1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2003 Jana Saout <jana@saout.de> 4 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org> 5 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved. 6 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com> 7 * 8 * This file is released under the GPL. 9 */ 10 11 #include <linux/completion.h> 12 #include <linux/err.h> 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/key.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-integrity.h> 20 #include <linux/crc32.h> 21 #include <linux/mempool.h> 22 #include <linux/slab.h> 23 #include <linux/crypto.h> 24 #include <linux/fips.h> 25 #include <linux/workqueue.h> 26 #include <linux/kthread.h> 27 #include <linux/backing-dev.h> 28 #include <linux/atomic.h> 29 #include <linux/scatterlist.h> 30 #include <linux/rbtree.h> 31 #include <linux/ctype.h> 32 #include <asm/page.h> 33 #include <linux/unaligned.h> 34 #include <crypto/hash.h> 35 #include <crypto/md5.h> 36 #include <crypto/skcipher.h> 37 #include <crypto/aead.h> 38 #include <crypto/authenc.h> 39 #include <crypto/utils.h> 40 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */ 41 #include <linux/key-type.h> 42 #include <keys/user-type.h> 43 #include <keys/encrypted-type.h> 44 #include <keys/trusted-type.h> 45 46 #include <linux/device-mapper.h> 47 48 #include "dm-audit.h" 49 50 #define DM_MSG_PREFIX "crypt" 51 52 static DEFINE_IDA(workqueue_ida); 53 54 /* 55 * context holding the current state of a multi-part conversion 56 */ 57 struct convert_context { 58 struct completion restart; 59 struct bio *bio_in; 60 struct bvec_iter iter_in; 61 struct bio *bio_out; 62 struct bvec_iter iter_out; 63 atomic_t cc_pending; 64 unsigned int tag_offset; 65 u64 cc_sector; 66 union { 67 struct skcipher_request *req; 68 struct aead_request *req_aead; 69 } r; 70 bool aead_recheck; 71 bool aead_failed; 72 73 }; 74 75 /* 76 * per bio private data 77 */ 78 struct dm_crypt_io { 79 struct crypt_config *cc; 80 struct bio *base_bio; 81 u8 *integrity_metadata; 82 bool integrity_metadata_from_pool:1; 83 84 struct work_struct work; 85 86 struct convert_context ctx; 87 88 atomic_t io_pending; 89 blk_status_t error; 90 sector_t sector; 91 92 struct bvec_iter saved_bi_iter; 93 94 struct rb_node rb_node; 95 } CRYPTO_MINALIGN_ATTR; 96 97 struct dm_crypt_request { 98 struct convert_context *ctx; 99 struct scatterlist sg_in[4]; 100 struct scatterlist sg_out[4]; 101 u64 iv_sector; 102 }; 103 104 struct crypt_config; 105 106 struct crypt_iv_operations { 107 int (*ctr)(struct crypt_config *cc, struct dm_target *ti, 108 const char *opts); 109 void (*dtr)(struct crypt_config *cc); 110 int (*init)(struct crypt_config *cc); 111 int (*wipe)(struct crypt_config *cc); 112 int (*generator)(struct crypt_config *cc, u8 *iv, 113 struct dm_crypt_request *dmreq); 114 int (*post)(struct crypt_config *cc, u8 *iv, 115 struct dm_crypt_request *dmreq); 116 }; 117 118 struct iv_benbi_private { 119 int shift; 120 }; 121 122 #define LMK_SEED_SIZE 64 /* hash + 0 */ 123 struct iv_lmk_private { 124 u8 *seed; 125 }; 126 127 #define TCW_WHITENING_SIZE 16 128 struct iv_tcw_private { 129 u8 *iv_seed; 130 u8 *whitening; 131 }; 132 133 #define ELEPHANT_MAX_KEY_SIZE 32 134 struct iv_elephant_private { 135 struct crypto_skcipher *tfm; 136 }; 137 138 /* 139 * Crypt: maps a linear range of a block device 140 * and encrypts / decrypts at the same time. 141 */ 142 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID, 143 DM_CRYPT_SAME_CPU, DM_CRYPT_HIGH_PRIORITY, 144 DM_CRYPT_NO_OFFLOAD, DM_CRYPT_NO_READ_WORKQUEUE, 145 DM_CRYPT_NO_WRITE_WORKQUEUE, DM_CRYPT_WRITE_INLINE }; 146 147 enum cipher_flags { 148 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cipher */ 149 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */ 150 CRYPT_ENCRYPT_PREPROCESS, /* Must preprocess data for encryption (elephant) */ 151 CRYPT_KEY_MAC_SIZE_SET, /* The integrity_key_size option was used */ 152 }; 153 154 /* 155 * The fields in here must be read only after initialization. 156 */ 157 struct crypt_config { 158 struct dm_dev *dev; 159 sector_t start; 160 161 struct percpu_counter n_allocated_pages; 162 163 struct workqueue_struct *io_queue; 164 struct workqueue_struct *crypt_queue; 165 166 spinlock_t write_thread_lock; 167 struct task_struct *write_thread; 168 struct rb_root write_tree; 169 170 char *cipher_string; 171 char *cipher_auth; 172 char *key_string; 173 174 const struct crypt_iv_operations *iv_gen_ops; 175 union { 176 struct iv_benbi_private benbi; 177 struct iv_lmk_private lmk; 178 struct iv_tcw_private tcw; 179 struct iv_elephant_private elephant; 180 } iv_gen_private; 181 u64 iv_offset; 182 unsigned int iv_size; 183 unsigned short sector_size; 184 unsigned char sector_shift; 185 186 union { 187 struct crypto_skcipher **tfms; 188 struct crypto_aead **tfms_aead; 189 } cipher_tfm; 190 unsigned int tfms_count; 191 int workqueue_id; 192 unsigned long cipher_flags; 193 194 /* 195 * Layout of each crypto request: 196 * 197 * struct skcipher_request 198 * context 199 * padding 200 * struct dm_crypt_request 201 * padding 202 * IV 203 * 204 * The padding is added so that dm_crypt_request and the IV are 205 * correctly aligned. 206 */ 207 unsigned int dmreq_start; 208 209 unsigned int per_bio_data_size; 210 211 unsigned long flags; 212 unsigned int key_size; 213 unsigned int key_parts; /* independent parts in key buffer */ 214 unsigned int key_extra_size; /* additional keys length */ 215 unsigned int key_mac_size; /* MAC key size for authenc(...) */ 216 217 unsigned int integrity_tag_size; 218 unsigned int integrity_iv_size; 219 unsigned int used_tag_size; 220 unsigned int tuple_size; 221 222 /* 223 * pool for per bio private data, crypto requests, 224 * encryption requeusts/buffer pages and integrity tags 225 */ 226 unsigned int tag_pool_max_sectors; 227 mempool_t tag_pool; 228 mempool_t req_pool; 229 mempool_t page_pool; 230 231 struct bio_set bs; 232 struct mutex bio_alloc_lock; 233 234 u8 *authenc_key; /* space for keys in authenc() format (if used) */ 235 u8 key[] __counted_by(key_size); 236 }; 237 238 #define MIN_IOS 64 239 #define MAX_TAG_SIZE 480 240 #define POOL_ENTRY_SIZE 512 241 242 static DEFINE_SPINLOCK(dm_crypt_clients_lock); 243 static unsigned int dm_crypt_clients_n; 244 static volatile unsigned long dm_crypt_pages_per_client; 245 #define DM_CRYPT_MEMORY_PERCENT 2 246 #define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_VECS * 16) 247 #define DM_CRYPT_DEFAULT_MAX_READ_SIZE 131072 248 #define DM_CRYPT_DEFAULT_MAX_WRITE_SIZE 131072 249 250 static unsigned int max_read_size = 0; 251 module_param(max_read_size, uint, 0644); 252 MODULE_PARM_DESC(max_read_size, "Maximum size of a read request"); 253 static unsigned int max_write_size = 0; 254 module_param(max_write_size, uint, 0644); 255 MODULE_PARM_DESC(max_write_size, "Maximum size of a write request"); 256 257 static unsigned get_max_request_sectors(struct dm_target *ti, struct bio *bio, bool no_split) 258 { 259 struct crypt_config *cc = ti->private; 260 unsigned val, sector_align; 261 bool wrt = op_is_write(bio_op(bio)); 262 263 if (no_split) { 264 val = -1; 265 } else if (wrt) { 266 val = min_not_zero(READ_ONCE(max_write_size), 267 DM_CRYPT_DEFAULT_MAX_WRITE_SIZE); 268 } else { 269 val = min_not_zero(READ_ONCE(max_read_size), 270 DM_CRYPT_DEFAULT_MAX_READ_SIZE); 271 } 272 273 if (wrt || cc->used_tag_size) 274 val = min(val, BIO_MAX_VECS << PAGE_SHIFT); 275 276 sector_align = max(bdev_logical_block_size(cc->dev->bdev), 277 (unsigned)cc->sector_size); 278 val = round_down(val, sector_align); 279 if (unlikely(!val)) 280 val = sector_align; 281 return val >> SECTOR_SHIFT; 282 } 283 284 static void crypt_endio(struct bio *clone); 285 static void kcryptd_queue_crypt(struct dm_crypt_io *io); 286 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc, 287 struct scatterlist *sg); 288 289 static bool crypt_integrity_aead(struct crypt_config *cc); 290 291 /* 292 * Use this to access cipher attributes that are independent of the key. 293 */ 294 static struct crypto_skcipher *any_tfm(struct crypt_config *cc) 295 { 296 return cc->cipher_tfm.tfms[0]; 297 } 298 299 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc) 300 { 301 return cc->cipher_tfm.tfms_aead[0]; 302 } 303 304 /* 305 * Different IV generation algorithms: 306 * 307 * plain: the initial vector is the 32-bit little-endian version of the sector 308 * number, padded with zeros if necessary. 309 * 310 * plain64: the initial vector is the 64-bit little-endian version of the sector 311 * number, padded with zeros if necessary. 312 * 313 * plain64be: the initial vector is the 64-bit big-endian version of the sector 314 * number, padded with zeros if necessary. 315 * 316 * essiv: "encrypted sector|salt initial vector", the sector number is 317 * encrypted with the bulk cipher using a salt as key. The salt 318 * should be derived from the bulk cipher's key via hashing. 319 * 320 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1 321 * (needed for LRW-32-AES and possible other narrow block modes) 322 * 323 * null: the initial vector is always zero. Provides compatibility with 324 * obsolete loop_fish2 devices. Do not use for new devices. 325 * 326 * lmk: Compatible implementation of the block chaining mode used 327 * by the Loop-AES block device encryption system 328 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/ 329 * It operates on full 512 byte sectors and uses CBC 330 * with an IV derived from the sector number, the data and 331 * optionally extra IV seed. 332 * This means that after decryption the first block 333 * of sector must be tweaked according to decrypted data. 334 * Loop-AES can use three encryption schemes: 335 * version 1: is plain aes-cbc mode 336 * version 2: uses 64 multikey scheme with lmk IV generator 337 * version 3: the same as version 2 with additional IV seed 338 * (it uses 65 keys, last key is used as IV seed) 339 * 340 * tcw: Compatible implementation of the block chaining mode used 341 * by the TrueCrypt device encryption system (prior to version 4.1). 342 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat 343 * It operates on full 512 byte sectors and uses CBC 344 * with an IV derived from initial key and the sector number. 345 * In addition, whitening value is applied on every sector, whitening 346 * is calculated from initial key, sector number and mixed using CRC32. 347 * Note that this encryption scheme is vulnerable to watermarking attacks 348 * and should be used for old compatible containers access only. 349 * 350 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode) 351 * The IV is encrypted little-endian byte-offset (with the same key 352 * and cipher as the volume). 353 * 354 * elephant: The extended version of eboiv with additional Elephant diffuser 355 * used with Bitlocker CBC mode. 356 * This mode was used in older Windows systems 357 * https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf 358 */ 359 360 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, 361 struct dm_crypt_request *dmreq) 362 { 363 memset(iv, 0, cc->iv_size); 364 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff); 365 366 return 0; 367 } 368 369 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv, 370 struct dm_crypt_request *dmreq) 371 { 372 memset(iv, 0, cc->iv_size); 373 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); 374 375 return 0; 376 } 377 378 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv, 379 struct dm_crypt_request *dmreq) 380 { 381 memset(iv, 0, cc->iv_size); 382 /* iv_size is at least of size u64; usually it is 16 bytes */ 383 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector); 384 385 return 0; 386 } 387 388 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, 389 struct dm_crypt_request *dmreq) 390 { 391 /* 392 * ESSIV encryption of the IV is now handled by the crypto API, 393 * so just pass the plain sector number here. 394 */ 395 memset(iv, 0, cc->iv_size); 396 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); 397 398 return 0; 399 } 400 401 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti, 402 const char *opts) 403 { 404 unsigned int bs; 405 int log; 406 407 if (crypt_integrity_aead(cc)) 408 bs = crypto_aead_blocksize(any_tfm_aead(cc)); 409 else 410 bs = crypto_skcipher_blocksize(any_tfm(cc)); 411 log = ilog2(bs); 412 413 /* 414 * We need to calculate how far we must shift the sector count 415 * to get the cipher block count, we use this shift in _gen. 416 */ 417 if (1 << log != bs) { 418 ti->error = "cypher blocksize is not a power of 2"; 419 return -EINVAL; 420 } 421 422 if (log > 9) { 423 ti->error = "cypher blocksize is > 512"; 424 return -EINVAL; 425 } 426 427 cc->iv_gen_private.benbi.shift = 9 - log; 428 429 return 0; 430 } 431 432 static void crypt_iv_benbi_dtr(struct crypt_config *cc) 433 { 434 } 435 436 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, 437 struct dm_crypt_request *dmreq) 438 { 439 __be64 val; 440 441 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */ 442 443 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1); 444 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64))); 445 446 return 0; 447 } 448 449 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, 450 struct dm_crypt_request *dmreq) 451 { 452 memset(iv, 0, cc->iv_size); 453 454 return 0; 455 } 456 457 static void crypt_iv_lmk_dtr(struct crypt_config *cc) 458 { 459 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 460 461 kfree_sensitive(lmk->seed); 462 lmk->seed = NULL; 463 } 464 465 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti, 466 const char *opts) 467 { 468 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 469 470 if (cc->sector_size != (1 << SECTOR_SHIFT)) { 471 ti->error = "Unsupported sector size for LMK"; 472 return -EINVAL; 473 } 474 475 if (fips_enabled) { 476 ti->error = "LMK support is disabled due to FIPS"; 477 /* ... because it uses MD5. */ 478 return -EINVAL; 479 } 480 481 /* No seed in LMK version 2 */ 482 if (cc->key_parts == cc->tfms_count) { 483 lmk->seed = NULL; 484 return 0; 485 } 486 487 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL); 488 if (!lmk->seed) { 489 ti->error = "Error kmallocing seed storage in LMK"; 490 return -ENOMEM; 491 } 492 493 return 0; 494 } 495 496 static int crypt_iv_lmk_init(struct crypt_config *cc) 497 { 498 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 499 int subkey_size = cc->key_size / cc->key_parts; 500 501 /* LMK seed is on the position of LMK_KEYS + 1 key */ 502 if (lmk->seed) 503 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size), 504 MD5_DIGEST_SIZE); 505 506 return 0; 507 } 508 509 static int crypt_iv_lmk_wipe(struct crypt_config *cc) 510 { 511 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 512 513 if (lmk->seed) 514 memset(lmk->seed, 0, LMK_SEED_SIZE); 515 516 return 0; 517 } 518 519 static void crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv, 520 struct dm_crypt_request *dmreq, u8 *data) 521 { 522 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 523 struct md5_ctx ctx; 524 __le32 buf[4]; 525 526 md5_init(&ctx); 527 528 if (lmk->seed) 529 md5_update(&ctx, lmk->seed, LMK_SEED_SIZE); 530 531 /* Sector is always 512B, block size 16, add data of blocks 1-31 */ 532 md5_update(&ctx, data + 16, 16 * 31); 533 534 /* Sector is cropped to 56 bits here */ 535 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF); 536 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000); 537 buf[2] = cpu_to_le32(4024); 538 buf[3] = 0; 539 md5_update(&ctx, (u8 *)buf, sizeof(buf)); 540 541 /* No MD5 padding here */ 542 cpu_to_le32_array(ctx.state.h, ARRAY_SIZE(ctx.state.h)); 543 memcpy(iv, ctx.state.h, cc->iv_size); 544 } 545 546 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv, 547 struct dm_crypt_request *dmreq) 548 { 549 struct scatterlist *sg; 550 u8 *src; 551 552 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 553 sg = crypt_get_sg_data(cc, dmreq->sg_in); 554 src = kmap_local_page(sg_page(sg)); 555 crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset); 556 kunmap_local(src); 557 } else 558 memset(iv, 0, cc->iv_size); 559 return 0; 560 } 561 562 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv, 563 struct dm_crypt_request *dmreq) 564 { 565 struct scatterlist *sg; 566 u8 *dst; 567 568 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) 569 return 0; 570 571 sg = crypt_get_sg_data(cc, dmreq->sg_out); 572 dst = kmap_local_page(sg_page(sg)); 573 crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset); 574 575 /* Tweak the first block of plaintext sector */ 576 crypto_xor(dst + sg->offset, iv, cc->iv_size); 577 578 kunmap_local(dst); 579 return 0; 580 } 581 582 static void crypt_iv_tcw_dtr(struct crypt_config *cc) 583 { 584 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 585 586 kfree_sensitive(tcw->iv_seed); 587 tcw->iv_seed = NULL; 588 kfree_sensitive(tcw->whitening); 589 tcw->whitening = NULL; 590 } 591 592 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti, 593 const char *opts) 594 { 595 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 596 597 if (cc->sector_size != (1 << SECTOR_SHIFT)) { 598 ti->error = "Unsupported sector size for TCW"; 599 return -EINVAL; 600 } 601 602 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) { 603 ti->error = "Wrong key size for TCW"; 604 return -EINVAL; 605 } 606 607 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL); 608 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL); 609 if (!tcw->iv_seed || !tcw->whitening) { 610 crypt_iv_tcw_dtr(cc); 611 ti->error = "Error allocating seed storage in TCW"; 612 return -ENOMEM; 613 } 614 615 return 0; 616 } 617 618 static int crypt_iv_tcw_init(struct crypt_config *cc) 619 { 620 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 621 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE; 622 623 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size); 624 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size], 625 TCW_WHITENING_SIZE); 626 627 return 0; 628 } 629 630 static int crypt_iv_tcw_wipe(struct crypt_config *cc) 631 { 632 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 633 634 memset(tcw->iv_seed, 0, cc->iv_size); 635 memset(tcw->whitening, 0, TCW_WHITENING_SIZE); 636 637 return 0; 638 } 639 640 static void crypt_iv_tcw_whitening(struct crypt_config *cc, 641 struct dm_crypt_request *dmreq, u8 *data) 642 { 643 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 644 __le64 sector = cpu_to_le64(dmreq->iv_sector); 645 u8 buf[TCW_WHITENING_SIZE]; 646 int i; 647 648 /* xor whitening with sector number */ 649 crypto_xor_cpy(buf, tcw->whitening, (u8 *)§or, 8); 650 crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)§or, 8); 651 652 /* calculate crc32 for every 32bit part and xor it */ 653 for (i = 0; i < 4; i++) 654 put_unaligned_le32(crc32(0, &buf[i * 4], 4), &buf[i * 4]); 655 crypto_xor(&buf[0], &buf[12], 4); 656 crypto_xor(&buf[4], &buf[8], 4); 657 658 /* apply whitening (8 bytes) to whole sector */ 659 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++) 660 crypto_xor(data + i * 8, buf, 8); 661 memzero_explicit(buf, sizeof(buf)); 662 } 663 664 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv, 665 struct dm_crypt_request *dmreq) 666 { 667 struct scatterlist *sg; 668 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 669 __le64 sector = cpu_to_le64(dmreq->iv_sector); 670 u8 *src; 671 672 /* Remove whitening from ciphertext */ 673 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { 674 sg = crypt_get_sg_data(cc, dmreq->sg_in); 675 src = kmap_local_page(sg_page(sg)); 676 crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset); 677 kunmap_local(src); 678 } 679 680 /* Calculate IV */ 681 crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)§or, 8); 682 if (cc->iv_size > 8) 683 crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)§or, 684 cc->iv_size - 8); 685 686 return 0; 687 } 688 689 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv, 690 struct dm_crypt_request *dmreq) 691 { 692 struct scatterlist *sg; 693 u8 *dst; 694 695 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) 696 return 0; 697 698 /* Apply whitening on ciphertext */ 699 sg = crypt_get_sg_data(cc, dmreq->sg_out); 700 dst = kmap_local_page(sg_page(sg)); 701 crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset); 702 kunmap_local(dst); 703 704 return 0; 705 } 706 707 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv, 708 struct dm_crypt_request *dmreq) 709 { 710 /* Used only for writes, there must be an additional space to store IV */ 711 get_random_bytes(iv, cc->iv_size); 712 return 0; 713 } 714 715 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti, 716 const char *opts) 717 { 718 if (crypt_integrity_aead(cc)) { 719 ti->error = "AEAD transforms not supported for EBOIV"; 720 return -EINVAL; 721 } 722 723 if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) { 724 ti->error = "Block size of EBOIV cipher does not match IV size of block cipher"; 725 return -EINVAL; 726 } 727 728 return 0; 729 } 730 731 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv, 732 struct dm_crypt_request *dmreq) 733 { 734 struct crypto_skcipher *tfm = any_tfm(cc); 735 struct skcipher_request *req; 736 struct scatterlist src, dst; 737 DECLARE_CRYPTO_WAIT(wait); 738 unsigned int reqsize; 739 int err; 740 u8 *buf; 741 742 reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm); 743 reqsize = ALIGN(reqsize, __alignof__(__le64)); 744 745 req = kmalloc(reqsize + cc->iv_size, GFP_NOIO); 746 if (!req) 747 return -ENOMEM; 748 749 skcipher_request_set_tfm(req, tfm); 750 751 buf = (u8 *)req + reqsize; 752 memset(buf, 0, cc->iv_size); 753 *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size); 754 755 sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size); 756 sg_init_one(&dst, iv, cc->iv_size); 757 skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf); 758 skcipher_request_set_callback(req, 0, crypto_req_done, &wait); 759 err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 760 kfree_sensitive(req); 761 762 return err; 763 } 764 765 static void crypt_iv_elephant_dtr(struct crypt_config *cc) 766 { 767 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 768 769 crypto_free_skcipher(elephant->tfm); 770 elephant->tfm = NULL; 771 } 772 773 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti, 774 const char *opts) 775 { 776 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 777 int r; 778 779 elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0, 780 CRYPTO_ALG_ALLOCATES_MEMORY); 781 if (IS_ERR(elephant->tfm)) { 782 r = PTR_ERR(elephant->tfm); 783 elephant->tfm = NULL; 784 return r; 785 } 786 787 r = crypt_iv_eboiv_ctr(cc, ti, NULL); 788 if (r) 789 crypt_iv_elephant_dtr(cc); 790 return r; 791 } 792 793 static void diffuser_disk_to_cpu(u32 *d, size_t n) 794 { 795 #ifndef __LITTLE_ENDIAN 796 int i; 797 798 for (i = 0; i < n; i++) 799 d[i] = le32_to_cpu((__le32)d[i]); 800 #endif 801 } 802 803 static void diffuser_cpu_to_disk(__le32 *d, size_t n) 804 { 805 #ifndef __LITTLE_ENDIAN 806 int i; 807 808 for (i = 0; i < n; i++) 809 d[i] = cpu_to_le32((u32)d[i]); 810 #endif 811 } 812 813 static void diffuser_a_decrypt(u32 *d, size_t n) 814 { 815 int i, i1, i2, i3; 816 817 for (i = 0; i < 5; i++) { 818 i1 = 0; 819 i2 = n - 2; 820 i3 = n - 5; 821 822 while (i1 < (n - 1)) { 823 d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23); 824 i1++; i2++; i3++; 825 826 if (i3 >= n) 827 i3 -= n; 828 829 d[i1] += d[i2] ^ d[i3]; 830 i1++; i2++; i3++; 831 832 if (i2 >= n) 833 i2 -= n; 834 835 d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19); 836 i1++; i2++; i3++; 837 838 d[i1] += d[i2] ^ d[i3]; 839 i1++; i2++; i3++; 840 } 841 } 842 } 843 844 static void diffuser_a_encrypt(u32 *d, size_t n) 845 { 846 int i, i1, i2, i3; 847 848 for (i = 0; i < 5; i++) { 849 i1 = n - 1; 850 i2 = n - 2 - 1; 851 i3 = n - 5 - 1; 852 853 while (i1 > 0) { 854 d[i1] -= d[i2] ^ d[i3]; 855 i1--; i2--; i3--; 856 857 d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19); 858 i1--; i2--; i3--; 859 860 if (i2 < 0) 861 i2 += n; 862 863 d[i1] -= d[i2] ^ d[i3]; 864 i1--; i2--; i3--; 865 866 if (i3 < 0) 867 i3 += n; 868 869 d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23); 870 i1--; i2--; i3--; 871 } 872 } 873 } 874 875 static void diffuser_b_decrypt(u32 *d, size_t n) 876 { 877 int i, i1, i2, i3; 878 879 for (i = 0; i < 3; i++) { 880 i1 = 0; 881 i2 = 2; 882 i3 = 5; 883 884 while (i1 < (n - 1)) { 885 d[i1] += d[i2] ^ d[i3]; 886 i1++; i2++; i3++; 887 888 d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22); 889 i1++; i2++; i3++; 890 891 if (i2 >= n) 892 i2 -= n; 893 894 d[i1] += d[i2] ^ d[i3]; 895 i1++; i2++; i3++; 896 897 if (i3 >= n) 898 i3 -= n; 899 900 d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7); 901 i1++; i2++; i3++; 902 } 903 } 904 } 905 906 static void diffuser_b_encrypt(u32 *d, size_t n) 907 { 908 int i, i1, i2, i3; 909 910 for (i = 0; i < 3; i++) { 911 i1 = n - 1; 912 i2 = 2 - 1; 913 i3 = 5 - 1; 914 915 while (i1 > 0) { 916 d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7); 917 i1--; i2--; i3--; 918 919 if (i3 < 0) 920 i3 += n; 921 922 d[i1] -= d[i2] ^ d[i3]; 923 i1--; i2--; i3--; 924 925 if (i2 < 0) 926 i2 += n; 927 928 d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22); 929 i1--; i2--; i3--; 930 931 d[i1] -= d[i2] ^ d[i3]; 932 i1--; i2--; i3--; 933 } 934 } 935 } 936 937 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq) 938 { 939 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 940 u8 *es, *ks, *data, *data2, *data_offset; 941 struct skcipher_request *req; 942 struct scatterlist *sg, *sg2, src, dst; 943 DECLARE_CRYPTO_WAIT(wait); 944 int i, r; 945 946 req = skcipher_request_alloc(elephant->tfm, GFP_NOIO); 947 es = kzalloc(16, GFP_NOIO); /* Key for AES */ 948 ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */ 949 950 if (!req || !es || !ks) { 951 r = -ENOMEM; 952 goto out; 953 } 954 955 *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size); 956 957 /* E(Ks, e(s)) */ 958 sg_init_one(&src, es, 16); 959 sg_init_one(&dst, ks, 16); 960 skcipher_request_set_crypt(req, &src, &dst, 16, NULL); 961 skcipher_request_set_callback(req, 0, crypto_req_done, &wait); 962 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 963 if (r) 964 goto out; 965 966 /* E(Ks, e'(s)) */ 967 es[15] = 0x80; 968 sg_init_one(&dst, &ks[16], 16); 969 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 970 if (r) 971 goto out; 972 973 sg = crypt_get_sg_data(cc, dmreq->sg_out); 974 data = kmap_local_page(sg_page(sg)); 975 data_offset = data + sg->offset; 976 977 /* Cannot modify original bio, copy to sg_out and apply Elephant to it */ 978 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 979 sg2 = crypt_get_sg_data(cc, dmreq->sg_in); 980 data2 = kmap_local_page(sg_page(sg2)); 981 memcpy(data_offset, data2 + sg2->offset, cc->sector_size); 982 kunmap_local(data2); 983 } 984 985 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { 986 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32)); 987 diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 988 diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 989 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32)); 990 } 991 992 for (i = 0; i < (cc->sector_size / 32); i++) 993 crypto_xor(data_offset + i * 32, ks, 32); 994 995 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 996 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32)); 997 diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 998 diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 999 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32)); 1000 } 1001 1002 kunmap_local(data); 1003 out: 1004 kfree_sensitive(ks); 1005 kfree_sensitive(es); 1006 skcipher_request_free(req); 1007 return r; 1008 } 1009 1010 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv, 1011 struct dm_crypt_request *dmreq) 1012 { 1013 int r; 1014 1015 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 1016 r = crypt_iv_elephant(cc, dmreq); 1017 if (r) 1018 return r; 1019 } 1020 1021 return crypt_iv_eboiv_gen(cc, iv, dmreq); 1022 } 1023 1024 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv, 1025 struct dm_crypt_request *dmreq) 1026 { 1027 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) 1028 return crypt_iv_elephant(cc, dmreq); 1029 1030 return 0; 1031 } 1032 1033 static int crypt_iv_elephant_init(struct crypt_config *cc) 1034 { 1035 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 1036 int key_offset = cc->key_size - cc->key_extra_size; 1037 1038 return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size); 1039 } 1040 1041 static int crypt_iv_elephant_wipe(struct crypt_config *cc) 1042 { 1043 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 1044 u8 key[ELEPHANT_MAX_KEY_SIZE]; 1045 1046 memset(key, 0, cc->key_extra_size); 1047 return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size); 1048 } 1049 1050 static const struct crypt_iv_operations crypt_iv_plain_ops = { 1051 .generator = crypt_iv_plain_gen 1052 }; 1053 1054 static const struct crypt_iv_operations crypt_iv_plain64_ops = { 1055 .generator = crypt_iv_plain64_gen 1056 }; 1057 1058 static const struct crypt_iv_operations crypt_iv_plain64be_ops = { 1059 .generator = crypt_iv_plain64be_gen 1060 }; 1061 1062 static const struct crypt_iv_operations crypt_iv_essiv_ops = { 1063 .generator = crypt_iv_essiv_gen 1064 }; 1065 1066 static const struct crypt_iv_operations crypt_iv_benbi_ops = { 1067 .ctr = crypt_iv_benbi_ctr, 1068 .dtr = crypt_iv_benbi_dtr, 1069 .generator = crypt_iv_benbi_gen 1070 }; 1071 1072 static const struct crypt_iv_operations crypt_iv_null_ops = { 1073 .generator = crypt_iv_null_gen 1074 }; 1075 1076 static const struct crypt_iv_operations crypt_iv_lmk_ops = { 1077 .ctr = crypt_iv_lmk_ctr, 1078 .dtr = crypt_iv_lmk_dtr, 1079 .init = crypt_iv_lmk_init, 1080 .wipe = crypt_iv_lmk_wipe, 1081 .generator = crypt_iv_lmk_gen, 1082 .post = crypt_iv_lmk_post 1083 }; 1084 1085 static const struct crypt_iv_operations crypt_iv_tcw_ops = { 1086 .ctr = crypt_iv_tcw_ctr, 1087 .dtr = crypt_iv_tcw_dtr, 1088 .init = crypt_iv_tcw_init, 1089 .wipe = crypt_iv_tcw_wipe, 1090 .generator = crypt_iv_tcw_gen, 1091 .post = crypt_iv_tcw_post 1092 }; 1093 1094 static const struct crypt_iv_operations crypt_iv_random_ops = { 1095 .generator = crypt_iv_random_gen 1096 }; 1097 1098 static const struct crypt_iv_operations crypt_iv_eboiv_ops = { 1099 .ctr = crypt_iv_eboiv_ctr, 1100 .generator = crypt_iv_eboiv_gen 1101 }; 1102 1103 static const struct crypt_iv_operations crypt_iv_elephant_ops = { 1104 .ctr = crypt_iv_elephant_ctr, 1105 .dtr = crypt_iv_elephant_dtr, 1106 .init = crypt_iv_elephant_init, 1107 .wipe = crypt_iv_elephant_wipe, 1108 .generator = crypt_iv_elephant_gen, 1109 .post = crypt_iv_elephant_post 1110 }; 1111 1112 /* 1113 * Integrity extensions 1114 */ 1115 static bool crypt_integrity_aead(struct crypt_config *cc) 1116 { 1117 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags); 1118 } 1119 1120 static bool crypt_integrity_hmac(struct crypt_config *cc) 1121 { 1122 return crypt_integrity_aead(cc) && cc->key_mac_size; 1123 } 1124 1125 /* Get sg containing data */ 1126 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc, 1127 struct scatterlist *sg) 1128 { 1129 if (unlikely(crypt_integrity_aead(cc))) 1130 return &sg[2]; 1131 1132 return sg; 1133 } 1134 1135 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio) 1136 { 1137 struct bio_integrity_payload *bip; 1138 unsigned int tag_len; 1139 int ret; 1140 1141 if (!bio_sectors(bio) || !io->cc->tuple_size) 1142 return 0; 1143 1144 bip = bio_integrity_alloc(bio, GFP_NOIO, 1); 1145 if (IS_ERR(bip)) 1146 return PTR_ERR(bip); 1147 1148 tag_len = io->cc->tuple_size * (bio_sectors(bio) >> io->cc->sector_shift); 1149 1150 bip->bip_iter.bi_sector = bio->bi_iter.bi_sector; 1151 1152 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata), 1153 tag_len, offset_in_page(io->integrity_metadata)); 1154 if (unlikely(ret != tag_len)) 1155 return -ENOMEM; 1156 1157 return 0; 1158 } 1159 1160 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti) 1161 { 1162 #ifdef CONFIG_BLK_DEV_INTEGRITY 1163 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk); 1164 struct mapped_device *md = dm_table_get_md(ti->table); 1165 1166 /* We require an underlying device with non-PI metadata */ 1167 if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) { 1168 ti->error = "Integrity profile not supported."; 1169 return -EINVAL; 1170 } 1171 1172 if (bi->metadata_size < cc->used_tag_size) { 1173 ti->error = "Integrity profile tag size mismatch."; 1174 return -EINVAL; 1175 } 1176 cc->tuple_size = bi->metadata_size; 1177 if (1 << bi->interval_exp != cc->sector_size) { 1178 ti->error = "Integrity profile sector size mismatch."; 1179 return -EINVAL; 1180 } 1181 1182 if (crypt_integrity_aead(cc)) { 1183 cc->integrity_tag_size = cc->used_tag_size - cc->integrity_iv_size; 1184 DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md), 1185 cc->integrity_tag_size, cc->integrity_iv_size); 1186 1187 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) { 1188 ti->error = "Integrity AEAD auth tag size is not supported."; 1189 return -EINVAL; 1190 } 1191 } else if (cc->integrity_iv_size) 1192 DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md), 1193 cc->integrity_iv_size); 1194 1195 if ((cc->integrity_tag_size + cc->integrity_iv_size) > cc->tuple_size) { 1196 ti->error = "Not enough space for integrity tag in the profile."; 1197 return -EINVAL; 1198 } 1199 1200 return 0; 1201 #else 1202 ti->error = "Integrity profile not supported."; 1203 return -EINVAL; 1204 #endif 1205 } 1206 1207 static void crypt_convert_init(struct crypt_config *cc, 1208 struct convert_context *ctx, 1209 struct bio *bio_out, struct bio *bio_in, 1210 sector_t sector) 1211 { 1212 ctx->bio_in = bio_in; 1213 ctx->bio_out = bio_out; 1214 if (bio_in) 1215 ctx->iter_in = bio_in->bi_iter; 1216 if (bio_out) 1217 ctx->iter_out = bio_out->bi_iter; 1218 ctx->cc_sector = sector + cc->iv_offset; 1219 ctx->tag_offset = 0; 1220 init_completion(&ctx->restart); 1221 } 1222 1223 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc, 1224 void *req) 1225 { 1226 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start); 1227 } 1228 1229 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq) 1230 { 1231 return (void *)((char *)dmreq - cc->dmreq_start); 1232 } 1233 1234 static u8 *iv_of_dmreq(struct crypt_config *cc, 1235 struct dm_crypt_request *dmreq) 1236 { 1237 if (crypt_integrity_aead(cc)) 1238 return (u8 *)ALIGN((unsigned long)(dmreq + 1), 1239 crypto_aead_alignmask(any_tfm_aead(cc)) + 1); 1240 else 1241 return (u8 *)ALIGN((unsigned long)(dmreq + 1), 1242 crypto_skcipher_alignmask(any_tfm(cc)) + 1); 1243 } 1244 1245 static u8 *org_iv_of_dmreq(struct crypt_config *cc, 1246 struct dm_crypt_request *dmreq) 1247 { 1248 return iv_of_dmreq(cc, dmreq) + cc->iv_size; 1249 } 1250 1251 static __le64 *org_sector_of_dmreq(struct crypt_config *cc, 1252 struct dm_crypt_request *dmreq) 1253 { 1254 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size; 1255 1256 return (__le64 *) ptr; 1257 } 1258 1259 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc, 1260 struct dm_crypt_request *dmreq) 1261 { 1262 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + 1263 cc->iv_size + sizeof(uint64_t); 1264 1265 return (unsigned int *)ptr; 1266 } 1267 1268 static void *tag_from_dmreq(struct crypt_config *cc, 1269 struct dm_crypt_request *dmreq) 1270 { 1271 struct convert_context *ctx = dmreq->ctx; 1272 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); 1273 1274 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) * 1275 cc->tuple_size]; 1276 } 1277 1278 static void *iv_tag_from_dmreq(struct crypt_config *cc, 1279 struct dm_crypt_request *dmreq) 1280 { 1281 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size; 1282 } 1283 1284 static int crypt_convert_block_aead(struct crypt_config *cc, 1285 struct convert_context *ctx, 1286 struct aead_request *req, 1287 unsigned int tag_offset) 1288 { 1289 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); 1290 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); 1291 struct dm_crypt_request *dmreq; 1292 u8 *iv, *org_iv, *tag_iv, *tag; 1293 __le64 *sector; 1294 int r = 0; 1295 1296 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size); 1297 1298 /* Reject unexpected unaligned bio. */ 1299 if (unlikely(bv_in.bv_len & (cc->sector_size - 1))) 1300 return -EIO; 1301 1302 dmreq = dmreq_of_req(cc, req); 1303 dmreq->iv_sector = ctx->cc_sector; 1304 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) 1305 dmreq->iv_sector >>= cc->sector_shift; 1306 dmreq->ctx = ctx; 1307 1308 *org_tag_of_dmreq(cc, dmreq) = tag_offset; 1309 1310 sector = org_sector_of_dmreq(cc, dmreq); 1311 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset); 1312 1313 iv = iv_of_dmreq(cc, dmreq); 1314 org_iv = org_iv_of_dmreq(cc, dmreq); 1315 tag = tag_from_dmreq(cc, dmreq); 1316 tag_iv = iv_tag_from_dmreq(cc, dmreq); 1317 1318 /* AEAD request: 1319 * |----- AAD -------|------ DATA -------|-- AUTH TAG --| 1320 * | (authenticated) | (auth+encryption) | | 1321 * | sector_LE | IV | sector in/out | tag in/out | 1322 */ 1323 sg_init_table(dmreq->sg_in, 4); 1324 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t)); 1325 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size); 1326 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset); 1327 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size); 1328 1329 sg_init_table(dmreq->sg_out, 4); 1330 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t)); 1331 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size); 1332 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset); 1333 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size); 1334 1335 if (cc->iv_gen_ops) { 1336 /* For READs use IV stored in integrity metadata */ 1337 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) { 1338 memcpy(org_iv, tag_iv, cc->iv_size); 1339 } else { 1340 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq); 1341 if (r < 0) 1342 return r; 1343 /* Store generated IV in integrity metadata */ 1344 if (cc->integrity_iv_size) 1345 memcpy(tag_iv, org_iv, cc->iv_size); 1346 } 1347 /* Working copy of IV, to be modified in crypto API */ 1348 memcpy(iv, org_iv, cc->iv_size); 1349 } 1350 1351 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size); 1352 if (bio_data_dir(ctx->bio_in) == WRITE) { 1353 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out, 1354 cc->sector_size, iv); 1355 r = crypto_aead_encrypt(req); 1356 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->tuple_size) 1357 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0, 1358 cc->tuple_size - (cc->integrity_tag_size + cc->integrity_iv_size)); 1359 } else { 1360 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out, 1361 cc->sector_size + cc->integrity_tag_size, iv); 1362 r = crypto_aead_decrypt(req); 1363 } 1364 1365 if (r == -EBADMSG) { 1366 sector_t s = le64_to_cpu(*sector); 1367 1368 ctx->aead_failed = true; 1369 if (ctx->aead_recheck) { 1370 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu", 1371 ctx->bio_in->bi_bdev, s); 1372 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead", 1373 ctx->bio_in, s, 0); 1374 } 1375 } 1376 1377 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) 1378 r = cc->iv_gen_ops->post(cc, org_iv, dmreq); 1379 1380 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size); 1381 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size); 1382 1383 return r; 1384 } 1385 1386 static int crypt_convert_block_skcipher(struct crypt_config *cc, 1387 struct convert_context *ctx, 1388 struct skcipher_request *req, 1389 unsigned int tag_offset) 1390 { 1391 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); 1392 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); 1393 struct scatterlist *sg_in, *sg_out; 1394 struct dm_crypt_request *dmreq; 1395 u8 *iv, *org_iv, *tag_iv; 1396 __le64 *sector; 1397 int r = 0; 1398 1399 /* Reject unexpected unaligned bio. */ 1400 if (unlikely(bv_in.bv_len & (cc->sector_size - 1))) 1401 return -EIO; 1402 1403 dmreq = dmreq_of_req(cc, req); 1404 dmreq->iv_sector = ctx->cc_sector; 1405 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) 1406 dmreq->iv_sector >>= cc->sector_shift; 1407 dmreq->ctx = ctx; 1408 1409 *org_tag_of_dmreq(cc, dmreq) = tag_offset; 1410 1411 iv = iv_of_dmreq(cc, dmreq); 1412 org_iv = org_iv_of_dmreq(cc, dmreq); 1413 tag_iv = iv_tag_from_dmreq(cc, dmreq); 1414 1415 sector = org_sector_of_dmreq(cc, dmreq); 1416 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset); 1417 1418 /* For skcipher we use only the first sg item */ 1419 sg_in = &dmreq->sg_in[0]; 1420 sg_out = &dmreq->sg_out[0]; 1421 1422 sg_init_table(sg_in, 1); 1423 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset); 1424 1425 sg_init_table(sg_out, 1); 1426 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset); 1427 1428 if (cc->iv_gen_ops) { 1429 /* For READs use IV stored in integrity metadata */ 1430 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) { 1431 memcpy(org_iv, tag_iv, cc->integrity_iv_size); 1432 } else { 1433 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq); 1434 if (r < 0) 1435 return r; 1436 /* Data can be already preprocessed in generator */ 1437 if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags)) 1438 sg_in = sg_out; 1439 /* Store generated IV in integrity metadata */ 1440 if (cc->integrity_iv_size) 1441 memcpy(tag_iv, org_iv, cc->integrity_iv_size); 1442 } 1443 /* Working copy of IV, to be modified in crypto API */ 1444 memcpy(iv, org_iv, cc->iv_size); 1445 } 1446 1447 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv); 1448 1449 if (bio_data_dir(ctx->bio_in) == WRITE) 1450 r = crypto_skcipher_encrypt(req); 1451 else 1452 r = crypto_skcipher_decrypt(req); 1453 1454 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) 1455 r = cc->iv_gen_ops->post(cc, org_iv, dmreq); 1456 1457 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size); 1458 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size); 1459 1460 return r; 1461 } 1462 1463 static void kcryptd_async_done(void *async_req, int error); 1464 1465 static int crypt_alloc_req_skcipher(struct crypt_config *cc, 1466 struct convert_context *ctx) 1467 { 1468 unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1); 1469 1470 if (!ctx->r.req) { 1471 ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO); 1472 if (!ctx->r.req) 1473 return -ENOMEM; 1474 } 1475 1476 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]); 1477 1478 /* 1479 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs 1480 * requests if driver request queue is full. 1481 */ 1482 skcipher_request_set_callback(ctx->r.req, 1483 CRYPTO_TFM_REQ_MAY_BACKLOG, 1484 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req)); 1485 1486 return 0; 1487 } 1488 1489 static int crypt_alloc_req_aead(struct crypt_config *cc, 1490 struct convert_context *ctx) 1491 { 1492 if (!ctx->r.req_aead) { 1493 ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO); 1494 if (!ctx->r.req_aead) 1495 return -ENOMEM; 1496 } 1497 1498 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]); 1499 1500 /* 1501 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs 1502 * requests if driver request queue is full. 1503 */ 1504 aead_request_set_callback(ctx->r.req_aead, 1505 CRYPTO_TFM_REQ_MAY_BACKLOG, 1506 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead)); 1507 1508 return 0; 1509 } 1510 1511 static int crypt_alloc_req(struct crypt_config *cc, 1512 struct convert_context *ctx) 1513 { 1514 if (crypt_integrity_aead(cc)) 1515 return crypt_alloc_req_aead(cc, ctx); 1516 else 1517 return crypt_alloc_req_skcipher(cc, ctx); 1518 } 1519 1520 static void crypt_free_req_skcipher(struct crypt_config *cc, 1521 struct skcipher_request *req, struct bio *base_bio) 1522 { 1523 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); 1524 1525 if ((struct skcipher_request *)(io + 1) != req) 1526 mempool_free(req, &cc->req_pool); 1527 } 1528 1529 static void crypt_free_req_aead(struct crypt_config *cc, 1530 struct aead_request *req, struct bio *base_bio) 1531 { 1532 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); 1533 1534 if ((struct aead_request *)(io + 1) != req) 1535 mempool_free(req, &cc->req_pool); 1536 } 1537 1538 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio) 1539 { 1540 if (crypt_integrity_aead(cc)) 1541 crypt_free_req_aead(cc, req, base_bio); 1542 else 1543 crypt_free_req_skcipher(cc, req, base_bio); 1544 } 1545 1546 /* 1547 * Encrypt / decrypt data from one bio to another one (can be the same one) 1548 */ 1549 static blk_status_t crypt_convert(struct crypt_config *cc, 1550 struct convert_context *ctx, bool atomic, bool reset_pending) 1551 { 1552 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT; 1553 int r; 1554 1555 /* 1556 * if reset_pending is set we are dealing with the bio for the first time, 1557 * else we're continuing to work on the previous bio, so don't mess with 1558 * the cc_pending counter 1559 */ 1560 if (reset_pending) 1561 atomic_set(&ctx->cc_pending, 1); 1562 1563 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) { 1564 1565 r = crypt_alloc_req(cc, ctx); 1566 if (r) { 1567 complete(&ctx->restart); 1568 return BLK_STS_DEV_RESOURCE; 1569 } 1570 1571 atomic_inc(&ctx->cc_pending); 1572 1573 if (crypt_integrity_aead(cc)) 1574 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, ctx->tag_offset); 1575 else 1576 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, ctx->tag_offset); 1577 1578 switch (r) { 1579 /* 1580 * The request was queued by a crypto driver 1581 * but the driver request queue is full, let's wait. 1582 */ 1583 case -EBUSY: 1584 if (in_interrupt()) { 1585 if (try_wait_for_completion(&ctx->restart)) { 1586 /* 1587 * we don't have to block to wait for completion, 1588 * so proceed 1589 */ 1590 } else { 1591 /* 1592 * we can't wait for completion without blocking 1593 * exit and continue processing in a workqueue 1594 */ 1595 ctx->r.req = NULL; 1596 ctx->tag_offset++; 1597 ctx->cc_sector += sector_step; 1598 return BLK_STS_DEV_RESOURCE; 1599 } 1600 } else { 1601 wait_for_completion(&ctx->restart); 1602 } 1603 reinit_completion(&ctx->restart); 1604 fallthrough; 1605 /* 1606 * The request is queued and processed asynchronously, 1607 * completion function kcryptd_async_done() will be called. 1608 */ 1609 case -EINPROGRESS: 1610 ctx->r.req = NULL; 1611 ctx->tag_offset++; 1612 ctx->cc_sector += sector_step; 1613 continue; 1614 /* 1615 * The request was already processed (synchronously). 1616 */ 1617 case 0: 1618 atomic_dec(&ctx->cc_pending); 1619 ctx->cc_sector += sector_step; 1620 ctx->tag_offset++; 1621 if (!atomic) 1622 cond_resched(); 1623 continue; 1624 /* 1625 * There was a data integrity error. 1626 */ 1627 case -EBADMSG: 1628 atomic_dec(&ctx->cc_pending); 1629 return BLK_STS_PROTECTION; 1630 /* 1631 * There was an error while processing the request. 1632 */ 1633 default: 1634 atomic_dec(&ctx->cc_pending); 1635 return BLK_STS_IOERR; 1636 } 1637 } 1638 1639 return 0; 1640 } 1641 1642 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone); 1643 1644 /* 1645 * Generate a new unfragmented bio with the given size 1646 * This should never violate the device limitations (but if it did then block 1647 * core should split the bio as needed). 1648 * 1649 * This function may be called concurrently. If we allocate from the mempool 1650 * concurrently, there is a possibility of deadlock. For example, if we have 1651 * mempool of 256 pages, two processes, each wanting 256, pages allocate from 1652 * the mempool concurrently, it may deadlock in a situation where both processes 1653 * have allocated 128 pages and the mempool is exhausted. 1654 * 1655 * In order to avoid this scenario we allocate the pages under a mutex. 1656 * 1657 * In order to not degrade performance with excessive locking, we try 1658 * non-blocking allocations without a mutex first but on failure we fallback 1659 * to blocking allocations with a mutex. 1660 * 1661 * In order to reduce allocation overhead, we try to allocate compound pages in 1662 * the first pass. If they are not available, we fall back to the mempool. 1663 */ 1664 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size) 1665 { 1666 struct crypt_config *cc = io->cc; 1667 struct bio *clone; 1668 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1669 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM; 1670 unsigned int remaining_size; 1671 unsigned int order = MAX_PAGE_ORDER; 1672 1673 retry: 1674 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) 1675 mutex_lock(&cc->bio_alloc_lock); 1676 1677 clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf, 1678 GFP_NOIO, &cc->bs); 1679 clone->bi_private = io; 1680 clone->bi_end_io = crypt_endio; 1681 clone->bi_ioprio = io->base_bio->bi_ioprio; 1682 clone->bi_iter.bi_sector = cc->start + io->sector; 1683 1684 remaining_size = size; 1685 1686 while (remaining_size) { 1687 struct page *pages; 1688 unsigned size_to_add; 1689 unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT); 1690 order = min(order, remaining_order); 1691 1692 while (order > 0) { 1693 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) + 1694 (1 << order) > dm_crypt_pages_per_client)) 1695 goto decrease_order; 1696 pages = alloc_pages(gfp_mask 1697 | __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP, 1698 order); 1699 if (likely(pages != NULL)) { 1700 percpu_counter_add(&cc->n_allocated_pages, 1 << order); 1701 goto have_pages; 1702 } 1703 decrease_order: 1704 order--; 1705 } 1706 1707 pages = mempool_alloc(&cc->page_pool, gfp_mask); 1708 if (!pages) { 1709 crypt_free_buffer_pages(cc, clone); 1710 bio_put(clone); 1711 gfp_mask |= __GFP_DIRECT_RECLAIM; 1712 order = 0; 1713 goto retry; 1714 } 1715 1716 have_pages: 1717 size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size); 1718 __bio_add_page(clone, pages, size_to_add, 0); 1719 remaining_size -= size_to_add; 1720 } 1721 1722 /* Allocate space for integrity tags */ 1723 if (dm_crypt_integrity_io_alloc(io, clone)) { 1724 crypt_free_buffer_pages(cc, clone); 1725 bio_put(clone); 1726 clone = NULL; 1727 } 1728 1729 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) 1730 mutex_unlock(&cc->bio_alloc_lock); 1731 1732 return clone; 1733 } 1734 1735 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone) 1736 { 1737 struct folio_iter fi; 1738 1739 if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */ 1740 bio_for_each_folio_all(fi, clone) { 1741 if (folio_test_large(fi.folio)) { 1742 percpu_counter_sub(&cc->n_allocated_pages, 1743 folio_nr_pages(fi.folio)); 1744 folio_put(fi.folio); 1745 } else { 1746 mempool_free(&fi.folio->page, &cc->page_pool); 1747 } 1748 } 1749 } 1750 } 1751 1752 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc, 1753 struct bio *bio, sector_t sector) 1754 { 1755 io->cc = cc; 1756 io->base_bio = bio; 1757 io->sector = sector; 1758 io->error = 0; 1759 io->ctx.aead_recheck = false; 1760 io->ctx.aead_failed = false; 1761 io->ctx.r.req = NULL; 1762 io->integrity_metadata = NULL; 1763 io->integrity_metadata_from_pool = false; 1764 atomic_set(&io->io_pending, 0); 1765 } 1766 1767 static void crypt_inc_pending(struct dm_crypt_io *io) 1768 { 1769 atomic_inc(&io->io_pending); 1770 } 1771 1772 static void kcryptd_queue_read(struct dm_crypt_io *io); 1773 1774 /* 1775 * One of the bios was finished. Check for completion of 1776 * the whole request and correctly clean up the buffer. 1777 */ 1778 static void crypt_dec_pending(struct dm_crypt_io *io) 1779 { 1780 struct crypt_config *cc = io->cc; 1781 struct bio *base_bio = io->base_bio; 1782 blk_status_t error = io->error; 1783 1784 if (!atomic_dec_and_test(&io->io_pending)) 1785 return; 1786 1787 if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) && 1788 cc->used_tag_size && bio_data_dir(base_bio) == READ) { 1789 io->ctx.aead_recheck = true; 1790 io->ctx.aead_failed = false; 1791 io->error = 0; 1792 kcryptd_queue_read(io); 1793 return; 1794 } 1795 1796 if (io->ctx.r.req) 1797 crypt_free_req(cc, io->ctx.r.req, base_bio); 1798 1799 if (unlikely(io->integrity_metadata_from_pool)) 1800 mempool_free(io->integrity_metadata, &io->cc->tag_pool); 1801 else 1802 kfree(io->integrity_metadata); 1803 1804 base_bio->bi_status = error; 1805 1806 bio_endio(base_bio); 1807 } 1808 1809 /* 1810 * kcryptd/kcryptd_io: 1811 * 1812 * Needed because it would be very unwise to do decryption in an 1813 * interrupt context. 1814 * 1815 * kcryptd performs the actual encryption or decryption. 1816 * 1817 * kcryptd_io performs the IO submission. 1818 * 1819 * They must be separated as otherwise the final stages could be 1820 * starved by new requests which can block in the first stages due 1821 * to memory allocation. 1822 * 1823 * The work is done per CPU global for all dm-crypt instances. 1824 * They should not depend on each other and do not block. 1825 */ 1826 static void crypt_endio(struct bio *clone) 1827 { 1828 struct dm_crypt_io *io = clone->bi_private; 1829 struct crypt_config *cc = io->cc; 1830 unsigned int rw = bio_data_dir(clone); 1831 blk_status_t error = clone->bi_status; 1832 1833 if (io->ctx.aead_recheck && !error) { 1834 kcryptd_queue_crypt(io); 1835 return; 1836 } 1837 1838 /* 1839 * free the processed pages 1840 */ 1841 if (rw == WRITE || io->ctx.aead_recheck) 1842 crypt_free_buffer_pages(cc, clone); 1843 1844 bio_put(clone); 1845 1846 if (rw == READ && !error) { 1847 kcryptd_queue_crypt(io); 1848 return; 1849 } 1850 1851 if (unlikely(error)) 1852 io->error = error; 1853 1854 crypt_dec_pending(io); 1855 } 1856 1857 #define CRYPT_MAP_READ_GFP GFP_NOWAIT 1858 1859 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp) 1860 { 1861 struct crypt_config *cc = io->cc; 1862 struct bio *clone; 1863 1864 if (io->ctx.aead_recheck) { 1865 if (!(gfp & __GFP_DIRECT_RECLAIM)) 1866 return 1; 1867 crypt_inc_pending(io); 1868 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size); 1869 if (unlikely(!clone)) { 1870 crypt_dec_pending(io); 1871 return 1; 1872 } 1873 crypt_convert_init(cc, &io->ctx, clone, clone, io->sector); 1874 io->saved_bi_iter = clone->bi_iter; 1875 dm_submit_bio_remap(io->base_bio, clone); 1876 return 0; 1877 } 1878 1879 /* 1880 * We need the original biovec array in order to decrypt the whole bio 1881 * data *afterwards* -- thanks to immutable biovecs we don't need to 1882 * worry about the block layer modifying the biovec array; so leverage 1883 * bio_alloc_clone(). 1884 */ 1885 clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs); 1886 if (!clone) 1887 return 1; 1888 1889 clone->bi_iter.bi_sector = cc->start + io->sector; 1890 clone->bi_private = io; 1891 clone->bi_end_io = crypt_endio; 1892 1893 crypt_inc_pending(io); 1894 1895 if (dm_crypt_integrity_io_alloc(io, clone)) { 1896 crypt_dec_pending(io); 1897 bio_put(clone); 1898 return 1; 1899 } 1900 1901 dm_submit_bio_remap(io->base_bio, clone); 1902 return 0; 1903 } 1904 1905 static void kcryptd_io_read_work(struct work_struct *work) 1906 { 1907 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 1908 1909 crypt_inc_pending(io); 1910 if (kcryptd_io_read(io, GFP_NOIO)) 1911 io->error = BLK_STS_RESOURCE; 1912 crypt_dec_pending(io); 1913 } 1914 1915 static void kcryptd_queue_read(struct dm_crypt_io *io) 1916 { 1917 struct crypt_config *cc = io->cc; 1918 1919 INIT_WORK(&io->work, kcryptd_io_read_work); 1920 queue_work(cc->io_queue, &io->work); 1921 } 1922 1923 static void kcryptd_io_write(struct dm_crypt_io *io) 1924 { 1925 struct bio *clone = io->ctx.bio_out; 1926 1927 dm_submit_bio_remap(io->base_bio, clone); 1928 } 1929 1930 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node) 1931 1932 static int dmcrypt_write(void *data) 1933 { 1934 struct crypt_config *cc = data; 1935 struct dm_crypt_io *io; 1936 1937 while (1) { 1938 struct rb_root write_tree; 1939 struct blk_plug plug; 1940 1941 spin_lock_irq(&cc->write_thread_lock); 1942 continue_locked: 1943 1944 if (!RB_EMPTY_ROOT(&cc->write_tree)) 1945 goto pop_from_list; 1946 1947 set_current_state(TASK_INTERRUPTIBLE); 1948 1949 spin_unlock_irq(&cc->write_thread_lock); 1950 1951 if (unlikely(kthread_should_stop())) { 1952 set_current_state(TASK_RUNNING); 1953 break; 1954 } 1955 1956 schedule(); 1957 1958 spin_lock_irq(&cc->write_thread_lock); 1959 goto continue_locked; 1960 1961 pop_from_list: 1962 write_tree = cc->write_tree; 1963 cc->write_tree = RB_ROOT; 1964 spin_unlock_irq(&cc->write_thread_lock); 1965 1966 BUG_ON(rb_parent(write_tree.rb_node)); 1967 1968 /* 1969 * Note: we cannot walk the tree here with rb_next because 1970 * the structures may be freed when kcryptd_io_write is called. 1971 */ 1972 blk_start_plug(&plug); 1973 do { 1974 io = crypt_io_from_node(rb_first(&write_tree)); 1975 rb_erase(&io->rb_node, &write_tree); 1976 kcryptd_io_write(io); 1977 cond_resched(); 1978 } while (!RB_EMPTY_ROOT(&write_tree)); 1979 blk_finish_plug(&plug); 1980 } 1981 return 0; 1982 } 1983 1984 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async) 1985 { 1986 struct bio *clone = io->ctx.bio_out; 1987 struct crypt_config *cc = io->cc; 1988 unsigned long flags; 1989 sector_t sector; 1990 struct rb_node **rbp, *parent; 1991 1992 if (unlikely(io->error)) { 1993 crypt_free_buffer_pages(cc, clone); 1994 bio_put(clone); 1995 crypt_dec_pending(io); 1996 return; 1997 } 1998 1999 /* crypt_convert should have filled the clone bio */ 2000 BUG_ON(io->ctx.iter_out.bi_size); 2001 2002 if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) || 2003 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) { 2004 dm_submit_bio_remap(io->base_bio, clone); 2005 return; 2006 } 2007 2008 spin_lock_irqsave(&cc->write_thread_lock, flags); 2009 if (RB_EMPTY_ROOT(&cc->write_tree)) 2010 wake_up_process(cc->write_thread); 2011 rbp = &cc->write_tree.rb_node; 2012 parent = NULL; 2013 sector = io->sector; 2014 while (*rbp) { 2015 parent = *rbp; 2016 if (sector < crypt_io_from_node(parent)->sector) 2017 rbp = &(*rbp)->rb_left; 2018 else 2019 rbp = &(*rbp)->rb_right; 2020 } 2021 rb_link_node(&io->rb_node, parent, rbp); 2022 rb_insert_color(&io->rb_node, &cc->write_tree); 2023 spin_unlock_irqrestore(&cc->write_thread_lock, flags); 2024 } 2025 2026 static bool kcryptd_crypt_write_inline(struct crypt_config *cc, 2027 struct convert_context *ctx) 2028 2029 { 2030 if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags)) 2031 return false; 2032 2033 /* 2034 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering 2035 * constraints so they do not need to be issued inline by 2036 * kcryptd_crypt_write_convert(). 2037 */ 2038 switch (bio_op(ctx->bio_in)) { 2039 case REQ_OP_WRITE: 2040 case REQ_OP_WRITE_ZEROES: 2041 return true; 2042 default: 2043 return false; 2044 } 2045 } 2046 2047 static void kcryptd_crypt_write_continue(struct work_struct *work) 2048 { 2049 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 2050 struct crypt_config *cc = io->cc; 2051 struct convert_context *ctx = &io->ctx; 2052 int crypt_finished; 2053 blk_status_t r; 2054 2055 wait_for_completion(&ctx->restart); 2056 reinit_completion(&ctx->restart); 2057 2058 r = crypt_convert(cc, &io->ctx, false, false); 2059 if (r) 2060 io->error = r; 2061 crypt_finished = atomic_dec_and_test(&ctx->cc_pending); 2062 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) { 2063 /* Wait for completion signaled by kcryptd_async_done() */ 2064 wait_for_completion(&ctx->restart); 2065 crypt_finished = 1; 2066 } 2067 2068 /* Encryption was already finished, submit io now */ 2069 if (crypt_finished) 2070 kcryptd_crypt_write_io_submit(io, 0); 2071 2072 crypt_dec_pending(io); 2073 } 2074 2075 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io) 2076 { 2077 struct crypt_config *cc = io->cc; 2078 struct convert_context *ctx = &io->ctx; 2079 struct bio *clone; 2080 int crypt_finished; 2081 blk_status_t r; 2082 2083 /* 2084 * Prevent io from disappearing until this function completes. 2085 */ 2086 crypt_inc_pending(io); 2087 crypt_convert_init(cc, ctx, NULL, io->base_bio, io->sector); 2088 2089 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size); 2090 if (unlikely(!clone)) { 2091 io->error = BLK_STS_IOERR; 2092 goto dec; 2093 } 2094 2095 io->ctx.bio_out = clone; 2096 io->ctx.iter_out = clone->bi_iter; 2097 2098 if (crypt_integrity_aead(cc)) { 2099 bio_copy_data(clone, io->base_bio); 2100 io->ctx.bio_in = clone; 2101 io->ctx.iter_in = clone->bi_iter; 2102 } 2103 2104 crypt_inc_pending(io); 2105 r = crypt_convert(cc, ctx, 2106 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true); 2107 /* 2108 * Crypto API backlogged the request, because its queue was full 2109 * and we're in softirq context, so continue from a workqueue 2110 * (TODO: is it actually possible to be in softirq in the write path?) 2111 */ 2112 if (r == BLK_STS_DEV_RESOURCE) { 2113 INIT_WORK(&io->work, kcryptd_crypt_write_continue); 2114 queue_work(cc->crypt_queue, &io->work); 2115 return; 2116 } 2117 if (r) 2118 io->error = r; 2119 crypt_finished = atomic_dec_and_test(&ctx->cc_pending); 2120 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) { 2121 /* Wait for completion signaled by kcryptd_async_done() */ 2122 wait_for_completion(&ctx->restart); 2123 crypt_finished = 1; 2124 } 2125 2126 /* Encryption was already finished, submit io now */ 2127 if (crypt_finished) 2128 kcryptd_crypt_write_io_submit(io, 0); 2129 2130 dec: 2131 crypt_dec_pending(io); 2132 } 2133 2134 static void kcryptd_crypt_read_done(struct dm_crypt_io *io) 2135 { 2136 if (io->ctx.aead_recheck) { 2137 if (!io->error) { 2138 io->ctx.bio_in->bi_iter = io->saved_bi_iter; 2139 bio_copy_data(io->base_bio, io->ctx.bio_in); 2140 } 2141 crypt_free_buffer_pages(io->cc, io->ctx.bio_in); 2142 bio_put(io->ctx.bio_in); 2143 } 2144 crypt_dec_pending(io); 2145 } 2146 2147 static void kcryptd_crypt_read_continue(struct work_struct *work) 2148 { 2149 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 2150 struct crypt_config *cc = io->cc; 2151 blk_status_t r; 2152 2153 wait_for_completion(&io->ctx.restart); 2154 reinit_completion(&io->ctx.restart); 2155 2156 r = crypt_convert(cc, &io->ctx, false, false); 2157 if (r) 2158 io->error = r; 2159 2160 if (atomic_dec_and_test(&io->ctx.cc_pending)) 2161 kcryptd_crypt_read_done(io); 2162 2163 crypt_dec_pending(io); 2164 } 2165 2166 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io) 2167 { 2168 struct crypt_config *cc = io->cc; 2169 blk_status_t r; 2170 2171 crypt_inc_pending(io); 2172 2173 if (io->ctx.aead_recheck) { 2174 r = crypt_convert(cc, &io->ctx, 2175 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true); 2176 } else { 2177 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio, 2178 io->sector); 2179 2180 r = crypt_convert(cc, &io->ctx, 2181 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true); 2182 } 2183 /* 2184 * Crypto API backlogged the request, because its queue was full 2185 * and we're in softirq context, so continue from a workqueue 2186 */ 2187 if (r == BLK_STS_DEV_RESOURCE) { 2188 INIT_WORK(&io->work, kcryptd_crypt_read_continue); 2189 queue_work(cc->crypt_queue, &io->work); 2190 return; 2191 } 2192 if (r) 2193 io->error = r; 2194 2195 if (atomic_dec_and_test(&io->ctx.cc_pending)) 2196 kcryptd_crypt_read_done(io); 2197 2198 crypt_dec_pending(io); 2199 } 2200 2201 static void kcryptd_async_done(void *data, int error) 2202 { 2203 struct dm_crypt_request *dmreq = data; 2204 struct convert_context *ctx = dmreq->ctx; 2205 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); 2206 struct crypt_config *cc = io->cc; 2207 2208 /* 2209 * A request from crypto driver backlog is going to be processed now, 2210 * finish the completion and continue in crypt_convert(). 2211 * (Callback will be called for the second time for this request.) 2212 */ 2213 if (error == -EINPROGRESS) { 2214 complete(&ctx->restart); 2215 return; 2216 } 2217 2218 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post) 2219 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq); 2220 2221 if (error == -EBADMSG) { 2222 sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)); 2223 2224 ctx->aead_failed = true; 2225 if (ctx->aead_recheck) { 2226 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu", 2227 ctx->bio_in->bi_bdev, s); 2228 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead", 2229 ctx->bio_in, s, 0); 2230 } 2231 io->error = BLK_STS_PROTECTION; 2232 } else if (error < 0) 2233 io->error = BLK_STS_IOERR; 2234 2235 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio); 2236 2237 if (!atomic_dec_and_test(&ctx->cc_pending)) 2238 return; 2239 2240 /* 2241 * The request is fully completed: for inline writes, let 2242 * kcryptd_crypt_write_convert() do the IO submission. 2243 */ 2244 if (bio_data_dir(io->base_bio) == READ) { 2245 kcryptd_crypt_read_done(io); 2246 return; 2247 } 2248 2249 if (kcryptd_crypt_write_inline(cc, ctx)) { 2250 complete(&ctx->restart); 2251 return; 2252 } 2253 2254 kcryptd_crypt_write_io_submit(io, 1); 2255 } 2256 2257 static void kcryptd_crypt(struct work_struct *work) 2258 { 2259 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 2260 2261 if (bio_data_dir(io->base_bio) == READ) 2262 kcryptd_crypt_read_convert(io); 2263 else 2264 kcryptd_crypt_write_convert(io); 2265 } 2266 2267 static void kcryptd_queue_crypt(struct dm_crypt_io *io) 2268 { 2269 struct crypt_config *cc = io->cc; 2270 2271 if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) || 2272 (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) { 2273 /* 2274 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context. 2275 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but 2276 * it is being executed with irqs disabled. 2277 */ 2278 if (in_hardirq() || irqs_disabled()) { 2279 INIT_WORK(&io->work, kcryptd_crypt); 2280 queue_work(system_bh_wq, &io->work); 2281 return; 2282 } else { 2283 kcryptd_crypt(&io->work); 2284 return; 2285 } 2286 } 2287 2288 INIT_WORK(&io->work, kcryptd_crypt); 2289 queue_work(cc->crypt_queue, &io->work); 2290 } 2291 2292 static void crypt_free_tfms_aead(struct crypt_config *cc) 2293 { 2294 if (!cc->cipher_tfm.tfms_aead) 2295 return; 2296 2297 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) { 2298 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]); 2299 cc->cipher_tfm.tfms_aead[0] = NULL; 2300 } 2301 2302 kfree(cc->cipher_tfm.tfms_aead); 2303 cc->cipher_tfm.tfms_aead = NULL; 2304 } 2305 2306 static void crypt_free_tfms_skcipher(struct crypt_config *cc) 2307 { 2308 unsigned int i; 2309 2310 if (!cc->cipher_tfm.tfms) 2311 return; 2312 2313 for (i = 0; i < cc->tfms_count; i++) 2314 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) { 2315 crypto_free_skcipher(cc->cipher_tfm.tfms[i]); 2316 cc->cipher_tfm.tfms[i] = NULL; 2317 } 2318 2319 kfree(cc->cipher_tfm.tfms); 2320 cc->cipher_tfm.tfms = NULL; 2321 } 2322 2323 static void crypt_free_tfms(struct crypt_config *cc) 2324 { 2325 if (crypt_integrity_aead(cc)) 2326 crypt_free_tfms_aead(cc); 2327 else 2328 crypt_free_tfms_skcipher(cc); 2329 } 2330 2331 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode) 2332 { 2333 unsigned int i; 2334 int err; 2335 2336 cc->cipher_tfm.tfms = kcalloc(cc->tfms_count, 2337 sizeof(struct crypto_skcipher *), 2338 GFP_KERNEL); 2339 if (!cc->cipher_tfm.tfms) 2340 return -ENOMEM; 2341 2342 for (i = 0; i < cc->tfms_count; i++) { 2343 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 2344 CRYPTO_ALG_ALLOCATES_MEMORY); 2345 if (IS_ERR(cc->cipher_tfm.tfms[i])) { 2346 err = PTR_ERR(cc->cipher_tfm.tfms[i]); 2347 crypt_free_tfms(cc); 2348 return err; 2349 } 2350 } 2351 2352 /* 2353 * dm-crypt performance can vary greatly depending on which crypto 2354 * algorithm implementation is used. Help people debug performance 2355 * problems by logging the ->cra_driver_name. 2356 */ 2357 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode, 2358 crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name); 2359 return 0; 2360 } 2361 2362 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode) 2363 { 2364 int err; 2365 2366 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL); 2367 if (!cc->cipher_tfm.tfms) 2368 return -ENOMEM; 2369 2370 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 2371 CRYPTO_ALG_ALLOCATES_MEMORY); 2372 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) { 2373 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]); 2374 crypt_free_tfms(cc); 2375 return err; 2376 } 2377 2378 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode, 2379 crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name); 2380 return 0; 2381 } 2382 2383 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode) 2384 { 2385 if (crypt_integrity_aead(cc)) 2386 return crypt_alloc_tfms_aead(cc, ciphermode); 2387 else 2388 return crypt_alloc_tfms_skcipher(cc, ciphermode); 2389 } 2390 2391 static unsigned int crypt_subkey_size(struct crypt_config *cc) 2392 { 2393 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count); 2394 } 2395 2396 static unsigned int crypt_authenckey_size(struct crypt_config *cc) 2397 { 2398 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param)); 2399 } 2400 2401 /* 2402 * If AEAD is composed like authenc(hmac(sha256),xts(aes)), 2403 * the key must be for some reason in special format. 2404 * This funcion converts cc->key to this special format. 2405 */ 2406 static void crypt_copy_authenckey(char *p, const void *key, 2407 unsigned int enckeylen, unsigned int authkeylen) 2408 { 2409 struct crypto_authenc_key_param *param; 2410 struct rtattr *rta; 2411 2412 rta = (struct rtattr *)p; 2413 param = RTA_DATA(rta); 2414 param->enckeylen = cpu_to_be32(enckeylen); 2415 rta->rta_len = RTA_LENGTH(sizeof(*param)); 2416 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM; 2417 p += RTA_SPACE(sizeof(*param)); 2418 memcpy(p, key + enckeylen, authkeylen); 2419 p += authkeylen; 2420 memcpy(p, key, enckeylen); 2421 } 2422 2423 static int crypt_setkey(struct crypt_config *cc) 2424 { 2425 unsigned int subkey_size; 2426 int err = 0, i, r; 2427 2428 /* Ignore extra keys (which are used for IV etc) */ 2429 subkey_size = crypt_subkey_size(cc); 2430 2431 if (crypt_integrity_hmac(cc)) { 2432 if (subkey_size < cc->key_mac_size) 2433 return -EINVAL; 2434 2435 crypt_copy_authenckey(cc->authenc_key, cc->key, 2436 subkey_size - cc->key_mac_size, 2437 cc->key_mac_size); 2438 } 2439 2440 for (i = 0; i < cc->tfms_count; i++) { 2441 if (crypt_integrity_hmac(cc)) 2442 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i], 2443 cc->authenc_key, crypt_authenckey_size(cc)); 2444 else if (crypt_integrity_aead(cc)) 2445 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i], 2446 cc->key + (i * subkey_size), 2447 subkey_size); 2448 else 2449 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i], 2450 cc->key + (i * subkey_size), 2451 subkey_size); 2452 if (r) 2453 err = r; 2454 } 2455 2456 if (crypt_integrity_hmac(cc)) 2457 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc)); 2458 2459 return err; 2460 } 2461 2462 #ifdef CONFIG_KEYS 2463 2464 static bool contains_whitespace(const char *str) 2465 { 2466 while (*str) 2467 if (isspace(*str++)) 2468 return true; 2469 return false; 2470 } 2471 2472 static int set_key_user(struct crypt_config *cc, struct key *key) 2473 { 2474 const struct user_key_payload *ukp; 2475 2476 ukp = user_key_payload_locked(key); 2477 if (!ukp) 2478 return -EKEYREVOKED; 2479 2480 if (cc->key_size != ukp->datalen) 2481 return -EINVAL; 2482 2483 memcpy(cc->key, ukp->data, cc->key_size); 2484 2485 return 0; 2486 } 2487 2488 static int set_key_encrypted(struct crypt_config *cc, struct key *key) 2489 { 2490 const struct encrypted_key_payload *ekp; 2491 2492 ekp = key->payload.data[0]; 2493 if (!ekp) 2494 return -EKEYREVOKED; 2495 2496 if (cc->key_size != ekp->decrypted_datalen) 2497 return -EINVAL; 2498 2499 memcpy(cc->key, ekp->decrypted_data, cc->key_size); 2500 2501 return 0; 2502 } 2503 2504 static int set_key_trusted(struct crypt_config *cc, struct key *key) 2505 { 2506 const struct trusted_key_payload *tkp; 2507 2508 tkp = key->payload.data[0]; 2509 if (!tkp) 2510 return -EKEYREVOKED; 2511 2512 if (cc->key_size != tkp->key_len) 2513 return -EINVAL; 2514 2515 memcpy(cc->key, tkp->key, cc->key_size); 2516 2517 return 0; 2518 } 2519 2520 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) 2521 { 2522 char *new_key_string, *key_desc; 2523 int ret; 2524 struct key_type *type; 2525 struct key *key; 2526 int (*set_key)(struct crypt_config *cc, struct key *key); 2527 2528 /* 2529 * Reject key_string with whitespace. dm core currently lacks code for 2530 * proper whitespace escaping in arguments on DM_TABLE_STATUS path. 2531 */ 2532 if (contains_whitespace(key_string)) { 2533 DMERR("whitespace chars not allowed in key string"); 2534 return -EINVAL; 2535 } 2536 2537 /* look for next ':' separating key_type from key_description */ 2538 key_desc = strchr(key_string, ':'); 2539 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1)) 2540 return -EINVAL; 2541 2542 if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) { 2543 type = &key_type_logon; 2544 set_key = set_key_user; 2545 } else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) { 2546 type = &key_type_user; 2547 set_key = set_key_user; 2548 } else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) && 2549 !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) { 2550 type = &key_type_encrypted; 2551 set_key = set_key_encrypted; 2552 } else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) && 2553 !strncmp(key_string, "trusted:", key_desc - key_string + 1)) { 2554 type = &key_type_trusted; 2555 set_key = set_key_trusted; 2556 } else { 2557 return -EINVAL; 2558 } 2559 2560 new_key_string = kstrdup(key_string, GFP_KERNEL); 2561 if (!new_key_string) 2562 return -ENOMEM; 2563 2564 key = request_key(type, key_desc + 1, NULL); 2565 if (IS_ERR(key)) { 2566 ret = PTR_ERR(key); 2567 goto free_new_key_string; 2568 } 2569 2570 down_read(&key->sem); 2571 ret = set_key(cc, key); 2572 up_read(&key->sem); 2573 key_put(key); 2574 if (ret < 0) 2575 goto free_new_key_string; 2576 2577 /* clear the flag since following operations may invalidate previously valid key */ 2578 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2579 2580 ret = crypt_setkey(cc); 2581 if (ret) 2582 goto free_new_key_string; 2583 2584 set_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2585 kfree_sensitive(cc->key_string); 2586 cc->key_string = new_key_string; 2587 return 0; 2588 2589 free_new_key_string: 2590 kfree_sensitive(new_key_string); 2591 return ret; 2592 } 2593 2594 static int get_key_size(char **key_string) 2595 { 2596 char *colon, dummy; 2597 int ret; 2598 2599 if (*key_string[0] != ':') 2600 return strlen(*key_string) >> 1; 2601 2602 /* look for next ':' in key string */ 2603 colon = strpbrk(*key_string + 1, ":"); 2604 if (!colon) 2605 return -EINVAL; 2606 2607 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':') 2608 return -EINVAL; 2609 2610 *key_string = colon; 2611 2612 /* remaining key string should be :<logon|user>:<key_desc> */ 2613 2614 return ret; 2615 } 2616 2617 #else 2618 2619 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) 2620 { 2621 return -EINVAL; 2622 } 2623 2624 static int get_key_size(char **key_string) 2625 { 2626 return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1); 2627 } 2628 2629 #endif /* CONFIG_KEYS */ 2630 2631 static int crypt_set_key(struct crypt_config *cc, char *key) 2632 { 2633 int r = -EINVAL; 2634 int key_string_len = strlen(key); 2635 2636 /* Hyphen (which gives a key_size of zero) means there is no key. */ 2637 if (!cc->key_size && strcmp(key, "-")) 2638 goto out; 2639 2640 /* ':' means the key is in kernel keyring, short-circuit normal key processing */ 2641 if (key[0] == ':') { 2642 r = crypt_set_keyring_key(cc, key + 1); 2643 goto out; 2644 } 2645 2646 /* clear the flag since following operations may invalidate previously valid key */ 2647 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2648 2649 /* wipe references to any kernel keyring key */ 2650 kfree_sensitive(cc->key_string); 2651 cc->key_string = NULL; 2652 2653 /* Decode key from its hex representation. */ 2654 if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0) 2655 goto out; 2656 2657 r = crypt_setkey(cc); 2658 if (!r) 2659 set_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2660 2661 out: 2662 /* Hex key string not needed after here, so wipe it. */ 2663 memset(key, '0', key_string_len); 2664 2665 return r; 2666 } 2667 2668 static int crypt_wipe_key(struct crypt_config *cc) 2669 { 2670 int r; 2671 2672 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2673 get_random_bytes(&cc->key, cc->key_size); 2674 2675 /* Wipe IV private keys */ 2676 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) { 2677 r = cc->iv_gen_ops->wipe(cc); 2678 if (r) 2679 return r; 2680 } 2681 2682 kfree_sensitive(cc->key_string); 2683 cc->key_string = NULL; 2684 r = crypt_setkey(cc); 2685 memset(&cc->key, 0, cc->key_size * sizeof(u8)); 2686 2687 return r; 2688 } 2689 2690 static void crypt_calculate_pages_per_client(void) 2691 { 2692 unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100; 2693 2694 if (!dm_crypt_clients_n) 2695 return; 2696 2697 pages /= dm_crypt_clients_n; 2698 if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT) 2699 pages = DM_CRYPT_MIN_PAGES_PER_CLIENT; 2700 dm_crypt_pages_per_client = pages; 2701 } 2702 2703 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data) 2704 { 2705 struct crypt_config *cc = pool_data; 2706 struct page *page; 2707 2708 /* 2709 * Note, percpu_counter_read_positive() may over (and under) estimate 2710 * the current usage by at most (batch - 1) * num_online_cpus() pages, 2711 * but avoids potential spinlock contention of an exact result. 2712 */ 2713 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) && 2714 likely(gfp_mask & __GFP_NORETRY)) 2715 return NULL; 2716 2717 page = alloc_page(gfp_mask); 2718 if (likely(page != NULL)) 2719 percpu_counter_add(&cc->n_allocated_pages, 1); 2720 2721 return page; 2722 } 2723 2724 static void crypt_page_free(void *page, void *pool_data) 2725 { 2726 struct crypt_config *cc = pool_data; 2727 2728 __free_page(page); 2729 percpu_counter_sub(&cc->n_allocated_pages, 1); 2730 } 2731 2732 static void crypt_dtr(struct dm_target *ti) 2733 { 2734 struct crypt_config *cc = ti->private; 2735 2736 ti->private = NULL; 2737 2738 if (!cc) 2739 return; 2740 2741 if (cc->write_thread) 2742 kthread_stop(cc->write_thread); 2743 2744 if (cc->io_queue) 2745 destroy_workqueue(cc->io_queue); 2746 if (cc->crypt_queue) 2747 destroy_workqueue(cc->crypt_queue); 2748 2749 if (cc->workqueue_id) 2750 ida_free(&workqueue_ida, cc->workqueue_id); 2751 2752 crypt_free_tfms(cc); 2753 2754 bioset_exit(&cc->bs); 2755 2756 mempool_exit(&cc->page_pool); 2757 mempool_exit(&cc->req_pool); 2758 mempool_exit(&cc->tag_pool); 2759 2760 WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0); 2761 percpu_counter_destroy(&cc->n_allocated_pages); 2762 2763 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) 2764 cc->iv_gen_ops->dtr(cc); 2765 2766 if (cc->dev) 2767 dm_put_device(ti, cc->dev); 2768 2769 kfree_sensitive(cc->cipher_string); 2770 kfree_sensitive(cc->key_string); 2771 kfree_sensitive(cc->cipher_auth); 2772 kfree_sensitive(cc->authenc_key); 2773 2774 mutex_destroy(&cc->bio_alloc_lock); 2775 2776 /* Must zero key material before freeing */ 2777 kfree_sensitive(cc); 2778 2779 spin_lock(&dm_crypt_clients_lock); 2780 WARN_ON(!dm_crypt_clients_n); 2781 dm_crypt_clients_n--; 2782 crypt_calculate_pages_per_client(); 2783 spin_unlock(&dm_crypt_clients_lock); 2784 2785 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1); 2786 } 2787 2788 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode) 2789 { 2790 struct crypt_config *cc = ti->private; 2791 2792 if (crypt_integrity_aead(cc)) 2793 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc)); 2794 else 2795 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc)); 2796 2797 if (cc->iv_size) 2798 /* at least a 64 bit sector number should fit in our buffer */ 2799 cc->iv_size = max(cc->iv_size, 2800 (unsigned int)(sizeof(u64) / sizeof(u8))); 2801 else if (ivmode) { 2802 DMWARN("Selected cipher does not support IVs"); 2803 ivmode = NULL; 2804 } 2805 2806 /* Choose ivmode, see comments at iv code. */ 2807 if (ivmode == NULL) 2808 cc->iv_gen_ops = NULL; 2809 else if (strcmp(ivmode, "plain") == 0) 2810 cc->iv_gen_ops = &crypt_iv_plain_ops; 2811 else if (strcmp(ivmode, "plain64") == 0) 2812 cc->iv_gen_ops = &crypt_iv_plain64_ops; 2813 else if (strcmp(ivmode, "plain64be") == 0) 2814 cc->iv_gen_ops = &crypt_iv_plain64be_ops; 2815 else if (strcmp(ivmode, "essiv") == 0) 2816 cc->iv_gen_ops = &crypt_iv_essiv_ops; 2817 else if (strcmp(ivmode, "benbi") == 0) 2818 cc->iv_gen_ops = &crypt_iv_benbi_ops; 2819 else if (strcmp(ivmode, "null") == 0) 2820 cc->iv_gen_ops = &crypt_iv_null_ops; 2821 else if (strcmp(ivmode, "eboiv") == 0) 2822 cc->iv_gen_ops = &crypt_iv_eboiv_ops; 2823 else if (strcmp(ivmode, "elephant") == 0) { 2824 cc->iv_gen_ops = &crypt_iv_elephant_ops; 2825 cc->key_parts = 2; 2826 cc->key_extra_size = cc->key_size / 2; 2827 if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE) 2828 return -EINVAL; 2829 set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags); 2830 } else if (strcmp(ivmode, "lmk") == 0) { 2831 cc->iv_gen_ops = &crypt_iv_lmk_ops; 2832 /* 2833 * Version 2 and 3 is recognised according 2834 * to length of provided multi-key string. 2835 * If present (version 3), last key is used as IV seed. 2836 * All keys (including IV seed) are always the same size. 2837 */ 2838 if (cc->key_size % cc->key_parts) { 2839 cc->key_parts++; 2840 cc->key_extra_size = cc->key_size / cc->key_parts; 2841 } 2842 } else if (strcmp(ivmode, "tcw") == 0) { 2843 cc->iv_gen_ops = &crypt_iv_tcw_ops; 2844 cc->key_parts += 2; /* IV + whitening */ 2845 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE; 2846 } else if (strcmp(ivmode, "random") == 0) { 2847 cc->iv_gen_ops = &crypt_iv_random_ops; 2848 /* Need storage space in integrity fields. */ 2849 cc->integrity_iv_size = cc->iv_size; 2850 } else { 2851 ti->error = "Invalid IV mode"; 2852 return -EINVAL; 2853 } 2854 2855 return 0; 2856 } 2857 2858 /* 2859 * Workaround to parse HMAC algorithm from AEAD crypto API spec. 2860 * The HMAC is needed to calculate tag size (HMAC digest size). 2861 * This should be probably done by crypto-api calls (once available...) 2862 */ 2863 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api) 2864 { 2865 char *start, *end, *mac_alg = NULL; 2866 struct crypto_ahash *mac; 2867 2868 if (!strstarts(cipher_api, "authenc(")) 2869 return 0; 2870 2871 start = strchr(cipher_api, '('); 2872 end = strchr(cipher_api, ','); 2873 if (!start || !end || ++start > end) 2874 return -EINVAL; 2875 2876 mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL); 2877 if (!mac_alg) 2878 return -ENOMEM; 2879 2880 mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 2881 kfree(mac_alg); 2882 2883 if (IS_ERR(mac)) 2884 return PTR_ERR(mac); 2885 2886 if (!test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags)) 2887 cc->key_mac_size = crypto_ahash_digestsize(mac); 2888 crypto_free_ahash(mac); 2889 2890 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL); 2891 if (!cc->authenc_key) 2892 return -ENOMEM; 2893 2894 return 0; 2895 } 2896 2897 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key, 2898 char **ivmode, char **ivopts) 2899 { 2900 struct crypt_config *cc = ti->private; 2901 char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME]; 2902 int ret = -EINVAL; 2903 2904 cc->tfms_count = 1; 2905 2906 /* 2907 * New format (capi: prefix) 2908 * capi:cipher_api_spec-iv:ivopts 2909 */ 2910 tmp = &cipher_in[strlen("capi:")]; 2911 2912 /* Separate IV options if present, it can contain another '-' in hash name */ 2913 *ivopts = strrchr(tmp, ':'); 2914 if (*ivopts) { 2915 **ivopts = '\0'; 2916 (*ivopts)++; 2917 } 2918 /* Parse IV mode */ 2919 *ivmode = strrchr(tmp, '-'); 2920 if (*ivmode) { 2921 **ivmode = '\0'; 2922 (*ivmode)++; 2923 } 2924 /* The rest is crypto API spec */ 2925 cipher_api = tmp; 2926 2927 /* Alloc AEAD, can be used only in new format. */ 2928 if (crypt_integrity_aead(cc)) { 2929 ret = crypt_ctr_auth_cipher(cc, cipher_api); 2930 if (ret < 0) { 2931 ti->error = "Invalid AEAD cipher spec"; 2932 return ret; 2933 } 2934 } 2935 2936 if (*ivmode && !strcmp(*ivmode, "lmk")) 2937 cc->tfms_count = 64; 2938 2939 if (*ivmode && !strcmp(*ivmode, "essiv")) { 2940 if (!*ivopts) { 2941 ti->error = "Digest algorithm missing for ESSIV mode"; 2942 return -EINVAL; 2943 } 2944 ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)", 2945 cipher_api, *ivopts); 2946 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) { 2947 ti->error = "Cannot allocate cipher string"; 2948 return -ENOMEM; 2949 } 2950 cipher_api = buf; 2951 } 2952 2953 cc->key_parts = cc->tfms_count; 2954 2955 /* Allocate cipher */ 2956 ret = crypt_alloc_tfms(cc, cipher_api); 2957 if (ret < 0) { 2958 ti->error = "Error allocating crypto tfm"; 2959 return ret; 2960 } 2961 2962 if (crypt_integrity_aead(cc)) 2963 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc)); 2964 else 2965 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc)); 2966 2967 return 0; 2968 } 2969 2970 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key, 2971 char **ivmode, char **ivopts) 2972 { 2973 struct crypt_config *cc = ti->private; 2974 char *tmp, *cipher, *chainmode, *keycount; 2975 char *cipher_api = NULL; 2976 int ret = -EINVAL; 2977 char dummy; 2978 2979 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) { 2980 ti->error = "Bad cipher specification"; 2981 return -EINVAL; 2982 } 2983 2984 /* 2985 * Legacy dm-crypt cipher specification 2986 * cipher[:keycount]-mode-iv:ivopts 2987 */ 2988 tmp = cipher_in; 2989 keycount = strsep(&tmp, "-"); 2990 cipher = strsep(&keycount, ":"); 2991 2992 if (!keycount) 2993 cc->tfms_count = 1; 2994 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 || 2995 !is_power_of_2(cc->tfms_count)) { 2996 ti->error = "Bad cipher key count specification"; 2997 return -EINVAL; 2998 } 2999 cc->key_parts = cc->tfms_count; 3000 3001 chainmode = strsep(&tmp, "-"); 3002 *ivmode = strsep(&tmp, ":"); 3003 *ivopts = tmp; 3004 3005 /* 3006 * For compatibility with the original dm-crypt mapping format, if 3007 * only the cipher name is supplied, use cbc-plain. 3008 */ 3009 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) { 3010 chainmode = "cbc"; 3011 *ivmode = "plain"; 3012 } 3013 3014 if (strcmp(chainmode, "ecb") && !*ivmode) { 3015 ti->error = "IV mechanism required"; 3016 return -EINVAL; 3017 } 3018 3019 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL); 3020 if (!cipher_api) 3021 goto bad_mem; 3022 3023 if (*ivmode && !strcmp(*ivmode, "essiv")) { 3024 if (!*ivopts) { 3025 ti->error = "Digest algorithm missing for ESSIV mode"; 3026 kfree(cipher_api); 3027 return -EINVAL; 3028 } 3029 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME, 3030 "essiv(%s(%s),%s)", chainmode, cipher, *ivopts); 3031 } else { 3032 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME, 3033 "%s(%s)", chainmode, cipher); 3034 } 3035 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) { 3036 kfree(cipher_api); 3037 goto bad_mem; 3038 } 3039 3040 /* Allocate cipher */ 3041 ret = crypt_alloc_tfms(cc, cipher_api); 3042 if (ret < 0) { 3043 ti->error = "Error allocating crypto tfm"; 3044 kfree(cipher_api); 3045 return ret; 3046 } 3047 kfree(cipher_api); 3048 3049 return 0; 3050 bad_mem: 3051 ti->error = "Cannot allocate cipher strings"; 3052 return -ENOMEM; 3053 } 3054 3055 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key) 3056 { 3057 struct crypt_config *cc = ti->private; 3058 char *ivmode = NULL, *ivopts = NULL; 3059 int ret; 3060 3061 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL); 3062 if (!cc->cipher_string) { 3063 ti->error = "Cannot allocate cipher strings"; 3064 return -ENOMEM; 3065 } 3066 3067 if (strstarts(cipher_in, "capi:")) 3068 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts); 3069 else 3070 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts); 3071 if (ret) 3072 return ret; 3073 3074 /* Initialize IV */ 3075 ret = crypt_ctr_ivmode(ti, ivmode); 3076 if (ret < 0) 3077 return ret; 3078 3079 /* Initialize and set key */ 3080 ret = crypt_set_key(cc, key); 3081 if (ret < 0) { 3082 ti->error = "Error decoding and setting key"; 3083 return ret; 3084 } 3085 3086 /* Allocate IV */ 3087 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) { 3088 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts); 3089 if (ret < 0) { 3090 ti->error = "Error creating IV"; 3091 return ret; 3092 } 3093 } 3094 3095 /* Initialize IV (set keys for ESSIV etc) */ 3096 if (cc->iv_gen_ops && cc->iv_gen_ops->init) { 3097 ret = cc->iv_gen_ops->init(cc); 3098 if (ret < 0) { 3099 ti->error = "Error initialising IV"; 3100 return ret; 3101 } 3102 } 3103 3104 /* wipe the kernel key payload copy */ 3105 if (cc->key_string) 3106 memset(cc->key, 0, cc->key_size * sizeof(u8)); 3107 3108 return ret; 3109 } 3110 3111 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv) 3112 { 3113 struct crypt_config *cc = ti->private; 3114 struct dm_arg_set as; 3115 static const struct dm_arg _args[] = { 3116 {0, 9, "Invalid number of feature args"}, 3117 }; 3118 unsigned int opt_params, val; 3119 const char *opt_string, *sval; 3120 char dummy; 3121 int ret; 3122 3123 /* Optional parameters */ 3124 as.argc = argc; 3125 as.argv = argv; 3126 3127 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 3128 if (ret) 3129 return ret; 3130 3131 while (opt_params--) { 3132 opt_string = dm_shift_arg(&as); 3133 if (!opt_string) { 3134 ti->error = "Not enough feature arguments"; 3135 return -EINVAL; 3136 } 3137 3138 if (!strcasecmp(opt_string, "allow_discards")) 3139 ti->num_discard_bios = 1; 3140 3141 else if (!strcasecmp(opt_string, "same_cpu_crypt")) 3142 set_bit(DM_CRYPT_SAME_CPU, &cc->flags); 3143 else if (!strcasecmp(opt_string, "high_priority")) 3144 set_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags); 3145 3146 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus")) 3147 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); 3148 else if (!strcasecmp(opt_string, "no_read_workqueue")) 3149 set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags); 3150 else if (!strcasecmp(opt_string, "no_write_workqueue")) 3151 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); 3152 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) { 3153 if (val == 0 || val > MAX_TAG_SIZE) { 3154 ti->error = "Invalid integrity arguments"; 3155 return -EINVAL; 3156 } 3157 cc->used_tag_size = val; 3158 sval = strchr(opt_string + strlen("integrity:"), ':') + 1; 3159 if (!strcasecmp(sval, "aead")) { 3160 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags); 3161 } else if (strcasecmp(sval, "none")) { 3162 ti->error = "Unknown integrity profile"; 3163 return -EINVAL; 3164 } 3165 3166 cc->cipher_auth = kstrdup(sval, GFP_KERNEL); 3167 if (!cc->cipher_auth) 3168 return -ENOMEM; 3169 } else if (sscanf(opt_string, "integrity_key_size:%u%c", &val, &dummy) == 1) { 3170 if (!val) { 3171 ti->error = "Invalid integrity_key_size argument"; 3172 return -EINVAL; 3173 } 3174 cc->key_mac_size = val; 3175 set_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags); 3176 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) { 3177 if (cc->sector_size < (1 << SECTOR_SHIFT) || 3178 cc->sector_size > 4096 || 3179 (cc->sector_size & (cc->sector_size - 1))) { 3180 ti->error = "Invalid feature value for sector_size"; 3181 return -EINVAL; 3182 } 3183 if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) { 3184 ti->error = "Device size is not multiple of sector_size feature"; 3185 return -EINVAL; 3186 } 3187 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT; 3188 } else if (!strcasecmp(opt_string, "iv_large_sectors")) 3189 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags); 3190 else { 3191 ti->error = "Invalid feature arguments"; 3192 return -EINVAL; 3193 } 3194 } 3195 3196 return 0; 3197 } 3198 3199 #ifdef CONFIG_BLK_DEV_ZONED 3200 static int crypt_report_zones(struct dm_target *ti, 3201 struct dm_report_zones_args *args, unsigned int nr_zones) 3202 { 3203 struct crypt_config *cc = ti->private; 3204 3205 return dm_report_zones(cc->dev->bdev, cc->start, 3206 cc->start + dm_target_offset(ti, args->next_sector), 3207 args, nr_zones); 3208 } 3209 #else 3210 #define crypt_report_zones NULL 3211 #endif 3212 3213 /* 3214 * Construct an encryption mapping: 3215 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start> 3216 */ 3217 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) 3218 { 3219 struct crypt_config *cc; 3220 const char *devname = dm_table_device_name(ti->table); 3221 int key_size, wq_id; 3222 unsigned int align_mask; 3223 unsigned int common_wq_flags; 3224 unsigned long long tmpll; 3225 int ret; 3226 size_t iv_size_padding, additional_req_size; 3227 char dummy; 3228 3229 if (argc < 5) { 3230 ti->error = "Not enough arguments"; 3231 return -EINVAL; 3232 } 3233 3234 key_size = get_key_size(&argv[1]); 3235 if (key_size < 0) { 3236 ti->error = "Cannot parse key size"; 3237 return -EINVAL; 3238 } 3239 3240 cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL); 3241 if (!cc) { 3242 ti->error = "Cannot allocate encryption context"; 3243 return -ENOMEM; 3244 } 3245 cc->key_size = key_size; 3246 cc->sector_size = (1 << SECTOR_SHIFT); 3247 cc->sector_shift = 0; 3248 3249 ti->private = cc; 3250 3251 spin_lock(&dm_crypt_clients_lock); 3252 dm_crypt_clients_n++; 3253 crypt_calculate_pages_per_client(); 3254 spin_unlock(&dm_crypt_clients_lock); 3255 3256 ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL); 3257 if (ret < 0) 3258 goto bad; 3259 3260 /* Optional parameters need to be read before cipher constructor */ 3261 if (argc > 5) { 3262 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]); 3263 if (ret) 3264 goto bad; 3265 } 3266 3267 ret = crypt_ctr_cipher(ti, argv[0], argv[1]); 3268 if (ret < 0) 3269 goto bad; 3270 3271 if (crypt_integrity_aead(cc)) { 3272 cc->dmreq_start = sizeof(struct aead_request); 3273 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc)); 3274 align_mask = crypto_aead_alignmask(any_tfm_aead(cc)); 3275 } else { 3276 cc->dmreq_start = sizeof(struct skcipher_request); 3277 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc)); 3278 align_mask = crypto_skcipher_alignmask(any_tfm(cc)); 3279 } 3280 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request)); 3281 3282 if (align_mask < CRYPTO_MINALIGN) { 3283 /* Allocate the padding exactly */ 3284 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request)) 3285 & align_mask; 3286 } else { 3287 /* 3288 * If the cipher requires greater alignment than kmalloc 3289 * alignment, we don't know the exact position of the 3290 * initialization vector. We must assume worst case. 3291 */ 3292 iv_size_padding = align_mask; 3293 } 3294 3295 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */ 3296 additional_req_size = sizeof(struct dm_crypt_request) + 3297 iv_size_padding + cc->iv_size + 3298 cc->iv_size + 3299 sizeof(uint64_t) + 3300 sizeof(unsigned int); 3301 3302 ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size); 3303 if (ret) { 3304 ti->error = "Cannot allocate crypt request mempool"; 3305 goto bad; 3306 } 3307 3308 cc->per_bio_data_size = ti->per_io_data_size = 3309 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size, 3310 ARCH_DMA_MINALIGN); 3311 3312 ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc); 3313 if (ret) { 3314 ti->error = "Cannot allocate page mempool"; 3315 goto bad; 3316 } 3317 3318 ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS); 3319 if (ret) { 3320 ti->error = "Cannot allocate crypt bioset"; 3321 goto bad; 3322 } 3323 3324 mutex_init(&cc->bio_alloc_lock); 3325 3326 ret = -EINVAL; 3327 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) || 3328 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) { 3329 ti->error = "Invalid iv_offset sector"; 3330 goto bad; 3331 } 3332 cc->iv_offset = tmpll; 3333 3334 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev); 3335 if (ret) { 3336 ti->error = "Device lookup failed"; 3337 goto bad; 3338 } 3339 3340 ret = -EINVAL; 3341 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) { 3342 ti->error = "Invalid device sector"; 3343 goto bad; 3344 } 3345 cc->start = tmpll; 3346 3347 if (bdev_is_zoned(cc->dev->bdev)) { 3348 /* 3349 * For zoned block devices, we need to preserve the issuer write 3350 * ordering. To do so, disable write workqueues and force inline 3351 * encryption completion. 3352 */ 3353 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); 3354 set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags); 3355 3356 /* 3357 * All zone append writes to a zone of a zoned block device will 3358 * have the same BIO sector, the start of the zone. When the 3359 * cypher IV mode uses sector values, all data targeting a 3360 * zone will be encrypted using the first sector numbers of the 3361 * zone. This will not result in write errors but will 3362 * cause most reads to fail as reads will use the sector values 3363 * for the actual data locations, resulting in IV mismatch. 3364 * To avoid this problem, ask DM core to emulate zone append 3365 * operations with regular writes. 3366 */ 3367 DMDEBUG("Zone append operations will be emulated"); 3368 ti->emulate_zone_append = true; 3369 } 3370 3371 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) { 3372 ret = crypt_integrity_ctr(cc, ti); 3373 if (ret) 3374 goto bad; 3375 3376 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->tuple_size; 3377 if (!cc->tag_pool_max_sectors) 3378 cc->tag_pool_max_sectors = 1; 3379 3380 ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS, 3381 cc->tag_pool_max_sectors * cc->tuple_size); 3382 if (ret) { 3383 ti->error = "Cannot allocate integrity tags mempool"; 3384 goto bad; 3385 } 3386 3387 cc->tag_pool_max_sectors <<= cc->sector_shift; 3388 } 3389 3390 wq_id = ida_alloc_min(&workqueue_ida, 1, GFP_KERNEL); 3391 if (wq_id < 0) { 3392 ti->error = "Couldn't get workqueue id"; 3393 ret = wq_id; 3394 goto bad; 3395 } 3396 cc->workqueue_id = wq_id; 3397 3398 ret = -ENOMEM; 3399 common_wq_flags = WQ_MEM_RECLAIM | WQ_SYSFS; 3400 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) 3401 common_wq_flags |= WQ_HIGHPRI; 3402 3403 cc->io_queue = alloc_workqueue("kcryptd_io-%s-%d", common_wq_flags, 1, devname, wq_id); 3404 if (!cc->io_queue) { 3405 ti->error = "Couldn't create kcryptd io queue"; 3406 goto bad; 3407 } 3408 3409 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) { 3410 cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d", 3411 common_wq_flags | WQ_CPU_INTENSIVE, 3412 1, devname, wq_id); 3413 } else { 3414 /* 3415 * While crypt_queue is certainly CPU intensive, the use of 3416 * WQ_CPU_INTENSIVE is meaningless with WQ_UNBOUND. 3417 */ 3418 cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d", 3419 common_wq_flags | WQ_UNBOUND, 3420 num_online_cpus(), devname, wq_id); 3421 } 3422 if (!cc->crypt_queue) { 3423 ti->error = "Couldn't create kcryptd queue"; 3424 goto bad; 3425 } 3426 3427 spin_lock_init(&cc->write_thread_lock); 3428 cc->write_tree = RB_ROOT; 3429 3430 cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname); 3431 if (IS_ERR(cc->write_thread)) { 3432 ret = PTR_ERR(cc->write_thread); 3433 cc->write_thread = NULL; 3434 ti->error = "Couldn't spawn write thread"; 3435 goto bad; 3436 } 3437 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) 3438 set_user_nice(cc->write_thread, MIN_NICE); 3439 3440 ti->num_flush_bios = 1; 3441 ti->limit_swap_bios = true; 3442 ti->accounts_remapped_io = true; 3443 3444 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1); 3445 return 0; 3446 3447 bad: 3448 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0); 3449 crypt_dtr(ti); 3450 return ret; 3451 } 3452 3453 static int crypt_map(struct dm_target *ti, struct bio *bio) 3454 { 3455 struct dm_crypt_io *io; 3456 struct crypt_config *cc = ti->private; 3457 unsigned max_sectors; 3458 bool no_split; 3459 3460 /* 3461 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues. 3462 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight 3463 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters 3464 */ 3465 if (unlikely(bio->bi_opf & REQ_PREFLUSH || 3466 bio_op(bio) == REQ_OP_DISCARD)) { 3467 bio_set_dev(bio, cc->dev->bdev); 3468 if (bio_sectors(bio)) 3469 bio->bi_iter.bi_sector = cc->start + 3470 dm_target_offset(ti, bio->bi_iter.bi_sector); 3471 return DM_MAPIO_REMAPPED; 3472 } 3473 3474 /* 3475 * Check if bio is too large, split as needed. 3476 * 3477 * For zoned devices, splitting write operations creates the 3478 * risk of deadlocking queue freeze operations with zone write 3479 * plugging BIO work when the reminder of a split BIO is 3480 * issued. So always allow the entire BIO to proceed. 3481 */ 3482 no_split = (ti->emulate_zone_append && op_is_write(bio_op(bio))) || 3483 (bio->bi_opf & REQ_ATOMIC); 3484 max_sectors = get_max_request_sectors(ti, bio, no_split); 3485 if (unlikely(bio_sectors(bio) > max_sectors)) { 3486 if (unlikely(no_split)) 3487 return DM_MAPIO_KILL; 3488 dm_accept_partial_bio(bio, max_sectors); 3489 } 3490 3491 /* 3492 * Ensure that bio is a multiple of internal sector encryption size 3493 * and is aligned to this size as defined in IO hints. 3494 */ 3495 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0)) 3496 return DM_MAPIO_KILL; 3497 3498 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1))) 3499 return DM_MAPIO_KILL; 3500 3501 io = dm_per_bio_data(bio, cc->per_bio_data_size); 3502 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector)); 3503 3504 if (cc->tuple_size) { 3505 unsigned int tag_len = cc->tuple_size * (bio_sectors(bio) >> cc->sector_shift); 3506 3507 if (unlikely(tag_len > KMALLOC_MAX_SIZE)) 3508 io->integrity_metadata = NULL; 3509 else 3510 io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3511 3512 if (unlikely(!io->integrity_metadata)) { 3513 if (bio_sectors(bio) > cc->tag_pool_max_sectors) 3514 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors); 3515 io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO); 3516 io->integrity_metadata_from_pool = true; 3517 } 3518 } 3519 3520 if (crypt_integrity_aead(cc)) 3521 io->ctx.r.req_aead = (struct aead_request *)(io + 1); 3522 else 3523 io->ctx.r.req = (struct skcipher_request *)(io + 1); 3524 3525 if (bio_data_dir(io->base_bio) == READ) { 3526 if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP)) 3527 kcryptd_queue_read(io); 3528 } else 3529 kcryptd_queue_crypt(io); 3530 3531 return DM_MAPIO_SUBMITTED; 3532 } 3533 3534 static char hex2asc(unsigned char c) 3535 { 3536 return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27); 3537 } 3538 3539 static void crypt_status(struct dm_target *ti, status_type_t type, 3540 unsigned int status_flags, char *result, unsigned int maxlen) 3541 { 3542 struct crypt_config *cc = ti->private; 3543 unsigned int i, sz = 0; 3544 int num_feature_args = 0; 3545 3546 switch (type) { 3547 case STATUSTYPE_INFO: 3548 result[0] = '\0'; 3549 break; 3550 3551 case STATUSTYPE_TABLE: 3552 DMEMIT("%s ", cc->cipher_string); 3553 3554 if (cc->key_size > 0) { 3555 if (cc->key_string) 3556 DMEMIT(":%u:%s", cc->key_size, cc->key_string); 3557 else { 3558 for (i = 0; i < cc->key_size; i++) { 3559 DMEMIT("%c%c", hex2asc(cc->key[i] >> 4), 3560 hex2asc(cc->key[i] & 0xf)); 3561 } 3562 } 3563 } else 3564 DMEMIT("-"); 3565 3566 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset, 3567 cc->dev->name, (unsigned long long)cc->start); 3568 3569 num_feature_args += !!ti->num_discard_bios; 3570 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags); 3571 num_feature_args += test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags); 3572 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); 3573 num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags); 3574 num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); 3575 num_feature_args += !!cc->used_tag_size; 3576 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT); 3577 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags); 3578 num_feature_args += test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags); 3579 if (num_feature_args) { 3580 DMEMIT(" %d", num_feature_args); 3581 if (ti->num_discard_bios) 3582 DMEMIT(" allow_discards"); 3583 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) 3584 DMEMIT(" same_cpu_crypt"); 3585 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) 3586 DMEMIT(" high_priority"); 3587 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) 3588 DMEMIT(" submit_from_crypt_cpus"); 3589 if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) 3590 DMEMIT(" no_read_workqueue"); 3591 if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) 3592 DMEMIT(" no_write_workqueue"); 3593 if (cc->used_tag_size) 3594 DMEMIT(" integrity:%u:%s", cc->used_tag_size, cc->cipher_auth); 3595 if (cc->sector_size != (1 << SECTOR_SHIFT)) 3596 DMEMIT(" sector_size:%d", cc->sector_size); 3597 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) 3598 DMEMIT(" iv_large_sectors"); 3599 if (test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags)) 3600 DMEMIT(" integrity_key_size:%u", cc->key_mac_size); 3601 } 3602 break; 3603 3604 case STATUSTYPE_IMA: 3605 DMEMIT_TARGET_NAME_VERSION(ti->type); 3606 DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n'); 3607 DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n'); 3608 DMEMIT(",high_priority=%c", test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags) ? 'y' : 'n'); 3609 DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ? 3610 'y' : 'n'); 3611 DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ? 3612 'y' : 'n'); 3613 DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ? 3614 'y' : 'n'); 3615 DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ? 3616 'y' : 'n'); 3617 3618 if (cc->used_tag_size) 3619 DMEMIT(",integrity_tag_size=%u,cipher_auth=%s", 3620 cc->used_tag_size, cc->cipher_auth); 3621 if (cc->sector_size != (1 << SECTOR_SHIFT)) 3622 DMEMIT(",sector_size=%d", cc->sector_size); 3623 if (cc->cipher_string) 3624 DMEMIT(",cipher_string=%s", cc->cipher_string); 3625 3626 DMEMIT(",key_size=%u", cc->key_size); 3627 DMEMIT(",key_parts=%u", cc->key_parts); 3628 DMEMIT(",key_extra_size=%u", cc->key_extra_size); 3629 DMEMIT(",key_mac_size=%u", cc->key_mac_size); 3630 DMEMIT(";"); 3631 break; 3632 } 3633 } 3634 3635 static void crypt_postsuspend(struct dm_target *ti) 3636 { 3637 struct crypt_config *cc = ti->private; 3638 3639 set_bit(DM_CRYPT_SUSPENDED, &cc->flags); 3640 } 3641 3642 static int crypt_preresume(struct dm_target *ti) 3643 { 3644 struct crypt_config *cc = ti->private; 3645 3646 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) { 3647 DMERR("aborting resume - crypt key is not set."); 3648 return -EAGAIN; 3649 } 3650 3651 return 0; 3652 } 3653 3654 static void crypt_resume(struct dm_target *ti) 3655 { 3656 struct crypt_config *cc = ti->private; 3657 3658 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags); 3659 } 3660 3661 /* Message interface 3662 * key set <key> 3663 * key wipe 3664 */ 3665 static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv, 3666 char *result, unsigned int maxlen) 3667 { 3668 struct crypt_config *cc = ti->private; 3669 int key_size, ret = -EINVAL; 3670 3671 if (argc < 2) 3672 goto error; 3673 3674 if (!strcasecmp(argv[0], "key")) { 3675 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) { 3676 DMWARN("not suspended during key manipulation."); 3677 return -EINVAL; 3678 } 3679 if (argc == 3 && !strcasecmp(argv[1], "set")) { 3680 /* The key size may not be changed. */ 3681 key_size = get_key_size(&argv[2]); 3682 if (key_size < 0 || cc->key_size != key_size) { 3683 memset(argv[2], '0', strlen(argv[2])); 3684 return -EINVAL; 3685 } 3686 3687 ret = crypt_set_key(cc, argv[2]); 3688 if (ret) 3689 return ret; 3690 if (cc->iv_gen_ops && cc->iv_gen_ops->init) 3691 ret = cc->iv_gen_ops->init(cc); 3692 /* wipe the kernel key payload copy */ 3693 if (cc->key_string) 3694 memset(cc->key, 0, cc->key_size * sizeof(u8)); 3695 return ret; 3696 } 3697 if (argc == 2 && !strcasecmp(argv[1], "wipe")) 3698 return crypt_wipe_key(cc); 3699 } 3700 3701 error: 3702 DMWARN("unrecognised message received."); 3703 return -EINVAL; 3704 } 3705 3706 static int crypt_iterate_devices(struct dm_target *ti, 3707 iterate_devices_callout_fn fn, void *data) 3708 { 3709 struct crypt_config *cc = ti->private; 3710 3711 return fn(ti, cc->dev, cc->start, ti->len, data); 3712 } 3713 3714 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits) 3715 { 3716 struct crypt_config *cc = ti->private; 3717 3718 limits->logical_block_size = 3719 max_t(unsigned int, limits->logical_block_size, cc->sector_size); 3720 limits->physical_block_size = 3721 max_t(unsigned int, limits->physical_block_size, cc->sector_size); 3722 limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size); 3723 limits->dma_alignment = limits->logical_block_size - 1; 3724 3725 /* 3726 * For zoned dm-crypt targets, there will be no internal splitting of 3727 * write BIOs to avoid exceeding BIO_MAX_VECS vectors per BIO. But 3728 * without respecting this limit, crypt_alloc_buffer() will trigger a 3729 * BUG(). Avoid this by forcing DM core to split write BIOs to this 3730 * limit. 3731 */ 3732 if (ti->emulate_zone_append) 3733 limits->max_hw_sectors = min(limits->max_hw_sectors, 3734 BIO_MAX_VECS << PAGE_SECTORS_SHIFT); 3735 3736 limits->atomic_write_hw_unit_max = min(limits->atomic_write_hw_unit_max, 3737 BIO_MAX_VECS << PAGE_SHIFT); 3738 limits->atomic_write_hw_max = min(limits->atomic_write_hw_max, 3739 BIO_MAX_VECS << PAGE_SHIFT); 3740 } 3741 3742 static struct target_type crypt_target = { 3743 .name = "crypt", 3744 .version = {1, 29, 0}, 3745 .module = THIS_MODULE, 3746 .ctr = crypt_ctr, 3747 .dtr = crypt_dtr, 3748 .features = DM_TARGET_ZONED_HM | DM_TARGET_ATOMIC_WRITES, 3749 .report_zones = crypt_report_zones, 3750 .map = crypt_map, 3751 .status = crypt_status, 3752 .postsuspend = crypt_postsuspend, 3753 .preresume = crypt_preresume, 3754 .resume = crypt_resume, 3755 .message = crypt_message, 3756 .iterate_devices = crypt_iterate_devices, 3757 .io_hints = crypt_io_hints, 3758 }; 3759 module_dm(crypt); 3760 3761 MODULE_AUTHOR("Jana Saout <jana@saout.de>"); 3762 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption"); 3763 MODULE_LICENSE("GPL"); 3764