 page_list_location(ic, section, 0, §ion_index, &dummy); 919 } 920 921 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 922 dst_page = target_pl[pl_index].page; 923 src_pages[0] = source_pl[pl_index].page; 924 src_pages[1] = ic->journal_xor[pl_index].page; 925 926 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 927 928 pl_index++; 929 pl_offset = 0; 930 n_bytes -= this_step; 931 } while (n_bytes); 932 933 BUG_ON(n_sections); 934 935 async_tx_issue_pending_all(); 936 } 937 938 static void complete_journal_encrypt(void *data, int err) 939 { 940 struct journal_completion *comp = data; 941 942 if (unlikely(err)) { 943 if (likely(err == -EINPROGRESS)) { 944 complete(&comp->ic->crypto_backoff); 945 return; 946 } 947 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 948 } 949 complete_journal_op(comp); 950 } 951 952 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 953 { 954 int r; 955 956 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 957 complete_journal_encrypt, comp); 958 if (likely(encrypt)) 959 r = crypto_skcipher_encrypt(req); 960 else 961 r = crypto_skcipher_decrypt(req); 962 if (likely(!r)) 963 return false; 964 if (likely(r == -EINPROGRESS)) 965 return true; 966 if (likely(r == -EBUSY)) { 967 wait_for_completion(&comp->ic->crypto_backoff); 968 reinit_completion(&comp->ic->crypto_backoff); 969 return true; 970 } 971 dm_integrity_io_error(comp->ic, "encrypt", r); 972 return false; 973 } 974 975 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section, 976 unsigned int n_sections, struct journal_completion *comp) 977 { 978 struct scatterlist **source_sg; 979 struct scatterlist **target_sg; 980 981 atomic_add(2, &comp->in_flight); 982 983 if (likely(encrypt)) { 984 source_sg = ic->journal_scatterlist; 985 target_sg = ic->journal_io_scatterlist; 986 } else { 987 source_sg = ic->journal_io_scatterlist; 988 target_sg = ic->journal_scatterlist; 989 } 990 991 do { 992 struct skcipher_request *req; 993 unsigned int ivsize; 994 char *iv; 995 996 if (likely(encrypt)) 997 rw_section_mac(ic, section, true); 998 999 req = ic->sk_requests[section]; 1000 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 1001 iv = req->iv; 1002 1003 memcpy(iv, iv + ivsize, ivsize); 1004 1005 req->src = source_sg[section]; 1006 req->dst = target_sg[section]; 1007 1008 if (unlikely(do_crypt(encrypt, req, comp))) 1009 atomic_inc(&comp->in_flight); 1010 1011 section++; 1012 n_sections--; 1013 } while (n_sections); 1014 1015 atomic_dec(&comp->in_flight); 1016 complete_journal_op(comp); 1017 } 1018 1019 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section, 1020 unsigned int n_sections, struct journal_completion *comp) 1021 { 1022 if (ic->journal_xor) 1023 return xor_journal(ic, encrypt, section, n_sections, comp); 1024 else 1025 return crypt_journal(ic, encrypt, section, n_sections, comp); 1026 } 1027 1028 static void complete_journal_io(unsigned long error, void *context) 1029 { 1030 struct journal_completion *comp = context; 1031 1032 if (unlikely(error != 0)) 1033 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 1034 complete_journal_op(comp); 1035 } 1036 1037 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf, 1038 unsigned int sector, unsigned int n_sectors, 1039 struct journal_completion *comp) 1040 { 1041 struct dm_io_request io_req; 1042 struct dm_io_region io_loc; 1043 unsigned int pl_index, pl_offset; 1044 int r; 1045 1046 if (unlikely(dm_integrity_failed(ic))) { 1047 if (comp) 1048 complete_journal_io(-1UL, comp); 1049 return; 1050 } 1051 1052 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1053 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1054 1055 io_req.bi_opf = opf; 1056 io_req.mem.type = DM_IO_PAGE_LIST; 1057 if (ic->journal_io) 1058 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 1059 else 1060 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1061 io_req.mem.offset = pl_offset; 1062 if (likely(comp != NULL)) { 1063 io_req.notify.fn = complete_journal_io; 1064 io_req.notify.context = comp; 1065 } else { 1066 io_req.notify.fn = NULL; 1067 } 1068 io_req.client = ic->io; 1069 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 1070 io_loc.sector = ic->start + SB_SECTORS + sector; 1071 io_loc.count = n_sectors; 1072 1073 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 1074 if (unlikely(r)) { 1075 dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ? 1076 "reading journal" : "writing journal", r); 1077 if (comp) { 1078 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1079 complete_journal_io(-1UL, comp); 1080 } 1081 } 1082 } 1083 1084 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf, 1085 unsigned int section, unsigned int n_sections, 1086 struct journal_completion *comp) 1087 { 1088 unsigned int sector, n_sectors; 1089 1090 sector = section * ic->journal_section_sectors; 1091 n_sectors = n_sections * ic->journal_section_sectors; 1092 1093 rw_journal_sectors(ic, opf, sector, n_sectors, comp); 1094 } 1095 1096 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections) 1097 { 1098 struct journal_completion io_comp; 1099 struct journal_completion crypt_comp_1; 1100 struct journal_completion crypt_comp_2; 1101 unsigned int i; 1102 1103 io_comp.ic = ic; 1104 init_completion(&io_comp.comp); 1105 1106 if (commit_start + commit_sections <= ic->journal_sections) { 1107 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 1108 if (ic->journal_io) { 1109 crypt_comp_1.ic = ic; 1110 init_completion(&crypt_comp_1.comp); 1111 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1112 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 1113 wait_for_completion_io(&crypt_comp_1.comp); 1114 } else { 1115 for (i = 0; i < commit_sections; i++) 1116 rw_section_mac(ic, commit_start + i, true); 1117 } 1118 rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start, 1119 commit_sections, &io_comp); 1120 } else { 1121 unsigned int to_end; 1122 1123 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 1124 to_end = ic->journal_sections - commit_start; 1125 if (ic->journal_io) { 1126 crypt_comp_1.ic = ic; 1127 init_completion(&crypt_comp_1.comp); 1128 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1129 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 1130 if (try_wait_for_completion(&crypt_comp_1.comp)) { 1131 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 1132 commit_start, to_end, &io_comp); 1133 reinit_completion(&crypt_comp_1.comp); 1134 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1135 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 1136 wait_for_completion_io(&crypt_comp_1.comp); 1137 } else { 1138 crypt_comp_2.ic = ic; 1139 init_completion(&crypt_comp_2.comp); 1140 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 1141 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 1142 wait_for_completion_io(&crypt_comp_1.comp); 1143 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp); 1144 wait_for_completion_io(&crypt_comp_2.comp); 1145 } 1146 } else { 1147 for (i = 0; i < to_end; i++) 1148 rw_section_mac(ic, commit_start + i, true); 1149 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp); 1150 for (i = 0; i < commit_sections - to_end; i++) 1151 rw_section_mac(ic, i, true); 1152 } 1153 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp); 1154 } 1155 1156 wait_for_completion_io(&io_comp.comp); 1157 } 1158 1159 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset, 1160 unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data) 1161 { 1162 struct dm_io_request io_req; 1163 struct dm_io_region io_loc; 1164 int r; 1165 unsigned int sector, pl_index, pl_offset; 1166 1167 BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1)); 1168 1169 if (unlikely(dm_integrity_failed(ic))) { 1170 fn(-1UL, data); 1171 return; 1172 } 1173 1174 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 1175 1176 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1177 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1178 1179 io_req.bi_opf = REQ_OP_WRITE; 1180 io_req.mem.type = DM_IO_PAGE_LIST; 1181 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1182 io_req.mem.offset = pl_offset; 1183 io_req.notify.fn = fn; 1184 io_req.notify.context = data; 1185 io_req.client = ic->io; 1186 io_loc.bdev = ic->dev->bdev; 1187 io_loc.sector = target; 1188 io_loc.count = n_sectors; 1189 1190 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 1191 if (unlikely(r)) { 1192 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1193 fn(-1UL, data); 1194 } 1195 } 1196 1197 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2) 1198 { 1199 return range1->logical_sector < range2->logical_sector + range2->n_sectors && 1200 range1->logical_sector + range1->n_sectors > range2->logical_sector; 1201 } 1202 1203 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting) 1204 { 1205 struct rb_node **n = &ic->in_progress.rb_node; 1206 struct rb_node *parent; 1207 1208 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1)); 1209 1210 if (likely(check_waiting)) { 1211 struct dm_integrity_range *range; 1212 1213 list_for_each_entry(range, &ic->wait_list, wait_entry) { 1214 if (unlikely(ranges_overlap(range, new_range))) 1215 return false; 1216 } 1217 } 1218 1219 parent = NULL; 1220 1221 while (*n) { 1222 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 1223 1224 parent = *n; 1225 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) 1226 n = &range->node.rb_left; 1227 else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) 1228 n = &range->node.rb_right; 1229 else 1230 return false; 1231 } 1232 1233 rb_link_node(&new_range->node, parent, n); 1234 rb_insert_color(&new_range->node, &ic->in_progress); 1235 1236 return true; 1237 } 1238 1239 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1240 { 1241 rb_erase(&range->node, &ic->in_progress); 1242 while (unlikely(!list_empty(&ic->wait_list))) { 1243 struct dm_integrity_range *last_range = 1244 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry); 1245 struct task_struct *last_range_task; 1246 1247 last_range_task = last_range->task; 1248 list_del(&last_range->wait_entry); 1249 if (!add_new_range(ic, last_range, false)) { 1250 last_range->task = last_range_task; 1251 list_add(&last_range->wait_entry, &ic->wait_list); 1252 break; 1253 } 1254 last_range->waiting = false; 1255 wake_up_process(last_range_task); 1256 } 1257 } 1258 1259 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1260 { 1261 unsigned long flags; 1262 1263 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1264 remove_range_unlocked(ic, range); 1265 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1266 } 1267 1268 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1269 { 1270 new_range->waiting = true; 1271 list_add_tail(&new_range->wait_entry, &ic->wait_list); 1272 new_range->task = current; 1273 do { 1274 __set_current_state(TASK_UNINTERRUPTIBLE); 1275 spin_unlock_irq(&ic->endio_wait.lock); 1276 io_schedule(); 1277 spin_lock_irq(&ic->endio_wait.lock); 1278 } while (unlikely(new_range->waiting)); 1279 } 1280 1281 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1282 { 1283 if (unlikely(!add_new_range(ic, new_range, true))) 1284 wait_and_add_new_range(ic, new_range); 1285 } 1286 1287 static void init_journal_node(struct journal_node *node) 1288 { 1289 RB_CLEAR_NODE(&node->node); 1290 node->sector = (sector_t)-1; 1291 } 1292 1293 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 1294 { 1295 struct rb_node **link; 1296 struct rb_node *parent; 1297 1298 node->sector = sector; 1299 BUG_ON(!RB_EMPTY_NODE(&node->node)); 1300 1301 link = &ic->journal_tree_root.rb_node; 1302 parent = NULL; 1303 1304 while (*link) { 1305 struct journal_node *j; 1306 1307 parent = *link; 1308 j = container_of(parent, struct journal_node, node); 1309 if (sector < j->sector) 1310 link = &j->node.rb_left; 1311 else 1312 link = &j->node.rb_right; 1313 } 1314 1315 rb_link_node(&node->node, parent, link); 1316 rb_insert_color(&node->node, &ic->journal_tree_root); 1317 } 1318 1319 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 1320 { 1321 BUG_ON(RB_EMPTY_NODE(&node->node)); 1322 rb_erase(&node->node, &ic->journal_tree_root); 1323 init_journal_node(node); 1324 } 1325 1326 #define NOT_FOUND (-1U) 1327 1328 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 1329 { 1330 struct rb_node *n = ic->journal_tree_root.rb_node; 1331 unsigned int found = NOT_FOUND; 1332 1333 *next_sector = (sector_t)-1; 1334 while (n) { 1335 struct journal_node *j = container_of(n, struct journal_node, node); 1336 1337 if (sector == j->sector) 1338 found = j - ic->journal_tree; 1339 1340 if (sector < j->sector) { 1341 *next_sector = j->sector; 1342 n = j->node.rb_left; 1343 } else 1344 n = j->node.rb_right; 1345 } 1346 1347 return found; 1348 } 1349 1350 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector) 1351 { 1352 struct journal_node *node, *next_node; 1353 struct rb_node *next; 1354 1355 if (unlikely(pos >= ic->journal_entries)) 1356 return false; 1357 node = &ic->journal_tree[pos]; 1358 if (unlikely(RB_EMPTY_NODE(&node->node))) 1359 return false; 1360 if (unlikely(node->sector != sector)) 1361 return false; 1362 1363 next = rb_next(&node->node); 1364 if (unlikely(!next)) 1365 return true; 1366 1367 next_node = container_of(next, struct journal_node, node); 1368 return next_node->sector != sector; 1369 } 1370 1371 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 1372 { 1373 struct rb_node *next; 1374 struct journal_node *next_node; 1375 unsigned int next_section; 1376 1377 BUG_ON(RB_EMPTY_NODE(&node->node)); 1378 1379 next = rb_next(&node->node); 1380 if (unlikely(!next)) 1381 return false; 1382 1383 next_node = container_of(next, struct journal_node, node); 1384 1385 if (next_node->sector != node->sector) 1386 return false; 1387 1388 next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries; 1389 if (next_section >= ic->committed_section && 1390 next_section < ic->committed_section + ic->n_committed_sections) 1391 return true; 1392 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1393 return true; 1394 1395 return false; 1396 } 1397 1398 #define TAG_READ 0 1399 #define TAG_WRITE 1 1400 #define TAG_CMP 2 1401 1402 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1403 unsigned int *metadata_offset, unsigned int total_size, int op) 1404 { 1405 unsigned int hash_offset = 0; 1406 unsigned char mismatch_hash = 0; 1407 unsigned char mismatch_filler = !ic->discard; 1408 1409 do { 1410 unsigned char *data, *dp; 1411 struct dm_buffer *b; 1412 unsigned int to_copy; 1413 int r; 1414 1415 r = dm_integrity_failed(ic); 1416 if (unlikely(r)) 1417 return r; 1418 1419 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1420 if (IS_ERR(data)) 1421 return PTR_ERR(data); 1422 1423 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1424 dp = data + *metadata_offset; 1425 if (op == TAG_READ) { 1426 memcpy(tag, dp, to_copy); 1427 } else if (op == TAG_WRITE) { 1428 if (crypto_memneq(dp, tag, to_copy)) { 1429 memcpy(dp, tag, to_copy); 1430 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); 1431 } 1432 } else { 1433 /* e.g.: op == TAG_CMP */ 1434 1435 if (likely(is_power_of_2(ic->tag_size))) { 1436 if (unlikely(crypto_memneq(dp, tag, to_copy))) 1437 goto thorough_test; 1438 } else { 1439 unsigned int i, ts; 1440 thorough_test: 1441 ts = total_size; 1442 1443 for (i = 0; i < to_copy; i++, ts--) { 1444 /* 1445 * Warning: the control flow must not be 1446 * dependent on match/mismatch of 1447 * individual bytes. 1448 */ 1449 mismatch_hash |= dp[i] ^ tag[i]; 1450 mismatch_filler |= dp[i] ^ DISCARD_FILLER; 1451 hash_offset++; 1452 if (unlikely(hash_offset == ic->tag_size)) { 1453 if (unlikely(mismatch_hash) && unlikely(mismatch_filler)) { 1454 dm_bufio_release(b); 1455 return ts; 1456 } 1457 hash_offset = 0; 1458 mismatch_hash = 0; 1459 mismatch_filler = !ic->discard; 1460 } 1461 } 1462 } 1463 } 1464 dm_bufio_release(b); 1465 1466 tag += to_copy; 1467 *metadata_offset += to_copy; 1468 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1469 (*metadata_block)++; 1470 *metadata_offset = 0; 1471 } 1472 1473 if (unlikely(!is_power_of_2(ic->tag_size))) 1474 hash_offset = (hash_offset + to_copy) % ic->tag_size; 1475 1476 total_size -= to_copy; 1477 } while (unlikely(total_size)); 1478 1479 return 0; 1480 } 1481 1482 struct flush_request { 1483 struct dm_io_request io_req; 1484 struct dm_io_region io_reg; 1485 struct dm_integrity_c *ic; 1486 struct completion comp; 1487 }; 1488 1489 static void flush_notify(unsigned long error, void *fr_) 1490 { 1491 struct flush_request *fr = fr_; 1492 1493 if (unlikely(error != 0)) 1494 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO); 1495 complete(&fr->comp); 1496 } 1497 1498 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data) 1499 { 1500 int r; 1501 struct flush_request fr; 1502 1503 if (!ic->meta_dev) 1504 flush_data = false; 1505 if (flush_data) { 1506 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1507 fr.io_req.mem.type = DM_IO_KMEM; 1508 fr.io_req.mem.ptr.addr = NULL; 1509 fr.io_req.notify.fn = flush_notify; 1510 fr.io_req.notify.context = &fr; 1511 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio); 1512 fr.io_reg.bdev = ic->dev->bdev; 1513 fr.io_reg.sector = 0; 1514 fr.io_reg.count = 0; 1515 fr.ic = ic; 1516 init_completion(&fr.comp); 1517 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL, IOPRIO_DEFAULT); 1518 BUG_ON(r); 1519 } 1520 1521 r = dm_bufio_write_dirty_buffers(ic->bufio); 1522 if (unlikely(r)) 1523 dm_integrity_io_error(ic, "writing tags", r); 1524 1525 if (flush_data) 1526 wait_for_completion(&fr.comp); 1527 } 1528 1529 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1530 { 1531 DECLARE_WAITQUEUE(wait, current); 1532 1533 __add_wait_queue(&ic->endio_wait, &wait); 1534 __set_current_state(TASK_UNINTERRUPTIBLE); 1535 spin_unlock_irq(&ic->endio_wait.lock); 1536 io_schedule(); 1537 spin_lock_irq(&ic->endio_wait.lock); 1538 __remove_wait_queue(&ic->endio_wait, &wait); 1539 } 1540 1541 static void autocommit_fn(struct timer_list *t) 1542 { 1543 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer); 1544 1545 if (likely(!dm_integrity_failed(ic))) 1546 queue_work(ic->commit_wq, &ic->commit_work); 1547 } 1548 1549 static void schedule_autocommit(struct dm_integrity_c *ic) 1550 { 1551 if (!timer_pending(&ic->autocommit_timer)) 1552 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1553 } 1554 1555 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1556 { 1557 struct bio *bio; 1558 unsigned long flags; 1559 1560 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1561 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1562 bio_list_add(&ic->flush_bio_list, bio); 1563 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1564 1565 queue_work(ic->commit_wq, &ic->commit_work); 1566 } 1567 1568 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1569 { 1570 int r; 1571 1572 r = dm_integrity_failed(ic); 1573 if (unlikely(r) && !bio->bi_status) 1574 bio->bi_status = errno_to_blk_status(r); 1575 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) { 1576 unsigned long flags; 1577 1578 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1579 bio_list_add(&ic->synchronous_bios, bio); 1580 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 1581 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1582 return; 1583 } 1584 bio_endio(bio); 1585 } 1586 1587 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1588 { 1589 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1590 1591 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1592 submit_flush_bio(ic, dio); 1593 else 1594 do_endio(ic, bio); 1595 } 1596 1597 static void dec_in_flight(struct dm_integrity_io *dio) 1598 { 1599 if (atomic_dec_and_test(&dio->in_flight)) { 1600 struct dm_integrity_c *ic = dio->ic; 1601 struct bio *bio; 1602 1603 remove_range(ic, &dio->range); 1604 1605 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD)) 1606 schedule_autocommit(ic); 1607 1608 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1609 if (unlikely(dio->bi_status) && !bio->bi_status) 1610 bio->bi_status = dio->bi_status; 1611 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1612 dio->range.logical_sector += dio->range.n_sectors; 1613 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1614 INIT_WORK(&dio->work, integrity_bio_wait); 1615 queue_work(ic->offload_wq, &dio->work); 1616 return; 1617 } 1618 do_endio_flush(ic, dio); 1619 } 1620 } 1621 1622 static void integrity_end_io(struct bio *bio) 1623 { 1624 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1625 1626 dm_bio_restore(&dio->bio_details, bio); 1627 if (bio->bi_integrity) 1628 bio->bi_opf |= REQ_INTEGRITY; 1629 1630 if (dio->completion) 1631 complete(dio->completion); 1632 1633 dec_in_flight(dio); 1634 } 1635 1636 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1637 const char *data, char *result) 1638 { 1639 __le64 sector_le = cpu_to_le64(sector); 1640 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1641 int r; 1642 unsigned int digest_size; 1643 1644 req->tfm = ic->internal_hash; 1645 1646 r = crypto_shash_init(req); 1647 if (unlikely(r < 0)) { 1648 dm_integrity_io_error(ic, "crypto_shash_init", r); 1649 goto failed; 1650 } 1651 1652 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 1653 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE); 1654 if (unlikely(r < 0)) { 1655 dm_integrity_io_error(ic, "crypto_shash_update", r); 1656 goto failed; 1657 } 1658 } 1659 1660 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof(sector_le)); 1661 if (unlikely(r < 0)) { 1662 dm_integrity_io_error(ic, "crypto_shash_update", r); 1663 goto failed; 1664 } 1665 1666 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1667 if (unlikely(r < 0)) { 1668 dm_integrity_io_error(ic, "crypto_shash_update", r); 1669 goto failed; 1670 } 1671 1672 r = crypto_shash_final(req, result); 1673 if (unlikely(r < 0)) { 1674 dm_integrity_io_error(ic, "crypto_shash_final", r); 1675 goto failed; 1676 } 1677 1678 digest_size = crypto_shash_digestsize(ic->internal_hash); 1679 if (unlikely(digest_size < ic->tag_size)) 1680 memset(result + digest_size, 0, ic->tag_size - digest_size); 1681 1682 return; 1683 1684 failed: 1685 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1686 get_random_bytes(result, ic->tag_size); 1687 } 1688 1689 static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum) 1690 { 1691 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1692 struct dm_integrity_c *ic = dio->ic; 1693 struct bvec_iter iter; 1694 struct bio_vec bv; 1695 sector_t sector, logical_sector, area, offset; 1696 struct page *page; 1697 1698 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1699 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, 1700 &dio->metadata_offset); 1701 sector = get_data_sector(ic, area, offset); 1702 logical_sector = dio->range.logical_sector; 1703 1704 page = mempool_alloc(&ic->recheck_pool, GFP_NOIO); 1705 1706 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) { 1707 unsigned pos = 0; 1708 1709 do { 1710 sector_t alignment; 1711 char *mem; 1712 char *buffer = page_to_virt(page); 1713 int r; 1714 struct dm_io_request io_req; 1715 struct dm_io_region io_loc; 1716 io_req.bi_opf = REQ_OP_READ; 1717 io_req.mem.type = DM_IO_KMEM; 1718 io_req.mem.ptr.addr = buffer; 1719 io_req.notify.fn = NULL; 1720 io_req.client = ic->io; 1721 io_loc.bdev = ic->dev->bdev; 1722 io_loc.sector = sector; 1723 io_loc.count = ic->sectors_per_block; 1724 1725 /* Align the bio to logical block size */ 1726 alignment = dio->range.logical_sector | bio_sectors(bio) | (PAGE_SIZE >> SECTOR_SHIFT); 1727 alignment &= -alignment; 1728 io_loc.sector = round_down(io_loc.sector, alignment); 1729 io_loc.count += sector - io_loc.sector; 1730 buffer += (sector - io_loc.sector) << SECTOR_SHIFT; 1731 io_loc.count = round_up(io_loc.count, alignment); 1732 1733 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 1734 if (unlikely(r)) { 1735 dio->bi_status = errno_to_blk_status(r); 1736 goto free_ret; 1737 } 1738 1739 integrity_sector_checksum(ic, logical_sector, buffer, checksum); 1740 r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block, 1741 &dio->metadata_offset, ic->tag_size, TAG_CMP); 1742 if (r) { 1743 if (r > 0) { 1744 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx", 1745 bio->bi_bdev, logical_sector); 1746 atomic64_inc(&ic->number_of_mismatches); 1747 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum", 1748 bio, logical_sector, 0); 1749 r = -EILSEQ; 1750 } 1751 dio->bi_status = errno_to_blk_status(r); 1752 goto free_ret; 1753 } 1754 1755 mem = bvec_kmap_local(&bv); 1756 memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT); 1757 kunmap_local(mem); 1758 1759 pos += ic->sectors_per_block << SECTOR_SHIFT; 1760 sector += ic->sectors_per_block; 1761 logical_sector += ic->sectors_per_block; 1762 } while (pos < bv.bv_len); 1763 } 1764 free_ret: 1765 mempool_free(page, &ic->recheck_pool); 1766 } 1767 1768 static void integrity_metadata(struct work_struct *w) 1769 { 1770 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1771 struct dm_integrity_c *ic = dio->ic; 1772 1773 int r; 1774 1775 if (ic->internal_hash) { 1776 struct bvec_iter iter; 1777 struct bio_vec bv; 1778 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash); 1779 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1780 char *checksums; 1781 unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1782 char checksums_onstack[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1783 sector_t sector; 1784 unsigned int sectors_to_process; 1785 1786 if (unlikely(ic->mode == 'R')) 1787 goto skip_io; 1788 1789 if (likely(dio->op != REQ_OP_DISCARD)) 1790 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1791 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1792 else 1793 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1794 if (!checksums) { 1795 checksums = checksums_onstack; 1796 if (WARN_ON(extra_space && 1797 digest_size > sizeof(checksums_onstack))) { 1798 r = -EINVAL; 1799 goto error; 1800 } 1801 } 1802 1803 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1804 unsigned int bi_size = dio->bio_details.bi_iter.bi_size; 1805 unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE; 1806 unsigned int max_blocks = max_size / ic->tag_size; 1807 1808 memset(checksums, DISCARD_FILLER, max_size); 1809 1810 while (bi_size) { 1811 unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1812 1813 this_step_blocks = min(this_step_blocks, max_blocks); 1814 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1815 this_step_blocks * ic->tag_size, TAG_WRITE); 1816 if (unlikely(r)) { 1817 if (likely(checksums != checksums_onstack)) 1818 kfree(checksums); 1819 goto error; 1820 } 1821 1822 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1823 } 1824 1825 if (likely(checksums != checksums_onstack)) 1826 kfree(checksums); 1827 goto skip_io; 1828 } 1829 1830 sector = dio->range.logical_sector; 1831 sectors_to_process = dio->range.n_sectors; 1832 1833 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) { 1834 struct bio_vec bv_copy = bv; 1835 unsigned int pos; 1836 char *mem, *checksums_ptr; 1837 1838 again: 1839 mem = bvec_kmap_local(&bv_copy); 1840 pos = 0; 1841 checksums_ptr = checksums; 1842 do { 1843 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1844 checksums_ptr += ic->tag_size; 1845 sectors_to_process -= ic->sectors_per_block; 1846 pos += ic->sectors_per_block << SECTOR_SHIFT; 1847 sector += ic->sectors_per_block; 1848 } while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack); 1849 kunmap_local(mem); 1850 1851 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1852 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE); 1853 if (unlikely(r)) { 1854 if (likely(checksums != checksums_onstack)) 1855 kfree(checksums); 1856 if (r > 0) { 1857 integrity_recheck(dio, checksums_onstack); 1858 goto skip_io; 1859 } 1860 goto error; 1861 } 1862 1863 if (!sectors_to_process) 1864 break; 1865 1866 if (unlikely(pos < bv_copy.bv_len)) { 1867 bv_copy.bv_offset += pos; 1868 bv_copy.bv_len -= pos; 1869 goto again; 1870 } 1871 } 1872 1873 if (likely(checksums != checksums_onstack)) 1874 kfree(checksums); 1875 } else { 1876 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity; 1877 1878 if (bip) { 1879 struct bio_vec biv; 1880 struct bvec_iter iter; 1881 unsigned int data_to_process = dio->range.n_sectors; 1882 1883 sector_to_block(ic, data_to_process); 1884 data_to_process *= ic->tag_size; 1885 1886 bip_for_each_vec(biv, bip, iter) { 1887 unsigned char *tag; 1888 unsigned int this_len; 1889 1890 BUG_ON(PageHighMem(biv.bv_page)); 1891 tag = bvec_virt(&biv); 1892 this_len = min(biv.bv_len, data_to_process); 1893 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1894 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE); 1895 if (unlikely(r)) 1896 goto error; 1897 data_to_process -= this_len; 1898 if (!data_to_process) 1899 break; 1900 } 1901 } 1902 } 1903 skip_io: 1904 dec_in_flight(dio); 1905 return; 1906 error: 1907 dio->bi_status = errno_to_blk_status(r); 1908 dec_in_flight(dio); 1909 } 1910 1911 static inline bool dm_integrity_check_limits(struct dm_integrity_c *ic, sector_t logical_sector, struct bio *bio) 1912 { 1913 if (unlikely(logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1914 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1915 logical_sector, bio_sectors(bio), 1916 ic->provided_data_sectors); 1917 return false; 1918 } 1919 if (unlikely((logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) { 1920 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1921 ic->sectors_per_block, 1922 logical_sector, bio_sectors(bio)); 1923 return false; 1924 } 1925 if (ic->sectors_per_block > 1 && likely(bio_op(bio) != REQ_OP_DISCARD)) { 1926 struct bvec_iter iter; 1927 struct bio_vec bv; 1928 1929 bio_for_each_segment(bv, bio, iter) { 1930 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1931 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1932 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1933 return false; 1934 } 1935 } 1936 } 1937 return true; 1938 } 1939 1940 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1941 { 1942 struct dm_integrity_c *ic = ti->private; 1943 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1944 struct bio_integrity_payload *bip; 1945 1946 sector_t area, offset; 1947 1948 dio->ic = ic; 1949 dio->bi_status = 0; 1950 dio->op = bio_op(bio); 1951 1952 if (ic->mode == 'I') { 1953 bio->bi_iter.bi_sector = dm_target_offset(ic->ti, bio->bi_iter.bi_sector); 1954 dio->integrity_payload = NULL; 1955 dio->integrity_payload_from_mempool = false; 1956 dio->integrity_range_locked = false; 1957 return dm_integrity_map_inline(dio, true); 1958 } 1959 1960 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1961 if (ti->max_io_len) { 1962 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector); 1963 unsigned int log2_max_io_len = __fls(ti->max_io_len); 1964 sector_t start_boundary = sec >> log2_max_io_len; 1965 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len; 1966 1967 if (start_boundary < end_boundary) { 1968 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1)); 1969 1970 dm_accept_partial_bio(bio, len); 1971 } 1972 } 1973 } 1974 1975 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1976 submit_flush_bio(ic, dio); 1977 return DM_MAPIO_SUBMITTED; 1978 } 1979 1980 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1981 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA; 1982 if (unlikely(dio->fua)) { 1983 /* 1984 * Don't pass down the FUA flag because we have to flush 1985 * disk cache anyway. 1986 */ 1987 bio->bi_opf &= ~REQ_FUA; 1988 } 1989 if (unlikely(!dm_integrity_check_limits(ic, dio->range.logical_sector, bio))) 1990 return DM_MAPIO_KILL; 1991 1992 bip = bio_integrity(bio); 1993 if (!ic->internal_hash) { 1994 if (bip) { 1995 unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1996 1997 if (ic->log2_tag_size >= 0) 1998 wanted_tag_size <<= ic->log2_tag_size; 1999 else 2000 wanted_tag_size *= ic->tag_size; 2001 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 2002 DMERR("Invalid integrity data size %u, expected %u", 2003 bip->bip_iter.bi_size, wanted_tag_size); 2004 return DM_MAPIO_KILL; 2005 } 2006 } 2007 } else { 2008 if (unlikely(bip != NULL)) { 2009 DMERR("Unexpected integrity data when using internal hash"); 2010 return DM_MAPIO_KILL; 2011 } 2012 } 2013 2014 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ)) 2015 return DM_MAPIO_KILL; 2016 2017 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 2018 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 2019 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 2020 2021 dm_integrity_map_continue(dio, true); 2022 return DM_MAPIO_SUBMITTED; 2023 } 2024 2025 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 2026 unsigned int journal_section, unsigned int journal_entry) 2027 { 2028 struct dm_integrity_c *ic = dio->ic; 2029 sector_t logical_sector; 2030 unsigned int n_sectors; 2031 2032 logical_sector = dio->range.logical_sector; 2033 n_sectors = dio->range.n_sectors; 2034 do { 2035 struct bio_vec bv = bio_iovec(bio); 2036 char *mem; 2037 2038 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 2039 bv.bv_len = n_sectors << SECTOR_SHIFT; 2040 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 2041 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 2042 retry_kmap: 2043 mem = kmap_local_page(bv.bv_page); 2044 if (likely(dio->op == REQ_OP_WRITE)) 2045 flush_dcache_page(bv.bv_page); 2046 2047 do { 2048 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 2049 2050 if (unlikely(dio->op == REQ_OP_READ)) { 2051 struct journal_sector *js; 2052 char *mem_ptr; 2053 unsigned int s; 2054 2055 if (unlikely(journal_entry_is_inprogress(je))) { 2056 flush_dcache_page(bv.bv_page); 2057 kunmap_local(mem); 2058 2059 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2060 goto retry_kmap; 2061 } 2062 smp_rmb(); 2063 BUG_ON(journal_entry_get_sector(je) != logical_sector); 2064 js = access_journal_data(ic, journal_section, journal_entry); 2065 mem_ptr = mem + bv.bv_offset; 2066 s = 0; 2067 do { 2068 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 2069 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 2070 js++; 2071 mem_ptr += 1 << SECTOR_SHIFT; 2072 } while (++s < ic->sectors_per_block); 2073 #ifdef INTERNAL_VERIFY 2074 if (ic->internal_hash) { 2075 char checksums_onstack[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2076 2077 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 2078 if (unlikely(crypto_memneq(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 2079 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx", 2080 logical_sector); 2081 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum", 2082 bio, logical_sector, 0); 2083 } 2084 } 2085 #endif 2086 } 2087 2088 if (!ic->internal_hash) { 2089 struct bio_integrity_payload *bip = bio_integrity(bio); 2090 unsigned int tag_todo = ic->tag_size; 2091 char *tag_ptr = journal_entry_tag(ic, je); 2092 2093 if (bip) { 2094 do { 2095 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 2096 unsigned int tag_now = min(biv.bv_len, tag_todo); 2097 char *tag_addr; 2098 2099 BUG_ON(PageHighMem(biv.bv_page)); 2100 tag_addr = bvec_virt(&biv); 2101 if (likely(dio->op == REQ_OP_WRITE)) 2102 memcpy(tag_ptr, tag_addr, tag_now); 2103 else 2104 memcpy(tag_addr, tag_ptr, tag_now); 2105 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 2106 tag_ptr += tag_now; 2107 tag_todo -= tag_now; 2108 } while (unlikely(tag_todo)); 2109 } else if (likely(dio->op == REQ_OP_WRITE)) 2110 memset(tag_ptr, 0, tag_todo); 2111 } 2112 2113 if (likely(dio->op == REQ_OP_WRITE)) { 2114 struct journal_sector *js; 2115 unsigned int s; 2116 2117 js = access_journal_data(ic, journal_section, journal_entry); 2118 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 2119 2120 s = 0; 2121 do { 2122 je->last_bytes[s] = js[s].commit_id; 2123 } while (++s < ic->sectors_per_block); 2124 2125 if (ic->internal_hash) { 2126 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash); 2127 2128 if (unlikely(digest_size > ic->tag_size)) { 2129 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 2130 2131 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 2132 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 2133 } else 2134 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 2135 } 2136 2137 journal_entry_set_sector(je, logical_sector); 2138 } 2139 logical_sector += ic->sectors_per_block; 2140 2141 journal_entry++; 2142 if (unlikely(journal_entry == ic->journal_section_entries)) { 2143 journal_entry = 0; 2144 journal_section++; 2145 wraparound_section(ic, &journal_section); 2146 } 2147 2148 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 2149 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 2150 2151 if (unlikely(dio->op == REQ_OP_READ)) 2152 flush_dcache_page(bv.bv_page); 2153 kunmap_local(mem); 2154 } while (n_sectors); 2155 2156 if (likely(dio->op == REQ_OP_WRITE)) { 2157 smp_mb(); 2158 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 2159 wake_up(&ic->copy_to_journal_wait); 2160 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2161 queue_work(ic->commit_wq, &ic->commit_work); 2162 else 2163 schedule_autocommit(ic); 2164 } else 2165 remove_range(ic, &dio->range); 2166 2167 if (unlikely(bio->bi_iter.bi_size)) { 2168 sector_t area, offset; 2169 2170 dio->range.logical_sector = logical_sector; 2171 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 2172 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 2173 return true; 2174 } 2175 2176 return false; 2177 } 2178 2179 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 2180 { 2181 struct dm_integrity_c *ic = dio->ic; 2182 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 2183 unsigned int journal_section, journal_entry; 2184 unsigned int journal_read_pos; 2185 sector_t recalc_sector; 2186 struct completion read_comp; 2187 bool discard_retried = false; 2188 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ; 2189 2190 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D') 2191 need_sync_io = true; 2192 2193 if (need_sync_io && from_map) { 2194 INIT_WORK(&dio->work, integrity_bio_wait); 2195 queue_work(ic->offload_wq, &dio->work); 2196 return; 2197 } 2198 2199 lock_retry: 2200 spin_lock_irq(&ic->endio_wait.lock); 2201 retry: 2202 if (unlikely(dm_integrity_failed(ic))) { 2203 spin_unlock_irq(&ic->endio_wait.lock); 2204 do_endio(ic, bio); 2205 return; 2206 } 2207 dio->range.n_sectors = bio_sectors(bio); 2208 journal_read_pos = NOT_FOUND; 2209 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) { 2210 if (dio->op == REQ_OP_WRITE) { 2211 unsigned int next_entry, i, pos; 2212 unsigned int ws, we, range_sectors; 2213 2214 dio->range.n_sectors = min(dio->range.n_sectors, 2215 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block); 2216 if (unlikely(!dio->range.n_sectors)) { 2217 if (from_map) 2218 goto offload_to_thread; 2219 sleep_on_endio_wait(ic); 2220 goto retry; 2221 } 2222 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 2223 ic->free_sectors -= range_sectors; 2224 journal_section = ic->free_section; 2225 journal_entry = ic->free_section_entry; 2226 2227 next_entry = ic->free_section_entry + range_sectors; 2228 ic->free_section_entry = next_entry % ic->journal_section_entries; 2229 ic->free_section += next_entry / ic->journal_section_entries; 2230 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 2231 wraparound_section(ic, &ic->free_section); 2232 2233 pos = journal_section * ic->journal_section_entries + journal_entry; 2234 ws = journal_section; 2235 we = journal_entry; 2236 i = 0; 2237 do { 2238 struct journal_entry *je; 2239 2240 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 2241 pos++; 2242 if (unlikely(pos >= ic->journal_entries)) 2243 pos = 0; 2244 2245 je = access_journal_entry(ic, ws, we); 2246 BUG_ON(!journal_entry_is_unused(je)); 2247 journal_entry_set_inprogress(je); 2248 we++; 2249 if (unlikely(we == ic->journal_section_entries)) { 2250 we = 0; 2251 ws++; 2252 wraparound_section(ic, &ws); 2253 } 2254 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 2255 2256 spin_unlock_irq(&ic->endio_wait.lock); 2257 goto journal_read_write; 2258 } else { 2259 sector_t next_sector; 2260 2261 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2262 if (likely(journal_read_pos == NOT_FOUND)) { 2263 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 2264 dio->range.n_sectors = next_sector - dio->range.logical_sector; 2265 } else { 2266 unsigned int i; 2267 unsigned int jp = journal_read_pos + 1; 2268 2269 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 2270 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 2271 break; 2272 } 2273 dio->range.n_sectors = i; 2274 } 2275 } 2276 } 2277 if (unlikely(!add_new_range(ic, &dio->range, true))) { 2278 /* 2279 * We must not sleep in the request routine because it could 2280 * stall bios on current->bio_list. 2281 * So, we offload the bio to a workqueue if we have to sleep. 2282 */ 2283 if (from_map) { 2284 offload_to_thread: 2285 spin_unlock_irq(&ic->endio_wait.lock); 2286 INIT_WORK(&dio->work, integrity_bio_wait); 2287 queue_work(ic->wait_wq, &dio->work); 2288 return; 2289 } 2290 if (journal_read_pos != NOT_FOUND) 2291 dio->range.n_sectors = ic->sectors_per_block; 2292 wait_and_add_new_range(ic, &dio->range); 2293 /* 2294 * wait_and_add_new_range drops the spinlock, so the journal 2295 * may have been changed arbitrarily. We need to recheck. 2296 * To simplify the code, we restrict I/O size to just one block. 2297 */ 2298 if (journal_read_pos != NOT_FOUND) { 2299 sector_t next_sector; 2300 unsigned int new_pos; 2301 2302 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2303 if (unlikely(new_pos != journal_read_pos)) { 2304 remove_range_unlocked(ic, &dio->range); 2305 goto retry; 2306 } 2307 } 2308 } 2309 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) { 2310 sector_t next_sector; 2311 unsigned int new_pos; 2312 2313 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2314 if (unlikely(new_pos != NOT_FOUND) || 2315 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) { 2316 remove_range_unlocked(ic, &dio->range); 2317 spin_unlock_irq(&ic->endio_wait.lock); 2318 queue_work(ic->commit_wq, &ic->commit_work); 2319 flush_workqueue(ic->commit_wq); 2320 queue_work(ic->writer_wq, &ic->writer_work); 2321 flush_workqueue(ic->writer_wq); 2322 discard_retried = true; 2323 goto lock_retry; 2324 } 2325 } 2326 recalc_sector = le64_to_cpu(ic->sb->recalc_sector); 2327 spin_unlock_irq(&ic->endio_wait.lock); 2328 2329 if (unlikely(journal_read_pos != NOT_FOUND)) { 2330 journal_section = journal_read_pos / ic->journal_section_entries; 2331 journal_entry = journal_read_pos % ic->journal_section_entries; 2332 goto journal_read_write; 2333 } 2334 2335 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) { 2336 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2337 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2338 struct bitmap_block_status *bbs; 2339 2340 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector); 2341 spin_lock(&bbs->bio_queue_lock); 2342 bio_list_add(&bbs->bio_queue, bio); 2343 spin_unlock(&bbs->bio_queue_lock); 2344 queue_work(ic->writer_wq, &bbs->work); 2345 return; 2346 } 2347 } 2348 2349 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 2350 2351 if (need_sync_io) { 2352 init_completion(&read_comp); 2353 dio->completion = &read_comp; 2354 } else 2355 dio->completion = NULL; 2356 2357 dm_bio_record(&dio->bio_details, bio); 2358 bio_set_dev(bio, ic->dev->bdev); 2359 bio->bi_integrity = NULL; 2360 bio->bi_opf &= ~REQ_INTEGRITY; 2361 bio->bi_end_io = integrity_end_io; 2362 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 2363 2364 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) { 2365 integrity_metadata(&dio->work); 2366 dm_integrity_flush_buffers(ic, false); 2367 2368 dio->in_flight = (atomic_t)ATOMIC_INIT(1); 2369 dio->completion = NULL; 2370 2371 submit_bio_noacct(bio); 2372 2373 return; 2374 } 2375 2376 submit_bio_noacct(bio); 2377 2378 if (need_sync_io) { 2379 wait_for_completion_io(&read_comp); 2380 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 2381 dio->range.logical_sector + dio->range.n_sectors > recalc_sector) 2382 goto skip_check; 2383 if (ic->mode == 'B') { 2384 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector, 2385 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2386 goto skip_check; 2387 } 2388 2389 if (likely(!bio->bi_status)) 2390 integrity_metadata(&dio->work); 2391 else 2392 skip_check: 2393 dec_in_flight(dio); 2394 } else { 2395 INIT_WORK(&dio->work, integrity_metadata); 2396 queue_work(ic->metadata_wq, &dio->work); 2397 } 2398 2399 return; 2400 2401 journal_read_write: 2402 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 2403 goto lock_retry; 2404 2405 do_endio_flush(ic, dio); 2406 } 2407 2408 static int dm_integrity_map_inline(struct dm_integrity_io *dio, bool from_map) 2409 { 2410 struct dm_integrity_c *ic = dio->ic; 2411 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 2412 struct bio_integrity_payload *bip; 2413 unsigned ret; 2414 sector_t recalc_sector; 2415 2416 if (unlikely(bio_integrity(bio))) { 2417 bio->bi_status = BLK_STS_NOTSUPP; 2418 bio_endio(bio); 2419 return DM_MAPIO_SUBMITTED; 2420 } 2421 2422 bio_set_dev(bio, ic->dev->bdev); 2423 if (unlikely((bio->bi_opf & REQ_PREFLUSH) != 0)) 2424 return DM_MAPIO_REMAPPED; 2425 2426 retry: 2427 if (!dio->integrity_payload) { 2428 unsigned digest_size, extra_size; 2429 dio->payload_len = ic->tuple_size * (bio_sectors(bio) >> ic->sb->log2_sectors_per_block); 2430 digest_size = crypto_shash_digestsize(ic->internal_hash); 2431 extra_size = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 2432 dio->payload_len += extra_size; 2433 dio->integrity_payload = kmalloc(dio->payload_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 2434 if (unlikely(!dio->integrity_payload)) { 2435 const unsigned x_size = PAGE_SIZE << 1; 2436 if (dio->payload_len > x_size) { 2437 unsigned sectors = ((x_size - extra_size) / ic->tuple_size) << ic->sb->log2_sectors_per_block; 2438 if (WARN_ON(!sectors || sectors >= bio_sectors(bio))) { 2439 bio->bi_status = BLK_STS_NOTSUPP; 2440 bio_endio(bio); 2441 return DM_MAPIO_SUBMITTED; 2442 } 2443 dm_accept_partial_bio(bio, sectors); 2444 goto retry; 2445 } 2446 } 2447 } 2448 2449 dio->range.logical_sector = bio->bi_iter.bi_sector; 2450 dio->range.n_sectors = bio_sectors(bio); 2451 2452 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) 2453 goto skip_spinlock; 2454 #ifdef CONFIG_64BIT 2455 /* 2456 * On 64-bit CPUs we can optimize the lock away (so that it won't cause 2457 * cache line bouncing) and use acquire/release barriers instead. 2458 * 2459 * Paired with smp_store_release in integrity_recalc_inline. 2460 */ 2461 recalc_sector = le64_to_cpu(smp_load_acquire(&ic->sb->recalc_sector)); 2462 if (likely(dio->range.logical_sector + dio->range.n_sectors <= recalc_sector)) 2463 goto skip_spinlock; 2464 #endif 2465 spin_lock_irq(&ic->endio_wait.lock); 2466 recalc_sector = le64_to_cpu(ic->sb->recalc_sector); 2467 if (dio->range.logical_sector + dio->range.n_sectors <= recalc_sector) 2468 goto skip_unlock; 2469 if (unlikely(!add_new_range(ic, &dio->range, true))) { 2470 if (from_map) { 2471 spin_unlock_irq(&ic->endio_wait.lock); 2472 INIT_WORK(&dio->work, integrity_bio_wait); 2473 queue_work(ic->wait_wq, &dio->work); 2474 return DM_MAPIO_SUBMITTED; 2475 } 2476 wait_and_add_new_range(ic, &dio->range); 2477 } 2478 dio->integrity_range_locked = true; 2479 skip_unlock: 2480 spin_unlock_irq(&ic->endio_wait.lock); 2481 skip_spinlock: 2482 2483 if (unlikely(!dio->integrity_payload)) { 2484 dio->integrity_payload = page_to_virt((struct page *)mempool_alloc(&ic->recheck_pool, GFP_NOIO)); 2485 dio->integrity_payload_from_mempool = true; 2486 } 2487 2488 dio->bio_details.bi_iter = bio->bi_iter; 2489 2490 if (unlikely(!dm_integrity_check_limits(ic, bio->bi_iter.bi_sector, bio))) { 2491 return DM_MAPIO_KILL; 2492 } 2493 2494 bio->bi_iter.bi_sector += ic->start + SB_SECTORS; 2495 2496 bip = bio_integrity_alloc(bio, GFP_NOIO, 1); 2497 if (IS_ERR(bip)) { 2498 bio->bi_status = errno_to_blk_status(PTR_ERR(bip)); 2499 bio_endio(bio); 2500 return DM_MAPIO_SUBMITTED; 2501 } 2502 2503 if (dio->op == REQ_OP_WRITE) { 2504 unsigned pos = 0; 2505 while (dio->bio_details.bi_iter.bi_size) { 2506 struct bio_vec bv = bio_iter_iovec(bio, dio->bio_details.bi_iter); 2507 const char *mem = bvec_kmap_local(&bv); 2508 if (ic->tag_size < ic->tuple_size) 2509 memset(dio->integrity_payload + pos + ic->tag_size, 0, ic->tuple_size - ic->tuple_size); 2510 integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, mem, dio->integrity_payload + pos); 2511 kunmap_local(mem); 2512 pos += ic->tuple_size; 2513 bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT); 2514 } 2515 } 2516 2517 ret = bio_integrity_add_page(bio, virt_to_page(dio->integrity_payload), 2518 dio->payload_len, offset_in_page(dio->integrity_payload)); 2519 if (unlikely(ret != dio->payload_len)) { 2520 bio->bi_status = BLK_STS_RESOURCE; 2521 bio_endio(bio); 2522 return DM_MAPIO_SUBMITTED; 2523 } 2524 2525 return DM_MAPIO_REMAPPED; 2526 } 2527 2528 static inline void dm_integrity_free_payload(struct dm_integrity_io *dio) 2529 { 2530 struct dm_integrity_c *ic = dio->ic; 2531 if (unlikely(dio->integrity_payload_from_mempool)) 2532 mempool_free(virt_to_page(dio->integrity_payload), &ic->recheck_pool); 2533 else 2534 kfree(dio->integrity_payload); 2535 dio->integrity_payload = NULL; 2536 dio->integrity_payload_from_mempool = false; 2537 } 2538 2539 static void dm_integrity_inline_recheck(struct work_struct *w) 2540 { 2541 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 2542 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 2543 struct dm_integrity_c *ic = dio->ic; 2544 struct bio *outgoing_bio; 2545 void *outgoing_data; 2546 2547 dio->integrity_payload = page_to_virt((struct page *)mempool_alloc(&ic->recheck_pool, GFP_NOIO)); 2548 dio->integrity_payload_from_mempool = true; 2549 2550 outgoing_data = dio->integrity_payload + PAGE_SIZE; 2551 2552 while (dio->bio_details.bi_iter.bi_size) { 2553 char digest[HASH_MAX_DIGESTSIZE]; 2554 int r; 2555 struct bio_integrity_payload *bip; 2556 struct bio_vec bv; 2557 char *mem; 2558 2559 outgoing_bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_READ, GFP_NOIO, &ic->recheck_bios); 2560 2561 r = bio_add_page(outgoing_bio, virt_to_page(outgoing_data), ic->sectors_per_block << SECTOR_SHIFT, 0); 2562 if (unlikely(r != (ic->sectors_per_block << SECTOR_SHIFT))) { 2563 bio_put(outgoing_bio); 2564 bio->bi_status = BLK_STS_RESOURCE; 2565 bio_endio(bio); 2566 return; 2567 } 2568 2569 bip = bio_integrity_alloc(outgoing_bio, GFP_NOIO, 1); 2570 if (IS_ERR(bip)) { 2571 bio_put(outgoing_bio); 2572 bio->bi_status = errno_to_blk_status(PTR_ERR(bip)); 2573 bio_endio(bio); 2574 return; 2575 } 2576 2577 r = bio_integrity_add_page(outgoing_bio, virt_to_page(dio->integrity_payload), ic->tuple_size, 0); 2578 if (unlikely(r != ic->tuple_size)) { 2579 bio_put(outgoing_bio); 2580 bio->bi_status = BLK_STS_RESOURCE; 2581 bio_endio(bio); 2582 return; 2583 } 2584 2585 outgoing_bio->bi_iter.bi_sector = dio->bio_details.bi_iter.bi_sector + ic->start + SB_SECTORS; 2586 2587 r = submit_bio_wait(outgoing_bio); 2588 if (unlikely(r != 0)) { 2589 bio_put(outgoing_bio); 2590 bio->bi_status = errno_to_blk_status(r); 2591 bio_endio(bio); 2592 return; 2593 } 2594 bio_put(outgoing_bio); 2595 2596 integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, outgoing_data, digest); 2597 if (unlikely(crypto_memneq(digest, dio->integrity_payload, min(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)))) { 2598 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx", 2599 ic->dev->bdev, dio->bio_details.bi_iter.bi_sector); 2600 atomic64_inc(&ic->number_of_mismatches); 2601 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum", 2602 bio, dio->bio_details.bi_iter.bi_sector, 0); 2603 2604 bio->bi_status = BLK_STS_PROTECTION; 2605 bio_endio(bio); 2606 return; 2607 } 2608 2609 bv = bio_iter_iovec(bio, dio->bio_details.bi_iter); 2610 mem = bvec_kmap_local(&bv); 2611 memcpy(mem, outgoing_data, ic->sectors_per_block << SECTOR_SHIFT); 2612 kunmap_local(mem); 2613 2614 bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT); 2615 } 2616 2617 bio_endio(bio); 2618 } 2619 2620 static int dm_integrity_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status) 2621 { 2622 struct dm_integrity_c *ic = ti->private; 2623 if (ic->mode == 'I') { 2624 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2625 if (dio->op == REQ_OP_READ && likely(*status == BLK_STS_OK)) { 2626 unsigned pos = 0; 2627 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 2628 unlikely(dio->integrity_range_locked)) 2629 goto skip_check; 2630 while (dio->bio_details.bi_iter.bi_size) { 2631 char digest[HASH_MAX_DIGESTSIZE]; 2632 struct bio_vec bv = bio_iter_iovec(bio, dio->bio_details.bi_iter); 2633 char *mem = bvec_kmap_local(&bv); 2634 //memset(mem, 0xff, ic->sectors_per_block << SECTOR_SHIFT); 2635 integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, mem, digest); 2636 if (unlikely(crypto_memneq(digest, dio->integrity_payload + pos, 2637 min(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)))) { 2638 kunmap_local(mem); 2639 dm_integrity_free_payload(dio); 2640 INIT_WORK(&dio->work, dm_integrity_inline_recheck); 2641 queue_work(ic->offload_wq, &dio->work); 2642 return DM_ENDIO_INCOMPLETE; 2643 } 2644 kunmap_local(mem); 2645 pos += ic->tuple_size; 2646 bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT); 2647 } 2648 } 2649 skip_check: 2650 dm_integrity_free_payload(dio); 2651 if (unlikely(dio->integrity_range_locked)) 2652 remove_range(ic, &dio->range); 2653 } 2654 return DM_ENDIO_DONE; 2655 } 2656 2657 static void integrity_bio_wait(struct work_struct *w) 2658 { 2659 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 2660 struct dm_integrity_c *ic = dio->ic; 2661 2662 if (ic->mode == 'I') { 2663 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 2664 int r = dm_integrity_map_inline(dio, false); 2665 switch (r) { 2666 case DM_MAPIO_KILL: 2667 bio->bi_status = BLK_STS_IOERR; 2668 fallthrough; 2669 case DM_MAPIO_REMAPPED: 2670 submit_bio_noacct(bio); 2671 fallthrough; 2672 case DM_MAPIO_SUBMITTED: 2673 return; 2674 default: 2675 BUG(); 2676 } 2677 } else { 2678 dm_integrity_map_continue(dio, false); 2679 } 2680 } 2681 2682 static void pad_uncommitted(struct dm_integrity_c *ic) 2683 { 2684 if (ic->free_section_entry) { 2685 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 2686 ic->free_section_entry = 0; 2687 ic->free_section++; 2688 wraparound_section(ic, &ic->free_section); 2689 ic->n_uncommitted_sections++; 2690 } 2691 if (WARN_ON(ic->journal_sections * ic->journal_section_entries != 2692 (ic->n_uncommitted_sections + ic->n_committed_sections) * 2693 ic->journal_section_entries + ic->free_sectors)) { 2694 DMCRIT("journal_sections %u, journal_section_entries %u, " 2695 "n_uncommitted_sections %u, n_committed_sections %u, " 2696 "journal_section_entries %u, free_sectors %u", 2697 ic->journal_sections, ic->journal_section_entries, 2698 ic->n_uncommitted_sections, ic->n_committed_sections, 2699 ic->journal_section_entries, ic->free_sectors); 2700 } 2701 } 2702 2703 static void integrity_commit(struct work_struct *w) 2704 { 2705 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 2706 unsigned int commit_start, commit_sections; 2707 unsigned int i, j, n; 2708 struct bio *flushes; 2709 2710 timer_delete(&ic->autocommit_timer); 2711 2712 if (ic->mode == 'I') 2713 return; 2714 2715 spin_lock_irq(&ic->endio_wait.lock); 2716 flushes = bio_list_get(&ic->flush_bio_list); 2717 if (unlikely(ic->mode != 'J')) { 2718 spin_unlock_irq(&ic->endio_wait.lock); 2719 dm_integrity_flush_buffers(ic, true); 2720 goto release_flush_bios; 2721 } 2722 2723 pad_uncommitted(ic); 2724 commit_start = ic->uncommitted_section; 2725 commit_sections = ic->n_uncommitted_sections; 2726 spin_unlock_irq(&ic->endio_wait.lock); 2727 2728 if (!commit_sections) 2729 goto release_flush_bios; 2730 2731 ic->wrote_to_journal = true; 2732 2733 i = commit_start; 2734 for (n = 0; n < commit_sections; n++) { 2735 for (j = 0; j < ic->journal_section_entries; j++) { 2736 struct journal_entry *je; 2737 2738 je = access_journal_entry(ic, i, j); 2739 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2740 } 2741 for (j = 0; j < ic->journal_section_sectors; j++) { 2742 struct journal_sector *js; 2743 2744 js = access_journal(ic, i, j); 2745 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 2746 } 2747 i++; 2748 if (unlikely(i >= ic->journal_sections)) 2749 ic->commit_seq = next_commit_seq(ic->commit_seq); 2750 wraparound_section(ic, &i); 2751 } 2752 smp_rmb(); 2753 2754 write_journal(ic, commit_start, commit_sections); 2755 2756 spin_lock_irq(&ic->endio_wait.lock); 2757 ic->uncommitted_section += commit_sections; 2758 wraparound_section(ic, &ic->uncommitted_section); 2759 ic->n_uncommitted_sections -= commit_sections; 2760 ic->n_committed_sections += commit_sections; 2761 spin_unlock_irq(&ic->endio_wait.lock); 2762 2763 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2764 queue_work(ic->writer_wq, &ic->writer_work); 2765 2766 release_flush_bios: 2767 while (flushes) { 2768 struct bio *next = flushes->bi_next; 2769 2770 flushes->bi_next = NULL; 2771 do_endio(ic, flushes); 2772 flushes = next; 2773 } 2774 } 2775 2776 static void complete_copy_from_journal(unsigned long error, void *context) 2777 { 2778 struct journal_io *io = context; 2779 struct journal_completion *comp = io->comp; 2780 struct dm_integrity_c *ic = comp->ic; 2781 2782 remove_range(ic, &io->range); 2783 mempool_free(io, &ic->journal_io_mempool); 2784 if (unlikely(error != 0)) 2785 dm_integrity_io_error(ic, "copying from journal", -EIO); 2786 complete_journal_op(comp); 2787 } 2788 2789 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 2790 struct journal_entry *je) 2791 { 2792 unsigned int s = 0; 2793 2794 do { 2795 js->commit_id = je->last_bytes[s]; 2796 js++; 2797 } while (++s < ic->sectors_per_block); 2798 } 2799 2800 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start, 2801 unsigned int write_sections, bool from_replay) 2802 { 2803 unsigned int i, j, n; 2804 struct journal_completion comp; 2805 struct blk_plug plug; 2806 2807 blk_start_plug(&plug); 2808 2809 comp.ic = ic; 2810 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2811 init_completion(&comp.comp); 2812 2813 i = write_start; 2814 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 2815 #ifndef INTERNAL_VERIFY 2816 if (unlikely(from_replay)) 2817 #endif 2818 rw_section_mac(ic, i, false); 2819 for (j = 0; j < ic->journal_section_entries; j++) { 2820 struct journal_entry *je = access_journal_entry(ic, i, j); 2821 sector_t sec, area, offset; 2822 unsigned int k, l, next_loop; 2823 sector_t metadata_block; 2824 unsigned int metadata_offset; 2825 struct journal_io *io; 2826 2827 if (journal_entry_is_unused(je)) 2828 continue; 2829 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 2830 sec = journal_entry_get_sector(je); 2831 if (unlikely(from_replay)) { 2832 if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) { 2833 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 2834 sec &= ~(sector_t)(ic->sectors_per_block - 1); 2835 } 2836 if (unlikely(sec >= ic->provided_data_sectors)) { 2837 journal_entry_set_unused(je); 2838 continue; 2839 } 2840 } 2841 get_area_and_offset(ic, sec, &area, &offset); 2842 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 2843 for (k = j + 1; k < ic->journal_section_entries; k++) { 2844 struct journal_entry *je2 = access_journal_entry(ic, i, k); 2845 sector_t sec2, area2, offset2; 2846 2847 if (journal_entry_is_unused(je2)) 2848 break; 2849 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 2850 sec2 = journal_entry_get_sector(je2); 2851 if (unlikely(sec2 >= ic->provided_data_sectors)) 2852 break; 2853 get_area_and_offset(ic, sec2, &area2, &offset2); 2854 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 2855 break; 2856 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 2857 } 2858 next_loop = k - 1; 2859 2860 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); 2861 io->comp = ∁ 2862 io->range.logical_sector = sec; 2863 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 2864 2865 spin_lock_irq(&ic->endio_wait.lock); 2866 add_new_range_and_wait(ic, &io->range); 2867 2868 if (likely(!from_replay)) { 2869 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 2870 2871 /* don't write if there is newer committed sector */ 2872 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 2873 struct journal_entry *je2 = access_journal_entry(ic, i, j); 2874 2875 journal_entry_set_unused(je2); 2876 remove_journal_node(ic, §ion_node[j]); 2877 j++; 2878 sec += ic->sectors_per_block; 2879 offset += ic->sectors_per_block; 2880 } 2881 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 2882 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 2883 2884 journal_entry_set_unused(je2); 2885 remove_journal_node(ic, §ion_node[k - 1]); 2886 k--; 2887 } 2888 if (j == k) { 2889 remove_range_unlocked(ic, &io->range); 2890 spin_unlock_irq(&ic->endio_wait.lock); 2891 mempool_free(io, &ic->journal_io_mempool); 2892 goto skip_io; 2893 } 2894 for (l = j; l < k; l++) 2895 remove_journal_node(ic, §ion_node[l]); 2896 } 2897 spin_unlock_irq(&ic->endio_wait.lock); 2898 2899 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2900 for (l = j; l < k; l++) { 2901 int r; 2902 struct journal_entry *je2 = access_journal_entry(ic, i, l); 2903 2904 if ( 2905 #ifndef INTERNAL_VERIFY 2906 unlikely(from_replay) && 2907 #endif 2908 ic->internal_hash) { 2909 char test_tag[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2910 2911 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 2912 (char *)access_journal_data(ic, i, l), test_tag); 2913 if (unlikely(crypto_memneq(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) { 2914 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 2915 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0); 2916 } 2917 } 2918 2919 journal_entry_set_unused(je2); 2920 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 2921 ic->tag_size, TAG_WRITE); 2922 if (unlikely(r)) 2923 dm_integrity_io_error(ic, "reading tags", r); 2924 } 2925 2926 atomic_inc(&comp.in_flight); 2927 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 2928 (k - j) << ic->sb->log2_sectors_per_block, 2929 get_data_sector(ic, area, offset), 2930 complete_copy_from_journal, io); 2931 skip_io: 2932 j = next_loop; 2933 } 2934 } 2935 2936 dm_bufio_write_dirty_buffers_async(ic->bufio); 2937 2938 blk_finish_plug(&plug); 2939 2940 complete_journal_op(&comp); 2941 wait_for_completion_io(&comp.comp); 2942 2943 dm_integrity_flush_buffers(ic, true); 2944 } 2945 2946 static void integrity_writer(struct work_struct *w) 2947 { 2948 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 2949 unsigned int write_start, write_sections; 2950 unsigned int prev_free_sectors; 2951 2952 spin_lock_irq(&ic->endio_wait.lock); 2953 write_start = ic->committed_section; 2954 write_sections = ic->n_committed_sections; 2955 spin_unlock_irq(&ic->endio_wait.lock); 2956 2957 if (!write_sections) 2958 return; 2959 2960 do_journal_write(ic, write_start, write_sections, false); 2961 2962 spin_lock_irq(&ic->endio_wait.lock); 2963 2964 ic->committed_section += write_sections; 2965 wraparound_section(ic, &ic->committed_section); 2966 ic->n_committed_sections -= write_sections; 2967 2968 prev_free_sectors = ic->free_sectors; 2969 ic->free_sectors += write_sections * ic->journal_section_entries; 2970 if (unlikely(!prev_free_sectors)) 2971 wake_up_locked(&ic->endio_wait); 2972 2973 spin_unlock_irq(&ic->endio_wait.lock); 2974 } 2975 2976 static void recalc_write_super(struct dm_integrity_c *ic) 2977 { 2978 int r; 2979 2980 dm_integrity_flush_buffers(ic, false); 2981 if (dm_integrity_failed(ic)) 2982 return; 2983 2984 r = sync_rw_sb(ic, REQ_OP_WRITE); 2985 if (unlikely(r)) 2986 dm_integrity_io_error(ic, "writing superblock", r); 2987 } 2988 2989 static void integrity_recalc(struct work_struct *w) 2990 { 2991 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 2992 size_t recalc_tags_size; 2993 u8 *recalc_buffer = NULL; 2994 u8 *recalc_tags = NULL; 2995 struct dm_integrity_range range; 2996 struct dm_io_request io_req; 2997 struct dm_io_region io_loc; 2998 sector_t area, offset; 2999 sector_t metadata_block; 3000 unsigned int metadata_offset; 3001 sector_t logical_sector, n_sectors; 3002 __u8 *t; 3003 unsigned int i; 3004 int r; 3005 unsigned int super_counter = 0; 3006 unsigned recalc_sectors = RECALC_SECTORS; 3007 3008 retry: 3009 recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO); 3010 if (!recalc_buffer) { 3011 oom: 3012 recalc_sectors >>= 1; 3013 if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block) 3014 goto retry; 3015 DMCRIT("out of memory for recalculate buffer - recalculation disabled"); 3016 goto free_ret; 3017 } 3018 recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 3019 if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size) 3020 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size; 3021 recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO); 3022 if (!recalc_tags) { 3023 vfree(recalc_buffer); 3024 recalc_buffer = NULL; 3025 goto oom; 3026 } 3027 3028 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector)); 3029 3030 spin_lock_irq(&ic->endio_wait.lock); 3031 3032 next_chunk: 3033 3034 if (unlikely(dm_post_suspending(ic->ti))) 3035 goto unlock_ret; 3036 3037 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 3038 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) { 3039 if (ic->mode == 'B') { 3040 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3041 DEBUG_print("queue_delayed_work: bitmap_flush_work\n"); 3042 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 3043 } 3044 goto unlock_ret; 3045 } 3046 3047 get_area_and_offset(ic, range.logical_sector, &area, &offset); 3048 range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector); 3049 if (!ic->meta_dev) 3050 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset); 3051 3052 add_new_range_and_wait(ic, &range); 3053 spin_unlock_irq(&ic->endio_wait.lock); 3054 logical_sector = range.logical_sector; 3055 n_sectors = range.n_sectors; 3056 3057 if (ic->mode == 'B') { 3058 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 3059 goto advance_and_next; 3060 3061 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, 3062 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 3063 logical_sector += ic->sectors_per_block; 3064 n_sectors -= ic->sectors_per_block; 3065 cond_resched(); 3066 } 3067 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block, 3068 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 3069 n_sectors -= ic->sectors_per_block; 3070 cond_resched(); 3071 } 3072 get_area_and_offset(ic, logical_sector, &area, &offset); 3073 } 3074 3075 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors); 3076 3077 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 3078 recalc_write_super(ic); 3079 if (ic->mode == 'B') 3080 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 3081 3082 super_counter = 0; 3083 } 3084 3085 if (unlikely(dm_integrity_failed(ic))) 3086 goto err; 3087 3088 io_req.bi_opf = REQ_OP_READ; 3089 io_req.mem.type = DM_IO_VMA; 3090 io_req.mem.ptr.addr = recalc_buffer; 3091 io_req.notify.fn = NULL; 3092 io_req.client = ic->io; 3093 io_loc.bdev = ic->dev->bdev; 3094 io_loc.sector = get_data_sector(ic, area, offset); 3095 io_loc.count = n_sectors; 3096 3097 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 3098 if (unlikely(r)) { 3099 dm_integrity_io_error(ic, "reading data", r); 3100 goto err; 3101 } 3102 3103 t = recalc_tags; 3104 for (i = 0; i < n_sectors; i += ic->sectors_per_block) { 3105 integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t); 3106 t += ic->tag_size; 3107 } 3108 3109 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 3110 3111 r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE); 3112 if (unlikely(r)) { 3113 dm_integrity_io_error(ic, "writing tags", r); 3114 goto err; 3115 } 3116 3117 if (ic->mode == 'B') { 3118 sector_t start, end; 3119 3120 start = (range.logical_sector >> 3121 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 3122 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 3123 end = ((range.logical_sector + range.n_sectors) >> 3124 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 3125 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 3126 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR); 3127 } 3128 3129 advance_and_next: 3130 cond_resched(); 3131 3132 spin_lock_irq(&ic->endio_wait.lock); 3133 remove_range_unlocked(ic, &range); 3134 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 3135 goto next_chunk; 3136 3137 err: 3138 remove_range(ic, &range); 3139 goto free_ret; 3140 3141 unlock_ret: 3142 spin_unlock_irq(&ic->endio_wait.lock); 3143 3144 recalc_write_super(ic); 3145 3146 free_ret: 3147 vfree(recalc_buffer); 3148 kvfree(recalc_tags); 3149 } 3150 3151 static void integrity_recalc_inline(struct work_struct *w) 3152 { 3153 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 3154 size_t recalc_tags_size; 3155 u8 *recalc_buffer = NULL; 3156 u8 *recalc_tags = NULL; 3157 struct dm_integrity_range range; 3158 struct bio *bio; 3159 struct bio_integrity_payload *bip; 3160 __u8 *t; 3161 unsigned int i; 3162 int r; 3163 unsigned ret; 3164 unsigned int super_counter = 0; 3165 unsigned recalc_sectors = RECALC_SECTORS; 3166 3167 retry: 3168 recalc_buffer = kmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO | __GFP_NOWARN); 3169 if (!recalc_buffer) { 3170 oom: 3171 recalc_sectors >>= 1; 3172 if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block) 3173 goto retry; 3174 DMCRIT("out of memory for recalculate buffer - recalculation disabled"); 3175 goto free_ret; 3176 } 3177 3178 recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tuple_size; 3179 if (crypto_shash_digestsize(ic->internal_hash) > ic->tuple_size) 3180 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tuple_size; 3181 recalc_tags = kmalloc(recalc_tags_size, GFP_NOIO | __GFP_NOWARN); 3182 if (!recalc_tags) { 3183 kfree(recalc_buffer); 3184 recalc_buffer = NULL; 3185 goto oom; 3186 } 3187 3188 spin_lock_irq(&ic->endio_wait.lock); 3189 3190 next_chunk: 3191 if (unlikely(dm_post_suspending(ic->ti))) 3192 goto unlock_ret; 3193 3194 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 3195 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) 3196 goto unlock_ret; 3197 range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector); 3198 3199 add_new_range_and_wait(ic, &range); 3200 spin_unlock_irq(&ic->endio_wait.lock); 3201 3202 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 3203 recalc_write_super(ic); 3204 super_counter = 0; 3205 } 3206 3207 if (unlikely(dm_integrity_failed(ic))) 3208 goto err; 3209 3210 DEBUG_print("recalculating: %llx - %llx\n", range.logical_sector, range.n_sectors); 3211 3212 bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_READ, GFP_NOIO, &ic->recalc_bios); 3213 bio->bi_iter.bi_sector = ic->start + SB_SECTORS + range.logical_sector; 3214 __bio_add_page(bio, virt_to_page(recalc_buffer), range.n_sectors << SECTOR_SHIFT, offset_in_page(recalc_buffer)); 3215 r = submit_bio_wait(bio); 3216 bio_put(bio); 3217 if (unlikely(r)) { 3218 dm_integrity_io_error(ic, "reading data", r); 3219 goto err; 3220 } 3221 3222 t = recalc_tags; 3223 for (i = 0; i < range.n_sectors; i += ic->sectors_per_block) { 3224 memset(t, 0, ic->tuple_size); 3225 integrity_sector_checksum(ic, range.logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t); 3226 t += ic->tuple_size; 3227 } 3228 3229 bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_WRITE, GFP_NOIO, &ic->recalc_bios); 3230 bio->bi_iter.bi_sector = ic->start + SB_SECTORS + range.logical_sector; 3231 __bio_add_page(bio, virt_to_page(recalc_buffer), range.n_sectors << SECTOR_SHIFT, offset_in_page(recalc_buffer)); 3232 3233 bip = bio_integrity_alloc(bio, GFP_NOIO, 1); 3234 if (unlikely(IS_ERR(bip))) { 3235 bio_put(bio); 3236 DMCRIT("out of memory for bio integrity payload - recalculation disabled"); 3237 goto err; 3238 } 3239 ret = bio_integrity_add_page(bio, virt_to_page(recalc_tags), t - recalc_tags, offset_in_page(recalc_tags)); 3240 if (unlikely(ret != t - recalc_tags)) { 3241 bio_put(bio); 3242 dm_integrity_io_error(ic, "attaching integrity tags", -ENOMEM); 3243 goto err; 3244 } 3245 3246 r = submit_bio_wait(bio); 3247 bio_put(bio); 3248 if (unlikely(r)) { 3249 dm_integrity_io_error(ic, "writing data", r); 3250 goto err; 3251 } 3252 3253 cond_resched(); 3254 spin_lock_irq(&ic->endio_wait.lock); 3255 remove_range_unlocked(ic, &range); 3256 #ifdef CONFIG_64BIT 3257 /* Paired with smp_load_acquire in dm_integrity_map_inline. */ 3258 smp_store_release(&ic->sb->recalc_sector, cpu_to_le64(range.logical_sector + range.n_sectors)); 3259 #else 3260 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 3261 #endif 3262 goto next_chunk; 3263 3264 err: 3265 remove_range(ic, &range); 3266 goto free_ret; 3267 3268 unlock_ret: 3269 spin_unlock_irq(&ic->endio_wait.lock); 3270 3271 recalc_write_super(ic); 3272 3273 free_ret: 3274 kfree(recalc_buffer); 3275 kfree(recalc_tags); 3276 } 3277 3278 static void bitmap_block_work(struct work_struct *w) 3279 { 3280 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work); 3281 struct dm_integrity_c *ic = bbs->ic; 3282 struct bio *bio; 3283 struct bio_list bio_queue; 3284 struct bio_list waiting; 3285 3286 bio_list_init(&waiting); 3287 3288 spin_lock(&bbs->bio_queue_lock); 3289 bio_queue = bbs->bio_queue; 3290 bio_list_init(&bbs->bio_queue); 3291 spin_unlock(&bbs->bio_queue_lock); 3292 3293 while ((bio = bio_list_pop(&bio_queue))) { 3294 struct dm_integrity_io *dio; 3295 3296 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 3297 3298 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 3299 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 3300 remove_range(ic, &dio->range); 3301 INIT_WORK(&dio->work, integrity_bio_wait); 3302 queue_work(ic->offload_wq, &dio->work); 3303 } else { 3304 block_bitmap_op(ic, ic->journal, dio->range.logical_sector, 3305 dio->range.n_sectors, BITMAP_OP_SET); 3306 bio_list_add(&waiting, bio); 3307 } 3308 } 3309 3310 if (bio_list_empty(&waiting)) 3311 return; 3312 3313 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 3314 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), 3315 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL); 3316 3317 while ((bio = bio_list_pop(&waiting))) { 3318 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 3319 3320 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 3321 dio->range.n_sectors, BITMAP_OP_SET); 3322 3323 remove_range(ic, &dio->range); 3324 INIT_WORK(&dio->work, integrity_bio_wait); 3325 queue_work(ic->offload_wq, &dio->work); 3326 } 3327 3328 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 3329 } 3330 3331 static void bitmap_flush_work(struct work_struct *work) 3332 { 3333 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work); 3334 struct dm_integrity_range range; 3335 unsigned long limit; 3336 struct bio *bio; 3337 3338 dm_integrity_flush_buffers(ic, false); 3339 3340 range.logical_sector = 0; 3341 range.n_sectors = ic->provided_data_sectors; 3342 3343 spin_lock_irq(&ic->endio_wait.lock); 3344 add_new_range_and_wait(ic, &range); 3345 spin_unlock_irq(&ic->endio_wait.lock); 3346 3347 dm_integrity_flush_buffers(ic, true); 3348 3349 limit = ic->provided_data_sectors; 3350 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 3351 limit = le64_to_cpu(ic->sb->recalc_sector) 3352 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit) 3353 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 3354 } 3355 /*DEBUG_print("zeroing journal\n");*/ 3356 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR); 3357 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR); 3358 3359 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3360 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3361 3362 spin_lock_irq(&ic->endio_wait.lock); 3363 remove_range_unlocked(ic, &range); 3364 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) { 3365 bio_endio(bio); 3366 spin_unlock_irq(&ic->endio_wait.lock); 3367 spin_lock_irq(&ic->endio_wait.lock); 3368 } 3369 spin_unlock_irq(&ic->endio_wait.lock); 3370 } 3371 3372 3373 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section, 3374 unsigned int n_sections, unsigned char commit_seq) 3375 { 3376 unsigned int i, j, n; 3377 3378 if (!n_sections) 3379 return; 3380 3381 for (n = 0; n < n_sections; n++) { 3382 i = start_section + n; 3383 wraparound_section(ic, &i); 3384 for (j = 0; j < ic->journal_section_sectors; j++) { 3385 struct journal_sector *js = access_journal(ic, i, j); 3386 3387 BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA); 3388 memset(&js->sectors, 0, sizeof(js->sectors)); 3389 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 3390 } 3391 for (j = 0; j < ic->journal_section_entries; j++) { 3392 struct journal_entry *je = access_journal_entry(ic, i, j); 3393 3394 journal_entry_set_unused(je); 3395 } 3396 } 3397 3398 write_journal(ic, start_section, n_sections); 3399 } 3400 3401 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id) 3402 { 3403 unsigned char k; 3404 3405 for (k = 0; k < N_COMMIT_IDS; k++) { 3406 if (dm_integrity_commit_id(ic, i, j, k) == id) 3407 return k; 3408 } 3409 dm_integrity_io_error(ic, "journal commit id", -EIO); 3410 return -EIO; 3411 } 3412 3413 static void replay_journal(struct dm_integrity_c *ic) 3414 { 3415 unsigned int i, j; 3416 bool used_commit_ids[N_COMMIT_IDS]; 3417 unsigned int max_commit_id_sections[N_COMMIT_IDS]; 3418 unsigned int write_start, write_sections; 3419 unsigned int continue_section; 3420 bool journal_empty; 3421 unsigned char unused, last_used, want_commit_seq; 3422 3423 if (ic->mode == 'R') 3424 return; 3425 3426 if (ic->journal_uptodate) 3427 return; 3428 3429 last_used = 0; 3430 write_start = 0; 3431 3432 if (!ic->just_formatted) { 3433 DEBUG_print("reading journal\n"); 3434 rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL); 3435 if (ic->journal_io) 3436 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 3437 if (ic->journal_io) { 3438 struct journal_completion crypt_comp; 3439 3440 crypt_comp.ic = ic; 3441 init_completion(&crypt_comp.comp); 3442 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 3443 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 3444 wait_for_completion(&crypt_comp.comp); 3445 } 3446 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 3447 } 3448 3449 if (dm_integrity_failed(ic)) 3450 goto clear_journal; 3451 3452 journal_empty = true; 3453 memset(used_commit_ids, 0, sizeof(used_commit_ids)); 3454 memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections)); 3455 for (i = 0; i < ic->journal_sections; i++) { 3456 for (j = 0; j < ic->journal_section_sectors; j++) { 3457 int k; 3458 struct journal_sector *js = access_journal(ic, i, j); 3459 3460 k = find_commit_seq(ic, i, j, js->commit_id); 3461 if (k < 0) 3462 goto clear_journal; 3463 used_commit_ids[k] = true; 3464 max_commit_id_sections[k] = i; 3465 } 3466 if (journal_empty) { 3467 for (j = 0; j < ic->journal_section_entries; j++) { 3468 struct journal_entry *je = access_journal_entry(ic, i, j); 3469 3470 if (!journal_entry_is_unused(je)) { 3471 journal_empty = false; 3472 break; 3473 } 3474 } 3475 } 3476 } 3477 3478 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 3479 unused = N_COMMIT_IDS - 1; 3480 while (unused && !used_commit_ids[unused - 1]) 3481 unused--; 3482 } else { 3483 for (unused = 0; unused < N_COMMIT_IDS; unused++) 3484 if (!used_commit_ids[unused]) 3485 break; 3486 if (unused == N_COMMIT_IDS) { 3487 dm_integrity_io_error(ic, "journal commit ids", -EIO); 3488 goto clear_journal; 3489 } 3490 } 3491 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 3492 unused, used_commit_ids[0], used_commit_ids[1], 3493 used_commit_ids[2], used_commit_ids[3]); 3494 3495 last_used = prev_commit_seq(unused); 3496 want_commit_seq = prev_commit_seq(last_used); 3497 3498 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 3499 journal_empty = true; 3500 3501 write_start = max_commit_id_sections[last_used] + 1; 3502 if (unlikely(write_start >= ic->journal_sections)) 3503 want_commit_seq = next_commit_seq(want_commit_seq); 3504 wraparound_section(ic, &write_start); 3505 3506 i = write_start; 3507 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 3508 for (j = 0; j < ic->journal_section_sectors; j++) { 3509 struct journal_sector *js = access_journal(ic, i, j); 3510 3511 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 3512 /* 3513 * This could be caused by crash during writing. 3514 * We won't replay the inconsistent part of the 3515 * journal. 3516 */ 3517 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 3518 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 3519 goto brk; 3520 } 3521 } 3522 i++; 3523 if (unlikely(i >= ic->journal_sections)) 3524 want_commit_seq = next_commit_seq(want_commit_seq); 3525 wraparound_section(ic, &i); 3526 } 3527 brk: 3528 3529 if (!journal_empty) { 3530 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 3531 write_sections, write_start, want_commit_seq); 3532 do_journal_write(ic, write_start, write_sections, true); 3533 } 3534 3535 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 3536 continue_section = write_start; 3537 ic->commit_seq = want_commit_seq; 3538 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 3539 } else { 3540 unsigned int s; 3541 unsigned char erase_seq; 3542 3543 clear_journal: 3544 DEBUG_print("clearing journal\n"); 3545 3546 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 3547 s = write_start; 3548 init_journal(ic, s, 1, erase_seq); 3549 s++; 3550 wraparound_section(ic, &s); 3551 if (ic->journal_sections >= 2) { 3552 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 3553 s += ic->journal_sections - 2; 3554 wraparound_section(ic, &s); 3555 init_journal(ic, s, 1, erase_seq); 3556 } 3557 3558 continue_section = 0; 3559 ic->commit_seq = next_commit_seq(erase_seq); 3560 } 3561 3562 ic->committed_section = continue_section; 3563 ic->n_committed_sections = 0; 3564 3565 ic->uncommitted_section = continue_section; 3566 ic->n_uncommitted_sections = 0; 3567 3568 ic->free_section = continue_section; 3569 ic->free_section_entry = 0; 3570 ic->free_sectors = ic->journal_entries; 3571 3572 ic->journal_tree_root = RB_ROOT; 3573 for (i = 0; i < ic->journal_entries; i++) 3574 init_journal_node(&ic->journal_tree[i]); 3575 } 3576 3577 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic) 3578 { 3579 DEBUG_print("%s\n", __func__); 3580 3581 if (ic->mode == 'B') { 3582 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1; 3583 ic->synchronous_mode = 1; 3584 3585 cancel_delayed_work_sync(&ic->bitmap_flush_work); 3586 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 3587 flush_workqueue(ic->commit_wq); 3588 } 3589 } 3590 3591 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x) 3592 { 3593 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier); 3594 3595 DEBUG_print("%s\n", __func__); 3596 3597 dm_integrity_enter_synchronous_mode(ic); 3598 3599 return NOTIFY_DONE; 3600 } 3601 3602 static void dm_integrity_postsuspend(struct dm_target *ti) 3603 { 3604 struct dm_integrity_c *ic = ti->private; 3605 int r; 3606 3607 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier)); 3608 3609 timer_delete_sync(&ic->autocommit_timer); 3610 3611 if (ic->recalc_wq) 3612 drain_workqueue(ic->recalc_wq); 3613 3614 if (ic->mode == 'B') 3615 cancel_delayed_work_sync(&ic->bitmap_flush_work); 3616 3617 queue_work(ic->commit_wq, &ic->commit_work); 3618 drain_workqueue(ic->commit_wq); 3619 3620 if (ic->mode == 'J') { 3621 queue_work(ic->writer_wq, &ic->writer_work); 3622 drain_workqueue(ic->writer_wq); 3623 dm_integrity_flush_buffers(ic, true); 3624 if (ic->wrote_to_journal) { 3625 init_journal(ic, ic->free_section, 3626 ic->journal_sections - ic->free_section, ic->commit_seq); 3627 if (ic->free_section) { 3628 init_journal(ic, 0, ic->free_section, 3629 next_commit_seq(ic->commit_seq)); 3630 } 3631 } 3632 } 3633 3634 if (ic->mode == 'B') { 3635 dm_integrity_flush_buffers(ic, true); 3636 #if 1 3637 /* set to 0 to test bitmap replay code */ 3638 init_journal(ic, 0, ic->journal_sections, 0); 3639 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3640 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3641 if (unlikely(r)) 3642 dm_integrity_io_error(ic, "writing superblock", r); 3643 #endif 3644 } 3645 3646 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 3647 3648 ic->journal_uptodate = true; 3649 } 3650 3651 static void dm_integrity_resume(struct dm_target *ti) 3652 { 3653 struct dm_integrity_c *ic = ti->private; 3654 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 3655 int r; 3656 3657 DEBUG_print("resume\n"); 3658 3659 ic->wrote_to_journal = false; 3660 3661 if (ic->provided_data_sectors != old_provided_data_sectors) { 3662 if (ic->provided_data_sectors > old_provided_data_sectors && 3663 ic->mode == 'B' && 3664 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { 3665 rw_journal_sectors(ic, REQ_OP_READ, 0, 3666 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3667 block_bitmap_op(ic, ic->journal, old_provided_data_sectors, 3668 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET); 3669 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3670 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3671 } 3672 3673 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3674 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3675 if (unlikely(r)) 3676 dm_integrity_io_error(ic, "writing superblock", r); 3677 } 3678 3679 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) { 3680 DEBUG_print("resume dirty_bitmap\n"); 3681 rw_journal_sectors(ic, REQ_OP_READ, 0, 3682 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3683 if (ic->mode == 'B') { 3684 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3685 !ic->reset_recalculate_flag) { 3686 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal); 3687 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal); 3688 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, 3689 BITMAP_OP_TEST_ALL_CLEAR)) { 3690 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3691 ic->sb->recalc_sector = cpu_to_le64(0); 3692 } 3693 } else { 3694 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n", 3695 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit); 3696 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3697 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3698 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3699 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3700 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3701 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3702 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3703 ic->sb->recalc_sector = cpu_to_le64(0); 3704 } 3705 } else { 3706 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3707 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) || 3708 ic->reset_recalculate_flag) { 3709 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3710 ic->sb->recalc_sector = cpu_to_le64(0); 3711 } 3712 init_journal(ic, 0, ic->journal_sections, 0); 3713 replay_journal(ic); 3714 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3715 } 3716 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3717 if (unlikely(r)) 3718 dm_integrity_io_error(ic, "writing superblock", r); 3719 } else { 3720 replay_journal(ic); 3721 if (ic->reset_recalculate_flag) { 3722 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3723 ic->sb->recalc_sector = cpu_to_le64(0); 3724 } 3725 if (ic->mode == 'B') { 3726 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3727 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3728 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3729 if (unlikely(r)) 3730 dm_integrity_io_error(ic, "writing superblock", r); 3731 3732 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3733 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3734 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3735 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 3736 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) { 3737 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector), 3738 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3739 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3740 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3741 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3742 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3743 } 3744 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3745 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3746 } 3747 } 3748 3749 DEBUG_print("testing recalc: %x\n", ic->sb->flags); 3750 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 3751 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector); 3752 3753 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors); 3754 if (recalc_pos < ic->provided_data_sectors) { 3755 queue_work(ic->recalc_wq, &ic->recalc_work); 3756 } else if (recalc_pos > ic->provided_data_sectors) { 3757 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors); 3758 recalc_write_super(ic); 3759 } 3760 } 3761 3762 ic->reboot_notifier.notifier_call = dm_integrity_reboot; 3763 ic->reboot_notifier.next = NULL; 3764 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */ 3765 WARN_ON(register_reboot_notifier(&ic->reboot_notifier)); 3766 3767 #if 0 3768 /* set to 1 to stress test synchronous mode */ 3769 dm_integrity_enter_synchronous_mode(ic); 3770 #endif 3771 } 3772 3773 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 3774 unsigned int status_flags, char *result, unsigned int maxlen) 3775 { 3776 struct dm_integrity_c *ic = ti->private; 3777 unsigned int arg_count; 3778 size_t sz = 0; 3779 3780 switch (type) { 3781 case STATUSTYPE_INFO: 3782 DMEMIT("%llu %llu", 3783 (unsigned long long)atomic64_read(&ic->number_of_mismatches), 3784 ic->provided_data_sectors); 3785 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3786 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector)); 3787 else 3788 DMEMIT(" -"); 3789 break; 3790 3791 case STATUSTYPE_TABLE: { 3792 arg_count = 1; /* buffer_sectors */ 3793 arg_count += !!ic->meta_dev; 3794 arg_count += ic->sectors_per_block != 1; 3795 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)); 3796 arg_count += ic->reset_recalculate_flag; 3797 arg_count += ic->discard; 3798 arg_count += ic->mode != 'I'; /* interleave_sectors */ 3799 arg_count += ic->mode == 'J'; /* journal_sectors */ 3800 arg_count += ic->mode == 'J'; /* journal_watermark */ 3801 arg_count += ic->mode == 'J'; /* commit_time */ 3802 arg_count += ic->mode == 'B'; /* sectors_per_bit */ 3803 arg_count += ic->mode == 'B'; /* bitmap_flush_interval */ 3804 arg_count += !!ic->internal_hash_alg.alg_string; 3805 arg_count += !!ic->journal_crypt_alg.alg_string; 3806 arg_count += !!ic->journal_mac_alg.alg_string; 3807 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0; 3808 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0; 3809 arg_count += ic->legacy_recalculate; 3810 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start, 3811 ic->tag_size, ic->mode, arg_count); 3812 if (ic->meta_dev) 3813 DMEMIT(" meta_device:%s", ic->meta_dev->name); 3814 if (ic->sectors_per_block != 1) 3815 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 3816 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3817 DMEMIT(" recalculate"); 3818 if (ic->reset_recalculate_flag) 3819 DMEMIT(" reset_recalculate"); 3820 if (ic->discard) 3821 DMEMIT(" allow_discards"); 3822 if (ic->mode != 'I') 3823 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 3824 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 3825 if (ic->mode == 'J') { 3826 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 3827 3828 watermark_percentage += ic->journal_entries / 2; 3829 do_div(watermark_percentage, ic->journal_entries); 3830 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 3831 DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage); 3832 DMEMIT(" commit_time:%u", ic->autocommit_msec); 3833 } 3834 if (ic->mode == 'B') { 3835 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit); 3836 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval)); 3837 } 3838 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) 3839 DMEMIT(" fix_padding"); 3840 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) 3841 DMEMIT(" fix_hmac"); 3842 if (ic->legacy_recalculate) 3843 DMEMIT(" legacy_recalculate"); 3844 3845 #define EMIT_ALG(a, n) \ 3846 do { \ 3847 if (ic->a.alg_string) { \ 3848 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 3849 if (ic->a.key_string) \ 3850 DMEMIT(":%s", ic->a.key_string);\ 3851 } \ 3852 } while (0) 3853 EMIT_ALG(internal_hash_alg, "internal_hash"); 3854 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 3855 EMIT_ALG(journal_mac_alg, "journal_mac"); 3856 break; 3857 } 3858 case STATUSTYPE_IMA: 3859 DMEMIT_TARGET_NAME_VERSION(ti->type); 3860 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c", 3861 ic->dev->name, ic->start, ic->tag_size, ic->mode); 3862 3863 if (ic->meta_dev) 3864 DMEMIT(",meta_device=%s", ic->meta_dev->name); 3865 if (ic->sectors_per_block != 1) 3866 DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT); 3867 3868 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ? 3869 'y' : 'n'); 3870 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n'); 3871 DMEMIT(",fix_padding=%c", 3872 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n'); 3873 DMEMIT(",fix_hmac=%c", 3874 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n'); 3875 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n'); 3876 3877 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS); 3878 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors); 3879 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors); 3880 DMEMIT(";"); 3881 break; 3882 } 3883 } 3884 3885 static int dm_integrity_iterate_devices(struct dm_target *ti, 3886 iterate_devices_callout_fn fn, void *data) 3887 { 3888 struct dm_integrity_c *ic = ti->private; 3889 3890 if (!ic->meta_dev) 3891 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 3892 else 3893 return fn(ti, ic->dev, 0, ti->len, data); 3894 } 3895 3896 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 3897 { 3898 struct dm_integrity_c *ic = ti->private; 3899 3900 if (ic->sectors_per_block > 1) { 3901 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3902 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3903 limits->io_min = ic->sectors_per_block << SECTOR_SHIFT; 3904 limits->dma_alignment = limits->logical_block_size - 1; 3905 limits->discard_granularity = ic->sectors_per_block << SECTOR_SHIFT; 3906 } 3907 3908 if (!ic->internal_hash) { 3909 struct blk_integrity *bi = &limits->integrity; 3910 3911 memset(bi, 0, sizeof(*bi)); 3912 bi->tuple_size = ic->tag_size; 3913 bi->tag_size = bi->tuple_size; 3914 bi->interval_exp = 3915 ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 3916 } 3917 3918 limits->max_integrity_segments = USHRT_MAX; 3919 } 3920 3921 static void calculate_journal_section_size(struct dm_integrity_c *ic) 3922 { 3923 unsigned int sector_space = JOURNAL_SECTOR_DATA; 3924 3925 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 3926 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 3927 JOURNAL_ENTRY_ROUNDUP); 3928 3929 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 3930 sector_space -= JOURNAL_MAC_PER_SECTOR; 3931 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 3932 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 3933 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 3934 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 3935 } 3936 3937 static int calculate_device_limits(struct dm_integrity_c *ic) 3938 { 3939 __u64 initial_sectors; 3940 3941 calculate_journal_section_size(ic); 3942 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 3943 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX) 3944 return -EINVAL; 3945 ic->initial_sectors = initial_sectors; 3946 3947 if (ic->mode == 'I') { 3948 if (ic->initial_sectors + ic->provided_data_sectors > ic->meta_device_sectors) 3949 return -EINVAL; 3950 } else if (!ic->meta_dev) { 3951 sector_t last_sector, last_area, last_offset; 3952 3953 /* we have to maintain excessive padding for compatibility with existing volumes */ 3954 __u64 metadata_run_padding = 3955 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ? 3956 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) : 3957 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS); 3958 3959 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 3960 metadata_run_padding) >> SECTOR_SHIFT; 3961 if (!(ic->metadata_run & (ic->metadata_run - 1))) 3962 ic->log2_metadata_run = __ffs(ic->metadata_run); 3963 else 3964 ic->log2_metadata_run = -1; 3965 3966 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 3967 last_sector = get_data_sector(ic, last_area, last_offset); 3968 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors) 3969 return -EINVAL; 3970 } else { 3971 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 3972 3973 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1)) 3974 >> (ic->log2_buffer_sectors + SECTOR_SHIFT); 3975 meta_size <<= ic->log2_buffer_sectors; 3976 if (ic->initial_sectors + meta_size < ic->initial_sectors || 3977 ic->initial_sectors + meta_size > ic->meta_device_sectors) 3978 return -EINVAL; 3979 ic->metadata_run = 1; 3980 ic->log2_metadata_run = 0; 3981 } 3982 3983 return 0; 3984 } 3985 3986 static void get_provided_data_sectors(struct dm_integrity_c *ic) 3987 { 3988 if (!ic->meta_dev) { 3989 int test_bit; 3990 3991 ic->provided_data_sectors = 0; 3992 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) { 3993 __u64 prev_data_sectors = ic->provided_data_sectors; 3994 3995 ic->provided_data_sectors |= (sector_t)1 << test_bit; 3996 if (calculate_device_limits(ic)) 3997 ic->provided_data_sectors = prev_data_sectors; 3998 } 3999 } else { 4000 ic->provided_data_sectors = ic->data_device_sectors; 4001 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1); 4002 } 4003 } 4004 4005 static int initialize_superblock(struct dm_integrity_c *ic, 4006 unsigned int journal_sectors, unsigned int interleave_sectors) 4007 { 4008 unsigned int journal_sections; 4009 int test_bit; 4010 4011 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 4012 memcpy(ic->sb->magic, SB_MAGIC, 8); 4013 if (ic->mode == 'I') 4014 ic->sb->flags |= cpu_to_le32(SB_FLAG_INLINE); 4015 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 4016 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 4017 if (ic->journal_mac_alg.alg_string) 4018 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 4019 4020 calculate_journal_section_size(ic); 4021 journal_sections = journal_sectors / ic->journal_section_sectors; 4022 if (!journal_sections) 4023 journal_sections = 1; 4024 if (ic->mode == 'I') 4025 journal_sections = 0; 4026 4027 if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) { 4028 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC); 4029 get_random_bytes(ic->sb->salt, SALT_SIZE); 4030 } 4031 4032 if (!ic->meta_dev) { 4033 if (ic->fix_padding) 4034 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING); 4035 ic->sb->journal_sections = cpu_to_le32(journal_sections); 4036 if (!interleave_sectors) 4037 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 4038 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 4039 ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 4040 ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 4041 4042 get_provided_data_sectors(ic); 4043 if (!ic->provided_data_sectors) 4044 return -EINVAL; 4045 } else { 4046 ic->sb->log2_interleave_sectors = 0; 4047 4048 get_provided_data_sectors(ic); 4049 if (!ic->provided_data_sectors) 4050 return -EINVAL; 4051 4052 try_smaller_buffer: 4053 ic->sb->journal_sections = cpu_to_le32(0); 4054 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) { 4055 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections); 4056 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit); 4057 4058 if (test_journal_sections > journal_sections) 4059 continue; 4060 ic->sb->journal_sections = cpu_to_le32(test_journal_sections); 4061 if (calculate_device_limits(ic)) 4062 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections); 4063 4064 } 4065 if (!le32_to_cpu(ic->sb->journal_sections)) { 4066 if (ic->log2_buffer_sectors > 3) { 4067 ic->log2_buffer_sectors--; 4068 goto try_smaller_buffer; 4069 } 4070 return -EINVAL; 4071 } 4072 } 4073 4074 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 4075 4076 sb_set_version(ic); 4077 4078 return 0; 4079 } 4080 4081 static void dm_integrity_free_page_list(struct page_list *pl) 4082 { 4083 unsigned int i; 4084 4085 if (!pl) 4086 return; 4087 for (i = 0; pl[i].page; i++) 4088 __free_page(pl[i].page); 4089 kvfree(pl); 4090 } 4091 4092 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages) 4093 { 4094 struct page_list *pl; 4095 unsigned int i; 4096 4097 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO); 4098 if (!pl) 4099 return NULL; 4100 4101 for (i = 0; i < n_pages; i++) { 4102 pl[i].page = alloc_page(GFP_KERNEL); 4103 if (!pl[i].page) { 4104 dm_integrity_free_page_list(pl); 4105 return NULL; 4106 } 4107 if (i) 4108 pl[i - 1].next = &pl[i]; 4109 } 4110 pl[i].page = NULL; 4111 pl[i].next = NULL; 4112 4113 return pl; 4114 } 4115 4116 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 4117 { 4118 unsigned int i; 4119 4120 for (i = 0; i < ic->journal_sections; i++) 4121 kvfree(sl[i]); 4122 kvfree(sl); 4123 } 4124 4125 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, 4126 struct page_list *pl) 4127 { 4128 struct scatterlist **sl; 4129 unsigned int i; 4130 4131 sl = kvmalloc_array(ic->journal_sections, 4132 sizeof(struct scatterlist *), 4133 GFP_KERNEL | __GFP_ZERO); 4134 if (!sl) 4135 return NULL; 4136 4137 for (i = 0; i < ic->journal_sections; i++) { 4138 struct scatterlist *s; 4139 unsigned int start_index, start_offset; 4140 unsigned int end_index, end_offset; 4141 unsigned int n_pages; 4142 unsigned int idx; 4143 4144 page_list_location(ic, i, 0, &start_index, &start_offset); 4145 page_list_location(ic, i, ic->journal_section_sectors - 1, 4146 &end_index, &end_offset); 4147 4148 n_pages = (end_index - start_index + 1); 4149 4150 s = kvmalloc_array(n_pages, sizeof(struct scatterlist), 4151 GFP_KERNEL); 4152 if (!s) { 4153 dm_integrity_free_journal_scatterlist(ic, sl); 4154 return NULL; 4155 } 4156 4157 sg_init_table(s, n_pages); 4158 for (idx = start_index; idx <= end_index; idx++) { 4159 char *va = lowmem_page_address(pl[idx].page); 4160 unsigned int start = 0, end = PAGE_SIZE; 4161 4162 if (idx == start_index) 4163 start = start_offset; 4164 if (idx == end_index) 4165 end = end_offset + (1 << SECTOR_SHIFT); 4166 sg_set_buf(&s[idx - start_index], va + start, end - start); 4167 } 4168 4169 sl[i] = s; 4170 } 4171 4172 return sl; 4173 } 4174 4175 static void free_alg(struct alg_spec *a) 4176 { 4177 kfree_sensitive(a->alg_string); 4178 kfree_sensitive(a->key); 4179 memset(a, 0, sizeof(*a)); 4180 } 4181 4182 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 4183 { 4184 char *k; 4185 4186 free_alg(a); 4187 4188 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 4189 if (!a->alg_string) 4190 goto nomem; 4191 4192 k = strchr(a->alg_string, ':'); 4193 if (k) { 4194 *k = 0; 4195 a->key_string = k + 1; 4196 if (strlen(a->key_string) & 1) 4197 goto inval; 4198 4199 a->key_size = strlen(a->key_string) / 2; 4200 a->key = kmalloc(a->key_size, GFP_KERNEL); 4201 if (!a->key) 4202 goto nomem; 4203 if (hex2bin(a->key, a->key_string, a->key_size)) 4204 goto inval; 4205 } 4206 4207 return 0; 4208 inval: 4209 *error = error_inval; 4210 return -EINVAL; 4211 nomem: 4212 *error = "Out of memory for an argument"; 4213 return -ENOMEM; 4214 } 4215 4216 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 4217 char *error_alg, char *error_key) 4218 { 4219 int r; 4220 4221 if (a->alg_string) { 4222 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 4223 if (IS_ERR(*hash)) { 4224 *error = error_alg; 4225 r = PTR_ERR(*hash); 4226 *hash = NULL; 4227 return r; 4228 } 4229 4230 if (a->key) { 4231 r = crypto_shash_setkey(*hash, a->key, a->key_size); 4232 if (r) { 4233 *error = error_key; 4234 return r; 4235 } 4236 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { 4237 *error = error_key; 4238 return -ENOKEY; 4239 } 4240 } 4241 4242 return 0; 4243 } 4244 4245 static int create_journal(struct dm_integrity_c *ic, char **error) 4246 { 4247 int r = 0; 4248 unsigned int i; 4249 __u64 journal_pages, journal_desc_size, journal_tree_size; 4250 unsigned char *crypt_data = NULL, *crypt_iv = NULL; 4251 struct skcipher_request *req = NULL; 4252 4253 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 4254 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 4255 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 4256 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 4257 4258 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 4259 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 4260 journal_desc_size = journal_pages * sizeof(struct page_list); 4261 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) { 4262 *error = "Journal doesn't fit into memory"; 4263 r = -ENOMEM; 4264 goto bad; 4265 } 4266 ic->journal_pages = journal_pages; 4267 4268 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages); 4269 if (!ic->journal) { 4270 *error = "Could not allocate memory for journal"; 4271 r = -ENOMEM; 4272 goto bad; 4273 } 4274 if (ic->journal_crypt_alg.alg_string) { 4275 unsigned int ivsize, blocksize; 4276 struct journal_completion comp; 4277 4278 comp.ic = ic; 4279 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 4280 if (IS_ERR(ic->journal_crypt)) { 4281 *error = "Invalid journal cipher"; 4282 r = PTR_ERR(ic->journal_crypt); 4283 ic->journal_crypt = NULL; 4284 goto bad; 4285 } 4286 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 4287 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 4288 4289 if (ic->journal_crypt_alg.key) { 4290 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 4291 ic->journal_crypt_alg.key_size); 4292 if (r) { 4293 *error = "Error setting encryption key"; 4294 goto bad; 4295 } 4296 } 4297 DEBUG_print("cipher %s, block size %u iv size %u\n", 4298 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 4299 4300 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages); 4301 if (!ic->journal_io) { 4302 *error = "Could not allocate memory for journal io"; 4303 r = -ENOMEM; 4304 goto bad; 4305 } 4306 4307 if (blocksize == 1) { 4308 struct scatterlist *sg; 4309 4310 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 4311 if (!req) { 4312 *error = "Could not allocate crypt request"; 4313 r = -ENOMEM; 4314 goto bad; 4315 } 4316 4317 crypt_iv = kzalloc(ivsize, GFP_KERNEL); 4318 if (!crypt_iv) { 4319 *error = "Could not allocate iv"; 4320 r = -ENOMEM; 4321 goto bad; 4322 } 4323 4324 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages); 4325 if (!ic->journal_xor) { 4326 *error = "Could not allocate memory for journal xor"; 4327 r = -ENOMEM; 4328 goto bad; 4329 } 4330 4331 sg = kvmalloc_array(ic->journal_pages + 1, 4332 sizeof(struct scatterlist), 4333 GFP_KERNEL); 4334 if (!sg) { 4335 *error = "Unable to allocate sg list"; 4336 r = -ENOMEM; 4337 goto bad; 4338 } 4339 sg_init_table(sg, ic->journal_pages + 1); 4340 for (i = 0; i < ic->journal_pages; i++) { 4341 char *va = lowmem_page_address(ic->journal_xor[i].page); 4342 4343 clear_page(va); 4344 sg_set_buf(&sg[i], va, PAGE_SIZE); 4345 } 4346 sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids)); 4347 4348 skcipher_request_set_crypt(req, sg, sg, 4349 PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv); 4350 init_completion(&comp.comp); 4351 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 4352 if (do_crypt(true, req, &comp)) 4353 wait_for_completion(&comp.comp); 4354 kvfree(sg); 4355 r = dm_integrity_failed(ic); 4356 if (r) { 4357 *error = "Unable to encrypt journal"; 4358 goto bad; 4359 } 4360 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 4361 4362 crypto_free_skcipher(ic->journal_crypt); 4363 ic->journal_crypt = NULL; 4364 } else { 4365 unsigned int crypt_len = roundup(ivsize, blocksize); 4366 4367 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 4368 if (!req) { 4369 *error = "Could not allocate crypt request"; 4370 r = -ENOMEM; 4371 goto bad; 4372 } 4373 4374 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 4375 if (!crypt_iv) { 4376 *error = "Could not allocate iv"; 4377 r = -ENOMEM; 4378 goto bad; 4379 } 4380 4381 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 4382 if (!crypt_data) { 4383 *error = "Unable to allocate crypt data"; 4384 r = -ENOMEM; 4385 goto bad; 4386 } 4387 4388 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 4389 if (!ic->journal_scatterlist) { 4390 *error = "Unable to allocate sg list"; 4391 r = -ENOMEM; 4392 goto bad; 4393 } 4394 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 4395 if (!ic->journal_io_scatterlist) { 4396 *error = "Unable to allocate sg list"; 4397 r = -ENOMEM; 4398 goto bad; 4399 } 4400 ic->sk_requests = kvmalloc_array(ic->journal_sections, 4401 sizeof(struct skcipher_request *), 4402 GFP_KERNEL | __GFP_ZERO); 4403 if (!ic->sk_requests) { 4404 *error = "Unable to allocate sk requests"; 4405 r = -ENOMEM; 4406 goto bad; 4407 } 4408 for (i = 0; i < ic->journal_sections; i++) { 4409 struct scatterlist sg; 4410 struct skcipher_request *section_req; 4411 __le32 section_le = cpu_to_le32(i); 4412 4413 memset(crypt_iv, 0x00, ivsize); 4414 memset(crypt_data, 0x00, crypt_len); 4415 memcpy(crypt_data, §ion_le, min_t(size_t, crypt_len, sizeof(section_le))); 4416 4417 sg_init_one(&sg, crypt_data, crypt_len); 4418 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); 4419 init_completion(&comp.comp); 4420 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 4421 if (do_crypt(true, req, &comp)) 4422 wait_for_completion(&comp.comp); 4423 4424 r = dm_integrity_failed(ic); 4425 if (r) { 4426 *error = "Unable to generate iv"; 4427 goto bad; 4428 } 4429 4430 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 4431 if (!section_req) { 4432 *error = "Unable to allocate crypt request"; 4433 r = -ENOMEM; 4434 goto bad; 4435 } 4436 section_req->iv = kmalloc_array(ivsize, 2, 4437 GFP_KERNEL); 4438 if (!section_req->iv) { 4439 skcipher_request_free(section_req); 4440 *error = "Unable to allocate iv"; 4441 r = -ENOMEM; 4442 goto bad; 4443 } 4444 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 4445 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 4446 ic->sk_requests[i] = section_req; 4447 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 4448 } 4449 } 4450 } 4451 4452 for (i = 0; i < N_COMMIT_IDS; i++) { 4453 unsigned int j; 4454 4455 retest_commit_id: 4456 for (j = 0; j < i; j++) { 4457 if (ic->commit_ids[j] == ic->commit_ids[i]) { 4458 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 4459 goto retest_commit_id; 4460 } 4461 } 4462 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 4463 } 4464 4465 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 4466 if (journal_tree_size > ULONG_MAX) { 4467 *error = "Journal doesn't fit into memory"; 4468 r = -ENOMEM; 4469 goto bad; 4470 } 4471 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 4472 if (!ic->journal_tree) { 4473 *error = "Could not allocate memory for journal tree"; 4474 r = -ENOMEM; 4475 } 4476 bad: 4477 kfree(crypt_data); 4478 kfree(crypt_iv); 4479 skcipher_request_free(req); 4480 4481 return r; 4482 } 4483 4484 /* 4485 * Construct a integrity mapping 4486 * 4487 * Arguments: 4488 * device 4489 * offset from the start of the device 4490 * tag size 4491 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode 4492 * number of optional arguments 4493 * optional arguments: 4494 * journal_sectors 4495 * interleave_sectors 4496 * buffer_sectors 4497 * journal_watermark 4498 * commit_time 4499 * meta_device 4500 * block_size 4501 * sectors_per_bit 4502 * bitmap_flush_interval 4503 * internal_hash 4504 * journal_crypt 4505 * journal_mac 4506 * recalculate 4507 */ 4508 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv) 4509 { 4510 struct dm_integrity_c *ic; 4511 char dummy; 4512 int r; 4513 unsigned int extra_args; 4514 struct dm_arg_set as; 4515 static const struct dm_arg _args[] = { 4516 {0, 18, "Invalid number of feature args"}, 4517 }; 4518 unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 4519 bool should_write_sb; 4520 __u64 threshold; 4521 unsigned long long start; 4522 __s8 log2_sectors_per_bitmap_bit = -1; 4523 __s8 log2_blocks_per_bitmap_bit; 4524 __u64 bits_in_journal; 4525 __u64 n_bitmap_bits; 4526 4527 #define DIRECT_ARGUMENTS 4 4528 4529 if (argc <= DIRECT_ARGUMENTS) { 4530 ti->error = "Invalid argument count"; 4531 return -EINVAL; 4532 } 4533 4534 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 4535 if (!ic) { 4536 ti->error = "Cannot allocate integrity context"; 4537 return -ENOMEM; 4538 } 4539 ti->private = ic; 4540 ti->per_io_data_size = sizeof(struct dm_integrity_io); 4541 ic->ti = ti; 4542 4543 ic->in_progress = RB_ROOT; 4544 INIT_LIST_HEAD(&ic->wait_list); 4545 init_waitqueue_head(&ic->endio_wait); 4546 bio_list_init(&ic->flush_bio_list); 4547 init_waitqueue_head(&ic->copy_to_journal_wait); 4548 init_completion(&ic->crypto_backoff); 4549 atomic64_set(&ic->number_of_mismatches, 0); 4550 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL; 4551 4552 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 4553 if (r) { 4554 ti->error = "Device lookup failed"; 4555 goto bad; 4556 } 4557 4558 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 4559 ti->error = "Invalid starting offset"; 4560 r = -EINVAL; 4561 goto bad; 4562 } 4563 ic->start = start; 4564 4565 if (strcmp(argv[2], "-")) { 4566 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 4567 ti->error = "Invalid tag size"; 4568 r = -EINVAL; 4569 goto bad; 4570 } 4571 } 4572 4573 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") || 4574 !strcmp(argv[3], "D") || !strcmp(argv[3], "R") || 4575 !strcmp(argv[3], "I")) { 4576 ic->mode = argv[3][0]; 4577 } else { 4578 ti->error = "Invalid mode (expecting J, B, D, R, I)"; 4579 r = -EINVAL; 4580 goto bad; 4581 } 4582 4583 journal_sectors = 0; 4584 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 4585 buffer_sectors = DEFAULT_BUFFER_SECTORS; 4586 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 4587 sync_msec = DEFAULT_SYNC_MSEC; 4588 ic->sectors_per_block = 1; 4589 4590 as.argc = argc - DIRECT_ARGUMENTS; 4591 as.argv = argv + DIRECT_ARGUMENTS; 4592 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 4593 if (r) 4594 goto bad; 4595 4596 while (extra_args--) { 4597 const char *opt_string; 4598 unsigned int val; 4599 unsigned long long llval; 4600 4601 opt_string = dm_shift_arg(&as); 4602 if (!opt_string) { 4603 r = -EINVAL; 4604 ti->error = "Not enough feature arguments"; 4605 goto bad; 4606 } 4607 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 4608 journal_sectors = val ? val : 1; 4609 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 4610 interleave_sectors = val; 4611 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 4612 buffer_sectors = val; 4613 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 4614 journal_watermark = val; 4615 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 4616 sync_msec = val; 4617 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) { 4618 if (ic->meta_dev) { 4619 dm_put_device(ti, ic->meta_dev); 4620 ic->meta_dev = NULL; 4621 } 4622 r = dm_get_device(ti, strchr(opt_string, ':') + 1, 4623 dm_table_get_mode(ti->table), &ic->meta_dev); 4624 if (r) { 4625 ti->error = "Device lookup failed"; 4626 goto bad; 4627 } 4628 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 4629 if (val < 1 << SECTOR_SHIFT || 4630 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 4631 (val & (val - 1))) { 4632 r = -EINVAL; 4633 ti->error = "Invalid block_size argument"; 4634 goto bad; 4635 } 4636 ic->sectors_per_block = val >> SECTOR_SHIFT; 4637 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) { 4638 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval); 4639 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) { 4640 if ((uint64_t)val >= (uint64_t)UINT_MAX * 1000 / HZ) { 4641 r = -EINVAL; 4642 ti->error = "Invalid bitmap_flush_interval argument"; 4643 goto bad; 4644 } 4645 ic->bitmap_flush_interval = msecs_to_jiffies(val); 4646 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 4647 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 4648 "Invalid internal_hash argument"); 4649 if (r) 4650 goto bad; 4651 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 4652 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 4653 "Invalid journal_crypt argument"); 4654 if (r) 4655 goto bad; 4656 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 4657 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 4658 "Invalid journal_mac argument"); 4659 if (r) 4660 goto bad; 4661 } else if (!strcmp(opt_string, "recalculate")) { 4662 ic->recalculate_flag = true; 4663 } else if (!strcmp(opt_string, "reset_recalculate")) { 4664 ic->recalculate_flag = true; 4665 ic->reset_recalculate_flag = true; 4666 } else if (!strcmp(opt_string, "allow_discards")) { 4667 ic->discard = true; 4668 } else if (!strcmp(opt_string, "fix_padding")) { 4669 ic->fix_padding = true; 4670 } else if (!strcmp(opt_string, "fix_hmac")) { 4671 ic->fix_hmac = true; 4672 } else if (!strcmp(opt_string, "legacy_recalculate")) { 4673 ic->legacy_recalculate = true; 4674 } else { 4675 r = -EINVAL; 4676 ti->error = "Invalid argument"; 4677 goto bad; 4678 } 4679 } 4680 4681 ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev); 4682 if (!ic->meta_dev) 4683 ic->meta_device_sectors = ic->data_device_sectors; 4684 else 4685 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev); 4686 4687 if (!journal_sectors) { 4688 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 4689 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 4690 } 4691 4692 if (!buffer_sectors) 4693 buffer_sectors = 1; 4694 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT); 4695 4696 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 4697 "Invalid internal hash", "Error setting internal hash key"); 4698 if (r) 4699 goto bad; 4700 4701 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 4702 "Invalid journal mac", "Error setting journal mac key"); 4703 if (r) 4704 goto bad; 4705 4706 if (!ic->tag_size) { 4707 if (!ic->internal_hash) { 4708 ti->error = "Unknown tag size"; 4709 r = -EINVAL; 4710 goto bad; 4711 } 4712 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 4713 } 4714 if (ic->tag_size > MAX_TAG_SIZE) { 4715 ti->error = "Too big tag size"; 4716 r = -EINVAL; 4717 goto bad; 4718 } 4719 if (!(ic->tag_size & (ic->tag_size - 1))) 4720 ic->log2_tag_size = __ffs(ic->tag_size); 4721 else 4722 ic->log2_tag_size = -1; 4723 4724 if (ic->mode == 'I') { 4725 struct blk_integrity *bi; 4726 if (ic->meta_dev) { 4727 r = -EINVAL; 4728 ti->error = "Metadata device not supported in inline mode"; 4729 goto bad; 4730 } 4731 if (!ic->internal_hash_alg.alg_string) { 4732 r = -EINVAL; 4733 ti->error = "Internal hash not set in inline mode"; 4734 goto bad; 4735 } 4736 if (ic->journal_crypt_alg.alg_string || ic->journal_mac_alg.alg_string) { 4737 r = -EINVAL; 4738 ti->error = "Journal crypt not supported in inline mode"; 4739 goto bad; 4740 } 4741 if (ic->discard) { 4742 r = -EINVAL; 4743 ti->error = "Discards not supported in inline mode"; 4744 goto bad; 4745 } 4746 bi = blk_get_integrity(ic->dev->bdev->bd_disk); 4747 if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) { 4748 r = -EINVAL; 4749 ti->error = "Integrity profile not supported"; 4750 goto bad; 4751 } 4752 /*printk("tag_size: %u, tuple_size: %u\n", bi->tag_size, bi->tuple_size);*/ 4753 if (bi->tuple_size < ic->tag_size) { 4754 r = -EINVAL; 4755 ti->error = "The integrity profile is smaller than tag size"; 4756 goto bad; 4757 } 4758 if ((unsigned long)bi->tuple_size > PAGE_SIZE / 2) { 4759 r = -EINVAL; 4760 ti->error = "Too big tuple size"; 4761 goto bad; 4762 } 4763 ic->tuple_size = bi->tuple_size; 4764 if (1 << bi->interval_exp != ic->sectors_per_block << SECTOR_SHIFT) { 4765 r = -EINVAL; 4766 ti->error = "Integrity profile sector size mismatch"; 4767 goto bad; 4768 } 4769 } 4770 4771 if (ic->mode == 'B' && !ic->internal_hash) { 4772 r = -EINVAL; 4773 ti->error = "Bitmap mode can be only used with internal hash"; 4774 goto bad; 4775 } 4776 4777 if (ic->discard && !ic->internal_hash) { 4778 r = -EINVAL; 4779 ti->error = "Discard can be only used with internal hash"; 4780 goto bad; 4781 } 4782 4783 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 4784 ic->autocommit_msec = sync_msec; 4785 timer_setup(&ic->autocommit_timer, autocommit_fn, 0); 4786 4787 ic->io = dm_io_client_create(); 4788 if (IS_ERR(ic->io)) { 4789 r = PTR_ERR(ic->io); 4790 ic->io = NULL; 4791 ti->error = "Cannot allocate dm io"; 4792 goto bad; 4793 } 4794 4795 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); 4796 if (r) { 4797 ti->error = "Cannot allocate mempool"; 4798 goto bad; 4799 } 4800 4801 r = mempool_init_page_pool(&ic->recheck_pool, 1, ic->mode == 'I' ? 1 : 0); 4802 if (r) { 4803 ti->error = "Cannot allocate mempool"; 4804 goto bad; 4805 } 4806 4807 if (ic->mode == 'I') { 4808 r = bioset_init(&ic->recheck_bios, RECHECK_POOL_SIZE, 0, BIOSET_NEED_BVECS); 4809 if (r) { 4810 ti->error = "Cannot allocate bio set"; 4811 goto bad; 4812 } 4813 r = bioset_init(&ic->recalc_bios, 1, 0, BIOSET_NEED_BVECS); 4814 if (r) { 4815 ti->error = "Cannot allocate bio set"; 4816 goto bad; 4817 } 4818 } 4819 4820 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 4821 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 4822 if (!ic->metadata_wq) { 4823 ti->error = "Cannot allocate workqueue"; 4824 r = -ENOMEM; 4825 goto bad; 4826 } 4827 4828 /* 4829 * If this workqueue weren't ordered, it would cause bio reordering 4830 * and reduced performance. 4831 */ 4832 ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM); 4833 if (!ic->wait_wq) { 4834 ti->error = "Cannot allocate workqueue"; 4835 r = -ENOMEM; 4836 goto bad; 4837 } 4838 4839 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM, 4840 METADATA_WORKQUEUE_MAX_ACTIVE); 4841 if (!ic->offload_wq) { 4842 ti->error = "Cannot allocate workqueue"; 4843 r = -ENOMEM; 4844 goto bad; 4845 } 4846 4847 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 4848 if (!ic->commit_wq) { 4849 ti->error = "Cannot allocate workqueue"; 4850 r = -ENOMEM; 4851 goto bad; 4852 } 4853 INIT_WORK(&ic->commit_work, integrity_commit); 4854 4855 if (ic->mode == 'J' || ic->mode == 'B') { 4856 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 4857 if (!ic->writer_wq) { 4858 ti->error = "Cannot allocate workqueue"; 4859 r = -ENOMEM; 4860 goto bad; 4861 } 4862 INIT_WORK(&ic->writer_work, integrity_writer); 4863 } 4864 4865 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 4866 if (!ic->sb) { 4867 r = -ENOMEM; 4868 ti->error = "Cannot allocate superblock area"; 4869 goto bad; 4870 } 4871 4872 r = sync_rw_sb(ic, REQ_OP_READ); 4873 if (r) { 4874 ti->error = "Error reading superblock"; 4875 goto bad; 4876 } 4877 should_write_sb = false; 4878 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 4879 if (ic->mode != 'R') { 4880 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 4881 r = -EINVAL; 4882 ti->error = "The device is not initialized"; 4883 goto bad; 4884 } 4885 } 4886 4887 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 4888 if (r) { 4889 ti->error = "Could not initialize superblock"; 4890 goto bad; 4891 } 4892 if (ic->mode != 'R') 4893 should_write_sb = true; 4894 } 4895 4896 if (!ic->sb->version || ic->sb->version > SB_VERSION_6) { 4897 r = -EINVAL; 4898 ti->error = "Unknown version"; 4899 goto bad; 4900 } 4901 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_INLINE)) != (ic->mode == 'I')) { 4902 r = -EINVAL; 4903 ti->error = "Inline flag mismatch"; 4904 goto bad; 4905 } 4906 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 4907 r = -EINVAL; 4908 ti->error = "Tag size doesn't match the information in superblock"; 4909 goto bad; 4910 } 4911 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 4912 r = -EINVAL; 4913 ti->error = "Block size doesn't match the information in superblock"; 4914 goto bad; 4915 } 4916 if (ic->mode != 'I') { 4917 if (!le32_to_cpu(ic->sb->journal_sections)) { 4918 r = -EINVAL; 4919 ti->error = "Corrupted superblock, journal_sections is 0"; 4920 goto bad; 4921 } 4922 } else { 4923 if (le32_to_cpu(ic->sb->journal_sections)) { 4924 r = -EINVAL; 4925 ti->error = "Corrupted superblock, journal_sections is not 0"; 4926 goto bad; 4927 } 4928 } 4929 /* make sure that ti->max_io_len doesn't overflow */ 4930 if (!ic->meta_dev) { 4931 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 4932 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 4933 r = -EINVAL; 4934 ti->error = "Invalid interleave_sectors in the superblock"; 4935 goto bad; 4936 } 4937 } else { 4938 if (ic->sb->log2_interleave_sectors) { 4939 r = -EINVAL; 4940 ti->error = "Invalid interleave_sectors in the superblock"; 4941 goto bad; 4942 } 4943 } 4944 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 4945 r = -EINVAL; 4946 ti->error = "Journal mac mismatch"; 4947 goto bad; 4948 } 4949 4950 get_provided_data_sectors(ic); 4951 if (!ic->provided_data_sectors) { 4952 r = -EINVAL; 4953 ti->error = "The device is too small"; 4954 goto bad; 4955 } 4956 4957 try_smaller_buffer: 4958 r = calculate_device_limits(ic); 4959 if (r) { 4960 if (ic->meta_dev) { 4961 if (ic->log2_buffer_sectors > 3) { 4962 ic->log2_buffer_sectors--; 4963 goto try_smaller_buffer; 4964 } 4965 } 4966 ti->error = "The device is too small"; 4967 goto bad; 4968 } 4969 4970 if (log2_sectors_per_bitmap_bit < 0) 4971 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT); 4972 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block) 4973 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block; 4974 4975 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3); 4976 if (bits_in_journal > UINT_MAX) 4977 bits_in_journal = UINT_MAX; 4978 if (bits_in_journal) 4979 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit) 4980 log2_sectors_per_bitmap_bit++; 4981 4982 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block; 4983 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4984 if (should_write_sb) 4985 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4986 4987 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) 4988 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit; 4989 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8); 4990 4991 if (!ic->meta_dev) 4992 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run)); 4993 4994 if (ti->len > ic->provided_data_sectors) { 4995 r = -EINVAL; 4996 ti->error = "Not enough provided sectors for requested mapping size"; 4997 goto bad; 4998 } 4999 5000 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 5001 threshold += 50; 5002 do_div(threshold, 100); 5003 ic->free_sectors_threshold = threshold; 5004 5005 DEBUG_print("initialized:\n"); 5006 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 5007 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 5008 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 5009 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 5010 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 5011 DEBUG_print(" journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections)); 5012 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 5013 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 5014 DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev)); 5015 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 5016 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 5017 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 5018 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors); 5019 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 5020 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal); 5021 5022 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) { 5023 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 5024 ic->sb->recalc_sector = cpu_to_le64(0); 5025 } 5026 5027 if (ic->internal_hash) { 5028 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1); 5029 if (!ic->recalc_wq) { 5030 ti->error = "Cannot allocate workqueue"; 5031 r = -ENOMEM; 5032 goto bad; 5033 } 5034 INIT_WORK(&ic->recalc_work, ic->mode == 'I' ? integrity_recalc_inline : integrity_recalc); 5035 } else { 5036 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 5037 ti->error = "Recalculate can only be specified with internal_hash"; 5038 r = -EINVAL; 5039 goto bad; 5040 } 5041 } 5042 5043 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 5044 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors && 5045 dm_integrity_disable_recalculate(ic)) { 5046 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\""; 5047 r = -EOPNOTSUPP; 5048 goto bad; 5049 } 5050 5051 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev, 5052 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0); 5053 if (IS_ERR(ic->bufio)) { 5054 r = PTR_ERR(ic->bufio); 5055 ti->error = "Cannot initialize dm-bufio"; 5056 ic->bufio = NULL; 5057 goto bad; 5058 } 5059 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 5060 5061 if (ic->mode != 'R' && ic->mode != 'I') { 5062 r = create_journal(ic, &ti->error); 5063 if (r) 5064 goto bad; 5065 5066 } 5067 5068 if (ic->mode == 'B') { 5069 unsigned int i; 5070 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 5071 5072 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 5073 if (!ic->recalc_bitmap) { 5074 ti->error = "Could not allocate memory for bitmap"; 5075 r = -ENOMEM; 5076 goto bad; 5077 } 5078 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 5079 if (!ic->may_write_bitmap) { 5080 ti->error = "Could not allocate memory for bitmap"; 5081 r = -ENOMEM; 5082 goto bad; 5083 } 5084 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL); 5085 if (!ic->bbs) { 5086 ti->error = "Could not allocate memory for bitmap"; 5087 r = -ENOMEM; 5088 goto bad; 5089 } 5090 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work); 5091 for (i = 0; i < ic->n_bitmap_blocks; i++) { 5092 struct bitmap_block_status *bbs = &ic->bbs[i]; 5093 unsigned int sector, pl_index, pl_offset; 5094 5095 INIT_WORK(&bbs->work, bitmap_block_work); 5096 bbs->ic = ic; 5097 bbs->idx = i; 5098 bio_list_init(&bbs->bio_queue); 5099 spin_lock_init(&bbs->bio_queue_lock); 5100 5101 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT); 5102 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 5103 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 5104 5105 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset; 5106 } 5107 } 5108 5109 if (should_write_sb) { 5110 init_journal(ic, 0, ic->journal_sections, 0); 5111 r = dm_integrity_failed(ic); 5112 if (unlikely(r)) { 5113 ti->error = "Error initializing journal"; 5114 goto bad; 5115 } 5116 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 5117 if (r) { 5118 ti->error = "Error initializing superblock"; 5119 goto bad; 5120 } 5121 ic->just_formatted = true; 5122 } 5123 5124 if (!ic->meta_dev && ic->mode != 'I') { 5125 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 5126 if (r) 5127 goto bad; 5128 } 5129 if (ic->mode == 'B') { 5130 unsigned int max_io_len; 5131 5132 max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8); 5133 if (!max_io_len) 5134 max_io_len = 1U << 31; 5135 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len); 5136 if (!ti->max_io_len || ti->max_io_len > max_io_len) { 5137 r = dm_set_target_max_io_len(ti, max_io_len); 5138 if (r) 5139 goto bad; 5140 } 5141 } 5142 5143 ti->num_flush_bios = 1; 5144 ti->flush_supported = true; 5145 if (ic->discard) 5146 ti->num_discard_bios = 1; 5147 5148 if (ic->mode == 'I') 5149 ti->mempool_needs_integrity = true; 5150 5151 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1); 5152 return 0; 5153 5154 bad: 5155 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0); 5156 dm_integrity_dtr(ti); 5157 return r; 5158 } 5159 5160 static void dm_integrity_dtr(struct dm_target *ti) 5161 { 5162 struct dm_integrity_c *ic = ti->private; 5163 5164 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 5165 BUG_ON(!list_empty(&ic->wait_list)); 5166 5167 if (ic->mode == 'B') 5168 cancel_delayed_work_sync(&ic->bitmap_flush_work); 5169 if (ic->metadata_wq) 5170 destroy_workqueue(ic->metadata_wq); 5171 if (ic->wait_wq) 5172 destroy_workqueue(ic->wait_wq); 5173 if (ic->offload_wq) 5174 destroy_workqueue(ic->offload_wq); 5175 if (ic->commit_wq) 5176 destroy_workqueue(ic->commit_wq); 5177 if (ic->writer_wq) 5178 destroy_workqueue(ic->writer_wq); 5179 if (ic->recalc_wq) 5180 destroy_workqueue(ic->recalc_wq); 5181 kvfree(ic->bbs); 5182 if (ic->bufio) 5183 dm_bufio_client_destroy(ic->bufio); 5184 bioset_exit(&ic->recalc_bios); 5185 bioset_exit(&ic->recheck_bios); 5186 mempool_exit(&ic->recheck_pool); 5187 mempool_exit(&ic->journal_io_mempool); 5188 if (ic->io) 5189 dm_io_client_destroy(ic->io); 5190 if (ic->dev) 5191 dm_put_device(ti, ic->dev); 5192 if (ic->meta_dev) 5193 dm_put_device(ti, ic->meta_dev); 5194 dm_integrity_free_page_list(ic->journal); 5195 dm_integrity_free_page_list(ic->journal_io); 5196 dm_integrity_free_page_list(ic->journal_xor); 5197 dm_integrity_free_page_list(ic->recalc_bitmap); 5198 dm_integrity_free_page_list(ic->may_write_bitmap); 5199 if (ic->journal_scatterlist) 5200 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 5201 if (ic->journal_io_scatterlist) 5202 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 5203 if (ic->sk_requests) { 5204 unsigned int i; 5205 5206 for (i = 0; i < ic->journal_sections; i++) { 5207 struct skcipher_request *req; 5208 5209 req = ic->sk_requests[i]; 5210 if (req) { 5211 kfree_sensitive(req->iv); 5212 skcipher_request_free(req); 5213 } 5214 } 5215 kvfree(ic->sk_requests); 5216 } 5217 kvfree(ic->journal_tree); 5218 if (ic->sb) 5219 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 5220 5221 if (ic->internal_hash) 5222 crypto_free_shash(ic->internal_hash); 5223 free_alg(&ic->internal_hash_alg); 5224 5225 if (ic->journal_crypt) 5226 crypto_free_skcipher(ic->journal_crypt); 5227 free_alg(&ic->journal_crypt_alg); 5228 5229 if (ic->journal_mac) 5230 crypto_free_shash(ic->journal_mac); 5231 free_alg(&ic->journal_mac_alg); 5232 5233 kfree(ic); 5234 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1); 5235 } 5236 5237 static struct target_type integrity_target = { 5238 .name = "integrity", 5239 .version = {1, 13, 0}, 5240 .module = THIS_MODULE, 5241 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 5242 .ctr = dm_integrity_ctr, 5243 .dtr = dm_integrity_dtr, 5244 .map = dm_integrity_map, 5245 .end_io = dm_integrity_end_io, 5246 .postsuspend = dm_integrity_postsuspend, 5247 .resume = dm_integrity_resume, 5248 .status = dm_integrity_status, 5249 .iterate_devices = dm_integrity_iterate_devices, 5250 .io_hints = dm_integrity_io_hints, 5251 }; 5252 5253 static int __init dm_integrity_init(void) 5254 { 5255 int r; 5256 5257 journal_io_cache = kmem_cache_create("integrity_journal_io", 5258 sizeof(struct journal_io), 0, 0, NULL); 5259 if (!journal_io_cache) { 5260 DMERR("can't allocate journal io cache"); 5261 return -ENOMEM; 5262 } 5263 5264 r = dm_register_target(&integrity_target); 5265 if (r < 0) { 5266 kmem_cache_destroy(journal_io_cache); 5267 return r; 5268 } 5269 5270 return 0; 5271 } 5272 5273 static void __exit dm_integrity_exit(void) 5274 { 5275 dm_unregister_target(&integrity_target); 5276 kmem_cache_destroy(journal_io_cache); 5277 } 5278 5279 module_init(dm_integrity_init); 5280 module_exit(dm_integrity_exit); 5281 5282 MODULE_AUTHOR("Milan Broz"); 5283 MODULE_AUTHOR("Mikulas Patocka"); 5284 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 5285 MODULE_LICENSE("GPL"); 5286