1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. 4 * Copyright (C) 2016-2017 Milan Broz 5 * Copyright (C) 2016-2017 Mikulas Patocka 6 * 7 * This file is released under the GPL. 8 */ 9 10 #include "dm-bio-record.h" 11 12 #include <linux/compiler.h> 13 #include <linux/module.h> 14 #include <linux/device-mapper.h> 15 #include <linux/dm-io.h> 16 #include <linux/vmalloc.h> 17 #include <linux/sort.h> 18 #include <linux/rbtree.h> 19 #include <linux/delay.h> 20 #include <linux/random.h> 21 #include <linux/reboot.h> 22 #include <crypto/hash.h> 23 #include <crypto/skcipher.h> 24 #include <crypto/utils.h> 25 #include <linux/async_tx.h> 26 #include <linux/dm-bufio.h> 27 28 #include "dm-audit.h" 29 30 #define DM_MSG_PREFIX "integrity" 31 32 #define DEFAULT_INTERLEAVE_SECTORS 32768 33 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 34 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768 35 #define DEFAULT_BUFFER_SECTORS 128 36 #define DEFAULT_JOURNAL_WATERMARK 50 37 #define DEFAULT_SYNC_MSEC 10000 38 #define DEFAULT_MAX_JOURNAL_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192) 39 #define MIN_LOG2_INTERLEAVE_SECTORS 3 40 #define MAX_LOG2_INTERLEAVE_SECTORS 31 41 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 42 #define RECALC_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048) 43 #define RECALC_WRITE_SUPER 16 44 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */ 45 #define BITMAP_FLUSH_INTERVAL (10 * HZ) 46 #define DISCARD_FILLER 0xf6 47 #define SALT_SIZE 16 48 #define RECHECK_POOL_SIZE 256 49 50 /* 51 * Warning - DEBUG_PRINT prints security-sensitive data to the log, 52 * so it should not be enabled in the official kernel 53 */ 54 //#define DEBUG_PRINT 55 //#define INTERNAL_VERIFY 56 57 /* 58 * On disk structures 59 */ 60 61 #define SB_MAGIC "integrt" 62 #define SB_VERSION_1 1 63 #define SB_VERSION_2 2 64 #define SB_VERSION_3 3 65 #define SB_VERSION_4 4 66 #define SB_VERSION_5 5 67 #define SB_VERSION_6 6 68 #define SB_SECTORS 8 69 #define MAX_SECTORS_PER_BLOCK 8 70 71 struct superblock { 72 __u8 magic[8]; 73 __u8 version; 74 __u8 log2_interleave_sectors; 75 __le16 integrity_tag_size; 76 __le32 journal_sections; 77 __le64 provided_data_sectors; /* userspace uses this value */ 78 __le32 flags; 79 __u8 log2_sectors_per_block; 80 __u8 log2_blocks_per_bitmap_bit; 81 __u8 pad[2]; 82 __le64 recalc_sector; 83 __u8 pad2[8]; 84 __u8 salt[SALT_SIZE]; 85 }; 86 87 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 88 #define SB_FLAG_RECALCULATING 0x2 89 #define SB_FLAG_DIRTY_BITMAP 0x4 90 #define SB_FLAG_FIXED_PADDING 0x8 91 #define SB_FLAG_FIXED_HMAC 0x10 92 #define SB_FLAG_INLINE 0x20 93 94 #define JOURNAL_ENTRY_ROUNDUP 8 95 96 typedef __le64 commit_id_t; 97 #define JOURNAL_MAC_PER_SECTOR 8 98 99 struct journal_entry { 100 union { 101 struct { 102 __le32 sector_lo; 103 __le32 sector_hi; 104 } s; 105 __le64 sector; 106 } u; 107 commit_id_t last_bytes[]; 108 /* __u8 tag[0]; */ 109 }; 110 111 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) 112 113 #if BITS_PER_LONG == 64 114 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) 115 #else 116 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) 117 #endif 118 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) 119 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) 120 #define journal_entry_set_unused(je) ((je)->u.s.sector_hi = cpu_to_le32(-1)) 121 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) 122 #define journal_entry_set_inprogress(je) ((je)->u.s.sector_hi = cpu_to_le32(-2)) 123 124 #define JOURNAL_BLOCK_SECTORS 8 125 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) 126 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) 127 128 struct journal_sector { 129 struct_group(sectors, 130 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; 131 __u8 mac[JOURNAL_MAC_PER_SECTOR]; 132 ); 133 commit_id_t commit_id; 134 }; 135 136 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) 137 138 #define METADATA_PADDING_SECTORS 8 139 140 #define N_COMMIT_IDS 4 141 142 static unsigned char prev_commit_seq(unsigned char seq) 143 { 144 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; 145 } 146 147 static unsigned char next_commit_seq(unsigned char seq) 148 { 149 return (seq + 1) % N_COMMIT_IDS; 150 } 151 152 /* 153 * In-memory structures 154 */ 155 156 struct journal_node { 157 struct rb_node node; 158 sector_t sector; 159 }; 160 161 struct alg_spec { 162 char *alg_string; 163 char *key_string; 164 __u8 *key; 165 unsigned int key_size; 166 }; 167 168 struct dm_integrity_c { 169 struct dm_dev *dev; 170 struct dm_dev *meta_dev; 171 unsigned int tag_size; 172 __s8 log2_tag_size; 173 unsigned int tuple_size; 174 sector_t start; 175 mempool_t journal_io_mempool; 176 struct dm_io_client *io; 177 struct dm_bufio_client *bufio; 178 struct workqueue_struct *metadata_wq; 179 struct superblock *sb; 180 unsigned int journal_pages; 181 unsigned int n_bitmap_blocks; 182 183 struct page_list *journal; 184 struct page_list *journal_io; 185 struct page_list *journal_xor; 186 struct page_list *recalc_bitmap; 187 struct page_list *may_write_bitmap; 188 struct bitmap_block_status *bbs; 189 unsigned int bitmap_flush_interval; 190 int synchronous_mode; 191 struct bio_list synchronous_bios; 192 struct delayed_work bitmap_flush_work; 193 194 struct crypto_skcipher *journal_crypt; 195 struct scatterlist **journal_scatterlist; 196 struct scatterlist **journal_io_scatterlist; 197 struct skcipher_request **sk_requests; 198 199 struct crypto_shash *journal_mac; 200 201 struct journal_node *journal_tree; 202 struct rb_root journal_tree_root; 203 204 sector_t provided_data_sectors; 205 206 unsigned short journal_entry_size; 207 unsigned char journal_entries_per_sector; 208 unsigned char journal_section_entries; 209 unsigned short journal_section_sectors; 210 unsigned int journal_sections; 211 unsigned int journal_entries; 212 sector_t data_device_sectors; 213 sector_t meta_device_sectors; 214 unsigned int initial_sectors; 215 unsigned int metadata_run; 216 __s8 log2_metadata_run; 217 __u8 log2_buffer_sectors; 218 __u8 sectors_per_block; 219 __u8 log2_blocks_per_bitmap_bit; 220 221 unsigned char mode; 222 223 int failed; 224 225 struct crypto_shash *internal_hash; 226 227 struct dm_target *ti; 228 229 /* these variables are locked with endio_wait.lock */ 230 struct rb_root in_progress; 231 struct list_head wait_list; 232 wait_queue_head_t endio_wait; 233 struct workqueue_struct *wait_wq; 234 struct workqueue_struct *offload_wq; 235 236 unsigned char commit_seq; 237 commit_id_t commit_ids[N_COMMIT_IDS]; 238 239 unsigned int committed_section; 240 unsigned int n_committed_sections; 241 242 unsigned int uncommitted_section; 243 unsigned int n_uncommitted_sections; 244 245 unsigned int free_section; 246 unsigned char free_section_entry; 247 unsigned int free_sectors; 248 249 unsigned int free_sectors_threshold; 250 251 struct workqueue_struct *commit_wq; 252 struct work_struct commit_work; 253 254 struct workqueue_struct *writer_wq; 255 struct work_struct writer_work; 256 257 struct workqueue_struct *recalc_wq; 258 struct work_struct recalc_work; 259 260 struct bio_list flush_bio_list; 261 262 unsigned long autocommit_jiffies; 263 struct timer_list autocommit_timer; 264 unsigned int autocommit_msec; 265 266 wait_queue_head_t copy_to_journal_wait; 267 268 struct completion crypto_backoff; 269 270 bool wrote_to_journal; 271 bool journal_uptodate; 272 bool just_formatted; 273 bool recalculate_flag; 274 bool reset_recalculate_flag; 275 bool discard; 276 bool fix_padding; 277 bool fix_hmac; 278 bool legacy_recalculate; 279 280 struct alg_spec internal_hash_alg; 281 struct alg_spec journal_crypt_alg; 282 struct alg_spec journal_mac_alg; 283 284 atomic64_t number_of_mismatches; 285 286 mempool_t recheck_pool; 287 struct bio_set recheck_bios; 288 struct bio_set recalc_bios; 289 290 struct notifier_block reboot_notifier; 291 }; 292 293 struct dm_integrity_range { 294 sector_t logical_sector; 295 sector_t n_sectors; 296 bool waiting; 297 union { 298 struct rb_node node; 299 struct { 300 struct task_struct *task; 301 struct list_head wait_entry; 302 }; 303 }; 304 }; 305 306 struct dm_integrity_io { 307 struct work_struct work; 308 309 struct dm_integrity_c *ic; 310 enum req_op op; 311 bool fua; 312 313 struct dm_integrity_range range; 314 315 sector_t metadata_block; 316 unsigned int metadata_offset; 317 318 atomic_t in_flight; 319 blk_status_t bi_status; 320 321 struct completion *completion; 322 323 struct dm_bio_details bio_details; 324 325 char *integrity_payload; 326 unsigned payload_len; 327 bool integrity_payload_from_mempool; 328 bool integrity_range_locked; 329 }; 330 331 struct journal_completion { 332 struct dm_integrity_c *ic; 333 atomic_t in_flight; 334 struct completion comp; 335 }; 336 337 struct journal_io { 338 struct dm_integrity_range range; 339 struct journal_completion *comp; 340 }; 341 342 struct bitmap_block_status { 343 struct work_struct work; 344 struct dm_integrity_c *ic; 345 unsigned int idx; 346 unsigned long *bitmap; 347 struct bio_list bio_queue; 348 spinlock_t bio_queue_lock; 349 350 }; 351 352 static struct kmem_cache *journal_io_cache; 353 354 #define JOURNAL_IO_MEMPOOL 32 355 356 #ifdef DEBUG_PRINT 357 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) 358 #define DEBUG_bytes(bytes, len, msg, ...) printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \ 359 len ? ": " : "", len, bytes) 360 #else 361 #define DEBUG_print(x, ...) do { } while (0) 362 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) 363 #endif 364 365 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); 366 static int dm_integrity_map_inline(struct dm_integrity_io *dio, bool from_map); 367 static void integrity_bio_wait(struct work_struct *w); 368 static void dm_integrity_dtr(struct dm_target *ti); 369 370 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) 371 { 372 if (err == -EILSEQ) 373 atomic64_inc(&ic->number_of_mismatches); 374 if (!cmpxchg(&ic->failed, 0, err)) 375 DMERR("Error on %s: %d", msg, err); 376 } 377 378 static int dm_integrity_failed(struct dm_integrity_c *ic) 379 { 380 return READ_ONCE(ic->failed); 381 } 382 383 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic) 384 { 385 if (ic->legacy_recalculate) 386 return false; 387 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ? 388 ic->internal_hash_alg.key || ic->journal_mac_alg.key : 389 ic->internal_hash_alg.key && !ic->journal_mac_alg.key) 390 return true; 391 return false; 392 } 393 394 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i, 395 unsigned int j, unsigned char seq) 396 { 397 /* 398 * Xor the number with section and sector, so that if a piece of 399 * journal is written at wrong place, it is detected. 400 */ 401 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); 402 } 403 404 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, 405 sector_t *area, sector_t *offset) 406 { 407 if (!ic->meta_dev) { 408 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; 409 *area = data_sector >> log2_interleave_sectors; 410 *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1); 411 } else { 412 *area = 0; 413 *offset = data_sector; 414 } 415 } 416 417 #define sector_to_block(ic, n) \ 418 do { \ 419 BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1)); \ 420 (n) >>= (ic)->sb->log2_sectors_per_block; \ 421 } while (0) 422 423 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, 424 sector_t offset, unsigned int *metadata_offset) 425 { 426 __u64 ms; 427 unsigned int mo; 428 429 ms = area << ic->sb->log2_interleave_sectors; 430 if (likely(ic->log2_metadata_run >= 0)) 431 ms += area << ic->log2_metadata_run; 432 else 433 ms += area * ic->metadata_run; 434 ms >>= ic->log2_buffer_sectors; 435 436 sector_to_block(ic, offset); 437 438 if (likely(ic->log2_tag_size >= 0)) { 439 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); 440 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 441 } else { 442 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); 443 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); 444 } 445 *metadata_offset = mo; 446 return ms; 447 } 448 449 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) 450 { 451 sector_t result; 452 453 if (ic->meta_dev) 454 return offset; 455 456 result = area << ic->sb->log2_interleave_sectors; 457 if (likely(ic->log2_metadata_run >= 0)) 458 result += (area + 1) << ic->log2_metadata_run; 459 else 460 result += (area + 1) * ic->metadata_run; 461 462 result += (sector_t)ic->initial_sectors + offset; 463 result += ic->start; 464 465 return result; 466 } 467 468 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr) 469 { 470 if (unlikely(*sec_ptr >= ic->journal_sections)) 471 *sec_ptr -= ic->journal_sections; 472 } 473 474 static void sb_set_version(struct dm_integrity_c *ic) 475 { 476 if (ic->sb->flags & cpu_to_le32(SB_FLAG_INLINE)) 477 ic->sb->version = SB_VERSION_6; 478 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) 479 ic->sb->version = SB_VERSION_5; 480 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) 481 ic->sb->version = SB_VERSION_4; 482 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) 483 ic->sb->version = SB_VERSION_3; 484 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 485 ic->sb->version = SB_VERSION_2; 486 else 487 ic->sb->version = SB_VERSION_1; 488 } 489 490 static int sb_mac(struct dm_integrity_c *ic, bool wr) 491 { 492 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 493 int r; 494 unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac); 495 __u8 *sb = (__u8 *)ic->sb; 496 __u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size; 497 498 if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT || 499 mac_size > HASH_MAX_DIGESTSIZE) { 500 dm_integrity_io_error(ic, "digest is too long", -EINVAL); 501 return -EINVAL; 502 } 503 504 desc->tfm = ic->journal_mac; 505 506 if (likely(wr)) { 507 r = crypto_shash_digest(desc, sb, mac - sb, mac); 508 if (unlikely(r < 0)) { 509 dm_integrity_io_error(ic, "crypto_shash_digest", r); 510 return r; 511 } 512 } else { 513 __u8 actual_mac[HASH_MAX_DIGESTSIZE]; 514 515 r = crypto_shash_digest(desc, sb, mac - sb, actual_mac); 516 if (unlikely(r < 0)) { 517 dm_integrity_io_error(ic, "crypto_shash_digest", r); 518 return r; 519 } 520 if (crypto_memneq(mac, actual_mac, mac_size)) { 521 dm_integrity_io_error(ic, "superblock mac", -EILSEQ); 522 dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0); 523 return -EILSEQ; 524 } 525 } 526 527 return 0; 528 } 529 530 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf) 531 { 532 struct dm_io_request io_req; 533 struct dm_io_region io_loc; 534 const enum req_op op = opf & REQ_OP_MASK; 535 int r; 536 537 io_req.bi_opf = opf; 538 io_req.mem.type = DM_IO_KMEM; 539 io_req.mem.ptr.addr = ic->sb; 540 io_req.notify.fn = NULL; 541 io_req.client = ic->io; 542 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 543 io_loc.sector = ic->start; 544 io_loc.count = SB_SECTORS; 545 546 if (op == REQ_OP_WRITE) { 547 sb_set_version(ic); 548 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 549 r = sb_mac(ic, true); 550 if (unlikely(r)) 551 return r; 552 } 553 } 554 555 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 556 if (unlikely(r)) 557 return r; 558 559 if (op == REQ_OP_READ) { 560 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 561 r = sb_mac(ic, false); 562 if (unlikely(r)) 563 return r; 564 } 565 } 566 567 return 0; 568 } 569 570 #define BITMAP_OP_TEST_ALL_SET 0 571 #define BITMAP_OP_TEST_ALL_CLEAR 1 572 #define BITMAP_OP_SET 2 573 #define BITMAP_OP_CLEAR 3 574 575 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap, 576 sector_t sector, sector_t n_sectors, int mode) 577 { 578 unsigned long bit, end_bit, this_end_bit, page, end_page; 579 unsigned long *data; 580 581 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) { 582 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)", 583 sector, 584 n_sectors, 585 ic->sb->log2_sectors_per_block, 586 ic->log2_blocks_per_bitmap_bit, 587 mode); 588 BUG(); 589 } 590 591 if (unlikely(!n_sectors)) 592 return true; 593 594 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 595 end_bit = (sector + n_sectors - 1) >> 596 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 597 598 page = bit / (PAGE_SIZE * 8); 599 bit %= PAGE_SIZE * 8; 600 601 end_page = end_bit / (PAGE_SIZE * 8); 602 end_bit %= PAGE_SIZE * 8; 603 604 repeat: 605 if (page < end_page) 606 this_end_bit = PAGE_SIZE * 8 - 1; 607 else 608 this_end_bit = end_bit; 609 610 data = lowmem_page_address(bitmap[page].page); 611 612 if (mode == BITMAP_OP_TEST_ALL_SET) { 613 while (bit <= this_end_bit) { 614 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 615 do { 616 if (data[bit / BITS_PER_LONG] != -1) 617 return false; 618 bit += BITS_PER_LONG; 619 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 620 continue; 621 } 622 if (!test_bit(bit, data)) 623 return false; 624 bit++; 625 } 626 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) { 627 while (bit <= this_end_bit) { 628 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 629 do { 630 if (data[bit / BITS_PER_LONG] != 0) 631 return false; 632 bit += BITS_PER_LONG; 633 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 634 continue; 635 } 636 if (test_bit(bit, data)) 637 return false; 638 bit++; 639 } 640 } else if (mode == BITMAP_OP_SET) { 641 while (bit <= this_end_bit) { 642 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 643 do { 644 data[bit / BITS_PER_LONG] = -1; 645 bit += BITS_PER_LONG; 646 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 647 continue; 648 } 649 __set_bit(bit, data); 650 bit++; 651 } 652 } else if (mode == BITMAP_OP_CLEAR) { 653 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1) 654 clear_page(data); 655 else { 656 while (bit <= this_end_bit) { 657 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { 658 do { 659 data[bit / BITS_PER_LONG] = 0; 660 bit += BITS_PER_LONG; 661 } while (this_end_bit >= bit + BITS_PER_LONG - 1); 662 continue; 663 } 664 __clear_bit(bit, data); 665 bit++; 666 } 667 } 668 } else { 669 BUG(); 670 } 671 672 if (unlikely(page < end_page)) { 673 bit = 0; 674 page++; 675 goto repeat; 676 } 677 678 return true; 679 } 680 681 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src) 682 { 683 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 684 unsigned int i; 685 686 for (i = 0; i < n_bitmap_pages; i++) { 687 unsigned long *dst_data = lowmem_page_address(dst[i].page); 688 unsigned long *src_data = lowmem_page_address(src[i].page); 689 690 copy_page(dst_data, src_data); 691 } 692 } 693 694 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector) 695 { 696 unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 697 unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8); 698 699 BUG_ON(bitmap_block >= ic->n_bitmap_blocks); 700 return &ic->bbs[bitmap_block]; 701 } 702 703 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset, 704 bool e, const char *function) 705 { 706 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) 707 unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors; 708 709 if (unlikely(section >= ic->journal_sections) || 710 unlikely(offset >= limit)) { 711 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)", 712 function, section, offset, ic->journal_sections, limit); 713 BUG(); 714 } 715 #endif 716 } 717 718 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset, 719 unsigned int *pl_index, unsigned int *pl_offset) 720 { 721 unsigned int sector; 722 723 access_journal_check(ic, section, offset, false, "page_list_location"); 724 725 sector = section * ic->journal_section_sectors + offset; 726 727 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 728 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 729 } 730 731 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, 732 unsigned int section, unsigned int offset, unsigned int *n_sectors) 733 { 734 unsigned int pl_index, pl_offset; 735 char *va; 736 737 page_list_location(ic, section, offset, &pl_index, &pl_offset); 738 739 if (n_sectors) 740 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; 741 742 va = lowmem_page_address(pl[pl_index].page); 743 744 return (struct journal_sector *)(va + pl_offset); 745 } 746 747 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset) 748 { 749 return access_page_list(ic, ic->journal, section, offset, NULL); 750 } 751 752 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n) 753 { 754 unsigned int rel_sector, offset; 755 struct journal_sector *js; 756 757 access_journal_check(ic, section, n, true, "access_journal_entry"); 758 759 rel_sector = n % JOURNAL_BLOCK_SECTORS; 760 offset = n / JOURNAL_BLOCK_SECTORS; 761 762 js = access_journal(ic, section, rel_sector); 763 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); 764 } 765 766 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n) 767 { 768 n <<= ic->sb->log2_sectors_per_block; 769 770 n += JOURNAL_BLOCK_SECTORS; 771 772 access_journal_check(ic, section, n, false, "access_journal_data"); 773 774 return access_journal(ic, section, n); 775 } 776 777 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE]) 778 { 779 SHASH_DESC_ON_STACK(desc, ic->journal_mac); 780 int r; 781 unsigned int j, size; 782 783 desc->tfm = ic->journal_mac; 784 785 r = crypto_shash_init(desc); 786 if (unlikely(r < 0)) { 787 dm_integrity_io_error(ic, "crypto_shash_init", r); 788 goto err; 789 } 790 791 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 792 __le64 section_le; 793 794 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE); 795 if (unlikely(r < 0)) { 796 dm_integrity_io_error(ic, "crypto_shash_update", r); 797 goto err; 798 } 799 800 section_le = cpu_to_le64(section); 801 r = crypto_shash_update(desc, (__u8 *)§ion_le, sizeof(section_le)); 802 if (unlikely(r < 0)) { 803 dm_integrity_io_error(ic, "crypto_shash_update", r); 804 goto err; 805 } 806 } 807 808 for (j = 0; j < ic->journal_section_entries; j++) { 809 struct journal_entry *je = access_journal_entry(ic, section, j); 810 811 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector)); 812 if (unlikely(r < 0)) { 813 dm_integrity_io_error(ic, "crypto_shash_update", r); 814 goto err; 815 } 816 } 817 818 size = crypto_shash_digestsize(ic->journal_mac); 819 820 if (likely(size <= JOURNAL_MAC_SIZE)) { 821 r = crypto_shash_final(desc, result); 822 if (unlikely(r < 0)) { 823 dm_integrity_io_error(ic, "crypto_shash_final", r); 824 goto err; 825 } 826 memset(result + size, 0, JOURNAL_MAC_SIZE - size); 827 } else { 828 __u8 digest[HASH_MAX_DIGESTSIZE]; 829 830 if (WARN_ON(size > sizeof(digest))) { 831 dm_integrity_io_error(ic, "digest_size", -EINVAL); 832 goto err; 833 } 834 r = crypto_shash_final(desc, digest); 835 if (unlikely(r < 0)) { 836 dm_integrity_io_error(ic, "crypto_shash_final", r); 837 goto err; 838 } 839 memcpy(result, digest, JOURNAL_MAC_SIZE); 840 } 841 842 return; 843 err: 844 memset(result, 0, JOURNAL_MAC_SIZE); 845 } 846 847 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr) 848 { 849 __u8 result[JOURNAL_MAC_SIZE]; 850 unsigned int j; 851 852 if (!ic->journal_mac) 853 return; 854 855 section_mac(ic, section, result); 856 857 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { 858 struct journal_sector *js = access_journal(ic, section, j); 859 860 if (likely(wr)) 861 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); 862 else { 863 if (crypto_memneq(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) { 864 dm_integrity_io_error(ic, "journal mac", -EILSEQ); 865 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0); 866 } 867 } 868 } 869 } 870 871 static void complete_journal_op(void *context) 872 { 873 struct journal_completion *comp = context; 874 875 BUG_ON(!atomic_read(&comp->in_flight)); 876 if (likely(atomic_dec_and_test(&comp->in_flight))) 877 complete(&comp->comp); 878 } 879 880 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section, 881 unsigned int n_sections, struct journal_completion *comp) 882 { 883 struct async_submit_ctl submit; 884 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; 885 unsigned int pl_index, pl_offset, section_index; 886 struct page_list *source_pl, *target_pl; 887 888 if (likely(encrypt)) { 889 source_pl = ic->journal; 890 target_pl = ic->journal_io; 891 } else { 892 source_pl = ic->journal_io; 893 target_pl = ic->journal; 894 } 895 896 page_list_location(ic, section, 0, &pl_index, &pl_offset); 897 898 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); 899 900 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); 901 902 section_index = pl_index; 903 904 do { 905 size_t this_step; 906 struct page *src_pages[2]; 907 struct page *dst_page; 908 909 while (unlikely(pl_index == section_index)) { 910 unsigned int dummy; 911 912 if (likely(encrypt)) 913 rw_section_mac(ic, section, true); 914 section++; 915 n_sections--; 916 if (!n_sections) 917 break; 918 page_list_location(ic, section, 0, §ion_index, &dummy); 919 } 920 921 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); 922 dst_page = target_pl[pl_index].page; 923 src_pages[0] = source_pl[pl_index].page; 924 src_pages[1] = ic->journal_xor[pl_index].page; 925 926 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); 927 928 pl_index++; 929 pl_offset = 0; 930 n_bytes -= this_step; 931 } while (n_bytes); 932 933 BUG_ON(n_sections); 934 935 async_tx_issue_pending_all(); 936 } 937 938 static void complete_journal_encrypt(void *data, int err) 939 { 940 struct journal_completion *comp = data; 941 942 if (unlikely(err)) { 943 if (likely(err == -EINPROGRESS)) { 944 complete(&comp->ic->crypto_backoff); 945 return; 946 } 947 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); 948 } 949 complete_journal_op(comp); 950 } 951 952 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) 953 { 954 int r; 955 956 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 957 complete_journal_encrypt, comp); 958 if (likely(encrypt)) 959 r = crypto_skcipher_encrypt(req); 960 else 961 r = crypto_skcipher_decrypt(req); 962 if (likely(!r)) 963 return false; 964 if (likely(r == -EINPROGRESS)) 965 return true; 966 if (likely(r == -EBUSY)) { 967 wait_for_completion(&comp->ic->crypto_backoff); 968 reinit_completion(&comp->ic->crypto_backoff); 969 return true; 970 } 971 dm_integrity_io_error(comp->ic, "encrypt", r); 972 return false; 973 } 974 975 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section, 976 unsigned int n_sections, struct journal_completion *comp) 977 { 978 struct scatterlist **source_sg; 979 struct scatterlist **target_sg; 980 981 atomic_add(2, &comp->in_flight); 982 983 if (likely(encrypt)) { 984 source_sg = ic->journal_scatterlist; 985 target_sg = ic->journal_io_scatterlist; 986 } else { 987 source_sg = ic->journal_io_scatterlist; 988 target_sg = ic->journal_scatterlist; 989 } 990 991 do { 992 struct skcipher_request *req; 993 unsigned int ivsize; 994 char *iv; 995 996 if (likely(encrypt)) 997 rw_section_mac(ic, section, true); 998 999 req = ic->sk_requests[section]; 1000 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 1001 iv = req->iv; 1002 1003 memcpy(iv, iv + ivsize, ivsize); 1004 1005 req->src = source_sg[section]; 1006 req->dst = target_sg[section]; 1007 1008 if (unlikely(do_crypt(encrypt, req, comp))) 1009 atomic_inc(&comp->in_flight); 1010 1011 section++; 1012 n_sections--; 1013 } while (n_sections); 1014 1015 atomic_dec(&comp->in_flight); 1016 complete_journal_op(comp); 1017 } 1018 1019 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section, 1020 unsigned int n_sections, struct journal_completion *comp) 1021 { 1022 if (ic->journal_xor) 1023 return xor_journal(ic, encrypt, section, n_sections, comp); 1024 else 1025 return crypt_journal(ic, encrypt, section, n_sections, comp); 1026 } 1027 1028 static void complete_journal_io(unsigned long error, void *context) 1029 { 1030 struct journal_completion *comp = context; 1031 1032 if (unlikely(error != 0)) 1033 dm_integrity_io_error(comp->ic, "writing journal", -EIO); 1034 complete_journal_op(comp); 1035 } 1036 1037 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf, 1038 unsigned int sector, unsigned int n_sectors, 1039 struct journal_completion *comp) 1040 { 1041 struct dm_io_request io_req; 1042 struct dm_io_region io_loc; 1043 unsigned int pl_index, pl_offset; 1044 int r; 1045 1046 if (unlikely(dm_integrity_failed(ic))) { 1047 if (comp) 1048 complete_journal_io(-1UL, comp); 1049 return; 1050 } 1051 1052 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1053 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1054 1055 io_req.bi_opf = opf; 1056 io_req.mem.type = DM_IO_PAGE_LIST; 1057 if (ic->journal_io) 1058 io_req.mem.ptr.pl = &ic->journal_io[pl_index]; 1059 else 1060 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1061 io_req.mem.offset = pl_offset; 1062 if (likely(comp != NULL)) { 1063 io_req.notify.fn = complete_journal_io; 1064 io_req.notify.context = comp; 1065 } else { 1066 io_req.notify.fn = NULL; 1067 } 1068 io_req.client = ic->io; 1069 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; 1070 io_loc.sector = ic->start + SB_SECTORS + sector; 1071 io_loc.count = n_sectors; 1072 1073 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 1074 if (unlikely(r)) { 1075 dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ? 1076 "reading journal" : "writing journal", r); 1077 if (comp) { 1078 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1079 complete_journal_io(-1UL, comp); 1080 } 1081 } 1082 } 1083 1084 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf, 1085 unsigned int section, unsigned int n_sections, 1086 struct journal_completion *comp) 1087 { 1088 unsigned int sector, n_sectors; 1089 1090 sector = section * ic->journal_section_sectors; 1091 n_sectors = n_sections * ic->journal_section_sectors; 1092 1093 rw_journal_sectors(ic, opf, sector, n_sectors, comp); 1094 } 1095 1096 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections) 1097 { 1098 struct journal_completion io_comp; 1099 struct journal_completion crypt_comp_1; 1100 struct journal_completion crypt_comp_2; 1101 unsigned int i; 1102 1103 io_comp.ic = ic; 1104 init_completion(&io_comp.comp); 1105 1106 if (commit_start + commit_sections <= ic->journal_sections) { 1107 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); 1108 if (ic->journal_io) { 1109 crypt_comp_1.ic = ic; 1110 init_completion(&crypt_comp_1.comp); 1111 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1112 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); 1113 wait_for_completion_io(&crypt_comp_1.comp); 1114 } else { 1115 for (i = 0; i < commit_sections; i++) 1116 rw_section_mac(ic, commit_start + i, true); 1117 } 1118 rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start, 1119 commit_sections, &io_comp); 1120 } else { 1121 unsigned int to_end; 1122 1123 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); 1124 to_end = ic->journal_sections - commit_start; 1125 if (ic->journal_io) { 1126 crypt_comp_1.ic = ic; 1127 init_completion(&crypt_comp_1.comp); 1128 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1129 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); 1130 if (try_wait_for_completion(&crypt_comp_1.comp)) { 1131 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 1132 commit_start, to_end, &io_comp); 1133 reinit_completion(&crypt_comp_1.comp); 1134 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); 1135 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); 1136 wait_for_completion_io(&crypt_comp_1.comp); 1137 } else { 1138 crypt_comp_2.ic = ic; 1139 init_completion(&crypt_comp_2.comp); 1140 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); 1141 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); 1142 wait_for_completion_io(&crypt_comp_1.comp); 1143 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp); 1144 wait_for_completion_io(&crypt_comp_2.comp); 1145 } 1146 } else { 1147 for (i = 0; i < to_end; i++) 1148 rw_section_mac(ic, commit_start + i, true); 1149 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp); 1150 for (i = 0; i < commit_sections - to_end; i++) 1151 rw_section_mac(ic, i, true); 1152 } 1153 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp); 1154 } 1155 1156 wait_for_completion_io(&io_comp.comp); 1157 } 1158 1159 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset, 1160 unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data) 1161 { 1162 struct dm_io_request io_req; 1163 struct dm_io_region io_loc; 1164 int r; 1165 unsigned int sector, pl_index, pl_offset; 1166 1167 BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1)); 1168 1169 if (unlikely(dm_integrity_failed(ic))) { 1170 fn(-1UL, data); 1171 return; 1172 } 1173 1174 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; 1175 1176 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 1177 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 1178 1179 io_req.bi_opf = REQ_OP_WRITE; 1180 io_req.mem.type = DM_IO_PAGE_LIST; 1181 io_req.mem.ptr.pl = &ic->journal[pl_index]; 1182 io_req.mem.offset = pl_offset; 1183 io_req.notify.fn = fn; 1184 io_req.notify.context = data; 1185 io_req.client = ic->io; 1186 io_loc.bdev = ic->dev->bdev; 1187 io_loc.sector = target; 1188 io_loc.count = n_sectors; 1189 1190 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 1191 if (unlikely(r)) { 1192 WARN_ONCE(1, "asynchronous dm_io failed: %d", r); 1193 fn(-1UL, data); 1194 } 1195 } 1196 1197 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2) 1198 { 1199 return range1->logical_sector < range2->logical_sector + range2->n_sectors && 1200 range1->logical_sector + range1->n_sectors > range2->logical_sector; 1201 } 1202 1203 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting) 1204 { 1205 struct rb_node **n = &ic->in_progress.rb_node; 1206 struct rb_node *parent; 1207 1208 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1)); 1209 1210 if (likely(check_waiting)) { 1211 struct dm_integrity_range *range; 1212 1213 list_for_each_entry(range, &ic->wait_list, wait_entry) { 1214 if (unlikely(ranges_overlap(range, new_range))) 1215 return false; 1216 } 1217 } 1218 1219 parent = NULL; 1220 1221 while (*n) { 1222 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); 1223 1224 parent = *n; 1225 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) 1226 n = &range->node.rb_left; 1227 else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) 1228 n = &range->node.rb_right; 1229 else 1230 return false; 1231 } 1232 1233 rb_link_node(&new_range->node, parent, n); 1234 rb_insert_color(&new_range->node, &ic->in_progress); 1235 1236 return true; 1237 } 1238 1239 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1240 { 1241 rb_erase(&range->node, &ic->in_progress); 1242 while (unlikely(!list_empty(&ic->wait_list))) { 1243 struct dm_integrity_range *last_range = 1244 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry); 1245 struct task_struct *last_range_task; 1246 1247 last_range_task = last_range->task; 1248 list_del(&last_range->wait_entry); 1249 if (!add_new_range(ic, last_range, false)) { 1250 last_range->task = last_range_task; 1251 list_add(&last_range->wait_entry, &ic->wait_list); 1252 break; 1253 } 1254 last_range->waiting = false; 1255 wake_up_process(last_range_task); 1256 } 1257 } 1258 1259 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) 1260 { 1261 unsigned long flags; 1262 1263 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1264 remove_range_unlocked(ic, range); 1265 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1266 } 1267 1268 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1269 { 1270 new_range->waiting = true; 1271 list_add_tail(&new_range->wait_entry, &ic->wait_list); 1272 new_range->task = current; 1273 do { 1274 __set_current_state(TASK_UNINTERRUPTIBLE); 1275 spin_unlock_irq(&ic->endio_wait.lock); 1276 io_schedule(); 1277 spin_lock_irq(&ic->endio_wait.lock); 1278 } while (unlikely(new_range->waiting)); 1279 } 1280 1281 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) 1282 { 1283 if (unlikely(!add_new_range(ic, new_range, true))) 1284 wait_and_add_new_range(ic, new_range); 1285 } 1286 1287 static void init_journal_node(struct journal_node *node) 1288 { 1289 RB_CLEAR_NODE(&node->node); 1290 node->sector = (sector_t)-1; 1291 } 1292 1293 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) 1294 { 1295 struct rb_node **link; 1296 struct rb_node *parent; 1297 1298 node->sector = sector; 1299 BUG_ON(!RB_EMPTY_NODE(&node->node)); 1300 1301 link = &ic->journal_tree_root.rb_node; 1302 parent = NULL; 1303 1304 while (*link) { 1305 struct journal_node *j; 1306 1307 parent = *link; 1308 j = container_of(parent, struct journal_node, node); 1309 if (sector < j->sector) 1310 link = &j->node.rb_left; 1311 else 1312 link = &j->node.rb_right; 1313 } 1314 1315 rb_link_node(&node->node, parent, link); 1316 rb_insert_color(&node->node, &ic->journal_tree_root); 1317 } 1318 1319 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) 1320 { 1321 BUG_ON(RB_EMPTY_NODE(&node->node)); 1322 rb_erase(&node->node, &ic->journal_tree_root); 1323 init_journal_node(node); 1324 } 1325 1326 #define NOT_FOUND (-1U) 1327 1328 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) 1329 { 1330 struct rb_node *n = ic->journal_tree_root.rb_node; 1331 unsigned int found = NOT_FOUND; 1332 1333 *next_sector = (sector_t)-1; 1334 while (n) { 1335 struct journal_node *j = container_of(n, struct journal_node, node); 1336 1337 if (sector == j->sector) 1338 found = j - ic->journal_tree; 1339 1340 if (sector < j->sector) { 1341 *next_sector = j->sector; 1342 n = j->node.rb_left; 1343 } else 1344 n = j->node.rb_right; 1345 } 1346 1347 return found; 1348 } 1349 1350 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector) 1351 { 1352 struct journal_node *node, *next_node; 1353 struct rb_node *next; 1354 1355 if (unlikely(pos >= ic->journal_entries)) 1356 return false; 1357 node = &ic->journal_tree[pos]; 1358 if (unlikely(RB_EMPTY_NODE(&node->node))) 1359 return false; 1360 if (unlikely(node->sector != sector)) 1361 return false; 1362 1363 next = rb_next(&node->node); 1364 if (unlikely(!next)) 1365 return true; 1366 1367 next_node = container_of(next, struct journal_node, node); 1368 return next_node->sector != sector; 1369 } 1370 1371 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) 1372 { 1373 struct rb_node *next; 1374 struct journal_node *next_node; 1375 unsigned int next_section; 1376 1377 BUG_ON(RB_EMPTY_NODE(&node->node)); 1378 1379 next = rb_next(&node->node); 1380 if (unlikely(!next)) 1381 return false; 1382 1383 next_node = container_of(next, struct journal_node, node); 1384 1385 if (next_node->sector != node->sector) 1386 return false; 1387 1388 next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries; 1389 if (next_section >= ic->committed_section && 1390 next_section < ic->committed_section + ic->n_committed_sections) 1391 return true; 1392 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) 1393 return true; 1394 1395 return false; 1396 } 1397 1398 #define TAG_READ 0 1399 #define TAG_WRITE 1 1400 #define TAG_CMP 2 1401 1402 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, 1403 unsigned int *metadata_offset, unsigned int total_size, int op) 1404 { 1405 unsigned int hash_offset = 0; 1406 unsigned char mismatch_hash = 0; 1407 unsigned char mismatch_filler = !ic->discard; 1408 1409 do { 1410 unsigned char *data, *dp; 1411 struct dm_buffer *b; 1412 unsigned int to_copy; 1413 int r; 1414 1415 r = dm_integrity_failed(ic); 1416 if (unlikely(r)) 1417 return r; 1418 1419 data = dm_bufio_read(ic->bufio, *metadata_block, &b); 1420 if (IS_ERR(data)) 1421 return PTR_ERR(data); 1422 1423 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); 1424 dp = data + *metadata_offset; 1425 if (op == TAG_READ) { 1426 memcpy(tag, dp, to_copy); 1427 } else if (op == TAG_WRITE) { 1428 if (crypto_memneq(dp, tag, to_copy)) { 1429 memcpy(dp, tag, to_copy); 1430 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); 1431 } 1432 } else { 1433 /* e.g.: op == TAG_CMP */ 1434 1435 if (likely(is_power_of_2(ic->tag_size))) { 1436 if (unlikely(crypto_memneq(dp, tag, to_copy))) 1437 goto thorough_test; 1438 } else { 1439 unsigned int i, ts; 1440 thorough_test: 1441 ts = total_size; 1442 1443 for (i = 0; i < to_copy; i++, ts--) { 1444 /* 1445 * Warning: the control flow must not be 1446 * dependent on match/mismatch of 1447 * individual bytes. 1448 */ 1449 mismatch_hash |= dp[i] ^ tag[i]; 1450 mismatch_filler |= dp[i] ^ DISCARD_FILLER; 1451 hash_offset++; 1452 if (unlikely(hash_offset == ic->tag_size)) { 1453 if (unlikely(mismatch_hash) && unlikely(mismatch_filler)) { 1454 dm_bufio_release(b); 1455 return ts; 1456 } 1457 hash_offset = 0; 1458 mismatch_hash = 0; 1459 mismatch_filler = !ic->discard; 1460 } 1461 } 1462 } 1463 } 1464 dm_bufio_release(b); 1465 1466 tag += to_copy; 1467 *metadata_offset += to_copy; 1468 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { 1469 (*metadata_block)++; 1470 *metadata_offset = 0; 1471 } 1472 1473 if (unlikely(!is_power_of_2(ic->tag_size))) 1474 hash_offset = (hash_offset + to_copy) % ic->tag_size; 1475 1476 total_size -= to_copy; 1477 } while (unlikely(total_size)); 1478 1479 return 0; 1480 } 1481 1482 struct flush_request { 1483 struct dm_io_request io_req; 1484 struct dm_io_region io_reg; 1485 struct dm_integrity_c *ic; 1486 struct completion comp; 1487 }; 1488 1489 static void flush_notify(unsigned long error, void *fr_) 1490 { 1491 struct flush_request *fr = fr_; 1492 1493 if (unlikely(error != 0)) 1494 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO); 1495 complete(&fr->comp); 1496 } 1497 1498 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data) 1499 { 1500 int r; 1501 struct flush_request fr; 1502 1503 if (!ic->meta_dev) 1504 flush_data = false; 1505 if (flush_data) { 1506 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1507 fr.io_req.mem.type = DM_IO_KMEM; 1508 fr.io_req.mem.ptr.addr = NULL; 1509 fr.io_req.notify.fn = flush_notify; 1510 fr.io_req.notify.context = &fr; 1511 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio); 1512 fr.io_reg.bdev = ic->dev->bdev; 1513 fr.io_reg.sector = 0; 1514 fr.io_reg.count = 0; 1515 fr.ic = ic; 1516 init_completion(&fr.comp); 1517 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL, IOPRIO_DEFAULT); 1518 BUG_ON(r); 1519 } 1520 1521 r = dm_bufio_write_dirty_buffers(ic->bufio); 1522 if (unlikely(r)) 1523 dm_integrity_io_error(ic, "writing tags", r); 1524 1525 if (flush_data) 1526 wait_for_completion(&fr.comp); 1527 } 1528 1529 static void sleep_on_endio_wait(struct dm_integrity_c *ic) 1530 { 1531 DECLARE_WAITQUEUE(wait, current); 1532 1533 __add_wait_queue(&ic->endio_wait, &wait); 1534 __set_current_state(TASK_UNINTERRUPTIBLE); 1535 spin_unlock_irq(&ic->endio_wait.lock); 1536 io_schedule(); 1537 spin_lock_irq(&ic->endio_wait.lock); 1538 __remove_wait_queue(&ic->endio_wait, &wait); 1539 } 1540 1541 static void autocommit_fn(struct timer_list *t) 1542 { 1543 struct dm_integrity_c *ic = timer_container_of(ic, t, 1544 autocommit_timer); 1545 1546 if (likely(!dm_integrity_failed(ic))) 1547 queue_work(ic->commit_wq, &ic->commit_work); 1548 } 1549 1550 static void schedule_autocommit(struct dm_integrity_c *ic) 1551 { 1552 if (!timer_pending(&ic->autocommit_timer)) 1553 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); 1554 } 1555 1556 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1557 { 1558 struct bio *bio; 1559 unsigned long flags; 1560 1561 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1562 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1563 bio_list_add(&ic->flush_bio_list, bio); 1564 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1565 1566 queue_work(ic->commit_wq, &ic->commit_work); 1567 } 1568 1569 static void do_endio(struct dm_integrity_c *ic, struct bio *bio) 1570 { 1571 int r; 1572 1573 r = dm_integrity_failed(ic); 1574 if (unlikely(r) && !bio->bi_status) 1575 bio->bi_status = errno_to_blk_status(r); 1576 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) { 1577 unsigned long flags; 1578 1579 spin_lock_irqsave(&ic->endio_wait.lock, flags); 1580 bio_list_add(&ic->synchronous_bios, bio); 1581 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 1582 spin_unlock_irqrestore(&ic->endio_wait.lock, flags); 1583 return; 1584 } 1585 bio_endio(bio); 1586 } 1587 1588 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) 1589 { 1590 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1591 1592 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) 1593 submit_flush_bio(ic, dio); 1594 else 1595 do_endio(ic, bio); 1596 } 1597 1598 static void dec_in_flight(struct dm_integrity_io *dio) 1599 { 1600 if (atomic_dec_and_test(&dio->in_flight)) { 1601 struct dm_integrity_c *ic = dio->ic; 1602 struct bio *bio; 1603 1604 remove_range(ic, &dio->range); 1605 1606 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD)) 1607 schedule_autocommit(ic); 1608 1609 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1610 if (unlikely(dio->bi_status) && !bio->bi_status) 1611 bio->bi_status = dio->bi_status; 1612 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { 1613 dio->range.logical_sector += dio->range.n_sectors; 1614 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); 1615 INIT_WORK(&dio->work, integrity_bio_wait); 1616 queue_work(ic->offload_wq, &dio->work); 1617 return; 1618 } 1619 do_endio_flush(ic, dio); 1620 } 1621 } 1622 1623 static void integrity_end_io(struct bio *bio) 1624 { 1625 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1626 1627 dm_bio_restore(&dio->bio_details, bio); 1628 if (bio->bi_integrity) 1629 bio->bi_opf |= REQ_INTEGRITY; 1630 1631 if (dio->completion) 1632 complete(dio->completion); 1633 1634 dec_in_flight(dio); 1635 } 1636 1637 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, 1638 const char *data, char *result) 1639 { 1640 __le64 sector_le = cpu_to_le64(sector); 1641 SHASH_DESC_ON_STACK(req, ic->internal_hash); 1642 int r; 1643 unsigned int digest_size; 1644 1645 req->tfm = ic->internal_hash; 1646 1647 r = crypto_shash_init(req); 1648 if (unlikely(r < 0)) { 1649 dm_integrity_io_error(ic, "crypto_shash_init", r); 1650 goto failed; 1651 } 1652 1653 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { 1654 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE); 1655 if (unlikely(r < 0)) { 1656 dm_integrity_io_error(ic, "crypto_shash_update", r); 1657 goto failed; 1658 } 1659 } 1660 1661 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof(sector_le)); 1662 if (unlikely(r < 0)) { 1663 dm_integrity_io_error(ic, "crypto_shash_update", r); 1664 goto failed; 1665 } 1666 1667 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); 1668 if (unlikely(r < 0)) { 1669 dm_integrity_io_error(ic, "crypto_shash_update", r); 1670 goto failed; 1671 } 1672 1673 r = crypto_shash_final(req, result); 1674 if (unlikely(r < 0)) { 1675 dm_integrity_io_error(ic, "crypto_shash_final", r); 1676 goto failed; 1677 } 1678 1679 digest_size = crypto_shash_digestsize(ic->internal_hash); 1680 if (unlikely(digest_size < ic->tag_size)) 1681 memset(result + digest_size, 0, ic->tag_size - digest_size); 1682 1683 return; 1684 1685 failed: 1686 /* this shouldn't happen anyway, the hash functions have no reason to fail */ 1687 get_random_bytes(result, ic->tag_size); 1688 } 1689 1690 static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum) 1691 { 1692 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1693 struct dm_integrity_c *ic = dio->ic; 1694 struct bvec_iter iter; 1695 struct bio_vec bv; 1696 sector_t sector, logical_sector, area, offset; 1697 struct page *page; 1698 1699 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 1700 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, 1701 &dio->metadata_offset); 1702 sector = get_data_sector(ic, area, offset); 1703 logical_sector = dio->range.logical_sector; 1704 1705 page = mempool_alloc(&ic->recheck_pool, GFP_NOIO); 1706 1707 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) { 1708 unsigned pos = 0; 1709 1710 do { 1711 sector_t alignment; 1712 char *mem; 1713 char *buffer = page_to_virt(page); 1714 int r; 1715 struct dm_io_request io_req; 1716 struct dm_io_region io_loc; 1717 io_req.bi_opf = REQ_OP_READ; 1718 io_req.mem.type = DM_IO_KMEM; 1719 io_req.mem.ptr.addr = buffer; 1720 io_req.notify.fn = NULL; 1721 io_req.client = ic->io; 1722 io_loc.bdev = ic->dev->bdev; 1723 io_loc.sector = sector; 1724 io_loc.count = ic->sectors_per_block; 1725 1726 /* Align the bio to logical block size */ 1727 alignment = dio->range.logical_sector | bio_sectors(bio) | (PAGE_SIZE >> SECTOR_SHIFT); 1728 alignment &= -alignment; 1729 io_loc.sector = round_down(io_loc.sector, alignment); 1730 io_loc.count += sector - io_loc.sector; 1731 buffer += (sector - io_loc.sector) << SECTOR_SHIFT; 1732 io_loc.count = round_up(io_loc.count, alignment); 1733 1734 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 1735 if (unlikely(r)) { 1736 dio->bi_status = errno_to_blk_status(r); 1737 goto free_ret; 1738 } 1739 1740 integrity_sector_checksum(ic, logical_sector, buffer, checksum); 1741 r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block, 1742 &dio->metadata_offset, ic->tag_size, TAG_CMP); 1743 if (r) { 1744 if (r > 0) { 1745 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx", 1746 bio->bi_bdev, logical_sector); 1747 atomic64_inc(&ic->number_of_mismatches); 1748 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum", 1749 bio, logical_sector, 0); 1750 r = -EILSEQ; 1751 } 1752 dio->bi_status = errno_to_blk_status(r); 1753 goto free_ret; 1754 } 1755 1756 mem = bvec_kmap_local(&bv); 1757 memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT); 1758 kunmap_local(mem); 1759 1760 pos += ic->sectors_per_block << SECTOR_SHIFT; 1761 sector += ic->sectors_per_block; 1762 logical_sector += ic->sectors_per_block; 1763 } while (pos < bv.bv_len); 1764 } 1765 free_ret: 1766 mempool_free(page, &ic->recheck_pool); 1767 } 1768 1769 static void integrity_metadata(struct work_struct *w) 1770 { 1771 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 1772 struct dm_integrity_c *ic = dio->ic; 1773 1774 int r; 1775 1776 if (ic->internal_hash) { 1777 struct bvec_iter iter; 1778 struct bio_vec bv; 1779 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash); 1780 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 1781 char *checksums; 1782 unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 1783 char checksums_onstack[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 1784 sector_t sector; 1785 unsigned int sectors_to_process; 1786 1787 if (unlikely(ic->mode == 'R')) 1788 goto skip_io; 1789 1790 if (likely(dio->op != REQ_OP_DISCARD)) 1791 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, 1792 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1793 else 1794 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); 1795 if (!checksums) { 1796 checksums = checksums_onstack; 1797 if (WARN_ON(extra_space && 1798 digest_size > sizeof(checksums_onstack))) { 1799 r = -EINVAL; 1800 goto error; 1801 } 1802 } 1803 1804 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1805 unsigned int bi_size = dio->bio_details.bi_iter.bi_size; 1806 unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE; 1807 unsigned int max_blocks = max_size / ic->tag_size; 1808 1809 memset(checksums, DISCARD_FILLER, max_size); 1810 1811 while (bi_size) { 1812 unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1813 1814 this_step_blocks = min(this_step_blocks, max_blocks); 1815 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1816 this_step_blocks * ic->tag_size, TAG_WRITE); 1817 if (unlikely(r)) { 1818 if (likely(checksums != checksums_onstack)) 1819 kfree(checksums); 1820 goto error; 1821 } 1822 1823 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); 1824 } 1825 1826 if (likely(checksums != checksums_onstack)) 1827 kfree(checksums); 1828 goto skip_io; 1829 } 1830 1831 sector = dio->range.logical_sector; 1832 sectors_to_process = dio->range.n_sectors; 1833 1834 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) { 1835 struct bio_vec bv_copy = bv; 1836 unsigned int pos; 1837 char *mem, *checksums_ptr; 1838 1839 again: 1840 mem = bvec_kmap_local(&bv_copy); 1841 pos = 0; 1842 checksums_ptr = checksums; 1843 do { 1844 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); 1845 checksums_ptr += ic->tag_size; 1846 sectors_to_process -= ic->sectors_per_block; 1847 pos += ic->sectors_per_block << SECTOR_SHIFT; 1848 sector += ic->sectors_per_block; 1849 } while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack); 1850 kunmap_local(mem); 1851 1852 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, 1853 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE); 1854 if (unlikely(r)) { 1855 if (likely(checksums != checksums_onstack)) 1856 kfree(checksums); 1857 if (r > 0) { 1858 integrity_recheck(dio, checksums_onstack); 1859 goto skip_io; 1860 } 1861 goto error; 1862 } 1863 1864 if (!sectors_to_process) 1865 break; 1866 1867 if (unlikely(pos < bv_copy.bv_len)) { 1868 bv_copy.bv_offset += pos; 1869 bv_copy.bv_len -= pos; 1870 goto again; 1871 } 1872 } 1873 1874 if (likely(checksums != checksums_onstack)) 1875 kfree(checksums); 1876 } else { 1877 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity; 1878 1879 if (bip) { 1880 struct bio_vec biv; 1881 struct bvec_iter iter; 1882 unsigned int data_to_process = dio->range.n_sectors; 1883 1884 sector_to_block(ic, data_to_process); 1885 data_to_process *= ic->tag_size; 1886 1887 bip_for_each_vec(biv, bip, iter) { 1888 unsigned char *tag; 1889 unsigned int this_len; 1890 1891 BUG_ON(PageHighMem(biv.bv_page)); 1892 tag = bvec_virt(&biv); 1893 this_len = min(biv.bv_len, data_to_process); 1894 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, 1895 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE); 1896 if (unlikely(r)) 1897 goto error; 1898 data_to_process -= this_len; 1899 if (!data_to_process) 1900 break; 1901 } 1902 } 1903 } 1904 skip_io: 1905 dec_in_flight(dio); 1906 return; 1907 error: 1908 dio->bi_status = errno_to_blk_status(r); 1909 dec_in_flight(dio); 1910 } 1911 1912 static inline bool dm_integrity_check_limits(struct dm_integrity_c *ic, sector_t logical_sector, struct bio *bio) 1913 { 1914 if (unlikely(logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { 1915 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", 1916 logical_sector, bio_sectors(bio), 1917 ic->provided_data_sectors); 1918 return false; 1919 } 1920 if (unlikely((logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) { 1921 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", 1922 ic->sectors_per_block, 1923 logical_sector, bio_sectors(bio)); 1924 return false; 1925 } 1926 if (ic->sectors_per_block > 1 && likely(bio_op(bio) != REQ_OP_DISCARD)) { 1927 struct bvec_iter iter; 1928 struct bio_vec bv; 1929 1930 bio_for_each_segment(bv, bio, iter) { 1931 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { 1932 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", 1933 bv.bv_offset, bv.bv_len, ic->sectors_per_block); 1934 return false; 1935 } 1936 } 1937 } 1938 return true; 1939 } 1940 1941 static int dm_integrity_map(struct dm_target *ti, struct bio *bio) 1942 { 1943 struct dm_integrity_c *ic = ti->private; 1944 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 1945 struct bio_integrity_payload *bip; 1946 1947 sector_t area, offset; 1948 1949 dio->ic = ic; 1950 dio->bi_status = 0; 1951 dio->op = bio_op(bio); 1952 1953 if (ic->mode == 'I') { 1954 bio->bi_iter.bi_sector = dm_target_offset(ic->ti, bio->bi_iter.bi_sector); 1955 dio->integrity_payload = NULL; 1956 dio->integrity_payload_from_mempool = false; 1957 dio->integrity_range_locked = false; 1958 return dm_integrity_map_inline(dio, true); 1959 } 1960 1961 if (unlikely(dio->op == REQ_OP_DISCARD)) { 1962 if (ti->max_io_len) { 1963 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector); 1964 unsigned int log2_max_io_len = __fls(ti->max_io_len); 1965 sector_t start_boundary = sec >> log2_max_io_len; 1966 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len; 1967 1968 if (start_boundary < end_boundary) { 1969 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1)); 1970 1971 dm_accept_partial_bio(bio, len); 1972 } 1973 } 1974 } 1975 1976 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1977 submit_flush_bio(ic, dio); 1978 return DM_MAPIO_SUBMITTED; 1979 } 1980 1981 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 1982 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA; 1983 if (unlikely(dio->fua)) { 1984 /* 1985 * Don't pass down the FUA flag because we have to flush 1986 * disk cache anyway. 1987 */ 1988 bio->bi_opf &= ~REQ_FUA; 1989 } 1990 if (unlikely(!dm_integrity_check_limits(ic, dio->range.logical_sector, bio))) 1991 return DM_MAPIO_KILL; 1992 1993 bip = bio_integrity(bio); 1994 if (!ic->internal_hash) { 1995 if (bip) { 1996 unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; 1997 1998 if (ic->log2_tag_size >= 0) 1999 wanted_tag_size <<= ic->log2_tag_size; 2000 else 2001 wanted_tag_size *= ic->tag_size; 2002 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { 2003 DMERR("Invalid integrity data size %u, expected %u", 2004 bip->bip_iter.bi_size, wanted_tag_size); 2005 return DM_MAPIO_KILL; 2006 } 2007 } 2008 } else { 2009 if (unlikely(bip != NULL)) { 2010 DMERR("Unexpected integrity data when using internal hash"); 2011 return DM_MAPIO_KILL; 2012 } 2013 } 2014 2015 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ)) 2016 return DM_MAPIO_KILL; 2017 2018 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 2019 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 2020 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); 2021 2022 dm_integrity_map_continue(dio, true); 2023 return DM_MAPIO_SUBMITTED; 2024 } 2025 2026 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, 2027 unsigned int journal_section, unsigned int journal_entry) 2028 { 2029 struct dm_integrity_c *ic = dio->ic; 2030 sector_t logical_sector; 2031 unsigned int n_sectors; 2032 2033 logical_sector = dio->range.logical_sector; 2034 n_sectors = dio->range.n_sectors; 2035 do { 2036 struct bio_vec bv = bio_iovec(bio); 2037 char *mem; 2038 2039 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) 2040 bv.bv_len = n_sectors << SECTOR_SHIFT; 2041 n_sectors -= bv.bv_len >> SECTOR_SHIFT; 2042 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); 2043 retry_kmap: 2044 mem = kmap_local_page(bv.bv_page); 2045 if (likely(dio->op == REQ_OP_WRITE)) 2046 flush_dcache_page(bv.bv_page); 2047 2048 do { 2049 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); 2050 2051 if (unlikely(dio->op == REQ_OP_READ)) { 2052 struct journal_sector *js; 2053 char *mem_ptr; 2054 unsigned int s; 2055 2056 if (unlikely(journal_entry_is_inprogress(je))) { 2057 flush_dcache_page(bv.bv_page); 2058 kunmap_local(mem); 2059 2060 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2061 goto retry_kmap; 2062 } 2063 smp_rmb(); 2064 BUG_ON(journal_entry_get_sector(je) != logical_sector); 2065 js = access_journal_data(ic, journal_section, journal_entry); 2066 mem_ptr = mem + bv.bv_offset; 2067 s = 0; 2068 do { 2069 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); 2070 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; 2071 js++; 2072 mem_ptr += 1 << SECTOR_SHIFT; 2073 } while (++s < ic->sectors_per_block); 2074 #ifdef INTERNAL_VERIFY 2075 if (ic->internal_hash) { 2076 char checksums_onstack[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2077 2078 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); 2079 if (unlikely(crypto_memneq(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { 2080 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx", 2081 logical_sector); 2082 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum", 2083 bio, logical_sector, 0); 2084 } 2085 } 2086 #endif 2087 } 2088 2089 if (!ic->internal_hash) { 2090 struct bio_integrity_payload *bip = bio_integrity(bio); 2091 unsigned int tag_todo = ic->tag_size; 2092 char *tag_ptr = journal_entry_tag(ic, je); 2093 2094 if (bip) { 2095 do { 2096 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); 2097 unsigned int tag_now = min(biv.bv_len, tag_todo); 2098 char *tag_addr; 2099 2100 BUG_ON(PageHighMem(biv.bv_page)); 2101 tag_addr = bvec_virt(&biv); 2102 if (likely(dio->op == REQ_OP_WRITE)) 2103 memcpy(tag_ptr, tag_addr, tag_now); 2104 else 2105 memcpy(tag_addr, tag_ptr, tag_now); 2106 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); 2107 tag_ptr += tag_now; 2108 tag_todo -= tag_now; 2109 } while (unlikely(tag_todo)); 2110 } else if (likely(dio->op == REQ_OP_WRITE)) 2111 memset(tag_ptr, 0, tag_todo); 2112 } 2113 2114 if (likely(dio->op == REQ_OP_WRITE)) { 2115 struct journal_sector *js; 2116 unsigned int s; 2117 2118 js = access_journal_data(ic, journal_section, journal_entry); 2119 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); 2120 2121 s = 0; 2122 do { 2123 je->last_bytes[s] = js[s].commit_id; 2124 } while (++s < ic->sectors_per_block); 2125 2126 if (ic->internal_hash) { 2127 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash); 2128 2129 if (unlikely(digest_size > ic->tag_size)) { 2130 char checksums_onstack[HASH_MAX_DIGESTSIZE]; 2131 2132 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); 2133 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); 2134 } else 2135 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); 2136 } 2137 2138 journal_entry_set_sector(je, logical_sector); 2139 } 2140 logical_sector += ic->sectors_per_block; 2141 2142 journal_entry++; 2143 if (unlikely(journal_entry == ic->journal_section_entries)) { 2144 journal_entry = 0; 2145 journal_section++; 2146 wraparound_section(ic, &journal_section); 2147 } 2148 2149 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; 2150 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); 2151 2152 if (unlikely(dio->op == REQ_OP_READ)) 2153 flush_dcache_page(bv.bv_page); 2154 kunmap_local(mem); 2155 } while (n_sectors); 2156 2157 if (likely(dio->op == REQ_OP_WRITE)) { 2158 smp_mb(); 2159 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) 2160 wake_up(&ic->copy_to_journal_wait); 2161 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2162 queue_work(ic->commit_wq, &ic->commit_work); 2163 else 2164 schedule_autocommit(ic); 2165 } else 2166 remove_range(ic, &dio->range); 2167 2168 if (unlikely(bio->bi_iter.bi_size)) { 2169 sector_t area, offset; 2170 2171 dio->range.logical_sector = logical_sector; 2172 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); 2173 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); 2174 return true; 2175 } 2176 2177 return false; 2178 } 2179 2180 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) 2181 { 2182 struct dm_integrity_c *ic = dio->ic; 2183 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 2184 unsigned int journal_section, journal_entry; 2185 unsigned int journal_read_pos; 2186 sector_t recalc_sector; 2187 struct completion read_comp; 2188 bool discard_retried = false; 2189 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ; 2190 2191 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D') 2192 need_sync_io = true; 2193 2194 if (need_sync_io && from_map) { 2195 INIT_WORK(&dio->work, integrity_bio_wait); 2196 queue_work(ic->offload_wq, &dio->work); 2197 return; 2198 } 2199 2200 lock_retry: 2201 spin_lock_irq(&ic->endio_wait.lock); 2202 retry: 2203 if (unlikely(dm_integrity_failed(ic))) { 2204 spin_unlock_irq(&ic->endio_wait.lock); 2205 do_endio(ic, bio); 2206 return; 2207 } 2208 dio->range.n_sectors = bio_sectors(bio); 2209 journal_read_pos = NOT_FOUND; 2210 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) { 2211 if (dio->op == REQ_OP_WRITE) { 2212 unsigned int next_entry, i, pos; 2213 unsigned int ws, we, range_sectors; 2214 2215 dio->range.n_sectors = min(dio->range.n_sectors, 2216 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block); 2217 if (unlikely(!dio->range.n_sectors)) { 2218 if (from_map) 2219 goto offload_to_thread; 2220 sleep_on_endio_wait(ic); 2221 goto retry; 2222 } 2223 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; 2224 ic->free_sectors -= range_sectors; 2225 journal_section = ic->free_section; 2226 journal_entry = ic->free_section_entry; 2227 2228 next_entry = ic->free_section_entry + range_sectors; 2229 ic->free_section_entry = next_entry % ic->journal_section_entries; 2230 ic->free_section += next_entry / ic->journal_section_entries; 2231 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; 2232 wraparound_section(ic, &ic->free_section); 2233 2234 pos = journal_section * ic->journal_section_entries + journal_entry; 2235 ws = journal_section; 2236 we = journal_entry; 2237 i = 0; 2238 do { 2239 struct journal_entry *je; 2240 2241 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); 2242 pos++; 2243 if (unlikely(pos >= ic->journal_entries)) 2244 pos = 0; 2245 2246 je = access_journal_entry(ic, ws, we); 2247 BUG_ON(!journal_entry_is_unused(je)); 2248 journal_entry_set_inprogress(je); 2249 we++; 2250 if (unlikely(we == ic->journal_section_entries)) { 2251 we = 0; 2252 ws++; 2253 wraparound_section(ic, &ws); 2254 } 2255 } while ((i += ic->sectors_per_block) < dio->range.n_sectors); 2256 2257 spin_unlock_irq(&ic->endio_wait.lock); 2258 goto journal_read_write; 2259 } else { 2260 sector_t next_sector; 2261 2262 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2263 if (likely(journal_read_pos == NOT_FOUND)) { 2264 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) 2265 dio->range.n_sectors = next_sector - dio->range.logical_sector; 2266 } else { 2267 unsigned int i; 2268 unsigned int jp = journal_read_pos + 1; 2269 2270 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { 2271 if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) 2272 break; 2273 } 2274 dio->range.n_sectors = i; 2275 } 2276 } 2277 } 2278 if (unlikely(!add_new_range(ic, &dio->range, true))) { 2279 /* 2280 * We must not sleep in the request routine because it could 2281 * stall bios on current->bio_list. 2282 * So, we offload the bio to a workqueue if we have to sleep. 2283 */ 2284 if (from_map) { 2285 offload_to_thread: 2286 spin_unlock_irq(&ic->endio_wait.lock); 2287 INIT_WORK(&dio->work, integrity_bio_wait); 2288 queue_work(ic->wait_wq, &dio->work); 2289 return; 2290 } 2291 if (journal_read_pos != NOT_FOUND) 2292 dio->range.n_sectors = ic->sectors_per_block; 2293 wait_and_add_new_range(ic, &dio->range); 2294 /* 2295 * wait_and_add_new_range drops the spinlock, so the journal 2296 * may have been changed arbitrarily. We need to recheck. 2297 * To simplify the code, we restrict I/O size to just one block. 2298 */ 2299 if (journal_read_pos != NOT_FOUND) { 2300 sector_t next_sector; 2301 unsigned int new_pos; 2302 2303 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2304 if (unlikely(new_pos != journal_read_pos)) { 2305 remove_range_unlocked(ic, &dio->range); 2306 goto retry; 2307 } 2308 } 2309 } 2310 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) { 2311 sector_t next_sector; 2312 unsigned int new_pos; 2313 2314 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); 2315 if (unlikely(new_pos != NOT_FOUND) || 2316 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) { 2317 remove_range_unlocked(ic, &dio->range); 2318 spin_unlock_irq(&ic->endio_wait.lock); 2319 queue_work(ic->commit_wq, &ic->commit_work); 2320 flush_workqueue(ic->commit_wq); 2321 queue_work(ic->writer_wq, &ic->writer_work); 2322 flush_workqueue(ic->writer_wq); 2323 discard_retried = true; 2324 goto lock_retry; 2325 } 2326 } 2327 recalc_sector = le64_to_cpu(ic->sb->recalc_sector); 2328 spin_unlock_irq(&ic->endio_wait.lock); 2329 2330 if (unlikely(journal_read_pos != NOT_FOUND)) { 2331 journal_section = journal_read_pos / ic->journal_section_entries; 2332 journal_entry = journal_read_pos % ic->journal_section_entries; 2333 goto journal_read_write; 2334 } 2335 2336 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) { 2337 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 2338 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 2339 struct bitmap_block_status *bbs; 2340 2341 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector); 2342 spin_lock(&bbs->bio_queue_lock); 2343 bio_list_add(&bbs->bio_queue, bio); 2344 spin_unlock(&bbs->bio_queue_lock); 2345 queue_work(ic->writer_wq, &bbs->work); 2346 return; 2347 } 2348 } 2349 2350 dio->in_flight = (atomic_t)ATOMIC_INIT(2); 2351 2352 if (need_sync_io) { 2353 init_completion(&read_comp); 2354 dio->completion = &read_comp; 2355 } else 2356 dio->completion = NULL; 2357 2358 dm_bio_record(&dio->bio_details, bio); 2359 bio_set_dev(bio, ic->dev->bdev); 2360 bio->bi_integrity = NULL; 2361 bio->bi_opf &= ~REQ_INTEGRITY; 2362 bio->bi_end_io = integrity_end_io; 2363 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; 2364 2365 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) { 2366 integrity_metadata(&dio->work); 2367 dm_integrity_flush_buffers(ic, false); 2368 2369 dio->in_flight = (atomic_t)ATOMIC_INIT(1); 2370 dio->completion = NULL; 2371 2372 submit_bio_noacct(bio); 2373 2374 return; 2375 } 2376 2377 submit_bio_noacct(bio); 2378 2379 if (need_sync_io) { 2380 wait_for_completion_io(&read_comp); 2381 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 2382 dio->range.logical_sector + dio->range.n_sectors > recalc_sector) 2383 goto skip_check; 2384 if (ic->mode == 'B') { 2385 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector, 2386 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 2387 goto skip_check; 2388 } 2389 2390 if (likely(!bio->bi_status)) 2391 integrity_metadata(&dio->work); 2392 else 2393 skip_check: 2394 dec_in_flight(dio); 2395 } else { 2396 INIT_WORK(&dio->work, integrity_metadata); 2397 queue_work(ic->metadata_wq, &dio->work); 2398 } 2399 2400 return; 2401 2402 journal_read_write: 2403 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) 2404 goto lock_retry; 2405 2406 do_endio_flush(ic, dio); 2407 } 2408 2409 static int dm_integrity_map_inline(struct dm_integrity_io *dio, bool from_map) 2410 { 2411 struct dm_integrity_c *ic = dio->ic; 2412 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 2413 struct bio_integrity_payload *bip; 2414 unsigned ret; 2415 sector_t recalc_sector; 2416 2417 if (unlikely(bio_integrity(bio))) { 2418 bio->bi_status = BLK_STS_NOTSUPP; 2419 bio_endio(bio); 2420 return DM_MAPIO_SUBMITTED; 2421 } 2422 2423 bio_set_dev(bio, ic->dev->bdev); 2424 if (unlikely((bio->bi_opf & REQ_PREFLUSH) != 0)) 2425 return DM_MAPIO_REMAPPED; 2426 2427 retry: 2428 if (!dio->integrity_payload) { 2429 unsigned digest_size, extra_size; 2430 dio->payload_len = ic->tuple_size * (bio_sectors(bio) >> ic->sb->log2_sectors_per_block); 2431 digest_size = crypto_shash_digestsize(ic->internal_hash); 2432 extra_size = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; 2433 dio->payload_len += extra_size; 2434 dio->integrity_payload = kmalloc(dio->payload_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 2435 if (unlikely(!dio->integrity_payload)) { 2436 const unsigned x_size = PAGE_SIZE << 1; 2437 if (dio->payload_len > x_size) { 2438 unsigned sectors = ((x_size - extra_size) / ic->tuple_size) << ic->sb->log2_sectors_per_block; 2439 if (WARN_ON(!sectors || sectors >= bio_sectors(bio))) { 2440 bio->bi_status = BLK_STS_NOTSUPP; 2441 bio_endio(bio); 2442 return DM_MAPIO_SUBMITTED; 2443 } 2444 dm_accept_partial_bio(bio, sectors); 2445 goto retry; 2446 } 2447 } 2448 } 2449 2450 dio->range.logical_sector = bio->bi_iter.bi_sector; 2451 dio->range.n_sectors = bio_sectors(bio); 2452 2453 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) 2454 goto skip_spinlock; 2455 #ifdef CONFIG_64BIT 2456 /* 2457 * On 64-bit CPUs we can optimize the lock away (so that it won't cause 2458 * cache line bouncing) and use acquire/release barriers instead. 2459 * 2460 * Paired with smp_store_release in integrity_recalc_inline. 2461 */ 2462 recalc_sector = le64_to_cpu(smp_load_acquire(&ic->sb->recalc_sector)); 2463 if (likely(dio->range.logical_sector + dio->range.n_sectors <= recalc_sector)) 2464 goto skip_spinlock; 2465 #endif 2466 spin_lock_irq(&ic->endio_wait.lock); 2467 recalc_sector = le64_to_cpu(ic->sb->recalc_sector); 2468 if (dio->range.logical_sector + dio->range.n_sectors <= recalc_sector) 2469 goto skip_unlock; 2470 if (unlikely(!add_new_range(ic, &dio->range, true))) { 2471 if (from_map) { 2472 spin_unlock_irq(&ic->endio_wait.lock); 2473 INIT_WORK(&dio->work, integrity_bio_wait); 2474 queue_work(ic->wait_wq, &dio->work); 2475 return DM_MAPIO_SUBMITTED; 2476 } 2477 wait_and_add_new_range(ic, &dio->range); 2478 } 2479 dio->integrity_range_locked = true; 2480 skip_unlock: 2481 spin_unlock_irq(&ic->endio_wait.lock); 2482 skip_spinlock: 2483 2484 if (unlikely(!dio->integrity_payload)) { 2485 dio->integrity_payload = page_to_virt((struct page *)mempool_alloc(&ic->recheck_pool, GFP_NOIO)); 2486 dio->integrity_payload_from_mempool = true; 2487 } 2488 2489 dio->bio_details.bi_iter = bio->bi_iter; 2490 2491 if (unlikely(!dm_integrity_check_limits(ic, bio->bi_iter.bi_sector, bio))) { 2492 return DM_MAPIO_KILL; 2493 } 2494 2495 bio->bi_iter.bi_sector += ic->start + SB_SECTORS; 2496 2497 bip = bio_integrity_alloc(bio, GFP_NOIO, 1); 2498 if (IS_ERR(bip)) { 2499 bio->bi_status = errno_to_blk_status(PTR_ERR(bip)); 2500 bio_endio(bio); 2501 return DM_MAPIO_SUBMITTED; 2502 } 2503 2504 if (dio->op == REQ_OP_WRITE) { 2505 unsigned pos = 0; 2506 while (dio->bio_details.bi_iter.bi_size) { 2507 struct bio_vec bv = bio_iter_iovec(bio, dio->bio_details.bi_iter); 2508 const char *mem = bvec_kmap_local(&bv); 2509 if (ic->tag_size < ic->tuple_size) 2510 memset(dio->integrity_payload + pos + ic->tag_size, 0, ic->tuple_size - ic->tuple_size); 2511 integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, mem, dio->integrity_payload + pos); 2512 kunmap_local(mem); 2513 pos += ic->tuple_size; 2514 bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT); 2515 } 2516 } 2517 2518 ret = bio_integrity_add_page(bio, virt_to_page(dio->integrity_payload), 2519 dio->payload_len, offset_in_page(dio->integrity_payload)); 2520 if (unlikely(ret != dio->payload_len)) { 2521 bio->bi_status = BLK_STS_RESOURCE; 2522 bio_endio(bio); 2523 return DM_MAPIO_SUBMITTED; 2524 } 2525 2526 return DM_MAPIO_REMAPPED; 2527 } 2528 2529 static inline void dm_integrity_free_payload(struct dm_integrity_io *dio) 2530 { 2531 struct dm_integrity_c *ic = dio->ic; 2532 if (unlikely(dio->integrity_payload_from_mempool)) 2533 mempool_free(virt_to_page(dio->integrity_payload), &ic->recheck_pool); 2534 else 2535 kfree(dio->integrity_payload); 2536 dio->integrity_payload = NULL; 2537 dio->integrity_payload_from_mempool = false; 2538 } 2539 2540 static void dm_integrity_inline_recheck(struct work_struct *w) 2541 { 2542 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 2543 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 2544 struct dm_integrity_c *ic = dio->ic; 2545 struct bio *outgoing_bio; 2546 void *outgoing_data; 2547 2548 dio->integrity_payload = page_to_virt((struct page *)mempool_alloc(&ic->recheck_pool, GFP_NOIO)); 2549 dio->integrity_payload_from_mempool = true; 2550 2551 outgoing_data = dio->integrity_payload + PAGE_SIZE; 2552 2553 while (dio->bio_details.bi_iter.bi_size) { 2554 char digest[HASH_MAX_DIGESTSIZE]; 2555 int r; 2556 struct bio_integrity_payload *bip; 2557 struct bio_vec bv; 2558 char *mem; 2559 2560 outgoing_bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_READ, GFP_NOIO, &ic->recheck_bios); 2561 bio_add_virt_nofail(outgoing_bio, outgoing_data, 2562 ic->sectors_per_block << SECTOR_SHIFT); 2563 2564 bip = bio_integrity_alloc(outgoing_bio, GFP_NOIO, 1); 2565 if (IS_ERR(bip)) { 2566 bio_put(outgoing_bio); 2567 bio->bi_status = errno_to_blk_status(PTR_ERR(bip)); 2568 bio_endio(bio); 2569 return; 2570 } 2571 2572 r = bio_integrity_add_page(outgoing_bio, virt_to_page(dio->integrity_payload), ic->tuple_size, 0); 2573 if (unlikely(r != ic->tuple_size)) { 2574 bio_put(outgoing_bio); 2575 bio->bi_status = BLK_STS_RESOURCE; 2576 bio_endio(bio); 2577 return; 2578 } 2579 2580 outgoing_bio->bi_iter.bi_sector = dio->bio_details.bi_iter.bi_sector + ic->start + SB_SECTORS; 2581 2582 r = submit_bio_wait(outgoing_bio); 2583 if (unlikely(r != 0)) { 2584 bio_put(outgoing_bio); 2585 bio->bi_status = errno_to_blk_status(r); 2586 bio_endio(bio); 2587 return; 2588 } 2589 bio_put(outgoing_bio); 2590 2591 integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, outgoing_data, digest); 2592 if (unlikely(crypto_memneq(digest, dio->integrity_payload, min(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)))) { 2593 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx", 2594 ic->dev->bdev, dio->bio_details.bi_iter.bi_sector); 2595 atomic64_inc(&ic->number_of_mismatches); 2596 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum", 2597 bio, dio->bio_details.bi_iter.bi_sector, 0); 2598 2599 bio->bi_status = BLK_STS_PROTECTION; 2600 bio_endio(bio); 2601 return; 2602 } 2603 2604 bv = bio_iter_iovec(bio, dio->bio_details.bi_iter); 2605 mem = bvec_kmap_local(&bv); 2606 memcpy(mem, outgoing_data, ic->sectors_per_block << SECTOR_SHIFT); 2607 kunmap_local(mem); 2608 2609 bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT); 2610 } 2611 2612 bio_endio(bio); 2613 } 2614 2615 static int dm_integrity_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status) 2616 { 2617 struct dm_integrity_c *ic = ti->private; 2618 if (ic->mode == 'I') { 2619 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 2620 if (dio->op == REQ_OP_READ && likely(*status == BLK_STS_OK)) { 2621 unsigned pos = 0; 2622 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 2623 unlikely(dio->integrity_range_locked)) 2624 goto skip_check; 2625 while (dio->bio_details.bi_iter.bi_size) { 2626 char digest[HASH_MAX_DIGESTSIZE]; 2627 struct bio_vec bv = bio_iter_iovec(bio, dio->bio_details.bi_iter); 2628 char *mem = bvec_kmap_local(&bv); 2629 //memset(mem, 0xff, ic->sectors_per_block << SECTOR_SHIFT); 2630 integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, mem, digest); 2631 if (unlikely(crypto_memneq(digest, dio->integrity_payload + pos, 2632 min(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)))) { 2633 kunmap_local(mem); 2634 dm_integrity_free_payload(dio); 2635 INIT_WORK(&dio->work, dm_integrity_inline_recheck); 2636 queue_work(ic->offload_wq, &dio->work); 2637 return DM_ENDIO_INCOMPLETE; 2638 } 2639 kunmap_local(mem); 2640 pos += ic->tuple_size; 2641 bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT); 2642 } 2643 } 2644 skip_check: 2645 dm_integrity_free_payload(dio); 2646 if (unlikely(dio->integrity_range_locked)) 2647 remove_range(ic, &dio->range); 2648 } 2649 return DM_ENDIO_DONE; 2650 } 2651 2652 static void integrity_bio_wait(struct work_struct *w) 2653 { 2654 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); 2655 struct dm_integrity_c *ic = dio->ic; 2656 2657 if (ic->mode == 'I') { 2658 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); 2659 int r = dm_integrity_map_inline(dio, false); 2660 switch (r) { 2661 case DM_MAPIO_KILL: 2662 bio->bi_status = BLK_STS_IOERR; 2663 fallthrough; 2664 case DM_MAPIO_REMAPPED: 2665 submit_bio_noacct(bio); 2666 fallthrough; 2667 case DM_MAPIO_SUBMITTED: 2668 return; 2669 default: 2670 BUG(); 2671 } 2672 } else { 2673 dm_integrity_map_continue(dio, false); 2674 } 2675 } 2676 2677 static void pad_uncommitted(struct dm_integrity_c *ic) 2678 { 2679 if (ic->free_section_entry) { 2680 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; 2681 ic->free_section_entry = 0; 2682 ic->free_section++; 2683 wraparound_section(ic, &ic->free_section); 2684 ic->n_uncommitted_sections++; 2685 } 2686 if (WARN_ON(ic->journal_sections * ic->journal_section_entries != 2687 (ic->n_uncommitted_sections + ic->n_committed_sections) * 2688 ic->journal_section_entries + ic->free_sectors)) { 2689 DMCRIT("journal_sections %u, journal_section_entries %u, " 2690 "n_uncommitted_sections %u, n_committed_sections %u, " 2691 "journal_section_entries %u, free_sectors %u", 2692 ic->journal_sections, ic->journal_section_entries, 2693 ic->n_uncommitted_sections, ic->n_committed_sections, 2694 ic->journal_section_entries, ic->free_sectors); 2695 } 2696 } 2697 2698 static void integrity_commit(struct work_struct *w) 2699 { 2700 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); 2701 unsigned int commit_start, commit_sections; 2702 unsigned int i, j, n; 2703 struct bio *flushes; 2704 2705 timer_delete(&ic->autocommit_timer); 2706 2707 if (ic->mode == 'I') 2708 return; 2709 2710 spin_lock_irq(&ic->endio_wait.lock); 2711 flushes = bio_list_get(&ic->flush_bio_list); 2712 if (unlikely(ic->mode != 'J')) { 2713 spin_unlock_irq(&ic->endio_wait.lock); 2714 dm_integrity_flush_buffers(ic, true); 2715 goto release_flush_bios; 2716 } 2717 2718 pad_uncommitted(ic); 2719 commit_start = ic->uncommitted_section; 2720 commit_sections = ic->n_uncommitted_sections; 2721 spin_unlock_irq(&ic->endio_wait.lock); 2722 2723 if (!commit_sections) 2724 goto release_flush_bios; 2725 2726 ic->wrote_to_journal = true; 2727 2728 i = commit_start; 2729 for (n = 0; n < commit_sections; n++) { 2730 for (j = 0; j < ic->journal_section_entries; j++) { 2731 struct journal_entry *je; 2732 2733 je = access_journal_entry(ic, i, j); 2734 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); 2735 } 2736 for (j = 0; j < ic->journal_section_sectors; j++) { 2737 struct journal_sector *js; 2738 2739 js = access_journal(ic, i, j); 2740 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); 2741 } 2742 i++; 2743 if (unlikely(i >= ic->journal_sections)) 2744 ic->commit_seq = next_commit_seq(ic->commit_seq); 2745 wraparound_section(ic, &i); 2746 } 2747 smp_rmb(); 2748 2749 write_journal(ic, commit_start, commit_sections); 2750 2751 spin_lock_irq(&ic->endio_wait.lock); 2752 ic->uncommitted_section += commit_sections; 2753 wraparound_section(ic, &ic->uncommitted_section); 2754 ic->n_uncommitted_sections -= commit_sections; 2755 ic->n_committed_sections += commit_sections; 2756 spin_unlock_irq(&ic->endio_wait.lock); 2757 2758 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) 2759 queue_work(ic->writer_wq, &ic->writer_work); 2760 2761 release_flush_bios: 2762 while (flushes) { 2763 struct bio *next = flushes->bi_next; 2764 2765 flushes->bi_next = NULL; 2766 do_endio(ic, flushes); 2767 flushes = next; 2768 } 2769 } 2770 2771 static void complete_copy_from_journal(unsigned long error, void *context) 2772 { 2773 struct journal_io *io = context; 2774 struct journal_completion *comp = io->comp; 2775 struct dm_integrity_c *ic = comp->ic; 2776 2777 remove_range(ic, &io->range); 2778 mempool_free(io, &ic->journal_io_mempool); 2779 if (unlikely(error != 0)) 2780 dm_integrity_io_error(ic, "copying from journal", -EIO); 2781 complete_journal_op(comp); 2782 } 2783 2784 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, 2785 struct journal_entry *je) 2786 { 2787 unsigned int s = 0; 2788 2789 do { 2790 js->commit_id = je->last_bytes[s]; 2791 js++; 2792 } while (++s < ic->sectors_per_block); 2793 } 2794 2795 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start, 2796 unsigned int write_sections, bool from_replay) 2797 { 2798 unsigned int i, j, n; 2799 struct journal_completion comp; 2800 struct blk_plug plug; 2801 2802 blk_start_plug(&plug); 2803 2804 comp.ic = ic; 2805 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 2806 init_completion(&comp.comp); 2807 2808 i = write_start; 2809 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { 2810 #ifndef INTERNAL_VERIFY 2811 if (unlikely(from_replay)) 2812 #endif 2813 rw_section_mac(ic, i, false); 2814 for (j = 0; j < ic->journal_section_entries; j++) { 2815 struct journal_entry *je = access_journal_entry(ic, i, j); 2816 sector_t sec, area, offset; 2817 unsigned int k, l, next_loop; 2818 sector_t metadata_block; 2819 unsigned int metadata_offset; 2820 struct journal_io *io; 2821 2822 if (journal_entry_is_unused(je)) 2823 continue; 2824 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); 2825 sec = journal_entry_get_sector(je); 2826 if (unlikely(from_replay)) { 2827 if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) { 2828 dm_integrity_io_error(ic, "invalid sector in journal", -EIO); 2829 sec &= ~(sector_t)(ic->sectors_per_block - 1); 2830 } 2831 if (unlikely(sec >= ic->provided_data_sectors)) { 2832 journal_entry_set_unused(je); 2833 continue; 2834 } 2835 } 2836 get_area_and_offset(ic, sec, &area, &offset); 2837 restore_last_bytes(ic, access_journal_data(ic, i, j), je); 2838 for (k = j + 1; k < ic->journal_section_entries; k++) { 2839 struct journal_entry *je2 = access_journal_entry(ic, i, k); 2840 sector_t sec2, area2, offset2; 2841 2842 if (journal_entry_is_unused(je2)) 2843 break; 2844 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); 2845 sec2 = journal_entry_get_sector(je2); 2846 if (unlikely(sec2 >= ic->provided_data_sectors)) 2847 break; 2848 get_area_and_offset(ic, sec2, &area2, &offset2); 2849 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) 2850 break; 2851 restore_last_bytes(ic, access_journal_data(ic, i, k), je2); 2852 } 2853 next_loop = k - 1; 2854 2855 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); 2856 io->comp = ∁ 2857 io->range.logical_sector = sec; 2858 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; 2859 2860 spin_lock_irq(&ic->endio_wait.lock); 2861 add_new_range_and_wait(ic, &io->range); 2862 2863 if (likely(!from_replay)) { 2864 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; 2865 2866 /* don't write if there is newer committed sector */ 2867 while (j < k && find_newer_committed_node(ic, §ion_node[j])) { 2868 struct journal_entry *je2 = access_journal_entry(ic, i, j); 2869 2870 journal_entry_set_unused(je2); 2871 remove_journal_node(ic, §ion_node[j]); 2872 j++; 2873 sec += ic->sectors_per_block; 2874 offset += ic->sectors_per_block; 2875 } 2876 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { 2877 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); 2878 2879 journal_entry_set_unused(je2); 2880 remove_journal_node(ic, §ion_node[k - 1]); 2881 k--; 2882 } 2883 if (j == k) { 2884 remove_range_unlocked(ic, &io->range); 2885 spin_unlock_irq(&ic->endio_wait.lock); 2886 mempool_free(io, &ic->journal_io_mempool); 2887 goto skip_io; 2888 } 2889 for (l = j; l < k; l++) 2890 remove_journal_node(ic, §ion_node[l]); 2891 } 2892 spin_unlock_irq(&ic->endio_wait.lock); 2893 2894 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 2895 for (l = j; l < k; l++) { 2896 int r; 2897 struct journal_entry *je2 = access_journal_entry(ic, i, l); 2898 2899 if ( 2900 #ifndef INTERNAL_VERIFY 2901 unlikely(from_replay) && 2902 #endif 2903 ic->internal_hash) { 2904 char test_tag[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; 2905 2906 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), 2907 (char *)access_journal_data(ic, i, l), test_tag); 2908 if (unlikely(crypto_memneq(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) { 2909 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); 2910 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0); 2911 } 2912 } 2913 2914 journal_entry_set_unused(je2); 2915 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, 2916 ic->tag_size, TAG_WRITE); 2917 if (unlikely(r)) 2918 dm_integrity_io_error(ic, "reading tags", r); 2919 } 2920 2921 atomic_inc(&comp.in_flight); 2922 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, 2923 (k - j) << ic->sb->log2_sectors_per_block, 2924 get_data_sector(ic, area, offset), 2925 complete_copy_from_journal, io); 2926 skip_io: 2927 j = next_loop; 2928 } 2929 } 2930 2931 dm_bufio_write_dirty_buffers_async(ic->bufio); 2932 2933 blk_finish_plug(&plug); 2934 2935 complete_journal_op(&comp); 2936 wait_for_completion_io(&comp.comp); 2937 2938 dm_integrity_flush_buffers(ic, true); 2939 } 2940 2941 static void integrity_writer(struct work_struct *w) 2942 { 2943 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); 2944 unsigned int write_start, write_sections; 2945 unsigned int prev_free_sectors; 2946 2947 spin_lock_irq(&ic->endio_wait.lock); 2948 write_start = ic->committed_section; 2949 write_sections = ic->n_committed_sections; 2950 spin_unlock_irq(&ic->endio_wait.lock); 2951 2952 if (!write_sections) 2953 return; 2954 2955 do_journal_write(ic, write_start, write_sections, false); 2956 2957 spin_lock_irq(&ic->endio_wait.lock); 2958 2959 ic->committed_section += write_sections; 2960 wraparound_section(ic, &ic->committed_section); 2961 ic->n_committed_sections -= write_sections; 2962 2963 prev_free_sectors = ic->free_sectors; 2964 ic->free_sectors += write_sections * ic->journal_section_entries; 2965 if (unlikely(!prev_free_sectors)) 2966 wake_up_locked(&ic->endio_wait); 2967 2968 spin_unlock_irq(&ic->endio_wait.lock); 2969 } 2970 2971 static void recalc_write_super(struct dm_integrity_c *ic) 2972 { 2973 int r; 2974 2975 dm_integrity_flush_buffers(ic, false); 2976 if (dm_integrity_failed(ic)) 2977 return; 2978 2979 r = sync_rw_sb(ic, REQ_OP_WRITE); 2980 if (unlikely(r)) 2981 dm_integrity_io_error(ic, "writing superblock", r); 2982 } 2983 2984 static void integrity_recalc(struct work_struct *w) 2985 { 2986 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 2987 size_t recalc_tags_size; 2988 u8 *recalc_buffer = NULL; 2989 u8 *recalc_tags = NULL; 2990 struct dm_integrity_range range; 2991 struct dm_io_request io_req; 2992 struct dm_io_region io_loc; 2993 sector_t area, offset; 2994 sector_t metadata_block; 2995 unsigned int metadata_offset; 2996 sector_t logical_sector, n_sectors; 2997 __u8 *t; 2998 unsigned int i; 2999 int r; 3000 unsigned int super_counter = 0; 3001 unsigned recalc_sectors = RECALC_SECTORS; 3002 3003 retry: 3004 recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO); 3005 if (!recalc_buffer) { 3006 oom: 3007 recalc_sectors >>= 1; 3008 if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block) 3009 goto retry; 3010 DMCRIT("out of memory for recalculate buffer - recalculation disabled"); 3011 goto free_ret; 3012 } 3013 recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 3014 if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size) 3015 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size; 3016 recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO); 3017 if (!recalc_tags) { 3018 vfree(recalc_buffer); 3019 recalc_buffer = NULL; 3020 goto oom; 3021 } 3022 3023 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector)); 3024 3025 spin_lock_irq(&ic->endio_wait.lock); 3026 3027 next_chunk: 3028 3029 if (unlikely(dm_post_suspending(ic->ti))) 3030 goto unlock_ret; 3031 3032 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 3033 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) { 3034 if (ic->mode == 'B') { 3035 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3036 DEBUG_print("queue_delayed_work: bitmap_flush_work\n"); 3037 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 3038 } 3039 goto unlock_ret; 3040 } 3041 3042 get_area_and_offset(ic, range.logical_sector, &area, &offset); 3043 range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector); 3044 if (!ic->meta_dev) 3045 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset); 3046 3047 add_new_range_and_wait(ic, &range); 3048 spin_unlock_irq(&ic->endio_wait.lock); 3049 logical_sector = range.logical_sector; 3050 n_sectors = range.n_sectors; 3051 3052 if (ic->mode == 'B') { 3053 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) 3054 goto advance_and_next; 3055 3056 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, 3057 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 3058 logical_sector += ic->sectors_per_block; 3059 n_sectors -= ic->sectors_per_block; 3060 cond_resched(); 3061 } 3062 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block, 3063 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { 3064 n_sectors -= ic->sectors_per_block; 3065 cond_resched(); 3066 } 3067 get_area_and_offset(ic, logical_sector, &area, &offset); 3068 } 3069 3070 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors); 3071 3072 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 3073 recalc_write_super(ic); 3074 if (ic->mode == 'B') 3075 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 3076 3077 super_counter = 0; 3078 } 3079 3080 if (unlikely(dm_integrity_failed(ic))) 3081 goto err; 3082 3083 io_req.bi_opf = REQ_OP_READ; 3084 io_req.mem.type = DM_IO_VMA; 3085 io_req.mem.ptr.addr = recalc_buffer; 3086 io_req.notify.fn = NULL; 3087 io_req.client = ic->io; 3088 io_loc.bdev = ic->dev->bdev; 3089 io_loc.sector = get_data_sector(ic, area, offset); 3090 io_loc.count = n_sectors; 3091 3092 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 3093 if (unlikely(r)) { 3094 dm_integrity_io_error(ic, "reading data", r); 3095 goto err; 3096 } 3097 3098 t = recalc_tags; 3099 for (i = 0; i < n_sectors; i += ic->sectors_per_block) { 3100 integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t); 3101 t += ic->tag_size; 3102 } 3103 3104 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); 3105 3106 r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE); 3107 if (unlikely(r)) { 3108 dm_integrity_io_error(ic, "writing tags", r); 3109 goto err; 3110 } 3111 3112 if (ic->mode == 'B') { 3113 sector_t start, end; 3114 3115 start = (range.logical_sector >> 3116 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 3117 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 3118 end = ((range.logical_sector + range.n_sectors) >> 3119 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << 3120 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 3121 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR); 3122 } 3123 3124 advance_and_next: 3125 cond_resched(); 3126 3127 spin_lock_irq(&ic->endio_wait.lock); 3128 remove_range_unlocked(ic, &range); 3129 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 3130 goto next_chunk; 3131 3132 err: 3133 remove_range(ic, &range); 3134 goto free_ret; 3135 3136 unlock_ret: 3137 spin_unlock_irq(&ic->endio_wait.lock); 3138 3139 recalc_write_super(ic); 3140 3141 free_ret: 3142 vfree(recalc_buffer); 3143 kvfree(recalc_tags); 3144 } 3145 3146 static void integrity_recalc_inline(struct work_struct *w) 3147 { 3148 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); 3149 size_t recalc_tags_size; 3150 u8 *recalc_buffer = NULL; 3151 u8 *recalc_tags = NULL; 3152 struct dm_integrity_range range; 3153 struct bio *bio; 3154 struct bio_integrity_payload *bip; 3155 __u8 *t; 3156 unsigned int i; 3157 int r; 3158 unsigned ret; 3159 unsigned int super_counter = 0; 3160 unsigned recalc_sectors = RECALC_SECTORS; 3161 3162 retry: 3163 recalc_buffer = kmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO | __GFP_NOWARN); 3164 if (!recalc_buffer) { 3165 oom: 3166 recalc_sectors >>= 1; 3167 if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block) 3168 goto retry; 3169 DMCRIT("out of memory for recalculate buffer - recalculation disabled"); 3170 goto free_ret; 3171 } 3172 3173 recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tuple_size; 3174 if (crypto_shash_digestsize(ic->internal_hash) > ic->tuple_size) 3175 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tuple_size; 3176 recalc_tags = kmalloc(recalc_tags_size, GFP_NOIO | __GFP_NOWARN); 3177 if (!recalc_tags) { 3178 kfree(recalc_buffer); 3179 recalc_buffer = NULL; 3180 goto oom; 3181 } 3182 3183 spin_lock_irq(&ic->endio_wait.lock); 3184 3185 next_chunk: 3186 if (unlikely(dm_post_suspending(ic->ti))) 3187 goto unlock_ret; 3188 3189 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); 3190 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) 3191 goto unlock_ret; 3192 range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector); 3193 3194 add_new_range_and_wait(ic, &range); 3195 spin_unlock_irq(&ic->endio_wait.lock); 3196 3197 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { 3198 recalc_write_super(ic); 3199 super_counter = 0; 3200 } 3201 3202 if (unlikely(dm_integrity_failed(ic))) 3203 goto err; 3204 3205 DEBUG_print("recalculating: %llx - %llx\n", range.logical_sector, range.n_sectors); 3206 3207 bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_READ, GFP_NOIO, &ic->recalc_bios); 3208 bio->bi_iter.bi_sector = ic->start + SB_SECTORS + range.logical_sector; 3209 bio_add_virt_nofail(bio, recalc_buffer, 3210 range.n_sectors << SECTOR_SHIFT); 3211 r = submit_bio_wait(bio); 3212 bio_put(bio); 3213 if (unlikely(r)) { 3214 dm_integrity_io_error(ic, "reading data", r); 3215 goto err; 3216 } 3217 3218 t = recalc_tags; 3219 for (i = 0; i < range.n_sectors; i += ic->sectors_per_block) { 3220 memset(t, 0, ic->tuple_size); 3221 integrity_sector_checksum(ic, range.logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t); 3222 t += ic->tuple_size; 3223 } 3224 3225 bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_WRITE, GFP_NOIO, &ic->recalc_bios); 3226 bio->bi_iter.bi_sector = ic->start + SB_SECTORS + range.logical_sector; 3227 bio_add_virt_nofail(bio, recalc_buffer, 3228 range.n_sectors << SECTOR_SHIFT); 3229 3230 bip = bio_integrity_alloc(bio, GFP_NOIO, 1); 3231 if (unlikely(IS_ERR(bip))) { 3232 bio_put(bio); 3233 DMCRIT("out of memory for bio integrity payload - recalculation disabled"); 3234 goto err; 3235 } 3236 ret = bio_integrity_add_page(bio, virt_to_page(recalc_tags), t - recalc_tags, offset_in_page(recalc_tags)); 3237 if (unlikely(ret != t - recalc_tags)) { 3238 bio_put(bio); 3239 dm_integrity_io_error(ic, "attaching integrity tags", -ENOMEM); 3240 goto err; 3241 } 3242 3243 r = submit_bio_wait(bio); 3244 bio_put(bio); 3245 if (unlikely(r)) { 3246 dm_integrity_io_error(ic, "writing data", r); 3247 goto err; 3248 } 3249 3250 cond_resched(); 3251 spin_lock_irq(&ic->endio_wait.lock); 3252 remove_range_unlocked(ic, &range); 3253 #ifdef CONFIG_64BIT 3254 /* Paired with smp_load_acquire in dm_integrity_map_inline. */ 3255 smp_store_release(&ic->sb->recalc_sector, cpu_to_le64(range.logical_sector + range.n_sectors)); 3256 #else 3257 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); 3258 #endif 3259 goto next_chunk; 3260 3261 err: 3262 remove_range(ic, &range); 3263 goto free_ret; 3264 3265 unlock_ret: 3266 spin_unlock_irq(&ic->endio_wait.lock); 3267 3268 recalc_write_super(ic); 3269 3270 free_ret: 3271 kfree(recalc_buffer); 3272 kfree(recalc_tags); 3273 } 3274 3275 static void bitmap_block_work(struct work_struct *w) 3276 { 3277 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work); 3278 struct dm_integrity_c *ic = bbs->ic; 3279 struct bio *bio; 3280 struct bio_list bio_queue; 3281 struct bio_list waiting; 3282 3283 bio_list_init(&waiting); 3284 3285 spin_lock(&bbs->bio_queue_lock); 3286 bio_queue = bbs->bio_queue; 3287 bio_list_init(&bbs->bio_queue); 3288 spin_unlock(&bbs->bio_queue_lock); 3289 3290 while ((bio = bio_list_pop(&bio_queue))) { 3291 struct dm_integrity_io *dio; 3292 3293 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 3294 3295 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 3296 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { 3297 remove_range(ic, &dio->range); 3298 INIT_WORK(&dio->work, integrity_bio_wait); 3299 queue_work(ic->offload_wq, &dio->work); 3300 } else { 3301 block_bitmap_op(ic, ic->journal, dio->range.logical_sector, 3302 dio->range.n_sectors, BITMAP_OP_SET); 3303 bio_list_add(&waiting, bio); 3304 } 3305 } 3306 3307 if (bio_list_empty(&waiting)) 3308 return; 3309 3310 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 3311 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), 3312 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL); 3313 3314 while ((bio = bio_list_pop(&waiting))) { 3315 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); 3316 3317 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, 3318 dio->range.n_sectors, BITMAP_OP_SET); 3319 3320 remove_range(ic, &dio->range); 3321 INIT_WORK(&dio->work, integrity_bio_wait); 3322 queue_work(ic->offload_wq, &dio->work); 3323 } 3324 3325 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); 3326 } 3327 3328 static void bitmap_flush_work(struct work_struct *work) 3329 { 3330 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work); 3331 struct dm_integrity_range range; 3332 unsigned long limit; 3333 struct bio *bio; 3334 3335 dm_integrity_flush_buffers(ic, false); 3336 3337 range.logical_sector = 0; 3338 range.n_sectors = ic->provided_data_sectors; 3339 3340 spin_lock_irq(&ic->endio_wait.lock); 3341 add_new_range_and_wait(ic, &range); 3342 spin_unlock_irq(&ic->endio_wait.lock); 3343 3344 dm_integrity_flush_buffers(ic, true); 3345 3346 limit = ic->provided_data_sectors; 3347 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 3348 limit = le64_to_cpu(ic->sb->recalc_sector) 3349 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit) 3350 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); 3351 } 3352 /*DEBUG_print("zeroing journal\n");*/ 3353 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR); 3354 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR); 3355 3356 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3357 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3358 3359 spin_lock_irq(&ic->endio_wait.lock); 3360 remove_range_unlocked(ic, &range); 3361 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) { 3362 bio_endio(bio); 3363 spin_unlock_irq(&ic->endio_wait.lock); 3364 spin_lock_irq(&ic->endio_wait.lock); 3365 } 3366 spin_unlock_irq(&ic->endio_wait.lock); 3367 } 3368 3369 3370 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section, 3371 unsigned int n_sections, unsigned char commit_seq) 3372 { 3373 unsigned int i, j, n; 3374 3375 if (!n_sections) 3376 return; 3377 3378 for (n = 0; n < n_sections; n++) { 3379 i = start_section + n; 3380 wraparound_section(ic, &i); 3381 for (j = 0; j < ic->journal_section_sectors; j++) { 3382 struct journal_sector *js = access_journal(ic, i, j); 3383 3384 BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA); 3385 memset(&js->sectors, 0, sizeof(js->sectors)); 3386 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); 3387 } 3388 for (j = 0; j < ic->journal_section_entries; j++) { 3389 struct journal_entry *je = access_journal_entry(ic, i, j); 3390 3391 journal_entry_set_unused(je); 3392 } 3393 } 3394 3395 write_journal(ic, start_section, n_sections); 3396 } 3397 3398 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id) 3399 { 3400 unsigned char k; 3401 3402 for (k = 0; k < N_COMMIT_IDS; k++) { 3403 if (dm_integrity_commit_id(ic, i, j, k) == id) 3404 return k; 3405 } 3406 dm_integrity_io_error(ic, "journal commit id", -EIO); 3407 return -EIO; 3408 } 3409 3410 static void replay_journal(struct dm_integrity_c *ic) 3411 { 3412 unsigned int i, j; 3413 bool used_commit_ids[N_COMMIT_IDS]; 3414 unsigned int max_commit_id_sections[N_COMMIT_IDS]; 3415 unsigned int write_start, write_sections; 3416 unsigned int continue_section; 3417 bool journal_empty; 3418 unsigned char unused, last_used, want_commit_seq; 3419 3420 if (ic->mode == 'R') 3421 return; 3422 3423 if (ic->journal_uptodate) 3424 return; 3425 3426 last_used = 0; 3427 write_start = 0; 3428 3429 if (!ic->just_formatted) { 3430 DEBUG_print("reading journal\n"); 3431 rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL); 3432 if (ic->journal_io) 3433 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); 3434 if (ic->journal_io) { 3435 struct journal_completion crypt_comp; 3436 3437 crypt_comp.ic = ic; 3438 init_completion(&crypt_comp.comp); 3439 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); 3440 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); 3441 wait_for_completion(&crypt_comp.comp); 3442 } 3443 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); 3444 } 3445 3446 if (dm_integrity_failed(ic)) 3447 goto clear_journal; 3448 3449 journal_empty = true; 3450 memset(used_commit_ids, 0, sizeof(used_commit_ids)); 3451 memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections)); 3452 for (i = 0; i < ic->journal_sections; i++) { 3453 for (j = 0; j < ic->journal_section_sectors; j++) { 3454 int k; 3455 struct journal_sector *js = access_journal(ic, i, j); 3456 3457 k = find_commit_seq(ic, i, j, js->commit_id); 3458 if (k < 0) 3459 goto clear_journal; 3460 used_commit_ids[k] = true; 3461 max_commit_id_sections[k] = i; 3462 } 3463 if (journal_empty) { 3464 for (j = 0; j < ic->journal_section_entries; j++) { 3465 struct journal_entry *je = access_journal_entry(ic, i, j); 3466 3467 if (!journal_entry_is_unused(je)) { 3468 journal_empty = false; 3469 break; 3470 } 3471 } 3472 } 3473 } 3474 3475 if (!used_commit_ids[N_COMMIT_IDS - 1]) { 3476 unused = N_COMMIT_IDS - 1; 3477 while (unused && !used_commit_ids[unused - 1]) 3478 unused--; 3479 } else { 3480 for (unused = 0; unused < N_COMMIT_IDS; unused++) 3481 if (!used_commit_ids[unused]) 3482 break; 3483 if (unused == N_COMMIT_IDS) { 3484 dm_integrity_io_error(ic, "journal commit ids", -EIO); 3485 goto clear_journal; 3486 } 3487 } 3488 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", 3489 unused, used_commit_ids[0], used_commit_ids[1], 3490 used_commit_ids[2], used_commit_ids[3]); 3491 3492 last_used = prev_commit_seq(unused); 3493 want_commit_seq = prev_commit_seq(last_used); 3494 3495 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) 3496 journal_empty = true; 3497 3498 write_start = max_commit_id_sections[last_used] + 1; 3499 if (unlikely(write_start >= ic->journal_sections)) 3500 want_commit_seq = next_commit_seq(want_commit_seq); 3501 wraparound_section(ic, &write_start); 3502 3503 i = write_start; 3504 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { 3505 for (j = 0; j < ic->journal_section_sectors; j++) { 3506 struct journal_sector *js = access_journal(ic, i, j); 3507 3508 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { 3509 /* 3510 * This could be caused by crash during writing. 3511 * We won't replay the inconsistent part of the 3512 * journal. 3513 */ 3514 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", 3515 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); 3516 goto brk; 3517 } 3518 } 3519 i++; 3520 if (unlikely(i >= ic->journal_sections)) 3521 want_commit_seq = next_commit_seq(want_commit_seq); 3522 wraparound_section(ic, &i); 3523 } 3524 brk: 3525 3526 if (!journal_empty) { 3527 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", 3528 write_sections, write_start, want_commit_seq); 3529 do_journal_write(ic, write_start, write_sections, true); 3530 } 3531 3532 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { 3533 continue_section = write_start; 3534 ic->commit_seq = want_commit_seq; 3535 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); 3536 } else { 3537 unsigned int s; 3538 unsigned char erase_seq; 3539 3540 clear_journal: 3541 DEBUG_print("clearing journal\n"); 3542 3543 erase_seq = prev_commit_seq(prev_commit_seq(last_used)); 3544 s = write_start; 3545 init_journal(ic, s, 1, erase_seq); 3546 s++; 3547 wraparound_section(ic, &s); 3548 if (ic->journal_sections >= 2) { 3549 init_journal(ic, s, ic->journal_sections - 2, erase_seq); 3550 s += ic->journal_sections - 2; 3551 wraparound_section(ic, &s); 3552 init_journal(ic, s, 1, erase_seq); 3553 } 3554 3555 continue_section = 0; 3556 ic->commit_seq = next_commit_seq(erase_seq); 3557 } 3558 3559 ic->committed_section = continue_section; 3560 ic->n_committed_sections = 0; 3561 3562 ic->uncommitted_section = continue_section; 3563 ic->n_uncommitted_sections = 0; 3564 3565 ic->free_section = continue_section; 3566 ic->free_section_entry = 0; 3567 ic->free_sectors = ic->journal_entries; 3568 3569 ic->journal_tree_root = RB_ROOT; 3570 for (i = 0; i < ic->journal_entries; i++) 3571 init_journal_node(&ic->journal_tree[i]); 3572 } 3573 3574 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic) 3575 { 3576 DEBUG_print("%s\n", __func__); 3577 3578 if (ic->mode == 'B') { 3579 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1; 3580 ic->synchronous_mode = 1; 3581 3582 cancel_delayed_work_sync(&ic->bitmap_flush_work); 3583 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); 3584 flush_workqueue(ic->commit_wq); 3585 } 3586 } 3587 3588 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x) 3589 { 3590 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier); 3591 3592 DEBUG_print("%s\n", __func__); 3593 3594 dm_integrity_enter_synchronous_mode(ic); 3595 3596 return NOTIFY_DONE; 3597 } 3598 3599 static void dm_integrity_postsuspend(struct dm_target *ti) 3600 { 3601 struct dm_integrity_c *ic = ti->private; 3602 int r; 3603 3604 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier)); 3605 3606 timer_delete_sync(&ic->autocommit_timer); 3607 3608 if (ic->recalc_wq) 3609 drain_workqueue(ic->recalc_wq); 3610 3611 if (ic->mode == 'B') 3612 cancel_delayed_work_sync(&ic->bitmap_flush_work); 3613 3614 queue_work(ic->commit_wq, &ic->commit_work); 3615 drain_workqueue(ic->commit_wq); 3616 3617 if (ic->mode == 'J') { 3618 queue_work(ic->writer_wq, &ic->writer_work); 3619 drain_workqueue(ic->writer_wq); 3620 dm_integrity_flush_buffers(ic, true); 3621 if (ic->wrote_to_journal) { 3622 init_journal(ic, ic->free_section, 3623 ic->journal_sections - ic->free_section, ic->commit_seq); 3624 if (ic->free_section) { 3625 init_journal(ic, 0, ic->free_section, 3626 next_commit_seq(ic->commit_seq)); 3627 } 3628 } 3629 } 3630 3631 if (ic->mode == 'B') { 3632 dm_integrity_flush_buffers(ic, true); 3633 #if 1 3634 /* set to 0 to test bitmap replay code */ 3635 init_journal(ic, 0, ic->journal_sections, 0); 3636 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3637 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3638 if (unlikely(r)) 3639 dm_integrity_io_error(ic, "writing superblock", r); 3640 #endif 3641 } 3642 3643 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 3644 3645 ic->journal_uptodate = true; 3646 } 3647 3648 static void dm_integrity_resume(struct dm_target *ti) 3649 { 3650 struct dm_integrity_c *ic = ti->private; 3651 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); 3652 int r; 3653 3654 DEBUG_print("resume\n"); 3655 3656 ic->wrote_to_journal = false; 3657 3658 if (ic->provided_data_sectors != old_provided_data_sectors) { 3659 if (ic->provided_data_sectors > old_provided_data_sectors && 3660 ic->mode == 'B' && 3661 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { 3662 rw_journal_sectors(ic, REQ_OP_READ, 0, 3663 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3664 block_bitmap_op(ic, ic->journal, old_provided_data_sectors, 3665 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET); 3666 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3667 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3668 } 3669 3670 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 3671 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3672 if (unlikely(r)) 3673 dm_integrity_io_error(ic, "writing superblock", r); 3674 } 3675 3676 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) { 3677 DEBUG_print("resume dirty_bitmap\n"); 3678 rw_journal_sectors(ic, REQ_OP_READ, 0, 3679 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3680 if (ic->mode == 'B') { 3681 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3682 !ic->reset_recalculate_flag) { 3683 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal); 3684 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal); 3685 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, 3686 BITMAP_OP_TEST_ALL_CLEAR)) { 3687 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3688 ic->sb->recalc_sector = cpu_to_le64(0); 3689 } 3690 } else { 3691 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n", 3692 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit); 3693 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3694 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3695 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3696 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET); 3697 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3698 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3699 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3700 ic->sb->recalc_sector = cpu_to_le64(0); 3701 } 3702 } else { 3703 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && 3704 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) || 3705 ic->reset_recalculate_flag) { 3706 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3707 ic->sb->recalc_sector = cpu_to_le64(0); 3708 } 3709 init_journal(ic, 0, ic->journal_sections, 0); 3710 replay_journal(ic); 3711 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3712 } 3713 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3714 if (unlikely(r)) 3715 dm_integrity_io_error(ic, "writing superblock", r); 3716 } else { 3717 replay_journal(ic); 3718 if (ic->reset_recalculate_flag) { 3719 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 3720 ic->sb->recalc_sector = cpu_to_le64(0); 3721 } 3722 if (ic->mode == 'B') { 3723 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP); 3724 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; 3725 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 3726 if (unlikely(r)) 3727 dm_integrity_io_error(ic, "writing superblock", r); 3728 3729 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3730 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3731 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); 3732 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 3733 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) { 3734 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector), 3735 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3736 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3737 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3738 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector), 3739 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); 3740 } 3741 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0, 3742 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); 3743 } 3744 } 3745 3746 DEBUG_print("testing recalc: %x\n", ic->sb->flags); 3747 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 3748 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector); 3749 3750 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors); 3751 if (recalc_pos < ic->provided_data_sectors) { 3752 queue_work(ic->recalc_wq, &ic->recalc_work); 3753 } else if (recalc_pos > ic->provided_data_sectors) { 3754 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors); 3755 recalc_write_super(ic); 3756 } 3757 } 3758 3759 ic->reboot_notifier.notifier_call = dm_integrity_reboot; 3760 ic->reboot_notifier.next = NULL; 3761 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */ 3762 WARN_ON(register_reboot_notifier(&ic->reboot_notifier)); 3763 3764 #if 0 3765 /* set to 1 to stress test synchronous mode */ 3766 dm_integrity_enter_synchronous_mode(ic); 3767 #endif 3768 } 3769 3770 static void dm_integrity_status(struct dm_target *ti, status_type_t type, 3771 unsigned int status_flags, char *result, unsigned int maxlen) 3772 { 3773 struct dm_integrity_c *ic = ti->private; 3774 unsigned int arg_count; 3775 size_t sz = 0; 3776 3777 switch (type) { 3778 case STATUSTYPE_INFO: 3779 DMEMIT("%llu %llu", 3780 (unsigned long long)atomic64_read(&ic->number_of_mismatches), 3781 ic->provided_data_sectors); 3782 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3783 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector)); 3784 else 3785 DMEMIT(" -"); 3786 break; 3787 3788 case STATUSTYPE_TABLE: { 3789 arg_count = 1; /* buffer_sectors */ 3790 arg_count += !!ic->meta_dev; 3791 arg_count += ic->sectors_per_block != 1; 3792 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)); 3793 arg_count += ic->reset_recalculate_flag; 3794 arg_count += ic->discard; 3795 arg_count += ic->mode != 'I'; /* interleave_sectors */ 3796 arg_count += ic->mode == 'J'; /* journal_sectors */ 3797 arg_count += ic->mode == 'J'; /* journal_watermark */ 3798 arg_count += ic->mode == 'J'; /* commit_time */ 3799 arg_count += ic->mode == 'B'; /* sectors_per_bit */ 3800 arg_count += ic->mode == 'B'; /* bitmap_flush_interval */ 3801 arg_count += !!ic->internal_hash_alg.alg_string; 3802 arg_count += !!ic->journal_crypt_alg.alg_string; 3803 arg_count += !!ic->journal_mac_alg.alg_string; 3804 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0; 3805 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0; 3806 arg_count += ic->legacy_recalculate; 3807 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start, 3808 ic->tag_size, ic->mode, arg_count); 3809 if (ic->meta_dev) 3810 DMEMIT(" meta_device:%s", ic->meta_dev->name); 3811 if (ic->sectors_per_block != 1) 3812 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); 3813 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) 3814 DMEMIT(" recalculate"); 3815 if (ic->reset_recalculate_flag) 3816 DMEMIT(" reset_recalculate"); 3817 if (ic->discard) 3818 DMEMIT(" allow_discards"); 3819 if (ic->mode != 'I') 3820 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); 3821 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); 3822 if (ic->mode == 'J') { 3823 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; 3824 3825 watermark_percentage += ic->journal_entries / 2; 3826 do_div(watermark_percentage, ic->journal_entries); 3827 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); 3828 DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage); 3829 DMEMIT(" commit_time:%u", ic->autocommit_msec); 3830 } 3831 if (ic->mode == 'B') { 3832 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit); 3833 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval)); 3834 } 3835 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) 3836 DMEMIT(" fix_padding"); 3837 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) 3838 DMEMIT(" fix_hmac"); 3839 if (ic->legacy_recalculate) 3840 DMEMIT(" legacy_recalculate"); 3841 3842 #define EMIT_ALG(a, n) \ 3843 do { \ 3844 if (ic->a.alg_string) { \ 3845 DMEMIT(" %s:%s", n, ic->a.alg_string); \ 3846 if (ic->a.key_string) \ 3847 DMEMIT(":%s", ic->a.key_string);\ 3848 } \ 3849 } while (0) 3850 EMIT_ALG(internal_hash_alg, "internal_hash"); 3851 EMIT_ALG(journal_crypt_alg, "journal_crypt"); 3852 EMIT_ALG(journal_mac_alg, "journal_mac"); 3853 break; 3854 } 3855 case STATUSTYPE_IMA: 3856 DMEMIT_TARGET_NAME_VERSION(ti->type); 3857 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c", 3858 ic->dev->name, ic->start, ic->tag_size, ic->mode); 3859 3860 if (ic->meta_dev) 3861 DMEMIT(",meta_device=%s", ic->meta_dev->name); 3862 if (ic->sectors_per_block != 1) 3863 DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT); 3864 3865 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ? 3866 'y' : 'n'); 3867 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n'); 3868 DMEMIT(",fix_padding=%c", 3869 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n'); 3870 DMEMIT(",fix_hmac=%c", 3871 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n'); 3872 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n'); 3873 3874 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS); 3875 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors); 3876 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors); 3877 DMEMIT(";"); 3878 break; 3879 } 3880 } 3881 3882 static int dm_integrity_iterate_devices(struct dm_target *ti, 3883 iterate_devices_callout_fn fn, void *data) 3884 { 3885 struct dm_integrity_c *ic = ti->private; 3886 3887 if (!ic->meta_dev) 3888 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); 3889 else 3890 return fn(ti, ic->dev, 0, ti->len, data); 3891 } 3892 3893 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) 3894 { 3895 struct dm_integrity_c *ic = ti->private; 3896 3897 if (ic->sectors_per_block > 1) { 3898 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3899 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; 3900 limits->io_min = ic->sectors_per_block << SECTOR_SHIFT; 3901 limits->dma_alignment = limits->logical_block_size - 1; 3902 limits->discard_granularity = ic->sectors_per_block << SECTOR_SHIFT; 3903 } 3904 3905 if (!ic->internal_hash) { 3906 struct blk_integrity *bi = &limits->integrity; 3907 3908 memset(bi, 0, sizeof(*bi)); 3909 bi->metadata_size = ic->tag_size; 3910 bi->tag_size = bi->metadata_size; 3911 bi->interval_exp = 3912 ic->sb->log2_sectors_per_block + SECTOR_SHIFT; 3913 } 3914 3915 limits->max_integrity_segments = USHRT_MAX; 3916 } 3917 3918 static void calculate_journal_section_size(struct dm_integrity_c *ic) 3919 { 3920 unsigned int sector_space = JOURNAL_SECTOR_DATA; 3921 3922 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); 3923 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, 3924 JOURNAL_ENTRY_ROUNDUP); 3925 3926 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) 3927 sector_space -= JOURNAL_MAC_PER_SECTOR; 3928 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; 3929 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; 3930 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; 3931 ic->journal_entries = ic->journal_section_entries * ic->journal_sections; 3932 } 3933 3934 static int calculate_device_limits(struct dm_integrity_c *ic) 3935 { 3936 __u64 initial_sectors; 3937 3938 calculate_journal_section_size(ic); 3939 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; 3940 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX) 3941 return -EINVAL; 3942 ic->initial_sectors = initial_sectors; 3943 3944 if (ic->mode == 'I') { 3945 if (ic->initial_sectors + ic->provided_data_sectors > ic->meta_device_sectors) 3946 return -EINVAL; 3947 } else if (!ic->meta_dev) { 3948 sector_t last_sector, last_area, last_offset; 3949 3950 /* we have to maintain excessive padding for compatibility with existing volumes */ 3951 __u64 metadata_run_padding = 3952 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ? 3953 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) : 3954 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS); 3955 3956 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), 3957 metadata_run_padding) >> SECTOR_SHIFT; 3958 if (!(ic->metadata_run & (ic->metadata_run - 1))) 3959 ic->log2_metadata_run = __ffs(ic->metadata_run); 3960 else 3961 ic->log2_metadata_run = -1; 3962 3963 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); 3964 last_sector = get_data_sector(ic, last_area, last_offset); 3965 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors) 3966 return -EINVAL; 3967 } else { 3968 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; 3969 3970 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1)) 3971 >> (ic->log2_buffer_sectors + SECTOR_SHIFT); 3972 meta_size <<= ic->log2_buffer_sectors; 3973 if (ic->initial_sectors + meta_size < ic->initial_sectors || 3974 ic->initial_sectors + meta_size > ic->meta_device_sectors) 3975 return -EINVAL; 3976 ic->metadata_run = 1; 3977 ic->log2_metadata_run = 0; 3978 } 3979 3980 return 0; 3981 } 3982 3983 static void get_provided_data_sectors(struct dm_integrity_c *ic) 3984 { 3985 if (!ic->meta_dev) { 3986 int test_bit; 3987 3988 ic->provided_data_sectors = 0; 3989 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) { 3990 __u64 prev_data_sectors = ic->provided_data_sectors; 3991 3992 ic->provided_data_sectors |= (sector_t)1 << test_bit; 3993 if (calculate_device_limits(ic)) 3994 ic->provided_data_sectors = prev_data_sectors; 3995 } 3996 } else { 3997 ic->provided_data_sectors = ic->data_device_sectors; 3998 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1); 3999 } 4000 } 4001 4002 static int initialize_superblock(struct dm_integrity_c *ic, 4003 unsigned int journal_sectors, unsigned int interleave_sectors) 4004 { 4005 unsigned int journal_sections; 4006 int test_bit; 4007 4008 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); 4009 memcpy(ic->sb->magic, SB_MAGIC, 8); 4010 if (ic->mode == 'I') 4011 ic->sb->flags |= cpu_to_le32(SB_FLAG_INLINE); 4012 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); 4013 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); 4014 if (ic->journal_mac_alg.alg_string) 4015 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); 4016 4017 calculate_journal_section_size(ic); 4018 journal_sections = journal_sectors / ic->journal_section_sectors; 4019 if (!journal_sections) 4020 journal_sections = 1; 4021 if (ic->mode == 'I') 4022 journal_sections = 0; 4023 4024 if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) { 4025 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC); 4026 get_random_bytes(ic->sb->salt, SALT_SIZE); 4027 } 4028 4029 if (!ic->meta_dev) { 4030 if (ic->fix_padding) 4031 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING); 4032 ic->sb->journal_sections = cpu_to_le32(journal_sections); 4033 if (!interleave_sectors) 4034 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 4035 ic->sb->log2_interleave_sectors = __fls(interleave_sectors); 4036 ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 4037 ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); 4038 4039 get_provided_data_sectors(ic); 4040 if (!ic->provided_data_sectors) 4041 return -EINVAL; 4042 } else { 4043 ic->sb->log2_interleave_sectors = 0; 4044 4045 get_provided_data_sectors(ic); 4046 if (!ic->provided_data_sectors) 4047 return -EINVAL; 4048 4049 try_smaller_buffer: 4050 ic->sb->journal_sections = cpu_to_le32(0); 4051 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) { 4052 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections); 4053 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit); 4054 4055 if (test_journal_sections > journal_sections) 4056 continue; 4057 ic->sb->journal_sections = cpu_to_le32(test_journal_sections); 4058 if (calculate_device_limits(ic)) 4059 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections); 4060 4061 } 4062 if (!le32_to_cpu(ic->sb->journal_sections)) { 4063 if (ic->log2_buffer_sectors > 3) { 4064 ic->log2_buffer_sectors--; 4065 goto try_smaller_buffer; 4066 } 4067 return -EINVAL; 4068 } 4069 } 4070 4071 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); 4072 4073 sb_set_version(ic); 4074 4075 return 0; 4076 } 4077 4078 static void dm_integrity_free_page_list(struct page_list *pl) 4079 { 4080 unsigned int i; 4081 4082 if (!pl) 4083 return; 4084 for (i = 0; pl[i].page; i++) 4085 __free_page(pl[i].page); 4086 kvfree(pl); 4087 } 4088 4089 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages) 4090 { 4091 struct page_list *pl; 4092 unsigned int i; 4093 4094 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO); 4095 if (!pl) 4096 return NULL; 4097 4098 for (i = 0; i < n_pages; i++) { 4099 pl[i].page = alloc_page(GFP_KERNEL); 4100 if (!pl[i].page) { 4101 dm_integrity_free_page_list(pl); 4102 return NULL; 4103 } 4104 if (i) 4105 pl[i - 1].next = &pl[i]; 4106 } 4107 pl[i].page = NULL; 4108 pl[i].next = NULL; 4109 4110 return pl; 4111 } 4112 4113 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) 4114 { 4115 unsigned int i; 4116 4117 for (i = 0; i < ic->journal_sections; i++) 4118 kvfree(sl[i]); 4119 kvfree(sl); 4120 } 4121 4122 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, 4123 struct page_list *pl) 4124 { 4125 struct scatterlist **sl; 4126 unsigned int i; 4127 4128 sl = kvmalloc_array(ic->journal_sections, 4129 sizeof(struct scatterlist *), 4130 GFP_KERNEL | __GFP_ZERO); 4131 if (!sl) 4132 return NULL; 4133 4134 for (i = 0; i < ic->journal_sections; i++) { 4135 struct scatterlist *s; 4136 unsigned int start_index, start_offset; 4137 unsigned int end_index, end_offset; 4138 unsigned int n_pages; 4139 unsigned int idx; 4140 4141 page_list_location(ic, i, 0, &start_index, &start_offset); 4142 page_list_location(ic, i, ic->journal_section_sectors - 1, 4143 &end_index, &end_offset); 4144 4145 n_pages = (end_index - start_index + 1); 4146 4147 s = kvmalloc_array(n_pages, sizeof(struct scatterlist), 4148 GFP_KERNEL); 4149 if (!s) { 4150 dm_integrity_free_journal_scatterlist(ic, sl); 4151 return NULL; 4152 } 4153 4154 sg_init_table(s, n_pages); 4155 for (idx = start_index; idx <= end_index; idx++) { 4156 char *va = lowmem_page_address(pl[idx].page); 4157 unsigned int start = 0, end = PAGE_SIZE; 4158 4159 if (idx == start_index) 4160 start = start_offset; 4161 if (idx == end_index) 4162 end = end_offset + (1 << SECTOR_SHIFT); 4163 sg_set_buf(&s[idx - start_index], va + start, end - start); 4164 } 4165 4166 sl[i] = s; 4167 } 4168 4169 return sl; 4170 } 4171 4172 static void free_alg(struct alg_spec *a) 4173 { 4174 kfree_sensitive(a->alg_string); 4175 kfree_sensitive(a->key); 4176 memset(a, 0, sizeof(*a)); 4177 } 4178 4179 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) 4180 { 4181 char *k; 4182 4183 free_alg(a); 4184 4185 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); 4186 if (!a->alg_string) 4187 goto nomem; 4188 4189 k = strchr(a->alg_string, ':'); 4190 if (k) { 4191 *k = 0; 4192 a->key_string = k + 1; 4193 if (strlen(a->key_string) & 1) 4194 goto inval; 4195 4196 a->key_size = strlen(a->key_string) / 2; 4197 a->key = kmalloc(a->key_size, GFP_KERNEL); 4198 if (!a->key) 4199 goto nomem; 4200 if (hex2bin(a->key, a->key_string, a->key_size)) 4201 goto inval; 4202 } 4203 4204 return 0; 4205 inval: 4206 *error = error_inval; 4207 return -EINVAL; 4208 nomem: 4209 *error = "Out of memory for an argument"; 4210 return -ENOMEM; 4211 } 4212 4213 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, 4214 char *error_alg, char *error_key) 4215 { 4216 int r; 4217 4218 if (a->alg_string) { 4219 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 4220 if (IS_ERR(*hash)) { 4221 *error = error_alg; 4222 r = PTR_ERR(*hash); 4223 *hash = NULL; 4224 return r; 4225 } 4226 4227 if (a->key) { 4228 r = crypto_shash_setkey(*hash, a->key, a->key_size); 4229 if (r) { 4230 *error = error_key; 4231 return r; 4232 } 4233 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { 4234 *error = error_key; 4235 return -ENOKEY; 4236 } 4237 } 4238 4239 return 0; 4240 } 4241 4242 static int create_journal(struct dm_integrity_c *ic, char **error) 4243 { 4244 int r = 0; 4245 unsigned int i; 4246 __u64 journal_pages, journal_desc_size, journal_tree_size; 4247 unsigned char *crypt_data = NULL, *crypt_iv = NULL; 4248 struct skcipher_request *req = NULL; 4249 4250 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); 4251 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); 4252 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); 4253 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); 4254 4255 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, 4256 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); 4257 journal_desc_size = journal_pages * sizeof(struct page_list); 4258 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) { 4259 *error = "Journal doesn't fit into memory"; 4260 r = -ENOMEM; 4261 goto bad; 4262 } 4263 ic->journal_pages = journal_pages; 4264 4265 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages); 4266 if (!ic->journal) { 4267 *error = "Could not allocate memory for journal"; 4268 r = -ENOMEM; 4269 goto bad; 4270 } 4271 if (ic->journal_crypt_alg.alg_string) { 4272 unsigned int ivsize, blocksize; 4273 struct journal_completion comp; 4274 4275 comp.ic = ic; 4276 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 4277 if (IS_ERR(ic->journal_crypt)) { 4278 *error = "Invalid journal cipher"; 4279 r = PTR_ERR(ic->journal_crypt); 4280 ic->journal_crypt = NULL; 4281 goto bad; 4282 } 4283 ivsize = crypto_skcipher_ivsize(ic->journal_crypt); 4284 blocksize = crypto_skcipher_blocksize(ic->journal_crypt); 4285 4286 if (ic->journal_crypt_alg.key) { 4287 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, 4288 ic->journal_crypt_alg.key_size); 4289 if (r) { 4290 *error = "Error setting encryption key"; 4291 goto bad; 4292 } 4293 } 4294 DEBUG_print("cipher %s, block size %u iv size %u\n", 4295 ic->journal_crypt_alg.alg_string, blocksize, ivsize); 4296 4297 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages); 4298 if (!ic->journal_io) { 4299 *error = "Could not allocate memory for journal io"; 4300 r = -ENOMEM; 4301 goto bad; 4302 } 4303 4304 if (blocksize == 1) { 4305 struct scatterlist *sg; 4306 4307 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 4308 if (!req) { 4309 *error = "Could not allocate crypt request"; 4310 r = -ENOMEM; 4311 goto bad; 4312 } 4313 4314 crypt_iv = kzalloc(ivsize, GFP_KERNEL); 4315 if (!crypt_iv) { 4316 *error = "Could not allocate iv"; 4317 r = -ENOMEM; 4318 goto bad; 4319 } 4320 4321 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages); 4322 if (!ic->journal_xor) { 4323 *error = "Could not allocate memory for journal xor"; 4324 r = -ENOMEM; 4325 goto bad; 4326 } 4327 4328 sg = kvmalloc_array(ic->journal_pages + 1, 4329 sizeof(struct scatterlist), 4330 GFP_KERNEL); 4331 if (!sg) { 4332 *error = "Unable to allocate sg list"; 4333 r = -ENOMEM; 4334 goto bad; 4335 } 4336 sg_init_table(sg, ic->journal_pages + 1); 4337 for (i = 0; i < ic->journal_pages; i++) { 4338 char *va = lowmem_page_address(ic->journal_xor[i].page); 4339 4340 clear_page(va); 4341 sg_set_buf(&sg[i], va, PAGE_SIZE); 4342 } 4343 sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids)); 4344 4345 skcipher_request_set_crypt(req, sg, sg, 4346 PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv); 4347 init_completion(&comp.comp); 4348 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 4349 if (do_crypt(true, req, &comp)) 4350 wait_for_completion(&comp.comp); 4351 kvfree(sg); 4352 r = dm_integrity_failed(ic); 4353 if (r) { 4354 *error = "Unable to encrypt journal"; 4355 goto bad; 4356 } 4357 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); 4358 4359 crypto_free_skcipher(ic->journal_crypt); 4360 ic->journal_crypt = NULL; 4361 } else { 4362 unsigned int crypt_len = roundup(ivsize, blocksize); 4363 4364 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 4365 if (!req) { 4366 *error = "Could not allocate crypt request"; 4367 r = -ENOMEM; 4368 goto bad; 4369 } 4370 4371 crypt_iv = kmalloc(ivsize, GFP_KERNEL); 4372 if (!crypt_iv) { 4373 *error = "Could not allocate iv"; 4374 r = -ENOMEM; 4375 goto bad; 4376 } 4377 4378 crypt_data = kmalloc(crypt_len, GFP_KERNEL); 4379 if (!crypt_data) { 4380 *error = "Unable to allocate crypt data"; 4381 r = -ENOMEM; 4382 goto bad; 4383 } 4384 4385 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); 4386 if (!ic->journal_scatterlist) { 4387 *error = "Unable to allocate sg list"; 4388 r = -ENOMEM; 4389 goto bad; 4390 } 4391 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); 4392 if (!ic->journal_io_scatterlist) { 4393 *error = "Unable to allocate sg list"; 4394 r = -ENOMEM; 4395 goto bad; 4396 } 4397 ic->sk_requests = kvmalloc_array(ic->journal_sections, 4398 sizeof(struct skcipher_request *), 4399 GFP_KERNEL | __GFP_ZERO); 4400 if (!ic->sk_requests) { 4401 *error = "Unable to allocate sk requests"; 4402 r = -ENOMEM; 4403 goto bad; 4404 } 4405 for (i = 0; i < ic->journal_sections; i++) { 4406 struct scatterlist sg; 4407 struct skcipher_request *section_req; 4408 __le32 section_le = cpu_to_le32(i); 4409 4410 memset(crypt_iv, 0x00, ivsize); 4411 memset(crypt_data, 0x00, crypt_len); 4412 memcpy(crypt_data, §ion_le, min_t(size_t, crypt_len, sizeof(section_le))); 4413 4414 sg_init_one(&sg, crypt_data, crypt_len); 4415 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); 4416 init_completion(&comp.comp); 4417 comp.in_flight = (atomic_t)ATOMIC_INIT(1); 4418 if (do_crypt(true, req, &comp)) 4419 wait_for_completion(&comp.comp); 4420 4421 r = dm_integrity_failed(ic); 4422 if (r) { 4423 *error = "Unable to generate iv"; 4424 goto bad; 4425 } 4426 4427 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); 4428 if (!section_req) { 4429 *error = "Unable to allocate crypt request"; 4430 r = -ENOMEM; 4431 goto bad; 4432 } 4433 section_req->iv = kmalloc_array(ivsize, 2, 4434 GFP_KERNEL); 4435 if (!section_req->iv) { 4436 skcipher_request_free(section_req); 4437 *error = "Unable to allocate iv"; 4438 r = -ENOMEM; 4439 goto bad; 4440 } 4441 memcpy(section_req->iv + ivsize, crypt_data, ivsize); 4442 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; 4443 ic->sk_requests[i] = section_req; 4444 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); 4445 } 4446 } 4447 } 4448 4449 for (i = 0; i < N_COMMIT_IDS; i++) { 4450 unsigned int j; 4451 4452 retest_commit_id: 4453 for (j = 0; j < i; j++) { 4454 if (ic->commit_ids[j] == ic->commit_ids[i]) { 4455 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); 4456 goto retest_commit_id; 4457 } 4458 } 4459 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); 4460 } 4461 4462 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); 4463 if (journal_tree_size > ULONG_MAX) { 4464 *error = "Journal doesn't fit into memory"; 4465 r = -ENOMEM; 4466 goto bad; 4467 } 4468 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); 4469 if (!ic->journal_tree) { 4470 *error = "Could not allocate memory for journal tree"; 4471 r = -ENOMEM; 4472 } 4473 bad: 4474 kfree(crypt_data); 4475 kfree(crypt_iv); 4476 skcipher_request_free(req); 4477 4478 return r; 4479 } 4480 4481 /* 4482 * Construct a integrity mapping 4483 * 4484 * Arguments: 4485 * device 4486 * offset from the start of the device 4487 * tag size 4488 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode 4489 * number of optional arguments 4490 * optional arguments: 4491 * journal_sectors 4492 * interleave_sectors 4493 * buffer_sectors 4494 * journal_watermark 4495 * commit_time 4496 * meta_device 4497 * block_size 4498 * sectors_per_bit 4499 * bitmap_flush_interval 4500 * internal_hash 4501 * journal_crypt 4502 * journal_mac 4503 * recalculate 4504 */ 4505 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv) 4506 { 4507 struct dm_integrity_c *ic; 4508 char dummy; 4509 int r; 4510 unsigned int extra_args; 4511 struct dm_arg_set as; 4512 static const struct dm_arg _args[] = { 4513 {0, 18, "Invalid number of feature args"}, 4514 }; 4515 unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; 4516 bool should_write_sb; 4517 __u64 threshold; 4518 unsigned long long start; 4519 __s8 log2_sectors_per_bitmap_bit = -1; 4520 __s8 log2_blocks_per_bitmap_bit; 4521 __u64 bits_in_journal; 4522 __u64 n_bitmap_bits; 4523 4524 #define DIRECT_ARGUMENTS 4 4525 4526 if (argc <= DIRECT_ARGUMENTS) { 4527 ti->error = "Invalid argument count"; 4528 return -EINVAL; 4529 } 4530 4531 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); 4532 if (!ic) { 4533 ti->error = "Cannot allocate integrity context"; 4534 return -ENOMEM; 4535 } 4536 ti->private = ic; 4537 ti->per_io_data_size = sizeof(struct dm_integrity_io); 4538 ic->ti = ti; 4539 4540 ic->in_progress = RB_ROOT; 4541 INIT_LIST_HEAD(&ic->wait_list); 4542 init_waitqueue_head(&ic->endio_wait); 4543 bio_list_init(&ic->flush_bio_list); 4544 init_waitqueue_head(&ic->copy_to_journal_wait); 4545 init_completion(&ic->crypto_backoff); 4546 atomic64_set(&ic->number_of_mismatches, 0); 4547 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL; 4548 4549 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); 4550 if (r) { 4551 ti->error = "Device lookup failed"; 4552 goto bad; 4553 } 4554 4555 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { 4556 ti->error = "Invalid starting offset"; 4557 r = -EINVAL; 4558 goto bad; 4559 } 4560 ic->start = start; 4561 4562 if (strcmp(argv[2], "-")) { 4563 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { 4564 ti->error = "Invalid tag size"; 4565 r = -EINVAL; 4566 goto bad; 4567 } 4568 } 4569 4570 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") || 4571 !strcmp(argv[3], "D") || !strcmp(argv[3], "R") || 4572 !strcmp(argv[3], "I")) { 4573 ic->mode = argv[3][0]; 4574 } else { 4575 ti->error = "Invalid mode (expecting J, B, D, R, I)"; 4576 r = -EINVAL; 4577 goto bad; 4578 } 4579 4580 journal_sectors = 0; 4581 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; 4582 buffer_sectors = DEFAULT_BUFFER_SECTORS; 4583 journal_watermark = DEFAULT_JOURNAL_WATERMARK; 4584 sync_msec = DEFAULT_SYNC_MSEC; 4585 ic->sectors_per_block = 1; 4586 4587 as.argc = argc - DIRECT_ARGUMENTS; 4588 as.argv = argv + DIRECT_ARGUMENTS; 4589 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); 4590 if (r) 4591 goto bad; 4592 4593 while (extra_args--) { 4594 const char *opt_string; 4595 unsigned int val; 4596 unsigned long long llval; 4597 4598 opt_string = dm_shift_arg(&as); 4599 if (!opt_string) { 4600 r = -EINVAL; 4601 ti->error = "Not enough feature arguments"; 4602 goto bad; 4603 } 4604 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) 4605 journal_sectors = val ? val : 1; 4606 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) 4607 interleave_sectors = val; 4608 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) 4609 buffer_sectors = val; 4610 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) 4611 journal_watermark = val; 4612 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) 4613 sync_msec = val; 4614 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) { 4615 if (ic->meta_dev) { 4616 dm_put_device(ti, ic->meta_dev); 4617 ic->meta_dev = NULL; 4618 } 4619 r = dm_get_device(ti, strchr(opt_string, ':') + 1, 4620 dm_table_get_mode(ti->table), &ic->meta_dev); 4621 if (r) { 4622 ti->error = "Device lookup failed"; 4623 goto bad; 4624 } 4625 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { 4626 if (val < 1 << SECTOR_SHIFT || 4627 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || 4628 (val & (val - 1))) { 4629 r = -EINVAL; 4630 ti->error = "Invalid block_size argument"; 4631 goto bad; 4632 } 4633 ic->sectors_per_block = val >> SECTOR_SHIFT; 4634 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) { 4635 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval); 4636 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) { 4637 if ((uint64_t)val >= (uint64_t)UINT_MAX * 1000 / HZ) { 4638 r = -EINVAL; 4639 ti->error = "Invalid bitmap_flush_interval argument"; 4640 goto bad; 4641 } 4642 ic->bitmap_flush_interval = msecs_to_jiffies(val); 4643 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { 4644 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, 4645 "Invalid internal_hash argument"); 4646 if (r) 4647 goto bad; 4648 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { 4649 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, 4650 "Invalid journal_crypt argument"); 4651 if (r) 4652 goto bad; 4653 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { 4654 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, 4655 "Invalid journal_mac argument"); 4656 if (r) 4657 goto bad; 4658 } else if (!strcmp(opt_string, "recalculate")) { 4659 ic->recalculate_flag = true; 4660 } else if (!strcmp(opt_string, "reset_recalculate")) { 4661 ic->recalculate_flag = true; 4662 ic->reset_recalculate_flag = true; 4663 } else if (!strcmp(opt_string, "allow_discards")) { 4664 ic->discard = true; 4665 } else if (!strcmp(opt_string, "fix_padding")) { 4666 ic->fix_padding = true; 4667 } else if (!strcmp(opt_string, "fix_hmac")) { 4668 ic->fix_hmac = true; 4669 } else if (!strcmp(opt_string, "legacy_recalculate")) { 4670 ic->legacy_recalculate = true; 4671 } else { 4672 r = -EINVAL; 4673 ti->error = "Invalid argument"; 4674 goto bad; 4675 } 4676 } 4677 4678 ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev); 4679 if (!ic->meta_dev) 4680 ic->meta_device_sectors = ic->data_device_sectors; 4681 else 4682 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev); 4683 4684 if (!journal_sectors) { 4685 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, 4686 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); 4687 } 4688 4689 if (!buffer_sectors) 4690 buffer_sectors = 1; 4691 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT); 4692 4693 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, 4694 "Invalid internal hash", "Error setting internal hash key"); 4695 if (r) 4696 goto bad; 4697 4698 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, 4699 "Invalid journal mac", "Error setting journal mac key"); 4700 if (r) 4701 goto bad; 4702 4703 if (!ic->tag_size) { 4704 if (!ic->internal_hash) { 4705 ti->error = "Unknown tag size"; 4706 r = -EINVAL; 4707 goto bad; 4708 } 4709 ic->tag_size = crypto_shash_digestsize(ic->internal_hash); 4710 } 4711 if (ic->tag_size > MAX_TAG_SIZE) { 4712 ti->error = "Too big tag size"; 4713 r = -EINVAL; 4714 goto bad; 4715 } 4716 if (!(ic->tag_size & (ic->tag_size - 1))) 4717 ic->log2_tag_size = __ffs(ic->tag_size); 4718 else 4719 ic->log2_tag_size = -1; 4720 4721 if (ic->mode == 'I') { 4722 struct blk_integrity *bi; 4723 if (ic->meta_dev) { 4724 r = -EINVAL; 4725 ti->error = "Metadata device not supported in inline mode"; 4726 goto bad; 4727 } 4728 if (!ic->internal_hash_alg.alg_string) { 4729 r = -EINVAL; 4730 ti->error = "Internal hash not set in inline mode"; 4731 goto bad; 4732 } 4733 if (ic->journal_crypt_alg.alg_string || ic->journal_mac_alg.alg_string) { 4734 r = -EINVAL; 4735 ti->error = "Journal crypt not supported in inline mode"; 4736 goto bad; 4737 } 4738 if (ic->discard) { 4739 r = -EINVAL; 4740 ti->error = "Discards not supported in inline mode"; 4741 goto bad; 4742 } 4743 bi = blk_get_integrity(ic->dev->bdev->bd_disk); 4744 if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) { 4745 r = -EINVAL; 4746 ti->error = "Integrity profile not supported"; 4747 goto bad; 4748 } 4749 /*printk("tag_size: %u, metadata_size: %u\n", bi->tag_size, bi->metadata_size);*/ 4750 if (bi->metadata_size < ic->tag_size) { 4751 r = -EINVAL; 4752 ti->error = "The integrity profile is smaller than tag size"; 4753 goto bad; 4754 } 4755 if ((unsigned long)bi->metadata_size > PAGE_SIZE / 2) { 4756 r = -EINVAL; 4757 ti->error = "Too big tuple size"; 4758 goto bad; 4759 } 4760 ic->tuple_size = bi->metadata_size; 4761 if (1 << bi->interval_exp != ic->sectors_per_block << SECTOR_SHIFT) { 4762 r = -EINVAL; 4763 ti->error = "Integrity profile sector size mismatch"; 4764 goto bad; 4765 } 4766 } 4767 4768 if (ic->mode == 'B' && !ic->internal_hash) { 4769 r = -EINVAL; 4770 ti->error = "Bitmap mode can be only used with internal hash"; 4771 goto bad; 4772 } 4773 4774 if (ic->discard && !ic->internal_hash) { 4775 r = -EINVAL; 4776 ti->error = "Discard can be only used with internal hash"; 4777 goto bad; 4778 } 4779 4780 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); 4781 ic->autocommit_msec = sync_msec; 4782 timer_setup(&ic->autocommit_timer, autocommit_fn, 0); 4783 4784 ic->io = dm_io_client_create(); 4785 if (IS_ERR(ic->io)) { 4786 r = PTR_ERR(ic->io); 4787 ic->io = NULL; 4788 ti->error = "Cannot allocate dm io"; 4789 goto bad; 4790 } 4791 4792 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); 4793 if (r) { 4794 ti->error = "Cannot allocate mempool"; 4795 goto bad; 4796 } 4797 4798 r = mempool_init_page_pool(&ic->recheck_pool, 1, ic->mode == 'I' ? 1 : 0); 4799 if (r) { 4800 ti->error = "Cannot allocate mempool"; 4801 goto bad; 4802 } 4803 4804 if (ic->mode == 'I') { 4805 r = bioset_init(&ic->recheck_bios, RECHECK_POOL_SIZE, 0, BIOSET_NEED_BVECS); 4806 if (r) { 4807 ti->error = "Cannot allocate bio set"; 4808 goto bad; 4809 } 4810 r = bioset_init(&ic->recalc_bios, 1, 0, BIOSET_NEED_BVECS); 4811 if (r) { 4812 ti->error = "Cannot allocate bio set"; 4813 goto bad; 4814 } 4815 } 4816 4817 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", 4818 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); 4819 if (!ic->metadata_wq) { 4820 ti->error = "Cannot allocate workqueue"; 4821 r = -ENOMEM; 4822 goto bad; 4823 } 4824 4825 /* 4826 * If this workqueue weren't ordered, it would cause bio reordering 4827 * and reduced performance. 4828 */ 4829 ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM); 4830 if (!ic->wait_wq) { 4831 ti->error = "Cannot allocate workqueue"; 4832 r = -ENOMEM; 4833 goto bad; 4834 } 4835 4836 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM, 4837 METADATA_WORKQUEUE_MAX_ACTIVE); 4838 if (!ic->offload_wq) { 4839 ti->error = "Cannot allocate workqueue"; 4840 r = -ENOMEM; 4841 goto bad; 4842 } 4843 4844 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); 4845 if (!ic->commit_wq) { 4846 ti->error = "Cannot allocate workqueue"; 4847 r = -ENOMEM; 4848 goto bad; 4849 } 4850 INIT_WORK(&ic->commit_work, integrity_commit); 4851 4852 if (ic->mode == 'J' || ic->mode == 'B') { 4853 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); 4854 if (!ic->writer_wq) { 4855 ti->error = "Cannot allocate workqueue"; 4856 r = -ENOMEM; 4857 goto bad; 4858 } 4859 INIT_WORK(&ic->writer_work, integrity_writer); 4860 } 4861 4862 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); 4863 if (!ic->sb) { 4864 r = -ENOMEM; 4865 ti->error = "Cannot allocate superblock area"; 4866 goto bad; 4867 } 4868 4869 r = sync_rw_sb(ic, REQ_OP_READ); 4870 if (r) { 4871 ti->error = "Error reading superblock"; 4872 goto bad; 4873 } 4874 should_write_sb = false; 4875 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { 4876 if (ic->mode != 'R') { 4877 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { 4878 r = -EINVAL; 4879 ti->error = "The device is not initialized"; 4880 goto bad; 4881 } 4882 } 4883 4884 r = initialize_superblock(ic, journal_sectors, interleave_sectors); 4885 if (r) { 4886 ti->error = "Could not initialize superblock"; 4887 goto bad; 4888 } 4889 if (ic->mode != 'R') 4890 should_write_sb = true; 4891 } 4892 4893 if (!ic->sb->version || ic->sb->version > SB_VERSION_6) { 4894 r = -EINVAL; 4895 ti->error = "Unknown version"; 4896 goto bad; 4897 } 4898 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_INLINE)) != (ic->mode == 'I')) { 4899 r = -EINVAL; 4900 ti->error = "Inline flag mismatch"; 4901 goto bad; 4902 } 4903 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { 4904 r = -EINVAL; 4905 ti->error = "Tag size doesn't match the information in superblock"; 4906 goto bad; 4907 } 4908 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { 4909 r = -EINVAL; 4910 ti->error = "Block size doesn't match the information in superblock"; 4911 goto bad; 4912 } 4913 if (ic->mode != 'I') { 4914 if (!le32_to_cpu(ic->sb->journal_sections)) { 4915 r = -EINVAL; 4916 ti->error = "Corrupted superblock, journal_sections is 0"; 4917 goto bad; 4918 } 4919 } else { 4920 if (le32_to_cpu(ic->sb->journal_sections)) { 4921 r = -EINVAL; 4922 ti->error = "Corrupted superblock, journal_sections is not 0"; 4923 goto bad; 4924 } 4925 } 4926 /* make sure that ti->max_io_len doesn't overflow */ 4927 if (!ic->meta_dev) { 4928 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || 4929 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { 4930 r = -EINVAL; 4931 ti->error = "Invalid interleave_sectors in the superblock"; 4932 goto bad; 4933 } 4934 } else { 4935 if (ic->sb->log2_interleave_sectors) { 4936 r = -EINVAL; 4937 ti->error = "Invalid interleave_sectors in the superblock"; 4938 goto bad; 4939 } 4940 } 4941 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { 4942 r = -EINVAL; 4943 ti->error = "Journal mac mismatch"; 4944 goto bad; 4945 } 4946 4947 get_provided_data_sectors(ic); 4948 if (!ic->provided_data_sectors) { 4949 r = -EINVAL; 4950 ti->error = "The device is too small"; 4951 goto bad; 4952 } 4953 4954 try_smaller_buffer: 4955 r = calculate_device_limits(ic); 4956 if (r) { 4957 if (ic->meta_dev) { 4958 if (ic->log2_buffer_sectors > 3) { 4959 ic->log2_buffer_sectors--; 4960 goto try_smaller_buffer; 4961 } 4962 } 4963 ti->error = "The device is too small"; 4964 goto bad; 4965 } 4966 4967 if (log2_sectors_per_bitmap_bit < 0) 4968 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT); 4969 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block) 4970 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block; 4971 4972 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3); 4973 if (bits_in_journal > UINT_MAX) 4974 bits_in_journal = UINT_MAX; 4975 if (bits_in_journal) 4976 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit) 4977 log2_sectors_per_bitmap_bit++; 4978 4979 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block; 4980 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4981 if (should_write_sb) 4982 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; 4983 4984 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) 4985 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit; 4986 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8); 4987 4988 if (!ic->meta_dev) 4989 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run)); 4990 4991 if (ti->len > ic->provided_data_sectors) { 4992 r = -EINVAL; 4993 ti->error = "Not enough provided sectors for requested mapping size"; 4994 goto bad; 4995 } 4996 4997 threshold = (__u64)ic->journal_entries * (100 - journal_watermark); 4998 threshold += 50; 4999 do_div(threshold, 100); 5000 ic->free_sectors_threshold = threshold; 5001 5002 DEBUG_print("initialized:\n"); 5003 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); 5004 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); 5005 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); 5006 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); 5007 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); 5008 DEBUG_print(" journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections)); 5009 DEBUG_print(" journal_entries %u\n", ic->journal_entries); 5010 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); 5011 DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev)); 5012 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); 5013 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); 5014 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); 5015 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors); 5016 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); 5017 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal); 5018 5019 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) { 5020 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); 5021 ic->sb->recalc_sector = cpu_to_le64(0); 5022 } 5023 5024 if (ic->internal_hash) { 5025 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1); 5026 if (!ic->recalc_wq) { 5027 ti->error = "Cannot allocate workqueue"; 5028 r = -ENOMEM; 5029 goto bad; 5030 } 5031 INIT_WORK(&ic->recalc_work, ic->mode == 'I' ? integrity_recalc_inline : integrity_recalc); 5032 } else { 5033 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { 5034 ti->error = "Recalculate can only be specified with internal_hash"; 5035 r = -EINVAL; 5036 goto bad; 5037 } 5038 } 5039 5040 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && 5041 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors && 5042 dm_integrity_disable_recalculate(ic)) { 5043 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\""; 5044 r = -EOPNOTSUPP; 5045 goto bad; 5046 } 5047 5048 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev, 5049 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0); 5050 if (IS_ERR(ic->bufio)) { 5051 r = PTR_ERR(ic->bufio); 5052 ti->error = "Cannot initialize dm-bufio"; 5053 ic->bufio = NULL; 5054 goto bad; 5055 } 5056 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); 5057 5058 if (ic->mode != 'R' && ic->mode != 'I') { 5059 r = create_journal(ic, &ti->error); 5060 if (r) 5061 goto bad; 5062 5063 } 5064 5065 if (ic->mode == 'B') { 5066 unsigned int i; 5067 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); 5068 5069 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 5070 if (!ic->recalc_bitmap) { 5071 ti->error = "Could not allocate memory for bitmap"; 5072 r = -ENOMEM; 5073 goto bad; 5074 } 5075 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); 5076 if (!ic->may_write_bitmap) { 5077 ti->error = "Could not allocate memory for bitmap"; 5078 r = -ENOMEM; 5079 goto bad; 5080 } 5081 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL); 5082 if (!ic->bbs) { 5083 ti->error = "Could not allocate memory for bitmap"; 5084 r = -ENOMEM; 5085 goto bad; 5086 } 5087 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work); 5088 for (i = 0; i < ic->n_bitmap_blocks; i++) { 5089 struct bitmap_block_status *bbs = &ic->bbs[i]; 5090 unsigned int sector, pl_index, pl_offset; 5091 5092 INIT_WORK(&bbs->work, bitmap_block_work); 5093 bbs->ic = ic; 5094 bbs->idx = i; 5095 bio_list_init(&bbs->bio_queue); 5096 spin_lock_init(&bbs->bio_queue_lock); 5097 5098 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT); 5099 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); 5100 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); 5101 5102 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset; 5103 } 5104 } 5105 5106 if (should_write_sb) { 5107 init_journal(ic, 0, ic->journal_sections, 0); 5108 r = dm_integrity_failed(ic); 5109 if (unlikely(r)) { 5110 ti->error = "Error initializing journal"; 5111 goto bad; 5112 } 5113 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA); 5114 if (r) { 5115 ti->error = "Error initializing superblock"; 5116 goto bad; 5117 } 5118 ic->just_formatted = true; 5119 } 5120 5121 if (!ic->meta_dev && ic->mode != 'I') { 5122 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); 5123 if (r) 5124 goto bad; 5125 } 5126 if (ic->mode == 'B') { 5127 unsigned int max_io_len; 5128 5129 max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8); 5130 if (!max_io_len) 5131 max_io_len = 1U << 31; 5132 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len); 5133 if (!ti->max_io_len || ti->max_io_len > max_io_len) { 5134 r = dm_set_target_max_io_len(ti, max_io_len); 5135 if (r) 5136 goto bad; 5137 } 5138 } 5139 5140 ti->num_flush_bios = 1; 5141 ti->flush_supported = true; 5142 if (ic->discard) 5143 ti->num_discard_bios = 1; 5144 5145 if (ic->mode == 'I') 5146 ti->mempool_needs_integrity = true; 5147 5148 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1); 5149 return 0; 5150 5151 bad: 5152 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0); 5153 dm_integrity_dtr(ti); 5154 return r; 5155 } 5156 5157 static void dm_integrity_dtr(struct dm_target *ti) 5158 { 5159 struct dm_integrity_c *ic = ti->private; 5160 5161 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); 5162 BUG_ON(!list_empty(&ic->wait_list)); 5163 5164 if (ic->mode == 'B' && ic->bitmap_flush_work.work.func) 5165 cancel_delayed_work_sync(&ic->bitmap_flush_work); 5166 if (ic->metadata_wq) 5167 destroy_workqueue(ic->metadata_wq); 5168 if (ic->wait_wq) 5169 destroy_workqueue(ic->wait_wq); 5170 if (ic->offload_wq) 5171 destroy_workqueue(ic->offload_wq); 5172 if (ic->commit_wq) 5173 destroy_workqueue(ic->commit_wq); 5174 if (ic->writer_wq) 5175 destroy_workqueue(ic->writer_wq); 5176 if (ic->recalc_wq) 5177 destroy_workqueue(ic->recalc_wq); 5178 kvfree(ic->bbs); 5179 if (ic->bufio) 5180 dm_bufio_client_destroy(ic->bufio); 5181 bioset_exit(&ic->recalc_bios); 5182 bioset_exit(&ic->recheck_bios); 5183 mempool_exit(&ic->recheck_pool); 5184 mempool_exit(&ic->journal_io_mempool); 5185 if (ic->io) 5186 dm_io_client_destroy(ic->io); 5187 if (ic->dev) 5188 dm_put_device(ti, ic->dev); 5189 if (ic->meta_dev) 5190 dm_put_device(ti, ic->meta_dev); 5191 dm_integrity_free_page_list(ic->journal); 5192 dm_integrity_free_page_list(ic->journal_io); 5193 dm_integrity_free_page_list(ic->journal_xor); 5194 dm_integrity_free_page_list(ic->recalc_bitmap); 5195 dm_integrity_free_page_list(ic->may_write_bitmap); 5196 if (ic->journal_scatterlist) 5197 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); 5198 if (ic->journal_io_scatterlist) 5199 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); 5200 if (ic->sk_requests) { 5201 unsigned int i; 5202 5203 for (i = 0; i < ic->journal_sections; i++) { 5204 struct skcipher_request *req; 5205 5206 req = ic->sk_requests[i]; 5207 if (req) { 5208 kfree_sensitive(req->iv); 5209 skcipher_request_free(req); 5210 } 5211 } 5212 kvfree(ic->sk_requests); 5213 } 5214 kvfree(ic->journal_tree); 5215 if (ic->sb) 5216 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); 5217 5218 if (ic->internal_hash) 5219 crypto_free_shash(ic->internal_hash); 5220 free_alg(&ic->internal_hash_alg); 5221 5222 if (ic->journal_crypt) 5223 crypto_free_skcipher(ic->journal_crypt); 5224 free_alg(&ic->journal_crypt_alg); 5225 5226 if (ic->journal_mac) 5227 crypto_free_shash(ic->journal_mac); 5228 free_alg(&ic->journal_mac_alg); 5229 5230 kfree(ic); 5231 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1); 5232 } 5233 5234 static struct target_type integrity_target = { 5235 .name = "integrity", 5236 .version = {1, 13, 0}, 5237 .module = THIS_MODULE, 5238 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, 5239 .ctr = dm_integrity_ctr, 5240 .dtr = dm_integrity_dtr, 5241 .map = dm_integrity_map, 5242 .end_io = dm_integrity_end_io, 5243 .postsuspend = dm_integrity_postsuspend, 5244 .resume = dm_integrity_resume, 5245 .status = dm_integrity_status, 5246 .iterate_devices = dm_integrity_iterate_devices, 5247 .io_hints = dm_integrity_io_hints, 5248 }; 5249 5250 static int __init dm_integrity_init(void) 5251 { 5252 int r; 5253 5254 journal_io_cache = kmem_cache_create("integrity_journal_io", 5255 sizeof(struct journal_io), 0, 0, NULL); 5256 if (!journal_io_cache) { 5257 DMERR("can't allocate journal io cache"); 5258 return -ENOMEM; 5259 } 5260 5261 r = dm_register_target(&integrity_target); 5262 if (r < 0) { 5263 kmem_cache_destroy(journal_io_cache); 5264 return r; 5265 } 5266 5267 return 0; 5268 } 5269 5270 static void __exit dm_integrity_exit(void) 5271 { 5272 dm_unregister_target(&integrity_target); 5273 kmem_cache_destroy(journal_io_cache); 5274 } 5275 5276 module_init(dm_integrity_init); 5277 module_exit(dm_integrity_exit); 5278 5279 MODULE_AUTHOR("Milan Broz"); 5280 MODULE_AUTHOR("Mikulas Patocka"); 5281 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); 5282 MODULE_LICENSE("GPL"); 5283