1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2003 Jana Saout <jana@saout.de> 4 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org> 5 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved. 6 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com> 7 * 8 * This file is released under the GPL. 9 */ 10 11 #include <linux/completion.h> 12 #include <linux/err.h> 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/key.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-integrity.h> 20 #include <linux/crc32.h> 21 #include <linux/mempool.h> 22 #include <linux/slab.h> 23 #include <linux/crypto.h> 24 #include <linux/workqueue.h> 25 #include <linux/kthread.h> 26 #include <linux/backing-dev.h> 27 #include <linux/atomic.h> 28 #include <linux/scatterlist.h> 29 #include <linux/rbtree.h> 30 #include <linux/ctype.h> 31 #include <asm/page.h> 32 #include <linux/unaligned.h> 33 #include <crypto/hash.h> 34 #include <crypto/md5.h> 35 #include <crypto/skcipher.h> 36 #include <crypto/aead.h> 37 #include <crypto/authenc.h> 38 #include <crypto/utils.h> 39 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */ 40 #include <linux/key-type.h> 41 #include <keys/user-type.h> 42 #include <keys/encrypted-type.h> 43 #include <keys/trusted-type.h> 44 45 #include <linux/device-mapper.h> 46 47 #include "dm-audit.h" 48 49 #define DM_MSG_PREFIX "crypt" 50 51 static DEFINE_IDA(workqueue_ida); 52 53 /* 54 * context holding the current state of a multi-part conversion 55 */ 56 struct convert_context { 57 struct completion restart; 58 struct bio *bio_in; 59 struct bvec_iter iter_in; 60 struct bio *bio_out; 61 struct bvec_iter iter_out; 62 atomic_t cc_pending; 63 unsigned int tag_offset; 64 u64 cc_sector; 65 union { 66 struct skcipher_request *req; 67 struct aead_request *req_aead; 68 } r; 69 bool aead_recheck; 70 bool aead_failed; 71 72 }; 73 74 /* 75 * per bio private data 76 */ 77 struct dm_crypt_io { 78 struct crypt_config *cc; 79 struct bio *base_bio; 80 u8 *integrity_metadata; 81 bool integrity_metadata_from_pool:1; 82 83 struct work_struct work; 84 85 struct convert_context ctx; 86 87 atomic_t io_pending; 88 blk_status_t error; 89 sector_t sector; 90 91 struct bvec_iter saved_bi_iter; 92 93 struct rb_node rb_node; 94 } CRYPTO_MINALIGN_ATTR; 95 96 struct dm_crypt_request { 97 struct convert_context *ctx; 98 struct scatterlist sg_in[4]; 99 struct scatterlist sg_out[4]; 100 u64 iv_sector; 101 }; 102 103 struct crypt_config; 104 105 struct crypt_iv_operations { 106 int (*ctr)(struct crypt_config *cc, struct dm_target *ti, 107 const char *opts); 108 void (*dtr)(struct crypt_config *cc); 109 int (*init)(struct crypt_config *cc); 110 int (*wipe)(struct crypt_config *cc); 111 int (*generator)(struct crypt_config *cc, u8 *iv, 112 struct dm_crypt_request *dmreq); 113 int (*post)(struct crypt_config *cc, u8 *iv, 114 struct dm_crypt_request *dmreq); 115 }; 116 117 struct iv_benbi_private { 118 int shift; 119 }; 120 121 #define LMK_SEED_SIZE 64 /* hash + 0 */ 122 struct iv_lmk_private { 123 struct crypto_shash *hash_tfm; 124 u8 *seed; 125 }; 126 127 #define TCW_WHITENING_SIZE 16 128 struct iv_tcw_private { 129 u8 *iv_seed; 130 u8 *whitening; 131 }; 132 133 #define ELEPHANT_MAX_KEY_SIZE 32 134 struct iv_elephant_private { 135 struct crypto_skcipher *tfm; 136 }; 137 138 /* 139 * Crypt: maps a linear range of a block device 140 * and encrypts / decrypts at the same time. 141 */ 142 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID, 143 DM_CRYPT_SAME_CPU, DM_CRYPT_HIGH_PRIORITY, 144 DM_CRYPT_NO_OFFLOAD, DM_CRYPT_NO_READ_WORKQUEUE, 145 DM_CRYPT_NO_WRITE_WORKQUEUE, DM_CRYPT_WRITE_INLINE }; 146 147 enum cipher_flags { 148 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cipher */ 149 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */ 150 CRYPT_ENCRYPT_PREPROCESS, /* Must preprocess data for encryption (elephant) */ 151 CRYPT_KEY_MAC_SIZE_SET, /* The integrity_key_size option was used */ 152 }; 153 154 /* 155 * The fields in here must be read only after initialization. 156 */ 157 struct crypt_config { 158 struct dm_dev *dev; 159 sector_t start; 160 161 struct percpu_counter n_allocated_pages; 162 163 struct workqueue_struct *io_queue; 164 struct workqueue_struct *crypt_queue; 165 166 spinlock_t write_thread_lock; 167 struct task_struct *write_thread; 168 struct rb_root write_tree; 169 170 char *cipher_string; 171 char *cipher_auth; 172 char *key_string; 173 174 const struct crypt_iv_operations *iv_gen_ops; 175 union { 176 struct iv_benbi_private benbi; 177 struct iv_lmk_private lmk; 178 struct iv_tcw_private tcw; 179 struct iv_elephant_private elephant; 180 } iv_gen_private; 181 u64 iv_offset; 182 unsigned int iv_size; 183 unsigned short sector_size; 184 unsigned char sector_shift; 185 186 union { 187 struct crypto_skcipher **tfms; 188 struct crypto_aead **tfms_aead; 189 } cipher_tfm; 190 unsigned int tfms_count; 191 int workqueue_id; 192 unsigned long cipher_flags; 193 194 /* 195 * Layout of each crypto request: 196 * 197 * struct skcipher_request 198 * context 199 * padding 200 * struct dm_crypt_request 201 * padding 202 * IV 203 * 204 * The padding is added so that dm_crypt_request and the IV are 205 * correctly aligned. 206 */ 207 unsigned int dmreq_start; 208 209 unsigned int per_bio_data_size; 210 211 unsigned long flags; 212 unsigned int key_size; 213 unsigned int key_parts; /* independent parts in key buffer */ 214 unsigned int key_extra_size; /* additional keys length */ 215 unsigned int key_mac_size; /* MAC key size for authenc(...) */ 216 217 unsigned int integrity_tag_size; 218 unsigned int integrity_iv_size; 219 unsigned int used_tag_size; 220 unsigned int tuple_size; 221 222 /* 223 * pool for per bio private data, crypto requests, 224 * encryption requeusts/buffer pages and integrity tags 225 */ 226 unsigned int tag_pool_max_sectors; 227 mempool_t tag_pool; 228 mempool_t req_pool; 229 mempool_t page_pool; 230 231 struct bio_set bs; 232 struct mutex bio_alloc_lock; 233 234 u8 *authenc_key; /* space for keys in authenc() format (if used) */ 235 u8 key[] __counted_by(key_size); 236 }; 237 238 #define MIN_IOS 64 239 #define MAX_TAG_SIZE 480 240 #define POOL_ENTRY_SIZE 512 241 242 static DEFINE_SPINLOCK(dm_crypt_clients_lock); 243 static unsigned int dm_crypt_clients_n; 244 static volatile unsigned long dm_crypt_pages_per_client; 245 #define DM_CRYPT_MEMORY_PERCENT 2 246 #define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_VECS * 16) 247 #define DM_CRYPT_DEFAULT_MAX_READ_SIZE 131072 248 #define DM_CRYPT_DEFAULT_MAX_WRITE_SIZE 131072 249 250 static unsigned int max_read_size = 0; 251 module_param(max_read_size, uint, 0644); 252 MODULE_PARM_DESC(max_read_size, "Maximum size of a read request"); 253 static unsigned int max_write_size = 0; 254 module_param(max_write_size, uint, 0644); 255 MODULE_PARM_DESC(max_write_size, "Maximum size of a write request"); 256 static unsigned get_max_request_size(struct crypt_config *cc, bool wrt) 257 { 258 unsigned val, sector_align; 259 val = !wrt ? READ_ONCE(max_read_size) : READ_ONCE(max_write_size); 260 if (likely(!val)) 261 val = !wrt ? DM_CRYPT_DEFAULT_MAX_READ_SIZE : DM_CRYPT_DEFAULT_MAX_WRITE_SIZE; 262 if (wrt || cc->used_tag_size) { 263 if (unlikely(val > BIO_MAX_VECS << PAGE_SHIFT)) 264 val = BIO_MAX_VECS << PAGE_SHIFT; 265 } 266 sector_align = max(bdev_logical_block_size(cc->dev->bdev), (unsigned)cc->sector_size); 267 val = round_down(val, sector_align); 268 if (unlikely(!val)) 269 val = sector_align; 270 return val >> SECTOR_SHIFT; 271 } 272 273 static void crypt_endio(struct bio *clone); 274 static void kcryptd_queue_crypt(struct dm_crypt_io *io); 275 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc, 276 struct scatterlist *sg); 277 278 static bool crypt_integrity_aead(struct crypt_config *cc); 279 280 /* 281 * Use this to access cipher attributes that are independent of the key. 282 */ 283 static struct crypto_skcipher *any_tfm(struct crypt_config *cc) 284 { 285 return cc->cipher_tfm.tfms[0]; 286 } 287 288 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc) 289 { 290 return cc->cipher_tfm.tfms_aead[0]; 291 } 292 293 /* 294 * Different IV generation algorithms: 295 * 296 * plain: the initial vector is the 32-bit little-endian version of the sector 297 * number, padded with zeros if necessary. 298 * 299 * plain64: the initial vector is the 64-bit little-endian version of the sector 300 * number, padded with zeros if necessary. 301 * 302 * plain64be: the initial vector is the 64-bit big-endian version of the sector 303 * number, padded with zeros if necessary. 304 * 305 * essiv: "encrypted sector|salt initial vector", the sector number is 306 * encrypted with the bulk cipher using a salt as key. The salt 307 * should be derived from the bulk cipher's key via hashing. 308 * 309 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1 310 * (needed for LRW-32-AES and possible other narrow block modes) 311 * 312 * null: the initial vector is always zero. Provides compatibility with 313 * obsolete loop_fish2 devices. Do not use for new devices. 314 * 315 * lmk: Compatible implementation of the block chaining mode used 316 * by the Loop-AES block device encryption system 317 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/ 318 * It operates on full 512 byte sectors and uses CBC 319 * with an IV derived from the sector number, the data and 320 * optionally extra IV seed. 321 * This means that after decryption the first block 322 * of sector must be tweaked according to decrypted data. 323 * Loop-AES can use three encryption schemes: 324 * version 1: is plain aes-cbc mode 325 * version 2: uses 64 multikey scheme with lmk IV generator 326 * version 3: the same as version 2 with additional IV seed 327 * (it uses 65 keys, last key is used as IV seed) 328 * 329 * tcw: Compatible implementation of the block chaining mode used 330 * by the TrueCrypt device encryption system (prior to version 4.1). 331 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat 332 * It operates on full 512 byte sectors and uses CBC 333 * with an IV derived from initial key and the sector number. 334 * In addition, whitening value is applied on every sector, whitening 335 * is calculated from initial key, sector number and mixed using CRC32. 336 * Note that this encryption scheme is vulnerable to watermarking attacks 337 * and should be used for old compatible containers access only. 338 * 339 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode) 340 * The IV is encrypted little-endian byte-offset (with the same key 341 * and cipher as the volume). 342 * 343 * elephant: The extended version of eboiv with additional Elephant diffuser 344 * used with Bitlocker CBC mode. 345 * This mode was used in older Windows systems 346 * https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf 347 */ 348 349 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, 350 struct dm_crypt_request *dmreq) 351 { 352 memset(iv, 0, cc->iv_size); 353 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff); 354 355 return 0; 356 } 357 358 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv, 359 struct dm_crypt_request *dmreq) 360 { 361 memset(iv, 0, cc->iv_size); 362 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); 363 364 return 0; 365 } 366 367 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv, 368 struct dm_crypt_request *dmreq) 369 { 370 memset(iv, 0, cc->iv_size); 371 /* iv_size is at least of size u64; usually it is 16 bytes */ 372 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector); 373 374 return 0; 375 } 376 377 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, 378 struct dm_crypt_request *dmreq) 379 { 380 /* 381 * ESSIV encryption of the IV is now handled by the crypto API, 382 * so just pass the plain sector number here. 383 */ 384 memset(iv, 0, cc->iv_size); 385 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); 386 387 return 0; 388 } 389 390 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti, 391 const char *opts) 392 { 393 unsigned int bs; 394 int log; 395 396 if (crypt_integrity_aead(cc)) 397 bs = crypto_aead_blocksize(any_tfm_aead(cc)); 398 else 399 bs = crypto_skcipher_blocksize(any_tfm(cc)); 400 log = ilog2(bs); 401 402 /* 403 * We need to calculate how far we must shift the sector count 404 * to get the cipher block count, we use this shift in _gen. 405 */ 406 if (1 << log != bs) { 407 ti->error = "cypher blocksize is not a power of 2"; 408 return -EINVAL; 409 } 410 411 if (log > 9) { 412 ti->error = "cypher blocksize is > 512"; 413 return -EINVAL; 414 } 415 416 cc->iv_gen_private.benbi.shift = 9 - log; 417 418 return 0; 419 } 420 421 static void crypt_iv_benbi_dtr(struct crypt_config *cc) 422 { 423 } 424 425 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, 426 struct dm_crypt_request *dmreq) 427 { 428 __be64 val; 429 430 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */ 431 432 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1); 433 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64))); 434 435 return 0; 436 } 437 438 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, 439 struct dm_crypt_request *dmreq) 440 { 441 memset(iv, 0, cc->iv_size); 442 443 return 0; 444 } 445 446 static void crypt_iv_lmk_dtr(struct crypt_config *cc) 447 { 448 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 449 450 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm)) 451 crypto_free_shash(lmk->hash_tfm); 452 lmk->hash_tfm = NULL; 453 454 kfree_sensitive(lmk->seed); 455 lmk->seed = NULL; 456 } 457 458 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti, 459 const char *opts) 460 { 461 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 462 463 if (cc->sector_size != (1 << SECTOR_SHIFT)) { 464 ti->error = "Unsupported sector size for LMK"; 465 return -EINVAL; 466 } 467 468 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 469 CRYPTO_ALG_ALLOCATES_MEMORY); 470 if (IS_ERR(lmk->hash_tfm)) { 471 ti->error = "Error initializing LMK hash"; 472 return PTR_ERR(lmk->hash_tfm); 473 } 474 475 /* No seed in LMK version 2 */ 476 if (cc->key_parts == cc->tfms_count) { 477 lmk->seed = NULL; 478 return 0; 479 } 480 481 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL); 482 if (!lmk->seed) { 483 crypt_iv_lmk_dtr(cc); 484 ti->error = "Error kmallocing seed storage in LMK"; 485 return -ENOMEM; 486 } 487 488 return 0; 489 } 490 491 static int crypt_iv_lmk_init(struct crypt_config *cc) 492 { 493 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 494 int subkey_size = cc->key_size / cc->key_parts; 495 496 /* LMK seed is on the position of LMK_KEYS + 1 key */ 497 if (lmk->seed) 498 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size), 499 crypto_shash_digestsize(lmk->hash_tfm)); 500 501 return 0; 502 } 503 504 static int crypt_iv_lmk_wipe(struct crypt_config *cc) 505 { 506 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 507 508 if (lmk->seed) 509 memset(lmk->seed, 0, LMK_SEED_SIZE); 510 511 return 0; 512 } 513 514 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv, 515 struct dm_crypt_request *dmreq, 516 u8 *data) 517 { 518 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 519 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm); 520 union { 521 struct md5_state md5state; 522 u8 state[CRYPTO_MD5_STATESIZE]; 523 } u; 524 __le32 buf[4]; 525 int i, r; 526 527 desc->tfm = lmk->hash_tfm; 528 529 r = crypto_shash_init(desc); 530 if (r) 531 return r; 532 533 if (lmk->seed) { 534 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE); 535 if (r) 536 return r; 537 } 538 539 /* Sector is always 512B, block size 16, add data of blocks 1-31 */ 540 r = crypto_shash_update(desc, data + 16, 16 * 31); 541 if (r) 542 return r; 543 544 /* Sector is cropped to 56 bits here */ 545 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF); 546 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000); 547 buf[2] = cpu_to_le32(4024); 548 buf[3] = 0; 549 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf)); 550 if (r) 551 return r; 552 553 /* No MD5 padding here */ 554 r = crypto_shash_export(desc, &u.md5state); 555 if (r) 556 return r; 557 558 for (i = 0; i < MD5_HASH_WORDS; i++) 559 __cpu_to_le32s(&u.md5state.hash[i]); 560 memcpy(iv, &u.md5state.hash, cc->iv_size); 561 562 return 0; 563 } 564 565 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv, 566 struct dm_crypt_request *dmreq) 567 { 568 struct scatterlist *sg; 569 u8 *src; 570 int r = 0; 571 572 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 573 sg = crypt_get_sg_data(cc, dmreq->sg_in); 574 src = kmap_local_page(sg_page(sg)); 575 r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset); 576 kunmap_local(src); 577 } else 578 memset(iv, 0, cc->iv_size); 579 580 return r; 581 } 582 583 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv, 584 struct dm_crypt_request *dmreq) 585 { 586 struct scatterlist *sg; 587 u8 *dst; 588 int r; 589 590 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) 591 return 0; 592 593 sg = crypt_get_sg_data(cc, dmreq->sg_out); 594 dst = kmap_local_page(sg_page(sg)); 595 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset); 596 597 /* Tweak the first block of plaintext sector */ 598 if (!r) 599 crypto_xor(dst + sg->offset, iv, cc->iv_size); 600 601 kunmap_local(dst); 602 return r; 603 } 604 605 static void crypt_iv_tcw_dtr(struct crypt_config *cc) 606 { 607 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 608 609 kfree_sensitive(tcw->iv_seed); 610 tcw->iv_seed = NULL; 611 kfree_sensitive(tcw->whitening); 612 tcw->whitening = NULL; 613 } 614 615 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti, 616 const char *opts) 617 { 618 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 619 620 if (cc->sector_size != (1 << SECTOR_SHIFT)) { 621 ti->error = "Unsupported sector size for TCW"; 622 return -EINVAL; 623 } 624 625 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) { 626 ti->error = "Wrong key size for TCW"; 627 return -EINVAL; 628 } 629 630 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL); 631 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL); 632 if (!tcw->iv_seed || !tcw->whitening) { 633 crypt_iv_tcw_dtr(cc); 634 ti->error = "Error allocating seed storage in TCW"; 635 return -ENOMEM; 636 } 637 638 return 0; 639 } 640 641 static int crypt_iv_tcw_init(struct crypt_config *cc) 642 { 643 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 644 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE; 645 646 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size); 647 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size], 648 TCW_WHITENING_SIZE); 649 650 return 0; 651 } 652 653 static int crypt_iv_tcw_wipe(struct crypt_config *cc) 654 { 655 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 656 657 memset(tcw->iv_seed, 0, cc->iv_size); 658 memset(tcw->whitening, 0, TCW_WHITENING_SIZE); 659 660 return 0; 661 } 662 663 static void crypt_iv_tcw_whitening(struct crypt_config *cc, 664 struct dm_crypt_request *dmreq, u8 *data) 665 { 666 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 667 __le64 sector = cpu_to_le64(dmreq->iv_sector); 668 u8 buf[TCW_WHITENING_SIZE]; 669 int i; 670 671 /* xor whitening with sector number */ 672 crypto_xor_cpy(buf, tcw->whitening, (u8 *)§or, 8); 673 crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)§or, 8); 674 675 /* calculate crc32 for every 32bit part and xor it */ 676 for (i = 0; i < 4; i++) 677 put_unaligned_le32(crc32(0, &buf[i * 4], 4), &buf[i * 4]); 678 crypto_xor(&buf[0], &buf[12], 4); 679 crypto_xor(&buf[4], &buf[8], 4); 680 681 /* apply whitening (8 bytes) to whole sector */ 682 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++) 683 crypto_xor(data + i * 8, buf, 8); 684 memzero_explicit(buf, sizeof(buf)); 685 } 686 687 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv, 688 struct dm_crypt_request *dmreq) 689 { 690 struct scatterlist *sg; 691 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 692 __le64 sector = cpu_to_le64(dmreq->iv_sector); 693 u8 *src; 694 695 /* Remove whitening from ciphertext */ 696 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { 697 sg = crypt_get_sg_data(cc, dmreq->sg_in); 698 src = kmap_local_page(sg_page(sg)); 699 crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset); 700 kunmap_local(src); 701 } 702 703 /* Calculate IV */ 704 crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)§or, 8); 705 if (cc->iv_size > 8) 706 crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)§or, 707 cc->iv_size - 8); 708 709 return 0; 710 } 711 712 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv, 713 struct dm_crypt_request *dmreq) 714 { 715 struct scatterlist *sg; 716 u8 *dst; 717 718 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) 719 return 0; 720 721 /* Apply whitening on ciphertext */ 722 sg = crypt_get_sg_data(cc, dmreq->sg_out); 723 dst = kmap_local_page(sg_page(sg)); 724 crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset); 725 kunmap_local(dst); 726 727 return 0; 728 } 729 730 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv, 731 struct dm_crypt_request *dmreq) 732 { 733 /* Used only for writes, there must be an additional space to store IV */ 734 get_random_bytes(iv, cc->iv_size); 735 return 0; 736 } 737 738 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti, 739 const char *opts) 740 { 741 if (crypt_integrity_aead(cc)) { 742 ti->error = "AEAD transforms not supported for EBOIV"; 743 return -EINVAL; 744 } 745 746 if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) { 747 ti->error = "Block size of EBOIV cipher does not match IV size of block cipher"; 748 return -EINVAL; 749 } 750 751 return 0; 752 } 753 754 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv, 755 struct dm_crypt_request *dmreq) 756 { 757 struct crypto_skcipher *tfm = any_tfm(cc); 758 struct skcipher_request *req; 759 struct scatterlist src, dst; 760 DECLARE_CRYPTO_WAIT(wait); 761 unsigned int reqsize; 762 int err; 763 u8 *buf; 764 765 reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm); 766 reqsize = ALIGN(reqsize, __alignof__(__le64)); 767 768 req = kmalloc(reqsize + cc->iv_size, GFP_NOIO); 769 if (!req) 770 return -ENOMEM; 771 772 skcipher_request_set_tfm(req, tfm); 773 774 buf = (u8 *)req + reqsize; 775 memset(buf, 0, cc->iv_size); 776 *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size); 777 778 sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size); 779 sg_init_one(&dst, iv, cc->iv_size); 780 skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf); 781 skcipher_request_set_callback(req, 0, crypto_req_done, &wait); 782 err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 783 kfree_sensitive(req); 784 785 return err; 786 } 787 788 static void crypt_iv_elephant_dtr(struct crypt_config *cc) 789 { 790 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 791 792 crypto_free_skcipher(elephant->tfm); 793 elephant->tfm = NULL; 794 } 795 796 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti, 797 const char *opts) 798 { 799 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 800 int r; 801 802 elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0, 803 CRYPTO_ALG_ALLOCATES_MEMORY); 804 if (IS_ERR(elephant->tfm)) { 805 r = PTR_ERR(elephant->tfm); 806 elephant->tfm = NULL; 807 return r; 808 } 809 810 r = crypt_iv_eboiv_ctr(cc, ti, NULL); 811 if (r) 812 crypt_iv_elephant_dtr(cc); 813 return r; 814 } 815 816 static void diffuser_disk_to_cpu(u32 *d, size_t n) 817 { 818 #ifndef __LITTLE_ENDIAN 819 int i; 820 821 for (i = 0; i < n; i++) 822 d[i] = le32_to_cpu((__le32)d[i]); 823 #endif 824 } 825 826 static void diffuser_cpu_to_disk(__le32 *d, size_t n) 827 { 828 #ifndef __LITTLE_ENDIAN 829 int i; 830 831 for (i = 0; i < n; i++) 832 d[i] = cpu_to_le32((u32)d[i]); 833 #endif 834 } 835 836 static void diffuser_a_decrypt(u32 *d, size_t n) 837 { 838 int i, i1, i2, i3; 839 840 for (i = 0; i < 5; i++) { 841 i1 = 0; 842 i2 = n - 2; 843 i3 = n - 5; 844 845 while (i1 < (n - 1)) { 846 d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23); 847 i1++; i2++; i3++; 848 849 if (i3 >= n) 850 i3 -= n; 851 852 d[i1] += d[i2] ^ d[i3]; 853 i1++; i2++; i3++; 854 855 if (i2 >= n) 856 i2 -= n; 857 858 d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19); 859 i1++; i2++; i3++; 860 861 d[i1] += d[i2] ^ d[i3]; 862 i1++; i2++; i3++; 863 } 864 } 865 } 866 867 static void diffuser_a_encrypt(u32 *d, size_t n) 868 { 869 int i, i1, i2, i3; 870 871 for (i = 0; i < 5; i++) { 872 i1 = n - 1; 873 i2 = n - 2 - 1; 874 i3 = n - 5 - 1; 875 876 while (i1 > 0) { 877 d[i1] -= d[i2] ^ d[i3]; 878 i1--; i2--; i3--; 879 880 d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19); 881 i1--; i2--; i3--; 882 883 if (i2 < 0) 884 i2 += n; 885 886 d[i1] -= d[i2] ^ d[i3]; 887 i1--; i2--; i3--; 888 889 if (i3 < 0) 890 i3 += n; 891 892 d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23); 893 i1--; i2--; i3--; 894 } 895 } 896 } 897 898 static void diffuser_b_decrypt(u32 *d, size_t n) 899 { 900 int i, i1, i2, i3; 901 902 for (i = 0; i < 3; i++) { 903 i1 = 0; 904 i2 = 2; 905 i3 = 5; 906 907 while (i1 < (n - 1)) { 908 d[i1] += d[i2] ^ d[i3]; 909 i1++; i2++; i3++; 910 911 d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22); 912 i1++; i2++; i3++; 913 914 if (i2 >= n) 915 i2 -= n; 916 917 d[i1] += d[i2] ^ d[i3]; 918 i1++; i2++; i3++; 919 920 if (i3 >= n) 921 i3 -= n; 922 923 d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7); 924 i1++; i2++; i3++; 925 } 926 } 927 } 928 929 static void diffuser_b_encrypt(u32 *d, size_t n) 930 { 931 int i, i1, i2, i3; 932 933 for (i = 0; i < 3; i++) { 934 i1 = n - 1; 935 i2 = 2 - 1; 936 i3 = 5 - 1; 937 938 while (i1 > 0) { 939 d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7); 940 i1--; i2--; i3--; 941 942 if (i3 < 0) 943 i3 += n; 944 945 d[i1] -= d[i2] ^ d[i3]; 946 i1--; i2--; i3--; 947 948 if (i2 < 0) 949 i2 += n; 950 951 d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22); 952 i1--; i2--; i3--; 953 954 d[i1] -= d[i2] ^ d[i3]; 955 i1--; i2--; i3--; 956 } 957 } 958 } 959 960 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq) 961 { 962 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 963 u8 *es, *ks, *data, *data2, *data_offset; 964 struct skcipher_request *req; 965 struct scatterlist *sg, *sg2, src, dst; 966 DECLARE_CRYPTO_WAIT(wait); 967 int i, r; 968 969 req = skcipher_request_alloc(elephant->tfm, GFP_NOIO); 970 es = kzalloc(16, GFP_NOIO); /* Key for AES */ 971 ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */ 972 973 if (!req || !es || !ks) { 974 r = -ENOMEM; 975 goto out; 976 } 977 978 *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size); 979 980 /* E(Ks, e(s)) */ 981 sg_init_one(&src, es, 16); 982 sg_init_one(&dst, ks, 16); 983 skcipher_request_set_crypt(req, &src, &dst, 16, NULL); 984 skcipher_request_set_callback(req, 0, crypto_req_done, &wait); 985 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 986 if (r) 987 goto out; 988 989 /* E(Ks, e'(s)) */ 990 es[15] = 0x80; 991 sg_init_one(&dst, &ks[16], 16); 992 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 993 if (r) 994 goto out; 995 996 sg = crypt_get_sg_data(cc, dmreq->sg_out); 997 data = kmap_local_page(sg_page(sg)); 998 data_offset = data + sg->offset; 999 1000 /* Cannot modify original bio, copy to sg_out and apply Elephant to it */ 1001 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 1002 sg2 = crypt_get_sg_data(cc, dmreq->sg_in); 1003 data2 = kmap_local_page(sg_page(sg2)); 1004 memcpy(data_offset, data2 + sg2->offset, cc->sector_size); 1005 kunmap_local(data2); 1006 } 1007 1008 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { 1009 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1010 diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1011 diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1012 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32)); 1013 } 1014 1015 for (i = 0; i < (cc->sector_size / 32); i++) 1016 crypto_xor(data_offset + i * 32, ks, 32); 1017 1018 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 1019 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1020 diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1021 diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1022 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32)); 1023 } 1024 1025 kunmap_local(data); 1026 out: 1027 kfree_sensitive(ks); 1028 kfree_sensitive(es); 1029 skcipher_request_free(req); 1030 return r; 1031 } 1032 1033 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv, 1034 struct dm_crypt_request *dmreq) 1035 { 1036 int r; 1037 1038 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 1039 r = crypt_iv_elephant(cc, dmreq); 1040 if (r) 1041 return r; 1042 } 1043 1044 return crypt_iv_eboiv_gen(cc, iv, dmreq); 1045 } 1046 1047 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv, 1048 struct dm_crypt_request *dmreq) 1049 { 1050 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) 1051 return crypt_iv_elephant(cc, dmreq); 1052 1053 return 0; 1054 } 1055 1056 static int crypt_iv_elephant_init(struct crypt_config *cc) 1057 { 1058 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 1059 int key_offset = cc->key_size - cc->key_extra_size; 1060 1061 return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size); 1062 } 1063 1064 static int crypt_iv_elephant_wipe(struct crypt_config *cc) 1065 { 1066 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 1067 u8 key[ELEPHANT_MAX_KEY_SIZE]; 1068 1069 memset(key, 0, cc->key_extra_size); 1070 return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size); 1071 } 1072 1073 static const struct crypt_iv_operations crypt_iv_plain_ops = { 1074 .generator = crypt_iv_plain_gen 1075 }; 1076 1077 static const struct crypt_iv_operations crypt_iv_plain64_ops = { 1078 .generator = crypt_iv_plain64_gen 1079 }; 1080 1081 static const struct crypt_iv_operations crypt_iv_plain64be_ops = { 1082 .generator = crypt_iv_plain64be_gen 1083 }; 1084 1085 static const struct crypt_iv_operations crypt_iv_essiv_ops = { 1086 .generator = crypt_iv_essiv_gen 1087 }; 1088 1089 static const struct crypt_iv_operations crypt_iv_benbi_ops = { 1090 .ctr = crypt_iv_benbi_ctr, 1091 .dtr = crypt_iv_benbi_dtr, 1092 .generator = crypt_iv_benbi_gen 1093 }; 1094 1095 static const struct crypt_iv_operations crypt_iv_null_ops = { 1096 .generator = crypt_iv_null_gen 1097 }; 1098 1099 static const struct crypt_iv_operations crypt_iv_lmk_ops = { 1100 .ctr = crypt_iv_lmk_ctr, 1101 .dtr = crypt_iv_lmk_dtr, 1102 .init = crypt_iv_lmk_init, 1103 .wipe = crypt_iv_lmk_wipe, 1104 .generator = crypt_iv_lmk_gen, 1105 .post = crypt_iv_lmk_post 1106 }; 1107 1108 static const struct crypt_iv_operations crypt_iv_tcw_ops = { 1109 .ctr = crypt_iv_tcw_ctr, 1110 .dtr = crypt_iv_tcw_dtr, 1111 .init = crypt_iv_tcw_init, 1112 .wipe = crypt_iv_tcw_wipe, 1113 .generator = crypt_iv_tcw_gen, 1114 .post = crypt_iv_tcw_post 1115 }; 1116 1117 static const struct crypt_iv_operations crypt_iv_random_ops = { 1118 .generator = crypt_iv_random_gen 1119 }; 1120 1121 static const struct crypt_iv_operations crypt_iv_eboiv_ops = { 1122 .ctr = crypt_iv_eboiv_ctr, 1123 .generator = crypt_iv_eboiv_gen 1124 }; 1125 1126 static const struct crypt_iv_operations crypt_iv_elephant_ops = { 1127 .ctr = crypt_iv_elephant_ctr, 1128 .dtr = crypt_iv_elephant_dtr, 1129 .init = crypt_iv_elephant_init, 1130 .wipe = crypt_iv_elephant_wipe, 1131 .generator = crypt_iv_elephant_gen, 1132 .post = crypt_iv_elephant_post 1133 }; 1134 1135 /* 1136 * Integrity extensions 1137 */ 1138 static bool crypt_integrity_aead(struct crypt_config *cc) 1139 { 1140 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags); 1141 } 1142 1143 static bool crypt_integrity_hmac(struct crypt_config *cc) 1144 { 1145 return crypt_integrity_aead(cc) && cc->key_mac_size; 1146 } 1147 1148 /* Get sg containing data */ 1149 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc, 1150 struct scatterlist *sg) 1151 { 1152 if (unlikely(crypt_integrity_aead(cc))) 1153 return &sg[2]; 1154 1155 return sg; 1156 } 1157 1158 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio) 1159 { 1160 struct bio_integrity_payload *bip; 1161 unsigned int tag_len; 1162 int ret; 1163 1164 if (!bio_sectors(bio) || !io->cc->tuple_size) 1165 return 0; 1166 1167 bip = bio_integrity_alloc(bio, GFP_NOIO, 1); 1168 if (IS_ERR(bip)) 1169 return PTR_ERR(bip); 1170 1171 tag_len = io->cc->tuple_size * (bio_sectors(bio) >> io->cc->sector_shift); 1172 1173 bip->bip_iter.bi_sector = bio->bi_iter.bi_sector; 1174 1175 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata), 1176 tag_len, offset_in_page(io->integrity_metadata)); 1177 if (unlikely(ret != tag_len)) 1178 return -ENOMEM; 1179 1180 return 0; 1181 } 1182 1183 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti) 1184 { 1185 #ifdef CONFIG_BLK_DEV_INTEGRITY 1186 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk); 1187 struct mapped_device *md = dm_table_get_md(ti->table); 1188 1189 /* We require an underlying device with non-PI metadata */ 1190 if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) { 1191 ti->error = "Integrity profile not supported."; 1192 return -EINVAL; 1193 } 1194 1195 if (bi->tuple_size < cc->used_tag_size) { 1196 ti->error = "Integrity profile tag size mismatch."; 1197 return -EINVAL; 1198 } 1199 cc->tuple_size = bi->tuple_size; 1200 if (1 << bi->interval_exp != cc->sector_size) { 1201 ti->error = "Integrity profile sector size mismatch."; 1202 return -EINVAL; 1203 } 1204 1205 if (crypt_integrity_aead(cc)) { 1206 cc->integrity_tag_size = cc->used_tag_size - cc->integrity_iv_size; 1207 DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md), 1208 cc->integrity_tag_size, cc->integrity_iv_size); 1209 1210 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) { 1211 ti->error = "Integrity AEAD auth tag size is not supported."; 1212 return -EINVAL; 1213 } 1214 } else if (cc->integrity_iv_size) 1215 DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md), 1216 cc->integrity_iv_size); 1217 1218 if ((cc->integrity_tag_size + cc->integrity_iv_size) > cc->tuple_size) { 1219 ti->error = "Not enough space for integrity tag in the profile."; 1220 return -EINVAL; 1221 } 1222 1223 return 0; 1224 #else 1225 ti->error = "Integrity profile not supported."; 1226 return -EINVAL; 1227 #endif 1228 } 1229 1230 static void crypt_convert_init(struct crypt_config *cc, 1231 struct convert_context *ctx, 1232 struct bio *bio_out, struct bio *bio_in, 1233 sector_t sector) 1234 { 1235 ctx->bio_in = bio_in; 1236 ctx->bio_out = bio_out; 1237 if (bio_in) 1238 ctx->iter_in = bio_in->bi_iter; 1239 if (bio_out) 1240 ctx->iter_out = bio_out->bi_iter; 1241 ctx->cc_sector = sector + cc->iv_offset; 1242 ctx->tag_offset = 0; 1243 init_completion(&ctx->restart); 1244 } 1245 1246 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc, 1247 void *req) 1248 { 1249 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start); 1250 } 1251 1252 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq) 1253 { 1254 return (void *)((char *)dmreq - cc->dmreq_start); 1255 } 1256 1257 static u8 *iv_of_dmreq(struct crypt_config *cc, 1258 struct dm_crypt_request *dmreq) 1259 { 1260 if (crypt_integrity_aead(cc)) 1261 return (u8 *)ALIGN((unsigned long)(dmreq + 1), 1262 crypto_aead_alignmask(any_tfm_aead(cc)) + 1); 1263 else 1264 return (u8 *)ALIGN((unsigned long)(dmreq + 1), 1265 crypto_skcipher_alignmask(any_tfm(cc)) + 1); 1266 } 1267 1268 static u8 *org_iv_of_dmreq(struct crypt_config *cc, 1269 struct dm_crypt_request *dmreq) 1270 { 1271 return iv_of_dmreq(cc, dmreq) + cc->iv_size; 1272 } 1273 1274 static __le64 *org_sector_of_dmreq(struct crypt_config *cc, 1275 struct dm_crypt_request *dmreq) 1276 { 1277 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size; 1278 1279 return (__le64 *) ptr; 1280 } 1281 1282 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc, 1283 struct dm_crypt_request *dmreq) 1284 { 1285 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + 1286 cc->iv_size + sizeof(uint64_t); 1287 1288 return (unsigned int *)ptr; 1289 } 1290 1291 static void *tag_from_dmreq(struct crypt_config *cc, 1292 struct dm_crypt_request *dmreq) 1293 { 1294 struct convert_context *ctx = dmreq->ctx; 1295 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); 1296 1297 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) * 1298 cc->tuple_size]; 1299 } 1300 1301 static void *iv_tag_from_dmreq(struct crypt_config *cc, 1302 struct dm_crypt_request *dmreq) 1303 { 1304 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size; 1305 } 1306 1307 static int crypt_convert_block_aead(struct crypt_config *cc, 1308 struct convert_context *ctx, 1309 struct aead_request *req, 1310 unsigned int tag_offset) 1311 { 1312 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); 1313 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); 1314 struct dm_crypt_request *dmreq; 1315 u8 *iv, *org_iv, *tag_iv, *tag; 1316 __le64 *sector; 1317 int r = 0; 1318 1319 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size); 1320 1321 /* Reject unexpected unaligned bio. */ 1322 if (unlikely(bv_in.bv_len & (cc->sector_size - 1))) 1323 return -EIO; 1324 1325 dmreq = dmreq_of_req(cc, req); 1326 dmreq->iv_sector = ctx->cc_sector; 1327 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) 1328 dmreq->iv_sector >>= cc->sector_shift; 1329 dmreq->ctx = ctx; 1330 1331 *org_tag_of_dmreq(cc, dmreq) = tag_offset; 1332 1333 sector = org_sector_of_dmreq(cc, dmreq); 1334 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset); 1335 1336 iv = iv_of_dmreq(cc, dmreq); 1337 org_iv = org_iv_of_dmreq(cc, dmreq); 1338 tag = tag_from_dmreq(cc, dmreq); 1339 tag_iv = iv_tag_from_dmreq(cc, dmreq); 1340 1341 /* AEAD request: 1342 * |----- AAD -------|------ DATA -------|-- AUTH TAG --| 1343 * | (authenticated) | (auth+encryption) | | 1344 * | sector_LE | IV | sector in/out | tag in/out | 1345 */ 1346 sg_init_table(dmreq->sg_in, 4); 1347 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t)); 1348 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size); 1349 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset); 1350 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size); 1351 1352 sg_init_table(dmreq->sg_out, 4); 1353 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t)); 1354 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size); 1355 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset); 1356 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size); 1357 1358 if (cc->iv_gen_ops) { 1359 /* For READs use IV stored in integrity metadata */ 1360 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) { 1361 memcpy(org_iv, tag_iv, cc->iv_size); 1362 } else { 1363 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq); 1364 if (r < 0) 1365 return r; 1366 /* Store generated IV in integrity metadata */ 1367 if (cc->integrity_iv_size) 1368 memcpy(tag_iv, org_iv, cc->iv_size); 1369 } 1370 /* Working copy of IV, to be modified in crypto API */ 1371 memcpy(iv, org_iv, cc->iv_size); 1372 } 1373 1374 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size); 1375 if (bio_data_dir(ctx->bio_in) == WRITE) { 1376 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out, 1377 cc->sector_size, iv); 1378 r = crypto_aead_encrypt(req); 1379 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->tuple_size) 1380 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0, 1381 cc->tuple_size - (cc->integrity_tag_size + cc->integrity_iv_size)); 1382 } else { 1383 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out, 1384 cc->sector_size + cc->integrity_tag_size, iv); 1385 r = crypto_aead_decrypt(req); 1386 } 1387 1388 if (r == -EBADMSG) { 1389 sector_t s = le64_to_cpu(*sector); 1390 1391 ctx->aead_failed = true; 1392 if (ctx->aead_recheck) { 1393 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu", 1394 ctx->bio_in->bi_bdev, s); 1395 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead", 1396 ctx->bio_in, s, 0); 1397 } 1398 } 1399 1400 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) 1401 r = cc->iv_gen_ops->post(cc, org_iv, dmreq); 1402 1403 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size); 1404 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size); 1405 1406 return r; 1407 } 1408 1409 static int crypt_convert_block_skcipher(struct crypt_config *cc, 1410 struct convert_context *ctx, 1411 struct skcipher_request *req, 1412 unsigned int tag_offset) 1413 { 1414 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); 1415 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); 1416 struct scatterlist *sg_in, *sg_out; 1417 struct dm_crypt_request *dmreq; 1418 u8 *iv, *org_iv, *tag_iv; 1419 __le64 *sector; 1420 int r = 0; 1421 1422 /* Reject unexpected unaligned bio. */ 1423 if (unlikely(bv_in.bv_len & (cc->sector_size - 1))) 1424 return -EIO; 1425 1426 dmreq = dmreq_of_req(cc, req); 1427 dmreq->iv_sector = ctx->cc_sector; 1428 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) 1429 dmreq->iv_sector >>= cc->sector_shift; 1430 dmreq->ctx = ctx; 1431 1432 *org_tag_of_dmreq(cc, dmreq) = tag_offset; 1433 1434 iv = iv_of_dmreq(cc, dmreq); 1435 org_iv = org_iv_of_dmreq(cc, dmreq); 1436 tag_iv = iv_tag_from_dmreq(cc, dmreq); 1437 1438 sector = org_sector_of_dmreq(cc, dmreq); 1439 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset); 1440 1441 /* For skcipher we use only the first sg item */ 1442 sg_in = &dmreq->sg_in[0]; 1443 sg_out = &dmreq->sg_out[0]; 1444 1445 sg_init_table(sg_in, 1); 1446 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset); 1447 1448 sg_init_table(sg_out, 1); 1449 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset); 1450 1451 if (cc->iv_gen_ops) { 1452 /* For READs use IV stored in integrity metadata */ 1453 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) { 1454 memcpy(org_iv, tag_iv, cc->integrity_iv_size); 1455 } else { 1456 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq); 1457 if (r < 0) 1458 return r; 1459 /* Data can be already preprocessed in generator */ 1460 if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags)) 1461 sg_in = sg_out; 1462 /* Store generated IV in integrity metadata */ 1463 if (cc->integrity_iv_size) 1464 memcpy(tag_iv, org_iv, cc->integrity_iv_size); 1465 } 1466 /* Working copy of IV, to be modified in crypto API */ 1467 memcpy(iv, org_iv, cc->iv_size); 1468 } 1469 1470 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv); 1471 1472 if (bio_data_dir(ctx->bio_in) == WRITE) 1473 r = crypto_skcipher_encrypt(req); 1474 else 1475 r = crypto_skcipher_decrypt(req); 1476 1477 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) 1478 r = cc->iv_gen_ops->post(cc, org_iv, dmreq); 1479 1480 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size); 1481 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size); 1482 1483 return r; 1484 } 1485 1486 static void kcryptd_async_done(void *async_req, int error); 1487 1488 static int crypt_alloc_req_skcipher(struct crypt_config *cc, 1489 struct convert_context *ctx) 1490 { 1491 unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1); 1492 1493 if (!ctx->r.req) { 1494 ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO); 1495 if (!ctx->r.req) 1496 return -ENOMEM; 1497 } 1498 1499 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]); 1500 1501 /* 1502 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs 1503 * requests if driver request queue is full. 1504 */ 1505 skcipher_request_set_callback(ctx->r.req, 1506 CRYPTO_TFM_REQ_MAY_BACKLOG, 1507 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req)); 1508 1509 return 0; 1510 } 1511 1512 static int crypt_alloc_req_aead(struct crypt_config *cc, 1513 struct convert_context *ctx) 1514 { 1515 if (!ctx->r.req_aead) { 1516 ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO); 1517 if (!ctx->r.req_aead) 1518 return -ENOMEM; 1519 } 1520 1521 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]); 1522 1523 /* 1524 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs 1525 * requests if driver request queue is full. 1526 */ 1527 aead_request_set_callback(ctx->r.req_aead, 1528 CRYPTO_TFM_REQ_MAY_BACKLOG, 1529 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead)); 1530 1531 return 0; 1532 } 1533 1534 static int crypt_alloc_req(struct crypt_config *cc, 1535 struct convert_context *ctx) 1536 { 1537 if (crypt_integrity_aead(cc)) 1538 return crypt_alloc_req_aead(cc, ctx); 1539 else 1540 return crypt_alloc_req_skcipher(cc, ctx); 1541 } 1542 1543 static void crypt_free_req_skcipher(struct crypt_config *cc, 1544 struct skcipher_request *req, struct bio *base_bio) 1545 { 1546 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); 1547 1548 if ((struct skcipher_request *)(io + 1) != req) 1549 mempool_free(req, &cc->req_pool); 1550 } 1551 1552 static void crypt_free_req_aead(struct crypt_config *cc, 1553 struct aead_request *req, struct bio *base_bio) 1554 { 1555 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); 1556 1557 if ((struct aead_request *)(io + 1) != req) 1558 mempool_free(req, &cc->req_pool); 1559 } 1560 1561 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio) 1562 { 1563 if (crypt_integrity_aead(cc)) 1564 crypt_free_req_aead(cc, req, base_bio); 1565 else 1566 crypt_free_req_skcipher(cc, req, base_bio); 1567 } 1568 1569 /* 1570 * Encrypt / decrypt data from one bio to another one (can be the same one) 1571 */ 1572 static blk_status_t crypt_convert(struct crypt_config *cc, 1573 struct convert_context *ctx, bool atomic, bool reset_pending) 1574 { 1575 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT; 1576 int r; 1577 1578 /* 1579 * if reset_pending is set we are dealing with the bio for the first time, 1580 * else we're continuing to work on the previous bio, so don't mess with 1581 * the cc_pending counter 1582 */ 1583 if (reset_pending) 1584 atomic_set(&ctx->cc_pending, 1); 1585 1586 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) { 1587 1588 r = crypt_alloc_req(cc, ctx); 1589 if (r) { 1590 complete(&ctx->restart); 1591 return BLK_STS_DEV_RESOURCE; 1592 } 1593 1594 atomic_inc(&ctx->cc_pending); 1595 1596 if (crypt_integrity_aead(cc)) 1597 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, ctx->tag_offset); 1598 else 1599 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, ctx->tag_offset); 1600 1601 switch (r) { 1602 /* 1603 * The request was queued by a crypto driver 1604 * but the driver request queue is full, let's wait. 1605 */ 1606 case -EBUSY: 1607 if (in_interrupt()) { 1608 if (try_wait_for_completion(&ctx->restart)) { 1609 /* 1610 * we don't have to block to wait for completion, 1611 * so proceed 1612 */ 1613 } else { 1614 /* 1615 * we can't wait for completion without blocking 1616 * exit and continue processing in a workqueue 1617 */ 1618 ctx->r.req = NULL; 1619 ctx->tag_offset++; 1620 ctx->cc_sector += sector_step; 1621 return BLK_STS_DEV_RESOURCE; 1622 } 1623 } else { 1624 wait_for_completion(&ctx->restart); 1625 } 1626 reinit_completion(&ctx->restart); 1627 fallthrough; 1628 /* 1629 * The request is queued and processed asynchronously, 1630 * completion function kcryptd_async_done() will be called. 1631 */ 1632 case -EINPROGRESS: 1633 ctx->r.req = NULL; 1634 ctx->tag_offset++; 1635 ctx->cc_sector += sector_step; 1636 continue; 1637 /* 1638 * The request was already processed (synchronously). 1639 */ 1640 case 0: 1641 atomic_dec(&ctx->cc_pending); 1642 ctx->cc_sector += sector_step; 1643 ctx->tag_offset++; 1644 if (!atomic) 1645 cond_resched(); 1646 continue; 1647 /* 1648 * There was a data integrity error. 1649 */ 1650 case -EBADMSG: 1651 atomic_dec(&ctx->cc_pending); 1652 return BLK_STS_PROTECTION; 1653 /* 1654 * There was an error while processing the request. 1655 */ 1656 default: 1657 atomic_dec(&ctx->cc_pending); 1658 return BLK_STS_IOERR; 1659 } 1660 } 1661 1662 return 0; 1663 } 1664 1665 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone); 1666 1667 /* 1668 * Generate a new unfragmented bio with the given size 1669 * This should never violate the device limitations (but if it did then block 1670 * core should split the bio as needed). 1671 * 1672 * This function may be called concurrently. If we allocate from the mempool 1673 * concurrently, there is a possibility of deadlock. For example, if we have 1674 * mempool of 256 pages, two processes, each wanting 256, pages allocate from 1675 * the mempool concurrently, it may deadlock in a situation where both processes 1676 * have allocated 128 pages and the mempool is exhausted. 1677 * 1678 * In order to avoid this scenario we allocate the pages under a mutex. 1679 * 1680 * In order to not degrade performance with excessive locking, we try 1681 * non-blocking allocations without a mutex first but on failure we fallback 1682 * to blocking allocations with a mutex. 1683 * 1684 * In order to reduce allocation overhead, we try to allocate compound pages in 1685 * the first pass. If they are not available, we fall back to the mempool. 1686 */ 1687 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size) 1688 { 1689 struct crypt_config *cc = io->cc; 1690 struct bio *clone; 1691 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1692 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM; 1693 unsigned int remaining_size; 1694 unsigned int order = MAX_PAGE_ORDER; 1695 1696 retry: 1697 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) 1698 mutex_lock(&cc->bio_alloc_lock); 1699 1700 clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf, 1701 GFP_NOIO, &cc->bs); 1702 clone->bi_private = io; 1703 clone->bi_end_io = crypt_endio; 1704 clone->bi_ioprio = io->base_bio->bi_ioprio; 1705 clone->bi_iter.bi_sector = cc->start + io->sector; 1706 1707 remaining_size = size; 1708 1709 while (remaining_size) { 1710 struct page *pages; 1711 unsigned size_to_add; 1712 unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT); 1713 order = min(order, remaining_order); 1714 1715 while (order > 0) { 1716 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) + 1717 (1 << order) > dm_crypt_pages_per_client)) 1718 goto decrease_order; 1719 pages = alloc_pages(gfp_mask 1720 | __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP, 1721 order); 1722 if (likely(pages != NULL)) { 1723 percpu_counter_add(&cc->n_allocated_pages, 1 << order); 1724 goto have_pages; 1725 } 1726 decrease_order: 1727 order--; 1728 } 1729 1730 pages = mempool_alloc(&cc->page_pool, gfp_mask); 1731 if (!pages) { 1732 crypt_free_buffer_pages(cc, clone); 1733 bio_put(clone); 1734 gfp_mask |= __GFP_DIRECT_RECLAIM; 1735 order = 0; 1736 goto retry; 1737 } 1738 1739 have_pages: 1740 size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size); 1741 __bio_add_page(clone, pages, size_to_add, 0); 1742 remaining_size -= size_to_add; 1743 } 1744 1745 /* Allocate space for integrity tags */ 1746 if (dm_crypt_integrity_io_alloc(io, clone)) { 1747 crypt_free_buffer_pages(cc, clone); 1748 bio_put(clone); 1749 clone = NULL; 1750 } 1751 1752 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) 1753 mutex_unlock(&cc->bio_alloc_lock); 1754 1755 return clone; 1756 } 1757 1758 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone) 1759 { 1760 struct folio_iter fi; 1761 1762 if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */ 1763 bio_for_each_folio_all(fi, clone) { 1764 if (folio_test_large(fi.folio)) { 1765 percpu_counter_sub(&cc->n_allocated_pages, 1766 1 << folio_order(fi.folio)); 1767 folio_put(fi.folio); 1768 } else { 1769 mempool_free(&fi.folio->page, &cc->page_pool); 1770 } 1771 } 1772 } 1773 } 1774 1775 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc, 1776 struct bio *bio, sector_t sector) 1777 { 1778 io->cc = cc; 1779 io->base_bio = bio; 1780 io->sector = sector; 1781 io->error = 0; 1782 io->ctx.aead_recheck = false; 1783 io->ctx.aead_failed = false; 1784 io->ctx.r.req = NULL; 1785 io->integrity_metadata = NULL; 1786 io->integrity_metadata_from_pool = false; 1787 atomic_set(&io->io_pending, 0); 1788 } 1789 1790 static void crypt_inc_pending(struct dm_crypt_io *io) 1791 { 1792 atomic_inc(&io->io_pending); 1793 } 1794 1795 static void kcryptd_queue_read(struct dm_crypt_io *io); 1796 1797 /* 1798 * One of the bios was finished. Check for completion of 1799 * the whole request and correctly clean up the buffer. 1800 */ 1801 static void crypt_dec_pending(struct dm_crypt_io *io) 1802 { 1803 struct crypt_config *cc = io->cc; 1804 struct bio *base_bio = io->base_bio; 1805 blk_status_t error = io->error; 1806 1807 if (!atomic_dec_and_test(&io->io_pending)) 1808 return; 1809 1810 if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) && 1811 cc->used_tag_size && bio_data_dir(base_bio) == READ) { 1812 io->ctx.aead_recheck = true; 1813 io->ctx.aead_failed = false; 1814 io->error = 0; 1815 kcryptd_queue_read(io); 1816 return; 1817 } 1818 1819 if (io->ctx.r.req) 1820 crypt_free_req(cc, io->ctx.r.req, base_bio); 1821 1822 if (unlikely(io->integrity_metadata_from_pool)) 1823 mempool_free(io->integrity_metadata, &io->cc->tag_pool); 1824 else 1825 kfree(io->integrity_metadata); 1826 1827 base_bio->bi_status = error; 1828 1829 bio_endio(base_bio); 1830 } 1831 1832 /* 1833 * kcryptd/kcryptd_io: 1834 * 1835 * Needed because it would be very unwise to do decryption in an 1836 * interrupt context. 1837 * 1838 * kcryptd performs the actual encryption or decryption. 1839 * 1840 * kcryptd_io performs the IO submission. 1841 * 1842 * They must be separated as otherwise the final stages could be 1843 * starved by new requests which can block in the first stages due 1844 * to memory allocation. 1845 * 1846 * The work is done per CPU global for all dm-crypt instances. 1847 * They should not depend on each other and do not block. 1848 */ 1849 static void crypt_endio(struct bio *clone) 1850 { 1851 struct dm_crypt_io *io = clone->bi_private; 1852 struct crypt_config *cc = io->cc; 1853 unsigned int rw = bio_data_dir(clone); 1854 blk_status_t error = clone->bi_status; 1855 1856 if (io->ctx.aead_recheck && !error) { 1857 kcryptd_queue_crypt(io); 1858 return; 1859 } 1860 1861 /* 1862 * free the processed pages 1863 */ 1864 if (rw == WRITE || io->ctx.aead_recheck) 1865 crypt_free_buffer_pages(cc, clone); 1866 1867 bio_put(clone); 1868 1869 if (rw == READ && !error) { 1870 kcryptd_queue_crypt(io); 1871 return; 1872 } 1873 1874 if (unlikely(error)) 1875 io->error = error; 1876 1877 crypt_dec_pending(io); 1878 } 1879 1880 #define CRYPT_MAP_READ_GFP GFP_NOWAIT 1881 1882 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp) 1883 { 1884 struct crypt_config *cc = io->cc; 1885 struct bio *clone; 1886 1887 if (io->ctx.aead_recheck) { 1888 if (!(gfp & __GFP_DIRECT_RECLAIM)) 1889 return 1; 1890 crypt_inc_pending(io); 1891 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size); 1892 if (unlikely(!clone)) { 1893 crypt_dec_pending(io); 1894 return 1; 1895 } 1896 crypt_convert_init(cc, &io->ctx, clone, clone, io->sector); 1897 io->saved_bi_iter = clone->bi_iter; 1898 dm_submit_bio_remap(io->base_bio, clone); 1899 return 0; 1900 } 1901 1902 /* 1903 * We need the original biovec array in order to decrypt the whole bio 1904 * data *afterwards* -- thanks to immutable biovecs we don't need to 1905 * worry about the block layer modifying the biovec array; so leverage 1906 * bio_alloc_clone(). 1907 */ 1908 clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs); 1909 if (!clone) 1910 return 1; 1911 1912 clone->bi_iter.bi_sector = cc->start + io->sector; 1913 clone->bi_private = io; 1914 clone->bi_end_io = crypt_endio; 1915 1916 crypt_inc_pending(io); 1917 1918 if (dm_crypt_integrity_io_alloc(io, clone)) { 1919 crypt_dec_pending(io); 1920 bio_put(clone); 1921 return 1; 1922 } 1923 1924 dm_submit_bio_remap(io->base_bio, clone); 1925 return 0; 1926 } 1927 1928 static void kcryptd_io_read_work(struct work_struct *work) 1929 { 1930 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 1931 1932 crypt_inc_pending(io); 1933 if (kcryptd_io_read(io, GFP_NOIO)) 1934 io->error = BLK_STS_RESOURCE; 1935 crypt_dec_pending(io); 1936 } 1937 1938 static void kcryptd_queue_read(struct dm_crypt_io *io) 1939 { 1940 struct crypt_config *cc = io->cc; 1941 1942 INIT_WORK(&io->work, kcryptd_io_read_work); 1943 queue_work(cc->io_queue, &io->work); 1944 } 1945 1946 static void kcryptd_io_write(struct dm_crypt_io *io) 1947 { 1948 struct bio *clone = io->ctx.bio_out; 1949 1950 dm_submit_bio_remap(io->base_bio, clone); 1951 } 1952 1953 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node) 1954 1955 static int dmcrypt_write(void *data) 1956 { 1957 struct crypt_config *cc = data; 1958 struct dm_crypt_io *io; 1959 1960 while (1) { 1961 struct rb_root write_tree; 1962 struct blk_plug plug; 1963 1964 spin_lock_irq(&cc->write_thread_lock); 1965 continue_locked: 1966 1967 if (!RB_EMPTY_ROOT(&cc->write_tree)) 1968 goto pop_from_list; 1969 1970 set_current_state(TASK_INTERRUPTIBLE); 1971 1972 spin_unlock_irq(&cc->write_thread_lock); 1973 1974 if (unlikely(kthread_should_stop())) { 1975 set_current_state(TASK_RUNNING); 1976 break; 1977 } 1978 1979 schedule(); 1980 1981 spin_lock_irq(&cc->write_thread_lock); 1982 goto continue_locked; 1983 1984 pop_from_list: 1985 write_tree = cc->write_tree; 1986 cc->write_tree = RB_ROOT; 1987 spin_unlock_irq(&cc->write_thread_lock); 1988 1989 BUG_ON(rb_parent(write_tree.rb_node)); 1990 1991 /* 1992 * Note: we cannot walk the tree here with rb_next because 1993 * the structures may be freed when kcryptd_io_write is called. 1994 */ 1995 blk_start_plug(&plug); 1996 do { 1997 io = crypt_io_from_node(rb_first(&write_tree)); 1998 rb_erase(&io->rb_node, &write_tree); 1999 kcryptd_io_write(io); 2000 cond_resched(); 2001 } while (!RB_EMPTY_ROOT(&write_tree)); 2002 blk_finish_plug(&plug); 2003 } 2004 return 0; 2005 } 2006 2007 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async) 2008 { 2009 struct bio *clone = io->ctx.bio_out; 2010 struct crypt_config *cc = io->cc; 2011 unsigned long flags; 2012 sector_t sector; 2013 struct rb_node **rbp, *parent; 2014 2015 if (unlikely(io->error)) { 2016 crypt_free_buffer_pages(cc, clone); 2017 bio_put(clone); 2018 crypt_dec_pending(io); 2019 return; 2020 } 2021 2022 /* crypt_convert should have filled the clone bio */ 2023 BUG_ON(io->ctx.iter_out.bi_size); 2024 2025 if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) || 2026 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) { 2027 dm_submit_bio_remap(io->base_bio, clone); 2028 return; 2029 } 2030 2031 spin_lock_irqsave(&cc->write_thread_lock, flags); 2032 if (RB_EMPTY_ROOT(&cc->write_tree)) 2033 wake_up_process(cc->write_thread); 2034 rbp = &cc->write_tree.rb_node; 2035 parent = NULL; 2036 sector = io->sector; 2037 while (*rbp) { 2038 parent = *rbp; 2039 if (sector < crypt_io_from_node(parent)->sector) 2040 rbp = &(*rbp)->rb_left; 2041 else 2042 rbp = &(*rbp)->rb_right; 2043 } 2044 rb_link_node(&io->rb_node, parent, rbp); 2045 rb_insert_color(&io->rb_node, &cc->write_tree); 2046 spin_unlock_irqrestore(&cc->write_thread_lock, flags); 2047 } 2048 2049 static bool kcryptd_crypt_write_inline(struct crypt_config *cc, 2050 struct convert_context *ctx) 2051 2052 { 2053 if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags)) 2054 return false; 2055 2056 /* 2057 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering 2058 * constraints so they do not need to be issued inline by 2059 * kcryptd_crypt_write_convert(). 2060 */ 2061 switch (bio_op(ctx->bio_in)) { 2062 case REQ_OP_WRITE: 2063 case REQ_OP_WRITE_ZEROES: 2064 return true; 2065 default: 2066 return false; 2067 } 2068 } 2069 2070 static void kcryptd_crypt_write_continue(struct work_struct *work) 2071 { 2072 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 2073 struct crypt_config *cc = io->cc; 2074 struct convert_context *ctx = &io->ctx; 2075 int crypt_finished; 2076 blk_status_t r; 2077 2078 wait_for_completion(&ctx->restart); 2079 reinit_completion(&ctx->restart); 2080 2081 r = crypt_convert(cc, &io->ctx, false, false); 2082 if (r) 2083 io->error = r; 2084 crypt_finished = atomic_dec_and_test(&ctx->cc_pending); 2085 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) { 2086 /* Wait for completion signaled by kcryptd_async_done() */ 2087 wait_for_completion(&ctx->restart); 2088 crypt_finished = 1; 2089 } 2090 2091 /* Encryption was already finished, submit io now */ 2092 if (crypt_finished) 2093 kcryptd_crypt_write_io_submit(io, 0); 2094 2095 crypt_dec_pending(io); 2096 } 2097 2098 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io) 2099 { 2100 struct crypt_config *cc = io->cc; 2101 struct convert_context *ctx = &io->ctx; 2102 struct bio *clone; 2103 int crypt_finished; 2104 blk_status_t r; 2105 2106 /* 2107 * Prevent io from disappearing until this function completes. 2108 */ 2109 crypt_inc_pending(io); 2110 crypt_convert_init(cc, ctx, NULL, io->base_bio, io->sector); 2111 2112 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size); 2113 if (unlikely(!clone)) { 2114 io->error = BLK_STS_IOERR; 2115 goto dec; 2116 } 2117 2118 io->ctx.bio_out = clone; 2119 io->ctx.iter_out = clone->bi_iter; 2120 2121 if (crypt_integrity_aead(cc)) { 2122 bio_copy_data(clone, io->base_bio); 2123 io->ctx.bio_in = clone; 2124 io->ctx.iter_in = clone->bi_iter; 2125 } 2126 2127 crypt_inc_pending(io); 2128 r = crypt_convert(cc, ctx, 2129 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true); 2130 /* 2131 * Crypto API backlogged the request, because its queue was full 2132 * and we're in softirq context, so continue from a workqueue 2133 * (TODO: is it actually possible to be in softirq in the write path?) 2134 */ 2135 if (r == BLK_STS_DEV_RESOURCE) { 2136 INIT_WORK(&io->work, kcryptd_crypt_write_continue); 2137 queue_work(cc->crypt_queue, &io->work); 2138 return; 2139 } 2140 if (r) 2141 io->error = r; 2142 crypt_finished = atomic_dec_and_test(&ctx->cc_pending); 2143 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) { 2144 /* Wait for completion signaled by kcryptd_async_done() */ 2145 wait_for_completion(&ctx->restart); 2146 crypt_finished = 1; 2147 } 2148 2149 /* Encryption was already finished, submit io now */ 2150 if (crypt_finished) 2151 kcryptd_crypt_write_io_submit(io, 0); 2152 2153 dec: 2154 crypt_dec_pending(io); 2155 } 2156 2157 static void kcryptd_crypt_read_done(struct dm_crypt_io *io) 2158 { 2159 if (io->ctx.aead_recheck) { 2160 if (!io->error) { 2161 io->ctx.bio_in->bi_iter = io->saved_bi_iter; 2162 bio_copy_data(io->base_bio, io->ctx.bio_in); 2163 } 2164 crypt_free_buffer_pages(io->cc, io->ctx.bio_in); 2165 bio_put(io->ctx.bio_in); 2166 } 2167 crypt_dec_pending(io); 2168 } 2169 2170 static void kcryptd_crypt_read_continue(struct work_struct *work) 2171 { 2172 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 2173 struct crypt_config *cc = io->cc; 2174 blk_status_t r; 2175 2176 wait_for_completion(&io->ctx.restart); 2177 reinit_completion(&io->ctx.restart); 2178 2179 r = crypt_convert(cc, &io->ctx, false, false); 2180 if (r) 2181 io->error = r; 2182 2183 if (atomic_dec_and_test(&io->ctx.cc_pending)) 2184 kcryptd_crypt_read_done(io); 2185 2186 crypt_dec_pending(io); 2187 } 2188 2189 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io) 2190 { 2191 struct crypt_config *cc = io->cc; 2192 blk_status_t r; 2193 2194 crypt_inc_pending(io); 2195 2196 if (io->ctx.aead_recheck) { 2197 r = crypt_convert(cc, &io->ctx, 2198 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true); 2199 } else { 2200 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio, 2201 io->sector); 2202 2203 r = crypt_convert(cc, &io->ctx, 2204 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true); 2205 } 2206 /* 2207 * Crypto API backlogged the request, because its queue was full 2208 * and we're in softirq context, so continue from a workqueue 2209 */ 2210 if (r == BLK_STS_DEV_RESOURCE) { 2211 INIT_WORK(&io->work, kcryptd_crypt_read_continue); 2212 queue_work(cc->crypt_queue, &io->work); 2213 return; 2214 } 2215 if (r) 2216 io->error = r; 2217 2218 if (atomic_dec_and_test(&io->ctx.cc_pending)) 2219 kcryptd_crypt_read_done(io); 2220 2221 crypt_dec_pending(io); 2222 } 2223 2224 static void kcryptd_async_done(void *data, int error) 2225 { 2226 struct dm_crypt_request *dmreq = data; 2227 struct convert_context *ctx = dmreq->ctx; 2228 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); 2229 struct crypt_config *cc = io->cc; 2230 2231 /* 2232 * A request from crypto driver backlog is going to be processed now, 2233 * finish the completion and continue in crypt_convert(). 2234 * (Callback will be called for the second time for this request.) 2235 */ 2236 if (error == -EINPROGRESS) { 2237 complete(&ctx->restart); 2238 return; 2239 } 2240 2241 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post) 2242 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq); 2243 2244 if (error == -EBADMSG) { 2245 sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)); 2246 2247 ctx->aead_failed = true; 2248 if (ctx->aead_recheck) { 2249 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu", 2250 ctx->bio_in->bi_bdev, s); 2251 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead", 2252 ctx->bio_in, s, 0); 2253 } 2254 io->error = BLK_STS_PROTECTION; 2255 } else if (error < 0) 2256 io->error = BLK_STS_IOERR; 2257 2258 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio); 2259 2260 if (!atomic_dec_and_test(&ctx->cc_pending)) 2261 return; 2262 2263 /* 2264 * The request is fully completed: for inline writes, let 2265 * kcryptd_crypt_write_convert() do the IO submission. 2266 */ 2267 if (bio_data_dir(io->base_bio) == READ) { 2268 kcryptd_crypt_read_done(io); 2269 return; 2270 } 2271 2272 if (kcryptd_crypt_write_inline(cc, ctx)) { 2273 complete(&ctx->restart); 2274 return; 2275 } 2276 2277 kcryptd_crypt_write_io_submit(io, 1); 2278 } 2279 2280 static void kcryptd_crypt(struct work_struct *work) 2281 { 2282 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 2283 2284 if (bio_data_dir(io->base_bio) == READ) 2285 kcryptd_crypt_read_convert(io); 2286 else 2287 kcryptd_crypt_write_convert(io); 2288 } 2289 2290 static void kcryptd_queue_crypt(struct dm_crypt_io *io) 2291 { 2292 struct crypt_config *cc = io->cc; 2293 2294 if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) || 2295 (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) { 2296 /* 2297 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context. 2298 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but 2299 * it is being executed with irqs disabled. 2300 */ 2301 if (in_hardirq() || irqs_disabled()) { 2302 INIT_WORK(&io->work, kcryptd_crypt); 2303 queue_work(system_bh_wq, &io->work); 2304 return; 2305 } else { 2306 kcryptd_crypt(&io->work); 2307 return; 2308 } 2309 } 2310 2311 INIT_WORK(&io->work, kcryptd_crypt); 2312 queue_work(cc->crypt_queue, &io->work); 2313 } 2314 2315 static void crypt_free_tfms_aead(struct crypt_config *cc) 2316 { 2317 if (!cc->cipher_tfm.tfms_aead) 2318 return; 2319 2320 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) { 2321 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]); 2322 cc->cipher_tfm.tfms_aead[0] = NULL; 2323 } 2324 2325 kfree(cc->cipher_tfm.tfms_aead); 2326 cc->cipher_tfm.tfms_aead = NULL; 2327 } 2328 2329 static void crypt_free_tfms_skcipher(struct crypt_config *cc) 2330 { 2331 unsigned int i; 2332 2333 if (!cc->cipher_tfm.tfms) 2334 return; 2335 2336 for (i = 0; i < cc->tfms_count; i++) 2337 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) { 2338 crypto_free_skcipher(cc->cipher_tfm.tfms[i]); 2339 cc->cipher_tfm.tfms[i] = NULL; 2340 } 2341 2342 kfree(cc->cipher_tfm.tfms); 2343 cc->cipher_tfm.tfms = NULL; 2344 } 2345 2346 static void crypt_free_tfms(struct crypt_config *cc) 2347 { 2348 if (crypt_integrity_aead(cc)) 2349 crypt_free_tfms_aead(cc); 2350 else 2351 crypt_free_tfms_skcipher(cc); 2352 } 2353 2354 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode) 2355 { 2356 unsigned int i; 2357 int err; 2358 2359 cc->cipher_tfm.tfms = kcalloc(cc->tfms_count, 2360 sizeof(struct crypto_skcipher *), 2361 GFP_KERNEL); 2362 if (!cc->cipher_tfm.tfms) 2363 return -ENOMEM; 2364 2365 for (i = 0; i < cc->tfms_count; i++) { 2366 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 2367 CRYPTO_ALG_ALLOCATES_MEMORY); 2368 if (IS_ERR(cc->cipher_tfm.tfms[i])) { 2369 err = PTR_ERR(cc->cipher_tfm.tfms[i]); 2370 crypt_free_tfms(cc); 2371 return err; 2372 } 2373 } 2374 2375 /* 2376 * dm-crypt performance can vary greatly depending on which crypto 2377 * algorithm implementation is used. Help people debug performance 2378 * problems by logging the ->cra_driver_name. 2379 */ 2380 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode, 2381 crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name); 2382 return 0; 2383 } 2384 2385 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode) 2386 { 2387 int err; 2388 2389 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL); 2390 if (!cc->cipher_tfm.tfms) 2391 return -ENOMEM; 2392 2393 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 2394 CRYPTO_ALG_ALLOCATES_MEMORY); 2395 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) { 2396 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]); 2397 crypt_free_tfms(cc); 2398 return err; 2399 } 2400 2401 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode, 2402 crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name); 2403 return 0; 2404 } 2405 2406 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode) 2407 { 2408 if (crypt_integrity_aead(cc)) 2409 return crypt_alloc_tfms_aead(cc, ciphermode); 2410 else 2411 return crypt_alloc_tfms_skcipher(cc, ciphermode); 2412 } 2413 2414 static unsigned int crypt_subkey_size(struct crypt_config *cc) 2415 { 2416 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count); 2417 } 2418 2419 static unsigned int crypt_authenckey_size(struct crypt_config *cc) 2420 { 2421 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param)); 2422 } 2423 2424 /* 2425 * If AEAD is composed like authenc(hmac(sha256),xts(aes)), 2426 * the key must be for some reason in special format. 2427 * This funcion converts cc->key to this special format. 2428 */ 2429 static void crypt_copy_authenckey(char *p, const void *key, 2430 unsigned int enckeylen, unsigned int authkeylen) 2431 { 2432 struct crypto_authenc_key_param *param; 2433 struct rtattr *rta; 2434 2435 rta = (struct rtattr *)p; 2436 param = RTA_DATA(rta); 2437 param->enckeylen = cpu_to_be32(enckeylen); 2438 rta->rta_len = RTA_LENGTH(sizeof(*param)); 2439 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM; 2440 p += RTA_SPACE(sizeof(*param)); 2441 memcpy(p, key + enckeylen, authkeylen); 2442 p += authkeylen; 2443 memcpy(p, key, enckeylen); 2444 } 2445 2446 static int crypt_setkey(struct crypt_config *cc) 2447 { 2448 unsigned int subkey_size; 2449 int err = 0, i, r; 2450 2451 /* Ignore extra keys (which are used for IV etc) */ 2452 subkey_size = crypt_subkey_size(cc); 2453 2454 if (crypt_integrity_hmac(cc)) { 2455 if (subkey_size < cc->key_mac_size) 2456 return -EINVAL; 2457 2458 crypt_copy_authenckey(cc->authenc_key, cc->key, 2459 subkey_size - cc->key_mac_size, 2460 cc->key_mac_size); 2461 } 2462 2463 for (i = 0; i < cc->tfms_count; i++) { 2464 if (crypt_integrity_hmac(cc)) 2465 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i], 2466 cc->authenc_key, crypt_authenckey_size(cc)); 2467 else if (crypt_integrity_aead(cc)) 2468 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i], 2469 cc->key + (i * subkey_size), 2470 subkey_size); 2471 else 2472 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i], 2473 cc->key + (i * subkey_size), 2474 subkey_size); 2475 if (r) 2476 err = r; 2477 } 2478 2479 if (crypt_integrity_hmac(cc)) 2480 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc)); 2481 2482 return err; 2483 } 2484 2485 #ifdef CONFIG_KEYS 2486 2487 static bool contains_whitespace(const char *str) 2488 { 2489 while (*str) 2490 if (isspace(*str++)) 2491 return true; 2492 return false; 2493 } 2494 2495 static int set_key_user(struct crypt_config *cc, struct key *key) 2496 { 2497 const struct user_key_payload *ukp; 2498 2499 ukp = user_key_payload_locked(key); 2500 if (!ukp) 2501 return -EKEYREVOKED; 2502 2503 if (cc->key_size != ukp->datalen) 2504 return -EINVAL; 2505 2506 memcpy(cc->key, ukp->data, cc->key_size); 2507 2508 return 0; 2509 } 2510 2511 static int set_key_encrypted(struct crypt_config *cc, struct key *key) 2512 { 2513 const struct encrypted_key_payload *ekp; 2514 2515 ekp = key->payload.data[0]; 2516 if (!ekp) 2517 return -EKEYREVOKED; 2518 2519 if (cc->key_size != ekp->decrypted_datalen) 2520 return -EINVAL; 2521 2522 memcpy(cc->key, ekp->decrypted_data, cc->key_size); 2523 2524 return 0; 2525 } 2526 2527 static int set_key_trusted(struct crypt_config *cc, struct key *key) 2528 { 2529 const struct trusted_key_payload *tkp; 2530 2531 tkp = key->payload.data[0]; 2532 if (!tkp) 2533 return -EKEYREVOKED; 2534 2535 if (cc->key_size != tkp->key_len) 2536 return -EINVAL; 2537 2538 memcpy(cc->key, tkp->key, cc->key_size); 2539 2540 return 0; 2541 } 2542 2543 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) 2544 { 2545 char *new_key_string, *key_desc; 2546 int ret; 2547 struct key_type *type; 2548 struct key *key; 2549 int (*set_key)(struct crypt_config *cc, struct key *key); 2550 2551 /* 2552 * Reject key_string with whitespace. dm core currently lacks code for 2553 * proper whitespace escaping in arguments on DM_TABLE_STATUS path. 2554 */ 2555 if (contains_whitespace(key_string)) { 2556 DMERR("whitespace chars not allowed in key string"); 2557 return -EINVAL; 2558 } 2559 2560 /* look for next ':' separating key_type from key_description */ 2561 key_desc = strchr(key_string, ':'); 2562 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1)) 2563 return -EINVAL; 2564 2565 if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) { 2566 type = &key_type_logon; 2567 set_key = set_key_user; 2568 } else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) { 2569 type = &key_type_user; 2570 set_key = set_key_user; 2571 } else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) && 2572 !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) { 2573 type = &key_type_encrypted; 2574 set_key = set_key_encrypted; 2575 } else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) && 2576 !strncmp(key_string, "trusted:", key_desc - key_string + 1)) { 2577 type = &key_type_trusted; 2578 set_key = set_key_trusted; 2579 } else { 2580 return -EINVAL; 2581 } 2582 2583 new_key_string = kstrdup(key_string, GFP_KERNEL); 2584 if (!new_key_string) 2585 return -ENOMEM; 2586 2587 key = request_key(type, key_desc + 1, NULL); 2588 if (IS_ERR(key)) { 2589 ret = PTR_ERR(key); 2590 goto free_new_key_string; 2591 } 2592 2593 down_read(&key->sem); 2594 ret = set_key(cc, key); 2595 up_read(&key->sem); 2596 key_put(key); 2597 if (ret < 0) 2598 goto free_new_key_string; 2599 2600 /* clear the flag since following operations may invalidate previously valid key */ 2601 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2602 2603 ret = crypt_setkey(cc); 2604 if (ret) 2605 goto free_new_key_string; 2606 2607 set_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2608 kfree_sensitive(cc->key_string); 2609 cc->key_string = new_key_string; 2610 return 0; 2611 2612 free_new_key_string: 2613 kfree_sensitive(new_key_string); 2614 return ret; 2615 } 2616 2617 static int get_key_size(char **key_string) 2618 { 2619 char *colon, dummy; 2620 int ret; 2621 2622 if (*key_string[0] != ':') 2623 return strlen(*key_string) >> 1; 2624 2625 /* look for next ':' in key string */ 2626 colon = strpbrk(*key_string + 1, ":"); 2627 if (!colon) 2628 return -EINVAL; 2629 2630 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':') 2631 return -EINVAL; 2632 2633 *key_string = colon; 2634 2635 /* remaining key string should be :<logon|user>:<key_desc> */ 2636 2637 return ret; 2638 } 2639 2640 #else 2641 2642 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) 2643 { 2644 return -EINVAL; 2645 } 2646 2647 static int get_key_size(char **key_string) 2648 { 2649 return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1); 2650 } 2651 2652 #endif /* CONFIG_KEYS */ 2653 2654 static int crypt_set_key(struct crypt_config *cc, char *key) 2655 { 2656 int r = -EINVAL; 2657 int key_string_len = strlen(key); 2658 2659 /* Hyphen (which gives a key_size of zero) means there is no key. */ 2660 if (!cc->key_size && strcmp(key, "-")) 2661 goto out; 2662 2663 /* ':' means the key is in kernel keyring, short-circuit normal key processing */ 2664 if (key[0] == ':') { 2665 r = crypt_set_keyring_key(cc, key + 1); 2666 goto out; 2667 } 2668 2669 /* clear the flag since following operations may invalidate previously valid key */ 2670 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2671 2672 /* wipe references to any kernel keyring key */ 2673 kfree_sensitive(cc->key_string); 2674 cc->key_string = NULL; 2675 2676 /* Decode key from its hex representation. */ 2677 if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0) 2678 goto out; 2679 2680 r = crypt_setkey(cc); 2681 if (!r) 2682 set_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2683 2684 out: 2685 /* Hex key string not needed after here, so wipe it. */ 2686 memset(key, '0', key_string_len); 2687 2688 return r; 2689 } 2690 2691 static int crypt_wipe_key(struct crypt_config *cc) 2692 { 2693 int r; 2694 2695 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2696 get_random_bytes(&cc->key, cc->key_size); 2697 2698 /* Wipe IV private keys */ 2699 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) { 2700 r = cc->iv_gen_ops->wipe(cc); 2701 if (r) 2702 return r; 2703 } 2704 2705 kfree_sensitive(cc->key_string); 2706 cc->key_string = NULL; 2707 r = crypt_setkey(cc); 2708 memset(&cc->key, 0, cc->key_size * sizeof(u8)); 2709 2710 return r; 2711 } 2712 2713 static void crypt_calculate_pages_per_client(void) 2714 { 2715 unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100; 2716 2717 if (!dm_crypt_clients_n) 2718 return; 2719 2720 pages /= dm_crypt_clients_n; 2721 if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT) 2722 pages = DM_CRYPT_MIN_PAGES_PER_CLIENT; 2723 dm_crypt_pages_per_client = pages; 2724 } 2725 2726 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data) 2727 { 2728 struct crypt_config *cc = pool_data; 2729 struct page *page; 2730 2731 /* 2732 * Note, percpu_counter_read_positive() may over (and under) estimate 2733 * the current usage by at most (batch - 1) * num_online_cpus() pages, 2734 * but avoids potential spinlock contention of an exact result. 2735 */ 2736 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) && 2737 likely(gfp_mask & __GFP_NORETRY)) 2738 return NULL; 2739 2740 page = alloc_page(gfp_mask); 2741 if (likely(page != NULL)) 2742 percpu_counter_add(&cc->n_allocated_pages, 1); 2743 2744 return page; 2745 } 2746 2747 static void crypt_page_free(void *page, void *pool_data) 2748 { 2749 struct crypt_config *cc = pool_data; 2750 2751 __free_page(page); 2752 percpu_counter_sub(&cc->n_allocated_pages, 1); 2753 } 2754 2755 static void crypt_dtr(struct dm_target *ti) 2756 { 2757 struct crypt_config *cc = ti->private; 2758 2759 ti->private = NULL; 2760 2761 if (!cc) 2762 return; 2763 2764 if (cc->write_thread) 2765 kthread_stop(cc->write_thread); 2766 2767 if (cc->io_queue) 2768 destroy_workqueue(cc->io_queue); 2769 if (cc->crypt_queue) 2770 destroy_workqueue(cc->crypt_queue); 2771 2772 if (cc->workqueue_id) 2773 ida_free(&workqueue_ida, cc->workqueue_id); 2774 2775 crypt_free_tfms(cc); 2776 2777 bioset_exit(&cc->bs); 2778 2779 mempool_exit(&cc->page_pool); 2780 mempool_exit(&cc->req_pool); 2781 mempool_exit(&cc->tag_pool); 2782 2783 WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0); 2784 percpu_counter_destroy(&cc->n_allocated_pages); 2785 2786 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) 2787 cc->iv_gen_ops->dtr(cc); 2788 2789 if (cc->dev) 2790 dm_put_device(ti, cc->dev); 2791 2792 kfree_sensitive(cc->cipher_string); 2793 kfree_sensitive(cc->key_string); 2794 kfree_sensitive(cc->cipher_auth); 2795 kfree_sensitive(cc->authenc_key); 2796 2797 mutex_destroy(&cc->bio_alloc_lock); 2798 2799 /* Must zero key material before freeing */ 2800 kfree_sensitive(cc); 2801 2802 spin_lock(&dm_crypt_clients_lock); 2803 WARN_ON(!dm_crypt_clients_n); 2804 dm_crypt_clients_n--; 2805 crypt_calculate_pages_per_client(); 2806 spin_unlock(&dm_crypt_clients_lock); 2807 2808 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1); 2809 } 2810 2811 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode) 2812 { 2813 struct crypt_config *cc = ti->private; 2814 2815 if (crypt_integrity_aead(cc)) 2816 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc)); 2817 else 2818 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc)); 2819 2820 if (cc->iv_size) 2821 /* at least a 64 bit sector number should fit in our buffer */ 2822 cc->iv_size = max(cc->iv_size, 2823 (unsigned int)(sizeof(u64) / sizeof(u8))); 2824 else if (ivmode) { 2825 DMWARN("Selected cipher does not support IVs"); 2826 ivmode = NULL; 2827 } 2828 2829 /* Choose ivmode, see comments at iv code. */ 2830 if (ivmode == NULL) 2831 cc->iv_gen_ops = NULL; 2832 else if (strcmp(ivmode, "plain") == 0) 2833 cc->iv_gen_ops = &crypt_iv_plain_ops; 2834 else if (strcmp(ivmode, "plain64") == 0) 2835 cc->iv_gen_ops = &crypt_iv_plain64_ops; 2836 else if (strcmp(ivmode, "plain64be") == 0) 2837 cc->iv_gen_ops = &crypt_iv_plain64be_ops; 2838 else if (strcmp(ivmode, "essiv") == 0) 2839 cc->iv_gen_ops = &crypt_iv_essiv_ops; 2840 else if (strcmp(ivmode, "benbi") == 0) 2841 cc->iv_gen_ops = &crypt_iv_benbi_ops; 2842 else if (strcmp(ivmode, "null") == 0) 2843 cc->iv_gen_ops = &crypt_iv_null_ops; 2844 else if (strcmp(ivmode, "eboiv") == 0) 2845 cc->iv_gen_ops = &crypt_iv_eboiv_ops; 2846 else if (strcmp(ivmode, "elephant") == 0) { 2847 cc->iv_gen_ops = &crypt_iv_elephant_ops; 2848 cc->key_parts = 2; 2849 cc->key_extra_size = cc->key_size / 2; 2850 if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE) 2851 return -EINVAL; 2852 set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags); 2853 } else if (strcmp(ivmode, "lmk") == 0) { 2854 cc->iv_gen_ops = &crypt_iv_lmk_ops; 2855 /* 2856 * Version 2 and 3 is recognised according 2857 * to length of provided multi-key string. 2858 * If present (version 3), last key is used as IV seed. 2859 * All keys (including IV seed) are always the same size. 2860 */ 2861 if (cc->key_size % cc->key_parts) { 2862 cc->key_parts++; 2863 cc->key_extra_size = cc->key_size / cc->key_parts; 2864 } 2865 } else if (strcmp(ivmode, "tcw") == 0) { 2866 cc->iv_gen_ops = &crypt_iv_tcw_ops; 2867 cc->key_parts += 2; /* IV + whitening */ 2868 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE; 2869 } else if (strcmp(ivmode, "random") == 0) { 2870 cc->iv_gen_ops = &crypt_iv_random_ops; 2871 /* Need storage space in integrity fields. */ 2872 cc->integrity_iv_size = cc->iv_size; 2873 } else { 2874 ti->error = "Invalid IV mode"; 2875 return -EINVAL; 2876 } 2877 2878 return 0; 2879 } 2880 2881 /* 2882 * Workaround to parse HMAC algorithm from AEAD crypto API spec. 2883 * The HMAC is needed to calculate tag size (HMAC digest size). 2884 * This should be probably done by crypto-api calls (once available...) 2885 */ 2886 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api) 2887 { 2888 char *start, *end, *mac_alg = NULL; 2889 struct crypto_ahash *mac; 2890 2891 if (!strstarts(cipher_api, "authenc(")) 2892 return 0; 2893 2894 start = strchr(cipher_api, '('); 2895 end = strchr(cipher_api, ','); 2896 if (!start || !end || ++start > end) 2897 return -EINVAL; 2898 2899 mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL); 2900 if (!mac_alg) 2901 return -ENOMEM; 2902 2903 mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 2904 kfree(mac_alg); 2905 2906 if (IS_ERR(mac)) 2907 return PTR_ERR(mac); 2908 2909 if (!test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags)) 2910 cc->key_mac_size = crypto_ahash_digestsize(mac); 2911 crypto_free_ahash(mac); 2912 2913 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL); 2914 if (!cc->authenc_key) 2915 return -ENOMEM; 2916 2917 return 0; 2918 } 2919 2920 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key, 2921 char **ivmode, char **ivopts) 2922 { 2923 struct crypt_config *cc = ti->private; 2924 char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME]; 2925 int ret = -EINVAL; 2926 2927 cc->tfms_count = 1; 2928 2929 /* 2930 * New format (capi: prefix) 2931 * capi:cipher_api_spec-iv:ivopts 2932 */ 2933 tmp = &cipher_in[strlen("capi:")]; 2934 2935 /* Separate IV options if present, it can contain another '-' in hash name */ 2936 *ivopts = strrchr(tmp, ':'); 2937 if (*ivopts) { 2938 **ivopts = '\0'; 2939 (*ivopts)++; 2940 } 2941 /* Parse IV mode */ 2942 *ivmode = strrchr(tmp, '-'); 2943 if (*ivmode) { 2944 **ivmode = '\0'; 2945 (*ivmode)++; 2946 } 2947 /* The rest is crypto API spec */ 2948 cipher_api = tmp; 2949 2950 /* Alloc AEAD, can be used only in new format. */ 2951 if (crypt_integrity_aead(cc)) { 2952 ret = crypt_ctr_auth_cipher(cc, cipher_api); 2953 if (ret < 0) { 2954 ti->error = "Invalid AEAD cipher spec"; 2955 return ret; 2956 } 2957 } 2958 2959 if (*ivmode && !strcmp(*ivmode, "lmk")) 2960 cc->tfms_count = 64; 2961 2962 if (*ivmode && !strcmp(*ivmode, "essiv")) { 2963 if (!*ivopts) { 2964 ti->error = "Digest algorithm missing for ESSIV mode"; 2965 return -EINVAL; 2966 } 2967 ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)", 2968 cipher_api, *ivopts); 2969 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) { 2970 ti->error = "Cannot allocate cipher string"; 2971 return -ENOMEM; 2972 } 2973 cipher_api = buf; 2974 } 2975 2976 cc->key_parts = cc->tfms_count; 2977 2978 /* Allocate cipher */ 2979 ret = crypt_alloc_tfms(cc, cipher_api); 2980 if (ret < 0) { 2981 ti->error = "Error allocating crypto tfm"; 2982 return ret; 2983 } 2984 2985 if (crypt_integrity_aead(cc)) 2986 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc)); 2987 else 2988 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc)); 2989 2990 return 0; 2991 } 2992 2993 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key, 2994 char **ivmode, char **ivopts) 2995 { 2996 struct crypt_config *cc = ti->private; 2997 char *tmp, *cipher, *chainmode, *keycount; 2998 char *cipher_api = NULL; 2999 int ret = -EINVAL; 3000 char dummy; 3001 3002 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) { 3003 ti->error = "Bad cipher specification"; 3004 return -EINVAL; 3005 } 3006 3007 /* 3008 * Legacy dm-crypt cipher specification 3009 * cipher[:keycount]-mode-iv:ivopts 3010 */ 3011 tmp = cipher_in; 3012 keycount = strsep(&tmp, "-"); 3013 cipher = strsep(&keycount, ":"); 3014 3015 if (!keycount) 3016 cc->tfms_count = 1; 3017 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 || 3018 !is_power_of_2(cc->tfms_count)) { 3019 ti->error = "Bad cipher key count specification"; 3020 return -EINVAL; 3021 } 3022 cc->key_parts = cc->tfms_count; 3023 3024 chainmode = strsep(&tmp, "-"); 3025 *ivmode = strsep(&tmp, ":"); 3026 *ivopts = tmp; 3027 3028 /* 3029 * For compatibility with the original dm-crypt mapping format, if 3030 * only the cipher name is supplied, use cbc-plain. 3031 */ 3032 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) { 3033 chainmode = "cbc"; 3034 *ivmode = "plain"; 3035 } 3036 3037 if (strcmp(chainmode, "ecb") && !*ivmode) { 3038 ti->error = "IV mechanism required"; 3039 return -EINVAL; 3040 } 3041 3042 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL); 3043 if (!cipher_api) 3044 goto bad_mem; 3045 3046 if (*ivmode && !strcmp(*ivmode, "essiv")) { 3047 if (!*ivopts) { 3048 ti->error = "Digest algorithm missing for ESSIV mode"; 3049 kfree(cipher_api); 3050 return -EINVAL; 3051 } 3052 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME, 3053 "essiv(%s(%s),%s)", chainmode, cipher, *ivopts); 3054 } else { 3055 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME, 3056 "%s(%s)", chainmode, cipher); 3057 } 3058 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) { 3059 kfree(cipher_api); 3060 goto bad_mem; 3061 } 3062 3063 /* Allocate cipher */ 3064 ret = crypt_alloc_tfms(cc, cipher_api); 3065 if (ret < 0) { 3066 ti->error = "Error allocating crypto tfm"; 3067 kfree(cipher_api); 3068 return ret; 3069 } 3070 kfree(cipher_api); 3071 3072 return 0; 3073 bad_mem: 3074 ti->error = "Cannot allocate cipher strings"; 3075 return -ENOMEM; 3076 } 3077 3078 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key) 3079 { 3080 struct crypt_config *cc = ti->private; 3081 char *ivmode = NULL, *ivopts = NULL; 3082 int ret; 3083 3084 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL); 3085 if (!cc->cipher_string) { 3086 ti->error = "Cannot allocate cipher strings"; 3087 return -ENOMEM; 3088 } 3089 3090 if (strstarts(cipher_in, "capi:")) 3091 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts); 3092 else 3093 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts); 3094 if (ret) 3095 return ret; 3096 3097 /* Initialize IV */ 3098 ret = crypt_ctr_ivmode(ti, ivmode); 3099 if (ret < 0) 3100 return ret; 3101 3102 /* Initialize and set key */ 3103 ret = crypt_set_key(cc, key); 3104 if (ret < 0) { 3105 ti->error = "Error decoding and setting key"; 3106 return ret; 3107 } 3108 3109 /* Allocate IV */ 3110 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) { 3111 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts); 3112 if (ret < 0) { 3113 ti->error = "Error creating IV"; 3114 return ret; 3115 } 3116 } 3117 3118 /* Initialize IV (set keys for ESSIV etc) */ 3119 if (cc->iv_gen_ops && cc->iv_gen_ops->init) { 3120 ret = cc->iv_gen_ops->init(cc); 3121 if (ret < 0) { 3122 ti->error = "Error initialising IV"; 3123 return ret; 3124 } 3125 } 3126 3127 /* wipe the kernel key payload copy */ 3128 if (cc->key_string) 3129 memset(cc->key, 0, cc->key_size * sizeof(u8)); 3130 3131 return ret; 3132 } 3133 3134 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv) 3135 { 3136 struct crypt_config *cc = ti->private; 3137 struct dm_arg_set as; 3138 static const struct dm_arg _args[] = { 3139 {0, 9, "Invalid number of feature args"}, 3140 }; 3141 unsigned int opt_params, val; 3142 const char *opt_string, *sval; 3143 char dummy; 3144 int ret; 3145 3146 /* Optional parameters */ 3147 as.argc = argc; 3148 as.argv = argv; 3149 3150 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 3151 if (ret) 3152 return ret; 3153 3154 while (opt_params--) { 3155 opt_string = dm_shift_arg(&as); 3156 if (!opt_string) { 3157 ti->error = "Not enough feature arguments"; 3158 return -EINVAL; 3159 } 3160 3161 if (!strcasecmp(opt_string, "allow_discards")) 3162 ti->num_discard_bios = 1; 3163 3164 else if (!strcasecmp(opt_string, "same_cpu_crypt")) 3165 set_bit(DM_CRYPT_SAME_CPU, &cc->flags); 3166 else if (!strcasecmp(opt_string, "high_priority")) 3167 set_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags); 3168 3169 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus")) 3170 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); 3171 else if (!strcasecmp(opt_string, "no_read_workqueue")) 3172 set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags); 3173 else if (!strcasecmp(opt_string, "no_write_workqueue")) 3174 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); 3175 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) { 3176 if (val == 0 || val > MAX_TAG_SIZE) { 3177 ti->error = "Invalid integrity arguments"; 3178 return -EINVAL; 3179 } 3180 cc->used_tag_size = val; 3181 sval = strchr(opt_string + strlen("integrity:"), ':') + 1; 3182 if (!strcasecmp(sval, "aead")) { 3183 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags); 3184 } else if (strcasecmp(sval, "none")) { 3185 ti->error = "Unknown integrity profile"; 3186 return -EINVAL; 3187 } 3188 3189 cc->cipher_auth = kstrdup(sval, GFP_KERNEL); 3190 if (!cc->cipher_auth) 3191 return -ENOMEM; 3192 } else if (sscanf(opt_string, "integrity_key_size:%u%c", &val, &dummy) == 1) { 3193 if (!val) { 3194 ti->error = "Invalid integrity_key_size argument"; 3195 return -EINVAL; 3196 } 3197 cc->key_mac_size = val; 3198 set_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags); 3199 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) { 3200 if (cc->sector_size < (1 << SECTOR_SHIFT) || 3201 cc->sector_size > 4096 || 3202 (cc->sector_size & (cc->sector_size - 1))) { 3203 ti->error = "Invalid feature value for sector_size"; 3204 return -EINVAL; 3205 } 3206 if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) { 3207 ti->error = "Device size is not multiple of sector_size feature"; 3208 return -EINVAL; 3209 } 3210 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT; 3211 } else if (!strcasecmp(opt_string, "iv_large_sectors")) 3212 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags); 3213 else { 3214 ti->error = "Invalid feature arguments"; 3215 return -EINVAL; 3216 } 3217 } 3218 3219 return 0; 3220 } 3221 3222 #ifdef CONFIG_BLK_DEV_ZONED 3223 static int crypt_report_zones(struct dm_target *ti, 3224 struct dm_report_zones_args *args, unsigned int nr_zones) 3225 { 3226 struct crypt_config *cc = ti->private; 3227 3228 return dm_report_zones(cc->dev->bdev, cc->start, 3229 cc->start + dm_target_offset(ti, args->next_sector), 3230 args, nr_zones); 3231 } 3232 #else 3233 #define crypt_report_zones NULL 3234 #endif 3235 3236 /* 3237 * Construct an encryption mapping: 3238 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start> 3239 */ 3240 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) 3241 { 3242 struct crypt_config *cc; 3243 const char *devname = dm_table_device_name(ti->table); 3244 int key_size, wq_id; 3245 unsigned int align_mask; 3246 unsigned int common_wq_flags; 3247 unsigned long long tmpll; 3248 int ret; 3249 size_t iv_size_padding, additional_req_size; 3250 char dummy; 3251 3252 if (argc < 5) { 3253 ti->error = "Not enough arguments"; 3254 return -EINVAL; 3255 } 3256 3257 key_size = get_key_size(&argv[1]); 3258 if (key_size < 0) { 3259 ti->error = "Cannot parse key size"; 3260 return -EINVAL; 3261 } 3262 3263 cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL); 3264 if (!cc) { 3265 ti->error = "Cannot allocate encryption context"; 3266 return -ENOMEM; 3267 } 3268 cc->key_size = key_size; 3269 cc->sector_size = (1 << SECTOR_SHIFT); 3270 cc->sector_shift = 0; 3271 3272 ti->private = cc; 3273 3274 spin_lock(&dm_crypt_clients_lock); 3275 dm_crypt_clients_n++; 3276 crypt_calculate_pages_per_client(); 3277 spin_unlock(&dm_crypt_clients_lock); 3278 3279 ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL); 3280 if (ret < 0) 3281 goto bad; 3282 3283 /* Optional parameters need to be read before cipher constructor */ 3284 if (argc > 5) { 3285 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]); 3286 if (ret) 3287 goto bad; 3288 } 3289 3290 ret = crypt_ctr_cipher(ti, argv[0], argv[1]); 3291 if (ret < 0) 3292 goto bad; 3293 3294 if (crypt_integrity_aead(cc)) { 3295 cc->dmreq_start = sizeof(struct aead_request); 3296 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc)); 3297 align_mask = crypto_aead_alignmask(any_tfm_aead(cc)); 3298 } else { 3299 cc->dmreq_start = sizeof(struct skcipher_request); 3300 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc)); 3301 align_mask = crypto_skcipher_alignmask(any_tfm(cc)); 3302 } 3303 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request)); 3304 3305 if (align_mask < CRYPTO_MINALIGN) { 3306 /* Allocate the padding exactly */ 3307 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request)) 3308 & align_mask; 3309 } else { 3310 /* 3311 * If the cipher requires greater alignment than kmalloc 3312 * alignment, we don't know the exact position of the 3313 * initialization vector. We must assume worst case. 3314 */ 3315 iv_size_padding = align_mask; 3316 } 3317 3318 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */ 3319 additional_req_size = sizeof(struct dm_crypt_request) + 3320 iv_size_padding + cc->iv_size + 3321 cc->iv_size + 3322 sizeof(uint64_t) + 3323 sizeof(unsigned int); 3324 3325 ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size); 3326 if (ret) { 3327 ti->error = "Cannot allocate crypt request mempool"; 3328 goto bad; 3329 } 3330 3331 cc->per_bio_data_size = ti->per_io_data_size = 3332 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size, 3333 ARCH_DMA_MINALIGN); 3334 3335 ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc); 3336 if (ret) { 3337 ti->error = "Cannot allocate page mempool"; 3338 goto bad; 3339 } 3340 3341 ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS); 3342 if (ret) { 3343 ti->error = "Cannot allocate crypt bioset"; 3344 goto bad; 3345 } 3346 3347 mutex_init(&cc->bio_alloc_lock); 3348 3349 ret = -EINVAL; 3350 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) || 3351 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) { 3352 ti->error = "Invalid iv_offset sector"; 3353 goto bad; 3354 } 3355 cc->iv_offset = tmpll; 3356 3357 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev); 3358 if (ret) { 3359 ti->error = "Device lookup failed"; 3360 goto bad; 3361 } 3362 3363 ret = -EINVAL; 3364 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) { 3365 ti->error = "Invalid device sector"; 3366 goto bad; 3367 } 3368 cc->start = tmpll; 3369 3370 if (bdev_is_zoned(cc->dev->bdev)) { 3371 /* 3372 * For zoned block devices, we need to preserve the issuer write 3373 * ordering. To do so, disable write workqueues and force inline 3374 * encryption completion. 3375 */ 3376 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); 3377 set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags); 3378 3379 /* 3380 * All zone append writes to a zone of a zoned block device will 3381 * have the same BIO sector, the start of the zone. When the 3382 * cypher IV mode uses sector values, all data targeting a 3383 * zone will be encrypted using the first sector numbers of the 3384 * zone. This will not result in write errors but will 3385 * cause most reads to fail as reads will use the sector values 3386 * for the actual data locations, resulting in IV mismatch. 3387 * To avoid this problem, ask DM core to emulate zone append 3388 * operations with regular writes. 3389 */ 3390 DMDEBUG("Zone append operations will be emulated"); 3391 ti->emulate_zone_append = true; 3392 } 3393 3394 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) { 3395 ret = crypt_integrity_ctr(cc, ti); 3396 if (ret) 3397 goto bad; 3398 3399 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->tuple_size; 3400 if (!cc->tag_pool_max_sectors) 3401 cc->tag_pool_max_sectors = 1; 3402 3403 ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS, 3404 cc->tag_pool_max_sectors * cc->tuple_size); 3405 if (ret) { 3406 ti->error = "Cannot allocate integrity tags mempool"; 3407 goto bad; 3408 } 3409 3410 cc->tag_pool_max_sectors <<= cc->sector_shift; 3411 } 3412 3413 wq_id = ida_alloc_min(&workqueue_ida, 1, GFP_KERNEL); 3414 if (wq_id < 0) { 3415 ti->error = "Couldn't get workqueue id"; 3416 ret = wq_id; 3417 goto bad; 3418 } 3419 cc->workqueue_id = wq_id; 3420 3421 ret = -ENOMEM; 3422 common_wq_flags = WQ_MEM_RECLAIM | WQ_SYSFS; 3423 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) 3424 common_wq_flags |= WQ_HIGHPRI; 3425 3426 cc->io_queue = alloc_workqueue("kcryptd_io-%s-%d", common_wq_flags, 1, devname, wq_id); 3427 if (!cc->io_queue) { 3428 ti->error = "Couldn't create kcryptd io queue"; 3429 goto bad; 3430 } 3431 3432 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) { 3433 cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d", 3434 common_wq_flags | WQ_CPU_INTENSIVE, 3435 1, devname, wq_id); 3436 } else { 3437 /* 3438 * While crypt_queue is certainly CPU intensive, the use of 3439 * WQ_CPU_INTENSIVE is meaningless with WQ_UNBOUND. 3440 */ 3441 cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d", 3442 common_wq_flags | WQ_UNBOUND, 3443 num_online_cpus(), devname, wq_id); 3444 } 3445 if (!cc->crypt_queue) { 3446 ti->error = "Couldn't create kcryptd queue"; 3447 goto bad; 3448 } 3449 3450 spin_lock_init(&cc->write_thread_lock); 3451 cc->write_tree = RB_ROOT; 3452 3453 cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname); 3454 if (IS_ERR(cc->write_thread)) { 3455 ret = PTR_ERR(cc->write_thread); 3456 cc->write_thread = NULL; 3457 ti->error = "Couldn't spawn write thread"; 3458 goto bad; 3459 } 3460 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) 3461 set_user_nice(cc->write_thread, MIN_NICE); 3462 3463 ti->num_flush_bios = 1; 3464 ti->limit_swap_bios = true; 3465 ti->accounts_remapped_io = true; 3466 3467 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1); 3468 return 0; 3469 3470 bad: 3471 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0); 3472 crypt_dtr(ti); 3473 return ret; 3474 } 3475 3476 static int crypt_map(struct dm_target *ti, struct bio *bio) 3477 { 3478 struct dm_crypt_io *io; 3479 struct crypt_config *cc = ti->private; 3480 unsigned max_sectors; 3481 3482 /* 3483 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues. 3484 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight 3485 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters 3486 */ 3487 if (unlikely(bio->bi_opf & REQ_PREFLUSH || 3488 bio_op(bio) == REQ_OP_DISCARD)) { 3489 bio_set_dev(bio, cc->dev->bdev); 3490 if (bio_sectors(bio)) 3491 bio->bi_iter.bi_sector = cc->start + 3492 dm_target_offset(ti, bio->bi_iter.bi_sector); 3493 return DM_MAPIO_REMAPPED; 3494 } 3495 3496 /* 3497 * Check if bio is too large, split as needed. 3498 */ 3499 max_sectors = get_max_request_size(cc, bio_data_dir(bio) == WRITE); 3500 if (unlikely(bio_sectors(bio) > max_sectors)) 3501 dm_accept_partial_bio(bio, max_sectors); 3502 3503 /* 3504 * Ensure that bio is a multiple of internal sector encryption size 3505 * and is aligned to this size as defined in IO hints. 3506 */ 3507 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0)) 3508 return DM_MAPIO_KILL; 3509 3510 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1))) 3511 return DM_MAPIO_KILL; 3512 3513 io = dm_per_bio_data(bio, cc->per_bio_data_size); 3514 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector)); 3515 3516 if (cc->tuple_size) { 3517 unsigned int tag_len = cc->tuple_size * (bio_sectors(bio) >> cc->sector_shift); 3518 3519 if (unlikely(tag_len > KMALLOC_MAX_SIZE)) 3520 io->integrity_metadata = NULL; 3521 else 3522 io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3523 3524 if (unlikely(!io->integrity_metadata)) { 3525 if (bio_sectors(bio) > cc->tag_pool_max_sectors) 3526 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors); 3527 io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO); 3528 io->integrity_metadata_from_pool = true; 3529 } 3530 } 3531 3532 if (crypt_integrity_aead(cc)) 3533 io->ctx.r.req_aead = (struct aead_request *)(io + 1); 3534 else 3535 io->ctx.r.req = (struct skcipher_request *)(io + 1); 3536 3537 if (bio_data_dir(io->base_bio) == READ) { 3538 if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP)) 3539 kcryptd_queue_read(io); 3540 } else 3541 kcryptd_queue_crypt(io); 3542 3543 return DM_MAPIO_SUBMITTED; 3544 } 3545 3546 static char hex2asc(unsigned char c) 3547 { 3548 return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27); 3549 } 3550 3551 static void crypt_status(struct dm_target *ti, status_type_t type, 3552 unsigned int status_flags, char *result, unsigned int maxlen) 3553 { 3554 struct crypt_config *cc = ti->private; 3555 unsigned int i, sz = 0; 3556 int num_feature_args = 0; 3557 3558 switch (type) { 3559 case STATUSTYPE_INFO: 3560 result[0] = '\0'; 3561 break; 3562 3563 case STATUSTYPE_TABLE: 3564 DMEMIT("%s ", cc->cipher_string); 3565 3566 if (cc->key_size > 0) { 3567 if (cc->key_string) 3568 DMEMIT(":%u:%s", cc->key_size, cc->key_string); 3569 else { 3570 for (i = 0; i < cc->key_size; i++) { 3571 DMEMIT("%c%c", hex2asc(cc->key[i] >> 4), 3572 hex2asc(cc->key[i] & 0xf)); 3573 } 3574 } 3575 } else 3576 DMEMIT("-"); 3577 3578 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset, 3579 cc->dev->name, (unsigned long long)cc->start); 3580 3581 num_feature_args += !!ti->num_discard_bios; 3582 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags); 3583 num_feature_args += test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags); 3584 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); 3585 num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags); 3586 num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); 3587 num_feature_args += !!cc->used_tag_size; 3588 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT); 3589 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags); 3590 num_feature_args += test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags); 3591 if (num_feature_args) { 3592 DMEMIT(" %d", num_feature_args); 3593 if (ti->num_discard_bios) 3594 DMEMIT(" allow_discards"); 3595 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) 3596 DMEMIT(" same_cpu_crypt"); 3597 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) 3598 DMEMIT(" high_priority"); 3599 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) 3600 DMEMIT(" submit_from_crypt_cpus"); 3601 if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) 3602 DMEMIT(" no_read_workqueue"); 3603 if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) 3604 DMEMIT(" no_write_workqueue"); 3605 if (cc->used_tag_size) 3606 DMEMIT(" integrity:%u:%s", cc->used_tag_size, cc->cipher_auth); 3607 if (cc->sector_size != (1 << SECTOR_SHIFT)) 3608 DMEMIT(" sector_size:%d", cc->sector_size); 3609 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) 3610 DMEMIT(" iv_large_sectors"); 3611 if (test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags)) 3612 DMEMIT(" integrity_key_size:%u", cc->key_mac_size); 3613 } 3614 break; 3615 3616 case STATUSTYPE_IMA: 3617 DMEMIT_TARGET_NAME_VERSION(ti->type); 3618 DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n'); 3619 DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n'); 3620 DMEMIT(",high_priority=%c", test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags) ? 'y' : 'n'); 3621 DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ? 3622 'y' : 'n'); 3623 DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ? 3624 'y' : 'n'); 3625 DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ? 3626 'y' : 'n'); 3627 DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ? 3628 'y' : 'n'); 3629 3630 if (cc->used_tag_size) 3631 DMEMIT(",integrity_tag_size=%u,cipher_auth=%s", 3632 cc->used_tag_size, cc->cipher_auth); 3633 if (cc->sector_size != (1 << SECTOR_SHIFT)) 3634 DMEMIT(",sector_size=%d", cc->sector_size); 3635 if (cc->cipher_string) 3636 DMEMIT(",cipher_string=%s", cc->cipher_string); 3637 3638 DMEMIT(",key_size=%u", cc->key_size); 3639 DMEMIT(",key_parts=%u", cc->key_parts); 3640 DMEMIT(",key_extra_size=%u", cc->key_extra_size); 3641 DMEMIT(",key_mac_size=%u", cc->key_mac_size); 3642 DMEMIT(";"); 3643 break; 3644 } 3645 } 3646 3647 static void crypt_postsuspend(struct dm_target *ti) 3648 { 3649 struct crypt_config *cc = ti->private; 3650 3651 set_bit(DM_CRYPT_SUSPENDED, &cc->flags); 3652 } 3653 3654 static int crypt_preresume(struct dm_target *ti) 3655 { 3656 struct crypt_config *cc = ti->private; 3657 3658 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) { 3659 DMERR("aborting resume - crypt key is not set."); 3660 return -EAGAIN; 3661 } 3662 3663 return 0; 3664 } 3665 3666 static void crypt_resume(struct dm_target *ti) 3667 { 3668 struct crypt_config *cc = ti->private; 3669 3670 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags); 3671 } 3672 3673 /* Message interface 3674 * key set <key> 3675 * key wipe 3676 */ 3677 static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv, 3678 char *result, unsigned int maxlen) 3679 { 3680 struct crypt_config *cc = ti->private; 3681 int key_size, ret = -EINVAL; 3682 3683 if (argc < 2) 3684 goto error; 3685 3686 if (!strcasecmp(argv[0], "key")) { 3687 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) { 3688 DMWARN("not suspended during key manipulation."); 3689 return -EINVAL; 3690 } 3691 if (argc == 3 && !strcasecmp(argv[1], "set")) { 3692 /* The key size may not be changed. */ 3693 key_size = get_key_size(&argv[2]); 3694 if (key_size < 0 || cc->key_size != key_size) { 3695 memset(argv[2], '0', strlen(argv[2])); 3696 return -EINVAL; 3697 } 3698 3699 ret = crypt_set_key(cc, argv[2]); 3700 if (ret) 3701 return ret; 3702 if (cc->iv_gen_ops && cc->iv_gen_ops->init) 3703 ret = cc->iv_gen_ops->init(cc); 3704 /* wipe the kernel key payload copy */ 3705 if (cc->key_string) 3706 memset(cc->key, 0, cc->key_size * sizeof(u8)); 3707 return ret; 3708 } 3709 if (argc == 2 && !strcasecmp(argv[1], "wipe")) 3710 return crypt_wipe_key(cc); 3711 } 3712 3713 error: 3714 DMWARN("unrecognised message received."); 3715 return -EINVAL; 3716 } 3717 3718 static int crypt_iterate_devices(struct dm_target *ti, 3719 iterate_devices_callout_fn fn, void *data) 3720 { 3721 struct crypt_config *cc = ti->private; 3722 3723 return fn(ti, cc->dev, cc->start, ti->len, data); 3724 } 3725 3726 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits) 3727 { 3728 struct crypt_config *cc = ti->private; 3729 3730 limits->logical_block_size = 3731 max_t(unsigned int, limits->logical_block_size, cc->sector_size); 3732 limits->physical_block_size = 3733 max_t(unsigned int, limits->physical_block_size, cc->sector_size); 3734 limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size); 3735 limits->dma_alignment = limits->logical_block_size - 1; 3736 } 3737 3738 static struct target_type crypt_target = { 3739 .name = "crypt", 3740 .version = {1, 28, 0}, 3741 .module = THIS_MODULE, 3742 .ctr = crypt_ctr, 3743 .dtr = crypt_dtr, 3744 .features = DM_TARGET_ZONED_HM, 3745 .report_zones = crypt_report_zones, 3746 .map = crypt_map, 3747 .status = crypt_status, 3748 .postsuspend = crypt_postsuspend, 3749 .preresume = crypt_preresume, 3750 .resume = crypt_resume, 3751 .message = crypt_message, 3752 .iterate_devices = crypt_iterate_devices, 3753 .io_hints = crypt_io_hints, 3754 }; 3755 module_dm(crypt); 3756 3757 MODULE_AUTHOR("Jana Saout <jana@saout.de>"); 3758 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption"); 3759 MODULE_LICENSE("GPL"); 3760