xref: /linux/drivers/md/dm-crypt.c (revision 98366c20a275e957416e9516db5dcb7195b4e101)
1 /*
2  * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/crypto.h>
18 #include <linux/workqueue.h>
19 #include <linux/backing-dev.h>
20 #include <asm/atomic.h>
21 #include <linux/scatterlist.h>
22 #include <asm/page.h>
23 #include <asm/unaligned.h>
24 
25 #include "dm.h"
26 
27 #define DM_MSG_PREFIX "crypt"
28 #define MESG_STR(x) x, sizeof(x)
29 
30 /*
31  * per bio private data
32  */
33 struct dm_crypt_io {
34 	struct dm_target *target;
35 	struct bio *base_bio;
36 	struct work_struct work;
37 	atomic_t pending;
38 	int error;
39 };
40 
41 /*
42  * context holding the current state of a multi-part conversion
43  */
44 struct convert_context {
45 	struct bio *bio_in;
46 	struct bio *bio_out;
47 	unsigned int offset_in;
48 	unsigned int offset_out;
49 	unsigned int idx_in;
50 	unsigned int idx_out;
51 	sector_t sector;
52 	int write;
53 };
54 
55 struct crypt_config;
56 
57 struct crypt_iv_operations {
58 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
59 		   const char *opts);
60 	void (*dtr)(struct crypt_config *cc);
61 	const char *(*status)(struct crypt_config *cc);
62 	int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
63 };
64 
65 /*
66  * Crypt: maps a linear range of a block device
67  * and encrypts / decrypts at the same time.
68  */
69 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
70 struct crypt_config {
71 	struct dm_dev *dev;
72 	sector_t start;
73 
74 	/*
75 	 * pool for per bio private data and
76 	 * for encryption buffer pages
77 	 */
78 	mempool_t *io_pool;
79 	mempool_t *page_pool;
80 	struct bio_set *bs;
81 
82 	struct workqueue_struct *io_queue;
83 	struct workqueue_struct *crypt_queue;
84 	/*
85 	 * crypto related data
86 	 */
87 	struct crypt_iv_operations *iv_gen_ops;
88 	char *iv_mode;
89 	union {
90 		struct crypto_cipher *essiv_tfm;
91 		int benbi_shift;
92 	} iv_gen_private;
93 	sector_t iv_offset;
94 	unsigned int iv_size;
95 
96 	char cipher[CRYPTO_MAX_ALG_NAME];
97 	char chainmode[CRYPTO_MAX_ALG_NAME];
98 	struct crypto_blkcipher *tfm;
99 	unsigned long flags;
100 	unsigned int key_size;
101 	u8 key[0];
102 };
103 
104 #define MIN_IOS        16
105 #define MIN_POOL_PAGES 32
106 #define MIN_BIO_PAGES  8
107 
108 static struct kmem_cache *_crypt_io_pool;
109 
110 static void clone_init(struct dm_crypt_io *, struct bio *);
111 
112 /*
113  * Different IV generation algorithms:
114  *
115  * plain: the initial vector is the 32-bit little-endian version of the sector
116  *        number, padded with zeros if necessary.
117  *
118  * essiv: "encrypted sector|salt initial vector", the sector number is
119  *        encrypted with the bulk cipher using a salt as key. The salt
120  *        should be derived from the bulk cipher's key via hashing.
121  *
122  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
123  *        (needed for LRW-32-AES and possible other narrow block modes)
124  *
125  * null: the initial vector is always zero.  Provides compatibility with
126  *       obsolete loop_fish2 devices.  Do not use for new devices.
127  *
128  * plumb: unimplemented, see:
129  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
130  */
131 
132 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
133 {
134 	memset(iv, 0, cc->iv_size);
135 	*(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
136 
137 	return 0;
138 }
139 
140 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
141 			      const char *opts)
142 {
143 	struct crypto_cipher *essiv_tfm;
144 	struct crypto_hash *hash_tfm;
145 	struct hash_desc desc;
146 	struct scatterlist sg;
147 	unsigned int saltsize;
148 	u8 *salt;
149 	int err;
150 
151 	if (opts == NULL) {
152 		ti->error = "Digest algorithm missing for ESSIV mode";
153 		return -EINVAL;
154 	}
155 
156 	/* Hash the cipher key with the given hash algorithm */
157 	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
158 	if (IS_ERR(hash_tfm)) {
159 		ti->error = "Error initializing ESSIV hash";
160 		return PTR_ERR(hash_tfm);
161 	}
162 
163 	saltsize = crypto_hash_digestsize(hash_tfm);
164 	salt = kmalloc(saltsize, GFP_KERNEL);
165 	if (salt == NULL) {
166 		ti->error = "Error kmallocing salt storage in ESSIV";
167 		crypto_free_hash(hash_tfm);
168 		return -ENOMEM;
169 	}
170 
171 	sg_init_one(&sg, cc->key, cc->key_size);
172 	desc.tfm = hash_tfm;
173 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
174 	err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
175 	crypto_free_hash(hash_tfm);
176 
177 	if (err) {
178 		ti->error = "Error calculating hash in ESSIV";
179 		kfree(salt);
180 		return err;
181 	}
182 
183 	/* Setup the essiv_tfm with the given salt */
184 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
185 	if (IS_ERR(essiv_tfm)) {
186 		ti->error = "Error allocating crypto tfm for ESSIV";
187 		kfree(salt);
188 		return PTR_ERR(essiv_tfm);
189 	}
190 	if (crypto_cipher_blocksize(essiv_tfm) !=
191 	    crypto_blkcipher_ivsize(cc->tfm)) {
192 		ti->error = "Block size of ESSIV cipher does "
193 			    "not match IV size of block cipher";
194 		crypto_free_cipher(essiv_tfm);
195 		kfree(salt);
196 		return -EINVAL;
197 	}
198 	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
199 	if (err) {
200 		ti->error = "Failed to set key for ESSIV cipher";
201 		crypto_free_cipher(essiv_tfm);
202 		kfree(salt);
203 		return err;
204 	}
205 	kfree(salt);
206 
207 	cc->iv_gen_private.essiv_tfm = essiv_tfm;
208 	return 0;
209 }
210 
211 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
212 {
213 	crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
214 	cc->iv_gen_private.essiv_tfm = NULL;
215 }
216 
217 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
218 {
219 	memset(iv, 0, cc->iv_size);
220 	*(u64 *)iv = cpu_to_le64(sector);
221 	crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
222 	return 0;
223 }
224 
225 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
226 			      const char *opts)
227 {
228 	unsigned int bs = crypto_blkcipher_blocksize(cc->tfm);
229 	int log = ilog2(bs);
230 
231 	/* we need to calculate how far we must shift the sector count
232 	 * to get the cipher block count, we use this shift in _gen */
233 
234 	if (1 << log != bs) {
235 		ti->error = "cypher blocksize is not a power of 2";
236 		return -EINVAL;
237 	}
238 
239 	if (log > 9) {
240 		ti->error = "cypher blocksize is > 512";
241 		return -EINVAL;
242 	}
243 
244 	cc->iv_gen_private.benbi_shift = 9 - log;
245 
246 	return 0;
247 }
248 
249 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
250 {
251 }
252 
253 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
254 {
255 	__be64 val;
256 
257 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
258 
259 	val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
260 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
261 
262 	return 0;
263 }
264 
265 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
266 {
267 	memset(iv, 0, cc->iv_size);
268 
269 	return 0;
270 }
271 
272 static struct crypt_iv_operations crypt_iv_plain_ops = {
273 	.generator = crypt_iv_plain_gen
274 };
275 
276 static struct crypt_iv_operations crypt_iv_essiv_ops = {
277 	.ctr       = crypt_iv_essiv_ctr,
278 	.dtr       = crypt_iv_essiv_dtr,
279 	.generator = crypt_iv_essiv_gen
280 };
281 
282 static struct crypt_iv_operations crypt_iv_benbi_ops = {
283 	.ctr	   = crypt_iv_benbi_ctr,
284 	.dtr	   = crypt_iv_benbi_dtr,
285 	.generator = crypt_iv_benbi_gen
286 };
287 
288 static struct crypt_iv_operations crypt_iv_null_ops = {
289 	.generator = crypt_iv_null_gen
290 };
291 
292 static int
293 crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
294                           struct scatterlist *in, unsigned int length,
295                           int write, sector_t sector)
296 {
297 	u8 iv[cc->iv_size] __attribute__ ((aligned(__alignof__(u64))));
298 	struct blkcipher_desc desc = {
299 		.tfm = cc->tfm,
300 		.info = iv,
301 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP,
302 	};
303 	int r;
304 
305 	if (cc->iv_gen_ops) {
306 		r = cc->iv_gen_ops->generator(cc, iv, sector);
307 		if (r < 0)
308 			return r;
309 
310 		if (write)
311 			r = crypto_blkcipher_encrypt_iv(&desc, out, in, length);
312 		else
313 			r = crypto_blkcipher_decrypt_iv(&desc, out, in, length);
314 	} else {
315 		if (write)
316 			r = crypto_blkcipher_encrypt(&desc, out, in, length);
317 		else
318 			r = crypto_blkcipher_decrypt(&desc, out, in, length);
319 	}
320 
321 	return r;
322 }
323 
324 static void crypt_convert_init(struct crypt_config *cc,
325 			       struct convert_context *ctx,
326 			       struct bio *bio_out, struct bio *bio_in,
327 			       sector_t sector, int write)
328 {
329 	ctx->bio_in = bio_in;
330 	ctx->bio_out = bio_out;
331 	ctx->offset_in = 0;
332 	ctx->offset_out = 0;
333 	ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
334 	ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
335 	ctx->sector = sector + cc->iv_offset;
336 	ctx->write = write;
337 }
338 
339 /*
340  * Encrypt / decrypt data from one bio to another one (can be the same one)
341  */
342 static int crypt_convert(struct crypt_config *cc,
343 			 struct convert_context *ctx)
344 {
345 	int r = 0;
346 
347 	while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
348 	      ctx->idx_out < ctx->bio_out->bi_vcnt) {
349 		struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
350 		struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
351 		struct scatterlist sg_in, sg_out;
352 
353 		sg_init_table(&sg_in, 1);
354 		sg_set_page(&sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT, bv_in->bv_offset + ctx->offset_in);
355 
356 		sg_init_table(&sg_out, 1);
357 		sg_set_page(&sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT, bv_out->bv_offset + ctx->offset_out);
358 
359 		ctx->offset_in += sg_in.length;
360 		if (ctx->offset_in >= bv_in->bv_len) {
361 			ctx->offset_in = 0;
362 			ctx->idx_in++;
363 		}
364 
365 		ctx->offset_out += sg_out.length;
366 		if (ctx->offset_out >= bv_out->bv_len) {
367 			ctx->offset_out = 0;
368 			ctx->idx_out++;
369 		}
370 
371 		r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length,
372 					      ctx->write, ctx->sector);
373 		if (r < 0)
374 			break;
375 
376 		ctx->sector++;
377 	}
378 
379 	return r;
380 }
381 
382 static void dm_crypt_bio_destructor(struct bio *bio)
383 {
384 	struct dm_crypt_io *io = bio->bi_private;
385 	struct crypt_config *cc = io->target->private;
386 
387 	bio_free(bio, cc->bs);
388 }
389 
390 /*
391  * Generate a new unfragmented bio with the given size
392  * This should never violate the device limitations
393  * May return a smaller bio when running out of pages
394  */
395 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
396 {
397 	struct crypt_config *cc = io->target->private;
398 	struct bio *clone;
399 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
400 	gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
401 	unsigned int i;
402 
403 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
404 	if (!clone)
405 		return NULL;
406 
407 	clone_init(io, clone);
408 
409 	for (i = 0; i < nr_iovecs; i++) {
410 		struct bio_vec *bv = bio_iovec_idx(clone, i);
411 
412 		bv->bv_page = mempool_alloc(cc->page_pool, gfp_mask);
413 		if (!bv->bv_page)
414 			break;
415 
416 		/*
417 		 * if additional pages cannot be allocated without waiting,
418 		 * return a partially allocated bio, the caller will then try
419 		 * to allocate additional bios while submitting this partial bio
420 		 */
421 		if (i == (MIN_BIO_PAGES - 1))
422 			gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
423 
424 		bv->bv_offset = 0;
425 		if (size > PAGE_SIZE)
426 			bv->bv_len = PAGE_SIZE;
427 		else
428 			bv->bv_len = size;
429 
430 		clone->bi_size += bv->bv_len;
431 		clone->bi_vcnt++;
432 		size -= bv->bv_len;
433 	}
434 
435 	if (!clone->bi_size) {
436 		bio_put(clone);
437 		return NULL;
438 	}
439 
440 	return clone;
441 }
442 
443 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
444 {
445 	unsigned int i;
446 	struct bio_vec *bv;
447 
448 	for (i = 0; i < clone->bi_vcnt; i++) {
449 		bv = bio_iovec_idx(clone, i);
450 		BUG_ON(!bv->bv_page);
451 		mempool_free(bv->bv_page, cc->page_pool);
452 		bv->bv_page = NULL;
453 	}
454 }
455 
456 /*
457  * One of the bios was finished. Check for completion of
458  * the whole request and correctly clean up the buffer.
459  */
460 static void crypt_dec_pending(struct dm_crypt_io *io, int error)
461 {
462 	struct crypt_config *cc = (struct crypt_config *) io->target->private;
463 
464 	if (error < 0)
465 		io->error = error;
466 
467 	if (!atomic_dec_and_test(&io->pending))
468 		return;
469 
470 	bio_endio(io->base_bio, io->error);
471 
472 	mempool_free(io, cc->io_pool);
473 }
474 
475 /*
476  * kcryptd/kcryptd_io:
477  *
478  * Needed because it would be very unwise to do decryption in an
479  * interrupt context.
480  *
481  * kcryptd performs the actual encryption or decryption.
482  *
483  * kcryptd_io performs the IO submission.
484  *
485  * They must be separated as otherwise the final stages could be
486  * starved by new requests which can block in the first stages due
487  * to memory allocation.
488  */
489 static void kcryptd_do_work(struct work_struct *work);
490 static void kcryptd_do_crypt(struct work_struct *work);
491 
492 static void kcryptd_queue_io(struct dm_crypt_io *io)
493 {
494 	struct crypt_config *cc = io->target->private;
495 
496 	INIT_WORK(&io->work, kcryptd_do_work);
497 	queue_work(cc->io_queue, &io->work);
498 }
499 
500 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
501 {
502 	struct crypt_config *cc = io->target->private;
503 
504 	INIT_WORK(&io->work, kcryptd_do_crypt);
505 	queue_work(cc->crypt_queue, &io->work);
506 }
507 
508 static void crypt_endio(struct bio *clone, int error)
509 {
510 	struct dm_crypt_io *io = clone->bi_private;
511 	struct crypt_config *cc = io->target->private;
512 	unsigned read_io = bio_data_dir(clone) == READ;
513 
514 	/*
515 	 * free the processed pages
516 	 */
517 	if (!read_io) {
518 		crypt_free_buffer_pages(cc, clone);
519 		goto out;
520 	}
521 
522 	if (unlikely(!bio_flagged(clone, BIO_UPTODATE))) {
523 		error = -EIO;
524 		goto out;
525 	}
526 
527 	bio_put(clone);
528 	kcryptd_queue_crypt(io);
529 	return;
530 
531 out:
532 	bio_put(clone);
533 	crypt_dec_pending(io, error);
534 }
535 
536 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
537 {
538 	struct crypt_config *cc = io->target->private;
539 
540 	clone->bi_private = io;
541 	clone->bi_end_io  = crypt_endio;
542 	clone->bi_bdev    = cc->dev->bdev;
543 	clone->bi_rw      = io->base_bio->bi_rw;
544 	clone->bi_destructor = dm_crypt_bio_destructor;
545 }
546 
547 static void process_read(struct dm_crypt_io *io)
548 {
549 	struct crypt_config *cc = io->target->private;
550 	struct bio *base_bio = io->base_bio;
551 	struct bio *clone;
552 	sector_t sector = base_bio->bi_sector - io->target->begin;
553 
554 	atomic_inc(&io->pending);
555 
556 	/*
557 	 * The block layer might modify the bvec array, so always
558 	 * copy the required bvecs because we need the original
559 	 * one in order to decrypt the whole bio data *afterwards*.
560 	 */
561 	clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
562 	if (unlikely(!clone)) {
563 		crypt_dec_pending(io, -ENOMEM);
564 		return;
565 	}
566 
567 	clone_init(io, clone);
568 	clone->bi_idx = 0;
569 	clone->bi_vcnt = bio_segments(base_bio);
570 	clone->bi_size = base_bio->bi_size;
571 	clone->bi_sector = cc->start + sector;
572 	memcpy(clone->bi_io_vec, bio_iovec(base_bio),
573 	       sizeof(struct bio_vec) * clone->bi_vcnt);
574 
575 	generic_make_request(clone);
576 }
577 
578 static void process_write(struct dm_crypt_io *io)
579 {
580 	struct crypt_config *cc = io->target->private;
581 	struct bio *base_bio = io->base_bio;
582 	struct bio *clone;
583 	struct convert_context ctx;
584 	unsigned remaining = base_bio->bi_size;
585 	sector_t sector = base_bio->bi_sector - io->target->begin;
586 
587 	atomic_inc(&io->pending);
588 
589 	crypt_convert_init(cc, &ctx, NULL, base_bio, sector, 1);
590 
591 	/*
592 	 * The allocated buffers can be smaller than the whole bio,
593 	 * so repeat the whole process until all the data can be handled.
594 	 */
595 	while (remaining) {
596 		clone = crypt_alloc_buffer(io, remaining);
597 		if (unlikely(!clone)) {
598 			crypt_dec_pending(io, -ENOMEM);
599 			return;
600 		}
601 
602 		ctx.bio_out = clone;
603 		ctx.idx_out = 0;
604 
605 		if (unlikely(crypt_convert(cc, &ctx) < 0)) {
606 			crypt_free_buffer_pages(cc, clone);
607 			bio_put(clone);
608 			crypt_dec_pending(io, -EIO);
609 			return;
610 		}
611 
612 		/* crypt_convert should have filled the clone bio */
613 		BUG_ON(ctx.idx_out < clone->bi_vcnt);
614 
615 		clone->bi_sector = cc->start + sector;
616 		remaining -= clone->bi_size;
617 		sector += bio_sectors(clone);
618 
619 		/* Grab another reference to the io struct
620 		 * before we kick off the request */
621 		if (remaining)
622 			atomic_inc(&io->pending);
623 
624 		generic_make_request(clone);
625 
626 		/* Do not reference clone after this - it
627 		 * may be gone already. */
628 
629 		/* out of memory -> run queues */
630 		if (remaining)
631 			congestion_wait(WRITE, HZ/100);
632 	}
633 }
634 
635 static void process_read_endio(struct dm_crypt_io *io)
636 {
637 	struct crypt_config *cc = io->target->private;
638 	struct convert_context ctx;
639 
640 	crypt_convert_init(cc, &ctx, io->base_bio, io->base_bio,
641 			   io->base_bio->bi_sector - io->target->begin, 0);
642 
643 	crypt_dec_pending(io, crypt_convert(cc, &ctx));
644 }
645 
646 static void kcryptd_do_work(struct work_struct *work)
647 {
648 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
649 
650 	if (bio_data_dir(io->base_bio) == READ)
651 		process_read(io);
652 }
653 
654 static void kcryptd_do_crypt(struct work_struct *work)
655 {
656 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
657 
658 	if (bio_data_dir(io->base_bio) == READ)
659 		process_read_endio(io);
660 	else
661 		process_write(io);
662 }
663 
664 /*
665  * Decode key from its hex representation
666  */
667 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
668 {
669 	char buffer[3];
670 	char *endp;
671 	unsigned int i;
672 
673 	buffer[2] = '\0';
674 
675 	for (i = 0; i < size; i++) {
676 		buffer[0] = *hex++;
677 		buffer[1] = *hex++;
678 
679 		key[i] = (u8)simple_strtoul(buffer, &endp, 16);
680 
681 		if (endp != &buffer[2])
682 			return -EINVAL;
683 	}
684 
685 	if (*hex != '\0')
686 		return -EINVAL;
687 
688 	return 0;
689 }
690 
691 /*
692  * Encode key into its hex representation
693  */
694 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
695 {
696 	unsigned int i;
697 
698 	for (i = 0; i < size; i++) {
699 		sprintf(hex, "%02x", *key);
700 		hex += 2;
701 		key++;
702 	}
703 }
704 
705 static int crypt_set_key(struct crypt_config *cc, char *key)
706 {
707 	unsigned key_size = strlen(key) >> 1;
708 
709 	if (cc->key_size && cc->key_size != key_size)
710 		return -EINVAL;
711 
712 	cc->key_size = key_size; /* initial settings */
713 
714 	if ((!key_size && strcmp(key, "-")) ||
715 	   (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
716 		return -EINVAL;
717 
718 	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
719 
720 	return 0;
721 }
722 
723 static int crypt_wipe_key(struct crypt_config *cc)
724 {
725 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
726 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
727 	return 0;
728 }
729 
730 /*
731  * Construct an encryption mapping:
732  * <cipher> <key> <iv_offset> <dev_path> <start>
733  */
734 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
735 {
736 	struct crypt_config *cc;
737 	struct crypto_blkcipher *tfm;
738 	char *tmp;
739 	char *cipher;
740 	char *chainmode;
741 	char *ivmode;
742 	char *ivopts;
743 	unsigned int key_size;
744 	unsigned long long tmpll;
745 
746 	if (argc != 5) {
747 		ti->error = "Not enough arguments";
748 		return -EINVAL;
749 	}
750 
751 	tmp = argv[0];
752 	cipher = strsep(&tmp, "-");
753 	chainmode = strsep(&tmp, "-");
754 	ivopts = strsep(&tmp, "-");
755 	ivmode = strsep(&ivopts, ":");
756 
757 	if (tmp)
758 		DMWARN("Unexpected additional cipher options");
759 
760 	key_size = strlen(argv[1]) >> 1;
761 
762  	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
763 	if (cc == NULL) {
764 		ti->error =
765 			"Cannot allocate transparent encryption context";
766 		return -ENOMEM;
767 	}
768 
769  	if (crypt_set_key(cc, argv[1])) {
770 		ti->error = "Error decoding key";
771 		goto bad_cipher;
772 	}
773 
774 	/* Compatiblity mode for old dm-crypt cipher strings */
775 	if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
776 		chainmode = "cbc";
777 		ivmode = "plain";
778 	}
779 
780 	if (strcmp(chainmode, "ecb") && !ivmode) {
781 		ti->error = "This chaining mode requires an IV mechanism";
782 		goto bad_cipher;
783 	}
784 
785 	if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)",
786 		     chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) {
787 		ti->error = "Chain mode + cipher name is too long";
788 		goto bad_cipher;
789 	}
790 
791 	tfm = crypto_alloc_blkcipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
792 	if (IS_ERR(tfm)) {
793 		ti->error = "Error allocating crypto tfm";
794 		goto bad_cipher;
795 	}
796 
797 	strcpy(cc->cipher, cipher);
798 	strcpy(cc->chainmode, chainmode);
799 	cc->tfm = tfm;
800 
801 	/*
802 	 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
803 	 * See comments at iv code
804 	 */
805 
806 	if (ivmode == NULL)
807 		cc->iv_gen_ops = NULL;
808 	else if (strcmp(ivmode, "plain") == 0)
809 		cc->iv_gen_ops = &crypt_iv_plain_ops;
810 	else if (strcmp(ivmode, "essiv") == 0)
811 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
812 	else if (strcmp(ivmode, "benbi") == 0)
813 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
814 	else if (strcmp(ivmode, "null") == 0)
815 		cc->iv_gen_ops = &crypt_iv_null_ops;
816 	else {
817 		ti->error = "Invalid IV mode";
818 		goto bad_ivmode;
819 	}
820 
821 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
822 	    cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
823 		goto bad_ivmode;
824 
825 	cc->iv_size = crypto_blkcipher_ivsize(tfm);
826 	if (cc->iv_size)
827 		/* at least a 64 bit sector number should fit in our buffer */
828 		cc->iv_size = max(cc->iv_size,
829 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
830 	else {
831 		if (cc->iv_gen_ops) {
832 			DMWARN("Selected cipher does not support IVs");
833 			if (cc->iv_gen_ops->dtr)
834 				cc->iv_gen_ops->dtr(cc);
835 			cc->iv_gen_ops = NULL;
836 		}
837 	}
838 
839 	cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
840 	if (!cc->io_pool) {
841 		ti->error = "Cannot allocate crypt io mempool";
842 		goto bad_slab_pool;
843 	}
844 
845 	cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
846 	if (!cc->page_pool) {
847 		ti->error = "Cannot allocate page mempool";
848 		goto bad_page_pool;
849 	}
850 
851 	cc->bs = bioset_create(MIN_IOS, MIN_IOS);
852 	if (!cc->bs) {
853 		ti->error = "Cannot allocate crypt bioset";
854 		goto bad_bs;
855 	}
856 
857 	if (crypto_blkcipher_setkey(tfm, cc->key, key_size) < 0) {
858 		ti->error = "Error setting key";
859 		goto bad_device;
860 	}
861 
862 	if (sscanf(argv[2], "%llu", &tmpll) != 1) {
863 		ti->error = "Invalid iv_offset sector";
864 		goto bad_device;
865 	}
866 	cc->iv_offset = tmpll;
867 
868 	if (sscanf(argv[4], "%llu", &tmpll) != 1) {
869 		ti->error = "Invalid device sector";
870 		goto bad_device;
871 	}
872 	cc->start = tmpll;
873 
874 	if (dm_get_device(ti, argv[3], cc->start, ti->len,
875 			  dm_table_get_mode(ti->table), &cc->dev)) {
876 		ti->error = "Device lookup failed";
877 		goto bad_device;
878 	}
879 
880 	if (ivmode && cc->iv_gen_ops) {
881 		if (ivopts)
882 			*(ivopts - 1) = ':';
883 		cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
884 		if (!cc->iv_mode) {
885 			ti->error = "Error kmallocing iv_mode string";
886 			goto bad_ivmode_string;
887 		}
888 		strcpy(cc->iv_mode, ivmode);
889 	} else
890 		cc->iv_mode = NULL;
891 
892 	cc->io_queue = create_singlethread_workqueue("kcryptd_io");
893 	if (!cc->io_queue) {
894 		ti->error = "Couldn't create kcryptd io queue";
895 		goto bad_io_queue;
896 	}
897 
898 	cc->crypt_queue = create_singlethread_workqueue("kcryptd");
899 	if (!cc->crypt_queue) {
900 		ti->error = "Couldn't create kcryptd queue";
901 		goto bad_crypt_queue;
902 	}
903 
904 	ti->private = cc;
905 	return 0;
906 
907 bad_crypt_queue:
908 	destroy_workqueue(cc->io_queue);
909 bad_io_queue:
910 	kfree(cc->iv_mode);
911 bad_ivmode_string:
912 	dm_put_device(ti, cc->dev);
913 bad_device:
914 	bioset_free(cc->bs);
915 bad_bs:
916 	mempool_destroy(cc->page_pool);
917 bad_page_pool:
918 	mempool_destroy(cc->io_pool);
919 bad_slab_pool:
920 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
921 		cc->iv_gen_ops->dtr(cc);
922 bad_ivmode:
923 	crypto_free_blkcipher(tfm);
924 bad_cipher:
925 	/* Must zero key material before freeing */
926 	memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
927 	kfree(cc);
928 	return -EINVAL;
929 }
930 
931 static void crypt_dtr(struct dm_target *ti)
932 {
933 	struct crypt_config *cc = (struct crypt_config *) ti->private;
934 
935 	destroy_workqueue(cc->io_queue);
936 	destroy_workqueue(cc->crypt_queue);
937 
938 	bioset_free(cc->bs);
939 	mempool_destroy(cc->page_pool);
940 	mempool_destroy(cc->io_pool);
941 
942 	kfree(cc->iv_mode);
943 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
944 		cc->iv_gen_ops->dtr(cc);
945 	crypto_free_blkcipher(cc->tfm);
946 	dm_put_device(ti, cc->dev);
947 
948 	/* Must zero key material before freeing */
949 	memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
950 	kfree(cc);
951 }
952 
953 static int crypt_map(struct dm_target *ti, struct bio *bio,
954 		     union map_info *map_context)
955 {
956 	struct crypt_config *cc = ti->private;
957 	struct dm_crypt_io *io;
958 
959 	io = mempool_alloc(cc->io_pool, GFP_NOIO);
960 	io->target = ti;
961 	io->base_bio = bio;
962 	io->error = 0;
963 	atomic_set(&io->pending, 0);
964 
965 	if (bio_data_dir(io->base_bio) == READ)
966 		kcryptd_queue_io(io);
967 	else
968 		kcryptd_queue_crypt(io);
969 
970 	return DM_MAPIO_SUBMITTED;
971 }
972 
973 static int crypt_status(struct dm_target *ti, status_type_t type,
974 			char *result, unsigned int maxlen)
975 {
976 	struct crypt_config *cc = (struct crypt_config *) ti->private;
977 	unsigned int sz = 0;
978 
979 	switch (type) {
980 	case STATUSTYPE_INFO:
981 		result[0] = '\0';
982 		break;
983 
984 	case STATUSTYPE_TABLE:
985 		if (cc->iv_mode)
986 			DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
987 			       cc->iv_mode);
988 		else
989 			DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
990 
991 		if (cc->key_size > 0) {
992 			if ((maxlen - sz) < ((cc->key_size << 1) + 1))
993 				return -ENOMEM;
994 
995 			crypt_encode_key(result + sz, cc->key, cc->key_size);
996 			sz += cc->key_size << 1;
997 		} else {
998 			if (sz >= maxlen)
999 				return -ENOMEM;
1000 			result[sz++] = '-';
1001 		}
1002 
1003 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1004 				cc->dev->name, (unsigned long long)cc->start);
1005 		break;
1006 	}
1007 	return 0;
1008 }
1009 
1010 static void crypt_postsuspend(struct dm_target *ti)
1011 {
1012 	struct crypt_config *cc = ti->private;
1013 
1014 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1015 }
1016 
1017 static int crypt_preresume(struct dm_target *ti)
1018 {
1019 	struct crypt_config *cc = ti->private;
1020 
1021 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1022 		DMERR("aborting resume - crypt key is not set.");
1023 		return -EAGAIN;
1024 	}
1025 
1026 	return 0;
1027 }
1028 
1029 static void crypt_resume(struct dm_target *ti)
1030 {
1031 	struct crypt_config *cc = ti->private;
1032 
1033 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1034 }
1035 
1036 /* Message interface
1037  *	key set <key>
1038  *	key wipe
1039  */
1040 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1041 {
1042 	struct crypt_config *cc = ti->private;
1043 
1044 	if (argc < 2)
1045 		goto error;
1046 
1047 	if (!strnicmp(argv[0], MESG_STR("key"))) {
1048 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1049 			DMWARN("not suspended during key manipulation.");
1050 			return -EINVAL;
1051 		}
1052 		if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
1053 			return crypt_set_key(cc, argv[2]);
1054 		if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
1055 			return crypt_wipe_key(cc);
1056 	}
1057 
1058 error:
1059 	DMWARN("unrecognised message received.");
1060 	return -EINVAL;
1061 }
1062 
1063 static struct target_type crypt_target = {
1064 	.name   = "crypt",
1065 	.version= {1, 5, 0},
1066 	.module = THIS_MODULE,
1067 	.ctr    = crypt_ctr,
1068 	.dtr    = crypt_dtr,
1069 	.map    = crypt_map,
1070 	.status = crypt_status,
1071 	.postsuspend = crypt_postsuspend,
1072 	.preresume = crypt_preresume,
1073 	.resume = crypt_resume,
1074 	.message = crypt_message,
1075 };
1076 
1077 static int __init dm_crypt_init(void)
1078 {
1079 	int r;
1080 
1081 	_crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1082 	if (!_crypt_io_pool)
1083 		return -ENOMEM;
1084 
1085 	r = dm_register_target(&crypt_target);
1086 	if (r < 0) {
1087 		DMERR("register failed %d", r);
1088 		kmem_cache_destroy(_crypt_io_pool);
1089 	}
1090 
1091 	return r;
1092 }
1093 
1094 static void __exit dm_crypt_exit(void)
1095 {
1096 	int r = dm_unregister_target(&crypt_target);
1097 
1098 	if (r < 0)
1099 		DMERR("unregister failed %d", r);
1100 
1101 	kmem_cache_destroy(_crypt_io_pool);
1102 }
1103 
1104 module_init(dm_crypt_init);
1105 module_exit(dm_crypt_exit);
1106 
1107 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1108 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1109 MODULE_LICENSE("GPL");
1110