xref: /linux/drivers/md/dm-crypt.c (revision d67b569f5f620c0fb95d5212642746b7ba9d29e4)
1 /*
2  * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/mempool.h>
14 #include <linux/slab.h>
15 #include <linux/crypto.h>
16 #include <linux/workqueue.h>
17 #include <asm/atomic.h>
18 #include <asm/scatterlist.h>
19 #include <asm/page.h>
20 
21 #include "dm.h"
22 
23 #define PFX	"crypt: "
24 
25 /*
26  * per bio private data
27  */
28 struct crypt_io {
29 	struct dm_target *target;
30 	struct bio *bio;
31 	struct bio *first_clone;
32 	struct work_struct work;
33 	atomic_t pending;
34 	int error;
35 };
36 
37 /*
38  * context holding the current state of a multi-part conversion
39  */
40 struct convert_context {
41 	struct bio *bio_in;
42 	struct bio *bio_out;
43 	unsigned int offset_in;
44 	unsigned int offset_out;
45 	unsigned int idx_in;
46 	unsigned int idx_out;
47 	sector_t sector;
48 	int write;
49 };
50 
51 struct crypt_config;
52 
53 struct crypt_iv_operations {
54 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
55 	           const char *opts);
56 	void (*dtr)(struct crypt_config *cc);
57 	const char *(*status)(struct crypt_config *cc);
58 	int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
59 };
60 
61 /*
62  * Crypt: maps a linear range of a block device
63  * and encrypts / decrypts at the same time.
64  */
65 struct crypt_config {
66 	struct dm_dev *dev;
67 	sector_t start;
68 
69 	/*
70 	 * pool for per bio private data and
71 	 * for encryption buffer pages
72 	 */
73 	mempool_t *io_pool;
74 	mempool_t *page_pool;
75 
76 	/*
77 	 * crypto related data
78 	 */
79 	struct crypt_iv_operations *iv_gen_ops;
80 	char *iv_mode;
81 	void *iv_gen_private;
82 	sector_t iv_offset;
83 	unsigned int iv_size;
84 
85 	struct crypto_tfm *tfm;
86 	unsigned int key_size;
87 	u8 key[0];
88 };
89 
90 #define MIN_IOS        256
91 #define MIN_POOL_PAGES 32
92 #define MIN_BIO_PAGES  8
93 
94 static kmem_cache_t *_crypt_io_pool;
95 
96 /*
97  * Mempool alloc and free functions for the page
98  */
99 static void *mempool_alloc_page(unsigned int __nocast gfp_mask, void *data)
100 {
101 	return alloc_page(gfp_mask);
102 }
103 
104 static void mempool_free_page(void *page, void *data)
105 {
106 	__free_page(page);
107 }
108 
109 
110 /*
111  * Different IV generation algorithms:
112  *
113  * plain: the initial vector is the 32-bit low-endian version of the sector
114  *        number, padded with zeros if neccessary.
115  *
116  * ess_iv: "encrypted sector|salt initial vector", the sector number is
117  *         encrypted with the bulk cipher using a salt as key. The salt
118  *         should be derived from the bulk cipher's key via hashing.
119  *
120  * plumb: unimplemented, see:
121  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
122  */
123 
124 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
125 {
126 	memset(iv, 0, cc->iv_size);
127 	*(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
128 
129 	return 0;
130 }
131 
132 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
133 	                      const char *opts)
134 {
135 	struct crypto_tfm *essiv_tfm;
136 	struct crypto_tfm *hash_tfm;
137 	struct scatterlist sg;
138 	unsigned int saltsize;
139 	u8 *salt;
140 
141 	if (opts == NULL) {
142 		ti->error = PFX "Digest algorithm missing for ESSIV mode";
143 		return -EINVAL;
144 	}
145 
146 	/* Hash the cipher key with the given hash algorithm */
147 	hash_tfm = crypto_alloc_tfm(opts, 0);
148 	if (hash_tfm == NULL) {
149 		ti->error = PFX "Error initializing ESSIV hash";
150 		return -EINVAL;
151 	}
152 
153 	if (crypto_tfm_alg_type(hash_tfm) != CRYPTO_ALG_TYPE_DIGEST) {
154 		ti->error = PFX "Expected digest algorithm for ESSIV hash";
155 		crypto_free_tfm(hash_tfm);
156 		return -EINVAL;
157 	}
158 
159 	saltsize = crypto_tfm_alg_digestsize(hash_tfm);
160 	salt = kmalloc(saltsize, GFP_KERNEL);
161 	if (salt == NULL) {
162 		ti->error = PFX "Error kmallocing salt storage in ESSIV";
163 		crypto_free_tfm(hash_tfm);
164 		return -ENOMEM;
165 	}
166 
167 	sg.page = virt_to_page(cc->key);
168 	sg.offset = offset_in_page(cc->key);
169 	sg.length = cc->key_size;
170 	crypto_digest_digest(hash_tfm, &sg, 1, salt);
171 	crypto_free_tfm(hash_tfm);
172 
173 	/* Setup the essiv_tfm with the given salt */
174 	essiv_tfm = crypto_alloc_tfm(crypto_tfm_alg_name(cc->tfm),
175 	                             CRYPTO_TFM_MODE_ECB);
176 	if (essiv_tfm == NULL) {
177 		ti->error = PFX "Error allocating crypto tfm for ESSIV";
178 		kfree(salt);
179 		return -EINVAL;
180 	}
181 	if (crypto_tfm_alg_blocksize(essiv_tfm)
182 	    != crypto_tfm_alg_ivsize(cc->tfm)) {
183 		ti->error = PFX "Block size of ESSIV cipher does "
184 			        "not match IV size of block cipher";
185 		crypto_free_tfm(essiv_tfm);
186 		kfree(salt);
187 		return -EINVAL;
188 	}
189 	if (crypto_cipher_setkey(essiv_tfm, salt, saltsize) < 0) {
190 		ti->error = PFX "Failed to set key for ESSIV cipher";
191 		crypto_free_tfm(essiv_tfm);
192 		kfree(salt);
193 		return -EINVAL;
194 	}
195 	kfree(salt);
196 
197 	cc->iv_gen_private = (void *)essiv_tfm;
198 	return 0;
199 }
200 
201 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
202 {
203 	crypto_free_tfm((struct crypto_tfm *)cc->iv_gen_private);
204 	cc->iv_gen_private = NULL;
205 }
206 
207 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
208 {
209 	struct scatterlist sg = { NULL, };
210 
211 	memset(iv, 0, cc->iv_size);
212 	*(u64 *)iv = cpu_to_le64(sector);
213 
214 	sg.page = virt_to_page(iv);
215 	sg.offset = offset_in_page(iv);
216 	sg.length = cc->iv_size;
217 	crypto_cipher_encrypt((struct crypto_tfm *)cc->iv_gen_private,
218 	                      &sg, &sg, cc->iv_size);
219 
220 	return 0;
221 }
222 
223 static struct crypt_iv_operations crypt_iv_plain_ops = {
224 	.generator = crypt_iv_plain_gen
225 };
226 
227 static struct crypt_iv_operations crypt_iv_essiv_ops = {
228 	.ctr       = crypt_iv_essiv_ctr,
229 	.dtr       = crypt_iv_essiv_dtr,
230 	.generator = crypt_iv_essiv_gen
231 };
232 
233 
234 static inline int
235 crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
236                           struct scatterlist *in, unsigned int length,
237                           int write, sector_t sector)
238 {
239 	u8 iv[cc->iv_size];
240 	int r;
241 
242 	if (cc->iv_gen_ops) {
243 		r = cc->iv_gen_ops->generator(cc, iv, sector);
244 		if (r < 0)
245 			return r;
246 
247 		if (write)
248 			r = crypto_cipher_encrypt_iv(cc->tfm, out, in, length, iv);
249 		else
250 			r = crypto_cipher_decrypt_iv(cc->tfm, out, in, length, iv);
251 	} else {
252 		if (write)
253 			r = crypto_cipher_encrypt(cc->tfm, out, in, length);
254 		else
255 			r = crypto_cipher_decrypt(cc->tfm, out, in, length);
256 	}
257 
258 	return r;
259 }
260 
261 static void
262 crypt_convert_init(struct crypt_config *cc, struct convert_context *ctx,
263                    struct bio *bio_out, struct bio *bio_in,
264                    sector_t sector, int write)
265 {
266 	ctx->bio_in = bio_in;
267 	ctx->bio_out = bio_out;
268 	ctx->offset_in = 0;
269 	ctx->offset_out = 0;
270 	ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
271 	ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
272 	ctx->sector = sector + cc->iv_offset;
273 	ctx->write = write;
274 }
275 
276 /*
277  * Encrypt / decrypt data from one bio to another one (can be the same one)
278  */
279 static int crypt_convert(struct crypt_config *cc,
280                          struct convert_context *ctx)
281 {
282 	int r = 0;
283 
284 	while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
285 	      ctx->idx_out < ctx->bio_out->bi_vcnt) {
286 		struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
287 		struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
288 		struct scatterlist sg_in = {
289 			.page = bv_in->bv_page,
290 			.offset = bv_in->bv_offset + ctx->offset_in,
291 			.length = 1 << SECTOR_SHIFT
292 		};
293 		struct scatterlist sg_out = {
294 			.page = bv_out->bv_page,
295 			.offset = bv_out->bv_offset + ctx->offset_out,
296 			.length = 1 << SECTOR_SHIFT
297 		};
298 
299 		ctx->offset_in += sg_in.length;
300 		if (ctx->offset_in >= bv_in->bv_len) {
301 			ctx->offset_in = 0;
302 			ctx->idx_in++;
303 		}
304 
305 		ctx->offset_out += sg_out.length;
306 		if (ctx->offset_out >= bv_out->bv_len) {
307 			ctx->offset_out = 0;
308 			ctx->idx_out++;
309 		}
310 
311 		r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length,
312 		                              ctx->write, ctx->sector);
313 		if (r < 0)
314 			break;
315 
316 		ctx->sector++;
317 	}
318 
319 	return r;
320 }
321 
322 /*
323  * Generate a new unfragmented bio with the given size
324  * This should never violate the device limitations
325  * May return a smaller bio when running out of pages
326  */
327 static struct bio *
328 crypt_alloc_buffer(struct crypt_config *cc, unsigned int size,
329                    struct bio *base_bio, unsigned int *bio_vec_idx)
330 {
331 	struct bio *bio;
332 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
333 	int gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
334 	unsigned int i;
335 
336 	/*
337 	 * Use __GFP_NOMEMALLOC to tell the VM to act less aggressively and
338 	 * to fail earlier.  This is not necessary but increases throughput.
339 	 * FIXME: Is this really intelligent?
340 	 */
341 	if (base_bio)
342 		bio = bio_clone(base_bio, GFP_NOIO|__GFP_NOMEMALLOC);
343 	else
344 		bio = bio_alloc(GFP_NOIO|__GFP_NOMEMALLOC, nr_iovecs);
345 	if (!bio)
346 		return NULL;
347 
348 	/* if the last bio was not complete, continue where that one ended */
349 	bio->bi_idx = *bio_vec_idx;
350 	bio->bi_vcnt = *bio_vec_idx;
351 	bio->bi_size = 0;
352 	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
353 
354 	/* bio->bi_idx pages have already been allocated */
355 	size -= bio->bi_idx * PAGE_SIZE;
356 
357 	for(i = bio->bi_idx; i < nr_iovecs; i++) {
358 		struct bio_vec *bv = bio_iovec_idx(bio, i);
359 
360 		bv->bv_page = mempool_alloc(cc->page_pool, gfp_mask);
361 		if (!bv->bv_page)
362 			break;
363 
364 		/*
365 		 * if additional pages cannot be allocated without waiting,
366 		 * return a partially allocated bio, the caller will then try
367 		 * to allocate additional bios while submitting this partial bio
368 		 */
369 		if ((i - bio->bi_idx) == (MIN_BIO_PAGES - 1))
370 			gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
371 
372 		bv->bv_offset = 0;
373 		if (size > PAGE_SIZE)
374 			bv->bv_len = PAGE_SIZE;
375 		else
376 			bv->bv_len = size;
377 
378 		bio->bi_size += bv->bv_len;
379 		bio->bi_vcnt++;
380 		size -= bv->bv_len;
381 	}
382 
383 	if (!bio->bi_size) {
384 		bio_put(bio);
385 		return NULL;
386 	}
387 
388 	/*
389 	 * Remember the last bio_vec allocated to be able
390 	 * to correctly continue after the splitting.
391 	 */
392 	*bio_vec_idx = bio->bi_vcnt;
393 
394 	return bio;
395 }
396 
397 static void crypt_free_buffer_pages(struct crypt_config *cc,
398                                     struct bio *bio, unsigned int bytes)
399 {
400 	unsigned int i, start, end;
401 	struct bio_vec *bv;
402 
403 	/*
404 	 * This is ugly, but Jens Axboe thinks that using bi_idx in the
405 	 * endio function is too dangerous at the moment, so I calculate the
406 	 * correct position using bi_vcnt and bi_size.
407 	 * The bv_offset and bv_len fields might already be modified but we
408 	 * know that we always allocated whole pages.
409 	 * A fix to the bi_idx issue in the kernel is in the works, so
410 	 * we will hopefully be able to revert to the cleaner solution soon.
411 	 */
412 	i = bio->bi_vcnt - 1;
413 	bv = bio_iovec_idx(bio, i);
414 	end = (i << PAGE_SHIFT) + (bv->bv_offset + bv->bv_len) - bio->bi_size;
415 	start = end - bytes;
416 
417 	start >>= PAGE_SHIFT;
418 	if (!bio->bi_size)
419 		end = bio->bi_vcnt;
420 	else
421 		end >>= PAGE_SHIFT;
422 
423 	for(i = start; i < end; i++) {
424 		bv = bio_iovec_idx(bio, i);
425 		BUG_ON(!bv->bv_page);
426 		mempool_free(bv->bv_page, cc->page_pool);
427 		bv->bv_page = NULL;
428 	}
429 }
430 
431 /*
432  * One of the bios was finished. Check for completion of
433  * the whole request and correctly clean up the buffer.
434  */
435 static void dec_pending(struct crypt_io *io, int error)
436 {
437 	struct crypt_config *cc = (struct crypt_config *) io->target->private;
438 
439 	if (error < 0)
440 		io->error = error;
441 
442 	if (!atomic_dec_and_test(&io->pending))
443 		return;
444 
445 	if (io->first_clone)
446 		bio_put(io->first_clone);
447 
448 	bio_endio(io->bio, io->bio->bi_size, io->error);
449 
450 	mempool_free(io, cc->io_pool);
451 }
452 
453 /*
454  * kcryptd:
455  *
456  * Needed because it would be very unwise to do decryption in an
457  * interrupt context, so bios returning from read requests get
458  * queued here.
459  */
460 static struct workqueue_struct *_kcryptd_workqueue;
461 
462 static void kcryptd_do_work(void *data)
463 {
464 	struct crypt_io *io = (struct crypt_io *) data;
465 	struct crypt_config *cc = (struct crypt_config *) io->target->private;
466 	struct convert_context ctx;
467 	int r;
468 
469 	crypt_convert_init(cc, &ctx, io->bio, io->bio,
470 	                   io->bio->bi_sector - io->target->begin, 0);
471 	r = crypt_convert(cc, &ctx);
472 
473 	dec_pending(io, r);
474 }
475 
476 static void kcryptd_queue_io(struct crypt_io *io)
477 {
478 	INIT_WORK(&io->work, kcryptd_do_work, io);
479 	queue_work(_kcryptd_workqueue, &io->work);
480 }
481 
482 /*
483  * Decode key from its hex representation
484  */
485 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
486 {
487 	char buffer[3];
488 	char *endp;
489 	unsigned int i;
490 
491 	buffer[2] = '\0';
492 
493 	for(i = 0; i < size; i++) {
494 		buffer[0] = *hex++;
495 		buffer[1] = *hex++;
496 
497 		key[i] = (u8)simple_strtoul(buffer, &endp, 16);
498 
499 		if (endp != &buffer[2])
500 			return -EINVAL;
501 	}
502 
503 	if (*hex != '\0')
504 		return -EINVAL;
505 
506 	return 0;
507 }
508 
509 /*
510  * Encode key into its hex representation
511  */
512 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
513 {
514 	unsigned int i;
515 
516 	for(i = 0; i < size; i++) {
517 		sprintf(hex, "%02x", *key);
518 		hex += 2;
519 		key++;
520 	}
521 }
522 
523 /*
524  * Construct an encryption mapping:
525  * <cipher> <key> <iv_offset> <dev_path> <start>
526  */
527 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
528 {
529 	struct crypt_config *cc;
530 	struct crypto_tfm *tfm;
531 	char *tmp;
532 	char *cipher;
533 	char *chainmode;
534 	char *ivmode;
535 	char *ivopts;
536 	unsigned int crypto_flags;
537 	unsigned int key_size;
538 
539 	if (argc != 5) {
540 		ti->error = PFX "Not enough arguments";
541 		return -EINVAL;
542 	}
543 
544 	tmp = argv[0];
545 	cipher = strsep(&tmp, "-");
546 	chainmode = strsep(&tmp, "-");
547 	ivopts = strsep(&tmp, "-");
548 	ivmode = strsep(&ivopts, ":");
549 
550 	if (tmp)
551 		DMWARN(PFX "Unexpected additional cipher options");
552 
553 	key_size = strlen(argv[1]) >> 1;
554 
555 	cc = kmalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
556 	if (cc == NULL) {
557 		ti->error =
558 			PFX "Cannot allocate transparent encryption context";
559 		return -ENOMEM;
560 	}
561 
562 	cc->key_size = key_size;
563 	if ((!key_size && strcmp(argv[1], "-") != 0) ||
564 	    (key_size && crypt_decode_key(cc->key, argv[1], key_size) < 0)) {
565 		ti->error = PFX "Error decoding key";
566 		goto bad1;
567 	}
568 
569 	/* Compatiblity mode for old dm-crypt cipher strings */
570 	if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
571 		chainmode = "cbc";
572 		ivmode = "plain";
573 	}
574 
575 	/* Choose crypto_flags according to chainmode */
576 	if (strcmp(chainmode, "cbc") == 0)
577 		crypto_flags = CRYPTO_TFM_MODE_CBC;
578 	else if (strcmp(chainmode, "ecb") == 0)
579 		crypto_flags = CRYPTO_TFM_MODE_ECB;
580 	else {
581 		ti->error = PFX "Unknown chaining mode";
582 		goto bad1;
583 	}
584 
585 	if (crypto_flags != CRYPTO_TFM_MODE_ECB && !ivmode) {
586 		ti->error = PFX "This chaining mode requires an IV mechanism";
587 		goto bad1;
588 	}
589 
590 	tfm = crypto_alloc_tfm(cipher, crypto_flags);
591 	if (!tfm) {
592 		ti->error = PFX "Error allocating crypto tfm";
593 		goto bad1;
594 	}
595 	if (crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER) {
596 		ti->error = PFX "Expected cipher algorithm";
597 		goto bad2;
598 	}
599 
600 	cc->tfm = tfm;
601 
602 	/*
603 	 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>".
604 	 * See comments at iv code
605 	 */
606 
607 	if (ivmode == NULL)
608 		cc->iv_gen_ops = NULL;
609 	else if (strcmp(ivmode, "plain") == 0)
610 		cc->iv_gen_ops = &crypt_iv_plain_ops;
611 	else if (strcmp(ivmode, "essiv") == 0)
612 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
613 	else {
614 		ti->error = PFX "Invalid IV mode";
615 		goto bad2;
616 	}
617 
618 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
619 	    cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
620 		goto bad2;
621 
622 	if (tfm->crt_cipher.cit_decrypt_iv && tfm->crt_cipher.cit_encrypt_iv)
623 		/* at least a 64 bit sector number should fit in our buffer */
624 		cc->iv_size = max(crypto_tfm_alg_ivsize(tfm),
625 		                  (unsigned int)(sizeof(u64) / sizeof(u8)));
626 	else {
627 		cc->iv_size = 0;
628 		if (cc->iv_gen_ops) {
629 			DMWARN(PFX "Selected cipher does not support IVs");
630 			if (cc->iv_gen_ops->dtr)
631 				cc->iv_gen_ops->dtr(cc);
632 			cc->iv_gen_ops = NULL;
633 		}
634 	}
635 
636 	cc->io_pool = mempool_create(MIN_IOS, mempool_alloc_slab,
637 				     mempool_free_slab, _crypt_io_pool);
638 	if (!cc->io_pool) {
639 		ti->error = PFX "Cannot allocate crypt io mempool";
640 		goto bad3;
641 	}
642 
643 	cc->page_pool = mempool_create(MIN_POOL_PAGES, mempool_alloc_page,
644 				       mempool_free_page, NULL);
645 	if (!cc->page_pool) {
646 		ti->error = PFX "Cannot allocate page mempool";
647 		goto bad4;
648 	}
649 
650 	if (tfm->crt_cipher.cit_setkey(tfm, cc->key, key_size) < 0) {
651 		ti->error = PFX "Error setting key";
652 		goto bad5;
653 	}
654 
655 	if (sscanf(argv[2], SECTOR_FORMAT, &cc->iv_offset) != 1) {
656 		ti->error = PFX "Invalid iv_offset sector";
657 		goto bad5;
658 	}
659 
660 	if (sscanf(argv[4], SECTOR_FORMAT, &cc->start) != 1) {
661 		ti->error = PFX "Invalid device sector";
662 		goto bad5;
663 	}
664 
665 	if (dm_get_device(ti, argv[3], cc->start, ti->len,
666 	                  dm_table_get_mode(ti->table), &cc->dev)) {
667 		ti->error = PFX "Device lookup failed";
668 		goto bad5;
669 	}
670 
671 	if (ivmode && cc->iv_gen_ops) {
672 		if (ivopts)
673 			*(ivopts - 1) = ':';
674 		cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
675 		if (!cc->iv_mode) {
676 			ti->error = PFX "Error kmallocing iv_mode string";
677 			goto bad5;
678 		}
679 		strcpy(cc->iv_mode, ivmode);
680 	} else
681 		cc->iv_mode = NULL;
682 
683 	ti->private = cc;
684 	return 0;
685 
686 bad5:
687 	mempool_destroy(cc->page_pool);
688 bad4:
689 	mempool_destroy(cc->io_pool);
690 bad3:
691 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
692 		cc->iv_gen_ops->dtr(cc);
693 bad2:
694 	crypto_free_tfm(tfm);
695 bad1:
696 	kfree(cc);
697 	return -EINVAL;
698 }
699 
700 static void crypt_dtr(struct dm_target *ti)
701 {
702 	struct crypt_config *cc = (struct crypt_config *) ti->private;
703 
704 	mempool_destroy(cc->page_pool);
705 	mempool_destroy(cc->io_pool);
706 
707 	kfree(cc->iv_mode);
708 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
709 		cc->iv_gen_ops->dtr(cc);
710 	crypto_free_tfm(cc->tfm);
711 	dm_put_device(ti, cc->dev);
712 	kfree(cc);
713 }
714 
715 static int crypt_endio(struct bio *bio, unsigned int done, int error)
716 {
717 	struct crypt_io *io = (struct crypt_io *) bio->bi_private;
718 	struct crypt_config *cc = (struct crypt_config *) io->target->private;
719 
720 	if (bio_data_dir(bio) == WRITE) {
721 		/*
722 		 * free the processed pages, even if
723 		 * it's only a partially completed write
724 		 */
725 		crypt_free_buffer_pages(cc, bio, done);
726 	}
727 
728 	if (bio->bi_size)
729 		return 1;
730 
731 	bio_put(bio);
732 
733 	/*
734 	 * successful reads are decrypted by the worker thread
735 	 */
736 	if ((bio_data_dir(bio) == READ)
737 	    && bio_flagged(bio, BIO_UPTODATE)) {
738 		kcryptd_queue_io(io);
739 		return 0;
740 	}
741 
742 	dec_pending(io, error);
743 	return error;
744 }
745 
746 static inline struct bio *
747 crypt_clone(struct crypt_config *cc, struct crypt_io *io, struct bio *bio,
748             sector_t sector, unsigned int *bvec_idx,
749             struct convert_context *ctx)
750 {
751 	struct bio *clone;
752 
753 	if (bio_data_dir(bio) == WRITE) {
754 		clone = crypt_alloc_buffer(cc, bio->bi_size,
755                                  io->first_clone, bvec_idx);
756 		if (clone) {
757 			ctx->bio_out = clone;
758 			if (crypt_convert(cc, ctx) < 0) {
759 				crypt_free_buffer_pages(cc, clone,
760 				                        clone->bi_size);
761 				bio_put(clone);
762 				return NULL;
763 			}
764 		}
765 	} else {
766 		/*
767 		 * The block layer might modify the bvec array, so always
768 		 * copy the required bvecs because we need the original
769 		 * one in order to decrypt the whole bio data *afterwards*.
770 		 */
771 		clone = bio_alloc(GFP_NOIO, bio_segments(bio));
772 		if (clone) {
773 			clone->bi_idx = 0;
774 			clone->bi_vcnt = bio_segments(bio);
775 			clone->bi_size = bio->bi_size;
776 			memcpy(clone->bi_io_vec, bio_iovec(bio),
777 			       sizeof(struct bio_vec) * clone->bi_vcnt);
778 		}
779 	}
780 
781 	if (!clone)
782 		return NULL;
783 
784 	clone->bi_private = io;
785 	clone->bi_end_io = crypt_endio;
786 	clone->bi_bdev = cc->dev->bdev;
787 	clone->bi_sector = cc->start + sector;
788 	clone->bi_rw = bio->bi_rw;
789 
790 	return clone;
791 }
792 
793 static int crypt_map(struct dm_target *ti, struct bio *bio,
794 		     union map_info *map_context)
795 {
796 	struct crypt_config *cc = (struct crypt_config *) ti->private;
797 	struct crypt_io *io = mempool_alloc(cc->io_pool, GFP_NOIO);
798 	struct convert_context ctx;
799 	struct bio *clone;
800 	unsigned int remaining = bio->bi_size;
801 	sector_t sector = bio->bi_sector - ti->begin;
802 	unsigned int bvec_idx = 0;
803 
804 	io->target = ti;
805 	io->bio = bio;
806 	io->first_clone = NULL;
807 	io->error = 0;
808 	atomic_set(&io->pending, 1); /* hold a reference */
809 
810 	if (bio_data_dir(bio) == WRITE)
811 		crypt_convert_init(cc, &ctx, NULL, bio, sector, 1);
812 
813 	/*
814 	 * The allocated buffers can be smaller than the whole bio,
815 	 * so repeat the whole process until all the data can be handled.
816 	 */
817 	while (remaining) {
818 		clone = crypt_clone(cc, io, bio, sector, &bvec_idx, &ctx);
819 		if (!clone)
820 			goto cleanup;
821 
822 		if (!io->first_clone) {
823 			/*
824 			 * hold a reference to the first clone, because it
825 			 * holds the bio_vec array and that can't be freed
826 			 * before all other clones are released
827 			 */
828 			bio_get(clone);
829 			io->first_clone = clone;
830 		}
831 		atomic_inc(&io->pending);
832 
833 		remaining -= clone->bi_size;
834 		sector += bio_sectors(clone);
835 
836 		generic_make_request(clone);
837 
838 		/* out of memory -> run queues */
839 		if (remaining)
840 			blk_congestion_wait(bio_data_dir(clone), HZ/100);
841 	}
842 
843 	/* drop reference, clones could have returned before we reach this */
844 	dec_pending(io, 0);
845 	return 0;
846 
847 cleanup:
848 	if (io->first_clone) {
849 		dec_pending(io, -ENOMEM);
850 		return 0;
851 	}
852 
853 	/* if no bio has been dispatched yet, we can directly return the error */
854 	mempool_free(io, cc->io_pool);
855 	return -ENOMEM;
856 }
857 
858 static int crypt_status(struct dm_target *ti, status_type_t type,
859 			char *result, unsigned int maxlen)
860 {
861 	struct crypt_config *cc = (struct crypt_config *) ti->private;
862 	const char *cipher;
863 	const char *chainmode = NULL;
864 	unsigned int sz = 0;
865 
866 	switch (type) {
867 	case STATUSTYPE_INFO:
868 		result[0] = '\0';
869 		break;
870 
871 	case STATUSTYPE_TABLE:
872 		cipher = crypto_tfm_alg_name(cc->tfm);
873 
874 		switch(cc->tfm->crt_cipher.cit_mode) {
875 		case CRYPTO_TFM_MODE_CBC:
876 			chainmode = "cbc";
877 			break;
878 		case CRYPTO_TFM_MODE_ECB:
879 			chainmode = "ecb";
880 			break;
881 		default:
882 			BUG();
883 		}
884 
885 		if (cc->iv_mode)
886 			DMEMIT("%s-%s-%s ", cipher, chainmode, cc->iv_mode);
887 		else
888 			DMEMIT("%s-%s ", cipher, chainmode);
889 
890 		if (cc->key_size > 0) {
891 			if ((maxlen - sz) < ((cc->key_size << 1) + 1))
892 				return -ENOMEM;
893 
894 			crypt_encode_key(result + sz, cc->key, cc->key_size);
895 			sz += cc->key_size << 1;
896 		} else {
897 			if (sz >= maxlen)
898 				return -ENOMEM;
899 			result[sz++] = '-';
900 		}
901 
902 		DMEMIT(" " SECTOR_FORMAT " %s " SECTOR_FORMAT,
903 		       cc->iv_offset, cc->dev->name, cc->start);
904 		break;
905 	}
906 	return 0;
907 }
908 
909 static struct target_type crypt_target = {
910 	.name   = "crypt",
911 	.version= {1, 1, 0},
912 	.module = THIS_MODULE,
913 	.ctr    = crypt_ctr,
914 	.dtr    = crypt_dtr,
915 	.map    = crypt_map,
916 	.status = crypt_status,
917 };
918 
919 static int __init dm_crypt_init(void)
920 {
921 	int r;
922 
923 	_crypt_io_pool = kmem_cache_create("dm-crypt_io",
924 	                                   sizeof(struct crypt_io),
925 	                                   0, 0, NULL, NULL);
926 	if (!_crypt_io_pool)
927 		return -ENOMEM;
928 
929 	_kcryptd_workqueue = create_workqueue("kcryptd");
930 	if (!_kcryptd_workqueue) {
931 		r = -ENOMEM;
932 		DMERR(PFX "couldn't create kcryptd");
933 		goto bad1;
934 	}
935 
936 	r = dm_register_target(&crypt_target);
937 	if (r < 0) {
938 		DMERR(PFX "register failed %d", r);
939 		goto bad2;
940 	}
941 
942 	return 0;
943 
944 bad2:
945 	destroy_workqueue(_kcryptd_workqueue);
946 bad1:
947 	kmem_cache_destroy(_crypt_io_pool);
948 	return r;
949 }
950 
951 static void __exit dm_crypt_exit(void)
952 {
953 	int r = dm_unregister_target(&crypt_target);
954 
955 	if (r < 0)
956 		DMERR(PFX "unregister failed %d", r);
957 
958 	destroy_workqueue(_kcryptd_workqueue);
959 	kmem_cache_destroy(_crypt_io_pool);
960 }
961 
962 module_init(dm_crypt_init);
963 module_exit(dm_crypt_exit);
964 
965 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
966 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
967 MODULE_LICENSE("GPL");
968