xref: /linux/drivers/md/dm-era-target.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 #include "dm.h"
2 #include "persistent-data/dm-transaction-manager.h"
3 #include "persistent-data/dm-bitset.h"
4 #include "persistent-data/dm-space-map.h"
5 
6 #include <linux/dm-io.h>
7 #include <linux/dm-kcopyd.h>
8 #include <linux/init.h>
9 #include <linux/mempool.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/vmalloc.h>
13 
14 #define DM_MSG_PREFIX "era"
15 
16 #define SUPERBLOCK_LOCATION 0
17 #define SUPERBLOCK_MAGIC 2126579579
18 #define SUPERBLOCK_CSUM_XOR 146538381
19 #define MIN_ERA_VERSION 1
20 #define MAX_ERA_VERSION 1
21 #define INVALID_WRITESET_ROOT SUPERBLOCK_LOCATION
22 #define MIN_BLOCK_SIZE 8
23 
24 /*----------------------------------------------------------------
25  * Writeset
26  *--------------------------------------------------------------*/
27 struct writeset_metadata {
28 	uint32_t nr_bits;
29 	dm_block_t root;
30 };
31 
32 struct writeset {
33 	struct writeset_metadata md;
34 
35 	/*
36 	 * An in core copy of the bits to save constantly doing look ups on
37 	 * disk.
38 	 */
39 	unsigned long *bits;
40 };
41 
42 /*
43  * This does not free off the on disk bitset as this will normally be done
44  * after digesting into the era array.
45  */
46 static void writeset_free(struct writeset *ws)
47 {
48 	vfree(ws->bits);
49 }
50 
51 static int setup_on_disk_bitset(struct dm_disk_bitset *info,
52 				unsigned nr_bits, dm_block_t *root)
53 {
54 	int r;
55 
56 	r = dm_bitset_empty(info, root);
57 	if (r)
58 		return r;
59 
60 	return dm_bitset_resize(info, *root, 0, nr_bits, false, root);
61 }
62 
63 static size_t bitset_size(unsigned nr_bits)
64 {
65 	return sizeof(unsigned long) * dm_div_up(nr_bits, BITS_PER_LONG);
66 }
67 
68 /*
69  * Allocates memory for the in core bitset.
70  */
71 static int writeset_alloc(struct writeset *ws, dm_block_t nr_blocks)
72 {
73 	ws->md.nr_bits = nr_blocks;
74 	ws->md.root = INVALID_WRITESET_ROOT;
75 	ws->bits = vzalloc(bitset_size(nr_blocks));
76 	if (!ws->bits) {
77 		DMERR("%s: couldn't allocate in memory bitset", __func__);
78 		return -ENOMEM;
79 	}
80 
81 	return 0;
82 }
83 
84 /*
85  * Wipes the in-core bitset, and creates a new on disk bitset.
86  */
87 static int writeset_init(struct dm_disk_bitset *info, struct writeset *ws)
88 {
89 	int r;
90 
91 	memset(ws->bits, 0, bitset_size(ws->md.nr_bits));
92 
93 	r = setup_on_disk_bitset(info, ws->md.nr_bits, &ws->md.root);
94 	if (r) {
95 		DMERR("%s: setup_on_disk_bitset failed", __func__);
96 		return r;
97 	}
98 
99 	return 0;
100 }
101 
102 static bool writeset_marked(struct writeset *ws, dm_block_t block)
103 {
104 	return test_bit(block, ws->bits);
105 }
106 
107 static int writeset_marked_on_disk(struct dm_disk_bitset *info,
108 				   struct writeset_metadata *m, dm_block_t block,
109 				   bool *result)
110 {
111 	dm_block_t old = m->root;
112 
113 	/*
114 	 * The bitset was flushed when it was archived, so we know there'll
115 	 * be no change to the root.
116 	 */
117 	int r = dm_bitset_test_bit(info, m->root, block, &m->root, result);
118 	if (r) {
119 		DMERR("%s: dm_bitset_test_bit failed", __func__);
120 		return r;
121 	}
122 
123 	BUG_ON(m->root != old);
124 
125 	return r;
126 }
127 
128 /*
129  * Returns < 0 on error, 0 if the bit wasn't previously set, 1 if it was.
130  */
131 static int writeset_test_and_set(struct dm_disk_bitset *info,
132 				 struct writeset *ws, uint32_t block)
133 {
134 	int r;
135 
136 	if (!test_and_set_bit(block, ws->bits)) {
137 		r = dm_bitset_set_bit(info, ws->md.root, block, &ws->md.root);
138 		if (r) {
139 			/* FIXME: fail mode */
140 			return r;
141 		}
142 
143 		return 0;
144 	}
145 
146 	return 1;
147 }
148 
149 /*----------------------------------------------------------------
150  * On disk metadata layout
151  *--------------------------------------------------------------*/
152 #define SPACE_MAP_ROOT_SIZE 128
153 #define UUID_LEN 16
154 
155 struct writeset_disk {
156 	__le32 nr_bits;
157 	__le64 root;
158 } __packed;
159 
160 struct superblock_disk {
161 	__le32 csum;
162 	__le32 flags;
163 	__le64 blocknr;
164 
165 	__u8 uuid[UUID_LEN];
166 	__le64 magic;
167 	__le32 version;
168 
169 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
170 
171 	__le32 data_block_size;
172 	__le32 metadata_block_size;
173 	__le32 nr_blocks;
174 
175 	__le32 current_era;
176 	struct writeset_disk current_writeset;
177 
178 	/*
179 	 * Only these two fields are valid within the metadata snapshot.
180 	 */
181 	__le64 writeset_tree_root;
182 	__le64 era_array_root;
183 
184 	__le64 metadata_snap;
185 } __packed;
186 
187 /*----------------------------------------------------------------
188  * Superblock validation
189  *--------------------------------------------------------------*/
190 static void sb_prepare_for_write(struct dm_block_validator *v,
191 				 struct dm_block *b,
192 				 size_t sb_block_size)
193 {
194 	struct superblock_disk *disk = dm_block_data(b);
195 
196 	disk->blocknr = cpu_to_le64(dm_block_location(b));
197 	disk->csum = cpu_to_le32(dm_bm_checksum(&disk->flags,
198 						sb_block_size - sizeof(__le32),
199 						SUPERBLOCK_CSUM_XOR));
200 }
201 
202 static int check_metadata_version(struct superblock_disk *disk)
203 {
204 	uint32_t metadata_version = le32_to_cpu(disk->version);
205 	if (metadata_version < MIN_ERA_VERSION || metadata_version > MAX_ERA_VERSION) {
206 		DMERR("Era metadata version %u found, but only versions between %u and %u supported.",
207 		      metadata_version, MIN_ERA_VERSION, MAX_ERA_VERSION);
208 		return -EINVAL;
209 	}
210 
211 	return 0;
212 }
213 
214 static int sb_check(struct dm_block_validator *v,
215 		    struct dm_block *b,
216 		    size_t sb_block_size)
217 {
218 	struct superblock_disk *disk = dm_block_data(b);
219 	__le32 csum_le;
220 
221 	if (dm_block_location(b) != le64_to_cpu(disk->blocknr)) {
222 		DMERR("sb_check failed: blocknr %llu: wanted %llu",
223 		      le64_to_cpu(disk->blocknr),
224 		      (unsigned long long)dm_block_location(b));
225 		return -ENOTBLK;
226 	}
227 
228 	if (le64_to_cpu(disk->magic) != SUPERBLOCK_MAGIC) {
229 		DMERR("sb_check failed: magic %llu: wanted %llu",
230 		      le64_to_cpu(disk->magic),
231 		      (unsigned long long) SUPERBLOCK_MAGIC);
232 		return -EILSEQ;
233 	}
234 
235 	csum_le = cpu_to_le32(dm_bm_checksum(&disk->flags,
236 					     sb_block_size - sizeof(__le32),
237 					     SUPERBLOCK_CSUM_XOR));
238 	if (csum_le != disk->csum) {
239 		DMERR("sb_check failed: csum %u: wanted %u",
240 		      le32_to_cpu(csum_le), le32_to_cpu(disk->csum));
241 		return -EILSEQ;
242 	}
243 
244 	return check_metadata_version(disk);
245 }
246 
247 static struct dm_block_validator sb_validator = {
248 	.name = "superblock",
249 	.prepare_for_write = sb_prepare_for_write,
250 	.check = sb_check
251 };
252 
253 /*----------------------------------------------------------------
254  * Low level metadata handling
255  *--------------------------------------------------------------*/
256 #define DM_ERA_METADATA_BLOCK_SIZE 4096
257 #define DM_ERA_METADATA_CACHE_SIZE 64
258 #define ERA_MAX_CONCURRENT_LOCKS 5
259 
260 struct era_metadata {
261 	struct block_device *bdev;
262 	struct dm_block_manager *bm;
263 	struct dm_space_map *sm;
264 	struct dm_transaction_manager *tm;
265 
266 	dm_block_t block_size;
267 	uint32_t nr_blocks;
268 
269 	uint32_t current_era;
270 
271 	/*
272 	 * We preallocate 2 writesets.  When an era rolls over we
273 	 * switch between them. This means the allocation is done at
274 	 * preresume time, rather than on the io path.
275 	 */
276 	struct writeset writesets[2];
277 	struct writeset *current_writeset;
278 
279 	dm_block_t writeset_tree_root;
280 	dm_block_t era_array_root;
281 
282 	struct dm_disk_bitset bitset_info;
283 	struct dm_btree_info writeset_tree_info;
284 	struct dm_array_info era_array_info;
285 
286 	dm_block_t metadata_snap;
287 
288 	/*
289 	 * A flag that is set whenever a writeset has been archived.
290 	 */
291 	bool archived_writesets;
292 
293 	/*
294 	 * Reading the space map root can fail, so we read it into this
295 	 * buffer before the superblock is locked and updated.
296 	 */
297 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
298 };
299 
300 static int superblock_read_lock(struct era_metadata *md,
301 				struct dm_block **sblock)
302 {
303 	return dm_bm_read_lock(md->bm, SUPERBLOCK_LOCATION,
304 			       &sb_validator, sblock);
305 }
306 
307 static int superblock_lock_zero(struct era_metadata *md,
308 				struct dm_block **sblock)
309 {
310 	return dm_bm_write_lock_zero(md->bm, SUPERBLOCK_LOCATION,
311 				     &sb_validator, sblock);
312 }
313 
314 static int superblock_lock(struct era_metadata *md,
315 			   struct dm_block **sblock)
316 {
317 	return dm_bm_write_lock(md->bm, SUPERBLOCK_LOCATION,
318 				&sb_validator, sblock);
319 }
320 
321 /* FIXME: duplication with cache and thin */
322 static int superblock_all_zeroes(struct dm_block_manager *bm, bool *result)
323 {
324 	int r;
325 	unsigned i;
326 	struct dm_block *b;
327 	__le64 *data_le, zero = cpu_to_le64(0);
328 	unsigned sb_block_size = dm_bm_block_size(bm) / sizeof(__le64);
329 
330 	/*
331 	 * We can't use a validator here - it may be all zeroes.
332 	 */
333 	r = dm_bm_read_lock(bm, SUPERBLOCK_LOCATION, NULL, &b);
334 	if (r)
335 		return r;
336 
337 	data_le = dm_block_data(b);
338 	*result = true;
339 	for (i = 0; i < sb_block_size; i++) {
340 		if (data_le[i] != zero) {
341 			*result = false;
342 			break;
343 		}
344 	}
345 
346 	dm_bm_unlock(b);
347 
348 	return 0;
349 }
350 
351 /*----------------------------------------------------------------*/
352 
353 static void ws_pack(const struct writeset_metadata *core, struct writeset_disk *disk)
354 {
355 	disk->nr_bits = cpu_to_le32(core->nr_bits);
356 	disk->root = cpu_to_le64(core->root);
357 }
358 
359 static void ws_unpack(const struct writeset_disk *disk, struct writeset_metadata *core)
360 {
361 	core->nr_bits = le32_to_cpu(disk->nr_bits);
362 	core->root = le64_to_cpu(disk->root);
363 }
364 
365 static void ws_inc(void *context, const void *value)
366 {
367 	struct era_metadata *md = context;
368 	struct writeset_disk ws_d;
369 	dm_block_t b;
370 
371 	memcpy(&ws_d, value, sizeof(ws_d));
372 	b = le64_to_cpu(ws_d.root);
373 
374 	dm_tm_inc(md->tm, b);
375 }
376 
377 static void ws_dec(void *context, const void *value)
378 {
379 	struct era_metadata *md = context;
380 	struct writeset_disk ws_d;
381 	dm_block_t b;
382 
383 	memcpy(&ws_d, value, sizeof(ws_d));
384 	b = le64_to_cpu(ws_d.root);
385 
386 	dm_bitset_del(&md->bitset_info, b);
387 }
388 
389 static int ws_eq(void *context, const void *value1, const void *value2)
390 {
391 	return !memcmp(value1, value2, sizeof(struct writeset_metadata));
392 }
393 
394 /*----------------------------------------------------------------*/
395 
396 static void setup_writeset_tree_info(struct era_metadata *md)
397 {
398 	struct dm_btree_value_type *vt = &md->writeset_tree_info.value_type;
399 	md->writeset_tree_info.tm = md->tm;
400 	md->writeset_tree_info.levels = 1;
401 	vt->context = md;
402 	vt->size = sizeof(struct writeset_disk);
403 	vt->inc = ws_inc;
404 	vt->dec = ws_dec;
405 	vt->equal = ws_eq;
406 }
407 
408 static void setup_era_array_info(struct era_metadata *md)
409 
410 {
411 	struct dm_btree_value_type vt;
412 	vt.context = NULL;
413 	vt.size = sizeof(__le32);
414 	vt.inc = NULL;
415 	vt.dec = NULL;
416 	vt.equal = NULL;
417 
418 	dm_array_info_init(&md->era_array_info, md->tm, &vt);
419 }
420 
421 static void setup_infos(struct era_metadata *md)
422 {
423 	dm_disk_bitset_init(md->tm, &md->bitset_info);
424 	setup_writeset_tree_info(md);
425 	setup_era_array_info(md);
426 }
427 
428 /*----------------------------------------------------------------*/
429 
430 static int create_fresh_metadata(struct era_metadata *md)
431 {
432 	int r;
433 
434 	r = dm_tm_create_with_sm(md->bm, SUPERBLOCK_LOCATION,
435 				 &md->tm, &md->sm);
436 	if (r < 0) {
437 		DMERR("dm_tm_create_with_sm failed");
438 		return r;
439 	}
440 
441 	setup_infos(md);
442 
443 	r = dm_btree_empty(&md->writeset_tree_info, &md->writeset_tree_root);
444 	if (r) {
445 		DMERR("couldn't create new writeset tree");
446 		goto bad;
447 	}
448 
449 	r = dm_array_empty(&md->era_array_info, &md->era_array_root);
450 	if (r) {
451 		DMERR("couldn't create era array");
452 		goto bad;
453 	}
454 
455 	return 0;
456 
457 bad:
458 	dm_sm_destroy(md->sm);
459 	dm_tm_destroy(md->tm);
460 
461 	return r;
462 }
463 
464 static int save_sm_root(struct era_metadata *md)
465 {
466 	int r;
467 	size_t metadata_len;
468 
469 	r = dm_sm_root_size(md->sm, &metadata_len);
470 	if (r < 0)
471 		return r;
472 
473 	return dm_sm_copy_root(md->sm, &md->metadata_space_map_root,
474 			       metadata_len);
475 }
476 
477 static void copy_sm_root(struct era_metadata *md, struct superblock_disk *disk)
478 {
479 	memcpy(&disk->metadata_space_map_root,
480 	       &md->metadata_space_map_root,
481 	       sizeof(md->metadata_space_map_root));
482 }
483 
484 /*
485  * Writes a superblock, including the static fields that don't get updated
486  * with every commit (possible optimisation here).  'md' should be fully
487  * constructed when this is called.
488  */
489 static void prepare_superblock(struct era_metadata *md, struct superblock_disk *disk)
490 {
491 	disk->magic = cpu_to_le64(SUPERBLOCK_MAGIC);
492 	disk->flags = cpu_to_le32(0ul);
493 
494 	/* FIXME: can't keep blanking the uuid (uuid is currently unused though) */
495 	memset(disk->uuid, 0, sizeof(disk->uuid));
496 	disk->version = cpu_to_le32(MAX_ERA_VERSION);
497 
498 	copy_sm_root(md, disk);
499 
500 	disk->data_block_size = cpu_to_le32(md->block_size);
501 	disk->metadata_block_size = cpu_to_le32(DM_ERA_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
502 	disk->nr_blocks = cpu_to_le32(md->nr_blocks);
503 	disk->current_era = cpu_to_le32(md->current_era);
504 
505 	ws_pack(&md->current_writeset->md, &disk->current_writeset);
506 	disk->writeset_tree_root = cpu_to_le64(md->writeset_tree_root);
507 	disk->era_array_root = cpu_to_le64(md->era_array_root);
508 	disk->metadata_snap = cpu_to_le64(md->metadata_snap);
509 }
510 
511 static int write_superblock(struct era_metadata *md)
512 {
513 	int r;
514 	struct dm_block *sblock;
515 	struct superblock_disk *disk;
516 
517 	r = save_sm_root(md);
518 	if (r) {
519 		DMERR("%s: save_sm_root failed", __func__);
520 		return r;
521 	}
522 
523 	r = superblock_lock_zero(md, &sblock);
524 	if (r)
525 		return r;
526 
527 	disk = dm_block_data(sblock);
528 	prepare_superblock(md, disk);
529 
530 	return dm_tm_commit(md->tm, sblock);
531 }
532 
533 /*
534  * Assumes block_size and the infos are set.
535  */
536 static int format_metadata(struct era_metadata *md)
537 {
538 	int r;
539 
540 	r = create_fresh_metadata(md);
541 	if (r)
542 		return r;
543 
544 	r = write_superblock(md);
545 	if (r) {
546 		dm_sm_destroy(md->sm);
547 		dm_tm_destroy(md->tm);
548 		return r;
549 	}
550 
551 	return 0;
552 }
553 
554 static int open_metadata(struct era_metadata *md)
555 {
556 	int r;
557 	struct dm_block *sblock;
558 	struct superblock_disk *disk;
559 
560 	r = superblock_read_lock(md, &sblock);
561 	if (r) {
562 		DMERR("couldn't read_lock superblock");
563 		return r;
564 	}
565 
566 	disk = dm_block_data(sblock);
567 	r = dm_tm_open_with_sm(md->bm, SUPERBLOCK_LOCATION,
568 			       disk->metadata_space_map_root,
569 			       sizeof(disk->metadata_space_map_root),
570 			       &md->tm, &md->sm);
571 	if (r) {
572 		DMERR("dm_tm_open_with_sm failed");
573 		goto bad;
574 	}
575 
576 	setup_infos(md);
577 
578 	md->block_size = le32_to_cpu(disk->data_block_size);
579 	md->nr_blocks = le32_to_cpu(disk->nr_blocks);
580 	md->current_era = le32_to_cpu(disk->current_era);
581 
582 	md->writeset_tree_root = le64_to_cpu(disk->writeset_tree_root);
583 	md->era_array_root = le64_to_cpu(disk->era_array_root);
584 	md->metadata_snap = le64_to_cpu(disk->metadata_snap);
585 	md->archived_writesets = true;
586 
587 	dm_bm_unlock(sblock);
588 
589 	return 0;
590 
591 bad:
592 	dm_bm_unlock(sblock);
593 	return r;
594 }
595 
596 static int open_or_format_metadata(struct era_metadata *md,
597 				   bool may_format)
598 {
599 	int r;
600 	bool unformatted = false;
601 
602 	r = superblock_all_zeroes(md->bm, &unformatted);
603 	if (r)
604 		return r;
605 
606 	if (unformatted)
607 		return may_format ? format_metadata(md) : -EPERM;
608 
609 	return open_metadata(md);
610 }
611 
612 static int create_persistent_data_objects(struct era_metadata *md,
613 					  bool may_format)
614 {
615 	int r;
616 
617 	md->bm = dm_block_manager_create(md->bdev, DM_ERA_METADATA_BLOCK_SIZE,
618 					 DM_ERA_METADATA_CACHE_SIZE,
619 					 ERA_MAX_CONCURRENT_LOCKS);
620 	if (IS_ERR(md->bm)) {
621 		DMERR("could not create block manager");
622 		return PTR_ERR(md->bm);
623 	}
624 
625 	r = open_or_format_metadata(md, may_format);
626 	if (r)
627 		dm_block_manager_destroy(md->bm);
628 
629 	return r;
630 }
631 
632 static void destroy_persistent_data_objects(struct era_metadata *md)
633 {
634 	dm_sm_destroy(md->sm);
635 	dm_tm_destroy(md->tm);
636 	dm_block_manager_destroy(md->bm);
637 }
638 
639 /*
640  * This waits until all era_map threads have picked up the new filter.
641  */
642 static void swap_writeset(struct era_metadata *md, struct writeset *new_writeset)
643 {
644 	rcu_assign_pointer(md->current_writeset, new_writeset);
645 	synchronize_rcu();
646 }
647 
648 /*----------------------------------------------------------------
649  * Writesets get 'digested' into the main era array.
650  *
651  * We're using a coroutine here so the worker thread can do the digestion,
652  * thus avoiding synchronisation of the metadata.  Digesting a whole
653  * writeset in one go would cause too much latency.
654  *--------------------------------------------------------------*/
655 struct digest {
656 	uint32_t era;
657 	unsigned nr_bits, current_bit;
658 	struct writeset_metadata writeset;
659 	__le32 value;
660 	struct dm_disk_bitset info;
661 
662 	int (*step)(struct era_metadata *, struct digest *);
663 };
664 
665 static int metadata_digest_lookup_writeset(struct era_metadata *md,
666 					   struct digest *d);
667 
668 static int metadata_digest_remove_writeset(struct era_metadata *md,
669 					   struct digest *d)
670 {
671 	int r;
672 	uint64_t key = d->era;
673 
674 	r = dm_btree_remove(&md->writeset_tree_info, md->writeset_tree_root,
675 			    &key, &md->writeset_tree_root);
676 	if (r) {
677 		DMERR("%s: dm_btree_remove failed", __func__);
678 		return r;
679 	}
680 
681 	d->step = metadata_digest_lookup_writeset;
682 	return 0;
683 }
684 
685 #define INSERTS_PER_STEP 100
686 
687 static int metadata_digest_transcribe_writeset(struct era_metadata *md,
688 					       struct digest *d)
689 {
690 	int r;
691 	bool marked;
692 	unsigned b, e = min(d->current_bit + INSERTS_PER_STEP, d->nr_bits);
693 
694 	for (b = d->current_bit; b < e; b++) {
695 		r = writeset_marked_on_disk(&d->info, &d->writeset, b, &marked);
696 		if (r) {
697 			DMERR("%s: writeset_marked_on_disk failed", __func__);
698 			return r;
699 		}
700 
701 		if (!marked)
702 			continue;
703 
704 		__dm_bless_for_disk(&d->value);
705 		r = dm_array_set_value(&md->era_array_info, md->era_array_root,
706 				       b, &d->value, &md->era_array_root);
707 		if (r) {
708 			DMERR("%s: dm_array_set_value failed", __func__);
709 			return r;
710 		}
711 	}
712 
713 	if (b == d->nr_bits)
714 		d->step = metadata_digest_remove_writeset;
715 	else
716 		d->current_bit = b;
717 
718 	return 0;
719 }
720 
721 static int metadata_digest_lookup_writeset(struct era_metadata *md,
722 					   struct digest *d)
723 {
724 	int r;
725 	uint64_t key;
726 	struct writeset_disk disk;
727 
728 	r = dm_btree_find_lowest_key(&md->writeset_tree_info,
729 				     md->writeset_tree_root, &key);
730 	if (r < 0)
731 		return r;
732 
733 	d->era = key;
734 
735 	r = dm_btree_lookup(&md->writeset_tree_info,
736 			    md->writeset_tree_root, &key, &disk);
737 	if (r) {
738 		if (r == -ENODATA) {
739 			d->step = NULL;
740 			return 0;
741 		}
742 
743 		DMERR("%s: dm_btree_lookup failed", __func__);
744 		return r;
745 	}
746 
747 	ws_unpack(&disk, &d->writeset);
748 	d->value = cpu_to_le32(key);
749 
750 	d->nr_bits = min(d->writeset.nr_bits, md->nr_blocks);
751 	d->current_bit = 0;
752 	d->step = metadata_digest_transcribe_writeset;
753 
754 	return 0;
755 }
756 
757 static int metadata_digest_start(struct era_metadata *md, struct digest *d)
758 {
759 	if (d->step)
760 		return 0;
761 
762 	memset(d, 0, sizeof(*d));
763 
764 	/*
765 	 * We initialise another bitset info to avoid any caching side
766 	 * effects with the previous one.
767 	 */
768 	dm_disk_bitset_init(md->tm, &d->info);
769 	d->step = metadata_digest_lookup_writeset;
770 
771 	return 0;
772 }
773 
774 /*----------------------------------------------------------------
775  * High level metadata interface.  Target methods should use these, and not
776  * the lower level ones.
777  *--------------------------------------------------------------*/
778 static struct era_metadata *metadata_open(struct block_device *bdev,
779 					  sector_t block_size,
780 					  bool may_format)
781 {
782 	int r;
783 	struct era_metadata *md = kzalloc(sizeof(*md), GFP_KERNEL);
784 
785 	if (!md)
786 		return NULL;
787 
788 	md->bdev = bdev;
789 	md->block_size = block_size;
790 
791 	md->writesets[0].md.root = INVALID_WRITESET_ROOT;
792 	md->writesets[1].md.root = INVALID_WRITESET_ROOT;
793 	md->current_writeset = &md->writesets[0];
794 
795 	r = create_persistent_data_objects(md, may_format);
796 	if (r) {
797 		kfree(md);
798 		return ERR_PTR(r);
799 	}
800 
801 	return md;
802 }
803 
804 static void metadata_close(struct era_metadata *md)
805 {
806 	destroy_persistent_data_objects(md);
807 	kfree(md);
808 }
809 
810 static bool valid_nr_blocks(dm_block_t n)
811 {
812 	/*
813 	 * dm_bitset restricts us to 2^32.  test_bit & co. restrict us
814 	 * further to 2^31 - 1
815 	 */
816 	return n < (1ull << 31);
817 }
818 
819 static int metadata_resize(struct era_metadata *md, void *arg)
820 {
821 	int r;
822 	dm_block_t *new_size = arg;
823 	__le32 value;
824 
825 	if (!valid_nr_blocks(*new_size)) {
826 		DMERR("Invalid number of origin blocks %llu",
827 		      (unsigned long long) *new_size);
828 		return -EINVAL;
829 	}
830 
831 	writeset_free(&md->writesets[0]);
832 	writeset_free(&md->writesets[1]);
833 
834 	r = writeset_alloc(&md->writesets[0], *new_size);
835 	if (r) {
836 		DMERR("%s: writeset_alloc failed for writeset 0", __func__);
837 		return r;
838 	}
839 
840 	r = writeset_alloc(&md->writesets[1], *new_size);
841 	if (r) {
842 		DMERR("%s: writeset_alloc failed for writeset 1", __func__);
843 		return r;
844 	}
845 
846 	value = cpu_to_le32(0u);
847 	__dm_bless_for_disk(&value);
848 	r = dm_array_resize(&md->era_array_info, md->era_array_root,
849 			    md->nr_blocks, *new_size,
850 			    &value, &md->era_array_root);
851 	if (r) {
852 		DMERR("%s: dm_array_resize failed", __func__);
853 		return r;
854 	}
855 
856 	md->nr_blocks = *new_size;
857 	return 0;
858 }
859 
860 static int metadata_era_archive(struct era_metadata *md)
861 {
862 	int r;
863 	uint64_t keys[1];
864 	struct writeset_disk value;
865 
866 	r = dm_bitset_flush(&md->bitset_info, md->current_writeset->md.root,
867 			    &md->current_writeset->md.root);
868 	if (r) {
869 		DMERR("%s: dm_bitset_flush failed", __func__);
870 		return r;
871 	}
872 
873 	ws_pack(&md->current_writeset->md, &value);
874 	md->current_writeset->md.root = INVALID_WRITESET_ROOT;
875 
876 	keys[0] = md->current_era;
877 	__dm_bless_for_disk(&value);
878 	r = dm_btree_insert(&md->writeset_tree_info, md->writeset_tree_root,
879 			    keys, &value, &md->writeset_tree_root);
880 	if (r) {
881 		DMERR("%s: couldn't insert writeset into btree", __func__);
882 		/* FIXME: fail mode */
883 		return r;
884 	}
885 
886 	md->archived_writesets = true;
887 
888 	return 0;
889 }
890 
891 static struct writeset *next_writeset(struct era_metadata *md)
892 {
893 	return (md->current_writeset == &md->writesets[0]) ?
894 		&md->writesets[1] : &md->writesets[0];
895 }
896 
897 static int metadata_new_era(struct era_metadata *md)
898 {
899 	int r;
900 	struct writeset *new_writeset = next_writeset(md);
901 
902 	r = writeset_init(&md->bitset_info, new_writeset);
903 	if (r) {
904 		DMERR("%s: writeset_init failed", __func__);
905 		return r;
906 	}
907 
908 	swap_writeset(md, new_writeset);
909 	md->current_era++;
910 
911 	return 0;
912 }
913 
914 static int metadata_era_rollover(struct era_metadata *md)
915 {
916 	int r;
917 
918 	if (md->current_writeset->md.root != INVALID_WRITESET_ROOT) {
919 		r = metadata_era_archive(md);
920 		if (r) {
921 			DMERR("%s: metadata_archive_era failed", __func__);
922 			/* FIXME: fail mode? */
923 			return r;
924 		}
925 	}
926 
927 	r = metadata_new_era(md);
928 	if (r) {
929 		DMERR("%s: new era failed", __func__);
930 		/* FIXME: fail mode */
931 		return r;
932 	}
933 
934 	return 0;
935 }
936 
937 static bool metadata_current_marked(struct era_metadata *md, dm_block_t block)
938 {
939 	bool r;
940 	struct writeset *ws;
941 
942 	rcu_read_lock();
943 	ws = rcu_dereference(md->current_writeset);
944 	r = writeset_marked(ws, block);
945 	rcu_read_unlock();
946 
947 	return r;
948 }
949 
950 static int metadata_commit(struct era_metadata *md)
951 {
952 	int r;
953 	struct dm_block *sblock;
954 
955 	if (md->current_writeset->md.root != SUPERBLOCK_LOCATION) {
956 		r = dm_bitset_flush(&md->bitset_info, md->current_writeset->md.root,
957 				    &md->current_writeset->md.root);
958 		if (r) {
959 			DMERR("%s: bitset flush failed", __func__);
960 			return r;
961 		}
962 	}
963 
964 	r = save_sm_root(md);
965 	if (r) {
966 		DMERR("%s: save_sm_root failed", __func__);
967 		return r;
968 	}
969 
970 	r = dm_tm_pre_commit(md->tm);
971 	if (r) {
972 		DMERR("%s: pre commit failed", __func__);
973 		return r;
974 	}
975 
976 	r = superblock_lock(md, &sblock);
977 	if (r) {
978 		DMERR("%s: superblock lock failed", __func__);
979 		return r;
980 	}
981 
982 	prepare_superblock(md, dm_block_data(sblock));
983 
984 	return dm_tm_commit(md->tm, sblock);
985 }
986 
987 static int metadata_checkpoint(struct era_metadata *md)
988 {
989 	/*
990 	 * For now we just rollover, but later I want to put a check in to
991 	 * avoid this if the filter is still pretty fresh.
992 	 */
993 	return metadata_era_rollover(md);
994 }
995 
996 /*
997  * Metadata snapshots allow userland to access era data.
998  */
999 static int metadata_take_snap(struct era_metadata *md)
1000 {
1001 	int r, inc;
1002 	struct dm_block *clone;
1003 
1004 	if (md->metadata_snap != SUPERBLOCK_LOCATION) {
1005 		DMERR("%s: metadata snapshot already exists", __func__);
1006 		return -EINVAL;
1007 	}
1008 
1009 	r = metadata_era_rollover(md);
1010 	if (r) {
1011 		DMERR("%s: era rollover failed", __func__);
1012 		return r;
1013 	}
1014 
1015 	r = metadata_commit(md);
1016 	if (r) {
1017 		DMERR("%s: pre commit failed", __func__);
1018 		return r;
1019 	}
1020 
1021 	r = dm_sm_inc_block(md->sm, SUPERBLOCK_LOCATION);
1022 	if (r) {
1023 		DMERR("%s: couldn't increment superblock", __func__);
1024 		return r;
1025 	}
1026 
1027 	r = dm_tm_shadow_block(md->tm, SUPERBLOCK_LOCATION,
1028 			       &sb_validator, &clone, &inc);
1029 	if (r) {
1030 		DMERR("%s: couldn't shadow superblock", __func__);
1031 		dm_sm_dec_block(md->sm, SUPERBLOCK_LOCATION);
1032 		return r;
1033 	}
1034 	BUG_ON(!inc);
1035 
1036 	r = dm_sm_inc_block(md->sm, md->writeset_tree_root);
1037 	if (r) {
1038 		DMERR("%s: couldn't inc writeset tree root", __func__);
1039 		dm_tm_unlock(md->tm, clone);
1040 		return r;
1041 	}
1042 
1043 	r = dm_sm_inc_block(md->sm, md->era_array_root);
1044 	if (r) {
1045 		DMERR("%s: couldn't inc era tree root", __func__);
1046 		dm_sm_dec_block(md->sm, md->writeset_tree_root);
1047 		dm_tm_unlock(md->tm, clone);
1048 		return r;
1049 	}
1050 
1051 	md->metadata_snap = dm_block_location(clone);
1052 
1053 	dm_tm_unlock(md->tm, clone);
1054 
1055 	return 0;
1056 }
1057 
1058 static int metadata_drop_snap(struct era_metadata *md)
1059 {
1060 	int r;
1061 	dm_block_t location;
1062 	struct dm_block *clone;
1063 	struct superblock_disk *disk;
1064 
1065 	if (md->metadata_snap == SUPERBLOCK_LOCATION) {
1066 		DMERR("%s: no snap to drop", __func__);
1067 		return -EINVAL;
1068 	}
1069 
1070 	r = dm_tm_read_lock(md->tm, md->metadata_snap, &sb_validator, &clone);
1071 	if (r) {
1072 		DMERR("%s: couldn't read lock superblock clone", __func__);
1073 		return r;
1074 	}
1075 
1076 	/*
1077 	 * Whatever happens now we'll commit with no record of the metadata
1078 	 * snap.
1079 	 */
1080 	md->metadata_snap = SUPERBLOCK_LOCATION;
1081 
1082 	disk = dm_block_data(clone);
1083 	r = dm_btree_del(&md->writeset_tree_info,
1084 			 le64_to_cpu(disk->writeset_tree_root));
1085 	if (r) {
1086 		DMERR("%s: error deleting writeset tree clone", __func__);
1087 		dm_tm_unlock(md->tm, clone);
1088 		return r;
1089 	}
1090 
1091 	r = dm_array_del(&md->era_array_info, le64_to_cpu(disk->era_array_root));
1092 	if (r) {
1093 		DMERR("%s: error deleting era array clone", __func__);
1094 		dm_tm_unlock(md->tm, clone);
1095 		return r;
1096 	}
1097 
1098 	location = dm_block_location(clone);
1099 	dm_tm_unlock(md->tm, clone);
1100 
1101 	return dm_sm_dec_block(md->sm, location);
1102 }
1103 
1104 struct metadata_stats {
1105 	dm_block_t used;
1106 	dm_block_t total;
1107 	dm_block_t snap;
1108 	uint32_t era;
1109 };
1110 
1111 static int metadata_get_stats(struct era_metadata *md, void *ptr)
1112 {
1113 	int r;
1114 	struct metadata_stats *s = ptr;
1115 	dm_block_t nr_free, nr_total;
1116 
1117 	r = dm_sm_get_nr_free(md->sm, &nr_free);
1118 	if (r) {
1119 		DMERR("dm_sm_get_nr_free returned %d", r);
1120 		return r;
1121 	}
1122 
1123 	r = dm_sm_get_nr_blocks(md->sm, &nr_total);
1124 	if (r) {
1125 		DMERR("dm_pool_get_metadata_dev_size returned %d", r);
1126 		return r;
1127 	}
1128 
1129 	s->used = nr_total - nr_free;
1130 	s->total = nr_total;
1131 	s->snap = md->metadata_snap;
1132 	s->era = md->current_era;
1133 
1134 	return 0;
1135 }
1136 
1137 /*----------------------------------------------------------------*/
1138 
1139 struct era {
1140 	struct dm_target *ti;
1141 	struct dm_target_callbacks callbacks;
1142 
1143 	struct dm_dev *metadata_dev;
1144 	struct dm_dev *origin_dev;
1145 
1146 	dm_block_t nr_blocks;
1147 	uint32_t sectors_per_block;
1148 	int sectors_per_block_shift;
1149 	struct era_metadata *md;
1150 
1151 	struct workqueue_struct *wq;
1152 	struct work_struct worker;
1153 
1154 	spinlock_t deferred_lock;
1155 	struct bio_list deferred_bios;
1156 
1157 	spinlock_t rpc_lock;
1158 	struct list_head rpc_calls;
1159 
1160 	struct digest digest;
1161 	atomic_t suspended;
1162 };
1163 
1164 struct rpc {
1165 	struct list_head list;
1166 
1167 	int (*fn0)(struct era_metadata *);
1168 	int (*fn1)(struct era_metadata *, void *);
1169 	void *arg;
1170 	int result;
1171 
1172 	struct completion complete;
1173 };
1174 
1175 /*----------------------------------------------------------------
1176  * Remapping.
1177  *---------------------------------------------------------------*/
1178 static bool block_size_is_power_of_two(struct era *era)
1179 {
1180 	return era->sectors_per_block_shift >= 0;
1181 }
1182 
1183 static dm_block_t get_block(struct era *era, struct bio *bio)
1184 {
1185 	sector_t block_nr = bio->bi_iter.bi_sector;
1186 
1187 	if (!block_size_is_power_of_two(era))
1188 		(void) sector_div(block_nr, era->sectors_per_block);
1189 	else
1190 		block_nr >>= era->sectors_per_block_shift;
1191 
1192 	return block_nr;
1193 }
1194 
1195 static void remap_to_origin(struct era *era, struct bio *bio)
1196 {
1197 	bio->bi_bdev = era->origin_dev->bdev;
1198 }
1199 
1200 /*----------------------------------------------------------------
1201  * Worker thread
1202  *--------------------------------------------------------------*/
1203 static void wake_worker(struct era *era)
1204 {
1205 	if (!atomic_read(&era->suspended))
1206 		queue_work(era->wq, &era->worker);
1207 }
1208 
1209 static void process_old_eras(struct era *era)
1210 {
1211 	int r;
1212 
1213 	if (!era->digest.step)
1214 		return;
1215 
1216 	r = era->digest.step(era->md, &era->digest);
1217 	if (r < 0) {
1218 		DMERR("%s: digest step failed, stopping digestion", __func__);
1219 		era->digest.step = NULL;
1220 
1221 	} else if (era->digest.step)
1222 		wake_worker(era);
1223 }
1224 
1225 static void process_deferred_bios(struct era *era)
1226 {
1227 	int r;
1228 	struct bio_list deferred_bios, marked_bios;
1229 	struct bio *bio;
1230 	bool commit_needed = false;
1231 	bool failed = false;
1232 
1233 	bio_list_init(&deferred_bios);
1234 	bio_list_init(&marked_bios);
1235 
1236 	spin_lock(&era->deferred_lock);
1237 	bio_list_merge(&deferred_bios, &era->deferred_bios);
1238 	bio_list_init(&era->deferred_bios);
1239 	spin_unlock(&era->deferred_lock);
1240 
1241 	while ((bio = bio_list_pop(&deferred_bios))) {
1242 		r = writeset_test_and_set(&era->md->bitset_info,
1243 					  era->md->current_writeset,
1244 					  get_block(era, bio));
1245 		if (r < 0) {
1246 			/*
1247 			 * This is bad news, we need to rollback.
1248 			 * FIXME: finish.
1249 			 */
1250 			failed = true;
1251 
1252 		} else if (r == 0)
1253 			commit_needed = true;
1254 
1255 		bio_list_add(&marked_bios, bio);
1256 	}
1257 
1258 	if (commit_needed) {
1259 		r = metadata_commit(era->md);
1260 		if (r)
1261 			failed = true;
1262 	}
1263 
1264 	if (failed)
1265 		while ((bio = bio_list_pop(&marked_bios)))
1266 			bio_io_error(bio);
1267 	else
1268 		while ((bio = bio_list_pop(&marked_bios)))
1269 			generic_make_request(bio);
1270 }
1271 
1272 static void process_rpc_calls(struct era *era)
1273 {
1274 	int r;
1275 	bool need_commit = false;
1276 	struct list_head calls;
1277 	struct rpc *rpc, *tmp;
1278 
1279 	INIT_LIST_HEAD(&calls);
1280 	spin_lock(&era->rpc_lock);
1281 	list_splice_init(&era->rpc_calls, &calls);
1282 	spin_unlock(&era->rpc_lock);
1283 
1284 	list_for_each_entry_safe(rpc, tmp, &calls, list) {
1285 		rpc->result = rpc->fn0 ? rpc->fn0(era->md) : rpc->fn1(era->md, rpc->arg);
1286 		need_commit = true;
1287 	}
1288 
1289 	if (need_commit) {
1290 		r = metadata_commit(era->md);
1291 		if (r)
1292 			list_for_each_entry_safe(rpc, tmp, &calls, list)
1293 				rpc->result = r;
1294 	}
1295 
1296 	list_for_each_entry_safe(rpc, tmp, &calls, list)
1297 		complete(&rpc->complete);
1298 }
1299 
1300 static void kick_off_digest(struct era *era)
1301 {
1302 	if (era->md->archived_writesets) {
1303 		era->md->archived_writesets = false;
1304 		metadata_digest_start(era->md, &era->digest);
1305 	}
1306 }
1307 
1308 static void do_work(struct work_struct *ws)
1309 {
1310 	struct era *era = container_of(ws, struct era, worker);
1311 
1312 	kick_off_digest(era);
1313 	process_old_eras(era);
1314 	process_deferred_bios(era);
1315 	process_rpc_calls(era);
1316 }
1317 
1318 static void defer_bio(struct era *era, struct bio *bio)
1319 {
1320 	spin_lock(&era->deferred_lock);
1321 	bio_list_add(&era->deferred_bios, bio);
1322 	spin_unlock(&era->deferred_lock);
1323 
1324 	wake_worker(era);
1325 }
1326 
1327 /*
1328  * Make an rpc call to the worker to change the metadata.
1329  */
1330 static int perform_rpc(struct era *era, struct rpc *rpc)
1331 {
1332 	rpc->result = 0;
1333 	init_completion(&rpc->complete);
1334 
1335 	spin_lock(&era->rpc_lock);
1336 	list_add(&rpc->list, &era->rpc_calls);
1337 	spin_unlock(&era->rpc_lock);
1338 
1339 	wake_worker(era);
1340 	wait_for_completion(&rpc->complete);
1341 
1342 	return rpc->result;
1343 }
1344 
1345 static int in_worker0(struct era *era, int (*fn)(struct era_metadata *))
1346 {
1347 	struct rpc rpc;
1348 	rpc.fn0 = fn;
1349 	rpc.fn1 = NULL;
1350 
1351 	return perform_rpc(era, &rpc);
1352 }
1353 
1354 static int in_worker1(struct era *era,
1355 		      int (*fn)(struct era_metadata *, void *), void *arg)
1356 {
1357 	struct rpc rpc;
1358 	rpc.fn0 = NULL;
1359 	rpc.fn1 = fn;
1360 	rpc.arg = arg;
1361 
1362 	return perform_rpc(era, &rpc);
1363 }
1364 
1365 static void start_worker(struct era *era)
1366 {
1367 	atomic_set(&era->suspended, 0);
1368 }
1369 
1370 static void stop_worker(struct era *era)
1371 {
1372 	atomic_set(&era->suspended, 1);
1373 	flush_workqueue(era->wq);
1374 }
1375 
1376 /*----------------------------------------------------------------
1377  * Target methods
1378  *--------------------------------------------------------------*/
1379 static int dev_is_congested(struct dm_dev *dev, int bdi_bits)
1380 {
1381 	struct request_queue *q = bdev_get_queue(dev->bdev);
1382 	return bdi_congested(&q->backing_dev_info, bdi_bits);
1383 }
1384 
1385 static int era_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1386 {
1387 	struct era *era = container_of(cb, struct era, callbacks);
1388 	return dev_is_congested(era->origin_dev, bdi_bits);
1389 }
1390 
1391 static void era_destroy(struct era *era)
1392 {
1393 	if (era->md)
1394 		metadata_close(era->md);
1395 
1396 	if (era->wq)
1397 		destroy_workqueue(era->wq);
1398 
1399 	if (era->origin_dev)
1400 		dm_put_device(era->ti, era->origin_dev);
1401 
1402 	if (era->metadata_dev)
1403 		dm_put_device(era->ti, era->metadata_dev);
1404 
1405 	kfree(era);
1406 }
1407 
1408 static dm_block_t calc_nr_blocks(struct era *era)
1409 {
1410 	return dm_sector_div_up(era->ti->len, era->sectors_per_block);
1411 }
1412 
1413 static bool valid_block_size(dm_block_t block_size)
1414 {
1415 	bool greater_than_zero = block_size > 0;
1416 	bool multiple_of_min_block_size = (block_size & (MIN_BLOCK_SIZE - 1)) == 0;
1417 
1418 	return greater_than_zero && multiple_of_min_block_size;
1419 }
1420 
1421 /*
1422  * <metadata dev> <data dev> <data block size (sectors)>
1423  */
1424 static int era_ctr(struct dm_target *ti, unsigned argc, char **argv)
1425 {
1426 	int r;
1427 	char dummy;
1428 	struct era *era;
1429 	struct era_metadata *md;
1430 
1431 	if (argc != 3) {
1432 		ti->error = "Invalid argument count";
1433 		return -EINVAL;
1434 	}
1435 
1436 	era = kzalloc(sizeof(*era), GFP_KERNEL);
1437 	if (!era) {
1438 		ti->error = "Error allocating era structure";
1439 		return -ENOMEM;
1440 	}
1441 
1442 	era->ti = ti;
1443 
1444 	r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &era->metadata_dev);
1445 	if (r) {
1446 		ti->error = "Error opening metadata device";
1447 		era_destroy(era);
1448 		return -EINVAL;
1449 	}
1450 
1451 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &era->origin_dev);
1452 	if (r) {
1453 		ti->error = "Error opening data device";
1454 		era_destroy(era);
1455 		return -EINVAL;
1456 	}
1457 
1458 	r = sscanf(argv[2], "%u%c", &era->sectors_per_block, &dummy);
1459 	if (r != 1) {
1460 		ti->error = "Error parsing block size";
1461 		era_destroy(era);
1462 		return -EINVAL;
1463 	}
1464 
1465 	r = dm_set_target_max_io_len(ti, era->sectors_per_block);
1466 	if (r) {
1467 		ti->error = "could not set max io len";
1468 		era_destroy(era);
1469 		return -EINVAL;
1470 	}
1471 
1472 	if (!valid_block_size(era->sectors_per_block)) {
1473 		ti->error = "Invalid block size";
1474 		era_destroy(era);
1475 		return -EINVAL;
1476 	}
1477 	if (era->sectors_per_block & (era->sectors_per_block - 1))
1478 		era->sectors_per_block_shift = -1;
1479 	else
1480 		era->sectors_per_block_shift = __ffs(era->sectors_per_block);
1481 
1482 	md = metadata_open(era->metadata_dev->bdev, era->sectors_per_block, true);
1483 	if (IS_ERR(md)) {
1484 		ti->error = "Error reading metadata";
1485 		era_destroy(era);
1486 		return PTR_ERR(md);
1487 	}
1488 	era->md = md;
1489 
1490 	era->nr_blocks = calc_nr_blocks(era);
1491 
1492 	r = metadata_resize(era->md, &era->nr_blocks);
1493 	if (r) {
1494 		ti->error = "couldn't resize metadata";
1495 		era_destroy(era);
1496 		return -ENOMEM;
1497 	}
1498 
1499 	era->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1500 	if (!era->wq) {
1501 		ti->error = "could not create workqueue for metadata object";
1502 		era_destroy(era);
1503 		return -ENOMEM;
1504 	}
1505 	INIT_WORK(&era->worker, do_work);
1506 
1507 	spin_lock_init(&era->deferred_lock);
1508 	bio_list_init(&era->deferred_bios);
1509 
1510 	spin_lock_init(&era->rpc_lock);
1511 	INIT_LIST_HEAD(&era->rpc_calls);
1512 
1513 	ti->private = era;
1514 	ti->num_flush_bios = 1;
1515 	ti->flush_supported = true;
1516 
1517 	ti->num_discard_bios = 1;
1518 	ti->discards_supported = true;
1519 	era->callbacks.congested_fn = era_is_congested;
1520 	dm_table_add_target_callbacks(ti->table, &era->callbacks);
1521 
1522 	return 0;
1523 }
1524 
1525 static void era_dtr(struct dm_target *ti)
1526 {
1527 	era_destroy(ti->private);
1528 }
1529 
1530 static int era_map(struct dm_target *ti, struct bio *bio)
1531 {
1532 	struct era *era = ti->private;
1533 	dm_block_t block = get_block(era, bio);
1534 
1535 	/*
1536 	 * All bios get remapped to the origin device.  We do this now, but
1537 	 * it may not get issued until later.  Depending on whether the
1538 	 * block is marked in this era.
1539 	 */
1540 	remap_to_origin(era, bio);
1541 
1542 	/*
1543 	 * REQ_FLUSH bios carry no data, so we're not interested in them.
1544 	 */
1545 	if (!(bio->bi_rw & REQ_FLUSH) &&
1546 	    (bio_data_dir(bio) == WRITE) &&
1547 	    !metadata_current_marked(era->md, block)) {
1548 		defer_bio(era, bio);
1549 		return DM_MAPIO_SUBMITTED;
1550 	}
1551 
1552 	return DM_MAPIO_REMAPPED;
1553 }
1554 
1555 static void era_postsuspend(struct dm_target *ti)
1556 {
1557 	int r;
1558 	struct era *era = ti->private;
1559 
1560 	r = in_worker0(era, metadata_era_archive);
1561 	if (r) {
1562 		DMERR("%s: couldn't archive current era", __func__);
1563 		/* FIXME: fail mode */
1564 	}
1565 
1566 	stop_worker(era);
1567 }
1568 
1569 static int era_preresume(struct dm_target *ti)
1570 {
1571 	int r;
1572 	struct era *era = ti->private;
1573 	dm_block_t new_size = calc_nr_blocks(era);
1574 
1575 	if (era->nr_blocks != new_size) {
1576 		r = in_worker1(era, metadata_resize, &new_size);
1577 		if (r)
1578 			return r;
1579 
1580 		era->nr_blocks = new_size;
1581 	}
1582 
1583 	start_worker(era);
1584 
1585 	r = in_worker0(era, metadata_new_era);
1586 	if (r) {
1587 		DMERR("%s: metadata_era_rollover failed", __func__);
1588 		return r;
1589 	}
1590 
1591 	return 0;
1592 }
1593 
1594 /*
1595  * Status format:
1596  *
1597  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
1598  * <current era> <held metadata root | '-'>
1599  */
1600 static void era_status(struct dm_target *ti, status_type_t type,
1601 		       unsigned status_flags, char *result, unsigned maxlen)
1602 {
1603 	int r;
1604 	struct era *era = ti->private;
1605 	ssize_t sz = 0;
1606 	struct metadata_stats stats;
1607 	char buf[BDEVNAME_SIZE];
1608 
1609 	switch (type) {
1610 	case STATUSTYPE_INFO:
1611 		r = in_worker1(era, metadata_get_stats, &stats);
1612 		if (r)
1613 			goto err;
1614 
1615 		DMEMIT("%u %llu/%llu %u",
1616 		       (unsigned) (DM_ERA_METADATA_BLOCK_SIZE >> SECTOR_SHIFT),
1617 		       (unsigned long long) stats.used,
1618 		       (unsigned long long) stats.total,
1619 		       (unsigned) stats.era);
1620 
1621 		if (stats.snap != SUPERBLOCK_LOCATION)
1622 			DMEMIT(" %llu", stats.snap);
1623 		else
1624 			DMEMIT(" -");
1625 		break;
1626 
1627 	case STATUSTYPE_TABLE:
1628 		format_dev_t(buf, era->metadata_dev->bdev->bd_dev);
1629 		DMEMIT("%s ", buf);
1630 		format_dev_t(buf, era->origin_dev->bdev->bd_dev);
1631 		DMEMIT("%s %u", buf, era->sectors_per_block);
1632 		break;
1633 	}
1634 
1635 	return;
1636 
1637 err:
1638 	DMEMIT("Error");
1639 }
1640 
1641 static int era_message(struct dm_target *ti, unsigned argc, char **argv)
1642 {
1643 	struct era *era = ti->private;
1644 
1645 	if (argc != 1) {
1646 		DMERR("incorrect number of message arguments");
1647 		return -EINVAL;
1648 	}
1649 
1650 	if (!strcasecmp(argv[0], "checkpoint"))
1651 		return in_worker0(era, metadata_checkpoint);
1652 
1653 	if (!strcasecmp(argv[0], "take_metadata_snap"))
1654 		return in_worker0(era, metadata_take_snap);
1655 
1656 	if (!strcasecmp(argv[0], "drop_metadata_snap"))
1657 		return in_worker0(era, metadata_drop_snap);
1658 
1659 	DMERR("unsupported message '%s'", argv[0]);
1660 	return -EINVAL;
1661 }
1662 
1663 static sector_t get_dev_size(struct dm_dev *dev)
1664 {
1665 	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1666 }
1667 
1668 static int era_iterate_devices(struct dm_target *ti,
1669 			       iterate_devices_callout_fn fn, void *data)
1670 {
1671 	struct era *era = ti->private;
1672 	return fn(ti, era->origin_dev, 0, get_dev_size(era->origin_dev), data);
1673 }
1674 
1675 static void era_io_hints(struct dm_target *ti, struct queue_limits *limits)
1676 {
1677 	struct era *era = ti->private;
1678 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
1679 
1680 	/*
1681 	 * If the system-determined stacked limits are compatible with the
1682 	 * era device's blocksize (io_opt is a factor) do not override them.
1683 	 */
1684 	if (io_opt_sectors < era->sectors_per_block ||
1685 	    do_div(io_opt_sectors, era->sectors_per_block)) {
1686 		blk_limits_io_min(limits, 0);
1687 		blk_limits_io_opt(limits, era->sectors_per_block << SECTOR_SHIFT);
1688 	}
1689 }
1690 
1691 /*----------------------------------------------------------------*/
1692 
1693 static struct target_type era_target = {
1694 	.name = "era",
1695 	.version = {1, 0, 0},
1696 	.module = THIS_MODULE,
1697 	.ctr = era_ctr,
1698 	.dtr = era_dtr,
1699 	.map = era_map,
1700 	.postsuspend = era_postsuspend,
1701 	.preresume = era_preresume,
1702 	.status = era_status,
1703 	.message = era_message,
1704 	.iterate_devices = era_iterate_devices,
1705 	.io_hints = era_io_hints
1706 };
1707 
1708 static int __init dm_era_init(void)
1709 {
1710 	int r;
1711 
1712 	r = dm_register_target(&era_target);
1713 	if (r) {
1714 		DMERR("era target registration failed: %d", r);
1715 		return r;
1716 	}
1717 
1718 	return 0;
1719 }
1720 
1721 static void __exit dm_era_exit(void)
1722 {
1723 	dm_unregister_target(&era_target);
1724 }
1725 
1726 module_init(dm_era_init);
1727 module_exit(dm_era_exit);
1728 
1729 MODULE_DESCRIPTION(DM_NAME " era target");
1730 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
1731 MODULE_LICENSE("GPL");
1732