1 /* 2 * Copyright (C) 2005-2007 Red Hat GmbH 3 * 4 * A target that delays reads and/or writes and can send 5 * them to different devices. 6 * 7 * This file is released under the GPL. 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/blkdev.h> 13 #include <linux/bio.h> 14 #include <linux/slab.h> 15 16 #include <linux/device-mapper.h> 17 18 #define DM_MSG_PREFIX "delay" 19 20 struct delay_c { 21 struct timer_list delay_timer; 22 struct mutex timer_lock; 23 struct work_struct flush_expired_bios; 24 struct list_head delayed_bios; 25 atomic_t may_delay; 26 mempool_t *delayed_pool; 27 28 struct dm_dev *dev_read; 29 sector_t start_read; 30 unsigned read_delay; 31 unsigned reads; 32 33 struct dm_dev *dev_write; 34 sector_t start_write; 35 unsigned write_delay; 36 unsigned writes; 37 }; 38 39 struct dm_delay_info { 40 struct delay_c *context; 41 struct list_head list; 42 struct bio *bio; 43 unsigned long expires; 44 }; 45 46 static DEFINE_MUTEX(delayed_bios_lock); 47 48 static struct workqueue_struct *kdelayd_wq; 49 static struct kmem_cache *delayed_cache; 50 51 static void handle_delayed_timer(unsigned long data) 52 { 53 struct delay_c *dc = (struct delay_c *)data; 54 55 queue_work(kdelayd_wq, &dc->flush_expired_bios); 56 } 57 58 static void queue_timeout(struct delay_c *dc, unsigned long expires) 59 { 60 mutex_lock(&dc->timer_lock); 61 62 if (!timer_pending(&dc->delay_timer) || expires < dc->delay_timer.expires) 63 mod_timer(&dc->delay_timer, expires); 64 65 mutex_unlock(&dc->timer_lock); 66 } 67 68 static void flush_bios(struct bio *bio) 69 { 70 struct bio *n; 71 72 while (bio) { 73 n = bio->bi_next; 74 bio->bi_next = NULL; 75 generic_make_request(bio); 76 bio = n; 77 } 78 } 79 80 static struct bio *flush_delayed_bios(struct delay_c *dc, int flush_all) 81 { 82 struct dm_delay_info *delayed, *next; 83 unsigned long next_expires = 0; 84 int start_timer = 0; 85 struct bio_list flush_bios = { }; 86 87 mutex_lock(&delayed_bios_lock); 88 list_for_each_entry_safe(delayed, next, &dc->delayed_bios, list) { 89 if (flush_all || time_after_eq(jiffies, delayed->expires)) { 90 list_del(&delayed->list); 91 bio_list_add(&flush_bios, delayed->bio); 92 if ((bio_data_dir(delayed->bio) == WRITE)) 93 delayed->context->writes--; 94 else 95 delayed->context->reads--; 96 mempool_free(delayed, dc->delayed_pool); 97 continue; 98 } 99 100 if (!start_timer) { 101 start_timer = 1; 102 next_expires = delayed->expires; 103 } else 104 next_expires = min(next_expires, delayed->expires); 105 } 106 107 mutex_unlock(&delayed_bios_lock); 108 109 if (start_timer) 110 queue_timeout(dc, next_expires); 111 112 return bio_list_get(&flush_bios); 113 } 114 115 static void flush_expired_bios(struct work_struct *work) 116 { 117 struct delay_c *dc; 118 119 dc = container_of(work, struct delay_c, flush_expired_bios); 120 flush_bios(flush_delayed_bios(dc, 0)); 121 } 122 123 /* 124 * Mapping parameters: 125 * <device> <offset> <delay> [<write_device> <write_offset> <write_delay>] 126 * 127 * With separate write parameters, the first set is only used for reads. 128 * Delays are specified in milliseconds. 129 */ 130 static int delay_ctr(struct dm_target *ti, unsigned int argc, char **argv) 131 { 132 struct delay_c *dc; 133 unsigned long long tmpll; 134 char dummy; 135 136 if (argc != 3 && argc != 6) { 137 ti->error = "requires exactly 3 or 6 arguments"; 138 return -EINVAL; 139 } 140 141 dc = kmalloc(sizeof(*dc), GFP_KERNEL); 142 if (!dc) { 143 ti->error = "Cannot allocate context"; 144 return -ENOMEM; 145 } 146 147 dc->reads = dc->writes = 0; 148 149 if (sscanf(argv[1], "%llu%c", &tmpll, &dummy) != 1) { 150 ti->error = "Invalid device sector"; 151 goto bad; 152 } 153 dc->start_read = tmpll; 154 155 if (sscanf(argv[2], "%u%c", &dc->read_delay, &dummy) != 1) { 156 ti->error = "Invalid delay"; 157 goto bad; 158 } 159 160 if (dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), 161 &dc->dev_read)) { 162 ti->error = "Device lookup failed"; 163 goto bad; 164 } 165 166 dc->dev_write = NULL; 167 if (argc == 3) 168 goto out; 169 170 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) { 171 ti->error = "Invalid write device sector"; 172 goto bad_dev_read; 173 } 174 dc->start_write = tmpll; 175 176 if (sscanf(argv[5], "%u%c", &dc->write_delay, &dummy) != 1) { 177 ti->error = "Invalid write delay"; 178 goto bad_dev_read; 179 } 180 181 if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), 182 &dc->dev_write)) { 183 ti->error = "Write device lookup failed"; 184 goto bad_dev_read; 185 } 186 187 out: 188 dc->delayed_pool = mempool_create_slab_pool(128, delayed_cache); 189 if (!dc->delayed_pool) { 190 DMERR("Couldn't create delayed bio pool."); 191 goto bad_dev_write; 192 } 193 194 setup_timer(&dc->delay_timer, handle_delayed_timer, (unsigned long)dc); 195 196 INIT_WORK(&dc->flush_expired_bios, flush_expired_bios); 197 INIT_LIST_HEAD(&dc->delayed_bios); 198 mutex_init(&dc->timer_lock); 199 atomic_set(&dc->may_delay, 1); 200 201 ti->num_flush_requests = 1; 202 ti->num_discard_requests = 1; 203 ti->private = dc; 204 return 0; 205 206 bad_dev_write: 207 if (dc->dev_write) 208 dm_put_device(ti, dc->dev_write); 209 bad_dev_read: 210 dm_put_device(ti, dc->dev_read); 211 bad: 212 kfree(dc); 213 return -EINVAL; 214 } 215 216 static void delay_dtr(struct dm_target *ti) 217 { 218 struct delay_c *dc = ti->private; 219 220 flush_workqueue(kdelayd_wq); 221 222 dm_put_device(ti, dc->dev_read); 223 224 if (dc->dev_write) 225 dm_put_device(ti, dc->dev_write); 226 227 mempool_destroy(dc->delayed_pool); 228 kfree(dc); 229 } 230 231 static int delay_bio(struct delay_c *dc, int delay, struct bio *bio) 232 { 233 struct dm_delay_info *delayed; 234 unsigned long expires = 0; 235 236 if (!delay || !atomic_read(&dc->may_delay)) 237 return 1; 238 239 delayed = mempool_alloc(dc->delayed_pool, GFP_NOIO); 240 241 delayed->context = dc; 242 delayed->bio = bio; 243 delayed->expires = expires = jiffies + (delay * HZ / 1000); 244 245 mutex_lock(&delayed_bios_lock); 246 247 if (bio_data_dir(bio) == WRITE) 248 dc->writes++; 249 else 250 dc->reads++; 251 252 list_add_tail(&delayed->list, &dc->delayed_bios); 253 254 mutex_unlock(&delayed_bios_lock); 255 256 queue_timeout(dc, expires); 257 258 return 0; 259 } 260 261 static void delay_presuspend(struct dm_target *ti) 262 { 263 struct delay_c *dc = ti->private; 264 265 atomic_set(&dc->may_delay, 0); 266 del_timer_sync(&dc->delay_timer); 267 flush_bios(flush_delayed_bios(dc, 1)); 268 } 269 270 static void delay_resume(struct dm_target *ti) 271 { 272 struct delay_c *dc = ti->private; 273 274 atomic_set(&dc->may_delay, 1); 275 } 276 277 static int delay_map(struct dm_target *ti, struct bio *bio, 278 union map_info *map_context) 279 { 280 struct delay_c *dc = ti->private; 281 282 if ((bio_data_dir(bio) == WRITE) && (dc->dev_write)) { 283 bio->bi_bdev = dc->dev_write->bdev; 284 if (bio_sectors(bio)) 285 bio->bi_sector = dc->start_write + 286 dm_target_offset(ti, bio->bi_sector); 287 288 return delay_bio(dc, dc->write_delay, bio); 289 } 290 291 bio->bi_bdev = dc->dev_read->bdev; 292 bio->bi_sector = dc->start_read + dm_target_offset(ti, bio->bi_sector); 293 294 return delay_bio(dc, dc->read_delay, bio); 295 } 296 297 static int delay_status(struct dm_target *ti, status_type_t type, 298 char *result, unsigned maxlen) 299 { 300 struct delay_c *dc = ti->private; 301 int sz = 0; 302 303 switch (type) { 304 case STATUSTYPE_INFO: 305 DMEMIT("%u %u", dc->reads, dc->writes); 306 break; 307 308 case STATUSTYPE_TABLE: 309 DMEMIT("%s %llu %u", dc->dev_read->name, 310 (unsigned long long) dc->start_read, 311 dc->read_delay); 312 if (dc->dev_write) 313 DMEMIT(" %s %llu %u", dc->dev_write->name, 314 (unsigned long long) dc->start_write, 315 dc->write_delay); 316 break; 317 } 318 319 return 0; 320 } 321 322 static int delay_iterate_devices(struct dm_target *ti, 323 iterate_devices_callout_fn fn, void *data) 324 { 325 struct delay_c *dc = ti->private; 326 int ret = 0; 327 328 ret = fn(ti, dc->dev_read, dc->start_read, ti->len, data); 329 if (ret) 330 goto out; 331 332 if (dc->dev_write) 333 ret = fn(ti, dc->dev_write, dc->start_write, ti->len, data); 334 335 out: 336 return ret; 337 } 338 339 static struct target_type delay_target = { 340 .name = "delay", 341 .version = {1, 1, 0}, 342 .module = THIS_MODULE, 343 .ctr = delay_ctr, 344 .dtr = delay_dtr, 345 .map = delay_map, 346 .presuspend = delay_presuspend, 347 .resume = delay_resume, 348 .status = delay_status, 349 .iterate_devices = delay_iterate_devices, 350 }; 351 352 static int __init dm_delay_init(void) 353 { 354 int r = -ENOMEM; 355 356 kdelayd_wq = alloc_workqueue("kdelayd", WQ_MEM_RECLAIM, 0); 357 if (!kdelayd_wq) { 358 DMERR("Couldn't start kdelayd"); 359 goto bad_queue; 360 } 361 362 delayed_cache = KMEM_CACHE(dm_delay_info, 0); 363 if (!delayed_cache) { 364 DMERR("Couldn't create delayed bio cache."); 365 goto bad_memcache; 366 } 367 368 r = dm_register_target(&delay_target); 369 if (r < 0) { 370 DMERR("register failed %d", r); 371 goto bad_register; 372 } 373 374 return 0; 375 376 bad_register: 377 kmem_cache_destroy(delayed_cache); 378 bad_memcache: 379 destroy_workqueue(kdelayd_wq); 380 bad_queue: 381 return r; 382 } 383 384 static void __exit dm_delay_exit(void) 385 { 386 dm_unregister_target(&delay_target); 387 kmem_cache_destroy(delayed_cache); 388 destroy_workqueue(kdelayd_wq); 389 } 390 391 /* Module hooks */ 392 module_init(dm_delay_init); 393 module_exit(dm_delay_exit); 394 395 MODULE_DESCRIPTION(DM_NAME " delay target"); 396 MODULE_AUTHOR("Heinz Mauelshagen <mauelshagen@redhat.com>"); 397 MODULE_LICENSE("GPL"); 398