xref: /linux/drivers/md/dm-crypt.c (revision e26207a3819684e9b4450a2d30bdd065fa92d9c7)
1 /*
2  * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include <linux/completion.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/bio.h>
15 #include <linux/blkdev.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/crypto.h>
19 #include <linux/workqueue.h>
20 #include <linux/backing-dev.h>
21 #include <asm/atomic.h>
22 #include <linux/scatterlist.h>
23 #include <asm/page.h>
24 #include <asm/unaligned.h>
25 
26 #include <linux/device-mapper.h>
27 
28 #define DM_MSG_PREFIX "crypt"
29 #define MESG_STR(x) x, sizeof(x)
30 
31 /*
32  * context holding the current state of a multi-part conversion
33  */
34 struct convert_context {
35 	struct completion restart;
36 	struct bio *bio_in;
37 	struct bio *bio_out;
38 	unsigned int offset_in;
39 	unsigned int offset_out;
40 	unsigned int idx_in;
41 	unsigned int idx_out;
42 	sector_t sector;
43 	atomic_t pending;
44 };
45 
46 /*
47  * per bio private data
48  */
49 struct dm_crypt_io {
50 	struct dm_target *target;
51 	struct bio *base_bio;
52 	struct work_struct work;
53 
54 	struct convert_context ctx;
55 
56 	atomic_t pending;
57 	int error;
58 	sector_t sector;
59 	struct dm_crypt_io *base_io;
60 };
61 
62 struct dm_crypt_request {
63 	struct convert_context *ctx;
64 	struct scatterlist sg_in;
65 	struct scatterlist sg_out;
66 };
67 
68 struct crypt_config;
69 
70 struct crypt_iv_operations {
71 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
72 		   const char *opts);
73 	void (*dtr)(struct crypt_config *cc);
74 	int (*init)(struct crypt_config *cc);
75 	int (*wipe)(struct crypt_config *cc);
76 	int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
77 };
78 
79 struct iv_essiv_private {
80 	struct crypto_cipher *tfm;
81 	struct crypto_hash *hash_tfm;
82 	u8 *salt;
83 };
84 
85 struct iv_benbi_private {
86 	int shift;
87 };
88 
89 /*
90  * Crypt: maps a linear range of a block device
91  * and encrypts / decrypts at the same time.
92  */
93 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
94 struct crypt_config {
95 	struct dm_dev *dev;
96 	sector_t start;
97 
98 	/*
99 	 * pool for per bio private data, crypto requests and
100 	 * encryption requeusts/buffer pages
101 	 */
102 	mempool_t *io_pool;
103 	mempool_t *req_pool;
104 	mempool_t *page_pool;
105 	struct bio_set *bs;
106 
107 	struct workqueue_struct *io_queue;
108 	struct workqueue_struct *crypt_queue;
109 
110 	/*
111 	 * crypto related data
112 	 */
113 	struct crypt_iv_operations *iv_gen_ops;
114 	char *iv_mode;
115 	union {
116 		struct iv_essiv_private essiv;
117 		struct iv_benbi_private benbi;
118 	} iv_gen_private;
119 	sector_t iv_offset;
120 	unsigned int iv_size;
121 
122 	/*
123 	 * Layout of each crypto request:
124 	 *
125 	 *   struct ablkcipher_request
126 	 *      context
127 	 *      padding
128 	 *   struct dm_crypt_request
129 	 *      padding
130 	 *   IV
131 	 *
132 	 * The padding is added so that dm_crypt_request and the IV are
133 	 * correctly aligned.
134 	 */
135 	unsigned int dmreq_start;
136 	struct ablkcipher_request *req;
137 
138 	char cipher[CRYPTO_MAX_ALG_NAME];
139 	char chainmode[CRYPTO_MAX_ALG_NAME];
140 	struct crypto_ablkcipher *tfm;
141 	unsigned long flags;
142 	unsigned int key_size;
143 	u8 key[0];
144 };
145 
146 #define MIN_IOS        16
147 #define MIN_POOL_PAGES 32
148 #define MIN_BIO_PAGES  8
149 
150 static struct kmem_cache *_crypt_io_pool;
151 
152 static void clone_init(struct dm_crypt_io *, struct bio *);
153 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
154 
155 /*
156  * Different IV generation algorithms:
157  *
158  * plain: the initial vector is the 32-bit little-endian version of the sector
159  *        number, padded with zeros if necessary.
160  *
161  * plain64: the initial vector is the 64-bit little-endian version of the sector
162  *        number, padded with zeros if necessary.
163  *
164  * essiv: "encrypted sector|salt initial vector", the sector number is
165  *        encrypted with the bulk cipher using a salt as key. The salt
166  *        should be derived from the bulk cipher's key via hashing.
167  *
168  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
169  *        (needed for LRW-32-AES and possible other narrow block modes)
170  *
171  * null: the initial vector is always zero.  Provides compatibility with
172  *       obsolete loop_fish2 devices.  Do not use for new devices.
173  *
174  * plumb: unimplemented, see:
175  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
176  */
177 
178 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
179 {
180 	memset(iv, 0, cc->iv_size);
181 	*(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
182 
183 	return 0;
184 }
185 
186 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
187 				sector_t sector)
188 {
189 	memset(iv, 0, cc->iv_size);
190 	*(u64 *)iv = cpu_to_le64(sector);
191 
192 	return 0;
193 }
194 
195 /* Initialise ESSIV - compute salt but no local memory allocations */
196 static int crypt_iv_essiv_init(struct crypt_config *cc)
197 {
198 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
199 	struct hash_desc desc;
200 	struct scatterlist sg;
201 	int err;
202 
203 	sg_init_one(&sg, cc->key, cc->key_size);
204 	desc.tfm = essiv->hash_tfm;
205 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
206 
207 	err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
208 	if (err)
209 		return err;
210 
211 	return crypto_cipher_setkey(essiv->tfm, essiv->salt,
212 				    crypto_hash_digestsize(essiv->hash_tfm));
213 }
214 
215 /* Wipe salt and reset key derived from volume key */
216 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
217 {
218 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
219 	unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
220 
221 	memset(essiv->salt, 0, salt_size);
222 
223 	return crypto_cipher_setkey(essiv->tfm, essiv->salt, salt_size);
224 }
225 
226 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
227 {
228 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
229 
230 	crypto_free_cipher(essiv->tfm);
231 	essiv->tfm = NULL;
232 
233 	crypto_free_hash(essiv->hash_tfm);
234 	essiv->hash_tfm = NULL;
235 
236 	kzfree(essiv->salt);
237 	essiv->salt = NULL;
238 }
239 
240 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
241 			      const char *opts)
242 {
243 	struct crypto_cipher *essiv_tfm = NULL;
244 	struct crypto_hash *hash_tfm = NULL;
245 	u8 *salt = NULL;
246 	int err;
247 
248 	if (!opts) {
249 		ti->error = "Digest algorithm missing for ESSIV mode";
250 		return -EINVAL;
251 	}
252 
253 	/* Allocate hash algorithm */
254 	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
255 	if (IS_ERR(hash_tfm)) {
256 		ti->error = "Error initializing ESSIV hash";
257 		err = PTR_ERR(hash_tfm);
258 		goto bad;
259 	}
260 
261 	salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
262 	if (!salt) {
263 		ti->error = "Error kmallocing salt storage in ESSIV";
264 		err = -ENOMEM;
265 		goto bad;
266 	}
267 
268 	/* Allocate essiv_tfm */
269 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
270 	if (IS_ERR(essiv_tfm)) {
271 		ti->error = "Error allocating crypto tfm for ESSIV";
272 		err = PTR_ERR(essiv_tfm);
273 		goto bad;
274 	}
275 	if (crypto_cipher_blocksize(essiv_tfm) !=
276 	    crypto_ablkcipher_ivsize(cc->tfm)) {
277 		ti->error = "Block size of ESSIV cipher does "
278 			    "not match IV size of block cipher";
279 		err = -EINVAL;
280 		goto bad;
281 	}
282 
283 	cc->iv_gen_private.essiv.salt = salt;
284 	cc->iv_gen_private.essiv.tfm = essiv_tfm;
285 	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
286 
287 	return 0;
288 
289 bad:
290 	if (essiv_tfm && !IS_ERR(essiv_tfm))
291 		crypto_free_cipher(essiv_tfm);
292 	if (hash_tfm && !IS_ERR(hash_tfm))
293 		crypto_free_hash(hash_tfm);
294 	kfree(salt);
295 	return err;
296 }
297 
298 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
299 {
300 	memset(iv, 0, cc->iv_size);
301 	*(u64 *)iv = cpu_to_le64(sector);
302 	crypto_cipher_encrypt_one(cc->iv_gen_private.essiv.tfm, iv, iv);
303 	return 0;
304 }
305 
306 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
307 			      const char *opts)
308 {
309 	unsigned bs = crypto_ablkcipher_blocksize(cc->tfm);
310 	int log = ilog2(bs);
311 
312 	/* we need to calculate how far we must shift the sector count
313 	 * to get the cipher block count, we use this shift in _gen */
314 
315 	if (1 << log != bs) {
316 		ti->error = "cypher blocksize is not a power of 2";
317 		return -EINVAL;
318 	}
319 
320 	if (log > 9) {
321 		ti->error = "cypher blocksize is > 512";
322 		return -EINVAL;
323 	}
324 
325 	cc->iv_gen_private.benbi.shift = 9 - log;
326 
327 	return 0;
328 }
329 
330 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
331 {
332 }
333 
334 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
335 {
336 	__be64 val;
337 
338 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
339 
340 	val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi.shift) + 1);
341 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
342 
343 	return 0;
344 }
345 
346 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
347 {
348 	memset(iv, 0, cc->iv_size);
349 
350 	return 0;
351 }
352 
353 static struct crypt_iv_operations crypt_iv_plain_ops = {
354 	.generator = crypt_iv_plain_gen
355 };
356 
357 static struct crypt_iv_operations crypt_iv_plain64_ops = {
358 	.generator = crypt_iv_plain64_gen
359 };
360 
361 static struct crypt_iv_operations crypt_iv_essiv_ops = {
362 	.ctr       = crypt_iv_essiv_ctr,
363 	.dtr       = crypt_iv_essiv_dtr,
364 	.init      = crypt_iv_essiv_init,
365 	.wipe      = crypt_iv_essiv_wipe,
366 	.generator = crypt_iv_essiv_gen
367 };
368 
369 static struct crypt_iv_operations crypt_iv_benbi_ops = {
370 	.ctr	   = crypt_iv_benbi_ctr,
371 	.dtr	   = crypt_iv_benbi_dtr,
372 	.generator = crypt_iv_benbi_gen
373 };
374 
375 static struct crypt_iv_operations crypt_iv_null_ops = {
376 	.generator = crypt_iv_null_gen
377 };
378 
379 static void crypt_convert_init(struct crypt_config *cc,
380 			       struct convert_context *ctx,
381 			       struct bio *bio_out, struct bio *bio_in,
382 			       sector_t sector)
383 {
384 	ctx->bio_in = bio_in;
385 	ctx->bio_out = bio_out;
386 	ctx->offset_in = 0;
387 	ctx->offset_out = 0;
388 	ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
389 	ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
390 	ctx->sector = sector + cc->iv_offset;
391 	init_completion(&ctx->restart);
392 }
393 
394 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
395 					     struct ablkcipher_request *req)
396 {
397 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
398 }
399 
400 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
401 					       struct dm_crypt_request *dmreq)
402 {
403 	return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
404 }
405 
406 static int crypt_convert_block(struct crypt_config *cc,
407 			       struct convert_context *ctx,
408 			       struct ablkcipher_request *req)
409 {
410 	struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
411 	struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
412 	struct dm_crypt_request *dmreq;
413 	u8 *iv;
414 	int r = 0;
415 
416 	dmreq = dmreq_of_req(cc, req);
417 	iv = (u8 *)ALIGN((unsigned long)(dmreq + 1),
418 			 crypto_ablkcipher_alignmask(cc->tfm) + 1);
419 
420 	dmreq->ctx = ctx;
421 	sg_init_table(&dmreq->sg_in, 1);
422 	sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
423 		    bv_in->bv_offset + ctx->offset_in);
424 
425 	sg_init_table(&dmreq->sg_out, 1);
426 	sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
427 		    bv_out->bv_offset + ctx->offset_out);
428 
429 	ctx->offset_in += 1 << SECTOR_SHIFT;
430 	if (ctx->offset_in >= bv_in->bv_len) {
431 		ctx->offset_in = 0;
432 		ctx->idx_in++;
433 	}
434 
435 	ctx->offset_out += 1 << SECTOR_SHIFT;
436 	if (ctx->offset_out >= bv_out->bv_len) {
437 		ctx->offset_out = 0;
438 		ctx->idx_out++;
439 	}
440 
441 	if (cc->iv_gen_ops) {
442 		r = cc->iv_gen_ops->generator(cc, iv, ctx->sector);
443 		if (r < 0)
444 			return r;
445 	}
446 
447 	ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
448 				     1 << SECTOR_SHIFT, iv);
449 
450 	if (bio_data_dir(ctx->bio_in) == WRITE)
451 		r = crypto_ablkcipher_encrypt(req);
452 	else
453 		r = crypto_ablkcipher_decrypt(req);
454 
455 	return r;
456 }
457 
458 static void kcryptd_async_done(struct crypto_async_request *async_req,
459 			       int error);
460 static void crypt_alloc_req(struct crypt_config *cc,
461 			    struct convert_context *ctx)
462 {
463 	if (!cc->req)
464 		cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
465 	ablkcipher_request_set_tfm(cc->req, cc->tfm);
466 	ablkcipher_request_set_callback(cc->req, CRYPTO_TFM_REQ_MAY_BACKLOG |
467 					CRYPTO_TFM_REQ_MAY_SLEEP,
468 					kcryptd_async_done,
469 					dmreq_of_req(cc, cc->req));
470 }
471 
472 /*
473  * Encrypt / decrypt data from one bio to another one (can be the same one)
474  */
475 static int crypt_convert(struct crypt_config *cc,
476 			 struct convert_context *ctx)
477 {
478 	int r;
479 
480 	atomic_set(&ctx->pending, 1);
481 
482 	while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
483 	      ctx->idx_out < ctx->bio_out->bi_vcnt) {
484 
485 		crypt_alloc_req(cc, ctx);
486 
487 		atomic_inc(&ctx->pending);
488 
489 		r = crypt_convert_block(cc, ctx, cc->req);
490 
491 		switch (r) {
492 		/* async */
493 		case -EBUSY:
494 			wait_for_completion(&ctx->restart);
495 			INIT_COMPLETION(ctx->restart);
496 			/* fall through*/
497 		case -EINPROGRESS:
498 			cc->req = NULL;
499 			ctx->sector++;
500 			continue;
501 
502 		/* sync */
503 		case 0:
504 			atomic_dec(&ctx->pending);
505 			ctx->sector++;
506 			cond_resched();
507 			continue;
508 
509 		/* error */
510 		default:
511 			atomic_dec(&ctx->pending);
512 			return r;
513 		}
514 	}
515 
516 	return 0;
517 }
518 
519 static void dm_crypt_bio_destructor(struct bio *bio)
520 {
521 	struct dm_crypt_io *io = bio->bi_private;
522 	struct crypt_config *cc = io->target->private;
523 
524 	bio_free(bio, cc->bs);
525 }
526 
527 /*
528  * Generate a new unfragmented bio with the given size
529  * This should never violate the device limitations
530  * May return a smaller bio when running out of pages, indicated by
531  * *out_of_pages set to 1.
532  */
533 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
534 				      unsigned *out_of_pages)
535 {
536 	struct crypt_config *cc = io->target->private;
537 	struct bio *clone;
538 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
539 	gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
540 	unsigned i, len;
541 	struct page *page;
542 
543 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
544 	if (!clone)
545 		return NULL;
546 
547 	clone_init(io, clone);
548 	*out_of_pages = 0;
549 
550 	for (i = 0; i < nr_iovecs; i++) {
551 		page = mempool_alloc(cc->page_pool, gfp_mask);
552 		if (!page) {
553 			*out_of_pages = 1;
554 			break;
555 		}
556 
557 		/*
558 		 * if additional pages cannot be allocated without waiting,
559 		 * return a partially allocated bio, the caller will then try
560 		 * to allocate additional bios while submitting this partial bio
561 		 */
562 		if (i == (MIN_BIO_PAGES - 1))
563 			gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
564 
565 		len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
566 
567 		if (!bio_add_page(clone, page, len, 0)) {
568 			mempool_free(page, cc->page_pool);
569 			break;
570 		}
571 
572 		size -= len;
573 	}
574 
575 	if (!clone->bi_size) {
576 		bio_put(clone);
577 		return NULL;
578 	}
579 
580 	return clone;
581 }
582 
583 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
584 {
585 	unsigned int i;
586 	struct bio_vec *bv;
587 
588 	for (i = 0; i < clone->bi_vcnt; i++) {
589 		bv = bio_iovec_idx(clone, i);
590 		BUG_ON(!bv->bv_page);
591 		mempool_free(bv->bv_page, cc->page_pool);
592 		bv->bv_page = NULL;
593 	}
594 }
595 
596 static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti,
597 					  struct bio *bio, sector_t sector)
598 {
599 	struct crypt_config *cc = ti->private;
600 	struct dm_crypt_io *io;
601 
602 	io = mempool_alloc(cc->io_pool, GFP_NOIO);
603 	io->target = ti;
604 	io->base_bio = bio;
605 	io->sector = sector;
606 	io->error = 0;
607 	io->base_io = NULL;
608 	atomic_set(&io->pending, 0);
609 
610 	return io;
611 }
612 
613 static void crypt_inc_pending(struct dm_crypt_io *io)
614 {
615 	atomic_inc(&io->pending);
616 }
617 
618 /*
619  * One of the bios was finished. Check for completion of
620  * the whole request and correctly clean up the buffer.
621  * If base_io is set, wait for the last fragment to complete.
622  */
623 static void crypt_dec_pending(struct dm_crypt_io *io)
624 {
625 	struct crypt_config *cc = io->target->private;
626 	struct bio *base_bio = io->base_bio;
627 	struct dm_crypt_io *base_io = io->base_io;
628 	int error = io->error;
629 
630 	if (!atomic_dec_and_test(&io->pending))
631 		return;
632 
633 	mempool_free(io, cc->io_pool);
634 
635 	if (likely(!base_io))
636 		bio_endio(base_bio, error);
637 	else {
638 		if (error && !base_io->error)
639 			base_io->error = error;
640 		crypt_dec_pending(base_io);
641 	}
642 }
643 
644 /*
645  * kcryptd/kcryptd_io:
646  *
647  * Needed because it would be very unwise to do decryption in an
648  * interrupt context.
649  *
650  * kcryptd performs the actual encryption or decryption.
651  *
652  * kcryptd_io performs the IO submission.
653  *
654  * They must be separated as otherwise the final stages could be
655  * starved by new requests which can block in the first stages due
656  * to memory allocation.
657  */
658 static void crypt_endio(struct bio *clone, int error)
659 {
660 	struct dm_crypt_io *io = clone->bi_private;
661 	struct crypt_config *cc = io->target->private;
662 	unsigned rw = bio_data_dir(clone);
663 
664 	if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
665 		error = -EIO;
666 
667 	/*
668 	 * free the processed pages
669 	 */
670 	if (rw == WRITE)
671 		crypt_free_buffer_pages(cc, clone);
672 
673 	bio_put(clone);
674 
675 	if (rw == READ && !error) {
676 		kcryptd_queue_crypt(io);
677 		return;
678 	}
679 
680 	if (unlikely(error))
681 		io->error = error;
682 
683 	crypt_dec_pending(io);
684 }
685 
686 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
687 {
688 	struct crypt_config *cc = io->target->private;
689 
690 	clone->bi_private = io;
691 	clone->bi_end_io  = crypt_endio;
692 	clone->bi_bdev    = cc->dev->bdev;
693 	clone->bi_rw      = io->base_bio->bi_rw;
694 	clone->bi_destructor = dm_crypt_bio_destructor;
695 }
696 
697 static void kcryptd_io_read(struct dm_crypt_io *io)
698 {
699 	struct crypt_config *cc = io->target->private;
700 	struct bio *base_bio = io->base_bio;
701 	struct bio *clone;
702 
703 	crypt_inc_pending(io);
704 
705 	/*
706 	 * The block layer might modify the bvec array, so always
707 	 * copy the required bvecs because we need the original
708 	 * one in order to decrypt the whole bio data *afterwards*.
709 	 */
710 	clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
711 	if (unlikely(!clone)) {
712 		io->error = -ENOMEM;
713 		crypt_dec_pending(io);
714 		return;
715 	}
716 
717 	clone_init(io, clone);
718 	clone->bi_idx = 0;
719 	clone->bi_vcnt = bio_segments(base_bio);
720 	clone->bi_size = base_bio->bi_size;
721 	clone->bi_sector = cc->start + io->sector;
722 	memcpy(clone->bi_io_vec, bio_iovec(base_bio),
723 	       sizeof(struct bio_vec) * clone->bi_vcnt);
724 
725 	generic_make_request(clone);
726 }
727 
728 static void kcryptd_io_write(struct dm_crypt_io *io)
729 {
730 	struct bio *clone = io->ctx.bio_out;
731 	generic_make_request(clone);
732 }
733 
734 static void kcryptd_io(struct work_struct *work)
735 {
736 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
737 
738 	if (bio_data_dir(io->base_bio) == READ)
739 		kcryptd_io_read(io);
740 	else
741 		kcryptd_io_write(io);
742 }
743 
744 static void kcryptd_queue_io(struct dm_crypt_io *io)
745 {
746 	struct crypt_config *cc = io->target->private;
747 
748 	INIT_WORK(&io->work, kcryptd_io);
749 	queue_work(cc->io_queue, &io->work);
750 }
751 
752 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io,
753 					  int error, int async)
754 {
755 	struct bio *clone = io->ctx.bio_out;
756 	struct crypt_config *cc = io->target->private;
757 
758 	if (unlikely(error < 0)) {
759 		crypt_free_buffer_pages(cc, clone);
760 		bio_put(clone);
761 		io->error = -EIO;
762 		crypt_dec_pending(io);
763 		return;
764 	}
765 
766 	/* crypt_convert should have filled the clone bio */
767 	BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
768 
769 	clone->bi_sector = cc->start + io->sector;
770 
771 	if (async)
772 		kcryptd_queue_io(io);
773 	else
774 		generic_make_request(clone);
775 }
776 
777 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
778 {
779 	struct crypt_config *cc = io->target->private;
780 	struct bio *clone;
781 	struct dm_crypt_io *new_io;
782 	int crypt_finished;
783 	unsigned out_of_pages = 0;
784 	unsigned remaining = io->base_bio->bi_size;
785 	sector_t sector = io->sector;
786 	int r;
787 
788 	/*
789 	 * Prevent io from disappearing until this function completes.
790 	 */
791 	crypt_inc_pending(io);
792 	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
793 
794 	/*
795 	 * The allocated buffers can be smaller than the whole bio,
796 	 * so repeat the whole process until all the data can be handled.
797 	 */
798 	while (remaining) {
799 		clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
800 		if (unlikely(!clone)) {
801 			io->error = -ENOMEM;
802 			break;
803 		}
804 
805 		io->ctx.bio_out = clone;
806 		io->ctx.idx_out = 0;
807 
808 		remaining -= clone->bi_size;
809 		sector += bio_sectors(clone);
810 
811 		crypt_inc_pending(io);
812 		r = crypt_convert(cc, &io->ctx);
813 		crypt_finished = atomic_dec_and_test(&io->ctx.pending);
814 
815 		/* Encryption was already finished, submit io now */
816 		if (crypt_finished) {
817 			kcryptd_crypt_write_io_submit(io, r, 0);
818 
819 			/*
820 			 * If there was an error, do not try next fragments.
821 			 * For async, error is processed in async handler.
822 			 */
823 			if (unlikely(r < 0))
824 				break;
825 
826 			io->sector = sector;
827 		}
828 
829 		/*
830 		 * Out of memory -> run queues
831 		 * But don't wait if split was due to the io size restriction
832 		 */
833 		if (unlikely(out_of_pages))
834 			congestion_wait(BLK_RW_ASYNC, HZ/100);
835 
836 		/*
837 		 * With async crypto it is unsafe to share the crypto context
838 		 * between fragments, so switch to a new dm_crypt_io structure.
839 		 */
840 		if (unlikely(!crypt_finished && remaining)) {
841 			new_io = crypt_io_alloc(io->target, io->base_bio,
842 						sector);
843 			crypt_inc_pending(new_io);
844 			crypt_convert_init(cc, &new_io->ctx, NULL,
845 					   io->base_bio, sector);
846 			new_io->ctx.idx_in = io->ctx.idx_in;
847 			new_io->ctx.offset_in = io->ctx.offset_in;
848 
849 			/*
850 			 * Fragments after the first use the base_io
851 			 * pending count.
852 			 */
853 			if (!io->base_io)
854 				new_io->base_io = io;
855 			else {
856 				new_io->base_io = io->base_io;
857 				crypt_inc_pending(io->base_io);
858 				crypt_dec_pending(io);
859 			}
860 
861 			io = new_io;
862 		}
863 	}
864 
865 	crypt_dec_pending(io);
866 }
867 
868 static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
869 {
870 	if (unlikely(error < 0))
871 		io->error = -EIO;
872 
873 	crypt_dec_pending(io);
874 }
875 
876 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
877 {
878 	struct crypt_config *cc = io->target->private;
879 	int r = 0;
880 
881 	crypt_inc_pending(io);
882 
883 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
884 			   io->sector);
885 
886 	r = crypt_convert(cc, &io->ctx);
887 
888 	if (atomic_dec_and_test(&io->ctx.pending))
889 		kcryptd_crypt_read_done(io, r);
890 
891 	crypt_dec_pending(io);
892 }
893 
894 static void kcryptd_async_done(struct crypto_async_request *async_req,
895 			       int error)
896 {
897 	struct dm_crypt_request *dmreq = async_req->data;
898 	struct convert_context *ctx = dmreq->ctx;
899 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
900 	struct crypt_config *cc = io->target->private;
901 
902 	if (error == -EINPROGRESS) {
903 		complete(&ctx->restart);
904 		return;
905 	}
906 
907 	mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
908 
909 	if (!atomic_dec_and_test(&ctx->pending))
910 		return;
911 
912 	if (bio_data_dir(io->base_bio) == READ)
913 		kcryptd_crypt_read_done(io, error);
914 	else
915 		kcryptd_crypt_write_io_submit(io, error, 1);
916 }
917 
918 static void kcryptd_crypt(struct work_struct *work)
919 {
920 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
921 
922 	if (bio_data_dir(io->base_bio) == READ)
923 		kcryptd_crypt_read_convert(io);
924 	else
925 		kcryptd_crypt_write_convert(io);
926 }
927 
928 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
929 {
930 	struct crypt_config *cc = io->target->private;
931 
932 	INIT_WORK(&io->work, kcryptd_crypt);
933 	queue_work(cc->crypt_queue, &io->work);
934 }
935 
936 /*
937  * Decode key from its hex representation
938  */
939 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
940 {
941 	char buffer[3];
942 	char *endp;
943 	unsigned int i;
944 
945 	buffer[2] = '\0';
946 
947 	for (i = 0; i < size; i++) {
948 		buffer[0] = *hex++;
949 		buffer[1] = *hex++;
950 
951 		key[i] = (u8)simple_strtoul(buffer, &endp, 16);
952 
953 		if (endp != &buffer[2])
954 			return -EINVAL;
955 	}
956 
957 	if (*hex != '\0')
958 		return -EINVAL;
959 
960 	return 0;
961 }
962 
963 /*
964  * Encode key into its hex representation
965  */
966 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
967 {
968 	unsigned int i;
969 
970 	for (i = 0; i < size; i++) {
971 		sprintf(hex, "%02x", *key);
972 		hex += 2;
973 		key++;
974 	}
975 }
976 
977 static int crypt_set_key(struct crypt_config *cc, char *key)
978 {
979 	unsigned key_size = strlen(key) >> 1;
980 
981 	if (cc->key_size && cc->key_size != key_size)
982 		return -EINVAL;
983 
984 	cc->key_size = key_size; /* initial settings */
985 
986 	if ((!key_size && strcmp(key, "-")) ||
987 	   (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
988 		return -EINVAL;
989 
990 	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
991 
992 	return crypto_ablkcipher_setkey(cc->tfm, cc->key, cc->key_size);
993 }
994 
995 static int crypt_wipe_key(struct crypt_config *cc)
996 {
997 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
998 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
999 	return crypto_ablkcipher_setkey(cc->tfm, cc->key, cc->key_size);
1000 }
1001 
1002 /*
1003  * Construct an encryption mapping:
1004  * <cipher> <key> <iv_offset> <dev_path> <start>
1005  */
1006 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1007 {
1008 	struct crypt_config *cc;
1009 	struct crypto_ablkcipher *tfm;
1010 	char *tmp;
1011 	char *cipher;
1012 	char *chainmode;
1013 	char *ivmode;
1014 	char *ivopts;
1015 	unsigned int key_size;
1016 	unsigned long long tmpll;
1017 
1018 	if (argc != 5) {
1019 		ti->error = "Not enough arguments";
1020 		return -EINVAL;
1021 	}
1022 
1023 	tmp = argv[0];
1024 	cipher = strsep(&tmp, "-");
1025 	chainmode = strsep(&tmp, "-");
1026 	ivopts = strsep(&tmp, "-");
1027 	ivmode = strsep(&ivopts, ":");
1028 
1029 	if (tmp)
1030 		DMWARN("Unexpected additional cipher options");
1031 
1032 	key_size = strlen(argv[1]) >> 1;
1033 
1034  	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1035 	if (cc == NULL) {
1036 		ti->error =
1037 			"Cannot allocate transparent encryption context";
1038 		return -ENOMEM;
1039 	}
1040 
1041 	/* Compatibility mode for old dm-crypt cipher strings */
1042 	if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
1043 		chainmode = "cbc";
1044 		ivmode = "plain";
1045 	}
1046 
1047 	if (strcmp(chainmode, "ecb") && !ivmode) {
1048 		ti->error = "This chaining mode requires an IV mechanism";
1049 		goto bad_cipher;
1050 	}
1051 
1052 	if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)",
1053 		     chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) {
1054 		ti->error = "Chain mode + cipher name is too long";
1055 		goto bad_cipher;
1056 	}
1057 
1058 	tfm = crypto_alloc_ablkcipher(cc->cipher, 0, 0);
1059 	if (IS_ERR(tfm)) {
1060 		ti->error = "Error allocating crypto tfm";
1061 		goto bad_cipher;
1062 	}
1063 
1064 	strcpy(cc->cipher, cipher);
1065 	strcpy(cc->chainmode, chainmode);
1066 	cc->tfm = tfm;
1067 
1068 	if (crypt_set_key(cc, argv[1]) < 0) {
1069 		ti->error = "Error decoding and setting key";
1070 		goto bad_ivmode;
1071 	}
1072 
1073 	/*
1074 	 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
1075 	 * See comments at iv code
1076 	 */
1077 
1078 	if (ivmode == NULL)
1079 		cc->iv_gen_ops = NULL;
1080 	else if (strcmp(ivmode, "plain") == 0)
1081 		cc->iv_gen_ops = &crypt_iv_plain_ops;
1082 	else if (strcmp(ivmode, "plain64") == 0)
1083 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1084 	else if (strcmp(ivmode, "essiv") == 0)
1085 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1086 	else if (strcmp(ivmode, "benbi") == 0)
1087 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1088 	else if (strcmp(ivmode, "null") == 0)
1089 		cc->iv_gen_ops = &crypt_iv_null_ops;
1090 	else {
1091 		ti->error = "Invalid IV mode";
1092 		goto bad_ivmode;
1093 	}
1094 
1095 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
1096 	    cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
1097 		goto bad_ivmode;
1098 
1099 	if (cc->iv_gen_ops && cc->iv_gen_ops->init &&
1100 	    cc->iv_gen_ops->init(cc) < 0) {
1101 		ti->error = "Error initialising IV";
1102 		goto bad_slab_pool;
1103 	}
1104 
1105 	cc->iv_size = crypto_ablkcipher_ivsize(tfm);
1106 	if (cc->iv_size)
1107 		/* at least a 64 bit sector number should fit in our buffer */
1108 		cc->iv_size = max(cc->iv_size,
1109 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1110 	else {
1111 		if (cc->iv_gen_ops) {
1112 			DMWARN("Selected cipher does not support IVs");
1113 			if (cc->iv_gen_ops->dtr)
1114 				cc->iv_gen_ops->dtr(cc);
1115 			cc->iv_gen_ops = NULL;
1116 		}
1117 	}
1118 
1119 	cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1120 	if (!cc->io_pool) {
1121 		ti->error = "Cannot allocate crypt io mempool";
1122 		goto bad_slab_pool;
1123 	}
1124 
1125 	cc->dmreq_start = sizeof(struct ablkcipher_request);
1126 	cc->dmreq_start += crypto_ablkcipher_reqsize(tfm);
1127 	cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1128 	cc->dmreq_start += crypto_ablkcipher_alignmask(tfm) &
1129 			   ~(crypto_tfm_ctx_alignment() - 1);
1130 
1131 	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1132 			sizeof(struct dm_crypt_request) + cc->iv_size);
1133 	if (!cc->req_pool) {
1134 		ti->error = "Cannot allocate crypt request mempool";
1135 		goto bad_req_pool;
1136 	}
1137 	cc->req = NULL;
1138 
1139 	cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1140 	if (!cc->page_pool) {
1141 		ti->error = "Cannot allocate page mempool";
1142 		goto bad_page_pool;
1143 	}
1144 
1145 	cc->bs = bioset_create(MIN_IOS, 0);
1146 	if (!cc->bs) {
1147 		ti->error = "Cannot allocate crypt bioset";
1148 		goto bad_bs;
1149 	}
1150 
1151 	if (sscanf(argv[2], "%llu", &tmpll) != 1) {
1152 		ti->error = "Invalid iv_offset sector";
1153 		goto bad_device;
1154 	}
1155 	cc->iv_offset = tmpll;
1156 
1157 	if (sscanf(argv[4], "%llu", &tmpll) != 1) {
1158 		ti->error = "Invalid device sector";
1159 		goto bad_device;
1160 	}
1161 	cc->start = tmpll;
1162 
1163 	if (dm_get_device(ti, argv[3], cc->start, ti->len,
1164 			  dm_table_get_mode(ti->table), &cc->dev)) {
1165 		ti->error = "Device lookup failed";
1166 		goto bad_device;
1167 	}
1168 
1169 	if (ivmode && cc->iv_gen_ops) {
1170 		if (ivopts)
1171 			*(ivopts - 1) = ':';
1172 		cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
1173 		if (!cc->iv_mode) {
1174 			ti->error = "Error kmallocing iv_mode string";
1175 			goto bad_ivmode_string;
1176 		}
1177 		strcpy(cc->iv_mode, ivmode);
1178 	} else
1179 		cc->iv_mode = NULL;
1180 
1181 	cc->io_queue = create_singlethread_workqueue("kcryptd_io");
1182 	if (!cc->io_queue) {
1183 		ti->error = "Couldn't create kcryptd io queue";
1184 		goto bad_io_queue;
1185 	}
1186 
1187 	cc->crypt_queue = create_singlethread_workqueue("kcryptd");
1188 	if (!cc->crypt_queue) {
1189 		ti->error = "Couldn't create kcryptd queue";
1190 		goto bad_crypt_queue;
1191 	}
1192 
1193 	ti->num_flush_requests = 1;
1194 	ti->private = cc;
1195 	return 0;
1196 
1197 bad_crypt_queue:
1198 	destroy_workqueue(cc->io_queue);
1199 bad_io_queue:
1200 	kfree(cc->iv_mode);
1201 bad_ivmode_string:
1202 	dm_put_device(ti, cc->dev);
1203 bad_device:
1204 	bioset_free(cc->bs);
1205 bad_bs:
1206 	mempool_destroy(cc->page_pool);
1207 bad_page_pool:
1208 	mempool_destroy(cc->req_pool);
1209 bad_req_pool:
1210 	mempool_destroy(cc->io_pool);
1211 bad_slab_pool:
1212 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1213 		cc->iv_gen_ops->dtr(cc);
1214 bad_ivmode:
1215 	crypto_free_ablkcipher(tfm);
1216 bad_cipher:
1217 	/* Must zero key material before freeing */
1218 	kzfree(cc);
1219 	return -EINVAL;
1220 }
1221 
1222 static void crypt_dtr(struct dm_target *ti)
1223 {
1224 	struct crypt_config *cc = (struct crypt_config *) ti->private;
1225 
1226 	destroy_workqueue(cc->io_queue);
1227 	destroy_workqueue(cc->crypt_queue);
1228 
1229 	if (cc->req)
1230 		mempool_free(cc->req, cc->req_pool);
1231 
1232 	bioset_free(cc->bs);
1233 	mempool_destroy(cc->page_pool);
1234 	mempool_destroy(cc->req_pool);
1235 	mempool_destroy(cc->io_pool);
1236 
1237 	kfree(cc->iv_mode);
1238 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1239 		cc->iv_gen_ops->dtr(cc);
1240 	crypto_free_ablkcipher(cc->tfm);
1241 	dm_put_device(ti, cc->dev);
1242 
1243 	/* Must zero key material before freeing */
1244 	kzfree(cc);
1245 }
1246 
1247 static int crypt_map(struct dm_target *ti, struct bio *bio,
1248 		     union map_info *map_context)
1249 {
1250 	struct dm_crypt_io *io;
1251 	struct crypt_config *cc;
1252 
1253 	if (unlikely(bio_empty_barrier(bio))) {
1254 		cc = ti->private;
1255 		bio->bi_bdev = cc->dev->bdev;
1256 		return DM_MAPIO_REMAPPED;
1257 	}
1258 
1259 	io = crypt_io_alloc(ti, bio, bio->bi_sector - ti->begin);
1260 
1261 	if (bio_data_dir(io->base_bio) == READ)
1262 		kcryptd_queue_io(io);
1263 	else
1264 		kcryptd_queue_crypt(io);
1265 
1266 	return DM_MAPIO_SUBMITTED;
1267 }
1268 
1269 static int crypt_status(struct dm_target *ti, status_type_t type,
1270 			char *result, unsigned int maxlen)
1271 {
1272 	struct crypt_config *cc = (struct crypt_config *) ti->private;
1273 	unsigned int sz = 0;
1274 
1275 	switch (type) {
1276 	case STATUSTYPE_INFO:
1277 		result[0] = '\0';
1278 		break;
1279 
1280 	case STATUSTYPE_TABLE:
1281 		if (cc->iv_mode)
1282 			DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
1283 			       cc->iv_mode);
1284 		else
1285 			DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
1286 
1287 		if (cc->key_size > 0) {
1288 			if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1289 				return -ENOMEM;
1290 
1291 			crypt_encode_key(result + sz, cc->key, cc->key_size);
1292 			sz += cc->key_size << 1;
1293 		} else {
1294 			if (sz >= maxlen)
1295 				return -ENOMEM;
1296 			result[sz++] = '-';
1297 		}
1298 
1299 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1300 				cc->dev->name, (unsigned long long)cc->start);
1301 		break;
1302 	}
1303 	return 0;
1304 }
1305 
1306 static void crypt_postsuspend(struct dm_target *ti)
1307 {
1308 	struct crypt_config *cc = ti->private;
1309 
1310 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1311 }
1312 
1313 static int crypt_preresume(struct dm_target *ti)
1314 {
1315 	struct crypt_config *cc = ti->private;
1316 
1317 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1318 		DMERR("aborting resume - crypt key is not set.");
1319 		return -EAGAIN;
1320 	}
1321 
1322 	return 0;
1323 }
1324 
1325 static void crypt_resume(struct dm_target *ti)
1326 {
1327 	struct crypt_config *cc = ti->private;
1328 
1329 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1330 }
1331 
1332 /* Message interface
1333  *	key set <key>
1334  *	key wipe
1335  */
1336 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1337 {
1338 	struct crypt_config *cc = ti->private;
1339 	int ret = -EINVAL;
1340 
1341 	if (argc < 2)
1342 		goto error;
1343 
1344 	if (!strnicmp(argv[0], MESG_STR("key"))) {
1345 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1346 			DMWARN("not suspended during key manipulation.");
1347 			return -EINVAL;
1348 		}
1349 		if (argc == 3 && !strnicmp(argv[1], MESG_STR("set"))) {
1350 			ret = crypt_set_key(cc, argv[2]);
1351 			if (ret)
1352 				return ret;
1353 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1354 				ret = cc->iv_gen_ops->init(cc);
1355 			return ret;
1356 		}
1357 		if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe"))) {
1358 			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1359 				ret = cc->iv_gen_ops->wipe(cc);
1360 				if (ret)
1361 					return ret;
1362 			}
1363 			return crypt_wipe_key(cc);
1364 		}
1365 	}
1366 
1367 error:
1368 	DMWARN("unrecognised message received.");
1369 	return -EINVAL;
1370 }
1371 
1372 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1373 		       struct bio_vec *biovec, int max_size)
1374 {
1375 	struct crypt_config *cc = ti->private;
1376 	struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1377 
1378 	if (!q->merge_bvec_fn)
1379 		return max_size;
1380 
1381 	bvm->bi_bdev = cc->dev->bdev;
1382 	bvm->bi_sector = cc->start + bvm->bi_sector - ti->begin;
1383 
1384 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1385 }
1386 
1387 static int crypt_iterate_devices(struct dm_target *ti,
1388 				 iterate_devices_callout_fn fn, void *data)
1389 {
1390 	struct crypt_config *cc = ti->private;
1391 
1392 	return fn(ti, cc->dev, cc->start, ti->len, data);
1393 }
1394 
1395 static struct target_type crypt_target = {
1396 	.name   = "crypt",
1397 	.version = {1, 7, 0},
1398 	.module = THIS_MODULE,
1399 	.ctr    = crypt_ctr,
1400 	.dtr    = crypt_dtr,
1401 	.map    = crypt_map,
1402 	.status = crypt_status,
1403 	.postsuspend = crypt_postsuspend,
1404 	.preresume = crypt_preresume,
1405 	.resume = crypt_resume,
1406 	.message = crypt_message,
1407 	.merge  = crypt_merge,
1408 	.iterate_devices = crypt_iterate_devices,
1409 };
1410 
1411 static int __init dm_crypt_init(void)
1412 {
1413 	int r;
1414 
1415 	_crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1416 	if (!_crypt_io_pool)
1417 		return -ENOMEM;
1418 
1419 	r = dm_register_target(&crypt_target);
1420 	if (r < 0) {
1421 		DMERR("register failed %d", r);
1422 		kmem_cache_destroy(_crypt_io_pool);
1423 	}
1424 
1425 	return r;
1426 }
1427 
1428 static void __exit dm_crypt_exit(void)
1429 {
1430 	dm_unregister_target(&crypt_target);
1431 	kmem_cache_destroy(_crypt_io_pool);
1432 }
1433 
1434 module_init(dm_crypt_init);
1435 module_exit(dm_crypt_exit);
1436 
1437 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1438 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1439 MODULE_LICENSE("GPL");
1440