xref: /linux/drivers/md/dm-crypt.c (revision e0c1b49f5b674cca7b10549c53b3791d0bbc90a8)
1 /*
2  * Copyright (C) 2003 Jana Saout <jana@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
5  * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/key.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-integrity.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/crypto.h>
22 #include <linux/workqueue.h>
23 #include <linux/kthread.h>
24 #include <linux/backing-dev.h>
25 #include <linux/atomic.h>
26 #include <linux/scatterlist.h>
27 #include <linux/rbtree.h>
28 #include <linux/ctype.h>
29 #include <asm/page.h>
30 #include <asm/unaligned.h>
31 #include <crypto/hash.h>
32 #include <crypto/md5.h>
33 #include <crypto/algapi.h>
34 #include <crypto/skcipher.h>
35 #include <crypto/aead.h>
36 #include <crypto/authenc.h>
37 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
38 #include <linux/key-type.h>
39 #include <keys/user-type.h>
40 #include <keys/encrypted-type.h>
41 #include <keys/trusted-type.h>
42 
43 #include <linux/device-mapper.h>
44 
45 #define DM_MSG_PREFIX "crypt"
46 
47 /*
48  * context holding the current state of a multi-part conversion
49  */
50 struct convert_context {
51 	struct completion restart;
52 	struct bio *bio_in;
53 	struct bio *bio_out;
54 	struct bvec_iter iter_in;
55 	struct bvec_iter iter_out;
56 	u64 cc_sector;
57 	atomic_t cc_pending;
58 	union {
59 		struct skcipher_request *req;
60 		struct aead_request *req_aead;
61 	} r;
62 
63 };
64 
65 /*
66  * per bio private data
67  */
68 struct dm_crypt_io {
69 	struct crypt_config *cc;
70 	struct bio *base_bio;
71 	u8 *integrity_metadata;
72 	bool integrity_metadata_from_pool;
73 	struct work_struct work;
74 	struct tasklet_struct tasklet;
75 
76 	struct convert_context ctx;
77 
78 	atomic_t io_pending;
79 	blk_status_t error;
80 	sector_t sector;
81 
82 	struct rb_node rb_node;
83 } CRYPTO_MINALIGN_ATTR;
84 
85 struct dm_crypt_request {
86 	struct convert_context *ctx;
87 	struct scatterlist sg_in[4];
88 	struct scatterlist sg_out[4];
89 	u64 iv_sector;
90 };
91 
92 struct crypt_config;
93 
94 struct crypt_iv_operations {
95 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
96 		   const char *opts);
97 	void (*dtr)(struct crypt_config *cc);
98 	int (*init)(struct crypt_config *cc);
99 	int (*wipe)(struct crypt_config *cc);
100 	int (*generator)(struct crypt_config *cc, u8 *iv,
101 			 struct dm_crypt_request *dmreq);
102 	int (*post)(struct crypt_config *cc, u8 *iv,
103 		    struct dm_crypt_request *dmreq);
104 };
105 
106 struct iv_benbi_private {
107 	int shift;
108 };
109 
110 #define LMK_SEED_SIZE 64 /* hash + 0 */
111 struct iv_lmk_private {
112 	struct crypto_shash *hash_tfm;
113 	u8 *seed;
114 };
115 
116 #define TCW_WHITENING_SIZE 16
117 struct iv_tcw_private {
118 	struct crypto_shash *crc32_tfm;
119 	u8 *iv_seed;
120 	u8 *whitening;
121 };
122 
123 #define ELEPHANT_MAX_KEY_SIZE 32
124 struct iv_elephant_private {
125 	struct crypto_skcipher *tfm;
126 };
127 
128 /*
129  * Crypt: maps a linear range of a block device
130  * and encrypts / decrypts at the same time.
131  */
132 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
133 	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
134 	     DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
135 	     DM_CRYPT_WRITE_INLINE };
136 
137 enum cipher_flags {
138 	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cipher */
139 	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
140 	CRYPT_ENCRYPT_PREPROCESS,	/* Must preprocess data for encryption (elephant) */
141 };
142 
143 /*
144  * The fields in here must be read only after initialization.
145  */
146 struct crypt_config {
147 	struct dm_dev *dev;
148 	sector_t start;
149 
150 	struct percpu_counter n_allocated_pages;
151 
152 	struct workqueue_struct *io_queue;
153 	struct workqueue_struct *crypt_queue;
154 
155 	spinlock_t write_thread_lock;
156 	struct task_struct *write_thread;
157 	struct rb_root write_tree;
158 
159 	char *cipher_string;
160 	char *cipher_auth;
161 	char *key_string;
162 
163 	const struct crypt_iv_operations *iv_gen_ops;
164 	union {
165 		struct iv_benbi_private benbi;
166 		struct iv_lmk_private lmk;
167 		struct iv_tcw_private tcw;
168 		struct iv_elephant_private elephant;
169 	} iv_gen_private;
170 	u64 iv_offset;
171 	unsigned int iv_size;
172 	unsigned short int sector_size;
173 	unsigned char sector_shift;
174 
175 	union {
176 		struct crypto_skcipher **tfms;
177 		struct crypto_aead **tfms_aead;
178 	} cipher_tfm;
179 	unsigned tfms_count;
180 	unsigned long cipher_flags;
181 
182 	/*
183 	 * Layout of each crypto request:
184 	 *
185 	 *   struct skcipher_request
186 	 *      context
187 	 *      padding
188 	 *   struct dm_crypt_request
189 	 *      padding
190 	 *   IV
191 	 *
192 	 * The padding is added so that dm_crypt_request and the IV are
193 	 * correctly aligned.
194 	 */
195 	unsigned int dmreq_start;
196 
197 	unsigned int per_bio_data_size;
198 
199 	unsigned long flags;
200 	unsigned int key_size;
201 	unsigned int key_parts;      /* independent parts in key buffer */
202 	unsigned int key_extra_size; /* additional keys length */
203 	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
204 
205 	unsigned int integrity_tag_size;
206 	unsigned int integrity_iv_size;
207 	unsigned int on_disk_tag_size;
208 
209 	/*
210 	 * pool for per bio private data, crypto requests,
211 	 * encryption requeusts/buffer pages and integrity tags
212 	 */
213 	unsigned tag_pool_max_sectors;
214 	mempool_t tag_pool;
215 	mempool_t req_pool;
216 	mempool_t page_pool;
217 
218 	struct bio_set bs;
219 	struct mutex bio_alloc_lock;
220 
221 	u8 *authenc_key; /* space for keys in authenc() format (if used) */
222 	u8 key[];
223 };
224 
225 #define MIN_IOS		64
226 #define MAX_TAG_SIZE	480
227 #define POOL_ENTRY_SIZE	512
228 
229 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
230 static unsigned dm_crypt_clients_n = 0;
231 static volatile unsigned long dm_crypt_pages_per_client;
232 #define DM_CRYPT_MEMORY_PERCENT			2
233 #define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_VECS * 16)
234 
235 static void clone_init(struct dm_crypt_io *, struct bio *);
236 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
237 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
238 					     struct scatterlist *sg);
239 
240 static bool crypt_integrity_aead(struct crypt_config *cc);
241 
242 /*
243  * Use this to access cipher attributes that are independent of the key.
244  */
245 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
246 {
247 	return cc->cipher_tfm.tfms[0];
248 }
249 
250 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
251 {
252 	return cc->cipher_tfm.tfms_aead[0];
253 }
254 
255 /*
256  * Different IV generation algorithms:
257  *
258  * plain: the initial vector is the 32-bit little-endian version of the sector
259  *        number, padded with zeros if necessary.
260  *
261  * plain64: the initial vector is the 64-bit little-endian version of the sector
262  *        number, padded with zeros if necessary.
263  *
264  * plain64be: the initial vector is the 64-bit big-endian version of the sector
265  *        number, padded with zeros if necessary.
266  *
267  * essiv: "encrypted sector|salt initial vector", the sector number is
268  *        encrypted with the bulk cipher using a salt as key. The salt
269  *        should be derived from the bulk cipher's key via hashing.
270  *
271  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
272  *        (needed for LRW-32-AES and possible other narrow block modes)
273  *
274  * null: the initial vector is always zero.  Provides compatibility with
275  *       obsolete loop_fish2 devices.  Do not use for new devices.
276  *
277  * lmk:  Compatible implementation of the block chaining mode used
278  *       by the Loop-AES block device encryption system
279  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
280  *       It operates on full 512 byte sectors and uses CBC
281  *       with an IV derived from the sector number, the data and
282  *       optionally extra IV seed.
283  *       This means that after decryption the first block
284  *       of sector must be tweaked according to decrypted data.
285  *       Loop-AES can use three encryption schemes:
286  *         version 1: is plain aes-cbc mode
287  *         version 2: uses 64 multikey scheme with lmk IV generator
288  *         version 3: the same as version 2 with additional IV seed
289  *                   (it uses 65 keys, last key is used as IV seed)
290  *
291  * tcw:  Compatible implementation of the block chaining mode used
292  *       by the TrueCrypt device encryption system (prior to version 4.1).
293  *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
294  *       It operates on full 512 byte sectors and uses CBC
295  *       with an IV derived from initial key and the sector number.
296  *       In addition, whitening value is applied on every sector, whitening
297  *       is calculated from initial key, sector number and mixed using CRC32.
298  *       Note that this encryption scheme is vulnerable to watermarking attacks
299  *       and should be used for old compatible containers access only.
300  *
301  * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
302  *        The IV is encrypted little-endian byte-offset (with the same key
303  *        and cipher as the volume).
304  *
305  * elephant: The extended version of eboiv with additional Elephant diffuser
306  *           used with Bitlocker CBC mode.
307  *           This mode was used in older Windows systems
308  *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
309  */
310 
311 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
312 			      struct dm_crypt_request *dmreq)
313 {
314 	memset(iv, 0, cc->iv_size);
315 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
316 
317 	return 0;
318 }
319 
320 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
321 				struct dm_crypt_request *dmreq)
322 {
323 	memset(iv, 0, cc->iv_size);
324 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
325 
326 	return 0;
327 }
328 
329 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
330 				  struct dm_crypt_request *dmreq)
331 {
332 	memset(iv, 0, cc->iv_size);
333 	/* iv_size is at least of size u64; usually it is 16 bytes */
334 	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
335 
336 	return 0;
337 }
338 
339 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
340 			      struct dm_crypt_request *dmreq)
341 {
342 	/*
343 	 * ESSIV encryption of the IV is now handled by the crypto API,
344 	 * so just pass the plain sector number here.
345 	 */
346 	memset(iv, 0, cc->iv_size);
347 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
348 
349 	return 0;
350 }
351 
352 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
353 			      const char *opts)
354 {
355 	unsigned bs;
356 	int log;
357 
358 	if (crypt_integrity_aead(cc))
359 		bs = crypto_aead_blocksize(any_tfm_aead(cc));
360 	else
361 		bs = crypto_skcipher_blocksize(any_tfm(cc));
362 	log = ilog2(bs);
363 
364 	/* we need to calculate how far we must shift the sector count
365 	 * to get the cipher block count, we use this shift in _gen */
366 
367 	if (1 << log != bs) {
368 		ti->error = "cypher blocksize is not a power of 2";
369 		return -EINVAL;
370 	}
371 
372 	if (log > 9) {
373 		ti->error = "cypher blocksize is > 512";
374 		return -EINVAL;
375 	}
376 
377 	cc->iv_gen_private.benbi.shift = 9 - log;
378 
379 	return 0;
380 }
381 
382 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
383 {
384 }
385 
386 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
387 			      struct dm_crypt_request *dmreq)
388 {
389 	__be64 val;
390 
391 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
392 
393 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
394 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
395 
396 	return 0;
397 }
398 
399 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
400 			     struct dm_crypt_request *dmreq)
401 {
402 	memset(iv, 0, cc->iv_size);
403 
404 	return 0;
405 }
406 
407 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
408 {
409 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
410 
411 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
412 		crypto_free_shash(lmk->hash_tfm);
413 	lmk->hash_tfm = NULL;
414 
415 	kfree_sensitive(lmk->seed);
416 	lmk->seed = NULL;
417 }
418 
419 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
420 			    const char *opts)
421 {
422 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
423 
424 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
425 		ti->error = "Unsupported sector size for LMK";
426 		return -EINVAL;
427 	}
428 
429 	lmk->hash_tfm = crypto_alloc_shash("md5", 0,
430 					   CRYPTO_ALG_ALLOCATES_MEMORY);
431 	if (IS_ERR(lmk->hash_tfm)) {
432 		ti->error = "Error initializing LMK hash";
433 		return PTR_ERR(lmk->hash_tfm);
434 	}
435 
436 	/* No seed in LMK version 2 */
437 	if (cc->key_parts == cc->tfms_count) {
438 		lmk->seed = NULL;
439 		return 0;
440 	}
441 
442 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
443 	if (!lmk->seed) {
444 		crypt_iv_lmk_dtr(cc);
445 		ti->error = "Error kmallocing seed storage in LMK";
446 		return -ENOMEM;
447 	}
448 
449 	return 0;
450 }
451 
452 static int crypt_iv_lmk_init(struct crypt_config *cc)
453 {
454 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
455 	int subkey_size = cc->key_size / cc->key_parts;
456 
457 	/* LMK seed is on the position of LMK_KEYS + 1 key */
458 	if (lmk->seed)
459 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
460 		       crypto_shash_digestsize(lmk->hash_tfm));
461 
462 	return 0;
463 }
464 
465 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
466 {
467 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
468 
469 	if (lmk->seed)
470 		memset(lmk->seed, 0, LMK_SEED_SIZE);
471 
472 	return 0;
473 }
474 
475 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
476 			    struct dm_crypt_request *dmreq,
477 			    u8 *data)
478 {
479 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
480 	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
481 	struct md5_state md5state;
482 	__le32 buf[4];
483 	int i, r;
484 
485 	desc->tfm = lmk->hash_tfm;
486 
487 	r = crypto_shash_init(desc);
488 	if (r)
489 		return r;
490 
491 	if (lmk->seed) {
492 		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
493 		if (r)
494 			return r;
495 	}
496 
497 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
498 	r = crypto_shash_update(desc, data + 16, 16 * 31);
499 	if (r)
500 		return r;
501 
502 	/* Sector is cropped to 56 bits here */
503 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
504 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
505 	buf[2] = cpu_to_le32(4024);
506 	buf[3] = 0;
507 	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
508 	if (r)
509 		return r;
510 
511 	/* No MD5 padding here */
512 	r = crypto_shash_export(desc, &md5state);
513 	if (r)
514 		return r;
515 
516 	for (i = 0; i < MD5_HASH_WORDS; i++)
517 		__cpu_to_le32s(&md5state.hash[i]);
518 	memcpy(iv, &md5state.hash, cc->iv_size);
519 
520 	return 0;
521 }
522 
523 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
524 			    struct dm_crypt_request *dmreq)
525 {
526 	struct scatterlist *sg;
527 	u8 *src;
528 	int r = 0;
529 
530 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
531 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
532 		src = kmap_atomic(sg_page(sg));
533 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
534 		kunmap_atomic(src);
535 	} else
536 		memset(iv, 0, cc->iv_size);
537 
538 	return r;
539 }
540 
541 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
542 			     struct dm_crypt_request *dmreq)
543 {
544 	struct scatterlist *sg;
545 	u8 *dst;
546 	int r;
547 
548 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
549 		return 0;
550 
551 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
552 	dst = kmap_atomic(sg_page(sg));
553 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
554 
555 	/* Tweak the first block of plaintext sector */
556 	if (!r)
557 		crypto_xor(dst + sg->offset, iv, cc->iv_size);
558 
559 	kunmap_atomic(dst);
560 	return r;
561 }
562 
563 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
564 {
565 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
566 
567 	kfree_sensitive(tcw->iv_seed);
568 	tcw->iv_seed = NULL;
569 	kfree_sensitive(tcw->whitening);
570 	tcw->whitening = NULL;
571 
572 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
573 		crypto_free_shash(tcw->crc32_tfm);
574 	tcw->crc32_tfm = NULL;
575 }
576 
577 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
578 			    const char *opts)
579 {
580 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
581 
582 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
583 		ti->error = "Unsupported sector size for TCW";
584 		return -EINVAL;
585 	}
586 
587 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
588 		ti->error = "Wrong key size for TCW";
589 		return -EINVAL;
590 	}
591 
592 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
593 					    CRYPTO_ALG_ALLOCATES_MEMORY);
594 	if (IS_ERR(tcw->crc32_tfm)) {
595 		ti->error = "Error initializing CRC32 in TCW";
596 		return PTR_ERR(tcw->crc32_tfm);
597 	}
598 
599 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
600 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
601 	if (!tcw->iv_seed || !tcw->whitening) {
602 		crypt_iv_tcw_dtr(cc);
603 		ti->error = "Error allocating seed storage in TCW";
604 		return -ENOMEM;
605 	}
606 
607 	return 0;
608 }
609 
610 static int crypt_iv_tcw_init(struct crypt_config *cc)
611 {
612 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
613 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
614 
615 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
616 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
617 	       TCW_WHITENING_SIZE);
618 
619 	return 0;
620 }
621 
622 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
623 {
624 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
625 
626 	memset(tcw->iv_seed, 0, cc->iv_size);
627 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
628 
629 	return 0;
630 }
631 
632 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
633 				  struct dm_crypt_request *dmreq,
634 				  u8 *data)
635 {
636 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
637 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
638 	u8 buf[TCW_WHITENING_SIZE];
639 	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
640 	int i, r;
641 
642 	/* xor whitening with sector number */
643 	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
644 	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
645 
646 	/* calculate crc32 for every 32bit part and xor it */
647 	desc->tfm = tcw->crc32_tfm;
648 	for (i = 0; i < 4; i++) {
649 		r = crypto_shash_init(desc);
650 		if (r)
651 			goto out;
652 		r = crypto_shash_update(desc, &buf[i * 4], 4);
653 		if (r)
654 			goto out;
655 		r = crypto_shash_final(desc, &buf[i * 4]);
656 		if (r)
657 			goto out;
658 	}
659 	crypto_xor(&buf[0], &buf[12], 4);
660 	crypto_xor(&buf[4], &buf[8], 4);
661 
662 	/* apply whitening (8 bytes) to whole sector */
663 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
664 		crypto_xor(data + i * 8, buf, 8);
665 out:
666 	memzero_explicit(buf, sizeof(buf));
667 	return r;
668 }
669 
670 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
671 			    struct dm_crypt_request *dmreq)
672 {
673 	struct scatterlist *sg;
674 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
675 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
676 	u8 *src;
677 	int r = 0;
678 
679 	/* Remove whitening from ciphertext */
680 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
681 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
682 		src = kmap_atomic(sg_page(sg));
683 		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
684 		kunmap_atomic(src);
685 	}
686 
687 	/* Calculate IV */
688 	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
689 	if (cc->iv_size > 8)
690 		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
691 			       cc->iv_size - 8);
692 
693 	return r;
694 }
695 
696 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
697 			     struct dm_crypt_request *dmreq)
698 {
699 	struct scatterlist *sg;
700 	u8 *dst;
701 	int r;
702 
703 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
704 		return 0;
705 
706 	/* Apply whitening on ciphertext */
707 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
708 	dst = kmap_atomic(sg_page(sg));
709 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
710 	kunmap_atomic(dst);
711 
712 	return r;
713 }
714 
715 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
716 				struct dm_crypt_request *dmreq)
717 {
718 	/* Used only for writes, there must be an additional space to store IV */
719 	get_random_bytes(iv, cc->iv_size);
720 	return 0;
721 }
722 
723 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
724 			    const char *opts)
725 {
726 	if (crypt_integrity_aead(cc)) {
727 		ti->error = "AEAD transforms not supported for EBOIV";
728 		return -EINVAL;
729 	}
730 
731 	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
732 		ti->error = "Block size of EBOIV cipher does "
733 			    "not match IV size of block cipher";
734 		return -EINVAL;
735 	}
736 
737 	return 0;
738 }
739 
740 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
741 			    struct dm_crypt_request *dmreq)
742 {
743 	u8 buf[MAX_CIPHER_BLOCKSIZE] __aligned(__alignof__(__le64));
744 	struct skcipher_request *req;
745 	struct scatterlist src, dst;
746 	DECLARE_CRYPTO_WAIT(wait);
747 	int err;
748 
749 	req = skcipher_request_alloc(any_tfm(cc), GFP_NOIO);
750 	if (!req)
751 		return -ENOMEM;
752 
753 	memset(buf, 0, cc->iv_size);
754 	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
755 
756 	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
757 	sg_init_one(&dst, iv, cc->iv_size);
758 	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
759 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
760 	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
761 	skcipher_request_free(req);
762 
763 	return err;
764 }
765 
766 static void crypt_iv_elephant_dtr(struct crypt_config *cc)
767 {
768 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
769 
770 	crypto_free_skcipher(elephant->tfm);
771 	elephant->tfm = NULL;
772 }
773 
774 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
775 			    const char *opts)
776 {
777 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
778 	int r;
779 
780 	elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
781 					      CRYPTO_ALG_ALLOCATES_MEMORY);
782 	if (IS_ERR(elephant->tfm)) {
783 		r = PTR_ERR(elephant->tfm);
784 		elephant->tfm = NULL;
785 		return r;
786 	}
787 
788 	r = crypt_iv_eboiv_ctr(cc, ti, NULL);
789 	if (r)
790 		crypt_iv_elephant_dtr(cc);
791 	return r;
792 }
793 
794 static void diffuser_disk_to_cpu(u32 *d, size_t n)
795 {
796 #ifndef __LITTLE_ENDIAN
797 	int i;
798 
799 	for (i = 0; i < n; i++)
800 		d[i] = le32_to_cpu((__le32)d[i]);
801 #endif
802 }
803 
804 static void diffuser_cpu_to_disk(__le32 *d, size_t n)
805 {
806 #ifndef __LITTLE_ENDIAN
807 	int i;
808 
809 	for (i = 0; i < n; i++)
810 		d[i] = cpu_to_le32((u32)d[i]);
811 #endif
812 }
813 
814 static void diffuser_a_decrypt(u32 *d, size_t n)
815 {
816 	int i, i1, i2, i3;
817 
818 	for (i = 0; i < 5; i++) {
819 		i1 = 0;
820 		i2 = n - 2;
821 		i3 = n - 5;
822 
823 		while (i1 < (n - 1)) {
824 			d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
825 			i1++; i2++; i3++;
826 
827 			if (i3 >= n)
828 				i3 -= n;
829 
830 			d[i1] += d[i2] ^ d[i3];
831 			i1++; i2++; i3++;
832 
833 			if (i2 >= n)
834 				i2 -= n;
835 
836 			d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
837 			i1++; i2++; i3++;
838 
839 			d[i1] += d[i2] ^ d[i3];
840 			i1++; i2++; i3++;
841 		}
842 	}
843 }
844 
845 static void diffuser_a_encrypt(u32 *d, size_t n)
846 {
847 	int i, i1, i2, i3;
848 
849 	for (i = 0; i < 5; i++) {
850 		i1 = n - 1;
851 		i2 = n - 2 - 1;
852 		i3 = n - 5 - 1;
853 
854 		while (i1 > 0) {
855 			d[i1] -= d[i2] ^ d[i3];
856 			i1--; i2--; i3--;
857 
858 			d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
859 			i1--; i2--; i3--;
860 
861 			if (i2 < 0)
862 				i2 += n;
863 
864 			d[i1] -= d[i2] ^ d[i3];
865 			i1--; i2--; i3--;
866 
867 			if (i3 < 0)
868 				i3 += n;
869 
870 			d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
871 			i1--; i2--; i3--;
872 		}
873 	}
874 }
875 
876 static void diffuser_b_decrypt(u32 *d, size_t n)
877 {
878 	int i, i1, i2, i3;
879 
880 	for (i = 0; i < 3; i++) {
881 		i1 = 0;
882 		i2 = 2;
883 		i3 = 5;
884 
885 		while (i1 < (n - 1)) {
886 			d[i1] += d[i2] ^ d[i3];
887 			i1++; i2++; i3++;
888 
889 			d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
890 			i1++; i2++; i3++;
891 
892 			if (i2 >= n)
893 				i2 -= n;
894 
895 			d[i1] += d[i2] ^ d[i3];
896 			i1++; i2++; i3++;
897 
898 			if (i3 >= n)
899 				i3 -= n;
900 
901 			d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
902 			i1++; i2++; i3++;
903 		}
904 	}
905 }
906 
907 static void diffuser_b_encrypt(u32 *d, size_t n)
908 {
909 	int i, i1, i2, i3;
910 
911 	for (i = 0; i < 3; i++) {
912 		i1 = n - 1;
913 		i2 = 2 - 1;
914 		i3 = 5 - 1;
915 
916 		while (i1 > 0) {
917 			d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
918 			i1--; i2--; i3--;
919 
920 			if (i3 < 0)
921 				i3 += n;
922 
923 			d[i1] -= d[i2] ^ d[i3];
924 			i1--; i2--; i3--;
925 
926 			if (i2 < 0)
927 				i2 += n;
928 
929 			d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
930 			i1--; i2--; i3--;
931 
932 			d[i1] -= d[i2] ^ d[i3];
933 			i1--; i2--; i3--;
934 		}
935 	}
936 }
937 
938 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
939 {
940 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
941 	u8 *es, *ks, *data, *data2, *data_offset;
942 	struct skcipher_request *req;
943 	struct scatterlist *sg, *sg2, src, dst;
944 	DECLARE_CRYPTO_WAIT(wait);
945 	int i, r;
946 
947 	req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
948 	es = kzalloc(16, GFP_NOIO); /* Key for AES */
949 	ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
950 
951 	if (!req || !es || !ks) {
952 		r = -ENOMEM;
953 		goto out;
954 	}
955 
956 	*(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
957 
958 	/* E(Ks, e(s)) */
959 	sg_init_one(&src, es, 16);
960 	sg_init_one(&dst, ks, 16);
961 	skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
962 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
963 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
964 	if (r)
965 		goto out;
966 
967 	/* E(Ks, e'(s)) */
968 	es[15] = 0x80;
969 	sg_init_one(&dst, &ks[16], 16);
970 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
971 	if (r)
972 		goto out;
973 
974 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
975 	data = kmap_atomic(sg_page(sg));
976 	data_offset = data + sg->offset;
977 
978 	/* Cannot modify original bio, copy to sg_out and apply Elephant to it */
979 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
980 		sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
981 		data2 = kmap_atomic(sg_page(sg2));
982 		memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
983 		kunmap_atomic(data2);
984 	}
985 
986 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
987 		diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
988 		diffuser_b_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
989 		diffuser_a_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
990 		diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
991 	}
992 
993 	for (i = 0; i < (cc->sector_size / 32); i++)
994 		crypto_xor(data_offset + i * 32, ks, 32);
995 
996 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
997 		diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
998 		diffuser_a_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
999 		diffuser_b_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
1000 		diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
1001 	}
1002 
1003 	kunmap_atomic(data);
1004 out:
1005 	kfree_sensitive(ks);
1006 	kfree_sensitive(es);
1007 	skcipher_request_free(req);
1008 	return r;
1009 }
1010 
1011 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1012 			    struct dm_crypt_request *dmreq)
1013 {
1014 	int r;
1015 
1016 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1017 		r = crypt_iv_elephant(cc, dmreq);
1018 		if (r)
1019 			return r;
1020 	}
1021 
1022 	return crypt_iv_eboiv_gen(cc, iv, dmreq);
1023 }
1024 
1025 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1026 				  struct dm_crypt_request *dmreq)
1027 {
1028 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1029 		return crypt_iv_elephant(cc, dmreq);
1030 
1031 	return 0;
1032 }
1033 
1034 static int crypt_iv_elephant_init(struct crypt_config *cc)
1035 {
1036 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1037 	int key_offset = cc->key_size - cc->key_extra_size;
1038 
1039 	return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1040 }
1041 
1042 static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1043 {
1044 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1045 	u8 key[ELEPHANT_MAX_KEY_SIZE];
1046 
1047 	memset(key, 0, cc->key_extra_size);
1048 	return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1049 }
1050 
1051 static const struct crypt_iv_operations crypt_iv_plain_ops = {
1052 	.generator = crypt_iv_plain_gen
1053 };
1054 
1055 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1056 	.generator = crypt_iv_plain64_gen
1057 };
1058 
1059 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1060 	.generator = crypt_iv_plain64be_gen
1061 };
1062 
1063 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1064 	.generator = crypt_iv_essiv_gen
1065 };
1066 
1067 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1068 	.ctr	   = crypt_iv_benbi_ctr,
1069 	.dtr	   = crypt_iv_benbi_dtr,
1070 	.generator = crypt_iv_benbi_gen
1071 };
1072 
1073 static const struct crypt_iv_operations crypt_iv_null_ops = {
1074 	.generator = crypt_iv_null_gen
1075 };
1076 
1077 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1078 	.ctr	   = crypt_iv_lmk_ctr,
1079 	.dtr	   = crypt_iv_lmk_dtr,
1080 	.init	   = crypt_iv_lmk_init,
1081 	.wipe	   = crypt_iv_lmk_wipe,
1082 	.generator = crypt_iv_lmk_gen,
1083 	.post	   = crypt_iv_lmk_post
1084 };
1085 
1086 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1087 	.ctr	   = crypt_iv_tcw_ctr,
1088 	.dtr	   = crypt_iv_tcw_dtr,
1089 	.init	   = crypt_iv_tcw_init,
1090 	.wipe	   = crypt_iv_tcw_wipe,
1091 	.generator = crypt_iv_tcw_gen,
1092 	.post	   = crypt_iv_tcw_post
1093 };
1094 
1095 static const struct crypt_iv_operations crypt_iv_random_ops = {
1096 	.generator = crypt_iv_random_gen
1097 };
1098 
1099 static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1100 	.ctr	   = crypt_iv_eboiv_ctr,
1101 	.generator = crypt_iv_eboiv_gen
1102 };
1103 
1104 static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1105 	.ctr	   = crypt_iv_elephant_ctr,
1106 	.dtr	   = crypt_iv_elephant_dtr,
1107 	.init	   = crypt_iv_elephant_init,
1108 	.wipe	   = crypt_iv_elephant_wipe,
1109 	.generator = crypt_iv_elephant_gen,
1110 	.post	   = crypt_iv_elephant_post
1111 };
1112 
1113 /*
1114  * Integrity extensions
1115  */
1116 static bool crypt_integrity_aead(struct crypt_config *cc)
1117 {
1118 	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1119 }
1120 
1121 static bool crypt_integrity_hmac(struct crypt_config *cc)
1122 {
1123 	return crypt_integrity_aead(cc) && cc->key_mac_size;
1124 }
1125 
1126 /* Get sg containing data */
1127 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1128 					     struct scatterlist *sg)
1129 {
1130 	if (unlikely(crypt_integrity_aead(cc)))
1131 		return &sg[2];
1132 
1133 	return sg;
1134 }
1135 
1136 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1137 {
1138 	struct bio_integrity_payload *bip;
1139 	unsigned int tag_len;
1140 	int ret;
1141 
1142 	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1143 		return 0;
1144 
1145 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1146 	if (IS_ERR(bip))
1147 		return PTR_ERR(bip);
1148 
1149 	tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1150 
1151 	bip->bip_iter.bi_size = tag_len;
1152 	bip->bip_iter.bi_sector = io->cc->start + io->sector;
1153 
1154 	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1155 				     tag_len, offset_in_page(io->integrity_metadata));
1156 	if (unlikely(ret != tag_len))
1157 		return -ENOMEM;
1158 
1159 	return 0;
1160 }
1161 
1162 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1163 {
1164 #ifdef CONFIG_BLK_DEV_INTEGRITY
1165 	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1166 	struct mapped_device *md = dm_table_get_md(ti->table);
1167 
1168 	/* From now we require underlying device with our integrity profile */
1169 	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1170 		ti->error = "Integrity profile not supported.";
1171 		return -EINVAL;
1172 	}
1173 
1174 	if (bi->tag_size != cc->on_disk_tag_size ||
1175 	    bi->tuple_size != cc->on_disk_tag_size) {
1176 		ti->error = "Integrity profile tag size mismatch.";
1177 		return -EINVAL;
1178 	}
1179 	if (1 << bi->interval_exp != cc->sector_size) {
1180 		ti->error = "Integrity profile sector size mismatch.";
1181 		return -EINVAL;
1182 	}
1183 
1184 	if (crypt_integrity_aead(cc)) {
1185 		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1186 		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1187 		       cc->integrity_tag_size, cc->integrity_iv_size);
1188 
1189 		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1190 			ti->error = "Integrity AEAD auth tag size is not supported.";
1191 			return -EINVAL;
1192 		}
1193 	} else if (cc->integrity_iv_size)
1194 		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1195 		       cc->integrity_iv_size);
1196 
1197 	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1198 		ti->error = "Not enough space for integrity tag in the profile.";
1199 		return -EINVAL;
1200 	}
1201 
1202 	return 0;
1203 #else
1204 	ti->error = "Integrity profile not supported.";
1205 	return -EINVAL;
1206 #endif
1207 }
1208 
1209 static void crypt_convert_init(struct crypt_config *cc,
1210 			       struct convert_context *ctx,
1211 			       struct bio *bio_out, struct bio *bio_in,
1212 			       sector_t sector)
1213 {
1214 	ctx->bio_in = bio_in;
1215 	ctx->bio_out = bio_out;
1216 	if (bio_in)
1217 		ctx->iter_in = bio_in->bi_iter;
1218 	if (bio_out)
1219 		ctx->iter_out = bio_out->bi_iter;
1220 	ctx->cc_sector = sector + cc->iv_offset;
1221 	init_completion(&ctx->restart);
1222 }
1223 
1224 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1225 					     void *req)
1226 {
1227 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1228 }
1229 
1230 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1231 {
1232 	return (void *)((char *)dmreq - cc->dmreq_start);
1233 }
1234 
1235 static u8 *iv_of_dmreq(struct crypt_config *cc,
1236 		       struct dm_crypt_request *dmreq)
1237 {
1238 	if (crypt_integrity_aead(cc))
1239 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1240 			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1241 	else
1242 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1243 			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1244 }
1245 
1246 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1247 		       struct dm_crypt_request *dmreq)
1248 {
1249 	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1250 }
1251 
1252 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1253 		       struct dm_crypt_request *dmreq)
1254 {
1255 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1256 	return (__le64 *) ptr;
1257 }
1258 
1259 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1260 		       struct dm_crypt_request *dmreq)
1261 {
1262 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1263 		  cc->iv_size + sizeof(uint64_t);
1264 	return (unsigned int*)ptr;
1265 }
1266 
1267 static void *tag_from_dmreq(struct crypt_config *cc,
1268 				struct dm_crypt_request *dmreq)
1269 {
1270 	struct convert_context *ctx = dmreq->ctx;
1271 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1272 
1273 	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1274 		cc->on_disk_tag_size];
1275 }
1276 
1277 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1278 			       struct dm_crypt_request *dmreq)
1279 {
1280 	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1281 }
1282 
1283 static int crypt_convert_block_aead(struct crypt_config *cc,
1284 				     struct convert_context *ctx,
1285 				     struct aead_request *req,
1286 				     unsigned int tag_offset)
1287 {
1288 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1289 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1290 	struct dm_crypt_request *dmreq;
1291 	u8 *iv, *org_iv, *tag_iv, *tag;
1292 	__le64 *sector;
1293 	int r = 0;
1294 
1295 	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1296 
1297 	/* Reject unexpected unaligned bio. */
1298 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1299 		return -EIO;
1300 
1301 	dmreq = dmreq_of_req(cc, req);
1302 	dmreq->iv_sector = ctx->cc_sector;
1303 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1304 		dmreq->iv_sector >>= cc->sector_shift;
1305 	dmreq->ctx = ctx;
1306 
1307 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1308 
1309 	sector = org_sector_of_dmreq(cc, dmreq);
1310 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1311 
1312 	iv = iv_of_dmreq(cc, dmreq);
1313 	org_iv = org_iv_of_dmreq(cc, dmreq);
1314 	tag = tag_from_dmreq(cc, dmreq);
1315 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1316 
1317 	/* AEAD request:
1318 	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1319 	 *  | (authenticated) | (auth+encryption) |              |
1320 	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1321 	 */
1322 	sg_init_table(dmreq->sg_in, 4);
1323 	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1324 	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1325 	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1326 	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1327 
1328 	sg_init_table(dmreq->sg_out, 4);
1329 	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1330 	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1331 	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1332 	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1333 
1334 	if (cc->iv_gen_ops) {
1335 		/* For READs use IV stored in integrity metadata */
1336 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1337 			memcpy(org_iv, tag_iv, cc->iv_size);
1338 		} else {
1339 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1340 			if (r < 0)
1341 				return r;
1342 			/* Store generated IV in integrity metadata */
1343 			if (cc->integrity_iv_size)
1344 				memcpy(tag_iv, org_iv, cc->iv_size);
1345 		}
1346 		/* Working copy of IV, to be modified in crypto API */
1347 		memcpy(iv, org_iv, cc->iv_size);
1348 	}
1349 
1350 	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1351 	if (bio_data_dir(ctx->bio_in) == WRITE) {
1352 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1353 				       cc->sector_size, iv);
1354 		r = crypto_aead_encrypt(req);
1355 		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1356 			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1357 			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1358 	} else {
1359 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1360 				       cc->sector_size + cc->integrity_tag_size, iv);
1361 		r = crypto_aead_decrypt(req);
1362 	}
1363 
1364 	if (r == -EBADMSG) {
1365 		char b[BDEVNAME_SIZE];
1366 		DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
1367 			    (unsigned long long)le64_to_cpu(*sector));
1368 	}
1369 
1370 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1371 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1372 
1373 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1374 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1375 
1376 	return r;
1377 }
1378 
1379 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1380 					struct convert_context *ctx,
1381 					struct skcipher_request *req,
1382 					unsigned int tag_offset)
1383 {
1384 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1385 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1386 	struct scatterlist *sg_in, *sg_out;
1387 	struct dm_crypt_request *dmreq;
1388 	u8 *iv, *org_iv, *tag_iv;
1389 	__le64 *sector;
1390 	int r = 0;
1391 
1392 	/* Reject unexpected unaligned bio. */
1393 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1394 		return -EIO;
1395 
1396 	dmreq = dmreq_of_req(cc, req);
1397 	dmreq->iv_sector = ctx->cc_sector;
1398 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1399 		dmreq->iv_sector >>= cc->sector_shift;
1400 	dmreq->ctx = ctx;
1401 
1402 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1403 
1404 	iv = iv_of_dmreq(cc, dmreq);
1405 	org_iv = org_iv_of_dmreq(cc, dmreq);
1406 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1407 
1408 	sector = org_sector_of_dmreq(cc, dmreq);
1409 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1410 
1411 	/* For skcipher we use only the first sg item */
1412 	sg_in  = &dmreq->sg_in[0];
1413 	sg_out = &dmreq->sg_out[0];
1414 
1415 	sg_init_table(sg_in, 1);
1416 	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1417 
1418 	sg_init_table(sg_out, 1);
1419 	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1420 
1421 	if (cc->iv_gen_ops) {
1422 		/* For READs use IV stored in integrity metadata */
1423 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1424 			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1425 		} else {
1426 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1427 			if (r < 0)
1428 				return r;
1429 			/* Data can be already preprocessed in generator */
1430 			if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1431 				sg_in = sg_out;
1432 			/* Store generated IV in integrity metadata */
1433 			if (cc->integrity_iv_size)
1434 				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1435 		}
1436 		/* Working copy of IV, to be modified in crypto API */
1437 		memcpy(iv, org_iv, cc->iv_size);
1438 	}
1439 
1440 	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1441 
1442 	if (bio_data_dir(ctx->bio_in) == WRITE)
1443 		r = crypto_skcipher_encrypt(req);
1444 	else
1445 		r = crypto_skcipher_decrypt(req);
1446 
1447 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1448 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1449 
1450 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1451 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1452 
1453 	return r;
1454 }
1455 
1456 static void kcryptd_async_done(struct crypto_async_request *async_req,
1457 			       int error);
1458 
1459 static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1460 				     struct convert_context *ctx)
1461 {
1462 	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1463 
1464 	if (!ctx->r.req) {
1465 		ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1466 		if (!ctx->r.req)
1467 			return -ENOMEM;
1468 	}
1469 
1470 	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1471 
1472 	/*
1473 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1474 	 * requests if driver request queue is full.
1475 	 */
1476 	skcipher_request_set_callback(ctx->r.req,
1477 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1478 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1479 
1480 	return 0;
1481 }
1482 
1483 static int crypt_alloc_req_aead(struct crypt_config *cc,
1484 				 struct convert_context *ctx)
1485 {
1486 	if (!ctx->r.req_aead) {
1487 		ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1488 		if (!ctx->r.req_aead)
1489 			return -ENOMEM;
1490 	}
1491 
1492 	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1493 
1494 	/*
1495 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1496 	 * requests if driver request queue is full.
1497 	 */
1498 	aead_request_set_callback(ctx->r.req_aead,
1499 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1500 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1501 
1502 	return 0;
1503 }
1504 
1505 static int crypt_alloc_req(struct crypt_config *cc,
1506 			    struct convert_context *ctx)
1507 {
1508 	if (crypt_integrity_aead(cc))
1509 		return crypt_alloc_req_aead(cc, ctx);
1510 	else
1511 		return crypt_alloc_req_skcipher(cc, ctx);
1512 }
1513 
1514 static void crypt_free_req_skcipher(struct crypt_config *cc,
1515 				    struct skcipher_request *req, struct bio *base_bio)
1516 {
1517 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1518 
1519 	if ((struct skcipher_request *)(io + 1) != req)
1520 		mempool_free(req, &cc->req_pool);
1521 }
1522 
1523 static void crypt_free_req_aead(struct crypt_config *cc,
1524 				struct aead_request *req, struct bio *base_bio)
1525 {
1526 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1527 
1528 	if ((struct aead_request *)(io + 1) != req)
1529 		mempool_free(req, &cc->req_pool);
1530 }
1531 
1532 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1533 {
1534 	if (crypt_integrity_aead(cc))
1535 		crypt_free_req_aead(cc, req, base_bio);
1536 	else
1537 		crypt_free_req_skcipher(cc, req, base_bio);
1538 }
1539 
1540 /*
1541  * Encrypt / decrypt data from one bio to another one (can be the same one)
1542  */
1543 static blk_status_t crypt_convert(struct crypt_config *cc,
1544 			 struct convert_context *ctx, bool atomic, bool reset_pending)
1545 {
1546 	unsigned int tag_offset = 0;
1547 	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1548 	int r;
1549 
1550 	/*
1551 	 * if reset_pending is set we are dealing with the bio for the first time,
1552 	 * else we're continuing to work on the previous bio, so don't mess with
1553 	 * the cc_pending counter
1554 	 */
1555 	if (reset_pending)
1556 		atomic_set(&ctx->cc_pending, 1);
1557 
1558 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1559 
1560 		r = crypt_alloc_req(cc, ctx);
1561 		if (r) {
1562 			complete(&ctx->restart);
1563 			return BLK_STS_DEV_RESOURCE;
1564 		}
1565 
1566 		atomic_inc(&ctx->cc_pending);
1567 
1568 		if (crypt_integrity_aead(cc))
1569 			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1570 		else
1571 			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1572 
1573 		switch (r) {
1574 		/*
1575 		 * The request was queued by a crypto driver
1576 		 * but the driver request queue is full, let's wait.
1577 		 */
1578 		case -EBUSY:
1579 			if (in_interrupt()) {
1580 				if (try_wait_for_completion(&ctx->restart)) {
1581 					/*
1582 					 * we don't have to block to wait for completion,
1583 					 * so proceed
1584 					 */
1585 				} else {
1586 					/*
1587 					 * we can't wait for completion without blocking
1588 					 * exit and continue processing in a workqueue
1589 					 */
1590 					ctx->r.req = NULL;
1591 					ctx->cc_sector += sector_step;
1592 					tag_offset++;
1593 					return BLK_STS_DEV_RESOURCE;
1594 				}
1595 			} else {
1596 				wait_for_completion(&ctx->restart);
1597 			}
1598 			reinit_completion(&ctx->restart);
1599 			fallthrough;
1600 		/*
1601 		 * The request is queued and processed asynchronously,
1602 		 * completion function kcryptd_async_done() will be called.
1603 		 */
1604 		case -EINPROGRESS:
1605 			ctx->r.req = NULL;
1606 			ctx->cc_sector += sector_step;
1607 			tag_offset++;
1608 			continue;
1609 		/*
1610 		 * The request was already processed (synchronously).
1611 		 */
1612 		case 0:
1613 			atomic_dec(&ctx->cc_pending);
1614 			ctx->cc_sector += sector_step;
1615 			tag_offset++;
1616 			if (!atomic)
1617 				cond_resched();
1618 			continue;
1619 		/*
1620 		 * There was a data integrity error.
1621 		 */
1622 		case -EBADMSG:
1623 			atomic_dec(&ctx->cc_pending);
1624 			return BLK_STS_PROTECTION;
1625 		/*
1626 		 * There was an error while processing the request.
1627 		 */
1628 		default:
1629 			atomic_dec(&ctx->cc_pending);
1630 			return BLK_STS_IOERR;
1631 		}
1632 	}
1633 
1634 	return 0;
1635 }
1636 
1637 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1638 
1639 /*
1640  * Generate a new unfragmented bio with the given size
1641  * This should never violate the device limitations (but only because
1642  * max_segment_size is being constrained to PAGE_SIZE).
1643  *
1644  * This function may be called concurrently. If we allocate from the mempool
1645  * concurrently, there is a possibility of deadlock. For example, if we have
1646  * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1647  * the mempool concurrently, it may deadlock in a situation where both processes
1648  * have allocated 128 pages and the mempool is exhausted.
1649  *
1650  * In order to avoid this scenario we allocate the pages under a mutex.
1651  *
1652  * In order to not degrade performance with excessive locking, we try
1653  * non-blocking allocations without a mutex first but on failure we fallback
1654  * to blocking allocations with a mutex.
1655  */
1656 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1657 {
1658 	struct crypt_config *cc = io->cc;
1659 	struct bio *clone;
1660 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1661 	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1662 	unsigned i, len, remaining_size;
1663 	struct page *page;
1664 
1665 retry:
1666 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1667 		mutex_lock(&cc->bio_alloc_lock);
1668 
1669 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, &cc->bs);
1670 	if (!clone)
1671 		goto out;
1672 
1673 	clone_init(io, clone);
1674 
1675 	remaining_size = size;
1676 
1677 	for (i = 0; i < nr_iovecs; i++) {
1678 		page = mempool_alloc(&cc->page_pool, gfp_mask);
1679 		if (!page) {
1680 			crypt_free_buffer_pages(cc, clone);
1681 			bio_put(clone);
1682 			gfp_mask |= __GFP_DIRECT_RECLAIM;
1683 			goto retry;
1684 		}
1685 
1686 		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1687 
1688 		bio_add_page(clone, page, len, 0);
1689 
1690 		remaining_size -= len;
1691 	}
1692 
1693 	/* Allocate space for integrity tags */
1694 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1695 		crypt_free_buffer_pages(cc, clone);
1696 		bio_put(clone);
1697 		clone = NULL;
1698 	}
1699 out:
1700 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1701 		mutex_unlock(&cc->bio_alloc_lock);
1702 
1703 	return clone;
1704 }
1705 
1706 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1707 {
1708 	struct bio_vec *bv;
1709 	struct bvec_iter_all iter_all;
1710 
1711 	bio_for_each_segment_all(bv, clone, iter_all) {
1712 		BUG_ON(!bv->bv_page);
1713 		mempool_free(bv->bv_page, &cc->page_pool);
1714 	}
1715 }
1716 
1717 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1718 			  struct bio *bio, sector_t sector)
1719 {
1720 	io->cc = cc;
1721 	io->base_bio = bio;
1722 	io->sector = sector;
1723 	io->error = 0;
1724 	io->ctx.r.req = NULL;
1725 	io->integrity_metadata = NULL;
1726 	io->integrity_metadata_from_pool = false;
1727 	atomic_set(&io->io_pending, 0);
1728 }
1729 
1730 static void crypt_inc_pending(struct dm_crypt_io *io)
1731 {
1732 	atomic_inc(&io->io_pending);
1733 }
1734 
1735 static void kcryptd_io_bio_endio(struct work_struct *work)
1736 {
1737 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1738 	bio_endio(io->base_bio);
1739 }
1740 
1741 /*
1742  * One of the bios was finished. Check for completion of
1743  * the whole request and correctly clean up the buffer.
1744  */
1745 static void crypt_dec_pending(struct dm_crypt_io *io)
1746 {
1747 	struct crypt_config *cc = io->cc;
1748 	struct bio *base_bio = io->base_bio;
1749 	blk_status_t error = io->error;
1750 
1751 	if (!atomic_dec_and_test(&io->io_pending))
1752 		return;
1753 
1754 	if (io->ctx.r.req)
1755 		crypt_free_req(cc, io->ctx.r.req, base_bio);
1756 
1757 	if (unlikely(io->integrity_metadata_from_pool))
1758 		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1759 	else
1760 		kfree(io->integrity_metadata);
1761 
1762 	base_bio->bi_status = error;
1763 
1764 	/*
1765 	 * If we are running this function from our tasklet,
1766 	 * we can't call bio_endio() here, because it will call
1767 	 * clone_endio() from dm.c, which in turn will
1768 	 * free the current struct dm_crypt_io structure with
1769 	 * our tasklet. In this case we need to delay bio_endio()
1770 	 * execution to after the tasklet is done and dequeued.
1771 	 */
1772 	if (tasklet_trylock(&io->tasklet)) {
1773 		tasklet_unlock(&io->tasklet);
1774 		bio_endio(base_bio);
1775 		return;
1776 	}
1777 
1778 	INIT_WORK(&io->work, kcryptd_io_bio_endio);
1779 	queue_work(cc->io_queue, &io->work);
1780 }
1781 
1782 /*
1783  * kcryptd/kcryptd_io:
1784  *
1785  * Needed because it would be very unwise to do decryption in an
1786  * interrupt context.
1787  *
1788  * kcryptd performs the actual encryption or decryption.
1789  *
1790  * kcryptd_io performs the IO submission.
1791  *
1792  * They must be separated as otherwise the final stages could be
1793  * starved by new requests which can block in the first stages due
1794  * to memory allocation.
1795  *
1796  * The work is done per CPU global for all dm-crypt instances.
1797  * They should not depend on each other and do not block.
1798  */
1799 static void crypt_endio(struct bio *clone)
1800 {
1801 	struct dm_crypt_io *io = clone->bi_private;
1802 	struct crypt_config *cc = io->cc;
1803 	unsigned rw = bio_data_dir(clone);
1804 	blk_status_t error;
1805 
1806 	/*
1807 	 * free the processed pages
1808 	 */
1809 	if (rw == WRITE)
1810 		crypt_free_buffer_pages(cc, clone);
1811 
1812 	error = clone->bi_status;
1813 	bio_put(clone);
1814 
1815 	if (rw == READ && !error) {
1816 		kcryptd_queue_crypt(io);
1817 		return;
1818 	}
1819 
1820 	if (unlikely(error))
1821 		io->error = error;
1822 
1823 	crypt_dec_pending(io);
1824 }
1825 
1826 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1827 {
1828 	struct crypt_config *cc = io->cc;
1829 
1830 	clone->bi_private = io;
1831 	clone->bi_end_io  = crypt_endio;
1832 	bio_set_dev(clone, cc->dev->bdev);
1833 	clone->bi_opf	  = io->base_bio->bi_opf;
1834 }
1835 
1836 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1837 {
1838 	struct crypt_config *cc = io->cc;
1839 	struct bio *clone;
1840 
1841 	/*
1842 	 * We need the original biovec array in order to decrypt
1843 	 * the whole bio data *afterwards* -- thanks to immutable
1844 	 * biovecs we don't need to worry about the block layer
1845 	 * modifying the biovec array; so leverage bio_clone_fast().
1846 	 */
1847 	clone = bio_clone_fast(io->base_bio, gfp, &cc->bs);
1848 	if (!clone)
1849 		return 1;
1850 
1851 	crypt_inc_pending(io);
1852 
1853 	clone_init(io, clone);
1854 	clone->bi_iter.bi_sector = cc->start + io->sector;
1855 
1856 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1857 		crypt_dec_pending(io);
1858 		bio_put(clone);
1859 		return 1;
1860 	}
1861 
1862 	submit_bio_noacct(clone);
1863 	return 0;
1864 }
1865 
1866 static void kcryptd_io_read_work(struct work_struct *work)
1867 {
1868 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1869 
1870 	crypt_inc_pending(io);
1871 	if (kcryptd_io_read(io, GFP_NOIO))
1872 		io->error = BLK_STS_RESOURCE;
1873 	crypt_dec_pending(io);
1874 }
1875 
1876 static void kcryptd_queue_read(struct dm_crypt_io *io)
1877 {
1878 	struct crypt_config *cc = io->cc;
1879 
1880 	INIT_WORK(&io->work, kcryptd_io_read_work);
1881 	queue_work(cc->io_queue, &io->work);
1882 }
1883 
1884 static void kcryptd_io_write(struct dm_crypt_io *io)
1885 {
1886 	struct bio *clone = io->ctx.bio_out;
1887 
1888 	submit_bio_noacct(clone);
1889 }
1890 
1891 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1892 
1893 static int dmcrypt_write(void *data)
1894 {
1895 	struct crypt_config *cc = data;
1896 	struct dm_crypt_io *io;
1897 
1898 	while (1) {
1899 		struct rb_root write_tree;
1900 		struct blk_plug plug;
1901 
1902 		spin_lock_irq(&cc->write_thread_lock);
1903 continue_locked:
1904 
1905 		if (!RB_EMPTY_ROOT(&cc->write_tree))
1906 			goto pop_from_list;
1907 
1908 		set_current_state(TASK_INTERRUPTIBLE);
1909 
1910 		spin_unlock_irq(&cc->write_thread_lock);
1911 
1912 		if (unlikely(kthread_should_stop())) {
1913 			set_current_state(TASK_RUNNING);
1914 			break;
1915 		}
1916 
1917 		schedule();
1918 
1919 		set_current_state(TASK_RUNNING);
1920 		spin_lock_irq(&cc->write_thread_lock);
1921 		goto continue_locked;
1922 
1923 pop_from_list:
1924 		write_tree = cc->write_tree;
1925 		cc->write_tree = RB_ROOT;
1926 		spin_unlock_irq(&cc->write_thread_lock);
1927 
1928 		BUG_ON(rb_parent(write_tree.rb_node));
1929 
1930 		/*
1931 		 * Note: we cannot walk the tree here with rb_next because
1932 		 * the structures may be freed when kcryptd_io_write is called.
1933 		 */
1934 		blk_start_plug(&plug);
1935 		do {
1936 			io = crypt_io_from_node(rb_first(&write_tree));
1937 			rb_erase(&io->rb_node, &write_tree);
1938 			kcryptd_io_write(io);
1939 		} while (!RB_EMPTY_ROOT(&write_tree));
1940 		blk_finish_plug(&plug);
1941 	}
1942 	return 0;
1943 }
1944 
1945 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1946 {
1947 	struct bio *clone = io->ctx.bio_out;
1948 	struct crypt_config *cc = io->cc;
1949 	unsigned long flags;
1950 	sector_t sector;
1951 	struct rb_node **rbp, *parent;
1952 
1953 	if (unlikely(io->error)) {
1954 		crypt_free_buffer_pages(cc, clone);
1955 		bio_put(clone);
1956 		crypt_dec_pending(io);
1957 		return;
1958 	}
1959 
1960 	/* crypt_convert should have filled the clone bio */
1961 	BUG_ON(io->ctx.iter_out.bi_size);
1962 
1963 	clone->bi_iter.bi_sector = cc->start + io->sector;
1964 
1965 	if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
1966 	    test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
1967 		submit_bio_noacct(clone);
1968 		return;
1969 	}
1970 
1971 	spin_lock_irqsave(&cc->write_thread_lock, flags);
1972 	if (RB_EMPTY_ROOT(&cc->write_tree))
1973 		wake_up_process(cc->write_thread);
1974 	rbp = &cc->write_tree.rb_node;
1975 	parent = NULL;
1976 	sector = io->sector;
1977 	while (*rbp) {
1978 		parent = *rbp;
1979 		if (sector < crypt_io_from_node(parent)->sector)
1980 			rbp = &(*rbp)->rb_left;
1981 		else
1982 			rbp = &(*rbp)->rb_right;
1983 	}
1984 	rb_link_node(&io->rb_node, parent, rbp);
1985 	rb_insert_color(&io->rb_node, &cc->write_tree);
1986 	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
1987 }
1988 
1989 static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
1990 				       struct convert_context *ctx)
1991 
1992 {
1993 	if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
1994 		return false;
1995 
1996 	/*
1997 	 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
1998 	 * constraints so they do not need to be issued inline by
1999 	 * kcryptd_crypt_write_convert().
2000 	 */
2001 	switch (bio_op(ctx->bio_in)) {
2002 	case REQ_OP_WRITE:
2003 	case REQ_OP_WRITE_SAME:
2004 	case REQ_OP_WRITE_ZEROES:
2005 		return true;
2006 	default:
2007 		return false;
2008 	}
2009 }
2010 
2011 static void kcryptd_crypt_write_continue(struct work_struct *work)
2012 {
2013 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2014 	struct crypt_config *cc = io->cc;
2015 	struct convert_context *ctx = &io->ctx;
2016 	int crypt_finished;
2017 	sector_t sector = io->sector;
2018 	blk_status_t r;
2019 
2020 	wait_for_completion(&ctx->restart);
2021 	reinit_completion(&ctx->restart);
2022 
2023 	r = crypt_convert(cc, &io->ctx, true, false);
2024 	if (r)
2025 		io->error = r;
2026 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2027 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2028 		/* Wait for completion signaled by kcryptd_async_done() */
2029 		wait_for_completion(&ctx->restart);
2030 		crypt_finished = 1;
2031 	}
2032 
2033 	/* Encryption was already finished, submit io now */
2034 	if (crypt_finished) {
2035 		kcryptd_crypt_write_io_submit(io, 0);
2036 		io->sector = sector;
2037 	}
2038 
2039 	crypt_dec_pending(io);
2040 }
2041 
2042 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2043 {
2044 	struct crypt_config *cc = io->cc;
2045 	struct convert_context *ctx = &io->ctx;
2046 	struct bio *clone;
2047 	int crypt_finished;
2048 	sector_t sector = io->sector;
2049 	blk_status_t r;
2050 
2051 	/*
2052 	 * Prevent io from disappearing until this function completes.
2053 	 */
2054 	crypt_inc_pending(io);
2055 	crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
2056 
2057 	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2058 	if (unlikely(!clone)) {
2059 		io->error = BLK_STS_IOERR;
2060 		goto dec;
2061 	}
2062 
2063 	io->ctx.bio_out = clone;
2064 	io->ctx.iter_out = clone->bi_iter;
2065 
2066 	sector += bio_sectors(clone);
2067 
2068 	crypt_inc_pending(io);
2069 	r = crypt_convert(cc, ctx,
2070 			  test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2071 	/*
2072 	 * Crypto API backlogged the request, because its queue was full
2073 	 * and we're in softirq context, so continue from a workqueue
2074 	 * (TODO: is it actually possible to be in softirq in the write path?)
2075 	 */
2076 	if (r == BLK_STS_DEV_RESOURCE) {
2077 		INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2078 		queue_work(cc->crypt_queue, &io->work);
2079 		return;
2080 	}
2081 	if (r)
2082 		io->error = r;
2083 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2084 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2085 		/* Wait for completion signaled by kcryptd_async_done() */
2086 		wait_for_completion(&ctx->restart);
2087 		crypt_finished = 1;
2088 	}
2089 
2090 	/* Encryption was already finished, submit io now */
2091 	if (crypt_finished) {
2092 		kcryptd_crypt_write_io_submit(io, 0);
2093 		io->sector = sector;
2094 	}
2095 
2096 dec:
2097 	crypt_dec_pending(io);
2098 }
2099 
2100 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2101 {
2102 	crypt_dec_pending(io);
2103 }
2104 
2105 static void kcryptd_crypt_read_continue(struct work_struct *work)
2106 {
2107 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2108 	struct crypt_config *cc = io->cc;
2109 	blk_status_t r;
2110 
2111 	wait_for_completion(&io->ctx.restart);
2112 	reinit_completion(&io->ctx.restart);
2113 
2114 	r = crypt_convert(cc, &io->ctx, true, false);
2115 	if (r)
2116 		io->error = r;
2117 
2118 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2119 		kcryptd_crypt_read_done(io);
2120 
2121 	crypt_dec_pending(io);
2122 }
2123 
2124 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2125 {
2126 	struct crypt_config *cc = io->cc;
2127 	blk_status_t r;
2128 
2129 	crypt_inc_pending(io);
2130 
2131 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2132 			   io->sector);
2133 
2134 	r = crypt_convert(cc, &io->ctx,
2135 			  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2136 	/*
2137 	 * Crypto API backlogged the request, because its queue was full
2138 	 * and we're in softirq context, so continue from a workqueue
2139 	 */
2140 	if (r == BLK_STS_DEV_RESOURCE) {
2141 		INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2142 		queue_work(cc->crypt_queue, &io->work);
2143 		return;
2144 	}
2145 	if (r)
2146 		io->error = r;
2147 
2148 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2149 		kcryptd_crypt_read_done(io);
2150 
2151 	crypt_dec_pending(io);
2152 }
2153 
2154 static void kcryptd_async_done(struct crypto_async_request *async_req,
2155 			       int error)
2156 {
2157 	struct dm_crypt_request *dmreq = async_req->data;
2158 	struct convert_context *ctx = dmreq->ctx;
2159 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2160 	struct crypt_config *cc = io->cc;
2161 
2162 	/*
2163 	 * A request from crypto driver backlog is going to be processed now,
2164 	 * finish the completion and continue in crypt_convert().
2165 	 * (Callback will be called for the second time for this request.)
2166 	 */
2167 	if (error == -EINPROGRESS) {
2168 		complete(&ctx->restart);
2169 		return;
2170 	}
2171 
2172 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2173 		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2174 
2175 	if (error == -EBADMSG) {
2176 		char b[BDEVNAME_SIZE];
2177 		DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
2178 			    (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
2179 		io->error = BLK_STS_PROTECTION;
2180 	} else if (error < 0)
2181 		io->error = BLK_STS_IOERR;
2182 
2183 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2184 
2185 	if (!atomic_dec_and_test(&ctx->cc_pending))
2186 		return;
2187 
2188 	/*
2189 	 * The request is fully completed: for inline writes, let
2190 	 * kcryptd_crypt_write_convert() do the IO submission.
2191 	 */
2192 	if (bio_data_dir(io->base_bio) == READ) {
2193 		kcryptd_crypt_read_done(io);
2194 		return;
2195 	}
2196 
2197 	if (kcryptd_crypt_write_inline(cc, ctx)) {
2198 		complete(&ctx->restart);
2199 		return;
2200 	}
2201 
2202 	kcryptd_crypt_write_io_submit(io, 1);
2203 }
2204 
2205 static void kcryptd_crypt(struct work_struct *work)
2206 {
2207 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2208 
2209 	if (bio_data_dir(io->base_bio) == READ)
2210 		kcryptd_crypt_read_convert(io);
2211 	else
2212 		kcryptd_crypt_write_convert(io);
2213 }
2214 
2215 static void kcryptd_crypt_tasklet(unsigned long work)
2216 {
2217 	kcryptd_crypt((struct work_struct *)work);
2218 }
2219 
2220 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2221 {
2222 	struct crypt_config *cc = io->cc;
2223 
2224 	if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2225 	    (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2226 		/*
2227 		 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2228 		 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2229 		 * it is being executed with irqs disabled.
2230 		 */
2231 		if (in_hardirq() || irqs_disabled()) {
2232 			tasklet_init(&io->tasklet, kcryptd_crypt_tasklet, (unsigned long)&io->work);
2233 			tasklet_schedule(&io->tasklet);
2234 			return;
2235 		}
2236 
2237 		kcryptd_crypt(&io->work);
2238 		return;
2239 	}
2240 
2241 	INIT_WORK(&io->work, kcryptd_crypt);
2242 	queue_work(cc->crypt_queue, &io->work);
2243 }
2244 
2245 static void crypt_free_tfms_aead(struct crypt_config *cc)
2246 {
2247 	if (!cc->cipher_tfm.tfms_aead)
2248 		return;
2249 
2250 	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2251 		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2252 		cc->cipher_tfm.tfms_aead[0] = NULL;
2253 	}
2254 
2255 	kfree(cc->cipher_tfm.tfms_aead);
2256 	cc->cipher_tfm.tfms_aead = NULL;
2257 }
2258 
2259 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2260 {
2261 	unsigned i;
2262 
2263 	if (!cc->cipher_tfm.tfms)
2264 		return;
2265 
2266 	for (i = 0; i < cc->tfms_count; i++)
2267 		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2268 			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2269 			cc->cipher_tfm.tfms[i] = NULL;
2270 		}
2271 
2272 	kfree(cc->cipher_tfm.tfms);
2273 	cc->cipher_tfm.tfms = NULL;
2274 }
2275 
2276 static void crypt_free_tfms(struct crypt_config *cc)
2277 {
2278 	if (crypt_integrity_aead(cc))
2279 		crypt_free_tfms_aead(cc);
2280 	else
2281 		crypt_free_tfms_skcipher(cc);
2282 }
2283 
2284 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2285 {
2286 	unsigned i;
2287 	int err;
2288 
2289 	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2290 				      sizeof(struct crypto_skcipher *),
2291 				      GFP_KERNEL);
2292 	if (!cc->cipher_tfm.tfms)
2293 		return -ENOMEM;
2294 
2295 	for (i = 0; i < cc->tfms_count; i++) {
2296 		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2297 						CRYPTO_ALG_ALLOCATES_MEMORY);
2298 		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2299 			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2300 			crypt_free_tfms(cc);
2301 			return err;
2302 		}
2303 	}
2304 
2305 	/*
2306 	 * dm-crypt performance can vary greatly depending on which crypto
2307 	 * algorithm implementation is used.  Help people debug performance
2308 	 * problems by logging the ->cra_driver_name.
2309 	 */
2310 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2311 	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2312 	return 0;
2313 }
2314 
2315 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2316 {
2317 	int err;
2318 
2319 	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2320 	if (!cc->cipher_tfm.tfms)
2321 		return -ENOMEM;
2322 
2323 	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2324 						CRYPTO_ALG_ALLOCATES_MEMORY);
2325 	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2326 		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2327 		crypt_free_tfms(cc);
2328 		return err;
2329 	}
2330 
2331 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2332 	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2333 	return 0;
2334 }
2335 
2336 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2337 {
2338 	if (crypt_integrity_aead(cc))
2339 		return crypt_alloc_tfms_aead(cc, ciphermode);
2340 	else
2341 		return crypt_alloc_tfms_skcipher(cc, ciphermode);
2342 }
2343 
2344 static unsigned crypt_subkey_size(struct crypt_config *cc)
2345 {
2346 	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2347 }
2348 
2349 static unsigned crypt_authenckey_size(struct crypt_config *cc)
2350 {
2351 	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2352 }
2353 
2354 /*
2355  * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2356  * the key must be for some reason in special format.
2357  * This funcion converts cc->key to this special format.
2358  */
2359 static void crypt_copy_authenckey(char *p, const void *key,
2360 				  unsigned enckeylen, unsigned authkeylen)
2361 {
2362 	struct crypto_authenc_key_param *param;
2363 	struct rtattr *rta;
2364 
2365 	rta = (struct rtattr *)p;
2366 	param = RTA_DATA(rta);
2367 	param->enckeylen = cpu_to_be32(enckeylen);
2368 	rta->rta_len = RTA_LENGTH(sizeof(*param));
2369 	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2370 	p += RTA_SPACE(sizeof(*param));
2371 	memcpy(p, key + enckeylen, authkeylen);
2372 	p += authkeylen;
2373 	memcpy(p, key, enckeylen);
2374 }
2375 
2376 static int crypt_setkey(struct crypt_config *cc)
2377 {
2378 	unsigned subkey_size;
2379 	int err = 0, i, r;
2380 
2381 	/* Ignore extra keys (which are used for IV etc) */
2382 	subkey_size = crypt_subkey_size(cc);
2383 
2384 	if (crypt_integrity_hmac(cc)) {
2385 		if (subkey_size < cc->key_mac_size)
2386 			return -EINVAL;
2387 
2388 		crypt_copy_authenckey(cc->authenc_key, cc->key,
2389 				      subkey_size - cc->key_mac_size,
2390 				      cc->key_mac_size);
2391 	}
2392 
2393 	for (i = 0; i < cc->tfms_count; i++) {
2394 		if (crypt_integrity_hmac(cc))
2395 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2396 				cc->authenc_key, crypt_authenckey_size(cc));
2397 		else if (crypt_integrity_aead(cc))
2398 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2399 					       cc->key + (i * subkey_size),
2400 					       subkey_size);
2401 		else
2402 			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2403 						   cc->key + (i * subkey_size),
2404 						   subkey_size);
2405 		if (r)
2406 			err = r;
2407 	}
2408 
2409 	if (crypt_integrity_hmac(cc))
2410 		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2411 
2412 	return err;
2413 }
2414 
2415 #ifdef CONFIG_KEYS
2416 
2417 static bool contains_whitespace(const char *str)
2418 {
2419 	while (*str)
2420 		if (isspace(*str++))
2421 			return true;
2422 	return false;
2423 }
2424 
2425 static int set_key_user(struct crypt_config *cc, struct key *key)
2426 {
2427 	const struct user_key_payload *ukp;
2428 
2429 	ukp = user_key_payload_locked(key);
2430 	if (!ukp)
2431 		return -EKEYREVOKED;
2432 
2433 	if (cc->key_size != ukp->datalen)
2434 		return -EINVAL;
2435 
2436 	memcpy(cc->key, ukp->data, cc->key_size);
2437 
2438 	return 0;
2439 }
2440 
2441 static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2442 {
2443 	const struct encrypted_key_payload *ekp;
2444 
2445 	ekp = key->payload.data[0];
2446 	if (!ekp)
2447 		return -EKEYREVOKED;
2448 
2449 	if (cc->key_size != ekp->decrypted_datalen)
2450 		return -EINVAL;
2451 
2452 	memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2453 
2454 	return 0;
2455 }
2456 
2457 static int set_key_trusted(struct crypt_config *cc, struct key *key)
2458 {
2459 	const struct trusted_key_payload *tkp;
2460 
2461 	tkp = key->payload.data[0];
2462 	if (!tkp)
2463 		return -EKEYREVOKED;
2464 
2465 	if (cc->key_size != tkp->key_len)
2466 		return -EINVAL;
2467 
2468 	memcpy(cc->key, tkp->key, cc->key_size);
2469 
2470 	return 0;
2471 }
2472 
2473 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2474 {
2475 	char *new_key_string, *key_desc;
2476 	int ret;
2477 	struct key_type *type;
2478 	struct key *key;
2479 	int (*set_key)(struct crypt_config *cc, struct key *key);
2480 
2481 	/*
2482 	 * Reject key_string with whitespace. dm core currently lacks code for
2483 	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2484 	 */
2485 	if (contains_whitespace(key_string)) {
2486 		DMERR("whitespace chars not allowed in key string");
2487 		return -EINVAL;
2488 	}
2489 
2490 	/* look for next ':' separating key_type from key_description */
2491 	key_desc = strpbrk(key_string, ":");
2492 	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2493 		return -EINVAL;
2494 
2495 	if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2496 		type = &key_type_logon;
2497 		set_key = set_key_user;
2498 	} else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2499 		type = &key_type_user;
2500 		set_key = set_key_user;
2501 	} else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2502 		   !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2503 		type = &key_type_encrypted;
2504 		set_key = set_key_encrypted;
2505 	} else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2506 	           !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2507 		type = &key_type_trusted;
2508 		set_key = set_key_trusted;
2509 	} else {
2510 		return -EINVAL;
2511 	}
2512 
2513 	new_key_string = kstrdup(key_string, GFP_KERNEL);
2514 	if (!new_key_string)
2515 		return -ENOMEM;
2516 
2517 	key = request_key(type, key_desc + 1, NULL);
2518 	if (IS_ERR(key)) {
2519 		kfree_sensitive(new_key_string);
2520 		return PTR_ERR(key);
2521 	}
2522 
2523 	down_read(&key->sem);
2524 
2525 	ret = set_key(cc, key);
2526 	if (ret < 0) {
2527 		up_read(&key->sem);
2528 		key_put(key);
2529 		kfree_sensitive(new_key_string);
2530 		return ret;
2531 	}
2532 
2533 	up_read(&key->sem);
2534 	key_put(key);
2535 
2536 	/* clear the flag since following operations may invalidate previously valid key */
2537 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2538 
2539 	ret = crypt_setkey(cc);
2540 
2541 	if (!ret) {
2542 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2543 		kfree_sensitive(cc->key_string);
2544 		cc->key_string = new_key_string;
2545 	} else
2546 		kfree_sensitive(new_key_string);
2547 
2548 	return ret;
2549 }
2550 
2551 static int get_key_size(char **key_string)
2552 {
2553 	char *colon, dummy;
2554 	int ret;
2555 
2556 	if (*key_string[0] != ':')
2557 		return strlen(*key_string) >> 1;
2558 
2559 	/* look for next ':' in key string */
2560 	colon = strpbrk(*key_string + 1, ":");
2561 	if (!colon)
2562 		return -EINVAL;
2563 
2564 	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2565 		return -EINVAL;
2566 
2567 	*key_string = colon;
2568 
2569 	/* remaining key string should be :<logon|user>:<key_desc> */
2570 
2571 	return ret;
2572 }
2573 
2574 #else
2575 
2576 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2577 {
2578 	return -EINVAL;
2579 }
2580 
2581 static int get_key_size(char **key_string)
2582 {
2583 	return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2584 }
2585 
2586 #endif /* CONFIG_KEYS */
2587 
2588 static int crypt_set_key(struct crypt_config *cc, char *key)
2589 {
2590 	int r = -EINVAL;
2591 	int key_string_len = strlen(key);
2592 
2593 	/* Hyphen (which gives a key_size of zero) means there is no key. */
2594 	if (!cc->key_size && strcmp(key, "-"))
2595 		goto out;
2596 
2597 	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2598 	if (key[0] == ':') {
2599 		r = crypt_set_keyring_key(cc, key + 1);
2600 		goto out;
2601 	}
2602 
2603 	/* clear the flag since following operations may invalidate previously valid key */
2604 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2605 
2606 	/* wipe references to any kernel keyring key */
2607 	kfree_sensitive(cc->key_string);
2608 	cc->key_string = NULL;
2609 
2610 	/* Decode key from its hex representation. */
2611 	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2612 		goto out;
2613 
2614 	r = crypt_setkey(cc);
2615 	if (!r)
2616 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2617 
2618 out:
2619 	/* Hex key string not needed after here, so wipe it. */
2620 	memset(key, '0', key_string_len);
2621 
2622 	return r;
2623 }
2624 
2625 static int crypt_wipe_key(struct crypt_config *cc)
2626 {
2627 	int r;
2628 
2629 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2630 	get_random_bytes(&cc->key, cc->key_size);
2631 
2632 	/* Wipe IV private keys */
2633 	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2634 		r = cc->iv_gen_ops->wipe(cc);
2635 		if (r)
2636 			return r;
2637 	}
2638 
2639 	kfree_sensitive(cc->key_string);
2640 	cc->key_string = NULL;
2641 	r = crypt_setkey(cc);
2642 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2643 
2644 	return r;
2645 }
2646 
2647 static void crypt_calculate_pages_per_client(void)
2648 {
2649 	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2650 
2651 	if (!dm_crypt_clients_n)
2652 		return;
2653 
2654 	pages /= dm_crypt_clients_n;
2655 	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2656 		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2657 	dm_crypt_pages_per_client = pages;
2658 }
2659 
2660 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2661 {
2662 	struct crypt_config *cc = pool_data;
2663 	struct page *page;
2664 
2665 	/*
2666 	 * Note, percpu_counter_read_positive() may over (and under) estimate
2667 	 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2668 	 * but avoids potential spinlock contention of an exact result.
2669 	 */
2670 	if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2671 	    likely(gfp_mask & __GFP_NORETRY))
2672 		return NULL;
2673 
2674 	page = alloc_page(gfp_mask);
2675 	if (likely(page != NULL))
2676 		percpu_counter_add(&cc->n_allocated_pages, 1);
2677 
2678 	return page;
2679 }
2680 
2681 static void crypt_page_free(void *page, void *pool_data)
2682 {
2683 	struct crypt_config *cc = pool_data;
2684 
2685 	__free_page(page);
2686 	percpu_counter_sub(&cc->n_allocated_pages, 1);
2687 }
2688 
2689 static void crypt_dtr(struct dm_target *ti)
2690 {
2691 	struct crypt_config *cc = ti->private;
2692 
2693 	ti->private = NULL;
2694 
2695 	if (!cc)
2696 		return;
2697 
2698 	if (cc->write_thread)
2699 		kthread_stop(cc->write_thread);
2700 
2701 	if (cc->io_queue)
2702 		destroy_workqueue(cc->io_queue);
2703 	if (cc->crypt_queue)
2704 		destroy_workqueue(cc->crypt_queue);
2705 
2706 	crypt_free_tfms(cc);
2707 
2708 	bioset_exit(&cc->bs);
2709 
2710 	mempool_exit(&cc->page_pool);
2711 	mempool_exit(&cc->req_pool);
2712 	mempool_exit(&cc->tag_pool);
2713 
2714 	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2715 	percpu_counter_destroy(&cc->n_allocated_pages);
2716 
2717 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2718 		cc->iv_gen_ops->dtr(cc);
2719 
2720 	if (cc->dev)
2721 		dm_put_device(ti, cc->dev);
2722 
2723 	kfree_sensitive(cc->cipher_string);
2724 	kfree_sensitive(cc->key_string);
2725 	kfree_sensitive(cc->cipher_auth);
2726 	kfree_sensitive(cc->authenc_key);
2727 
2728 	mutex_destroy(&cc->bio_alloc_lock);
2729 
2730 	/* Must zero key material before freeing */
2731 	kfree_sensitive(cc);
2732 
2733 	spin_lock(&dm_crypt_clients_lock);
2734 	WARN_ON(!dm_crypt_clients_n);
2735 	dm_crypt_clients_n--;
2736 	crypt_calculate_pages_per_client();
2737 	spin_unlock(&dm_crypt_clients_lock);
2738 }
2739 
2740 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2741 {
2742 	struct crypt_config *cc = ti->private;
2743 
2744 	if (crypt_integrity_aead(cc))
2745 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2746 	else
2747 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2748 
2749 	if (cc->iv_size)
2750 		/* at least a 64 bit sector number should fit in our buffer */
2751 		cc->iv_size = max(cc->iv_size,
2752 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2753 	else if (ivmode) {
2754 		DMWARN("Selected cipher does not support IVs");
2755 		ivmode = NULL;
2756 	}
2757 
2758 	/* Choose ivmode, see comments at iv code. */
2759 	if (ivmode == NULL)
2760 		cc->iv_gen_ops = NULL;
2761 	else if (strcmp(ivmode, "plain") == 0)
2762 		cc->iv_gen_ops = &crypt_iv_plain_ops;
2763 	else if (strcmp(ivmode, "plain64") == 0)
2764 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2765 	else if (strcmp(ivmode, "plain64be") == 0)
2766 		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2767 	else if (strcmp(ivmode, "essiv") == 0)
2768 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2769 	else if (strcmp(ivmode, "benbi") == 0)
2770 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2771 	else if (strcmp(ivmode, "null") == 0)
2772 		cc->iv_gen_ops = &crypt_iv_null_ops;
2773 	else if (strcmp(ivmode, "eboiv") == 0)
2774 		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2775 	else if (strcmp(ivmode, "elephant") == 0) {
2776 		cc->iv_gen_ops = &crypt_iv_elephant_ops;
2777 		cc->key_parts = 2;
2778 		cc->key_extra_size = cc->key_size / 2;
2779 		if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2780 			return -EINVAL;
2781 		set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2782 	} else if (strcmp(ivmode, "lmk") == 0) {
2783 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2784 		/*
2785 		 * Version 2 and 3 is recognised according
2786 		 * to length of provided multi-key string.
2787 		 * If present (version 3), last key is used as IV seed.
2788 		 * All keys (including IV seed) are always the same size.
2789 		 */
2790 		if (cc->key_size % cc->key_parts) {
2791 			cc->key_parts++;
2792 			cc->key_extra_size = cc->key_size / cc->key_parts;
2793 		}
2794 	} else if (strcmp(ivmode, "tcw") == 0) {
2795 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2796 		cc->key_parts += 2; /* IV + whitening */
2797 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2798 	} else if (strcmp(ivmode, "random") == 0) {
2799 		cc->iv_gen_ops = &crypt_iv_random_ops;
2800 		/* Need storage space in integrity fields. */
2801 		cc->integrity_iv_size = cc->iv_size;
2802 	} else {
2803 		ti->error = "Invalid IV mode";
2804 		return -EINVAL;
2805 	}
2806 
2807 	return 0;
2808 }
2809 
2810 /*
2811  * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2812  * The HMAC is needed to calculate tag size (HMAC digest size).
2813  * This should be probably done by crypto-api calls (once available...)
2814  */
2815 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2816 {
2817 	char *start, *end, *mac_alg = NULL;
2818 	struct crypto_ahash *mac;
2819 
2820 	if (!strstarts(cipher_api, "authenc("))
2821 		return 0;
2822 
2823 	start = strchr(cipher_api, '(');
2824 	end = strchr(cipher_api, ',');
2825 	if (!start || !end || ++start > end)
2826 		return -EINVAL;
2827 
2828 	mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2829 	if (!mac_alg)
2830 		return -ENOMEM;
2831 	strncpy(mac_alg, start, end - start);
2832 
2833 	mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2834 	kfree(mac_alg);
2835 
2836 	if (IS_ERR(mac))
2837 		return PTR_ERR(mac);
2838 
2839 	cc->key_mac_size = crypto_ahash_digestsize(mac);
2840 	crypto_free_ahash(mac);
2841 
2842 	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2843 	if (!cc->authenc_key)
2844 		return -ENOMEM;
2845 
2846 	return 0;
2847 }
2848 
2849 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2850 				char **ivmode, char **ivopts)
2851 {
2852 	struct crypt_config *cc = ti->private;
2853 	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2854 	int ret = -EINVAL;
2855 
2856 	cc->tfms_count = 1;
2857 
2858 	/*
2859 	 * New format (capi: prefix)
2860 	 * capi:cipher_api_spec-iv:ivopts
2861 	 */
2862 	tmp = &cipher_in[strlen("capi:")];
2863 
2864 	/* Separate IV options if present, it can contain another '-' in hash name */
2865 	*ivopts = strrchr(tmp, ':');
2866 	if (*ivopts) {
2867 		**ivopts = '\0';
2868 		(*ivopts)++;
2869 	}
2870 	/* Parse IV mode */
2871 	*ivmode = strrchr(tmp, '-');
2872 	if (*ivmode) {
2873 		**ivmode = '\0';
2874 		(*ivmode)++;
2875 	}
2876 	/* The rest is crypto API spec */
2877 	cipher_api = tmp;
2878 
2879 	/* Alloc AEAD, can be used only in new format. */
2880 	if (crypt_integrity_aead(cc)) {
2881 		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2882 		if (ret < 0) {
2883 			ti->error = "Invalid AEAD cipher spec";
2884 			return -ENOMEM;
2885 		}
2886 	}
2887 
2888 	if (*ivmode && !strcmp(*ivmode, "lmk"))
2889 		cc->tfms_count = 64;
2890 
2891 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2892 		if (!*ivopts) {
2893 			ti->error = "Digest algorithm missing for ESSIV mode";
2894 			return -EINVAL;
2895 		}
2896 		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2897 			       cipher_api, *ivopts);
2898 		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2899 			ti->error = "Cannot allocate cipher string";
2900 			return -ENOMEM;
2901 		}
2902 		cipher_api = buf;
2903 	}
2904 
2905 	cc->key_parts = cc->tfms_count;
2906 
2907 	/* Allocate cipher */
2908 	ret = crypt_alloc_tfms(cc, cipher_api);
2909 	if (ret < 0) {
2910 		ti->error = "Error allocating crypto tfm";
2911 		return ret;
2912 	}
2913 
2914 	if (crypt_integrity_aead(cc))
2915 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2916 	else
2917 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2918 
2919 	return 0;
2920 }
2921 
2922 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2923 				char **ivmode, char **ivopts)
2924 {
2925 	struct crypt_config *cc = ti->private;
2926 	char *tmp, *cipher, *chainmode, *keycount;
2927 	char *cipher_api = NULL;
2928 	int ret = -EINVAL;
2929 	char dummy;
2930 
2931 	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2932 		ti->error = "Bad cipher specification";
2933 		return -EINVAL;
2934 	}
2935 
2936 	/*
2937 	 * Legacy dm-crypt cipher specification
2938 	 * cipher[:keycount]-mode-iv:ivopts
2939 	 */
2940 	tmp = cipher_in;
2941 	keycount = strsep(&tmp, "-");
2942 	cipher = strsep(&keycount, ":");
2943 
2944 	if (!keycount)
2945 		cc->tfms_count = 1;
2946 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2947 		 !is_power_of_2(cc->tfms_count)) {
2948 		ti->error = "Bad cipher key count specification";
2949 		return -EINVAL;
2950 	}
2951 	cc->key_parts = cc->tfms_count;
2952 
2953 	chainmode = strsep(&tmp, "-");
2954 	*ivmode = strsep(&tmp, ":");
2955 	*ivopts = tmp;
2956 
2957 	/*
2958 	 * For compatibility with the original dm-crypt mapping format, if
2959 	 * only the cipher name is supplied, use cbc-plain.
2960 	 */
2961 	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2962 		chainmode = "cbc";
2963 		*ivmode = "plain";
2964 	}
2965 
2966 	if (strcmp(chainmode, "ecb") && !*ivmode) {
2967 		ti->error = "IV mechanism required";
2968 		return -EINVAL;
2969 	}
2970 
2971 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2972 	if (!cipher_api)
2973 		goto bad_mem;
2974 
2975 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2976 		if (!*ivopts) {
2977 			ti->error = "Digest algorithm missing for ESSIV mode";
2978 			kfree(cipher_api);
2979 			return -EINVAL;
2980 		}
2981 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2982 			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
2983 	} else {
2984 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2985 			       "%s(%s)", chainmode, cipher);
2986 	}
2987 	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2988 		kfree(cipher_api);
2989 		goto bad_mem;
2990 	}
2991 
2992 	/* Allocate cipher */
2993 	ret = crypt_alloc_tfms(cc, cipher_api);
2994 	if (ret < 0) {
2995 		ti->error = "Error allocating crypto tfm";
2996 		kfree(cipher_api);
2997 		return ret;
2998 	}
2999 	kfree(cipher_api);
3000 
3001 	return 0;
3002 bad_mem:
3003 	ti->error = "Cannot allocate cipher strings";
3004 	return -ENOMEM;
3005 }
3006 
3007 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3008 {
3009 	struct crypt_config *cc = ti->private;
3010 	char *ivmode = NULL, *ivopts = NULL;
3011 	int ret;
3012 
3013 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3014 	if (!cc->cipher_string) {
3015 		ti->error = "Cannot allocate cipher strings";
3016 		return -ENOMEM;
3017 	}
3018 
3019 	if (strstarts(cipher_in, "capi:"))
3020 		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3021 	else
3022 		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3023 	if (ret)
3024 		return ret;
3025 
3026 	/* Initialize IV */
3027 	ret = crypt_ctr_ivmode(ti, ivmode);
3028 	if (ret < 0)
3029 		return ret;
3030 
3031 	/* Initialize and set key */
3032 	ret = crypt_set_key(cc, key);
3033 	if (ret < 0) {
3034 		ti->error = "Error decoding and setting key";
3035 		return ret;
3036 	}
3037 
3038 	/* Allocate IV */
3039 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3040 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3041 		if (ret < 0) {
3042 			ti->error = "Error creating IV";
3043 			return ret;
3044 		}
3045 	}
3046 
3047 	/* Initialize IV (set keys for ESSIV etc) */
3048 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3049 		ret = cc->iv_gen_ops->init(cc);
3050 		if (ret < 0) {
3051 			ti->error = "Error initialising IV";
3052 			return ret;
3053 		}
3054 	}
3055 
3056 	/* wipe the kernel key payload copy */
3057 	if (cc->key_string)
3058 		memset(cc->key, 0, cc->key_size * sizeof(u8));
3059 
3060 	return ret;
3061 }
3062 
3063 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3064 {
3065 	struct crypt_config *cc = ti->private;
3066 	struct dm_arg_set as;
3067 	static const struct dm_arg _args[] = {
3068 		{0, 8, "Invalid number of feature args"},
3069 	};
3070 	unsigned int opt_params, val;
3071 	const char *opt_string, *sval;
3072 	char dummy;
3073 	int ret;
3074 
3075 	/* Optional parameters */
3076 	as.argc = argc;
3077 	as.argv = argv;
3078 
3079 	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3080 	if (ret)
3081 		return ret;
3082 
3083 	while (opt_params--) {
3084 		opt_string = dm_shift_arg(&as);
3085 		if (!opt_string) {
3086 			ti->error = "Not enough feature arguments";
3087 			return -EINVAL;
3088 		}
3089 
3090 		if (!strcasecmp(opt_string, "allow_discards"))
3091 			ti->num_discard_bios = 1;
3092 
3093 		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3094 			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3095 
3096 		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3097 			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3098 		else if (!strcasecmp(opt_string, "no_read_workqueue"))
3099 			set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3100 		else if (!strcasecmp(opt_string, "no_write_workqueue"))
3101 			set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3102 		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3103 			if (val == 0 || val > MAX_TAG_SIZE) {
3104 				ti->error = "Invalid integrity arguments";
3105 				return -EINVAL;
3106 			}
3107 			cc->on_disk_tag_size = val;
3108 			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3109 			if (!strcasecmp(sval, "aead")) {
3110 				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3111 			} else  if (strcasecmp(sval, "none")) {
3112 				ti->error = "Unknown integrity profile";
3113 				return -EINVAL;
3114 			}
3115 
3116 			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3117 			if (!cc->cipher_auth)
3118 				return -ENOMEM;
3119 		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3120 			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3121 			    cc->sector_size > 4096 ||
3122 			    (cc->sector_size & (cc->sector_size - 1))) {
3123 				ti->error = "Invalid feature value for sector_size";
3124 				return -EINVAL;
3125 			}
3126 			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3127 				ti->error = "Device size is not multiple of sector_size feature";
3128 				return -EINVAL;
3129 			}
3130 			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3131 		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
3132 			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3133 		else {
3134 			ti->error = "Invalid feature arguments";
3135 			return -EINVAL;
3136 		}
3137 	}
3138 
3139 	return 0;
3140 }
3141 
3142 #ifdef CONFIG_BLK_DEV_ZONED
3143 static int crypt_report_zones(struct dm_target *ti,
3144 		struct dm_report_zones_args *args, unsigned int nr_zones)
3145 {
3146 	struct crypt_config *cc = ti->private;
3147 
3148 	return dm_report_zones(cc->dev->bdev, cc->start,
3149 			cc->start + dm_target_offset(ti, args->next_sector),
3150 			args, nr_zones);
3151 }
3152 #else
3153 #define crypt_report_zones NULL
3154 #endif
3155 
3156 /*
3157  * Construct an encryption mapping:
3158  * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3159  */
3160 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3161 {
3162 	struct crypt_config *cc;
3163 	const char *devname = dm_table_device_name(ti->table);
3164 	int key_size;
3165 	unsigned int align_mask;
3166 	unsigned long long tmpll;
3167 	int ret;
3168 	size_t iv_size_padding, additional_req_size;
3169 	char dummy;
3170 
3171 	if (argc < 5) {
3172 		ti->error = "Not enough arguments";
3173 		return -EINVAL;
3174 	}
3175 
3176 	key_size = get_key_size(&argv[1]);
3177 	if (key_size < 0) {
3178 		ti->error = "Cannot parse key size";
3179 		return -EINVAL;
3180 	}
3181 
3182 	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3183 	if (!cc) {
3184 		ti->error = "Cannot allocate encryption context";
3185 		return -ENOMEM;
3186 	}
3187 	cc->key_size = key_size;
3188 	cc->sector_size = (1 << SECTOR_SHIFT);
3189 	cc->sector_shift = 0;
3190 
3191 	ti->private = cc;
3192 
3193 	spin_lock(&dm_crypt_clients_lock);
3194 	dm_crypt_clients_n++;
3195 	crypt_calculate_pages_per_client();
3196 	spin_unlock(&dm_crypt_clients_lock);
3197 
3198 	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3199 	if (ret < 0)
3200 		goto bad;
3201 
3202 	/* Optional parameters need to be read before cipher constructor */
3203 	if (argc > 5) {
3204 		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3205 		if (ret)
3206 			goto bad;
3207 	}
3208 
3209 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3210 	if (ret < 0)
3211 		goto bad;
3212 
3213 	if (crypt_integrity_aead(cc)) {
3214 		cc->dmreq_start = sizeof(struct aead_request);
3215 		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3216 		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3217 	} else {
3218 		cc->dmreq_start = sizeof(struct skcipher_request);
3219 		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3220 		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3221 	}
3222 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3223 
3224 	if (align_mask < CRYPTO_MINALIGN) {
3225 		/* Allocate the padding exactly */
3226 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3227 				& align_mask;
3228 	} else {
3229 		/*
3230 		 * If the cipher requires greater alignment than kmalloc
3231 		 * alignment, we don't know the exact position of the
3232 		 * initialization vector. We must assume worst case.
3233 		 */
3234 		iv_size_padding = align_mask;
3235 	}
3236 
3237 	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
3238 	additional_req_size = sizeof(struct dm_crypt_request) +
3239 		iv_size_padding + cc->iv_size +
3240 		cc->iv_size +
3241 		sizeof(uint64_t) +
3242 		sizeof(unsigned int);
3243 
3244 	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3245 	if (ret) {
3246 		ti->error = "Cannot allocate crypt request mempool";
3247 		goto bad;
3248 	}
3249 
3250 	cc->per_bio_data_size = ti->per_io_data_size =
3251 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3252 		      ARCH_KMALLOC_MINALIGN);
3253 
3254 	ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3255 	if (ret) {
3256 		ti->error = "Cannot allocate page mempool";
3257 		goto bad;
3258 	}
3259 
3260 	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3261 	if (ret) {
3262 		ti->error = "Cannot allocate crypt bioset";
3263 		goto bad;
3264 	}
3265 
3266 	mutex_init(&cc->bio_alloc_lock);
3267 
3268 	ret = -EINVAL;
3269 	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3270 	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3271 		ti->error = "Invalid iv_offset sector";
3272 		goto bad;
3273 	}
3274 	cc->iv_offset = tmpll;
3275 
3276 	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3277 	if (ret) {
3278 		ti->error = "Device lookup failed";
3279 		goto bad;
3280 	}
3281 
3282 	ret = -EINVAL;
3283 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3284 		ti->error = "Invalid device sector";
3285 		goto bad;
3286 	}
3287 	cc->start = tmpll;
3288 
3289 	if (bdev_is_zoned(cc->dev->bdev)) {
3290 		/*
3291 		 * For zoned block devices, we need to preserve the issuer write
3292 		 * ordering. To do so, disable write workqueues and force inline
3293 		 * encryption completion.
3294 		 */
3295 		set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3296 		set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3297 
3298 		/*
3299 		 * All zone append writes to a zone of a zoned block device will
3300 		 * have the same BIO sector, the start of the zone. When the
3301 		 * cypher IV mode uses sector values, all data targeting a
3302 		 * zone will be encrypted using the first sector numbers of the
3303 		 * zone. This will not result in write errors but will
3304 		 * cause most reads to fail as reads will use the sector values
3305 		 * for the actual data locations, resulting in IV mismatch.
3306 		 * To avoid this problem, ask DM core to emulate zone append
3307 		 * operations with regular writes.
3308 		 */
3309 		DMDEBUG("Zone append operations will be emulated");
3310 		ti->emulate_zone_append = true;
3311 	}
3312 
3313 	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3314 		ret = crypt_integrity_ctr(cc, ti);
3315 		if (ret)
3316 			goto bad;
3317 
3318 		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3319 		if (!cc->tag_pool_max_sectors)
3320 			cc->tag_pool_max_sectors = 1;
3321 
3322 		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3323 			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3324 		if (ret) {
3325 			ti->error = "Cannot allocate integrity tags mempool";
3326 			goto bad;
3327 		}
3328 
3329 		cc->tag_pool_max_sectors <<= cc->sector_shift;
3330 	}
3331 
3332 	ret = -ENOMEM;
3333 	cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
3334 	if (!cc->io_queue) {
3335 		ti->error = "Couldn't create kcryptd io queue";
3336 		goto bad;
3337 	}
3338 
3339 	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3340 		cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3341 						  1, devname);
3342 	else
3343 		cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3344 						  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3345 						  num_online_cpus(), devname);
3346 	if (!cc->crypt_queue) {
3347 		ti->error = "Couldn't create kcryptd queue";
3348 		goto bad;
3349 	}
3350 
3351 	spin_lock_init(&cc->write_thread_lock);
3352 	cc->write_tree = RB_ROOT;
3353 
3354 	cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3355 	if (IS_ERR(cc->write_thread)) {
3356 		ret = PTR_ERR(cc->write_thread);
3357 		cc->write_thread = NULL;
3358 		ti->error = "Couldn't spawn write thread";
3359 		goto bad;
3360 	}
3361 	wake_up_process(cc->write_thread);
3362 
3363 	ti->num_flush_bios = 1;
3364 	ti->limit_swap_bios = true;
3365 
3366 	return 0;
3367 
3368 bad:
3369 	crypt_dtr(ti);
3370 	return ret;
3371 }
3372 
3373 static int crypt_map(struct dm_target *ti, struct bio *bio)
3374 {
3375 	struct dm_crypt_io *io;
3376 	struct crypt_config *cc = ti->private;
3377 
3378 	/*
3379 	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3380 	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3381 	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3382 	 */
3383 	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3384 	    bio_op(bio) == REQ_OP_DISCARD)) {
3385 		bio_set_dev(bio, cc->dev->bdev);
3386 		if (bio_sectors(bio))
3387 			bio->bi_iter.bi_sector = cc->start +
3388 				dm_target_offset(ti, bio->bi_iter.bi_sector);
3389 		return DM_MAPIO_REMAPPED;
3390 	}
3391 
3392 	/*
3393 	 * Check if bio is too large, split as needed.
3394 	 */
3395 	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
3396 	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3397 		dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
3398 
3399 	/*
3400 	 * Ensure that bio is a multiple of internal sector encryption size
3401 	 * and is aligned to this size as defined in IO hints.
3402 	 */
3403 	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3404 		return DM_MAPIO_KILL;
3405 
3406 	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3407 		return DM_MAPIO_KILL;
3408 
3409 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
3410 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3411 
3412 	if (cc->on_disk_tag_size) {
3413 		unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3414 
3415 		if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
3416 		    unlikely(!(io->integrity_metadata = kmalloc(tag_len,
3417 				GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
3418 			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3419 				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3420 			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3421 			io->integrity_metadata_from_pool = true;
3422 		}
3423 	}
3424 
3425 	if (crypt_integrity_aead(cc))
3426 		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3427 	else
3428 		io->ctx.r.req = (struct skcipher_request *)(io + 1);
3429 
3430 	if (bio_data_dir(io->base_bio) == READ) {
3431 		if (kcryptd_io_read(io, GFP_NOWAIT))
3432 			kcryptd_queue_read(io);
3433 	} else
3434 		kcryptd_queue_crypt(io);
3435 
3436 	return DM_MAPIO_SUBMITTED;
3437 }
3438 
3439 static void crypt_status(struct dm_target *ti, status_type_t type,
3440 			 unsigned status_flags, char *result, unsigned maxlen)
3441 {
3442 	struct crypt_config *cc = ti->private;
3443 	unsigned i, sz = 0;
3444 	int num_feature_args = 0;
3445 
3446 	switch (type) {
3447 	case STATUSTYPE_INFO:
3448 		result[0] = '\0';
3449 		break;
3450 
3451 	case STATUSTYPE_TABLE:
3452 		DMEMIT("%s ", cc->cipher_string);
3453 
3454 		if (cc->key_size > 0) {
3455 			if (cc->key_string)
3456 				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3457 			else
3458 				for (i = 0; i < cc->key_size; i++)
3459 					DMEMIT("%02x", cc->key[i]);
3460 		} else
3461 			DMEMIT("-");
3462 
3463 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3464 				cc->dev->name, (unsigned long long)cc->start);
3465 
3466 		num_feature_args += !!ti->num_discard_bios;
3467 		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3468 		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3469 		num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3470 		num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3471 		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3472 		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3473 		if (cc->on_disk_tag_size)
3474 			num_feature_args++;
3475 		if (num_feature_args) {
3476 			DMEMIT(" %d", num_feature_args);
3477 			if (ti->num_discard_bios)
3478 				DMEMIT(" allow_discards");
3479 			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3480 				DMEMIT(" same_cpu_crypt");
3481 			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3482 				DMEMIT(" submit_from_crypt_cpus");
3483 			if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3484 				DMEMIT(" no_read_workqueue");
3485 			if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3486 				DMEMIT(" no_write_workqueue");
3487 			if (cc->on_disk_tag_size)
3488 				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3489 			if (cc->sector_size != (1 << SECTOR_SHIFT))
3490 				DMEMIT(" sector_size:%d", cc->sector_size);
3491 			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3492 				DMEMIT(" iv_large_sectors");
3493 		}
3494 		break;
3495 
3496 	case STATUSTYPE_IMA:
3497 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3498 		DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3499 		DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3500 		DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3501 		       'y' : 'n');
3502 		DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3503 		       'y' : 'n');
3504 		DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3505 		       'y' : 'n');
3506 		DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3507 		       'y' : 'n');
3508 
3509 		if (cc->on_disk_tag_size)
3510 			DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3511 			       cc->on_disk_tag_size, cc->cipher_auth);
3512 		if (cc->sector_size != (1 << SECTOR_SHIFT))
3513 			DMEMIT(",sector_size=%d", cc->sector_size);
3514 		if (cc->cipher_string)
3515 			DMEMIT(",cipher_string=%s", cc->cipher_string);
3516 
3517 		DMEMIT(",key_size=%u", cc->key_size);
3518 		DMEMIT(",key_parts=%u", cc->key_parts);
3519 		DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3520 		DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3521 		DMEMIT(";");
3522 		break;
3523 	}
3524 }
3525 
3526 static void crypt_postsuspend(struct dm_target *ti)
3527 {
3528 	struct crypt_config *cc = ti->private;
3529 
3530 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3531 }
3532 
3533 static int crypt_preresume(struct dm_target *ti)
3534 {
3535 	struct crypt_config *cc = ti->private;
3536 
3537 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3538 		DMERR("aborting resume - crypt key is not set.");
3539 		return -EAGAIN;
3540 	}
3541 
3542 	return 0;
3543 }
3544 
3545 static void crypt_resume(struct dm_target *ti)
3546 {
3547 	struct crypt_config *cc = ti->private;
3548 
3549 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3550 }
3551 
3552 /* Message interface
3553  *	key set <key>
3554  *	key wipe
3555  */
3556 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv,
3557 			 char *result, unsigned maxlen)
3558 {
3559 	struct crypt_config *cc = ti->private;
3560 	int key_size, ret = -EINVAL;
3561 
3562 	if (argc < 2)
3563 		goto error;
3564 
3565 	if (!strcasecmp(argv[0], "key")) {
3566 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3567 			DMWARN("not suspended during key manipulation.");
3568 			return -EINVAL;
3569 		}
3570 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3571 			/* The key size may not be changed. */
3572 			key_size = get_key_size(&argv[2]);
3573 			if (key_size < 0 || cc->key_size != key_size) {
3574 				memset(argv[2], '0', strlen(argv[2]));
3575 				return -EINVAL;
3576 			}
3577 
3578 			ret = crypt_set_key(cc, argv[2]);
3579 			if (ret)
3580 				return ret;
3581 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3582 				ret = cc->iv_gen_ops->init(cc);
3583 			/* wipe the kernel key payload copy */
3584 			if (cc->key_string)
3585 				memset(cc->key, 0, cc->key_size * sizeof(u8));
3586 			return ret;
3587 		}
3588 		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3589 			return crypt_wipe_key(cc);
3590 	}
3591 
3592 error:
3593 	DMWARN("unrecognised message received.");
3594 	return -EINVAL;
3595 }
3596 
3597 static int crypt_iterate_devices(struct dm_target *ti,
3598 				 iterate_devices_callout_fn fn, void *data)
3599 {
3600 	struct crypt_config *cc = ti->private;
3601 
3602 	return fn(ti, cc->dev, cc->start, ti->len, data);
3603 }
3604 
3605 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3606 {
3607 	struct crypt_config *cc = ti->private;
3608 
3609 	/*
3610 	 * Unfortunate constraint that is required to avoid the potential
3611 	 * for exceeding underlying device's max_segments limits -- due to
3612 	 * crypt_alloc_buffer() possibly allocating pages for the encryption
3613 	 * bio that are not as physically contiguous as the original bio.
3614 	 */
3615 	limits->max_segment_size = PAGE_SIZE;
3616 
3617 	limits->logical_block_size =
3618 		max_t(unsigned, limits->logical_block_size, cc->sector_size);
3619 	limits->physical_block_size =
3620 		max_t(unsigned, limits->physical_block_size, cc->sector_size);
3621 	limits->io_min = max_t(unsigned, limits->io_min, cc->sector_size);
3622 }
3623 
3624 static struct target_type crypt_target = {
3625 	.name   = "crypt",
3626 	.version = {1, 23, 0},
3627 	.module = THIS_MODULE,
3628 	.ctr    = crypt_ctr,
3629 	.dtr    = crypt_dtr,
3630 	.features = DM_TARGET_ZONED_HM,
3631 	.report_zones = crypt_report_zones,
3632 	.map    = crypt_map,
3633 	.status = crypt_status,
3634 	.postsuspend = crypt_postsuspend,
3635 	.preresume = crypt_preresume,
3636 	.resume = crypt_resume,
3637 	.message = crypt_message,
3638 	.iterate_devices = crypt_iterate_devices,
3639 	.io_hints = crypt_io_hints,
3640 };
3641 
3642 static int __init dm_crypt_init(void)
3643 {
3644 	int r;
3645 
3646 	r = dm_register_target(&crypt_target);
3647 	if (r < 0)
3648 		DMERR("register failed %d", r);
3649 
3650 	return r;
3651 }
3652 
3653 static void __exit dm_crypt_exit(void)
3654 {
3655 	dm_unregister_target(&crypt_target);
3656 }
3657 
3658 module_init(dm_crypt_init);
3659 module_exit(dm_crypt_exit);
3660 
3661 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3662 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3663 MODULE_LICENSE("GPL");
3664