xref: /linux/drivers/md/dm-crypt.c (revision 93d90ad708b8da6efc0e487b66111aa9db7f70c7)
1 /*
2  * Copyright (C) 2003 Jana Saout <jana@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5  * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/bio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/crypto.h>
20 #include <linux/workqueue.h>
21 #include <linux/backing-dev.h>
22 #include <linux/atomic.h>
23 #include <linux/scatterlist.h>
24 #include <asm/page.h>
25 #include <asm/unaligned.h>
26 #include <crypto/hash.h>
27 #include <crypto/md5.h>
28 #include <crypto/algapi.h>
29 
30 #include <linux/device-mapper.h>
31 
32 #define DM_MSG_PREFIX "crypt"
33 
34 /*
35  * context holding the current state of a multi-part conversion
36  */
37 struct convert_context {
38 	struct completion restart;
39 	struct bio *bio_in;
40 	struct bio *bio_out;
41 	struct bvec_iter iter_in;
42 	struct bvec_iter iter_out;
43 	sector_t cc_sector;
44 	atomic_t cc_pending;
45 	struct ablkcipher_request *req;
46 };
47 
48 /*
49  * per bio private data
50  */
51 struct dm_crypt_io {
52 	struct crypt_config *cc;
53 	struct bio *base_bio;
54 	struct work_struct work;
55 
56 	struct convert_context ctx;
57 
58 	atomic_t io_pending;
59 	int error;
60 	sector_t sector;
61 	struct dm_crypt_io *base_io;
62 } CRYPTO_MINALIGN_ATTR;
63 
64 struct dm_crypt_request {
65 	struct convert_context *ctx;
66 	struct scatterlist sg_in;
67 	struct scatterlist sg_out;
68 	sector_t iv_sector;
69 };
70 
71 struct crypt_config;
72 
73 struct crypt_iv_operations {
74 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
75 		   const char *opts);
76 	void (*dtr)(struct crypt_config *cc);
77 	int (*init)(struct crypt_config *cc);
78 	int (*wipe)(struct crypt_config *cc);
79 	int (*generator)(struct crypt_config *cc, u8 *iv,
80 			 struct dm_crypt_request *dmreq);
81 	int (*post)(struct crypt_config *cc, u8 *iv,
82 		    struct dm_crypt_request *dmreq);
83 };
84 
85 struct iv_essiv_private {
86 	struct crypto_hash *hash_tfm;
87 	u8 *salt;
88 };
89 
90 struct iv_benbi_private {
91 	int shift;
92 };
93 
94 #define LMK_SEED_SIZE 64 /* hash + 0 */
95 struct iv_lmk_private {
96 	struct crypto_shash *hash_tfm;
97 	u8 *seed;
98 };
99 
100 #define TCW_WHITENING_SIZE 16
101 struct iv_tcw_private {
102 	struct crypto_shash *crc32_tfm;
103 	u8 *iv_seed;
104 	u8 *whitening;
105 };
106 
107 /*
108  * Crypt: maps a linear range of a block device
109  * and encrypts / decrypts at the same time.
110  */
111 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
112 
113 /*
114  * The fields in here must be read only after initialization.
115  */
116 struct crypt_config {
117 	struct dm_dev *dev;
118 	sector_t start;
119 
120 	/*
121 	 * pool for per bio private data, crypto requests and
122 	 * encryption requeusts/buffer pages
123 	 */
124 	mempool_t *io_pool;
125 	mempool_t *req_pool;
126 	mempool_t *page_pool;
127 	struct bio_set *bs;
128 
129 	struct workqueue_struct *io_queue;
130 	struct workqueue_struct *crypt_queue;
131 
132 	char *cipher;
133 	char *cipher_string;
134 
135 	struct crypt_iv_operations *iv_gen_ops;
136 	union {
137 		struct iv_essiv_private essiv;
138 		struct iv_benbi_private benbi;
139 		struct iv_lmk_private lmk;
140 		struct iv_tcw_private tcw;
141 	} iv_gen_private;
142 	sector_t iv_offset;
143 	unsigned int iv_size;
144 
145 	/* ESSIV: struct crypto_cipher *essiv_tfm */
146 	void *iv_private;
147 	struct crypto_ablkcipher **tfms;
148 	unsigned tfms_count;
149 
150 	/*
151 	 * Layout of each crypto request:
152 	 *
153 	 *   struct ablkcipher_request
154 	 *      context
155 	 *      padding
156 	 *   struct dm_crypt_request
157 	 *      padding
158 	 *   IV
159 	 *
160 	 * The padding is added so that dm_crypt_request and the IV are
161 	 * correctly aligned.
162 	 */
163 	unsigned int dmreq_start;
164 
165 	unsigned int per_bio_data_size;
166 
167 	unsigned long flags;
168 	unsigned int key_size;
169 	unsigned int key_parts;      /* independent parts in key buffer */
170 	unsigned int key_extra_size; /* additional keys length */
171 	u8 key[0];
172 };
173 
174 #define MIN_IOS        16
175 #define MIN_POOL_PAGES 32
176 
177 static struct kmem_cache *_crypt_io_pool;
178 
179 static void clone_init(struct dm_crypt_io *, struct bio *);
180 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
181 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
182 
183 /*
184  * Use this to access cipher attributes that are the same for each CPU.
185  */
186 static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
187 {
188 	return cc->tfms[0];
189 }
190 
191 /*
192  * Different IV generation algorithms:
193  *
194  * plain: the initial vector is the 32-bit little-endian version of the sector
195  *        number, padded with zeros if necessary.
196  *
197  * plain64: the initial vector is the 64-bit little-endian version of the sector
198  *        number, padded with zeros if necessary.
199  *
200  * essiv: "encrypted sector|salt initial vector", the sector number is
201  *        encrypted with the bulk cipher using a salt as key. The salt
202  *        should be derived from the bulk cipher's key via hashing.
203  *
204  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
205  *        (needed for LRW-32-AES and possible other narrow block modes)
206  *
207  * null: the initial vector is always zero.  Provides compatibility with
208  *       obsolete loop_fish2 devices.  Do not use for new devices.
209  *
210  * lmk:  Compatible implementation of the block chaining mode used
211  *       by the Loop-AES block device encryption system
212  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
213  *       It operates on full 512 byte sectors and uses CBC
214  *       with an IV derived from the sector number, the data and
215  *       optionally extra IV seed.
216  *       This means that after decryption the first block
217  *       of sector must be tweaked according to decrypted data.
218  *       Loop-AES can use three encryption schemes:
219  *         version 1: is plain aes-cbc mode
220  *         version 2: uses 64 multikey scheme with lmk IV generator
221  *         version 3: the same as version 2 with additional IV seed
222  *                   (it uses 65 keys, last key is used as IV seed)
223  *
224  * tcw:  Compatible implementation of the block chaining mode used
225  *       by the TrueCrypt device encryption system (prior to version 4.1).
226  *       For more info see: http://www.truecrypt.org
227  *       It operates on full 512 byte sectors and uses CBC
228  *       with an IV derived from initial key and the sector number.
229  *       In addition, whitening value is applied on every sector, whitening
230  *       is calculated from initial key, sector number and mixed using CRC32.
231  *       Note that this encryption scheme is vulnerable to watermarking attacks
232  *       and should be used for old compatible containers access only.
233  *
234  * plumb: unimplemented, see:
235  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
236  */
237 
238 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
239 			      struct dm_crypt_request *dmreq)
240 {
241 	memset(iv, 0, cc->iv_size);
242 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
243 
244 	return 0;
245 }
246 
247 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
248 				struct dm_crypt_request *dmreq)
249 {
250 	memset(iv, 0, cc->iv_size);
251 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
252 
253 	return 0;
254 }
255 
256 /* Initialise ESSIV - compute salt but no local memory allocations */
257 static int crypt_iv_essiv_init(struct crypt_config *cc)
258 {
259 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
260 	struct hash_desc desc;
261 	struct scatterlist sg;
262 	struct crypto_cipher *essiv_tfm;
263 	int err;
264 
265 	sg_init_one(&sg, cc->key, cc->key_size);
266 	desc.tfm = essiv->hash_tfm;
267 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
268 
269 	err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
270 	if (err)
271 		return err;
272 
273 	essiv_tfm = cc->iv_private;
274 
275 	err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
276 			    crypto_hash_digestsize(essiv->hash_tfm));
277 	if (err)
278 		return err;
279 
280 	return 0;
281 }
282 
283 /* Wipe salt and reset key derived from volume key */
284 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
285 {
286 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
287 	unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
288 	struct crypto_cipher *essiv_tfm;
289 	int r, err = 0;
290 
291 	memset(essiv->salt, 0, salt_size);
292 
293 	essiv_tfm = cc->iv_private;
294 	r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
295 	if (r)
296 		err = r;
297 
298 	return err;
299 }
300 
301 /* Set up per cpu cipher state */
302 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
303 					     struct dm_target *ti,
304 					     u8 *salt, unsigned saltsize)
305 {
306 	struct crypto_cipher *essiv_tfm;
307 	int err;
308 
309 	/* Setup the essiv_tfm with the given salt */
310 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
311 	if (IS_ERR(essiv_tfm)) {
312 		ti->error = "Error allocating crypto tfm for ESSIV";
313 		return essiv_tfm;
314 	}
315 
316 	if (crypto_cipher_blocksize(essiv_tfm) !=
317 	    crypto_ablkcipher_ivsize(any_tfm(cc))) {
318 		ti->error = "Block size of ESSIV cipher does "
319 			    "not match IV size of block cipher";
320 		crypto_free_cipher(essiv_tfm);
321 		return ERR_PTR(-EINVAL);
322 	}
323 
324 	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
325 	if (err) {
326 		ti->error = "Failed to set key for ESSIV cipher";
327 		crypto_free_cipher(essiv_tfm);
328 		return ERR_PTR(err);
329 	}
330 
331 	return essiv_tfm;
332 }
333 
334 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
335 {
336 	struct crypto_cipher *essiv_tfm;
337 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
338 
339 	crypto_free_hash(essiv->hash_tfm);
340 	essiv->hash_tfm = NULL;
341 
342 	kzfree(essiv->salt);
343 	essiv->salt = NULL;
344 
345 	essiv_tfm = cc->iv_private;
346 
347 	if (essiv_tfm)
348 		crypto_free_cipher(essiv_tfm);
349 
350 	cc->iv_private = NULL;
351 }
352 
353 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
354 			      const char *opts)
355 {
356 	struct crypto_cipher *essiv_tfm = NULL;
357 	struct crypto_hash *hash_tfm = NULL;
358 	u8 *salt = NULL;
359 	int err;
360 
361 	if (!opts) {
362 		ti->error = "Digest algorithm missing for ESSIV mode";
363 		return -EINVAL;
364 	}
365 
366 	/* Allocate hash algorithm */
367 	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
368 	if (IS_ERR(hash_tfm)) {
369 		ti->error = "Error initializing ESSIV hash";
370 		err = PTR_ERR(hash_tfm);
371 		goto bad;
372 	}
373 
374 	salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
375 	if (!salt) {
376 		ti->error = "Error kmallocing salt storage in ESSIV";
377 		err = -ENOMEM;
378 		goto bad;
379 	}
380 
381 	cc->iv_gen_private.essiv.salt = salt;
382 	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
383 
384 	essiv_tfm = setup_essiv_cpu(cc, ti, salt,
385 				crypto_hash_digestsize(hash_tfm));
386 	if (IS_ERR(essiv_tfm)) {
387 		crypt_iv_essiv_dtr(cc);
388 		return PTR_ERR(essiv_tfm);
389 	}
390 	cc->iv_private = essiv_tfm;
391 
392 	return 0;
393 
394 bad:
395 	if (hash_tfm && !IS_ERR(hash_tfm))
396 		crypto_free_hash(hash_tfm);
397 	kfree(salt);
398 	return err;
399 }
400 
401 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
402 			      struct dm_crypt_request *dmreq)
403 {
404 	struct crypto_cipher *essiv_tfm = cc->iv_private;
405 
406 	memset(iv, 0, cc->iv_size);
407 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
408 	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
409 
410 	return 0;
411 }
412 
413 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
414 			      const char *opts)
415 {
416 	unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
417 	int log = ilog2(bs);
418 
419 	/* we need to calculate how far we must shift the sector count
420 	 * to get the cipher block count, we use this shift in _gen */
421 
422 	if (1 << log != bs) {
423 		ti->error = "cypher blocksize is not a power of 2";
424 		return -EINVAL;
425 	}
426 
427 	if (log > 9) {
428 		ti->error = "cypher blocksize is > 512";
429 		return -EINVAL;
430 	}
431 
432 	cc->iv_gen_private.benbi.shift = 9 - log;
433 
434 	return 0;
435 }
436 
437 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
438 {
439 }
440 
441 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
442 			      struct dm_crypt_request *dmreq)
443 {
444 	__be64 val;
445 
446 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
447 
448 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
449 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
450 
451 	return 0;
452 }
453 
454 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
455 			     struct dm_crypt_request *dmreq)
456 {
457 	memset(iv, 0, cc->iv_size);
458 
459 	return 0;
460 }
461 
462 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
463 {
464 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
465 
466 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
467 		crypto_free_shash(lmk->hash_tfm);
468 	lmk->hash_tfm = NULL;
469 
470 	kzfree(lmk->seed);
471 	lmk->seed = NULL;
472 }
473 
474 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
475 			    const char *opts)
476 {
477 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
478 
479 	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
480 	if (IS_ERR(lmk->hash_tfm)) {
481 		ti->error = "Error initializing LMK hash";
482 		return PTR_ERR(lmk->hash_tfm);
483 	}
484 
485 	/* No seed in LMK version 2 */
486 	if (cc->key_parts == cc->tfms_count) {
487 		lmk->seed = NULL;
488 		return 0;
489 	}
490 
491 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
492 	if (!lmk->seed) {
493 		crypt_iv_lmk_dtr(cc);
494 		ti->error = "Error kmallocing seed storage in LMK";
495 		return -ENOMEM;
496 	}
497 
498 	return 0;
499 }
500 
501 static int crypt_iv_lmk_init(struct crypt_config *cc)
502 {
503 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
504 	int subkey_size = cc->key_size / cc->key_parts;
505 
506 	/* LMK seed is on the position of LMK_KEYS + 1 key */
507 	if (lmk->seed)
508 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
509 		       crypto_shash_digestsize(lmk->hash_tfm));
510 
511 	return 0;
512 }
513 
514 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
515 {
516 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
517 
518 	if (lmk->seed)
519 		memset(lmk->seed, 0, LMK_SEED_SIZE);
520 
521 	return 0;
522 }
523 
524 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
525 			    struct dm_crypt_request *dmreq,
526 			    u8 *data)
527 {
528 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
529 	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
530 	struct md5_state md5state;
531 	__le32 buf[4];
532 	int i, r;
533 
534 	desc->tfm = lmk->hash_tfm;
535 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
536 
537 	r = crypto_shash_init(desc);
538 	if (r)
539 		return r;
540 
541 	if (lmk->seed) {
542 		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
543 		if (r)
544 			return r;
545 	}
546 
547 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
548 	r = crypto_shash_update(desc, data + 16, 16 * 31);
549 	if (r)
550 		return r;
551 
552 	/* Sector is cropped to 56 bits here */
553 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
554 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
555 	buf[2] = cpu_to_le32(4024);
556 	buf[3] = 0;
557 	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
558 	if (r)
559 		return r;
560 
561 	/* No MD5 padding here */
562 	r = crypto_shash_export(desc, &md5state);
563 	if (r)
564 		return r;
565 
566 	for (i = 0; i < MD5_HASH_WORDS; i++)
567 		__cpu_to_le32s(&md5state.hash[i]);
568 	memcpy(iv, &md5state.hash, cc->iv_size);
569 
570 	return 0;
571 }
572 
573 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
574 			    struct dm_crypt_request *dmreq)
575 {
576 	u8 *src;
577 	int r = 0;
578 
579 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
580 		src = kmap_atomic(sg_page(&dmreq->sg_in));
581 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
582 		kunmap_atomic(src);
583 	} else
584 		memset(iv, 0, cc->iv_size);
585 
586 	return r;
587 }
588 
589 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
590 			     struct dm_crypt_request *dmreq)
591 {
592 	u8 *dst;
593 	int r;
594 
595 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
596 		return 0;
597 
598 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
599 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
600 
601 	/* Tweak the first block of plaintext sector */
602 	if (!r)
603 		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
604 
605 	kunmap_atomic(dst);
606 	return r;
607 }
608 
609 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
610 {
611 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
612 
613 	kzfree(tcw->iv_seed);
614 	tcw->iv_seed = NULL;
615 	kzfree(tcw->whitening);
616 	tcw->whitening = NULL;
617 
618 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
619 		crypto_free_shash(tcw->crc32_tfm);
620 	tcw->crc32_tfm = NULL;
621 }
622 
623 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
624 			    const char *opts)
625 {
626 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
627 
628 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
629 		ti->error = "Wrong key size for TCW";
630 		return -EINVAL;
631 	}
632 
633 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
634 	if (IS_ERR(tcw->crc32_tfm)) {
635 		ti->error = "Error initializing CRC32 in TCW";
636 		return PTR_ERR(tcw->crc32_tfm);
637 	}
638 
639 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
640 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
641 	if (!tcw->iv_seed || !tcw->whitening) {
642 		crypt_iv_tcw_dtr(cc);
643 		ti->error = "Error allocating seed storage in TCW";
644 		return -ENOMEM;
645 	}
646 
647 	return 0;
648 }
649 
650 static int crypt_iv_tcw_init(struct crypt_config *cc)
651 {
652 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
653 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
654 
655 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
656 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
657 	       TCW_WHITENING_SIZE);
658 
659 	return 0;
660 }
661 
662 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
663 {
664 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
665 
666 	memset(tcw->iv_seed, 0, cc->iv_size);
667 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
668 
669 	return 0;
670 }
671 
672 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
673 				  struct dm_crypt_request *dmreq,
674 				  u8 *data)
675 {
676 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
677 	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
678 	u8 buf[TCW_WHITENING_SIZE];
679 	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
680 	int i, r;
681 
682 	/* xor whitening with sector number */
683 	memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
684 	crypto_xor(buf, (u8 *)&sector, 8);
685 	crypto_xor(&buf[8], (u8 *)&sector, 8);
686 
687 	/* calculate crc32 for every 32bit part and xor it */
688 	desc->tfm = tcw->crc32_tfm;
689 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
690 	for (i = 0; i < 4; i++) {
691 		r = crypto_shash_init(desc);
692 		if (r)
693 			goto out;
694 		r = crypto_shash_update(desc, &buf[i * 4], 4);
695 		if (r)
696 			goto out;
697 		r = crypto_shash_final(desc, &buf[i * 4]);
698 		if (r)
699 			goto out;
700 	}
701 	crypto_xor(&buf[0], &buf[12], 4);
702 	crypto_xor(&buf[4], &buf[8], 4);
703 
704 	/* apply whitening (8 bytes) to whole sector */
705 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
706 		crypto_xor(data + i * 8, buf, 8);
707 out:
708 	memzero_explicit(buf, sizeof(buf));
709 	return r;
710 }
711 
712 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
713 			    struct dm_crypt_request *dmreq)
714 {
715 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
716 	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
717 	u8 *src;
718 	int r = 0;
719 
720 	/* Remove whitening from ciphertext */
721 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
722 		src = kmap_atomic(sg_page(&dmreq->sg_in));
723 		r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
724 		kunmap_atomic(src);
725 	}
726 
727 	/* Calculate IV */
728 	memcpy(iv, tcw->iv_seed, cc->iv_size);
729 	crypto_xor(iv, (u8 *)&sector, 8);
730 	if (cc->iv_size > 8)
731 		crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
732 
733 	return r;
734 }
735 
736 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
737 			     struct dm_crypt_request *dmreq)
738 {
739 	u8 *dst;
740 	int r;
741 
742 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
743 		return 0;
744 
745 	/* Apply whitening on ciphertext */
746 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
747 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
748 	kunmap_atomic(dst);
749 
750 	return r;
751 }
752 
753 static struct crypt_iv_operations crypt_iv_plain_ops = {
754 	.generator = crypt_iv_plain_gen
755 };
756 
757 static struct crypt_iv_operations crypt_iv_plain64_ops = {
758 	.generator = crypt_iv_plain64_gen
759 };
760 
761 static struct crypt_iv_operations crypt_iv_essiv_ops = {
762 	.ctr       = crypt_iv_essiv_ctr,
763 	.dtr       = crypt_iv_essiv_dtr,
764 	.init      = crypt_iv_essiv_init,
765 	.wipe      = crypt_iv_essiv_wipe,
766 	.generator = crypt_iv_essiv_gen
767 };
768 
769 static struct crypt_iv_operations crypt_iv_benbi_ops = {
770 	.ctr	   = crypt_iv_benbi_ctr,
771 	.dtr	   = crypt_iv_benbi_dtr,
772 	.generator = crypt_iv_benbi_gen
773 };
774 
775 static struct crypt_iv_operations crypt_iv_null_ops = {
776 	.generator = crypt_iv_null_gen
777 };
778 
779 static struct crypt_iv_operations crypt_iv_lmk_ops = {
780 	.ctr	   = crypt_iv_lmk_ctr,
781 	.dtr	   = crypt_iv_lmk_dtr,
782 	.init	   = crypt_iv_lmk_init,
783 	.wipe	   = crypt_iv_lmk_wipe,
784 	.generator = crypt_iv_lmk_gen,
785 	.post	   = crypt_iv_lmk_post
786 };
787 
788 static struct crypt_iv_operations crypt_iv_tcw_ops = {
789 	.ctr	   = crypt_iv_tcw_ctr,
790 	.dtr	   = crypt_iv_tcw_dtr,
791 	.init	   = crypt_iv_tcw_init,
792 	.wipe	   = crypt_iv_tcw_wipe,
793 	.generator = crypt_iv_tcw_gen,
794 	.post	   = crypt_iv_tcw_post
795 };
796 
797 static void crypt_convert_init(struct crypt_config *cc,
798 			       struct convert_context *ctx,
799 			       struct bio *bio_out, struct bio *bio_in,
800 			       sector_t sector)
801 {
802 	ctx->bio_in = bio_in;
803 	ctx->bio_out = bio_out;
804 	if (bio_in)
805 		ctx->iter_in = bio_in->bi_iter;
806 	if (bio_out)
807 		ctx->iter_out = bio_out->bi_iter;
808 	ctx->cc_sector = sector + cc->iv_offset;
809 	init_completion(&ctx->restart);
810 }
811 
812 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
813 					     struct ablkcipher_request *req)
814 {
815 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
816 }
817 
818 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
819 					       struct dm_crypt_request *dmreq)
820 {
821 	return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
822 }
823 
824 static u8 *iv_of_dmreq(struct crypt_config *cc,
825 		       struct dm_crypt_request *dmreq)
826 {
827 	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
828 		crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
829 }
830 
831 static int crypt_convert_block(struct crypt_config *cc,
832 			       struct convert_context *ctx,
833 			       struct ablkcipher_request *req)
834 {
835 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
836 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
837 	struct dm_crypt_request *dmreq;
838 	u8 *iv;
839 	int r;
840 
841 	dmreq = dmreq_of_req(cc, req);
842 	iv = iv_of_dmreq(cc, dmreq);
843 
844 	dmreq->iv_sector = ctx->cc_sector;
845 	dmreq->ctx = ctx;
846 	sg_init_table(&dmreq->sg_in, 1);
847 	sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
848 		    bv_in.bv_offset);
849 
850 	sg_init_table(&dmreq->sg_out, 1);
851 	sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
852 		    bv_out.bv_offset);
853 
854 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
855 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
856 
857 	if (cc->iv_gen_ops) {
858 		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
859 		if (r < 0)
860 			return r;
861 	}
862 
863 	ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
864 				     1 << SECTOR_SHIFT, iv);
865 
866 	if (bio_data_dir(ctx->bio_in) == WRITE)
867 		r = crypto_ablkcipher_encrypt(req);
868 	else
869 		r = crypto_ablkcipher_decrypt(req);
870 
871 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
872 		r = cc->iv_gen_ops->post(cc, iv, dmreq);
873 
874 	return r;
875 }
876 
877 static void kcryptd_async_done(struct crypto_async_request *async_req,
878 			       int error);
879 
880 static void crypt_alloc_req(struct crypt_config *cc,
881 			    struct convert_context *ctx)
882 {
883 	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
884 
885 	if (!ctx->req)
886 		ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
887 
888 	ablkcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
889 	ablkcipher_request_set_callback(ctx->req,
890 	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
891 	    kcryptd_async_done, dmreq_of_req(cc, ctx->req));
892 }
893 
894 static void crypt_free_req(struct crypt_config *cc,
895 			   struct ablkcipher_request *req, struct bio *base_bio)
896 {
897 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
898 
899 	if ((struct ablkcipher_request *)(io + 1) != req)
900 		mempool_free(req, cc->req_pool);
901 }
902 
903 /*
904  * Encrypt / decrypt data from one bio to another one (can be the same one)
905  */
906 static int crypt_convert(struct crypt_config *cc,
907 			 struct convert_context *ctx)
908 {
909 	int r;
910 
911 	atomic_set(&ctx->cc_pending, 1);
912 
913 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
914 
915 		crypt_alloc_req(cc, ctx);
916 
917 		atomic_inc(&ctx->cc_pending);
918 
919 		r = crypt_convert_block(cc, ctx, ctx->req);
920 
921 		switch (r) {
922 		/* async */
923 		case -EBUSY:
924 			wait_for_completion(&ctx->restart);
925 			reinit_completion(&ctx->restart);
926 			/* fall through*/
927 		case -EINPROGRESS:
928 			ctx->req = NULL;
929 			ctx->cc_sector++;
930 			continue;
931 
932 		/* sync */
933 		case 0:
934 			atomic_dec(&ctx->cc_pending);
935 			ctx->cc_sector++;
936 			cond_resched();
937 			continue;
938 
939 		/* error */
940 		default:
941 			atomic_dec(&ctx->cc_pending);
942 			return r;
943 		}
944 	}
945 
946 	return 0;
947 }
948 
949 /*
950  * Generate a new unfragmented bio with the given size
951  * This should never violate the device limitations
952  * May return a smaller bio when running out of pages, indicated by
953  * *out_of_pages set to 1.
954  */
955 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
956 				      unsigned *out_of_pages)
957 {
958 	struct crypt_config *cc = io->cc;
959 	struct bio *clone;
960 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
961 	gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
962 	unsigned i, len;
963 	struct page *page;
964 
965 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
966 	if (!clone)
967 		return NULL;
968 
969 	clone_init(io, clone);
970 	*out_of_pages = 0;
971 
972 	for (i = 0; i < nr_iovecs; i++) {
973 		page = mempool_alloc(cc->page_pool, gfp_mask);
974 		if (!page) {
975 			*out_of_pages = 1;
976 			break;
977 		}
978 
979 		/*
980 		 * If additional pages cannot be allocated without waiting,
981 		 * return a partially-allocated bio.  The caller will then try
982 		 * to allocate more bios while submitting this partial bio.
983 		 */
984 		gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
985 
986 		len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
987 
988 		if (!bio_add_page(clone, page, len, 0)) {
989 			mempool_free(page, cc->page_pool);
990 			break;
991 		}
992 
993 		size -= len;
994 	}
995 
996 	if (!clone->bi_iter.bi_size) {
997 		bio_put(clone);
998 		return NULL;
999 	}
1000 
1001 	return clone;
1002 }
1003 
1004 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1005 {
1006 	unsigned int i;
1007 	struct bio_vec *bv;
1008 
1009 	bio_for_each_segment_all(bv, clone, i) {
1010 		BUG_ON(!bv->bv_page);
1011 		mempool_free(bv->bv_page, cc->page_pool);
1012 		bv->bv_page = NULL;
1013 	}
1014 }
1015 
1016 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1017 			  struct bio *bio, sector_t sector)
1018 {
1019 	io->cc = cc;
1020 	io->base_bio = bio;
1021 	io->sector = sector;
1022 	io->error = 0;
1023 	io->base_io = NULL;
1024 	io->ctx.req = NULL;
1025 	atomic_set(&io->io_pending, 0);
1026 }
1027 
1028 static void crypt_inc_pending(struct dm_crypt_io *io)
1029 {
1030 	atomic_inc(&io->io_pending);
1031 }
1032 
1033 /*
1034  * One of the bios was finished. Check for completion of
1035  * the whole request and correctly clean up the buffer.
1036  * If base_io is set, wait for the last fragment to complete.
1037  */
1038 static void crypt_dec_pending(struct dm_crypt_io *io)
1039 {
1040 	struct crypt_config *cc = io->cc;
1041 	struct bio *base_bio = io->base_bio;
1042 	struct dm_crypt_io *base_io = io->base_io;
1043 	int error = io->error;
1044 
1045 	if (!atomic_dec_and_test(&io->io_pending))
1046 		return;
1047 
1048 	if (io->ctx.req)
1049 		crypt_free_req(cc, io->ctx.req, base_bio);
1050 	if (io != dm_per_bio_data(base_bio, cc->per_bio_data_size))
1051 		mempool_free(io, cc->io_pool);
1052 
1053 	if (likely(!base_io))
1054 		bio_endio(base_bio, error);
1055 	else {
1056 		if (error && !base_io->error)
1057 			base_io->error = error;
1058 		crypt_dec_pending(base_io);
1059 	}
1060 }
1061 
1062 /*
1063  * kcryptd/kcryptd_io:
1064  *
1065  * Needed because it would be very unwise to do decryption in an
1066  * interrupt context.
1067  *
1068  * kcryptd performs the actual encryption or decryption.
1069  *
1070  * kcryptd_io performs the IO submission.
1071  *
1072  * They must be separated as otherwise the final stages could be
1073  * starved by new requests which can block in the first stages due
1074  * to memory allocation.
1075  *
1076  * The work is done per CPU global for all dm-crypt instances.
1077  * They should not depend on each other and do not block.
1078  */
1079 static void crypt_endio(struct bio *clone, int error)
1080 {
1081 	struct dm_crypt_io *io = clone->bi_private;
1082 	struct crypt_config *cc = io->cc;
1083 	unsigned rw = bio_data_dir(clone);
1084 
1085 	if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
1086 		error = -EIO;
1087 
1088 	/*
1089 	 * free the processed pages
1090 	 */
1091 	if (rw == WRITE)
1092 		crypt_free_buffer_pages(cc, clone);
1093 
1094 	bio_put(clone);
1095 
1096 	if (rw == READ && !error) {
1097 		kcryptd_queue_crypt(io);
1098 		return;
1099 	}
1100 
1101 	if (unlikely(error))
1102 		io->error = error;
1103 
1104 	crypt_dec_pending(io);
1105 }
1106 
1107 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1108 {
1109 	struct crypt_config *cc = io->cc;
1110 
1111 	clone->bi_private = io;
1112 	clone->bi_end_io  = crypt_endio;
1113 	clone->bi_bdev    = cc->dev->bdev;
1114 	clone->bi_rw      = io->base_bio->bi_rw;
1115 }
1116 
1117 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1118 {
1119 	struct crypt_config *cc = io->cc;
1120 	struct bio *base_bio = io->base_bio;
1121 	struct bio *clone;
1122 
1123 	/*
1124 	 * The block layer might modify the bvec array, so always
1125 	 * copy the required bvecs because we need the original
1126 	 * one in order to decrypt the whole bio data *afterwards*.
1127 	 */
1128 	clone = bio_clone_bioset(base_bio, gfp, cc->bs);
1129 	if (!clone)
1130 		return 1;
1131 
1132 	crypt_inc_pending(io);
1133 
1134 	clone_init(io, clone);
1135 	clone->bi_iter.bi_sector = cc->start + io->sector;
1136 
1137 	generic_make_request(clone);
1138 	return 0;
1139 }
1140 
1141 static void kcryptd_io_write(struct dm_crypt_io *io)
1142 {
1143 	struct bio *clone = io->ctx.bio_out;
1144 	generic_make_request(clone);
1145 }
1146 
1147 static void kcryptd_io(struct work_struct *work)
1148 {
1149 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1150 
1151 	if (bio_data_dir(io->base_bio) == READ) {
1152 		crypt_inc_pending(io);
1153 		if (kcryptd_io_read(io, GFP_NOIO))
1154 			io->error = -ENOMEM;
1155 		crypt_dec_pending(io);
1156 	} else
1157 		kcryptd_io_write(io);
1158 }
1159 
1160 static void kcryptd_queue_io(struct dm_crypt_io *io)
1161 {
1162 	struct crypt_config *cc = io->cc;
1163 
1164 	INIT_WORK(&io->work, kcryptd_io);
1165 	queue_work(cc->io_queue, &io->work);
1166 }
1167 
1168 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1169 {
1170 	struct bio *clone = io->ctx.bio_out;
1171 	struct crypt_config *cc = io->cc;
1172 
1173 	if (unlikely(io->error < 0)) {
1174 		crypt_free_buffer_pages(cc, clone);
1175 		bio_put(clone);
1176 		crypt_dec_pending(io);
1177 		return;
1178 	}
1179 
1180 	/* crypt_convert should have filled the clone bio */
1181 	BUG_ON(io->ctx.iter_out.bi_size);
1182 
1183 	clone->bi_iter.bi_sector = cc->start + io->sector;
1184 
1185 	if (async)
1186 		kcryptd_queue_io(io);
1187 	else
1188 		generic_make_request(clone);
1189 }
1190 
1191 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1192 {
1193 	struct crypt_config *cc = io->cc;
1194 	struct bio *clone;
1195 	struct dm_crypt_io *new_io;
1196 	int crypt_finished;
1197 	unsigned out_of_pages = 0;
1198 	unsigned remaining = io->base_bio->bi_iter.bi_size;
1199 	sector_t sector = io->sector;
1200 	int r;
1201 
1202 	/*
1203 	 * Prevent io from disappearing until this function completes.
1204 	 */
1205 	crypt_inc_pending(io);
1206 	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1207 
1208 	/*
1209 	 * The allocated buffers can be smaller than the whole bio,
1210 	 * so repeat the whole process until all the data can be handled.
1211 	 */
1212 	while (remaining) {
1213 		clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1214 		if (unlikely(!clone)) {
1215 			io->error = -ENOMEM;
1216 			break;
1217 		}
1218 
1219 		io->ctx.bio_out = clone;
1220 		io->ctx.iter_out = clone->bi_iter;
1221 
1222 		remaining -= clone->bi_iter.bi_size;
1223 		sector += bio_sectors(clone);
1224 
1225 		crypt_inc_pending(io);
1226 
1227 		r = crypt_convert(cc, &io->ctx);
1228 		if (r < 0)
1229 			io->error = -EIO;
1230 
1231 		crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1232 
1233 		/* Encryption was already finished, submit io now */
1234 		if (crypt_finished) {
1235 			kcryptd_crypt_write_io_submit(io, 0);
1236 
1237 			/*
1238 			 * If there was an error, do not try next fragments.
1239 			 * For async, error is processed in async handler.
1240 			 */
1241 			if (unlikely(r < 0))
1242 				break;
1243 
1244 			io->sector = sector;
1245 		}
1246 
1247 		/*
1248 		 * Out of memory -> run queues
1249 		 * But don't wait if split was due to the io size restriction
1250 		 */
1251 		if (unlikely(out_of_pages))
1252 			congestion_wait(BLK_RW_ASYNC, HZ/100);
1253 
1254 		/*
1255 		 * With async crypto it is unsafe to share the crypto context
1256 		 * between fragments, so switch to a new dm_crypt_io structure.
1257 		 */
1258 		if (unlikely(!crypt_finished && remaining)) {
1259 			new_io = mempool_alloc(cc->io_pool, GFP_NOIO);
1260 			crypt_io_init(new_io, io->cc, io->base_bio, sector);
1261 			crypt_inc_pending(new_io);
1262 			crypt_convert_init(cc, &new_io->ctx, NULL,
1263 					   io->base_bio, sector);
1264 			new_io->ctx.iter_in = io->ctx.iter_in;
1265 
1266 			/*
1267 			 * Fragments after the first use the base_io
1268 			 * pending count.
1269 			 */
1270 			if (!io->base_io)
1271 				new_io->base_io = io;
1272 			else {
1273 				new_io->base_io = io->base_io;
1274 				crypt_inc_pending(io->base_io);
1275 				crypt_dec_pending(io);
1276 			}
1277 
1278 			io = new_io;
1279 		}
1280 	}
1281 
1282 	crypt_dec_pending(io);
1283 }
1284 
1285 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1286 {
1287 	crypt_dec_pending(io);
1288 }
1289 
1290 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1291 {
1292 	struct crypt_config *cc = io->cc;
1293 	int r = 0;
1294 
1295 	crypt_inc_pending(io);
1296 
1297 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1298 			   io->sector);
1299 
1300 	r = crypt_convert(cc, &io->ctx);
1301 	if (r < 0)
1302 		io->error = -EIO;
1303 
1304 	if (atomic_dec_and_test(&io->ctx.cc_pending))
1305 		kcryptd_crypt_read_done(io);
1306 
1307 	crypt_dec_pending(io);
1308 }
1309 
1310 static void kcryptd_async_done(struct crypto_async_request *async_req,
1311 			       int error)
1312 {
1313 	struct dm_crypt_request *dmreq = async_req->data;
1314 	struct convert_context *ctx = dmreq->ctx;
1315 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1316 	struct crypt_config *cc = io->cc;
1317 
1318 	if (error == -EINPROGRESS) {
1319 		complete(&ctx->restart);
1320 		return;
1321 	}
1322 
1323 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1324 		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1325 
1326 	if (error < 0)
1327 		io->error = -EIO;
1328 
1329 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1330 
1331 	if (!atomic_dec_and_test(&ctx->cc_pending))
1332 		return;
1333 
1334 	if (bio_data_dir(io->base_bio) == READ)
1335 		kcryptd_crypt_read_done(io);
1336 	else
1337 		kcryptd_crypt_write_io_submit(io, 1);
1338 }
1339 
1340 static void kcryptd_crypt(struct work_struct *work)
1341 {
1342 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1343 
1344 	if (bio_data_dir(io->base_bio) == READ)
1345 		kcryptd_crypt_read_convert(io);
1346 	else
1347 		kcryptd_crypt_write_convert(io);
1348 }
1349 
1350 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1351 {
1352 	struct crypt_config *cc = io->cc;
1353 
1354 	INIT_WORK(&io->work, kcryptd_crypt);
1355 	queue_work(cc->crypt_queue, &io->work);
1356 }
1357 
1358 /*
1359  * Decode key from its hex representation
1360  */
1361 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1362 {
1363 	char buffer[3];
1364 	unsigned int i;
1365 
1366 	buffer[2] = '\0';
1367 
1368 	for (i = 0; i < size; i++) {
1369 		buffer[0] = *hex++;
1370 		buffer[1] = *hex++;
1371 
1372 		if (kstrtou8(buffer, 16, &key[i]))
1373 			return -EINVAL;
1374 	}
1375 
1376 	if (*hex != '\0')
1377 		return -EINVAL;
1378 
1379 	return 0;
1380 }
1381 
1382 static void crypt_free_tfms(struct crypt_config *cc)
1383 {
1384 	unsigned i;
1385 
1386 	if (!cc->tfms)
1387 		return;
1388 
1389 	for (i = 0; i < cc->tfms_count; i++)
1390 		if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1391 			crypto_free_ablkcipher(cc->tfms[i]);
1392 			cc->tfms[i] = NULL;
1393 		}
1394 
1395 	kfree(cc->tfms);
1396 	cc->tfms = NULL;
1397 }
1398 
1399 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1400 {
1401 	unsigned i;
1402 	int err;
1403 
1404 	cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
1405 			   GFP_KERNEL);
1406 	if (!cc->tfms)
1407 		return -ENOMEM;
1408 
1409 	for (i = 0; i < cc->tfms_count; i++) {
1410 		cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1411 		if (IS_ERR(cc->tfms[i])) {
1412 			err = PTR_ERR(cc->tfms[i]);
1413 			crypt_free_tfms(cc);
1414 			return err;
1415 		}
1416 	}
1417 
1418 	return 0;
1419 }
1420 
1421 static int crypt_setkey_allcpus(struct crypt_config *cc)
1422 {
1423 	unsigned subkey_size;
1424 	int err = 0, i, r;
1425 
1426 	/* Ignore extra keys (which are used for IV etc) */
1427 	subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1428 
1429 	for (i = 0; i < cc->tfms_count; i++) {
1430 		r = crypto_ablkcipher_setkey(cc->tfms[i],
1431 					     cc->key + (i * subkey_size),
1432 					     subkey_size);
1433 		if (r)
1434 			err = r;
1435 	}
1436 
1437 	return err;
1438 }
1439 
1440 static int crypt_set_key(struct crypt_config *cc, char *key)
1441 {
1442 	int r = -EINVAL;
1443 	int key_string_len = strlen(key);
1444 
1445 	/* The key size may not be changed. */
1446 	if (cc->key_size != (key_string_len >> 1))
1447 		goto out;
1448 
1449 	/* Hyphen (which gives a key_size of zero) means there is no key. */
1450 	if (!cc->key_size && strcmp(key, "-"))
1451 		goto out;
1452 
1453 	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1454 		goto out;
1455 
1456 	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1457 
1458 	r = crypt_setkey_allcpus(cc);
1459 
1460 out:
1461 	/* Hex key string not needed after here, so wipe it. */
1462 	memset(key, '0', key_string_len);
1463 
1464 	return r;
1465 }
1466 
1467 static int crypt_wipe_key(struct crypt_config *cc)
1468 {
1469 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1470 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
1471 
1472 	return crypt_setkey_allcpus(cc);
1473 }
1474 
1475 static void crypt_dtr(struct dm_target *ti)
1476 {
1477 	struct crypt_config *cc = ti->private;
1478 
1479 	ti->private = NULL;
1480 
1481 	if (!cc)
1482 		return;
1483 
1484 	if (cc->io_queue)
1485 		destroy_workqueue(cc->io_queue);
1486 	if (cc->crypt_queue)
1487 		destroy_workqueue(cc->crypt_queue);
1488 
1489 	crypt_free_tfms(cc);
1490 
1491 	if (cc->bs)
1492 		bioset_free(cc->bs);
1493 
1494 	if (cc->page_pool)
1495 		mempool_destroy(cc->page_pool);
1496 	if (cc->req_pool)
1497 		mempool_destroy(cc->req_pool);
1498 	if (cc->io_pool)
1499 		mempool_destroy(cc->io_pool);
1500 
1501 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1502 		cc->iv_gen_ops->dtr(cc);
1503 
1504 	if (cc->dev)
1505 		dm_put_device(ti, cc->dev);
1506 
1507 	kzfree(cc->cipher);
1508 	kzfree(cc->cipher_string);
1509 
1510 	/* Must zero key material before freeing */
1511 	kzfree(cc);
1512 }
1513 
1514 static int crypt_ctr_cipher(struct dm_target *ti,
1515 			    char *cipher_in, char *key)
1516 {
1517 	struct crypt_config *cc = ti->private;
1518 	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1519 	char *cipher_api = NULL;
1520 	int ret = -EINVAL;
1521 	char dummy;
1522 
1523 	/* Convert to crypto api definition? */
1524 	if (strchr(cipher_in, '(')) {
1525 		ti->error = "Bad cipher specification";
1526 		return -EINVAL;
1527 	}
1528 
1529 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1530 	if (!cc->cipher_string)
1531 		goto bad_mem;
1532 
1533 	/*
1534 	 * Legacy dm-crypt cipher specification
1535 	 * cipher[:keycount]-mode-iv:ivopts
1536 	 */
1537 	tmp = cipher_in;
1538 	keycount = strsep(&tmp, "-");
1539 	cipher = strsep(&keycount, ":");
1540 
1541 	if (!keycount)
1542 		cc->tfms_count = 1;
1543 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1544 		 !is_power_of_2(cc->tfms_count)) {
1545 		ti->error = "Bad cipher key count specification";
1546 		return -EINVAL;
1547 	}
1548 	cc->key_parts = cc->tfms_count;
1549 	cc->key_extra_size = 0;
1550 
1551 	cc->cipher = kstrdup(cipher, GFP_KERNEL);
1552 	if (!cc->cipher)
1553 		goto bad_mem;
1554 
1555 	chainmode = strsep(&tmp, "-");
1556 	ivopts = strsep(&tmp, "-");
1557 	ivmode = strsep(&ivopts, ":");
1558 
1559 	if (tmp)
1560 		DMWARN("Ignoring unexpected additional cipher options");
1561 
1562 	/*
1563 	 * For compatibility with the original dm-crypt mapping format, if
1564 	 * only the cipher name is supplied, use cbc-plain.
1565 	 */
1566 	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1567 		chainmode = "cbc";
1568 		ivmode = "plain";
1569 	}
1570 
1571 	if (strcmp(chainmode, "ecb") && !ivmode) {
1572 		ti->error = "IV mechanism required";
1573 		return -EINVAL;
1574 	}
1575 
1576 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1577 	if (!cipher_api)
1578 		goto bad_mem;
1579 
1580 	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1581 		       "%s(%s)", chainmode, cipher);
1582 	if (ret < 0) {
1583 		kfree(cipher_api);
1584 		goto bad_mem;
1585 	}
1586 
1587 	/* Allocate cipher */
1588 	ret = crypt_alloc_tfms(cc, cipher_api);
1589 	if (ret < 0) {
1590 		ti->error = "Error allocating crypto tfm";
1591 		goto bad;
1592 	}
1593 
1594 	/* Initialize IV */
1595 	cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1596 	if (cc->iv_size)
1597 		/* at least a 64 bit sector number should fit in our buffer */
1598 		cc->iv_size = max(cc->iv_size,
1599 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1600 	else if (ivmode) {
1601 		DMWARN("Selected cipher does not support IVs");
1602 		ivmode = NULL;
1603 	}
1604 
1605 	/* Choose ivmode, see comments at iv code. */
1606 	if (ivmode == NULL)
1607 		cc->iv_gen_ops = NULL;
1608 	else if (strcmp(ivmode, "plain") == 0)
1609 		cc->iv_gen_ops = &crypt_iv_plain_ops;
1610 	else if (strcmp(ivmode, "plain64") == 0)
1611 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1612 	else if (strcmp(ivmode, "essiv") == 0)
1613 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1614 	else if (strcmp(ivmode, "benbi") == 0)
1615 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1616 	else if (strcmp(ivmode, "null") == 0)
1617 		cc->iv_gen_ops = &crypt_iv_null_ops;
1618 	else if (strcmp(ivmode, "lmk") == 0) {
1619 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
1620 		/*
1621 		 * Version 2 and 3 is recognised according
1622 		 * to length of provided multi-key string.
1623 		 * If present (version 3), last key is used as IV seed.
1624 		 * All keys (including IV seed) are always the same size.
1625 		 */
1626 		if (cc->key_size % cc->key_parts) {
1627 			cc->key_parts++;
1628 			cc->key_extra_size = cc->key_size / cc->key_parts;
1629 		}
1630 	} else if (strcmp(ivmode, "tcw") == 0) {
1631 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
1632 		cc->key_parts += 2; /* IV + whitening */
1633 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1634 	} else {
1635 		ret = -EINVAL;
1636 		ti->error = "Invalid IV mode";
1637 		goto bad;
1638 	}
1639 
1640 	/* Initialize and set key */
1641 	ret = crypt_set_key(cc, key);
1642 	if (ret < 0) {
1643 		ti->error = "Error decoding and setting key";
1644 		goto bad;
1645 	}
1646 
1647 	/* Allocate IV */
1648 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1649 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1650 		if (ret < 0) {
1651 			ti->error = "Error creating IV";
1652 			goto bad;
1653 		}
1654 	}
1655 
1656 	/* Initialize IV (set keys for ESSIV etc) */
1657 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1658 		ret = cc->iv_gen_ops->init(cc);
1659 		if (ret < 0) {
1660 			ti->error = "Error initialising IV";
1661 			goto bad;
1662 		}
1663 	}
1664 
1665 	ret = 0;
1666 bad:
1667 	kfree(cipher_api);
1668 	return ret;
1669 
1670 bad_mem:
1671 	ti->error = "Cannot allocate cipher strings";
1672 	return -ENOMEM;
1673 }
1674 
1675 /*
1676  * Construct an encryption mapping:
1677  * <cipher> <key> <iv_offset> <dev_path> <start>
1678  */
1679 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1680 {
1681 	struct crypt_config *cc;
1682 	unsigned int key_size, opt_params;
1683 	unsigned long long tmpll;
1684 	int ret;
1685 	size_t iv_size_padding;
1686 	struct dm_arg_set as;
1687 	const char *opt_string;
1688 	char dummy;
1689 
1690 	static struct dm_arg _args[] = {
1691 		{0, 1, "Invalid number of feature args"},
1692 	};
1693 
1694 	if (argc < 5) {
1695 		ti->error = "Not enough arguments";
1696 		return -EINVAL;
1697 	}
1698 
1699 	key_size = strlen(argv[1]) >> 1;
1700 
1701 	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1702 	if (!cc) {
1703 		ti->error = "Cannot allocate encryption context";
1704 		return -ENOMEM;
1705 	}
1706 	cc->key_size = key_size;
1707 
1708 	ti->private = cc;
1709 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1710 	if (ret < 0)
1711 		goto bad;
1712 
1713 	ret = -ENOMEM;
1714 	cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1715 	if (!cc->io_pool) {
1716 		ti->error = "Cannot allocate crypt io mempool";
1717 		goto bad;
1718 	}
1719 
1720 	cc->dmreq_start = sizeof(struct ablkcipher_request);
1721 	cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1722 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1723 
1724 	if (crypto_ablkcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1725 		/* Allocate the padding exactly */
1726 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1727 				& crypto_ablkcipher_alignmask(any_tfm(cc));
1728 	} else {
1729 		/*
1730 		 * If the cipher requires greater alignment than kmalloc
1731 		 * alignment, we don't know the exact position of the
1732 		 * initialization vector. We must assume worst case.
1733 		 */
1734 		iv_size_padding = crypto_ablkcipher_alignmask(any_tfm(cc));
1735 	}
1736 
1737 	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1738 			sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1739 	if (!cc->req_pool) {
1740 		ti->error = "Cannot allocate crypt request mempool";
1741 		goto bad;
1742 	}
1743 
1744 	cc->per_bio_data_size = ti->per_bio_data_size =
1745 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1746 		      sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1747 		      ARCH_KMALLOC_MINALIGN);
1748 
1749 	cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1750 	if (!cc->page_pool) {
1751 		ti->error = "Cannot allocate page mempool";
1752 		goto bad;
1753 	}
1754 
1755 	cc->bs = bioset_create(MIN_IOS, 0);
1756 	if (!cc->bs) {
1757 		ti->error = "Cannot allocate crypt bioset";
1758 		goto bad;
1759 	}
1760 
1761 	ret = -EINVAL;
1762 	if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1763 		ti->error = "Invalid iv_offset sector";
1764 		goto bad;
1765 	}
1766 	cc->iv_offset = tmpll;
1767 
1768 	if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1769 		ti->error = "Device lookup failed";
1770 		goto bad;
1771 	}
1772 
1773 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1774 		ti->error = "Invalid device sector";
1775 		goto bad;
1776 	}
1777 	cc->start = tmpll;
1778 
1779 	argv += 5;
1780 	argc -= 5;
1781 
1782 	/* Optional parameters */
1783 	if (argc) {
1784 		as.argc = argc;
1785 		as.argv = argv;
1786 
1787 		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1788 		if (ret)
1789 			goto bad;
1790 
1791 		opt_string = dm_shift_arg(&as);
1792 
1793 		if (opt_params == 1 && opt_string &&
1794 		    !strcasecmp(opt_string, "allow_discards"))
1795 			ti->num_discard_bios = 1;
1796 		else if (opt_params) {
1797 			ret = -EINVAL;
1798 			ti->error = "Invalid feature arguments";
1799 			goto bad;
1800 		}
1801 	}
1802 
1803 	ret = -ENOMEM;
1804 	cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1805 	if (!cc->io_queue) {
1806 		ti->error = "Couldn't create kcryptd io queue";
1807 		goto bad;
1808 	}
1809 
1810 	cc->crypt_queue = alloc_workqueue("kcryptd",
1811 					  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1812 	if (!cc->crypt_queue) {
1813 		ti->error = "Couldn't create kcryptd queue";
1814 		goto bad;
1815 	}
1816 
1817 	ti->num_flush_bios = 1;
1818 	ti->discard_zeroes_data_unsupported = true;
1819 
1820 	return 0;
1821 
1822 bad:
1823 	crypt_dtr(ti);
1824 	return ret;
1825 }
1826 
1827 static int crypt_map(struct dm_target *ti, struct bio *bio)
1828 {
1829 	struct dm_crypt_io *io;
1830 	struct crypt_config *cc = ti->private;
1831 
1832 	/*
1833 	 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1834 	 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1835 	 * - for REQ_DISCARD caller must use flush if IO ordering matters
1836 	 */
1837 	if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1838 		bio->bi_bdev = cc->dev->bdev;
1839 		if (bio_sectors(bio))
1840 			bio->bi_iter.bi_sector = cc->start +
1841 				dm_target_offset(ti, bio->bi_iter.bi_sector);
1842 		return DM_MAPIO_REMAPPED;
1843 	}
1844 
1845 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
1846 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1847 	io->ctx.req = (struct ablkcipher_request *)(io + 1);
1848 
1849 	if (bio_data_dir(io->base_bio) == READ) {
1850 		if (kcryptd_io_read(io, GFP_NOWAIT))
1851 			kcryptd_queue_io(io);
1852 	} else
1853 		kcryptd_queue_crypt(io);
1854 
1855 	return DM_MAPIO_SUBMITTED;
1856 }
1857 
1858 static void crypt_status(struct dm_target *ti, status_type_t type,
1859 			 unsigned status_flags, char *result, unsigned maxlen)
1860 {
1861 	struct crypt_config *cc = ti->private;
1862 	unsigned i, sz = 0;
1863 
1864 	switch (type) {
1865 	case STATUSTYPE_INFO:
1866 		result[0] = '\0';
1867 		break;
1868 
1869 	case STATUSTYPE_TABLE:
1870 		DMEMIT("%s ", cc->cipher_string);
1871 
1872 		if (cc->key_size > 0)
1873 			for (i = 0; i < cc->key_size; i++)
1874 				DMEMIT("%02x", cc->key[i]);
1875 		else
1876 			DMEMIT("-");
1877 
1878 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1879 				cc->dev->name, (unsigned long long)cc->start);
1880 
1881 		if (ti->num_discard_bios)
1882 			DMEMIT(" 1 allow_discards");
1883 
1884 		break;
1885 	}
1886 }
1887 
1888 static void crypt_postsuspend(struct dm_target *ti)
1889 {
1890 	struct crypt_config *cc = ti->private;
1891 
1892 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1893 }
1894 
1895 static int crypt_preresume(struct dm_target *ti)
1896 {
1897 	struct crypt_config *cc = ti->private;
1898 
1899 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1900 		DMERR("aborting resume - crypt key is not set.");
1901 		return -EAGAIN;
1902 	}
1903 
1904 	return 0;
1905 }
1906 
1907 static void crypt_resume(struct dm_target *ti)
1908 {
1909 	struct crypt_config *cc = ti->private;
1910 
1911 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1912 }
1913 
1914 /* Message interface
1915  *	key set <key>
1916  *	key wipe
1917  */
1918 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1919 {
1920 	struct crypt_config *cc = ti->private;
1921 	int ret = -EINVAL;
1922 
1923 	if (argc < 2)
1924 		goto error;
1925 
1926 	if (!strcasecmp(argv[0], "key")) {
1927 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1928 			DMWARN("not suspended during key manipulation.");
1929 			return -EINVAL;
1930 		}
1931 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
1932 			ret = crypt_set_key(cc, argv[2]);
1933 			if (ret)
1934 				return ret;
1935 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1936 				ret = cc->iv_gen_ops->init(cc);
1937 			return ret;
1938 		}
1939 		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
1940 			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1941 				ret = cc->iv_gen_ops->wipe(cc);
1942 				if (ret)
1943 					return ret;
1944 			}
1945 			return crypt_wipe_key(cc);
1946 		}
1947 	}
1948 
1949 error:
1950 	DMWARN("unrecognised message received.");
1951 	return -EINVAL;
1952 }
1953 
1954 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1955 		       struct bio_vec *biovec, int max_size)
1956 {
1957 	struct crypt_config *cc = ti->private;
1958 	struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1959 
1960 	if (!q->merge_bvec_fn)
1961 		return max_size;
1962 
1963 	bvm->bi_bdev = cc->dev->bdev;
1964 	bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1965 
1966 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1967 }
1968 
1969 static int crypt_iterate_devices(struct dm_target *ti,
1970 				 iterate_devices_callout_fn fn, void *data)
1971 {
1972 	struct crypt_config *cc = ti->private;
1973 
1974 	return fn(ti, cc->dev, cc->start, ti->len, data);
1975 }
1976 
1977 static struct target_type crypt_target = {
1978 	.name   = "crypt",
1979 	.version = {1, 13, 0},
1980 	.module = THIS_MODULE,
1981 	.ctr    = crypt_ctr,
1982 	.dtr    = crypt_dtr,
1983 	.map    = crypt_map,
1984 	.status = crypt_status,
1985 	.postsuspend = crypt_postsuspend,
1986 	.preresume = crypt_preresume,
1987 	.resume = crypt_resume,
1988 	.message = crypt_message,
1989 	.merge  = crypt_merge,
1990 	.iterate_devices = crypt_iterate_devices,
1991 };
1992 
1993 static int __init dm_crypt_init(void)
1994 {
1995 	int r;
1996 
1997 	_crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1998 	if (!_crypt_io_pool)
1999 		return -ENOMEM;
2000 
2001 	r = dm_register_target(&crypt_target);
2002 	if (r < 0) {
2003 		DMERR("register failed %d", r);
2004 		kmem_cache_destroy(_crypt_io_pool);
2005 	}
2006 
2007 	return r;
2008 }
2009 
2010 static void __exit dm_crypt_exit(void)
2011 {
2012 	dm_unregister_target(&crypt_target);
2013 	kmem_cache_destroy(_crypt_io_pool);
2014 }
2015 
2016 module_init(dm_crypt_init);
2017 module_exit(dm_crypt_exit);
2018 
2019 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2020 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2021 MODULE_LICENSE("GPL");
2022