xref: /linux/drivers/md/dm-crypt.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Copyright (C) 2003 Jana Saout <jana@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2017 Red Hat, Inc. All rights reserved.
5  * Copyright (C) 2013-2017 Milan Broz <gmazyland@gmail.com>
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/key.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/crypto.h>
21 #include <linux/workqueue.h>
22 #include <linux/kthread.h>
23 #include <linux/backing-dev.h>
24 #include <linux/atomic.h>
25 #include <linux/scatterlist.h>
26 #include <linux/rbtree.h>
27 #include <linux/ctype.h>
28 #include <asm/page.h>
29 #include <asm/unaligned.h>
30 #include <crypto/hash.h>
31 #include <crypto/md5.h>
32 #include <crypto/algapi.h>
33 #include <crypto/skcipher.h>
34 #include <crypto/aead.h>
35 #include <crypto/authenc.h>
36 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
37 #include <keys/user-type.h>
38 
39 #include <linux/device-mapper.h>
40 
41 #define DM_MSG_PREFIX "crypt"
42 
43 /*
44  * context holding the current state of a multi-part conversion
45  */
46 struct convert_context {
47 	struct completion restart;
48 	struct bio *bio_in;
49 	struct bio *bio_out;
50 	struct bvec_iter iter_in;
51 	struct bvec_iter iter_out;
52 	sector_t cc_sector;
53 	atomic_t cc_pending;
54 	union {
55 		struct skcipher_request *req;
56 		struct aead_request *req_aead;
57 	} r;
58 
59 };
60 
61 /*
62  * per bio private data
63  */
64 struct dm_crypt_io {
65 	struct crypt_config *cc;
66 	struct bio *base_bio;
67 	u8 *integrity_metadata;
68 	bool integrity_metadata_from_pool;
69 	struct work_struct work;
70 
71 	struct convert_context ctx;
72 
73 	atomic_t io_pending;
74 	int error;
75 	sector_t sector;
76 
77 	struct rb_node rb_node;
78 } CRYPTO_MINALIGN_ATTR;
79 
80 struct dm_crypt_request {
81 	struct convert_context *ctx;
82 	struct scatterlist sg_in[4];
83 	struct scatterlist sg_out[4];
84 	sector_t iv_sector;
85 };
86 
87 struct crypt_config;
88 
89 struct crypt_iv_operations {
90 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
91 		   const char *opts);
92 	void (*dtr)(struct crypt_config *cc);
93 	int (*init)(struct crypt_config *cc);
94 	int (*wipe)(struct crypt_config *cc);
95 	int (*generator)(struct crypt_config *cc, u8 *iv,
96 			 struct dm_crypt_request *dmreq);
97 	int (*post)(struct crypt_config *cc, u8 *iv,
98 		    struct dm_crypt_request *dmreq);
99 };
100 
101 struct iv_essiv_private {
102 	struct crypto_ahash *hash_tfm;
103 	u8 *salt;
104 };
105 
106 struct iv_benbi_private {
107 	int shift;
108 };
109 
110 #define LMK_SEED_SIZE 64 /* hash + 0 */
111 struct iv_lmk_private {
112 	struct crypto_shash *hash_tfm;
113 	u8 *seed;
114 };
115 
116 #define TCW_WHITENING_SIZE 16
117 struct iv_tcw_private {
118 	struct crypto_shash *crc32_tfm;
119 	u8 *iv_seed;
120 	u8 *whitening;
121 };
122 
123 /*
124  * Crypt: maps a linear range of a block device
125  * and encrypts / decrypts at the same time.
126  */
127 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
128 	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
129 
130 enum cipher_flags {
131 	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cihper */
132 	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
133 };
134 
135 /*
136  * The fields in here must be read only after initialization.
137  */
138 struct crypt_config {
139 	struct dm_dev *dev;
140 	sector_t start;
141 
142 	/*
143 	 * pool for per bio private data, crypto requests,
144 	 * encryption requeusts/buffer pages and integrity tags
145 	 */
146 	mempool_t *req_pool;
147 	mempool_t *page_pool;
148 	mempool_t *tag_pool;
149 	unsigned tag_pool_max_sectors;
150 
151 	struct bio_set *bs;
152 	struct mutex bio_alloc_lock;
153 
154 	struct workqueue_struct *io_queue;
155 	struct workqueue_struct *crypt_queue;
156 
157 	struct task_struct *write_thread;
158 	wait_queue_head_t write_thread_wait;
159 	struct rb_root write_tree;
160 
161 	char *cipher;
162 	char *cipher_string;
163 	char *cipher_auth;
164 	char *key_string;
165 
166 	const struct crypt_iv_operations *iv_gen_ops;
167 	union {
168 		struct iv_essiv_private essiv;
169 		struct iv_benbi_private benbi;
170 		struct iv_lmk_private lmk;
171 		struct iv_tcw_private tcw;
172 	} iv_gen_private;
173 	sector_t iv_offset;
174 	unsigned int iv_size;
175 	unsigned short int sector_size;
176 	unsigned char sector_shift;
177 
178 	/* ESSIV: struct crypto_cipher *essiv_tfm */
179 	void *iv_private;
180 	union {
181 		struct crypto_skcipher **tfms;
182 		struct crypto_aead **tfms_aead;
183 	} cipher_tfm;
184 	unsigned tfms_count;
185 	unsigned long cipher_flags;
186 
187 	/*
188 	 * Layout of each crypto request:
189 	 *
190 	 *   struct skcipher_request
191 	 *      context
192 	 *      padding
193 	 *   struct dm_crypt_request
194 	 *      padding
195 	 *   IV
196 	 *
197 	 * The padding is added so that dm_crypt_request and the IV are
198 	 * correctly aligned.
199 	 */
200 	unsigned int dmreq_start;
201 
202 	unsigned int per_bio_data_size;
203 
204 	unsigned long flags;
205 	unsigned int key_size;
206 	unsigned int key_parts;      /* independent parts in key buffer */
207 	unsigned int key_extra_size; /* additional keys length */
208 	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
209 
210 	unsigned int integrity_tag_size;
211 	unsigned int integrity_iv_size;
212 	unsigned int on_disk_tag_size;
213 
214 	u8 *authenc_key; /* space for keys in authenc() format (if used) */
215 	u8 key[0];
216 };
217 
218 #define MIN_IOS		64
219 #define MAX_TAG_SIZE	480
220 #define POOL_ENTRY_SIZE	512
221 
222 static void clone_init(struct dm_crypt_io *, struct bio *);
223 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
224 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
225 					     struct scatterlist *sg);
226 
227 /*
228  * Use this to access cipher attributes that are independent of the key.
229  */
230 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
231 {
232 	return cc->cipher_tfm.tfms[0];
233 }
234 
235 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
236 {
237 	return cc->cipher_tfm.tfms_aead[0];
238 }
239 
240 /*
241  * Different IV generation algorithms:
242  *
243  * plain: the initial vector is the 32-bit little-endian version of the sector
244  *        number, padded with zeros if necessary.
245  *
246  * plain64: the initial vector is the 64-bit little-endian version of the sector
247  *        number, padded with zeros if necessary.
248  *
249  * essiv: "encrypted sector|salt initial vector", the sector number is
250  *        encrypted with the bulk cipher using a salt as key. The salt
251  *        should be derived from the bulk cipher's key via hashing.
252  *
253  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
254  *        (needed for LRW-32-AES and possible other narrow block modes)
255  *
256  * null: the initial vector is always zero.  Provides compatibility with
257  *       obsolete loop_fish2 devices.  Do not use for new devices.
258  *
259  * lmk:  Compatible implementation of the block chaining mode used
260  *       by the Loop-AES block device encryption system
261  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
262  *       It operates on full 512 byte sectors and uses CBC
263  *       with an IV derived from the sector number, the data and
264  *       optionally extra IV seed.
265  *       This means that after decryption the first block
266  *       of sector must be tweaked according to decrypted data.
267  *       Loop-AES can use three encryption schemes:
268  *         version 1: is plain aes-cbc mode
269  *         version 2: uses 64 multikey scheme with lmk IV generator
270  *         version 3: the same as version 2 with additional IV seed
271  *                   (it uses 65 keys, last key is used as IV seed)
272  *
273  * tcw:  Compatible implementation of the block chaining mode used
274  *       by the TrueCrypt device encryption system (prior to version 4.1).
275  *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
276  *       It operates on full 512 byte sectors and uses CBC
277  *       with an IV derived from initial key and the sector number.
278  *       In addition, whitening value is applied on every sector, whitening
279  *       is calculated from initial key, sector number and mixed using CRC32.
280  *       Note that this encryption scheme is vulnerable to watermarking attacks
281  *       and should be used for old compatible containers access only.
282  *
283  * plumb: unimplemented, see:
284  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
285  */
286 
287 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
288 			      struct dm_crypt_request *dmreq)
289 {
290 	memset(iv, 0, cc->iv_size);
291 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
292 
293 	return 0;
294 }
295 
296 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
297 				struct dm_crypt_request *dmreq)
298 {
299 	memset(iv, 0, cc->iv_size);
300 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
301 
302 	return 0;
303 }
304 
305 /* Initialise ESSIV - compute salt but no local memory allocations */
306 static int crypt_iv_essiv_init(struct crypt_config *cc)
307 {
308 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
309 	AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
310 	struct scatterlist sg;
311 	struct crypto_cipher *essiv_tfm;
312 	int err;
313 
314 	sg_init_one(&sg, cc->key, cc->key_size);
315 	ahash_request_set_tfm(req, essiv->hash_tfm);
316 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
317 	ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
318 
319 	err = crypto_ahash_digest(req);
320 	ahash_request_zero(req);
321 	if (err)
322 		return err;
323 
324 	essiv_tfm = cc->iv_private;
325 
326 	err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
327 			    crypto_ahash_digestsize(essiv->hash_tfm));
328 	if (err)
329 		return err;
330 
331 	return 0;
332 }
333 
334 /* Wipe salt and reset key derived from volume key */
335 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
336 {
337 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
338 	unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
339 	struct crypto_cipher *essiv_tfm;
340 	int r, err = 0;
341 
342 	memset(essiv->salt, 0, salt_size);
343 
344 	essiv_tfm = cc->iv_private;
345 	r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
346 	if (r)
347 		err = r;
348 
349 	return err;
350 }
351 
352 /* Allocate the cipher for ESSIV */
353 static struct crypto_cipher *alloc_essiv_cipher(struct crypt_config *cc,
354 						struct dm_target *ti,
355 						const u8 *salt,
356 						unsigned int saltsize)
357 {
358 	struct crypto_cipher *essiv_tfm;
359 	int err;
360 
361 	/* Setup the essiv_tfm with the given salt */
362 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
363 	if (IS_ERR(essiv_tfm)) {
364 		ti->error = "Error allocating crypto tfm for ESSIV";
365 		return essiv_tfm;
366 	}
367 
368 	if (crypto_cipher_blocksize(essiv_tfm) != cc->iv_size) {
369 		ti->error = "Block size of ESSIV cipher does "
370 			    "not match IV size of block cipher";
371 		crypto_free_cipher(essiv_tfm);
372 		return ERR_PTR(-EINVAL);
373 	}
374 
375 	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
376 	if (err) {
377 		ti->error = "Failed to set key for ESSIV cipher";
378 		crypto_free_cipher(essiv_tfm);
379 		return ERR_PTR(err);
380 	}
381 
382 	return essiv_tfm;
383 }
384 
385 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
386 {
387 	struct crypto_cipher *essiv_tfm;
388 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
389 
390 	crypto_free_ahash(essiv->hash_tfm);
391 	essiv->hash_tfm = NULL;
392 
393 	kzfree(essiv->salt);
394 	essiv->salt = NULL;
395 
396 	essiv_tfm = cc->iv_private;
397 
398 	if (essiv_tfm)
399 		crypto_free_cipher(essiv_tfm);
400 
401 	cc->iv_private = NULL;
402 }
403 
404 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
405 			      const char *opts)
406 {
407 	struct crypto_cipher *essiv_tfm = NULL;
408 	struct crypto_ahash *hash_tfm = NULL;
409 	u8 *salt = NULL;
410 	int err;
411 
412 	if (!opts) {
413 		ti->error = "Digest algorithm missing for ESSIV mode";
414 		return -EINVAL;
415 	}
416 
417 	/* Allocate hash algorithm */
418 	hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
419 	if (IS_ERR(hash_tfm)) {
420 		ti->error = "Error initializing ESSIV hash";
421 		err = PTR_ERR(hash_tfm);
422 		goto bad;
423 	}
424 
425 	salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
426 	if (!salt) {
427 		ti->error = "Error kmallocing salt storage in ESSIV";
428 		err = -ENOMEM;
429 		goto bad;
430 	}
431 
432 	cc->iv_gen_private.essiv.salt = salt;
433 	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
434 
435 	essiv_tfm = alloc_essiv_cipher(cc, ti, salt,
436 				       crypto_ahash_digestsize(hash_tfm));
437 	if (IS_ERR(essiv_tfm)) {
438 		crypt_iv_essiv_dtr(cc);
439 		return PTR_ERR(essiv_tfm);
440 	}
441 	cc->iv_private = essiv_tfm;
442 
443 	return 0;
444 
445 bad:
446 	if (hash_tfm && !IS_ERR(hash_tfm))
447 		crypto_free_ahash(hash_tfm);
448 	kfree(salt);
449 	return err;
450 }
451 
452 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
453 			      struct dm_crypt_request *dmreq)
454 {
455 	struct crypto_cipher *essiv_tfm = cc->iv_private;
456 
457 	memset(iv, 0, cc->iv_size);
458 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
459 	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
460 
461 	return 0;
462 }
463 
464 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
465 			      const char *opts)
466 {
467 	unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
468 	int log = ilog2(bs);
469 
470 	/* we need to calculate how far we must shift the sector count
471 	 * to get the cipher block count, we use this shift in _gen */
472 
473 	if (1 << log != bs) {
474 		ti->error = "cypher blocksize is not a power of 2";
475 		return -EINVAL;
476 	}
477 
478 	if (log > 9) {
479 		ti->error = "cypher blocksize is > 512";
480 		return -EINVAL;
481 	}
482 
483 	cc->iv_gen_private.benbi.shift = 9 - log;
484 
485 	return 0;
486 }
487 
488 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
489 {
490 }
491 
492 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
493 			      struct dm_crypt_request *dmreq)
494 {
495 	__be64 val;
496 
497 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
498 
499 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
500 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
501 
502 	return 0;
503 }
504 
505 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
506 			     struct dm_crypt_request *dmreq)
507 {
508 	memset(iv, 0, cc->iv_size);
509 
510 	return 0;
511 }
512 
513 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
514 {
515 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
516 
517 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
518 		crypto_free_shash(lmk->hash_tfm);
519 	lmk->hash_tfm = NULL;
520 
521 	kzfree(lmk->seed);
522 	lmk->seed = NULL;
523 }
524 
525 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
526 			    const char *opts)
527 {
528 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
529 
530 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
531 		ti->error = "Unsupported sector size for LMK";
532 		return -EINVAL;
533 	}
534 
535 	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
536 	if (IS_ERR(lmk->hash_tfm)) {
537 		ti->error = "Error initializing LMK hash";
538 		return PTR_ERR(lmk->hash_tfm);
539 	}
540 
541 	/* No seed in LMK version 2 */
542 	if (cc->key_parts == cc->tfms_count) {
543 		lmk->seed = NULL;
544 		return 0;
545 	}
546 
547 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
548 	if (!lmk->seed) {
549 		crypt_iv_lmk_dtr(cc);
550 		ti->error = "Error kmallocing seed storage in LMK";
551 		return -ENOMEM;
552 	}
553 
554 	return 0;
555 }
556 
557 static int crypt_iv_lmk_init(struct crypt_config *cc)
558 {
559 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
560 	int subkey_size = cc->key_size / cc->key_parts;
561 
562 	/* LMK seed is on the position of LMK_KEYS + 1 key */
563 	if (lmk->seed)
564 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
565 		       crypto_shash_digestsize(lmk->hash_tfm));
566 
567 	return 0;
568 }
569 
570 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
571 {
572 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
573 
574 	if (lmk->seed)
575 		memset(lmk->seed, 0, LMK_SEED_SIZE);
576 
577 	return 0;
578 }
579 
580 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
581 			    struct dm_crypt_request *dmreq,
582 			    u8 *data)
583 {
584 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
585 	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
586 	struct md5_state md5state;
587 	__le32 buf[4];
588 	int i, r;
589 
590 	desc->tfm = lmk->hash_tfm;
591 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
592 
593 	r = crypto_shash_init(desc);
594 	if (r)
595 		return r;
596 
597 	if (lmk->seed) {
598 		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
599 		if (r)
600 			return r;
601 	}
602 
603 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
604 	r = crypto_shash_update(desc, data + 16, 16 * 31);
605 	if (r)
606 		return r;
607 
608 	/* Sector is cropped to 56 bits here */
609 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
610 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
611 	buf[2] = cpu_to_le32(4024);
612 	buf[3] = 0;
613 	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
614 	if (r)
615 		return r;
616 
617 	/* No MD5 padding here */
618 	r = crypto_shash_export(desc, &md5state);
619 	if (r)
620 		return r;
621 
622 	for (i = 0; i < MD5_HASH_WORDS; i++)
623 		__cpu_to_le32s(&md5state.hash[i]);
624 	memcpy(iv, &md5state.hash, cc->iv_size);
625 
626 	return 0;
627 }
628 
629 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
630 			    struct dm_crypt_request *dmreq)
631 {
632 	struct scatterlist *sg;
633 	u8 *src;
634 	int r = 0;
635 
636 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
637 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
638 		src = kmap_atomic(sg_page(sg));
639 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
640 		kunmap_atomic(src);
641 	} else
642 		memset(iv, 0, cc->iv_size);
643 
644 	return r;
645 }
646 
647 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
648 			     struct dm_crypt_request *dmreq)
649 {
650 	struct scatterlist *sg;
651 	u8 *dst;
652 	int r;
653 
654 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
655 		return 0;
656 
657 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
658 	dst = kmap_atomic(sg_page(sg));
659 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
660 
661 	/* Tweak the first block of plaintext sector */
662 	if (!r)
663 		crypto_xor(dst + sg->offset, iv, cc->iv_size);
664 
665 	kunmap_atomic(dst);
666 	return r;
667 }
668 
669 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
670 {
671 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
672 
673 	kzfree(tcw->iv_seed);
674 	tcw->iv_seed = NULL;
675 	kzfree(tcw->whitening);
676 	tcw->whitening = NULL;
677 
678 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
679 		crypto_free_shash(tcw->crc32_tfm);
680 	tcw->crc32_tfm = NULL;
681 }
682 
683 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
684 			    const char *opts)
685 {
686 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
687 
688 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
689 		ti->error = "Unsupported sector size for TCW";
690 		return -EINVAL;
691 	}
692 
693 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
694 		ti->error = "Wrong key size for TCW";
695 		return -EINVAL;
696 	}
697 
698 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
699 	if (IS_ERR(tcw->crc32_tfm)) {
700 		ti->error = "Error initializing CRC32 in TCW";
701 		return PTR_ERR(tcw->crc32_tfm);
702 	}
703 
704 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
705 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
706 	if (!tcw->iv_seed || !tcw->whitening) {
707 		crypt_iv_tcw_dtr(cc);
708 		ti->error = "Error allocating seed storage in TCW";
709 		return -ENOMEM;
710 	}
711 
712 	return 0;
713 }
714 
715 static int crypt_iv_tcw_init(struct crypt_config *cc)
716 {
717 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
718 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
719 
720 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
721 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
722 	       TCW_WHITENING_SIZE);
723 
724 	return 0;
725 }
726 
727 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
728 {
729 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
730 
731 	memset(tcw->iv_seed, 0, cc->iv_size);
732 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
733 
734 	return 0;
735 }
736 
737 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
738 				  struct dm_crypt_request *dmreq,
739 				  u8 *data)
740 {
741 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
742 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
743 	u8 buf[TCW_WHITENING_SIZE];
744 	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
745 	int i, r;
746 
747 	/* xor whitening with sector number */
748 	memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
749 	crypto_xor(buf, (u8 *)&sector, 8);
750 	crypto_xor(&buf[8], (u8 *)&sector, 8);
751 
752 	/* calculate crc32 for every 32bit part and xor it */
753 	desc->tfm = tcw->crc32_tfm;
754 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
755 	for (i = 0; i < 4; i++) {
756 		r = crypto_shash_init(desc);
757 		if (r)
758 			goto out;
759 		r = crypto_shash_update(desc, &buf[i * 4], 4);
760 		if (r)
761 			goto out;
762 		r = crypto_shash_final(desc, &buf[i * 4]);
763 		if (r)
764 			goto out;
765 	}
766 	crypto_xor(&buf[0], &buf[12], 4);
767 	crypto_xor(&buf[4], &buf[8], 4);
768 
769 	/* apply whitening (8 bytes) to whole sector */
770 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
771 		crypto_xor(data + i * 8, buf, 8);
772 out:
773 	memzero_explicit(buf, sizeof(buf));
774 	return r;
775 }
776 
777 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
778 			    struct dm_crypt_request *dmreq)
779 {
780 	struct scatterlist *sg;
781 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
782 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
783 	u8 *src;
784 	int r = 0;
785 
786 	/* Remove whitening from ciphertext */
787 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
788 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
789 		src = kmap_atomic(sg_page(sg));
790 		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
791 		kunmap_atomic(src);
792 	}
793 
794 	/* Calculate IV */
795 	memcpy(iv, tcw->iv_seed, cc->iv_size);
796 	crypto_xor(iv, (u8 *)&sector, 8);
797 	if (cc->iv_size > 8)
798 		crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
799 
800 	return r;
801 }
802 
803 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
804 			     struct dm_crypt_request *dmreq)
805 {
806 	struct scatterlist *sg;
807 	u8 *dst;
808 	int r;
809 
810 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
811 		return 0;
812 
813 	/* Apply whitening on ciphertext */
814 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
815 	dst = kmap_atomic(sg_page(sg));
816 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
817 	kunmap_atomic(dst);
818 
819 	return r;
820 }
821 
822 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
823 				struct dm_crypt_request *dmreq)
824 {
825 	/* Used only for writes, there must be an additional space to store IV */
826 	get_random_bytes(iv, cc->iv_size);
827 	return 0;
828 }
829 
830 static const struct crypt_iv_operations crypt_iv_plain_ops = {
831 	.generator = crypt_iv_plain_gen
832 };
833 
834 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
835 	.generator = crypt_iv_plain64_gen
836 };
837 
838 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
839 	.ctr       = crypt_iv_essiv_ctr,
840 	.dtr       = crypt_iv_essiv_dtr,
841 	.init      = crypt_iv_essiv_init,
842 	.wipe      = crypt_iv_essiv_wipe,
843 	.generator = crypt_iv_essiv_gen
844 };
845 
846 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
847 	.ctr	   = crypt_iv_benbi_ctr,
848 	.dtr	   = crypt_iv_benbi_dtr,
849 	.generator = crypt_iv_benbi_gen
850 };
851 
852 static const struct crypt_iv_operations crypt_iv_null_ops = {
853 	.generator = crypt_iv_null_gen
854 };
855 
856 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
857 	.ctr	   = crypt_iv_lmk_ctr,
858 	.dtr	   = crypt_iv_lmk_dtr,
859 	.init	   = crypt_iv_lmk_init,
860 	.wipe	   = crypt_iv_lmk_wipe,
861 	.generator = crypt_iv_lmk_gen,
862 	.post	   = crypt_iv_lmk_post
863 };
864 
865 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
866 	.ctr	   = crypt_iv_tcw_ctr,
867 	.dtr	   = crypt_iv_tcw_dtr,
868 	.init	   = crypt_iv_tcw_init,
869 	.wipe	   = crypt_iv_tcw_wipe,
870 	.generator = crypt_iv_tcw_gen,
871 	.post	   = crypt_iv_tcw_post
872 };
873 
874 static struct crypt_iv_operations crypt_iv_random_ops = {
875 	.generator = crypt_iv_random_gen
876 };
877 
878 /*
879  * Integrity extensions
880  */
881 static bool crypt_integrity_aead(struct crypt_config *cc)
882 {
883 	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
884 }
885 
886 static bool crypt_integrity_hmac(struct crypt_config *cc)
887 {
888 	return crypt_integrity_aead(cc) && cc->key_mac_size;
889 }
890 
891 /* Get sg containing data */
892 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
893 					     struct scatterlist *sg)
894 {
895 	if (unlikely(crypt_integrity_aead(cc)))
896 		return &sg[2];
897 
898 	return sg;
899 }
900 
901 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
902 {
903 	struct bio_integrity_payload *bip;
904 	unsigned int tag_len;
905 	int ret;
906 
907 	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
908 		return 0;
909 
910 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
911 	if (IS_ERR(bip))
912 		return PTR_ERR(bip);
913 
914 	tag_len = io->cc->on_disk_tag_size * bio_sectors(bio);
915 
916 	bip->bip_iter.bi_size = tag_len;
917 	bip->bip_iter.bi_sector = io->cc->start + io->sector;
918 
919 	/* We own the metadata, do not let bio_free to release it */
920 	bip->bip_flags &= ~BIP_BLOCK_INTEGRITY;
921 
922 	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
923 				     tag_len, offset_in_page(io->integrity_metadata));
924 	if (unlikely(ret != tag_len))
925 		return -ENOMEM;
926 
927 	return 0;
928 }
929 
930 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
931 {
932 #ifdef CONFIG_BLK_DEV_INTEGRITY
933 	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
934 
935 	/* From now we require underlying device with our integrity profile */
936 	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
937 		ti->error = "Integrity profile not supported.";
938 		return -EINVAL;
939 	}
940 
941 	if (bi->tag_size != cc->on_disk_tag_size ||
942 	    bi->tuple_size != cc->on_disk_tag_size) {
943 		ti->error = "Integrity profile tag size mismatch.";
944 		return -EINVAL;
945 	}
946 	if (1 << bi->interval_exp != cc->sector_size) {
947 		ti->error = "Integrity profile sector size mismatch.";
948 		return -EINVAL;
949 	}
950 
951 	if (crypt_integrity_aead(cc)) {
952 		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
953 		DMINFO("Integrity AEAD, tag size %u, IV size %u.",
954 		       cc->integrity_tag_size, cc->integrity_iv_size);
955 
956 		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
957 			ti->error = "Integrity AEAD auth tag size is not supported.";
958 			return -EINVAL;
959 		}
960 	} else if (cc->integrity_iv_size)
961 		DMINFO("Additional per-sector space %u bytes for IV.",
962 		       cc->integrity_iv_size);
963 
964 	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
965 		ti->error = "Not enough space for integrity tag in the profile.";
966 		return -EINVAL;
967 	}
968 
969 	return 0;
970 #else
971 	ti->error = "Integrity profile not supported.";
972 	return -EINVAL;
973 #endif
974 }
975 
976 static void crypt_convert_init(struct crypt_config *cc,
977 			       struct convert_context *ctx,
978 			       struct bio *bio_out, struct bio *bio_in,
979 			       sector_t sector)
980 {
981 	ctx->bio_in = bio_in;
982 	ctx->bio_out = bio_out;
983 	if (bio_in)
984 		ctx->iter_in = bio_in->bi_iter;
985 	if (bio_out)
986 		ctx->iter_out = bio_out->bi_iter;
987 	ctx->cc_sector = sector + cc->iv_offset;
988 	init_completion(&ctx->restart);
989 }
990 
991 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
992 					     void *req)
993 {
994 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
995 }
996 
997 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
998 {
999 	return (void *)((char *)dmreq - cc->dmreq_start);
1000 }
1001 
1002 static u8 *iv_of_dmreq(struct crypt_config *cc,
1003 		       struct dm_crypt_request *dmreq)
1004 {
1005 	if (crypt_integrity_aead(cc))
1006 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1007 			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1008 	else
1009 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1010 			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1011 }
1012 
1013 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1014 		       struct dm_crypt_request *dmreq)
1015 {
1016 	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1017 }
1018 
1019 static uint64_t *org_sector_of_dmreq(struct crypt_config *cc,
1020 		       struct dm_crypt_request *dmreq)
1021 {
1022 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1023 	return (uint64_t*) ptr;
1024 }
1025 
1026 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1027 		       struct dm_crypt_request *dmreq)
1028 {
1029 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1030 		  cc->iv_size + sizeof(uint64_t);
1031 	return (unsigned int*)ptr;
1032 }
1033 
1034 static void *tag_from_dmreq(struct crypt_config *cc,
1035 				struct dm_crypt_request *dmreq)
1036 {
1037 	struct convert_context *ctx = dmreq->ctx;
1038 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1039 
1040 	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1041 		cc->on_disk_tag_size];
1042 }
1043 
1044 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1045 			       struct dm_crypt_request *dmreq)
1046 {
1047 	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1048 }
1049 
1050 static int crypt_convert_block_aead(struct crypt_config *cc,
1051 				     struct convert_context *ctx,
1052 				     struct aead_request *req,
1053 				     unsigned int tag_offset)
1054 {
1055 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1056 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1057 	struct dm_crypt_request *dmreq;
1058 	u8 *iv, *org_iv, *tag_iv, *tag;
1059 	uint64_t *sector;
1060 	int r = 0;
1061 
1062 	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1063 
1064 	/* Reject unexpected unaligned bio. */
1065 	if (unlikely(bv_in.bv_offset & (cc->sector_size - 1)))
1066 		return -EIO;
1067 
1068 	dmreq = dmreq_of_req(cc, req);
1069 	dmreq->iv_sector = ctx->cc_sector;
1070 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1071 		dmreq->iv_sector >>= cc->sector_shift;
1072 	dmreq->ctx = ctx;
1073 
1074 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1075 
1076 	sector = org_sector_of_dmreq(cc, dmreq);
1077 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1078 
1079 	iv = iv_of_dmreq(cc, dmreq);
1080 	org_iv = org_iv_of_dmreq(cc, dmreq);
1081 	tag = tag_from_dmreq(cc, dmreq);
1082 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1083 
1084 	/* AEAD request:
1085 	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1086 	 *  | (authenticated) | (auth+encryption) |              |
1087 	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1088 	 */
1089 	sg_init_table(dmreq->sg_in, 4);
1090 	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1091 	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1092 	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1093 	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1094 
1095 	sg_init_table(dmreq->sg_out, 4);
1096 	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1097 	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1098 	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1099 	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1100 
1101 	if (cc->iv_gen_ops) {
1102 		/* For READs use IV stored in integrity metadata */
1103 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1104 			memcpy(org_iv, tag_iv, cc->iv_size);
1105 		} else {
1106 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1107 			if (r < 0)
1108 				return r;
1109 			/* Store generated IV in integrity metadata */
1110 			if (cc->integrity_iv_size)
1111 				memcpy(tag_iv, org_iv, cc->iv_size);
1112 		}
1113 		/* Working copy of IV, to be modified in crypto API */
1114 		memcpy(iv, org_iv, cc->iv_size);
1115 	}
1116 
1117 	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1118 	if (bio_data_dir(ctx->bio_in) == WRITE) {
1119 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1120 				       cc->sector_size, iv);
1121 		r = crypto_aead_encrypt(req);
1122 		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1123 			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1124 			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1125 	} else {
1126 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1127 				       cc->sector_size + cc->integrity_tag_size, iv);
1128 		r = crypto_aead_decrypt(req);
1129 	}
1130 
1131 	if (r == -EBADMSG)
1132 		DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1133 			    (unsigned long long)le64_to_cpu(*sector));
1134 
1135 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1136 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1137 
1138 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1139 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1140 
1141 	return r;
1142 }
1143 
1144 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1145 					struct convert_context *ctx,
1146 					struct skcipher_request *req,
1147 					unsigned int tag_offset)
1148 {
1149 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1150 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1151 	struct scatterlist *sg_in, *sg_out;
1152 	struct dm_crypt_request *dmreq;
1153 	u8 *iv, *org_iv, *tag_iv;
1154 	uint64_t *sector;
1155 	int r = 0;
1156 
1157 	/* Reject unexpected unaligned bio. */
1158 	if (unlikely(bv_in.bv_offset & (cc->sector_size - 1)))
1159 		return -EIO;
1160 
1161 	dmreq = dmreq_of_req(cc, req);
1162 	dmreq->iv_sector = ctx->cc_sector;
1163 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1164 		dmreq->iv_sector >>= cc->sector_shift;
1165 	dmreq->ctx = ctx;
1166 
1167 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1168 
1169 	iv = iv_of_dmreq(cc, dmreq);
1170 	org_iv = org_iv_of_dmreq(cc, dmreq);
1171 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1172 
1173 	sector = org_sector_of_dmreq(cc, dmreq);
1174 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1175 
1176 	/* For skcipher we use only the first sg item */
1177 	sg_in  = &dmreq->sg_in[0];
1178 	sg_out = &dmreq->sg_out[0];
1179 
1180 	sg_init_table(sg_in, 1);
1181 	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1182 
1183 	sg_init_table(sg_out, 1);
1184 	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1185 
1186 	if (cc->iv_gen_ops) {
1187 		/* For READs use IV stored in integrity metadata */
1188 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1189 			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1190 		} else {
1191 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1192 			if (r < 0)
1193 				return r;
1194 			/* Store generated IV in integrity metadata */
1195 			if (cc->integrity_iv_size)
1196 				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1197 		}
1198 		/* Working copy of IV, to be modified in crypto API */
1199 		memcpy(iv, org_iv, cc->iv_size);
1200 	}
1201 
1202 	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1203 
1204 	if (bio_data_dir(ctx->bio_in) == WRITE)
1205 		r = crypto_skcipher_encrypt(req);
1206 	else
1207 		r = crypto_skcipher_decrypt(req);
1208 
1209 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1210 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1211 
1212 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1213 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1214 
1215 	return r;
1216 }
1217 
1218 static void kcryptd_async_done(struct crypto_async_request *async_req,
1219 			       int error);
1220 
1221 static void crypt_alloc_req_skcipher(struct crypt_config *cc,
1222 				     struct convert_context *ctx)
1223 {
1224 	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1225 
1226 	if (!ctx->r.req)
1227 		ctx->r.req = mempool_alloc(cc->req_pool, GFP_NOIO);
1228 
1229 	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1230 
1231 	/*
1232 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1233 	 * requests if driver request queue is full.
1234 	 */
1235 	skcipher_request_set_callback(ctx->r.req,
1236 	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
1237 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1238 }
1239 
1240 static void crypt_alloc_req_aead(struct crypt_config *cc,
1241 				 struct convert_context *ctx)
1242 {
1243 	if (!ctx->r.req_aead)
1244 		ctx->r.req_aead = mempool_alloc(cc->req_pool, GFP_NOIO);
1245 
1246 	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1247 
1248 	/*
1249 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1250 	 * requests if driver request queue is full.
1251 	 */
1252 	aead_request_set_callback(ctx->r.req_aead,
1253 	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
1254 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1255 }
1256 
1257 static void crypt_alloc_req(struct crypt_config *cc,
1258 			    struct convert_context *ctx)
1259 {
1260 	if (crypt_integrity_aead(cc))
1261 		crypt_alloc_req_aead(cc, ctx);
1262 	else
1263 		crypt_alloc_req_skcipher(cc, ctx);
1264 }
1265 
1266 static void crypt_free_req_skcipher(struct crypt_config *cc,
1267 				    struct skcipher_request *req, struct bio *base_bio)
1268 {
1269 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1270 
1271 	if ((struct skcipher_request *)(io + 1) != req)
1272 		mempool_free(req, cc->req_pool);
1273 }
1274 
1275 static void crypt_free_req_aead(struct crypt_config *cc,
1276 				struct aead_request *req, struct bio *base_bio)
1277 {
1278 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1279 
1280 	if ((struct aead_request *)(io + 1) != req)
1281 		mempool_free(req, cc->req_pool);
1282 }
1283 
1284 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1285 {
1286 	if (crypt_integrity_aead(cc))
1287 		crypt_free_req_aead(cc, req, base_bio);
1288 	else
1289 		crypt_free_req_skcipher(cc, req, base_bio);
1290 }
1291 
1292 /*
1293  * Encrypt / decrypt data from one bio to another one (can be the same one)
1294  */
1295 static int crypt_convert(struct crypt_config *cc,
1296 			 struct convert_context *ctx)
1297 {
1298 	unsigned int tag_offset = 0;
1299 	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1300 	int r;
1301 
1302 	atomic_set(&ctx->cc_pending, 1);
1303 
1304 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1305 
1306 		crypt_alloc_req(cc, ctx);
1307 		atomic_inc(&ctx->cc_pending);
1308 
1309 		if (crypt_integrity_aead(cc))
1310 			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1311 		else
1312 			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1313 
1314 		switch (r) {
1315 		/*
1316 		 * The request was queued by a crypto driver
1317 		 * but the driver request queue is full, let's wait.
1318 		 */
1319 		case -EBUSY:
1320 			wait_for_completion(&ctx->restart);
1321 			reinit_completion(&ctx->restart);
1322 			/* fall through */
1323 		/*
1324 		 * The request is queued and processed asynchronously,
1325 		 * completion function kcryptd_async_done() will be called.
1326 		 */
1327 		case -EINPROGRESS:
1328 			ctx->r.req = NULL;
1329 			ctx->cc_sector += sector_step;
1330 			tag_offset++;
1331 			continue;
1332 		/*
1333 		 * The request was already processed (synchronously).
1334 		 */
1335 		case 0:
1336 			atomic_dec(&ctx->cc_pending);
1337 			ctx->cc_sector += sector_step;
1338 			tag_offset++;
1339 			cond_resched();
1340 			continue;
1341 		/*
1342 		 * There was a data integrity error.
1343 		 */
1344 		case -EBADMSG:
1345 			atomic_dec(&ctx->cc_pending);
1346 			return -EILSEQ;
1347 		/*
1348 		 * There was an error while processing the request.
1349 		 */
1350 		default:
1351 			atomic_dec(&ctx->cc_pending);
1352 			return -EIO;
1353 		}
1354 	}
1355 
1356 	return 0;
1357 }
1358 
1359 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1360 
1361 /*
1362  * Generate a new unfragmented bio with the given size
1363  * This should never violate the device limitations (but only because
1364  * max_segment_size is being constrained to PAGE_SIZE).
1365  *
1366  * This function may be called concurrently. If we allocate from the mempool
1367  * concurrently, there is a possibility of deadlock. For example, if we have
1368  * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1369  * the mempool concurrently, it may deadlock in a situation where both processes
1370  * have allocated 128 pages and the mempool is exhausted.
1371  *
1372  * In order to avoid this scenario we allocate the pages under a mutex.
1373  *
1374  * In order to not degrade performance with excessive locking, we try
1375  * non-blocking allocations without a mutex first but on failure we fallback
1376  * to blocking allocations with a mutex.
1377  */
1378 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1379 {
1380 	struct crypt_config *cc = io->cc;
1381 	struct bio *clone;
1382 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1383 	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1384 	unsigned i, len, remaining_size;
1385 	struct page *page;
1386 
1387 retry:
1388 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1389 		mutex_lock(&cc->bio_alloc_lock);
1390 
1391 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1392 	if (!clone)
1393 		goto out;
1394 
1395 	clone_init(io, clone);
1396 
1397 	remaining_size = size;
1398 
1399 	for (i = 0; i < nr_iovecs; i++) {
1400 		page = mempool_alloc(cc->page_pool, gfp_mask);
1401 		if (!page) {
1402 			crypt_free_buffer_pages(cc, clone);
1403 			bio_put(clone);
1404 			gfp_mask |= __GFP_DIRECT_RECLAIM;
1405 			goto retry;
1406 		}
1407 
1408 		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1409 
1410 		bio_add_page(clone, page, len, 0);
1411 
1412 		remaining_size -= len;
1413 	}
1414 
1415 	/* Allocate space for integrity tags */
1416 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1417 		crypt_free_buffer_pages(cc, clone);
1418 		bio_put(clone);
1419 		clone = NULL;
1420 	}
1421 out:
1422 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1423 		mutex_unlock(&cc->bio_alloc_lock);
1424 
1425 	return clone;
1426 }
1427 
1428 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1429 {
1430 	unsigned int i;
1431 	struct bio_vec *bv;
1432 
1433 	bio_for_each_segment_all(bv, clone, i) {
1434 		BUG_ON(!bv->bv_page);
1435 		mempool_free(bv->bv_page, cc->page_pool);
1436 		bv->bv_page = NULL;
1437 	}
1438 }
1439 
1440 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1441 			  struct bio *bio, sector_t sector)
1442 {
1443 	io->cc = cc;
1444 	io->base_bio = bio;
1445 	io->sector = sector;
1446 	io->error = 0;
1447 	io->ctx.r.req = NULL;
1448 	io->integrity_metadata = NULL;
1449 	io->integrity_metadata_from_pool = false;
1450 	atomic_set(&io->io_pending, 0);
1451 }
1452 
1453 static void crypt_inc_pending(struct dm_crypt_io *io)
1454 {
1455 	atomic_inc(&io->io_pending);
1456 }
1457 
1458 /*
1459  * One of the bios was finished. Check for completion of
1460  * the whole request and correctly clean up the buffer.
1461  */
1462 static void crypt_dec_pending(struct dm_crypt_io *io)
1463 {
1464 	struct crypt_config *cc = io->cc;
1465 	struct bio *base_bio = io->base_bio;
1466 	int error = io->error;
1467 
1468 	if (!atomic_dec_and_test(&io->io_pending))
1469 		return;
1470 
1471 	if (io->ctx.r.req)
1472 		crypt_free_req(cc, io->ctx.r.req, base_bio);
1473 
1474 	if (unlikely(io->integrity_metadata_from_pool))
1475 		mempool_free(io->integrity_metadata, io->cc->tag_pool);
1476 	else
1477 		kfree(io->integrity_metadata);
1478 
1479 	base_bio->bi_error = error;
1480 	bio_endio(base_bio);
1481 }
1482 
1483 /*
1484  * kcryptd/kcryptd_io:
1485  *
1486  * Needed because it would be very unwise to do decryption in an
1487  * interrupt context.
1488  *
1489  * kcryptd performs the actual encryption or decryption.
1490  *
1491  * kcryptd_io performs the IO submission.
1492  *
1493  * They must be separated as otherwise the final stages could be
1494  * starved by new requests which can block in the first stages due
1495  * to memory allocation.
1496  *
1497  * The work is done per CPU global for all dm-crypt instances.
1498  * They should not depend on each other and do not block.
1499  */
1500 static void crypt_endio(struct bio *clone)
1501 {
1502 	struct dm_crypt_io *io = clone->bi_private;
1503 	struct crypt_config *cc = io->cc;
1504 	unsigned rw = bio_data_dir(clone);
1505 	int error;
1506 
1507 	/*
1508 	 * free the processed pages
1509 	 */
1510 	if (rw == WRITE)
1511 		crypt_free_buffer_pages(cc, clone);
1512 
1513 	error = clone->bi_error;
1514 	bio_put(clone);
1515 
1516 	if (rw == READ && !error) {
1517 		kcryptd_queue_crypt(io);
1518 		return;
1519 	}
1520 
1521 	if (unlikely(error))
1522 		io->error = error;
1523 
1524 	crypt_dec_pending(io);
1525 }
1526 
1527 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1528 {
1529 	struct crypt_config *cc = io->cc;
1530 
1531 	clone->bi_private = io;
1532 	clone->bi_end_io  = crypt_endio;
1533 	clone->bi_bdev    = cc->dev->bdev;
1534 	clone->bi_opf	  = io->base_bio->bi_opf;
1535 }
1536 
1537 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1538 {
1539 	struct crypt_config *cc = io->cc;
1540 	struct bio *clone;
1541 
1542 	/*
1543 	 * We need the original biovec array in order to decrypt
1544 	 * the whole bio data *afterwards* -- thanks to immutable
1545 	 * biovecs we don't need to worry about the block layer
1546 	 * modifying the biovec array; so leverage bio_clone_fast().
1547 	 */
1548 	clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1549 	if (!clone)
1550 		return 1;
1551 
1552 	crypt_inc_pending(io);
1553 
1554 	clone_init(io, clone);
1555 	clone->bi_iter.bi_sector = cc->start + io->sector;
1556 
1557 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1558 		crypt_dec_pending(io);
1559 		bio_put(clone);
1560 		return 1;
1561 	}
1562 
1563 	generic_make_request(clone);
1564 	return 0;
1565 }
1566 
1567 static void kcryptd_io_read_work(struct work_struct *work)
1568 {
1569 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1570 
1571 	crypt_inc_pending(io);
1572 	if (kcryptd_io_read(io, GFP_NOIO))
1573 		io->error = -ENOMEM;
1574 	crypt_dec_pending(io);
1575 }
1576 
1577 static void kcryptd_queue_read(struct dm_crypt_io *io)
1578 {
1579 	struct crypt_config *cc = io->cc;
1580 
1581 	INIT_WORK(&io->work, kcryptd_io_read_work);
1582 	queue_work(cc->io_queue, &io->work);
1583 }
1584 
1585 static void kcryptd_io_write(struct dm_crypt_io *io)
1586 {
1587 	struct bio *clone = io->ctx.bio_out;
1588 
1589 	generic_make_request(clone);
1590 }
1591 
1592 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1593 
1594 static int dmcrypt_write(void *data)
1595 {
1596 	struct crypt_config *cc = data;
1597 	struct dm_crypt_io *io;
1598 
1599 	while (1) {
1600 		struct rb_root write_tree;
1601 		struct blk_plug plug;
1602 
1603 		DECLARE_WAITQUEUE(wait, current);
1604 
1605 		spin_lock_irq(&cc->write_thread_wait.lock);
1606 continue_locked:
1607 
1608 		if (!RB_EMPTY_ROOT(&cc->write_tree))
1609 			goto pop_from_list;
1610 
1611 		set_current_state(TASK_INTERRUPTIBLE);
1612 		__add_wait_queue(&cc->write_thread_wait, &wait);
1613 
1614 		spin_unlock_irq(&cc->write_thread_wait.lock);
1615 
1616 		if (unlikely(kthread_should_stop())) {
1617 			set_current_state(TASK_RUNNING);
1618 			remove_wait_queue(&cc->write_thread_wait, &wait);
1619 			break;
1620 		}
1621 
1622 		schedule();
1623 
1624 		set_current_state(TASK_RUNNING);
1625 		spin_lock_irq(&cc->write_thread_wait.lock);
1626 		__remove_wait_queue(&cc->write_thread_wait, &wait);
1627 		goto continue_locked;
1628 
1629 pop_from_list:
1630 		write_tree = cc->write_tree;
1631 		cc->write_tree = RB_ROOT;
1632 		spin_unlock_irq(&cc->write_thread_wait.lock);
1633 
1634 		BUG_ON(rb_parent(write_tree.rb_node));
1635 
1636 		/*
1637 		 * Note: we cannot walk the tree here with rb_next because
1638 		 * the structures may be freed when kcryptd_io_write is called.
1639 		 */
1640 		blk_start_plug(&plug);
1641 		do {
1642 			io = crypt_io_from_node(rb_first(&write_tree));
1643 			rb_erase(&io->rb_node, &write_tree);
1644 			kcryptd_io_write(io);
1645 		} while (!RB_EMPTY_ROOT(&write_tree));
1646 		blk_finish_plug(&plug);
1647 	}
1648 	return 0;
1649 }
1650 
1651 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1652 {
1653 	struct bio *clone = io->ctx.bio_out;
1654 	struct crypt_config *cc = io->cc;
1655 	unsigned long flags;
1656 	sector_t sector;
1657 	struct rb_node **rbp, *parent;
1658 
1659 	if (unlikely(io->error < 0)) {
1660 		crypt_free_buffer_pages(cc, clone);
1661 		bio_put(clone);
1662 		crypt_dec_pending(io);
1663 		return;
1664 	}
1665 
1666 	/* crypt_convert should have filled the clone bio */
1667 	BUG_ON(io->ctx.iter_out.bi_size);
1668 
1669 	clone->bi_iter.bi_sector = cc->start + io->sector;
1670 
1671 	if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1672 		generic_make_request(clone);
1673 		return;
1674 	}
1675 
1676 	spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1677 	rbp = &cc->write_tree.rb_node;
1678 	parent = NULL;
1679 	sector = io->sector;
1680 	while (*rbp) {
1681 		parent = *rbp;
1682 		if (sector < crypt_io_from_node(parent)->sector)
1683 			rbp = &(*rbp)->rb_left;
1684 		else
1685 			rbp = &(*rbp)->rb_right;
1686 	}
1687 	rb_link_node(&io->rb_node, parent, rbp);
1688 	rb_insert_color(&io->rb_node, &cc->write_tree);
1689 
1690 	wake_up_locked(&cc->write_thread_wait);
1691 	spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1692 }
1693 
1694 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1695 {
1696 	struct crypt_config *cc = io->cc;
1697 	struct bio *clone;
1698 	int crypt_finished;
1699 	sector_t sector = io->sector;
1700 	int r;
1701 
1702 	/*
1703 	 * Prevent io from disappearing until this function completes.
1704 	 */
1705 	crypt_inc_pending(io);
1706 	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1707 
1708 	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1709 	if (unlikely(!clone)) {
1710 		io->error = -EIO;
1711 		goto dec;
1712 	}
1713 
1714 	io->ctx.bio_out = clone;
1715 	io->ctx.iter_out = clone->bi_iter;
1716 
1717 	sector += bio_sectors(clone);
1718 
1719 	crypt_inc_pending(io);
1720 	r = crypt_convert(cc, &io->ctx);
1721 	if (r < 0)
1722 		io->error = r;
1723 	crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1724 
1725 	/* Encryption was already finished, submit io now */
1726 	if (crypt_finished) {
1727 		kcryptd_crypt_write_io_submit(io, 0);
1728 		io->sector = sector;
1729 	}
1730 
1731 dec:
1732 	crypt_dec_pending(io);
1733 }
1734 
1735 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1736 {
1737 	crypt_dec_pending(io);
1738 }
1739 
1740 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1741 {
1742 	struct crypt_config *cc = io->cc;
1743 	int r = 0;
1744 
1745 	crypt_inc_pending(io);
1746 
1747 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1748 			   io->sector);
1749 
1750 	r = crypt_convert(cc, &io->ctx);
1751 	if (r < 0)
1752 		io->error = r;
1753 
1754 	if (atomic_dec_and_test(&io->ctx.cc_pending))
1755 		kcryptd_crypt_read_done(io);
1756 
1757 	crypt_dec_pending(io);
1758 }
1759 
1760 static void kcryptd_async_done(struct crypto_async_request *async_req,
1761 			       int error)
1762 {
1763 	struct dm_crypt_request *dmreq = async_req->data;
1764 	struct convert_context *ctx = dmreq->ctx;
1765 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1766 	struct crypt_config *cc = io->cc;
1767 
1768 	/*
1769 	 * A request from crypto driver backlog is going to be processed now,
1770 	 * finish the completion and continue in crypt_convert().
1771 	 * (Callback will be called for the second time for this request.)
1772 	 */
1773 	if (error == -EINPROGRESS) {
1774 		complete(&ctx->restart);
1775 		return;
1776 	}
1777 
1778 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1779 		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
1780 
1781 	if (error == -EBADMSG) {
1782 		DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1783 			    (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
1784 		io->error = -EILSEQ;
1785 	} else if (error < 0)
1786 		io->error = -EIO;
1787 
1788 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1789 
1790 	if (!atomic_dec_and_test(&ctx->cc_pending))
1791 		return;
1792 
1793 	if (bio_data_dir(io->base_bio) == READ)
1794 		kcryptd_crypt_read_done(io);
1795 	else
1796 		kcryptd_crypt_write_io_submit(io, 1);
1797 }
1798 
1799 static void kcryptd_crypt(struct work_struct *work)
1800 {
1801 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1802 
1803 	if (bio_data_dir(io->base_bio) == READ)
1804 		kcryptd_crypt_read_convert(io);
1805 	else
1806 		kcryptd_crypt_write_convert(io);
1807 }
1808 
1809 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1810 {
1811 	struct crypt_config *cc = io->cc;
1812 
1813 	INIT_WORK(&io->work, kcryptd_crypt);
1814 	queue_work(cc->crypt_queue, &io->work);
1815 }
1816 
1817 static void crypt_free_tfms_aead(struct crypt_config *cc)
1818 {
1819 	if (!cc->cipher_tfm.tfms_aead)
1820 		return;
1821 
1822 	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1823 		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
1824 		cc->cipher_tfm.tfms_aead[0] = NULL;
1825 	}
1826 
1827 	kfree(cc->cipher_tfm.tfms_aead);
1828 	cc->cipher_tfm.tfms_aead = NULL;
1829 }
1830 
1831 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
1832 {
1833 	unsigned i;
1834 
1835 	if (!cc->cipher_tfm.tfms)
1836 		return;
1837 
1838 	for (i = 0; i < cc->tfms_count; i++)
1839 		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
1840 			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
1841 			cc->cipher_tfm.tfms[i] = NULL;
1842 		}
1843 
1844 	kfree(cc->cipher_tfm.tfms);
1845 	cc->cipher_tfm.tfms = NULL;
1846 }
1847 
1848 static void crypt_free_tfms(struct crypt_config *cc)
1849 {
1850 	if (crypt_integrity_aead(cc))
1851 		crypt_free_tfms_aead(cc);
1852 	else
1853 		crypt_free_tfms_skcipher(cc);
1854 }
1855 
1856 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
1857 {
1858 	unsigned i;
1859 	int err;
1860 
1861 	cc->cipher_tfm.tfms = kzalloc(cc->tfms_count *
1862 				      sizeof(struct crypto_skcipher *), GFP_KERNEL);
1863 	if (!cc->cipher_tfm.tfms)
1864 		return -ENOMEM;
1865 
1866 	for (i = 0; i < cc->tfms_count; i++) {
1867 		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1868 		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
1869 			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
1870 			crypt_free_tfms(cc);
1871 			return err;
1872 		}
1873 	}
1874 
1875 	return 0;
1876 }
1877 
1878 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
1879 {
1880 	int err;
1881 
1882 	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
1883 	if (!cc->cipher_tfm.tfms)
1884 		return -ENOMEM;
1885 
1886 	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0);
1887 	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1888 		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
1889 		crypt_free_tfms(cc);
1890 		return err;
1891 	}
1892 
1893 	return 0;
1894 }
1895 
1896 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1897 {
1898 	if (crypt_integrity_aead(cc))
1899 		return crypt_alloc_tfms_aead(cc, ciphermode);
1900 	else
1901 		return crypt_alloc_tfms_skcipher(cc, ciphermode);
1902 }
1903 
1904 static unsigned crypt_subkey_size(struct crypt_config *cc)
1905 {
1906 	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1907 }
1908 
1909 static unsigned crypt_authenckey_size(struct crypt_config *cc)
1910 {
1911 	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
1912 }
1913 
1914 /*
1915  * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
1916  * the key must be for some reason in special format.
1917  * This funcion converts cc->key to this special format.
1918  */
1919 static void crypt_copy_authenckey(char *p, const void *key,
1920 				  unsigned enckeylen, unsigned authkeylen)
1921 {
1922 	struct crypto_authenc_key_param *param;
1923 	struct rtattr *rta;
1924 
1925 	rta = (struct rtattr *)p;
1926 	param = RTA_DATA(rta);
1927 	param->enckeylen = cpu_to_be32(enckeylen);
1928 	rta->rta_len = RTA_LENGTH(sizeof(*param));
1929 	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
1930 	p += RTA_SPACE(sizeof(*param));
1931 	memcpy(p, key + enckeylen, authkeylen);
1932 	p += authkeylen;
1933 	memcpy(p, key, enckeylen);
1934 }
1935 
1936 static int crypt_setkey(struct crypt_config *cc)
1937 {
1938 	unsigned subkey_size;
1939 	int err = 0, i, r;
1940 
1941 	/* Ignore extra keys (which are used for IV etc) */
1942 	subkey_size = crypt_subkey_size(cc);
1943 
1944 	if (crypt_integrity_hmac(cc))
1945 		crypt_copy_authenckey(cc->authenc_key, cc->key,
1946 				      subkey_size - cc->key_mac_size,
1947 				      cc->key_mac_size);
1948 	for (i = 0; i < cc->tfms_count; i++) {
1949 		if (crypt_integrity_hmac(cc))
1950 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1951 				cc->authenc_key, crypt_authenckey_size(cc));
1952 		else if (crypt_integrity_aead(cc))
1953 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1954 					       cc->key + (i * subkey_size),
1955 					       subkey_size);
1956 		else
1957 			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
1958 						   cc->key + (i * subkey_size),
1959 						   subkey_size);
1960 		if (r)
1961 			err = r;
1962 	}
1963 
1964 	if (crypt_integrity_hmac(cc))
1965 		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
1966 
1967 	return err;
1968 }
1969 
1970 #ifdef CONFIG_KEYS
1971 
1972 static bool contains_whitespace(const char *str)
1973 {
1974 	while (*str)
1975 		if (isspace(*str++))
1976 			return true;
1977 	return false;
1978 }
1979 
1980 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
1981 {
1982 	char *new_key_string, *key_desc;
1983 	int ret;
1984 	struct key *key;
1985 	const struct user_key_payload *ukp;
1986 
1987 	/*
1988 	 * Reject key_string with whitespace. dm core currently lacks code for
1989 	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
1990 	 */
1991 	if (contains_whitespace(key_string)) {
1992 		DMERR("whitespace chars not allowed in key string");
1993 		return -EINVAL;
1994 	}
1995 
1996 	/* look for next ':' separating key_type from key_description */
1997 	key_desc = strpbrk(key_string, ":");
1998 	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
1999 		return -EINVAL;
2000 
2001 	if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
2002 	    strncmp(key_string, "user:", key_desc - key_string + 1))
2003 		return -EINVAL;
2004 
2005 	new_key_string = kstrdup(key_string, GFP_KERNEL);
2006 	if (!new_key_string)
2007 		return -ENOMEM;
2008 
2009 	key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
2010 			  key_desc + 1, NULL);
2011 	if (IS_ERR(key)) {
2012 		kzfree(new_key_string);
2013 		return PTR_ERR(key);
2014 	}
2015 
2016 	down_read(&key->sem);
2017 
2018 	ukp = user_key_payload_locked(key);
2019 	if (!ukp) {
2020 		up_read(&key->sem);
2021 		key_put(key);
2022 		kzfree(new_key_string);
2023 		return -EKEYREVOKED;
2024 	}
2025 
2026 	if (cc->key_size != ukp->datalen) {
2027 		up_read(&key->sem);
2028 		key_put(key);
2029 		kzfree(new_key_string);
2030 		return -EINVAL;
2031 	}
2032 
2033 	memcpy(cc->key, ukp->data, cc->key_size);
2034 
2035 	up_read(&key->sem);
2036 	key_put(key);
2037 
2038 	/* clear the flag since following operations may invalidate previously valid key */
2039 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2040 
2041 	ret = crypt_setkey(cc);
2042 
2043 	/* wipe the kernel key payload copy in each case */
2044 	memset(cc->key, 0, cc->key_size * sizeof(u8));
2045 
2046 	if (!ret) {
2047 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2048 		kzfree(cc->key_string);
2049 		cc->key_string = new_key_string;
2050 	} else
2051 		kzfree(new_key_string);
2052 
2053 	return ret;
2054 }
2055 
2056 static int get_key_size(char **key_string)
2057 {
2058 	char *colon, dummy;
2059 	int ret;
2060 
2061 	if (*key_string[0] != ':')
2062 		return strlen(*key_string) >> 1;
2063 
2064 	/* look for next ':' in key string */
2065 	colon = strpbrk(*key_string + 1, ":");
2066 	if (!colon)
2067 		return -EINVAL;
2068 
2069 	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2070 		return -EINVAL;
2071 
2072 	*key_string = colon;
2073 
2074 	/* remaining key string should be :<logon|user>:<key_desc> */
2075 
2076 	return ret;
2077 }
2078 
2079 #else
2080 
2081 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2082 {
2083 	return -EINVAL;
2084 }
2085 
2086 static int get_key_size(char **key_string)
2087 {
2088 	return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2089 }
2090 
2091 #endif
2092 
2093 static int crypt_set_key(struct crypt_config *cc, char *key)
2094 {
2095 	int r = -EINVAL;
2096 	int key_string_len = strlen(key);
2097 
2098 	/* Hyphen (which gives a key_size of zero) means there is no key. */
2099 	if (!cc->key_size && strcmp(key, "-"))
2100 		goto out;
2101 
2102 	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2103 	if (key[0] == ':') {
2104 		r = crypt_set_keyring_key(cc, key + 1);
2105 		goto out;
2106 	}
2107 
2108 	/* clear the flag since following operations may invalidate previously valid key */
2109 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2110 
2111 	/* wipe references to any kernel keyring key */
2112 	kzfree(cc->key_string);
2113 	cc->key_string = NULL;
2114 
2115 	/* Decode key from its hex representation. */
2116 	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2117 		goto out;
2118 
2119 	r = crypt_setkey(cc);
2120 	if (!r)
2121 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2122 
2123 out:
2124 	/* Hex key string not needed after here, so wipe it. */
2125 	memset(key, '0', key_string_len);
2126 
2127 	return r;
2128 }
2129 
2130 static int crypt_wipe_key(struct crypt_config *cc)
2131 {
2132 	int r;
2133 
2134 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2135 	get_random_bytes(&cc->key, cc->key_size);
2136 	kzfree(cc->key_string);
2137 	cc->key_string = NULL;
2138 	r = crypt_setkey(cc);
2139 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2140 
2141 	return r;
2142 }
2143 
2144 static void crypt_dtr(struct dm_target *ti)
2145 {
2146 	struct crypt_config *cc = ti->private;
2147 
2148 	ti->private = NULL;
2149 
2150 	if (!cc)
2151 		return;
2152 
2153 	if (cc->write_thread)
2154 		kthread_stop(cc->write_thread);
2155 
2156 	if (cc->io_queue)
2157 		destroy_workqueue(cc->io_queue);
2158 	if (cc->crypt_queue)
2159 		destroy_workqueue(cc->crypt_queue);
2160 
2161 	crypt_free_tfms(cc);
2162 
2163 	if (cc->bs)
2164 		bioset_free(cc->bs);
2165 
2166 	mempool_destroy(cc->page_pool);
2167 	mempool_destroy(cc->req_pool);
2168 	mempool_destroy(cc->tag_pool);
2169 
2170 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2171 		cc->iv_gen_ops->dtr(cc);
2172 
2173 	if (cc->dev)
2174 		dm_put_device(ti, cc->dev);
2175 
2176 	kzfree(cc->cipher);
2177 	kzfree(cc->cipher_string);
2178 	kzfree(cc->key_string);
2179 	kzfree(cc->cipher_auth);
2180 	kzfree(cc->authenc_key);
2181 
2182 	/* Must zero key material before freeing */
2183 	kzfree(cc);
2184 }
2185 
2186 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2187 {
2188 	struct crypt_config *cc = ti->private;
2189 
2190 	if (crypt_integrity_aead(cc))
2191 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2192 	else
2193 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2194 
2195 	if (cc->iv_size)
2196 		/* at least a 64 bit sector number should fit in our buffer */
2197 		cc->iv_size = max(cc->iv_size,
2198 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2199 	else if (ivmode) {
2200 		DMWARN("Selected cipher does not support IVs");
2201 		ivmode = NULL;
2202 	}
2203 
2204 	/* Choose ivmode, see comments at iv code. */
2205 	if (ivmode == NULL)
2206 		cc->iv_gen_ops = NULL;
2207 	else if (strcmp(ivmode, "plain") == 0)
2208 		cc->iv_gen_ops = &crypt_iv_plain_ops;
2209 	else if (strcmp(ivmode, "plain64") == 0)
2210 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2211 	else if (strcmp(ivmode, "essiv") == 0)
2212 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2213 	else if (strcmp(ivmode, "benbi") == 0)
2214 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2215 	else if (strcmp(ivmode, "null") == 0)
2216 		cc->iv_gen_ops = &crypt_iv_null_ops;
2217 	else if (strcmp(ivmode, "lmk") == 0) {
2218 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2219 		/*
2220 		 * Version 2 and 3 is recognised according
2221 		 * to length of provided multi-key string.
2222 		 * If present (version 3), last key is used as IV seed.
2223 		 * All keys (including IV seed) are always the same size.
2224 		 */
2225 		if (cc->key_size % cc->key_parts) {
2226 			cc->key_parts++;
2227 			cc->key_extra_size = cc->key_size / cc->key_parts;
2228 		}
2229 	} else if (strcmp(ivmode, "tcw") == 0) {
2230 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2231 		cc->key_parts += 2; /* IV + whitening */
2232 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2233 	} else if (strcmp(ivmode, "random") == 0) {
2234 		cc->iv_gen_ops = &crypt_iv_random_ops;
2235 		/* Need storage space in integrity fields. */
2236 		cc->integrity_iv_size = cc->iv_size;
2237 	} else {
2238 		ti->error = "Invalid IV mode";
2239 		return -EINVAL;
2240 	}
2241 
2242 	return 0;
2243 }
2244 
2245 /*
2246  * Workaround to parse cipher algorithm from crypto API spec.
2247  * The cc->cipher is currently used only in ESSIV.
2248  * This should be probably done by crypto-api calls (once available...)
2249  */
2250 static int crypt_ctr_blkdev_cipher(struct crypt_config *cc)
2251 {
2252 	const char *alg_name = NULL;
2253 	char *start, *end;
2254 
2255 	if (crypt_integrity_aead(cc)) {
2256 		alg_name = crypto_tfm_alg_name(crypto_aead_tfm(any_tfm_aead(cc)));
2257 		if (!alg_name)
2258 			return -EINVAL;
2259 		if (crypt_integrity_hmac(cc)) {
2260 			alg_name = strchr(alg_name, ',');
2261 			if (!alg_name)
2262 				return -EINVAL;
2263 		}
2264 		alg_name++;
2265 	} else {
2266 		alg_name = crypto_tfm_alg_name(crypto_skcipher_tfm(any_tfm(cc)));
2267 		if (!alg_name)
2268 			return -EINVAL;
2269 	}
2270 
2271 	start = strchr(alg_name, '(');
2272 	end = strchr(alg_name, ')');
2273 
2274 	if (!start && !end) {
2275 		cc->cipher = kstrdup(alg_name, GFP_KERNEL);
2276 		return cc->cipher ? 0 : -ENOMEM;
2277 	}
2278 
2279 	if (!start || !end || ++start >= end)
2280 		return -EINVAL;
2281 
2282 	cc->cipher = kzalloc(end - start + 1, GFP_KERNEL);
2283 	if (!cc->cipher)
2284 		return -ENOMEM;
2285 
2286 	strncpy(cc->cipher, start, end - start);
2287 
2288 	return 0;
2289 }
2290 
2291 /*
2292  * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2293  * The HMAC is needed to calculate tag size (HMAC digest size).
2294  * This should be probably done by crypto-api calls (once available...)
2295  */
2296 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2297 {
2298 	char *start, *end, *mac_alg = NULL;
2299 	struct crypto_ahash *mac;
2300 
2301 	if (!strstarts(cipher_api, "authenc("))
2302 		return 0;
2303 
2304 	start = strchr(cipher_api, '(');
2305 	end = strchr(cipher_api, ',');
2306 	if (!start || !end || ++start > end)
2307 		return -EINVAL;
2308 
2309 	mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2310 	if (!mac_alg)
2311 		return -ENOMEM;
2312 	strncpy(mac_alg, start, end - start);
2313 
2314 	mac = crypto_alloc_ahash(mac_alg, 0, 0);
2315 	kfree(mac_alg);
2316 
2317 	if (IS_ERR(mac))
2318 		return PTR_ERR(mac);
2319 
2320 	cc->key_mac_size = crypto_ahash_digestsize(mac);
2321 	crypto_free_ahash(mac);
2322 
2323 	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2324 	if (!cc->authenc_key)
2325 		return -ENOMEM;
2326 
2327 	return 0;
2328 }
2329 
2330 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2331 				char **ivmode, char **ivopts)
2332 {
2333 	struct crypt_config *cc = ti->private;
2334 	char *tmp, *cipher_api;
2335 	int ret = -EINVAL;
2336 
2337 	cc->tfms_count = 1;
2338 
2339 	/*
2340 	 * New format (capi: prefix)
2341 	 * capi:cipher_api_spec-iv:ivopts
2342 	 */
2343 	tmp = &cipher_in[strlen("capi:")];
2344 	cipher_api = strsep(&tmp, "-");
2345 	*ivmode = strsep(&tmp, ":");
2346 	*ivopts = tmp;
2347 
2348 	if (*ivmode && !strcmp(*ivmode, "lmk"))
2349 		cc->tfms_count = 64;
2350 
2351 	cc->key_parts = cc->tfms_count;
2352 
2353 	/* Allocate cipher */
2354 	ret = crypt_alloc_tfms(cc, cipher_api);
2355 	if (ret < 0) {
2356 		ti->error = "Error allocating crypto tfm";
2357 		return ret;
2358 	}
2359 
2360 	/* Alloc AEAD, can be used only in new format. */
2361 	if (crypt_integrity_aead(cc)) {
2362 		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2363 		if (ret < 0) {
2364 			ti->error = "Invalid AEAD cipher spec";
2365 			return -ENOMEM;
2366 		}
2367 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2368 	} else
2369 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2370 
2371 	ret = crypt_ctr_blkdev_cipher(cc);
2372 	if (ret < 0) {
2373 		ti->error = "Cannot allocate cipher string";
2374 		return -ENOMEM;
2375 	}
2376 
2377 	return 0;
2378 }
2379 
2380 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2381 				char **ivmode, char **ivopts)
2382 {
2383 	struct crypt_config *cc = ti->private;
2384 	char *tmp, *cipher, *chainmode, *keycount;
2385 	char *cipher_api = NULL;
2386 	int ret = -EINVAL;
2387 	char dummy;
2388 
2389 	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2390 		ti->error = "Bad cipher specification";
2391 		return -EINVAL;
2392 	}
2393 
2394 	/*
2395 	 * Legacy dm-crypt cipher specification
2396 	 * cipher[:keycount]-mode-iv:ivopts
2397 	 */
2398 	tmp = cipher_in;
2399 	keycount = strsep(&tmp, "-");
2400 	cipher = strsep(&keycount, ":");
2401 
2402 	if (!keycount)
2403 		cc->tfms_count = 1;
2404 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2405 		 !is_power_of_2(cc->tfms_count)) {
2406 		ti->error = "Bad cipher key count specification";
2407 		return -EINVAL;
2408 	}
2409 	cc->key_parts = cc->tfms_count;
2410 
2411 	cc->cipher = kstrdup(cipher, GFP_KERNEL);
2412 	if (!cc->cipher)
2413 		goto bad_mem;
2414 
2415 	chainmode = strsep(&tmp, "-");
2416 	*ivopts = strsep(&tmp, "-");
2417 	*ivmode = strsep(&*ivopts, ":");
2418 
2419 	if (tmp)
2420 		DMWARN("Ignoring unexpected additional cipher options");
2421 
2422 	/*
2423 	 * For compatibility with the original dm-crypt mapping format, if
2424 	 * only the cipher name is supplied, use cbc-plain.
2425 	 */
2426 	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2427 		chainmode = "cbc";
2428 		*ivmode = "plain";
2429 	}
2430 
2431 	if (strcmp(chainmode, "ecb") && !*ivmode) {
2432 		ti->error = "IV mechanism required";
2433 		return -EINVAL;
2434 	}
2435 
2436 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2437 	if (!cipher_api)
2438 		goto bad_mem;
2439 
2440 	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2441 		       "%s(%s)", chainmode, cipher);
2442 	if (ret < 0) {
2443 		kfree(cipher_api);
2444 		goto bad_mem;
2445 	}
2446 
2447 	/* Allocate cipher */
2448 	ret = crypt_alloc_tfms(cc, cipher_api);
2449 	if (ret < 0) {
2450 		ti->error = "Error allocating crypto tfm";
2451 		kfree(cipher_api);
2452 		return ret;
2453 	}
2454 
2455 	return 0;
2456 bad_mem:
2457 	ti->error = "Cannot allocate cipher strings";
2458 	return -ENOMEM;
2459 }
2460 
2461 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
2462 {
2463 	struct crypt_config *cc = ti->private;
2464 	char *ivmode = NULL, *ivopts = NULL;
2465 	int ret;
2466 
2467 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
2468 	if (!cc->cipher_string) {
2469 		ti->error = "Cannot allocate cipher strings";
2470 		return -ENOMEM;
2471 	}
2472 
2473 	if (strstarts(cipher_in, "capi:"))
2474 		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
2475 	else
2476 		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
2477 	if (ret)
2478 		return ret;
2479 
2480 	/* Initialize IV */
2481 	ret = crypt_ctr_ivmode(ti, ivmode);
2482 	if (ret < 0)
2483 		return ret;
2484 
2485 	/* Initialize and set key */
2486 	ret = crypt_set_key(cc, key);
2487 	if (ret < 0) {
2488 		ti->error = "Error decoding and setting key";
2489 		return ret;
2490 	}
2491 
2492 	/* Allocate IV */
2493 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
2494 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
2495 		if (ret < 0) {
2496 			ti->error = "Error creating IV";
2497 			return ret;
2498 		}
2499 	}
2500 
2501 	/* Initialize IV (set keys for ESSIV etc) */
2502 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
2503 		ret = cc->iv_gen_ops->init(cc);
2504 		if (ret < 0) {
2505 			ti->error = "Error initialising IV";
2506 			return ret;
2507 		}
2508 	}
2509 
2510 	return ret;
2511 }
2512 
2513 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
2514 {
2515 	struct crypt_config *cc = ti->private;
2516 	struct dm_arg_set as;
2517 	static struct dm_arg _args[] = {
2518 		{0, 6, "Invalid number of feature args"},
2519 	};
2520 	unsigned int opt_params, val;
2521 	const char *opt_string, *sval;
2522 	char dummy;
2523 	int ret;
2524 
2525 	/* Optional parameters */
2526 	as.argc = argc;
2527 	as.argv = argv;
2528 
2529 	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2530 	if (ret)
2531 		return ret;
2532 
2533 	while (opt_params--) {
2534 		opt_string = dm_shift_arg(&as);
2535 		if (!opt_string) {
2536 			ti->error = "Not enough feature arguments";
2537 			return -EINVAL;
2538 		}
2539 
2540 		if (!strcasecmp(opt_string, "allow_discards"))
2541 			ti->num_discard_bios = 1;
2542 
2543 		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
2544 			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2545 
2546 		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
2547 			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2548 		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
2549 			if (val == 0 || val > MAX_TAG_SIZE) {
2550 				ti->error = "Invalid integrity arguments";
2551 				return -EINVAL;
2552 			}
2553 			cc->on_disk_tag_size = val;
2554 			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
2555 			if (!strcasecmp(sval, "aead")) {
2556 				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
2557 			} else  if (strcasecmp(sval, "none")) {
2558 				ti->error = "Unknown integrity profile";
2559 				return -EINVAL;
2560 			}
2561 
2562 			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
2563 			if (!cc->cipher_auth)
2564 				return -ENOMEM;
2565 		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
2566 			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
2567 			    cc->sector_size > 4096 ||
2568 			    (cc->sector_size & (cc->sector_size - 1))) {
2569 				ti->error = "Invalid feature value for sector_size";
2570 				return -EINVAL;
2571 			}
2572 			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
2573 		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
2574 			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2575 		else {
2576 			ti->error = "Invalid feature arguments";
2577 			return -EINVAL;
2578 		}
2579 	}
2580 
2581 	return 0;
2582 }
2583 
2584 /*
2585  * Construct an encryption mapping:
2586  * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
2587  */
2588 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2589 {
2590 	struct crypt_config *cc;
2591 	int key_size;
2592 	unsigned int align_mask;
2593 	unsigned long long tmpll;
2594 	int ret;
2595 	size_t iv_size_padding, additional_req_size;
2596 	char dummy;
2597 
2598 	if (argc < 5) {
2599 		ti->error = "Not enough arguments";
2600 		return -EINVAL;
2601 	}
2602 
2603 	key_size = get_key_size(&argv[1]);
2604 	if (key_size < 0) {
2605 		ti->error = "Cannot parse key size";
2606 		return -EINVAL;
2607 	}
2608 
2609 	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
2610 	if (!cc) {
2611 		ti->error = "Cannot allocate encryption context";
2612 		return -ENOMEM;
2613 	}
2614 	cc->key_size = key_size;
2615 	cc->sector_size = (1 << SECTOR_SHIFT);
2616 	cc->sector_shift = 0;
2617 
2618 	ti->private = cc;
2619 
2620 	/* Optional parameters need to be read before cipher constructor */
2621 	if (argc > 5) {
2622 		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
2623 		if (ret)
2624 			goto bad;
2625 	}
2626 
2627 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
2628 	if (ret < 0)
2629 		goto bad;
2630 
2631 	if (crypt_integrity_aead(cc)) {
2632 		cc->dmreq_start = sizeof(struct aead_request);
2633 		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
2634 		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
2635 	} else {
2636 		cc->dmreq_start = sizeof(struct skcipher_request);
2637 		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
2638 		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
2639 	}
2640 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
2641 
2642 	if (align_mask < CRYPTO_MINALIGN) {
2643 		/* Allocate the padding exactly */
2644 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
2645 				& align_mask;
2646 	} else {
2647 		/*
2648 		 * If the cipher requires greater alignment than kmalloc
2649 		 * alignment, we don't know the exact position of the
2650 		 * initialization vector. We must assume worst case.
2651 		 */
2652 		iv_size_padding = align_mask;
2653 	}
2654 
2655 	ret = -ENOMEM;
2656 
2657 	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
2658 	additional_req_size = sizeof(struct dm_crypt_request) +
2659 		iv_size_padding + cc->iv_size +
2660 		cc->iv_size +
2661 		sizeof(uint64_t) +
2662 		sizeof(unsigned int);
2663 
2664 	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start + additional_req_size);
2665 	if (!cc->req_pool) {
2666 		ti->error = "Cannot allocate crypt request mempool";
2667 		goto bad;
2668 	}
2669 
2670 	cc->per_bio_data_size = ti->per_io_data_size =
2671 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
2672 		      ARCH_KMALLOC_MINALIGN);
2673 
2674 	cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
2675 	if (!cc->page_pool) {
2676 		ti->error = "Cannot allocate page mempool";
2677 		goto bad;
2678 	}
2679 
2680 	cc->bs = bioset_create(MIN_IOS, 0);
2681 	if (!cc->bs) {
2682 		ti->error = "Cannot allocate crypt bioset";
2683 		goto bad;
2684 	}
2685 
2686 	mutex_init(&cc->bio_alloc_lock);
2687 
2688 	ret = -EINVAL;
2689 	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
2690 	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
2691 		ti->error = "Invalid iv_offset sector";
2692 		goto bad;
2693 	}
2694 	cc->iv_offset = tmpll;
2695 
2696 	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
2697 	if (ret) {
2698 		ti->error = "Device lookup failed";
2699 		goto bad;
2700 	}
2701 
2702 	ret = -EINVAL;
2703 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
2704 		ti->error = "Invalid device sector";
2705 		goto bad;
2706 	}
2707 	cc->start = tmpll;
2708 
2709 	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
2710 		ret = crypt_integrity_ctr(cc, ti);
2711 		if (ret)
2712 			goto bad;
2713 
2714 		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
2715 		if (!cc->tag_pool_max_sectors)
2716 			cc->tag_pool_max_sectors = 1;
2717 
2718 		cc->tag_pool = mempool_create_kmalloc_pool(MIN_IOS,
2719 			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
2720 		if (!cc->tag_pool) {
2721 			ti->error = "Cannot allocate integrity tags mempool";
2722 			goto bad;
2723 		}
2724 
2725 		cc->tag_pool_max_sectors <<= cc->sector_shift;
2726 	}
2727 
2728 	ret = -ENOMEM;
2729 	cc->io_queue = alloc_workqueue("kcryptd_io", WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2730 	if (!cc->io_queue) {
2731 		ti->error = "Couldn't create kcryptd io queue";
2732 		goto bad;
2733 	}
2734 
2735 	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2736 		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2737 	else
2738 		cc->crypt_queue = alloc_workqueue("kcryptd",
2739 						  WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
2740 						  num_online_cpus());
2741 	if (!cc->crypt_queue) {
2742 		ti->error = "Couldn't create kcryptd queue";
2743 		goto bad;
2744 	}
2745 
2746 	init_waitqueue_head(&cc->write_thread_wait);
2747 	cc->write_tree = RB_ROOT;
2748 
2749 	cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
2750 	if (IS_ERR(cc->write_thread)) {
2751 		ret = PTR_ERR(cc->write_thread);
2752 		cc->write_thread = NULL;
2753 		ti->error = "Couldn't spawn write thread";
2754 		goto bad;
2755 	}
2756 	wake_up_process(cc->write_thread);
2757 
2758 	ti->num_flush_bios = 1;
2759 
2760 	return 0;
2761 
2762 bad:
2763 	crypt_dtr(ti);
2764 	return ret;
2765 }
2766 
2767 static int crypt_map(struct dm_target *ti, struct bio *bio)
2768 {
2769 	struct dm_crypt_io *io;
2770 	struct crypt_config *cc = ti->private;
2771 
2772 	/*
2773 	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2774 	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2775 	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2776 	 */
2777 	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
2778 	    bio_op(bio) == REQ_OP_DISCARD)) {
2779 		bio->bi_bdev = cc->dev->bdev;
2780 		if (bio_sectors(bio))
2781 			bio->bi_iter.bi_sector = cc->start +
2782 				dm_target_offset(ti, bio->bi_iter.bi_sector);
2783 		return DM_MAPIO_REMAPPED;
2784 	}
2785 
2786 	/*
2787 	 * Check if bio is too large, split as needed.
2788 	 */
2789 	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
2790 	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
2791 		dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
2792 
2793 	/*
2794 	 * Ensure that bio is a multiple of internal sector encryption size
2795 	 * and is aligned to this size as defined in IO hints.
2796 	 */
2797 	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
2798 		return -EIO;
2799 
2800 	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
2801 		return -EIO;
2802 
2803 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
2804 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
2805 
2806 	if (cc->on_disk_tag_size) {
2807 		unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
2808 
2809 		if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
2810 		    unlikely(!(io->integrity_metadata = kmalloc(tag_len,
2811 				GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
2812 			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
2813 				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
2814 			io->integrity_metadata = mempool_alloc(cc->tag_pool, GFP_NOIO);
2815 			io->integrity_metadata_from_pool = true;
2816 		}
2817 	}
2818 
2819 	if (crypt_integrity_aead(cc))
2820 		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
2821 	else
2822 		io->ctx.r.req = (struct skcipher_request *)(io + 1);
2823 
2824 	if (bio_data_dir(io->base_bio) == READ) {
2825 		if (kcryptd_io_read(io, GFP_NOWAIT))
2826 			kcryptd_queue_read(io);
2827 	} else
2828 		kcryptd_queue_crypt(io);
2829 
2830 	return DM_MAPIO_SUBMITTED;
2831 }
2832 
2833 static void crypt_status(struct dm_target *ti, status_type_t type,
2834 			 unsigned status_flags, char *result, unsigned maxlen)
2835 {
2836 	struct crypt_config *cc = ti->private;
2837 	unsigned i, sz = 0;
2838 	int num_feature_args = 0;
2839 
2840 	switch (type) {
2841 	case STATUSTYPE_INFO:
2842 		result[0] = '\0';
2843 		break;
2844 
2845 	case STATUSTYPE_TABLE:
2846 		DMEMIT("%s ", cc->cipher_string);
2847 
2848 		if (cc->key_size > 0) {
2849 			if (cc->key_string)
2850 				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
2851 			else
2852 				for (i = 0; i < cc->key_size; i++)
2853 					DMEMIT("%02x", cc->key[i]);
2854 		} else
2855 			DMEMIT("-");
2856 
2857 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
2858 				cc->dev->name, (unsigned long long)cc->start);
2859 
2860 		num_feature_args += !!ti->num_discard_bios;
2861 		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2862 		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2863 		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
2864 		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2865 		if (cc->on_disk_tag_size)
2866 			num_feature_args++;
2867 		if (num_feature_args) {
2868 			DMEMIT(" %d", num_feature_args);
2869 			if (ti->num_discard_bios)
2870 				DMEMIT(" allow_discards");
2871 			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2872 				DMEMIT(" same_cpu_crypt");
2873 			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
2874 				DMEMIT(" submit_from_crypt_cpus");
2875 			if (cc->on_disk_tag_size)
2876 				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
2877 			if (cc->sector_size != (1 << SECTOR_SHIFT))
2878 				DMEMIT(" sector_size:%d", cc->sector_size);
2879 			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
2880 				DMEMIT(" iv_large_sectors");
2881 		}
2882 
2883 		break;
2884 	}
2885 }
2886 
2887 static void crypt_postsuspend(struct dm_target *ti)
2888 {
2889 	struct crypt_config *cc = ti->private;
2890 
2891 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2892 }
2893 
2894 static int crypt_preresume(struct dm_target *ti)
2895 {
2896 	struct crypt_config *cc = ti->private;
2897 
2898 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
2899 		DMERR("aborting resume - crypt key is not set.");
2900 		return -EAGAIN;
2901 	}
2902 
2903 	return 0;
2904 }
2905 
2906 static void crypt_resume(struct dm_target *ti)
2907 {
2908 	struct crypt_config *cc = ti->private;
2909 
2910 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2911 }
2912 
2913 /* Message interface
2914  *	key set <key>
2915  *	key wipe
2916  */
2917 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
2918 {
2919 	struct crypt_config *cc = ti->private;
2920 	int key_size, ret = -EINVAL;
2921 
2922 	if (argc < 2)
2923 		goto error;
2924 
2925 	if (!strcasecmp(argv[0], "key")) {
2926 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2927 			DMWARN("not suspended during key manipulation.");
2928 			return -EINVAL;
2929 		}
2930 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
2931 			/* The key size may not be changed. */
2932 			key_size = get_key_size(&argv[2]);
2933 			if (key_size < 0 || cc->key_size != key_size) {
2934 				memset(argv[2], '0', strlen(argv[2]));
2935 				return -EINVAL;
2936 			}
2937 
2938 			ret = crypt_set_key(cc, argv[2]);
2939 			if (ret)
2940 				return ret;
2941 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2942 				ret = cc->iv_gen_ops->init(cc);
2943 			return ret;
2944 		}
2945 		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2946 			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2947 				ret = cc->iv_gen_ops->wipe(cc);
2948 				if (ret)
2949 					return ret;
2950 			}
2951 			return crypt_wipe_key(cc);
2952 		}
2953 	}
2954 
2955 error:
2956 	DMWARN("unrecognised message received.");
2957 	return -EINVAL;
2958 }
2959 
2960 static int crypt_iterate_devices(struct dm_target *ti,
2961 				 iterate_devices_callout_fn fn, void *data)
2962 {
2963 	struct crypt_config *cc = ti->private;
2964 
2965 	return fn(ti, cc->dev, cc->start, ti->len, data);
2966 }
2967 
2968 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2969 {
2970 	struct crypt_config *cc = ti->private;
2971 
2972 	/*
2973 	 * Unfortunate constraint that is required to avoid the potential
2974 	 * for exceeding underlying device's max_segments limits -- due to
2975 	 * crypt_alloc_buffer() possibly allocating pages for the encryption
2976 	 * bio that are not as physically contiguous as the original bio.
2977 	 */
2978 	limits->max_segment_size = PAGE_SIZE;
2979 
2980 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
2981 		limits->logical_block_size = cc->sector_size;
2982 		limits->physical_block_size = cc->sector_size;
2983 		blk_limits_io_min(limits, cc->sector_size);
2984 	}
2985 }
2986 
2987 static struct target_type crypt_target = {
2988 	.name   = "crypt",
2989 	.version = {1, 17, 0},
2990 	.module = THIS_MODULE,
2991 	.ctr    = crypt_ctr,
2992 	.dtr    = crypt_dtr,
2993 	.map    = crypt_map,
2994 	.status = crypt_status,
2995 	.postsuspend = crypt_postsuspend,
2996 	.preresume = crypt_preresume,
2997 	.resume = crypt_resume,
2998 	.message = crypt_message,
2999 	.iterate_devices = crypt_iterate_devices,
3000 	.io_hints = crypt_io_hints,
3001 };
3002 
3003 static int __init dm_crypt_init(void)
3004 {
3005 	int r;
3006 
3007 	r = dm_register_target(&crypt_target);
3008 	if (r < 0)
3009 		DMERR("register failed %d", r);
3010 
3011 	return r;
3012 }
3013 
3014 static void __exit dm_crypt_exit(void)
3015 {
3016 	dm_unregister_target(&crypt_target);
3017 }
3018 
3019 module_init(dm_crypt_init);
3020 module_exit(dm_crypt_exit);
3021 
3022 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3023 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3024 MODULE_LICENSE("GPL");
3025