1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2003 Jana Saout <jana@saout.de> 4 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org> 5 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved. 6 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com> 7 * 8 * This file is released under the GPL. 9 */ 10 11 #include <linux/completion.h> 12 #include <linux/err.h> 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/key.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-integrity.h> 20 #include <linux/mempool.h> 21 #include <linux/slab.h> 22 #include <linux/crypto.h> 23 #include <linux/workqueue.h> 24 #include <linux/kthread.h> 25 #include <linux/backing-dev.h> 26 #include <linux/atomic.h> 27 #include <linux/scatterlist.h> 28 #include <linux/rbtree.h> 29 #include <linux/ctype.h> 30 #include <asm/page.h> 31 #include <linux/unaligned.h> 32 #include <crypto/hash.h> 33 #include <crypto/md5.h> 34 #include <crypto/skcipher.h> 35 #include <crypto/aead.h> 36 #include <crypto/authenc.h> 37 #include <crypto/utils.h> 38 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */ 39 #include <linux/key-type.h> 40 #include <keys/user-type.h> 41 #include <keys/encrypted-type.h> 42 #include <keys/trusted-type.h> 43 44 #include <linux/device-mapper.h> 45 46 #include "dm-audit.h" 47 48 #define DM_MSG_PREFIX "crypt" 49 50 static DEFINE_IDA(workqueue_ida); 51 52 /* 53 * context holding the current state of a multi-part conversion 54 */ 55 struct convert_context { 56 struct completion restart; 57 struct bio *bio_in; 58 struct bvec_iter iter_in; 59 struct bio *bio_out; 60 struct bvec_iter iter_out; 61 atomic_t cc_pending; 62 u64 cc_sector; 63 union { 64 struct skcipher_request *req; 65 struct aead_request *req_aead; 66 } r; 67 bool aead_recheck; 68 bool aead_failed; 69 70 }; 71 72 /* 73 * per bio private data 74 */ 75 struct dm_crypt_io { 76 struct crypt_config *cc; 77 struct bio *base_bio; 78 u8 *integrity_metadata; 79 bool integrity_metadata_from_pool:1; 80 81 struct work_struct work; 82 83 struct convert_context ctx; 84 85 atomic_t io_pending; 86 blk_status_t error; 87 sector_t sector; 88 89 struct bvec_iter saved_bi_iter; 90 91 struct rb_node rb_node; 92 } CRYPTO_MINALIGN_ATTR; 93 94 struct dm_crypt_request { 95 struct convert_context *ctx; 96 struct scatterlist sg_in[4]; 97 struct scatterlist sg_out[4]; 98 u64 iv_sector; 99 }; 100 101 struct crypt_config; 102 103 struct crypt_iv_operations { 104 int (*ctr)(struct crypt_config *cc, struct dm_target *ti, 105 const char *opts); 106 void (*dtr)(struct crypt_config *cc); 107 int (*init)(struct crypt_config *cc); 108 int (*wipe)(struct crypt_config *cc); 109 int (*generator)(struct crypt_config *cc, u8 *iv, 110 struct dm_crypt_request *dmreq); 111 int (*post)(struct crypt_config *cc, u8 *iv, 112 struct dm_crypt_request *dmreq); 113 }; 114 115 struct iv_benbi_private { 116 int shift; 117 }; 118 119 #define LMK_SEED_SIZE 64 /* hash + 0 */ 120 struct iv_lmk_private { 121 struct crypto_shash *hash_tfm; 122 u8 *seed; 123 }; 124 125 #define TCW_WHITENING_SIZE 16 126 struct iv_tcw_private { 127 struct crypto_shash *crc32_tfm; 128 u8 *iv_seed; 129 u8 *whitening; 130 }; 131 132 #define ELEPHANT_MAX_KEY_SIZE 32 133 struct iv_elephant_private { 134 struct crypto_skcipher *tfm; 135 }; 136 137 /* 138 * Crypt: maps a linear range of a block device 139 * and encrypts / decrypts at the same time. 140 */ 141 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID, 142 DM_CRYPT_SAME_CPU, DM_CRYPT_HIGH_PRIORITY, 143 DM_CRYPT_NO_OFFLOAD, DM_CRYPT_NO_READ_WORKQUEUE, 144 DM_CRYPT_NO_WRITE_WORKQUEUE, DM_CRYPT_WRITE_INLINE }; 145 146 enum cipher_flags { 147 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cipher */ 148 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */ 149 CRYPT_ENCRYPT_PREPROCESS, /* Must preprocess data for encryption (elephant) */ 150 CRYPT_KEY_MAC_SIZE_SET, /* The integrity_key_size option was used */ 151 }; 152 153 /* 154 * The fields in here must be read only after initialization. 155 */ 156 struct crypt_config { 157 struct dm_dev *dev; 158 sector_t start; 159 160 struct percpu_counter n_allocated_pages; 161 162 struct workqueue_struct *io_queue; 163 struct workqueue_struct *crypt_queue; 164 165 spinlock_t write_thread_lock; 166 struct task_struct *write_thread; 167 struct rb_root write_tree; 168 169 char *cipher_string; 170 char *cipher_auth; 171 char *key_string; 172 173 const struct crypt_iv_operations *iv_gen_ops; 174 union { 175 struct iv_benbi_private benbi; 176 struct iv_lmk_private lmk; 177 struct iv_tcw_private tcw; 178 struct iv_elephant_private elephant; 179 } iv_gen_private; 180 u64 iv_offset; 181 unsigned int iv_size; 182 unsigned short sector_size; 183 unsigned char sector_shift; 184 185 union { 186 struct crypto_skcipher **tfms; 187 struct crypto_aead **tfms_aead; 188 } cipher_tfm; 189 unsigned int tfms_count; 190 int workqueue_id; 191 unsigned long cipher_flags; 192 193 /* 194 * Layout of each crypto request: 195 * 196 * struct skcipher_request 197 * context 198 * padding 199 * struct dm_crypt_request 200 * padding 201 * IV 202 * 203 * The padding is added so that dm_crypt_request and the IV are 204 * correctly aligned. 205 */ 206 unsigned int dmreq_start; 207 208 unsigned int per_bio_data_size; 209 210 unsigned long flags; 211 unsigned int key_size; 212 unsigned int key_parts; /* independent parts in key buffer */ 213 unsigned int key_extra_size; /* additional keys length */ 214 unsigned int key_mac_size; /* MAC key size for authenc(...) */ 215 216 unsigned int integrity_tag_size; 217 unsigned int integrity_iv_size; 218 unsigned int used_tag_size; 219 unsigned int tuple_size; 220 221 /* 222 * pool for per bio private data, crypto requests, 223 * encryption requeusts/buffer pages and integrity tags 224 */ 225 unsigned int tag_pool_max_sectors; 226 mempool_t tag_pool; 227 mempool_t req_pool; 228 mempool_t page_pool; 229 230 struct bio_set bs; 231 struct mutex bio_alloc_lock; 232 233 u8 *authenc_key; /* space for keys in authenc() format (if used) */ 234 u8 key[] __counted_by(key_size); 235 }; 236 237 #define MIN_IOS 64 238 #define MAX_TAG_SIZE 480 239 #define POOL_ENTRY_SIZE 512 240 241 static DEFINE_SPINLOCK(dm_crypt_clients_lock); 242 static unsigned int dm_crypt_clients_n; 243 static volatile unsigned long dm_crypt_pages_per_client; 244 #define DM_CRYPT_MEMORY_PERCENT 2 245 #define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_VECS * 16) 246 #define DM_CRYPT_DEFAULT_MAX_READ_SIZE 131072 247 #define DM_CRYPT_DEFAULT_MAX_WRITE_SIZE 131072 248 249 static unsigned int max_read_size = 0; 250 module_param(max_read_size, uint, 0644); 251 MODULE_PARM_DESC(max_read_size, "Maximum size of a read request"); 252 static unsigned int max_write_size = 0; 253 module_param(max_write_size, uint, 0644); 254 MODULE_PARM_DESC(max_write_size, "Maximum size of a write request"); 255 static unsigned get_max_request_size(struct crypt_config *cc, bool wrt) 256 { 257 unsigned val, sector_align; 258 val = !wrt ? READ_ONCE(max_read_size) : READ_ONCE(max_write_size); 259 if (likely(!val)) 260 val = !wrt ? DM_CRYPT_DEFAULT_MAX_READ_SIZE : DM_CRYPT_DEFAULT_MAX_WRITE_SIZE; 261 if (wrt || cc->used_tag_size) { 262 if (unlikely(val > BIO_MAX_VECS << PAGE_SHIFT)) 263 val = BIO_MAX_VECS << PAGE_SHIFT; 264 } 265 sector_align = max(bdev_logical_block_size(cc->dev->bdev), (unsigned)cc->sector_size); 266 val = round_down(val, sector_align); 267 if (unlikely(!val)) 268 val = sector_align; 269 return val >> SECTOR_SHIFT; 270 } 271 272 static void crypt_endio(struct bio *clone); 273 static void kcryptd_queue_crypt(struct dm_crypt_io *io); 274 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc, 275 struct scatterlist *sg); 276 277 static bool crypt_integrity_aead(struct crypt_config *cc); 278 279 /* 280 * Use this to access cipher attributes that are independent of the key. 281 */ 282 static struct crypto_skcipher *any_tfm(struct crypt_config *cc) 283 { 284 return cc->cipher_tfm.tfms[0]; 285 } 286 287 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc) 288 { 289 return cc->cipher_tfm.tfms_aead[0]; 290 } 291 292 /* 293 * Different IV generation algorithms: 294 * 295 * plain: the initial vector is the 32-bit little-endian version of the sector 296 * number, padded with zeros if necessary. 297 * 298 * plain64: the initial vector is the 64-bit little-endian version of the sector 299 * number, padded with zeros if necessary. 300 * 301 * plain64be: the initial vector is the 64-bit big-endian version of the sector 302 * number, padded with zeros if necessary. 303 * 304 * essiv: "encrypted sector|salt initial vector", the sector number is 305 * encrypted with the bulk cipher using a salt as key. The salt 306 * should be derived from the bulk cipher's key via hashing. 307 * 308 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1 309 * (needed for LRW-32-AES and possible other narrow block modes) 310 * 311 * null: the initial vector is always zero. Provides compatibility with 312 * obsolete loop_fish2 devices. Do not use for new devices. 313 * 314 * lmk: Compatible implementation of the block chaining mode used 315 * by the Loop-AES block device encryption system 316 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/ 317 * It operates on full 512 byte sectors and uses CBC 318 * with an IV derived from the sector number, the data and 319 * optionally extra IV seed. 320 * This means that after decryption the first block 321 * of sector must be tweaked according to decrypted data. 322 * Loop-AES can use three encryption schemes: 323 * version 1: is plain aes-cbc mode 324 * version 2: uses 64 multikey scheme with lmk IV generator 325 * version 3: the same as version 2 with additional IV seed 326 * (it uses 65 keys, last key is used as IV seed) 327 * 328 * tcw: Compatible implementation of the block chaining mode used 329 * by the TrueCrypt device encryption system (prior to version 4.1). 330 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat 331 * It operates on full 512 byte sectors and uses CBC 332 * with an IV derived from initial key and the sector number. 333 * In addition, whitening value is applied on every sector, whitening 334 * is calculated from initial key, sector number and mixed using CRC32. 335 * Note that this encryption scheme is vulnerable to watermarking attacks 336 * and should be used for old compatible containers access only. 337 * 338 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode) 339 * The IV is encrypted little-endian byte-offset (with the same key 340 * and cipher as the volume). 341 * 342 * elephant: The extended version of eboiv with additional Elephant diffuser 343 * used with Bitlocker CBC mode. 344 * This mode was used in older Windows systems 345 * https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf 346 */ 347 348 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, 349 struct dm_crypt_request *dmreq) 350 { 351 memset(iv, 0, cc->iv_size); 352 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff); 353 354 return 0; 355 } 356 357 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv, 358 struct dm_crypt_request *dmreq) 359 { 360 memset(iv, 0, cc->iv_size); 361 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); 362 363 return 0; 364 } 365 366 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv, 367 struct dm_crypt_request *dmreq) 368 { 369 memset(iv, 0, cc->iv_size); 370 /* iv_size is at least of size u64; usually it is 16 bytes */ 371 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector); 372 373 return 0; 374 } 375 376 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, 377 struct dm_crypt_request *dmreq) 378 { 379 /* 380 * ESSIV encryption of the IV is now handled by the crypto API, 381 * so just pass the plain sector number here. 382 */ 383 memset(iv, 0, cc->iv_size); 384 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); 385 386 return 0; 387 } 388 389 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti, 390 const char *opts) 391 { 392 unsigned int bs; 393 int log; 394 395 if (crypt_integrity_aead(cc)) 396 bs = crypto_aead_blocksize(any_tfm_aead(cc)); 397 else 398 bs = crypto_skcipher_blocksize(any_tfm(cc)); 399 log = ilog2(bs); 400 401 /* 402 * We need to calculate how far we must shift the sector count 403 * to get the cipher block count, we use this shift in _gen. 404 */ 405 if (1 << log != bs) { 406 ti->error = "cypher blocksize is not a power of 2"; 407 return -EINVAL; 408 } 409 410 if (log > 9) { 411 ti->error = "cypher blocksize is > 512"; 412 return -EINVAL; 413 } 414 415 cc->iv_gen_private.benbi.shift = 9 - log; 416 417 return 0; 418 } 419 420 static void crypt_iv_benbi_dtr(struct crypt_config *cc) 421 { 422 } 423 424 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, 425 struct dm_crypt_request *dmreq) 426 { 427 __be64 val; 428 429 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */ 430 431 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1); 432 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64))); 433 434 return 0; 435 } 436 437 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, 438 struct dm_crypt_request *dmreq) 439 { 440 memset(iv, 0, cc->iv_size); 441 442 return 0; 443 } 444 445 static void crypt_iv_lmk_dtr(struct crypt_config *cc) 446 { 447 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 448 449 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm)) 450 crypto_free_shash(lmk->hash_tfm); 451 lmk->hash_tfm = NULL; 452 453 kfree_sensitive(lmk->seed); 454 lmk->seed = NULL; 455 } 456 457 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti, 458 const char *opts) 459 { 460 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 461 462 if (cc->sector_size != (1 << SECTOR_SHIFT)) { 463 ti->error = "Unsupported sector size for LMK"; 464 return -EINVAL; 465 } 466 467 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 468 CRYPTO_ALG_ALLOCATES_MEMORY); 469 if (IS_ERR(lmk->hash_tfm)) { 470 ti->error = "Error initializing LMK hash"; 471 return PTR_ERR(lmk->hash_tfm); 472 } 473 474 /* No seed in LMK version 2 */ 475 if (cc->key_parts == cc->tfms_count) { 476 lmk->seed = NULL; 477 return 0; 478 } 479 480 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL); 481 if (!lmk->seed) { 482 crypt_iv_lmk_dtr(cc); 483 ti->error = "Error kmallocing seed storage in LMK"; 484 return -ENOMEM; 485 } 486 487 return 0; 488 } 489 490 static int crypt_iv_lmk_init(struct crypt_config *cc) 491 { 492 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 493 int subkey_size = cc->key_size / cc->key_parts; 494 495 /* LMK seed is on the position of LMK_KEYS + 1 key */ 496 if (lmk->seed) 497 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size), 498 crypto_shash_digestsize(lmk->hash_tfm)); 499 500 return 0; 501 } 502 503 static int crypt_iv_lmk_wipe(struct crypt_config *cc) 504 { 505 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 506 507 if (lmk->seed) 508 memset(lmk->seed, 0, LMK_SEED_SIZE); 509 510 return 0; 511 } 512 513 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv, 514 struct dm_crypt_request *dmreq, 515 u8 *data) 516 { 517 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 518 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm); 519 struct md5_state md5state; 520 __le32 buf[4]; 521 int i, r; 522 523 desc->tfm = lmk->hash_tfm; 524 525 r = crypto_shash_init(desc); 526 if (r) 527 return r; 528 529 if (lmk->seed) { 530 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE); 531 if (r) 532 return r; 533 } 534 535 /* Sector is always 512B, block size 16, add data of blocks 1-31 */ 536 r = crypto_shash_update(desc, data + 16, 16 * 31); 537 if (r) 538 return r; 539 540 /* Sector is cropped to 56 bits here */ 541 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF); 542 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000); 543 buf[2] = cpu_to_le32(4024); 544 buf[3] = 0; 545 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf)); 546 if (r) 547 return r; 548 549 /* No MD5 padding here */ 550 r = crypto_shash_export(desc, &md5state); 551 if (r) 552 return r; 553 554 for (i = 0; i < MD5_HASH_WORDS; i++) 555 __cpu_to_le32s(&md5state.hash[i]); 556 memcpy(iv, &md5state.hash, cc->iv_size); 557 558 return 0; 559 } 560 561 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv, 562 struct dm_crypt_request *dmreq) 563 { 564 struct scatterlist *sg; 565 u8 *src; 566 int r = 0; 567 568 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 569 sg = crypt_get_sg_data(cc, dmreq->sg_in); 570 src = kmap_local_page(sg_page(sg)); 571 r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset); 572 kunmap_local(src); 573 } else 574 memset(iv, 0, cc->iv_size); 575 576 return r; 577 } 578 579 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv, 580 struct dm_crypt_request *dmreq) 581 { 582 struct scatterlist *sg; 583 u8 *dst; 584 int r; 585 586 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) 587 return 0; 588 589 sg = crypt_get_sg_data(cc, dmreq->sg_out); 590 dst = kmap_local_page(sg_page(sg)); 591 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset); 592 593 /* Tweak the first block of plaintext sector */ 594 if (!r) 595 crypto_xor(dst + sg->offset, iv, cc->iv_size); 596 597 kunmap_local(dst); 598 return r; 599 } 600 601 static void crypt_iv_tcw_dtr(struct crypt_config *cc) 602 { 603 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 604 605 kfree_sensitive(tcw->iv_seed); 606 tcw->iv_seed = NULL; 607 kfree_sensitive(tcw->whitening); 608 tcw->whitening = NULL; 609 610 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm)) 611 crypto_free_shash(tcw->crc32_tfm); 612 tcw->crc32_tfm = NULL; 613 } 614 615 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti, 616 const char *opts) 617 { 618 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 619 620 if (cc->sector_size != (1 << SECTOR_SHIFT)) { 621 ti->error = "Unsupported sector size for TCW"; 622 return -EINVAL; 623 } 624 625 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) { 626 ti->error = "Wrong key size for TCW"; 627 return -EINVAL; 628 } 629 630 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 631 CRYPTO_ALG_ALLOCATES_MEMORY); 632 if (IS_ERR(tcw->crc32_tfm)) { 633 ti->error = "Error initializing CRC32 in TCW"; 634 return PTR_ERR(tcw->crc32_tfm); 635 } 636 637 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL); 638 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL); 639 if (!tcw->iv_seed || !tcw->whitening) { 640 crypt_iv_tcw_dtr(cc); 641 ti->error = "Error allocating seed storage in TCW"; 642 return -ENOMEM; 643 } 644 645 return 0; 646 } 647 648 static int crypt_iv_tcw_init(struct crypt_config *cc) 649 { 650 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 651 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE; 652 653 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size); 654 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size], 655 TCW_WHITENING_SIZE); 656 657 return 0; 658 } 659 660 static int crypt_iv_tcw_wipe(struct crypt_config *cc) 661 { 662 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 663 664 memset(tcw->iv_seed, 0, cc->iv_size); 665 memset(tcw->whitening, 0, TCW_WHITENING_SIZE); 666 667 return 0; 668 } 669 670 static int crypt_iv_tcw_whitening(struct crypt_config *cc, 671 struct dm_crypt_request *dmreq, 672 u8 *data) 673 { 674 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 675 __le64 sector = cpu_to_le64(dmreq->iv_sector); 676 u8 buf[TCW_WHITENING_SIZE]; 677 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm); 678 int i, r; 679 680 /* xor whitening with sector number */ 681 crypto_xor_cpy(buf, tcw->whitening, (u8 *)§or, 8); 682 crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)§or, 8); 683 684 /* calculate crc32 for every 32bit part and xor it */ 685 desc->tfm = tcw->crc32_tfm; 686 for (i = 0; i < 4; i++) { 687 r = crypto_shash_digest(desc, &buf[i * 4], 4, &buf[i * 4]); 688 if (r) 689 goto out; 690 } 691 crypto_xor(&buf[0], &buf[12], 4); 692 crypto_xor(&buf[4], &buf[8], 4); 693 694 /* apply whitening (8 bytes) to whole sector */ 695 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++) 696 crypto_xor(data + i * 8, buf, 8); 697 out: 698 memzero_explicit(buf, sizeof(buf)); 699 return r; 700 } 701 702 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv, 703 struct dm_crypt_request *dmreq) 704 { 705 struct scatterlist *sg; 706 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 707 __le64 sector = cpu_to_le64(dmreq->iv_sector); 708 u8 *src; 709 int r = 0; 710 711 /* Remove whitening from ciphertext */ 712 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { 713 sg = crypt_get_sg_data(cc, dmreq->sg_in); 714 src = kmap_local_page(sg_page(sg)); 715 r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset); 716 kunmap_local(src); 717 } 718 719 /* Calculate IV */ 720 crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)§or, 8); 721 if (cc->iv_size > 8) 722 crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)§or, 723 cc->iv_size - 8); 724 725 return r; 726 } 727 728 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv, 729 struct dm_crypt_request *dmreq) 730 { 731 struct scatterlist *sg; 732 u8 *dst; 733 int r; 734 735 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) 736 return 0; 737 738 /* Apply whitening on ciphertext */ 739 sg = crypt_get_sg_data(cc, dmreq->sg_out); 740 dst = kmap_local_page(sg_page(sg)); 741 r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset); 742 kunmap_local(dst); 743 744 return r; 745 } 746 747 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv, 748 struct dm_crypt_request *dmreq) 749 { 750 /* Used only for writes, there must be an additional space to store IV */ 751 get_random_bytes(iv, cc->iv_size); 752 return 0; 753 } 754 755 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti, 756 const char *opts) 757 { 758 if (crypt_integrity_aead(cc)) { 759 ti->error = "AEAD transforms not supported for EBOIV"; 760 return -EINVAL; 761 } 762 763 if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) { 764 ti->error = "Block size of EBOIV cipher does not match IV size of block cipher"; 765 return -EINVAL; 766 } 767 768 return 0; 769 } 770 771 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv, 772 struct dm_crypt_request *dmreq) 773 { 774 struct crypto_skcipher *tfm = any_tfm(cc); 775 struct skcipher_request *req; 776 struct scatterlist src, dst; 777 DECLARE_CRYPTO_WAIT(wait); 778 unsigned int reqsize; 779 int err; 780 u8 *buf; 781 782 reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm); 783 reqsize = ALIGN(reqsize, __alignof__(__le64)); 784 785 req = kmalloc(reqsize + cc->iv_size, GFP_NOIO); 786 if (!req) 787 return -ENOMEM; 788 789 skcipher_request_set_tfm(req, tfm); 790 791 buf = (u8 *)req + reqsize; 792 memset(buf, 0, cc->iv_size); 793 *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size); 794 795 sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size); 796 sg_init_one(&dst, iv, cc->iv_size); 797 skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf); 798 skcipher_request_set_callback(req, 0, crypto_req_done, &wait); 799 err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 800 kfree_sensitive(req); 801 802 return err; 803 } 804 805 static void crypt_iv_elephant_dtr(struct crypt_config *cc) 806 { 807 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 808 809 crypto_free_skcipher(elephant->tfm); 810 elephant->tfm = NULL; 811 } 812 813 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti, 814 const char *opts) 815 { 816 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 817 int r; 818 819 elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0, 820 CRYPTO_ALG_ALLOCATES_MEMORY); 821 if (IS_ERR(elephant->tfm)) { 822 r = PTR_ERR(elephant->tfm); 823 elephant->tfm = NULL; 824 return r; 825 } 826 827 r = crypt_iv_eboiv_ctr(cc, ti, NULL); 828 if (r) 829 crypt_iv_elephant_dtr(cc); 830 return r; 831 } 832 833 static void diffuser_disk_to_cpu(u32 *d, size_t n) 834 { 835 #ifndef __LITTLE_ENDIAN 836 int i; 837 838 for (i = 0; i < n; i++) 839 d[i] = le32_to_cpu((__le32)d[i]); 840 #endif 841 } 842 843 static void diffuser_cpu_to_disk(__le32 *d, size_t n) 844 { 845 #ifndef __LITTLE_ENDIAN 846 int i; 847 848 for (i = 0; i < n; i++) 849 d[i] = cpu_to_le32((u32)d[i]); 850 #endif 851 } 852 853 static void diffuser_a_decrypt(u32 *d, size_t n) 854 { 855 int i, i1, i2, i3; 856 857 for (i = 0; i < 5; i++) { 858 i1 = 0; 859 i2 = n - 2; 860 i3 = n - 5; 861 862 while (i1 < (n - 1)) { 863 d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23); 864 i1++; i2++; i3++; 865 866 if (i3 >= n) 867 i3 -= n; 868 869 d[i1] += d[i2] ^ d[i3]; 870 i1++; i2++; i3++; 871 872 if (i2 >= n) 873 i2 -= n; 874 875 d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19); 876 i1++; i2++; i3++; 877 878 d[i1] += d[i2] ^ d[i3]; 879 i1++; i2++; i3++; 880 } 881 } 882 } 883 884 static void diffuser_a_encrypt(u32 *d, size_t n) 885 { 886 int i, i1, i2, i3; 887 888 for (i = 0; i < 5; i++) { 889 i1 = n - 1; 890 i2 = n - 2 - 1; 891 i3 = n - 5 - 1; 892 893 while (i1 > 0) { 894 d[i1] -= d[i2] ^ d[i3]; 895 i1--; i2--; i3--; 896 897 d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19); 898 i1--; i2--; i3--; 899 900 if (i2 < 0) 901 i2 += n; 902 903 d[i1] -= d[i2] ^ d[i3]; 904 i1--; i2--; i3--; 905 906 if (i3 < 0) 907 i3 += n; 908 909 d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23); 910 i1--; i2--; i3--; 911 } 912 } 913 } 914 915 static void diffuser_b_decrypt(u32 *d, size_t n) 916 { 917 int i, i1, i2, i3; 918 919 for (i = 0; i < 3; i++) { 920 i1 = 0; 921 i2 = 2; 922 i3 = 5; 923 924 while (i1 < (n - 1)) { 925 d[i1] += d[i2] ^ d[i3]; 926 i1++; i2++; i3++; 927 928 d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22); 929 i1++; i2++; i3++; 930 931 if (i2 >= n) 932 i2 -= n; 933 934 d[i1] += d[i2] ^ d[i3]; 935 i1++; i2++; i3++; 936 937 if (i3 >= n) 938 i3 -= n; 939 940 d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7); 941 i1++; i2++; i3++; 942 } 943 } 944 } 945 946 static void diffuser_b_encrypt(u32 *d, size_t n) 947 { 948 int i, i1, i2, i3; 949 950 for (i = 0; i < 3; i++) { 951 i1 = n - 1; 952 i2 = 2 - 1; 953 i3 = 5 - 1; 954 955 while (i1 > 0) { 956 d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7); 957 i1--; i2--; i3--; 958 959 if (i3 < 0) 960 i3 += n; 961 962 d[i1] -= d[i2] ^ d[i3]; 963 i1--; i2--; i3--; 964 965 if (i2 < 0) 966 i2 += n; 967 968 d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22); 969 i1--; i2--; i3--; 970 971 d[i1] -= d[i2] ^ d[i3]; 972 i1--; i2--; i3--; 973 } 974 } 975 } 976 977 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq) 978 { 979 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 980 u8 *es, *ks, *data, *data2, *data_offset; 981 struct skcipher_request *req; 982 struct scatterlist *sg, *sg2, src, dst; 983 DECLARE_CRYPTO_WAIT(wait); 984 int i, r; 985 986 req = skcipher_request_alloc(elephant->tfm, GFP_NOIO); 987 es = kzalloc(16, GFP_NOIO); /* Key for AES */ 988 ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */ 989 990 if (!req || !es || !ks) { 991 r = -ENOMEM; 992 goto out; 993 } 994 995 *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size); 996 997 /* E(Ks, e(s)) */ 998 sg_init_one(&src, es, 16); 999 sg_init_one(&dst, ks, 16); 1000 skcipher_request_set_crypt(req, &src, &dst, 16, NULL); 1001 skcipher_request_set_callback(req, 0, crypto_req_done, &wait); 1002 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 1003 if (r) 1004 goto out; 1005 1006 /* E(Ks, e'(s)) */ 1007 es[15] = 0x80; 1008 sg_init_one(&dst, &ks[16], 16); 1009 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 1010 if (r) 1011 goto out; 1012 1013 sg = crypt_get_sg_data(cc, dmreq->sg_out); 1014 data = kmap_local_page(sg_page(sg)); 1015 data_offset = data + sg->offset; 1016 1017 /* Cannot modify original bio, copy to sg_out and apply Elephant to it */ 1018 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 1019 sg2 = crypt_get_sg_data(cc, dmreq->sg_in); 1020 data2 = kmap_local_page(sg_page(sg2)); 1021 memcpy(data_offset, data2 + sg2->offset, cc->sector_size); 1022 kunmap_local(data2); 1023 } 1024 1025 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { 1026 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1027 diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1028 diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1029 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32)); 1030 } 1031 1032 for (i = 0; i < (cc->sector_size / 32); i++) 1033 crypto_xor(data_offset + i * 32, ks, 32); 1034 1035 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 1036 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1037 diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1038 diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1039 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32)); 1040 } 1041 1042 kunmap_local(data); 1043 out: 1044 kfree_sensitive(ks); 1045 kfree_sensitive(es); 1046 skcipher_request_free(req); 1047 return r; 1048 } 1049 1050 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv, 1051 struct dm_crypt_request *dmreq) 1052 { 1053 int r; 1054 1055 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 1056 r = crypt_iv_elephant(cc, dmreq); 1057 if (r) 1058 return r; 1059 } 1060 1061 return crypt_iv_eboiv_gen(cc, iv, dmreq); 1062 } 1063 1064 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv, 1065 struct dm_crypt_request *dmreq) 1066 { 1067 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) 1068 return crypt_iv_elephant(cc, dmreq); 1069 1070 return 0; 1071 } 1072 1073 static int crypt_iv_elephant_init(struct crypt_config *cc) 1074 { 1075 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 1076 int key_offset = cc->key_size - cc->key_extra_size; 1077 1078 return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size); 1079 } 1080 1081 static int crypt_iv_elephant_wipe(struct crypt_config *cc) 1082 { 1083 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 1084 u8 key[ELEPHANT_MAX_KEY_SIZE]; 1085 1086 memset(key, 0, cc->key_extra_size); 1087 return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size); 1088 } 1089 1090 static const struct crypt_iv_operations crypt_iv_plain_ops = { 1091 .generator = crypt_iv_plain_gen 1092 }; 1093 1094 static const struct crypt_iv_operations crypt_iv_plain64_ops = { 1095 .generator = crypt_iv_plain64_gen 1096 }; 1097 1098 static const struct crypt_iv_operations crypt_iv_plain64be_ops = { 1099 .generator = crypt_iv_plain64be_gen 1100 }; 1101 1102 static const struct crypt_iv_operations crypt_iv_essiv_ops = { 1103 .generator = crypt_iv_essiv_gen 1104 }; 1105 1106 static const struct crypt_iv_operations crypt_iv_benbi_ops = { 1107 .ctr = crypt_iv_benbi_ctr, 1108 .dtr = crypt_iv_benbi_dtr, 1109 .generator = crypt_iv_benbi_gen 1110 }; 1111 1112 static const struct crypt_iv_operations crypt_iv_null_ops = { 1113 .generator = crypt_iv_null_gen 1114 }; 1115 1116 static const struct crypt_iv_operations crypt_iv_lmk_ops = { 1117 .ctr = crypt_iv_lmk_ctr, 1118 .dtr = crypt_iv_lmk_dtr, 1119 .init = crypt_iv_lmk_init, 1120 .wipe = crypt_iv_lmk_wipe, 1121 .generator = crypt_iv_lmk_gen, 1122 .post = crypt_iv_lmk_post 1123 }; 1124 1125 static const struct crypt_iv_operations crypt_iv_tcw_ops = { 1126 .ctr = crypt_iv_tcw_ctr, 1127 .dtr = crypt_iv_tcw_dtr, 1128 .init = crypt_iv_tcw_init, 1129 .wipe = crypt_iv_tcw_wipe, 1130 .generator = crypt_iv_tcw_gen, 1131 .post = crypt_iv_tcw_post 1132 }; 1133 1134 static const struct crypt_iv_operations crypt_iv_random_ops = { 1135 .generator = crypt_iv_random_gen 1136 }; 1137 1138 static const struct crypt_iv_operations crypt_iv_eboiv_ops = { 1139 .ctr = crypt_iv_eboiv_ctr, 1140 .generator = crypt_iv_eboiv_gen 1141 }; 1142 1143 static const struct crypt_iv_operations crypt_iv_elephant_ops = { 1144 .ctr = crypt_iv_elephant_ctr, 1145 .dtr = crypt_iv_elephant_dtr, 1146 .init = crypt_iv_elephant_init, 1147 .wipe = crypt_iv_elephant_wipe, 1148 .generator = crypt_iv_elephant_gen, 1149 .post = crypt_iv_elephant_post 1150 }; 1151 1152 /* 1153 * Integrity extensions 1154 */ 1155 static bool crypt_integrity_aead(struct crypt_config *cc) 1156 { 1157 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags); 1158 } 1159 1160 static bool crypt_integrity_hmac(struct crypt_config *cc) 1161 { 1162 return crypt_integrity_aead(cc) && cc->key_mac_size; 1163 } 1164 1165 /* Get sg containing data */ 1166 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc, 1167 struct scatterlist *sg) 1168 { 1169 if (unlikely(crypt_integrity_aead(cc))) 1170 return &sg[2]; 1171 1172 return sg; 1173 } 1174 1175 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio) 1176 { 1177 struct bio_integrity_payload *bip; 1178 unsigned int tag_len; 1179 int ret; 1180 1181 if (!bio_sectors(bio) || !io->cc->tuple_size) 1182 return 0; 1183 1184 bip = bio_integrity_alloc(bio, GFP_NOIO, 1); 1185 if (IS_ERR(bip)) 1186 return PTR_ERR(bip); 1187 1188 tag_len = io->cc->tuple_size * (bio_sectors(bio) >> io->cc->sector_shift); 1189 1190 bip->bip_iter.bi_sector = io->cc->start + io->sector; 1191 1192 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata), 1193 tag_len, offset_in_page(io->integrity_metadata)); 1194 if (unlikely(ret != tag_len)) 1195 return -ENOMEM; 1196 1197 return 0; 1198 } 1199 1200 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti) 1201 { 1202 #ifdef CONFIG_BLK_DEV_INTEGRITY 1203 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk); 1204 struct mapped_device *md = dm_table_get_md(ti->table); 1205 1206 /* We require an underlying device with non-PI metadata */ 1207 if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) { 1208 ti->error = "Integrity profile not supported."; 1209 return -EINVAL; 1210 } 1211 1212 if (bi->tuple_size < cc->used_tag_size) { 1213 ti->error = "Integrity profile tag size mismatch."; 1214 return -EINVAL; 1215 } 1216 cc->tuple_size = bi->tuple_size; 1217 if (1 << bi->interval_exp != cc->sector_size) { 1218 ti->error = "Integrity profile sector size mismatch."; 1219 return -EINVAL; 1220 } 1221 1222 if (crypt_integrity_aead(cc)) { 1223 cc->integrity_tag_size = cc->used_tag_size - cc->integrity_iv_size; 1224 DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md), 1225 cc->integrity_tag_size, cc->integrity_iv_size); 1226 1227 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) { 1228 ti->error = "Integrity AEAD auth tag size is not supported."; 1229 return -EINVAL; 1230 } 1231 } else if (cc->integrity_iv_size) 1232 DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md), 1233 cc->integrity_iv_size); 1234 1235 if ((cc->integrity_tag_size + cc->integrity_iv_size) > cc->tuple_size) { 1236 ti->error = "Not enough space for integrity tag in the profile."; 1237 return -EINVAL; 1238 } 1239 1240 return 0; 1241 #else 1242 ti->error = "Integrity profile not supported."; 1243 return -EINVAL; 1244 #endif 1245 } 1246 1247 static void crypt_convert_init(struct crypt_config *cc, 1248 struct convert_context *ctx, 1249 struct bio *bio_out, struct bio *bio_in, 1250 sector_t sector) 1251 { 1252 ctx->bio_in = bio_in; 1253 ctx->bio_out = bio_out; 1254 if (bio_in) 1255 ctx->iter_in = bio_in->bi_iter; 1256 if (bio_out) 1257 ctx->iter_out = bio_out->bi_iter; 1258 ctx->cc_sector = sector + cc->iv_offset; 1259 init_completion(&ctx->restart); 1260 } 1261 1262 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc, 1263 void *req) 1264 { 1265 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start); 1266 } 1267 1268 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq) 1269 { 1270 return (void *)((char *)dmreq - cc->dmreq_start); 1271 } 1272 1273 static u8 *iv_of_dmreq(struct crypt_config *cc, 1274 struct dm_crypt_request *dmreq) 1275 { 1276 if (crypt_integrity_aead(cc)) 1277 return (u8 *)ALIGN((unsigned long)(dmreq + 1), 1278 crypto_aead_alignmask(any_tfm_aead(cc)) + 1); 1279 else 1280 return (u8 *)ALIGN((unsigned long)(dmreq + 1), 1281 crypto_skcipher_alignmask(any_tfm(cc)) + 1); 1282 } 1283 1284 static u8 *org_iv_of_dmreq(struct crypt_config *cc, 1285 struct dm_crypt_request *dmreq) 1286 { 1287 return iv_of_dmreq(cc, dmreq) + cc->iv_size; 1288 } 1289 1290 static __le64 *org_sector_of_dmreq(struct crypt_config *cc, 1291 struct dm_crypt_request *dmreq) 1292 { 1293 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size; 1294 1295 return (__le64 *) ptr; 1296 } 1297 1298 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc, 1299 struct dm_crypt_request *dmreq) 1300 { 1301 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + 1302 cc->iv_size + sizeof(uint64_t); 1303 1304 return (unsigned int *)ptr; 1305 } 1306 1307 static void *tag_from_dmreq(struct crypt_config *cc, 1308 struct dm_crypt_request *dmreq) 1309 { 1310 struct convert_context *ctx = dmreq->ctx; 1311 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); 1312 1313 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) * 1314 cc->tuple_size]; 1315 } 1316 1317 static void *iv_tag_from_dmreq(struct crypt_config *cc, 1318 struct dm_crypt_request *dmreq) 1319 { 1320 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size; 1321 } 1322 1323 static int crypt_convert_block_aead(struct crypt_config *cc, 1324 struct convert_context *ctx, 1325 struct aead_request *req, 1326 unsigned int tag_offset) 1327 { 1328 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); 1329 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); 1330 struct dm_crypt_request *dmreq; 1331 u8 *iv, *org_iv, *tag_iv, *tag; 1332 __le64 *sector; 1333 int r = 0; 1334 1335 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size); 1336 1337 /* Reject unexpected unaligned bio. */ 1338 if (unlikely(bv_in.bv_len & (cc->sector_size - 1))) 1339 return -EIO; 1340 1341 dmreq = dmreq_of_req(cc, req); 1342 dmreq->iv_sector = ctx->cc_sector; 1343 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) 1344 dmreq->iv_sector >>= cc->sector_shift; 1345 dmreq->ctx = ctx; 1346 1347 *org_tag_of_dmreq(cc, dmreq) = tag_offset; 1348 1349 sector = org_sector_of_dmreq(cc, dmreq); 1350 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset); 1351 1352 iv = iv_of_dmreq(cc, dmreq); 1353 org_iv = org_iv_of_dmreq(cc, dmreq); 1354 tag = tag_from_dmreq(cc, dmreq); 1355 tag_iv = iv_tag_from_dmreq(cc, dmreq); 1356 1357 /* AEAD request: 1358 * |----- AAD -------|------ DATA -------|-- AUTH TAG --| 1359 * | (authenticated) | (auth+encryption) | | 1360 * | sector_LE | IV | sector in/out | tag in/out | 1361 */ 1362 sg_init_table(dmreq->sg_in, 4); 1363 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t)); 1364 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size); 1365 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset); 1366 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size); 1367 1368 sg_init_table(dmreq->sg_out, 4); 1369 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t)); 1370 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size); 1371 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset); 1372 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size); 1373 1374 if (cc->iv_gen_ops) { 1375 /* For READs use IV stored in integrity metadata */ 1376 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) { 1377 memcpy(org_iv, tag_iv, cc->iv_size); 1378 } else { 1379 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq); 1380 if (r < 0) 1381 return r; 1382 /* Store generated IV in integrity metadata */ 1383 if (cc->integrity_iv_size) 1384 memcpy(tag_iv, org_iv, cc->iv_size); 1385 } 1386 /* Working copy of IV, to be modified in crypto API */ 1387 memcpy(iv, org_iv, cc->iv_size); 1388 } 1389 1390 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size); 1391 if (bio_data_dir(ctx->bio_in) == WRITE) { 1392 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out, 1393 cc->sector_size, iv); 1394 r = crypto_aead_encrypt(req); 1395 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->tuple_size) 1396 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0, 1397 cc->tuple_size - (cc->integrity_tag_size + cc->integrity_iv_size)); 1398 } else { 1399 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out, 1400 cc->sector_size + cc->integrity_tag_size, iv); 1401 r = crypto_aead_decrypt(req); 1402 } 1403 1404 if (r == -EBADMSG) { 1405 sector_t s = le64_to_cpu(*sector); 1406 1407 ctx->aead_failed = true; 1408 if (ctx->aead_recheck) { 1409 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu", 1410 ctx->bio_in->bi_bdev, s); 1411 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead", 1412 ctx->bio_in, s, 0); 1413 } 1414 } 1415 1416 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) 1417 r = cc->iv_gen_ops->post(cc, org_iv, dmreq); 1418 1419 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size); 1420 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size); 1421 1422 return r; 1423 } 1424 1425 static int crypt_convert_block_skcipher(struct crypt_config *cc, 1426 struct convert_context *ctx, 1427 struct skcipher_request *req, 1428 unsigned int tag_offset) 1429 { 1430 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); 1431 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); 1432 struct scatterlist *sg_in, *sg_out; 1433 struct dm_crypt_request *dmreq; 1434 u8 *iv, *org_iv, *tag_iv; 1435 __le64 *sector; 1436 int r = 0; 1437 1438 /* Reject unexpected unaligned bio. */ 1439 if (unlikely(bv_in.bv_len & (cc->sector_size - 1))) 1440 return -EIO; 1441 1442 dmreq = dmreq_of_req(cc, req); 1443 dmreq->iv_sector = ctx->cc_sector; 1444 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) 1445 dmreq->iv_sector >>= cc->sector_shift; 1446 dmreq->ctx = ctx; 1447 1448 *org_tag_of_dmreq(cc, dmreq) = tag_offset; 1449 1450 iv = iv_of_dmreq(cc, dmreq); 1451 org_iv = org_iv_of_dmreq(cc, dmreq); 1452 tag_iv = iv_tag_from_dmreq(cc, dmreq); 1453 1454 sector = org_sector_of_dmreq(cc, dmreq); 1455 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset); 1456 1457 /* For skcipher we use only the first sg item */ 1458 sg_in = &dmreq->sg_in[0]; 1459 sg_out = &dmreq->sg_out[0]; 1460 1461 sg_init_table(sg_in, 1); 1462 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset); 1463 1464 sg_init_table(sg_out, 1); 1465 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset); 1466 1467 if (cc->iv_gen_ops) { 1468 /* For READs use IV stored in integrity metadata */ 1469 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) { 1470 memcpy(org_iv, tag_iv, cc->integrity_iv_size); 1471 } else { 1472 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq); 1473 if (r < 0) 1474 return r; 1475 /* Data can be already preprocessed in generator */ 1476 if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags)) 1477 sg_in = sg_out; 1478 /* Store generated IV in integrity metadata */ 1479 if (cc->integrity_iv_size) 1480 memcpy(tag_iv, org_iv, cc->integrity_iv_size); 1481 } 1482 /* Working copy of IV, to be modified in crypto API */ 1483 memcpy(iv, org_iv, cc->iv_size); 1484 } 1485 1486 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv); 1487 1488 if (bio_data_dir(ctx->bio_in) == WRITE) 1489 r = crypto_skcipher_encrypt(req); 1490 else 1491 r = crypto_skcipher_decrypt(req); 1492 1493 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) 1494 r = cc->iv_gen_ops->post(cc, org_iv, dmreq); 1495 1496 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size); 1497 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size); 1498 1499 return r; 1500 } 1501 1502 static void kcryptd_async_done(void *async_req, int error); 1503 1504 static int crypt_alloc_req_skcipher(struct crypt_config *cc, 1505 struct convert_context *ctx) 1506 { 1507 unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1); 1508 1509 if (!ctx->r.req) { 1510 ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO); 1511 if (!ctx->r.req) 1512 return -ENOMEM; 1513 } 1514 1515 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]); 1516 1517 /* 1518 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs 1519 * requests if driver request queue is full. 1520 */ 1521 skcipher_request_set_callback(ctx->r.req, 1522 CRYPTO_TFM_REQ_MAY_BACKLOG, 1523 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req)); 1524 1525 return 0; 1526 } 1527 1528 static int crypt_alloc_req_aead(struct crypt_config *cc, 1529 struct convert_context *ctx) 1530 { 1531 if (!ctx->r.req_aead) { 1532 ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO); 1533 if (!ctx->r.req_aead) 1534 return -ENOMEM; 1535 } 1536 1537 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]); 1538 1539 /* 1540 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs 1541 * requests if driver request queue is full. 1542 */ 1543 aead_request_set_callback(ctx->r.req_aead, 1544 CRYPTO_TFM_REQ_MAY_BACKLOG, 1545 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead)); 1546 1547 return 0; 1548 } 1549 1550 static int crypt_alloc_req(struct crypt_config *cc, 1551 struct convert_context *ctx) 1552 { 1553 if (crypt_integrity_aead(cc)) 1554 return crypt_alloc_req_aead(cc, ctx); 1555 else 1556 return crypt_alloc_req_skcipher(cc, ctx); 1557 } 1558 1559 static void crypt_free_req_skcipher(struct crypt_config *cc, 1560 struct skcipher_request *req, struct bio *base_bio) 1561 { 1562 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); 1563 1564 if ((struct skcipher_request *)(io + 1) != req) 1565 mempool_free(req, &cc->req_pool); 1566 } 1567 1568 static void crypt_free_req_aead(struct crypt_config *cc, 1569 struct aead_request *req, struct bio *base_bio) 1570 { 1571 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); 1572 1573 if ((struct aead_request *)(io + 1) != req) 1574 mempool_free(req, &cc->req_pool); 1575 } 1576 1577 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio) 1578 { 1579 if (crypt_integrity_aead(cc)) 1580 crypt_free_req_aead(cc, req, base_bio); 1581 else 1582 crypt_free_req_skcipher(cc, req, base_bio); 1583 } 1584 1585 /* 1586 * Encrypt / decrypt data from one bio to another one (can be the same one) 1587 */ 1588 static blk_status_t crypt_convert(struct crypt_config *cc, 1589 struct convert_context *ctx, bool atomic, bool reset_pending) 1590 { 1591 unsigned int tag_offset = 0; 1592 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT; 1593 int r; 1594 1595 /* 1596 * if reset_pending is set we are dealing with the bio for the first time, 1597 * else we're continuing to work on the previous bio, so don't mess with 1598 * the cc_pending counter 1599 */ 1600 if (reset_pending) 1601 atomic_set(&ctx->cc_pending, 1); 1602 1603 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) { 1604 1605 r = crypt_alloc_req(cc, ctx); 1606 if (r) { 1607 complete(&ctx->restart); 1608 return BLK_STS_DEV_RESOURCE; 1609 } 1610 1611 atomic_inc(&ctx->cc_pending); 1612 1613 if (crypt_integrity_aead(cc)) 1614 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset); 1615 else 1616 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset); 1617 1618 switch (r) { 1619 /* 1620 * The request was queued by a crypto driver 1621 * but the driver request queue is full, let's wait. 1622 */ 1623 case -EBUSY: 1624 if (in_interrupt()) { 1625 if (try_wait_for_completion(&ctx->restart)) { 1626 /* 1627 * we don't have to block to wait for completion, 1628 * so proceed 1629 */ 1630 } else { 1631 /* 1632 * we can't wait for completion without blocking 1633 * exit and continue processing in a workqueue 1634 */ 1635 ctx->r.req = NULL; 1636 ctx->cc_sector += sector_step; 1637 tag_offset++; 1638 return BLK_STS_DEV_RESOURCE; 1639 } 1640 } else { 1641 wait_for_completion(&ctx->restart); 1642 } 1643 reinit_completion(&ctx->restart); 1644 fallthrough; 1645 /* 1646 * The request is queued and processed asynchronously, 1647 * completion function kcryptd_async_done() will be called. 1648 */ 1649 case -EINPROGRESS: 1650 ctx->r.req = NULL; 1651 ctx->cc_sector += sector_step; 1652 tag_offset++; 1653 continue; 1654 /* 1655 * The request was already processed (synchronously). 1656 */ 1657 case 0: 1658 atomic_dec(&ctx->cc_pending); 1659 ctx->cc_sector += sector_step; 1660 tag_offset++; 1661 if (!atomic) 1662 cond_resched(); 1663 continue; 1664 /* 1665 * There was a data integrity error. 1666 */ 1667 case -EBADMSG: 1668 atomic_dec(&ctx->cc_pending); 1669 return BLK_STS_PROTECTION; 1670 /* 1671 * There was an error while processing the request. 1672 */ 1673 default: 1674 atomic_dec(&ctx->cc_pending); 1675 return BLK_STS_IOERR; 1676 } 1677 } 1678 1679 return 0; 1680 } 1681 1682 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone); 1683 1684 /* 1685 * Generate a new unfragmented bio with the given size 1686 * This should never violate the device limitations (but if it did then block 1687 * core should split the bio as needed). 1688 * 1689 * This function may be called concurrently. If we allocate from the mempool 1690 * concurrently, there is a possibility of deadlock. For example, if we have 1691 * mempool of 256 pages, two processes, each wanting 256, pages allocate from 1692 * the mempool concurrently, it may deadlock in a situation where both processes 1693 * have allocated 128 pages and the mempool is exhausted. 1694 * 1695 * In order to avoid this scenario we allocate the pages under a mutex. 1696 * 1697 * In order to not degrade performance with excessive locking, we try 1698 * non-blocking allocations without a mutex first but on failure we fallback 1699 * to blocking allocations with a mutex. 1700 * 1701 * In order to reduce allocation overhead, we try to allocate compound pages in 1702 * the first pass. If they are not available, we fall back to the mempool. 1703 */ 1704 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size) 1705 { 1706 struct crypt_config *cc = io->cc; 1707 struct bio *clone; 1708 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1709 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM; 1710 unsigned int remaining_size; 1711 unsigned int order = MAX_PAGE_ORDER; 1712 1713 retry: 1714 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) 1715 mutex_lock(&cc->bio_alloc_lock); 1716 1717 clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf, 1718 GFP_NOIO, &cc->bs); 1719 clone->bi_private = io; 1720 clone->bi_end_io = crypt_endio; 1721 clone->bi_ioprio = io->base_bio->bi_ioprio; 1722 1723 remaining_size = size; 1724 1725 while (remaining_size) { 1726 struct page *pages; 1727 unsigned size_to_add; 1728 unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT); 1729 order = min(order, remaining_order); 1730 1731 while (order > 0) { 1732 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) + 1733 (1 << order) > dm_crypt_pages_per_client)) 1734 goto decrease_order; 1735 pages = alloc_pages(gfp_mask 1736 | __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP, 1737 order); 1738 if (likely(pages != NULL)) { 1739 percpu_counter_add(&cc->n_allocated_pages, 1 << order); 1740 goto have_pages; 1741 } 1742 decrease_order: 1743 order--; 1744 } 1745 1746 pages = mempool_alloc(&cc->page_pool, gfp_mask); 1747 if (!pages) { 1748 crypt_free_buffer_pages(cc, clone); 1749 bio_put(clone); 1750 gfp_mask |= __GFP_DIRECT_RECLAIM; 1751 order = 0; 1752 goto retry; 1753 } 1754 1755 have_pages: 1756 size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size); 1757 __bio_add_page(clone, pages, size_to_add, 0); 1758 remaining_size -= size_to_add; 1759 } 1760 1761 /* Allocate space for integrity tags */ 1762 if (dm_crypt_integrity_io_alloc(io, clone)) { 1763 crypt_free_buffer_pages(cc, clone); 1764 bio_put(clone); 1765 clone = NULL; 1766 } 1767 1768 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) 1769 mutex_unlock(&cc->bio_alloc_lock); 1770 1771 return clone; 1772 } 1773 1774 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone) 1775 { 1776 struct folio_iter fi; 1777 1778 if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */ 1779 bio_for_each_folio_all(fi, clone) { 1780 if (folio_test_large(fi.folio)) { 1781 percpu_counter_sub(&cc->n_allocated_pages, 1782 1 << folio_order(fi.folio)); 1783 folio_put(fi.folio); 1784 } else { 1785 mempool_free(&fi.folio->page, &cc->page_pool); 1786 } 1787 } 1788 } 1789 } 1790 1791 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc, 1792 struct bio *bio, sector_t sector) 1793 { 1794 io->cc = cc; 1795 io->base_bio = bio; 1796 io->sector = sector; 1797 io->error = 0; 1798 io->ctx.aead_recheck = false; 1799 io->ctx.aead_failed = false; 1800 io->ctx.r.req = NULL; 1801 io->integrity_metadata = NULL; 1802 io->integrity_metadata_from_pool = false; 1803 atomic_set(&io->io_pending, 0); 1804 } 1805 1806 static void crypt_inc_pending(struct dm_crypt_io *io) 1807 { 1808 atomic_inc(&io->io_pending); 1809 } 1810 1811 static void kcryptd_queue_read(struct dm_crypt_io *io); 1812 1813 /* 1814 * One of the bios was finished. Check for completion of 1815 * the whole request and correctly clean up the buffer. 1816 */ 1817 static void crypt_dec_pending(struct dm_crypt_io *io) 1818 { 1819 struct crypt_config *cc = io->cc; 1820 struct bio *base_bio = io->base_bio; 1821 blk_status_t error = io->error; 1822 1823 if (!atomic_dec_and_test(&io->io_pending)) 1824 return; 1825 1826 if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) && 1827 cc->used_tag_size && bio_data_dir(base_bio) == READ) { 1828 io->ctx.aead_recheck = true; 1829 io->ctx.aead_failed = false; 1830 io->error = 0; 1831 kcryptd_queue_read(io); 1832 return; 1833 } 1834 1835 if (io->ctx.r.req) 1836 crypt_free_req(cc, io->ctx.r.req, base_bio); 1837 1838 if (unlikely(io->integrity_metadata_from_pool)) 1839 mempool_free(io->integrity_metadata, &io->cc->tag_pool); 1840 else 1841 kfree(io->integrity_metadata); 1842 1843 base_bio->bi_status = error; 1844 1845 bio_endio(base_bio); 1846 } 1847 1848 /* 1849 * kcryptd/kcryptd_io: 1850 * 1851 * Needed because it would be very unwise to do decryption in an 1852 * interrupt context. 1853 * 1854 * kcryptd performs the actual encryption or decryption. 1855 * 1856 * kcryptd_io performs the IO submission. 1857 * 1858 * They must be separated as otherwise the final stages could be 1859 * starved by new requests which can block in the first stages due 1860 * to memory allocation. 1861 * 1862 * The work is done per CPU global for all dm-crypt instances. 1863 * They should not depend on each other and do not block. 1864 */ 1865 static void crypt_endio(struct bio *clone) 1866 { 1867 struct dm_crypt_io *io = clone->bi_private; 1868 struct crypt_config *cc = io->cc; 1869 unsigned int rw = bio_data_dir(clone); 1870 blk_status_t error = clone->bi_status; 1871 1872 if (io->ctx.aead_recheck && !error) { 1873 kcryptd_queue_crypt(io); 1874 return; 1875 } 1876 1877 /* 1878 * free the processed pages 1879 */ 1880 if (rw == WRITE || io->ctx.aead_recheck) 1881 crypt_free_buffer_pages(cc, clone); 1882 1883 bio_put(clone); 1884 1885 if (rw == READ && !error) { 1886 kcryptd_queue_crypt(io); 1887 return; 1888 } 1889 1890 if (unlikely(error)) 1891 io->error = error; 1892 1893 crypt_dec_pending(io); 1894 } 1895 1896 #define CRYPT_MAP_READ_GFP GFP_NOWAIT 1897 1898 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp) 1899 { 1900 struct crypt_config *cc = io->cc; 1901 struct bio *clone; 1902 1903 if (io->ctx.aead_recheck) { 1904 if (!(gfp & __GFP_DIRECT_RECLAIM)) 1905 return 1; 1906 crypt_inc_pending(io); 1907 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size); 1908 if (unlikely(!clone)) { 1909 crypt_dec_pending(io); 1910 return 1; 1911 } 1912 clone->bi_iter.bi_sector = cc->start + io->sector; 1913 crypt_convert_init(cc, &io->ctx, clone, clone, io->sector); 1914 io->saved_bi_iter = clone->bi_iter; 1915 dm_submit_bio_remap(io->base_bio, clone); 1916 return 0; 1917 } 1918 1919 /* 1920 * We need the original biovec array in order to decrypt the whole bio 1921 * data *afterwards* -- thanks to immutable biovecs we don't need to 1922 * worry about the block layer modifying the biovec array; so leverage 1923 * bio_alloc_clone(). 1924 */ 1925 clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs); 1926 if (!clone) 1927 return 1; 1928 clone->bi_private = io; 1929 clone->bi_end_io = crypt_endio; 1930 1931 crypt_inc_pending(io); 1932 1933 clone->bi_iter.bi_sector = cc->start + io->sector; 1934 1935 if (dm_crypt_integrity_io_alloc(io, clone)) { 1936 crypt_dec_pending(io); 1937 bio_put(clone); 1938 return 1; 1939 } 1940 1941 dm_submit_bio_remap(io->base_bio, clone); 1942 return 0; 1943 } 1944 1945 static void kcryptd_io_read_work(struct work_struct *work) 1946 { 1947 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 1948 1949 crypt_inc_pending(io); 1950 if (kcryptd_io_read(io, GFP_NOIO)) 1951 io->error = BLK_STS_RESOURCE; 1952 crypt_dec_pending(io); 1953 } 1954 1955 static void kcryptd_queue_read(struct dm_crypt_io *io) 1956 { 1957 struct crypt_config *cc = io->cc; 1958 1959 INIT_WORK(&io->work, kcryptd_io_read_work); 1960 queue_work(cc->io_queue, &io->work); 1961 } 1962 1963 static void kcryptd_io_write(struct dm_crypt_io *io) 1964 { 1965 struct bio *clone = io->ctx.bio_out; 1966 1967 dm_submit_bio_remap(io->base_bio, clone); 1968 } 1969 1970 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node) 1971 1972 static int dmcrypt_write(void *data) 1973 { 1974 struct crypt_config *cc = data; 1975 struct dm_crypt_io *io; 1976 1977 while (1) { 1978 struct rb_root write_tree; 1979 struct blk_plug plug; 1980 1981 spin_lock_irq(&cc->write_thread_lock); 1982 continue_locked: 1983 1984 if (!RB_EMPTY_ROOT(&cc->write_tree)) 1985 goto pop_from_list; 1986 1987 set_current_state(TASK_INTERRUPTIBLE); 1988 1989 spin_unlock_irq(&cc->write_thread_lock); 1990 1991 if (unlikely(kthread_should_stop())) { 1992 set_current_state(TASK_RUNNING); 1993 break; 1994 } 1995 1996 schedule(); 1997 1998 spin_lock_irq(&cc->write_thread_lock); 1999 goto continue_locked; 2000 2001 pop_from_list: 2002 write_tree = cc->write_tree; 2003 cc->write_tree = RB_ROOT; 2004 spin_unlock_irq(&cc->write_thread_lock); 2005 2006 BUG_ON(rb_parent(write_tree.rb_node)); 2007 2008 /* 2009 * Note: we cannot walk the tree here with rb_next because 2010 * the structures may be freed when kcryptd_io_write is called. 2011 */ 2012 blk_start_plug(&plug); 2013 do { 2014 io = crypt_io_from_node(rb_first(&write_tree)); 2015 rb_erase(&io->rb_node, &write_tree); 2016 kcryptd_io_write(io); 2017 cond_resched(); 2018 } while (!RB_EMPTY_ROOT(&write_tree)); 2019 blk_finish_plug(&plug); 2020 } 2021 return 0; 2022 } 2023 2024 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async) 2025 { 2026 struct bio *clone = io->ctx.bio_out; 2027 struct crypt_config *cc = io->cc; 2028 unsigned long flags; 2029 sector_t sector; 2030 struct rb_node **rbp, *parent; 2031 2032 if (unlikely(io->error)) { 2033 crypt_free_buffer_pages(cc, clone); 2034 bio_put(clone); 2035 crypt_dec_pending(io); 2036 return; 2037 } 2038 2039 /* crypt_convert should have filled the clone bio */ 2040 BUG_ON(io->ctx.iter_out.bi_size); 2041 2042 clone->bi_iter.bi_sector = cc->start + io->sector; 2043 2044 if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) || 2045 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) { 2046 dm_submit_bio_remap(io->base_bio, clone); 2047 return; 2048 } 2049 2050 spin_lock_irqsave(&cc->write_thread_lock, flags); 2051 if (RB_EMPTY_ROOT(&cc->write_tree)) 2052 wake_up_process(cc->write_thread); 2053 rbp = &cc->write_tree.rb_node; 2054 parent = NULL; 2055 sector = io->sector; 2056 while (*rbp) { 2057 parent = *rbp; 2058 if (sector < crypt_io_from_node(parent)->sector) 2059 rbp = &(*rbp)->rb_left; 2060 else 2061 rbp = &(*rbp)->rb_right; 2062 } 2063 rb_link_node(&io->rb_node, parent, rbp); 2064 rb_insert_color(&io->rb_node, &cc->write_tree); 2065 spin_unlock_irqrestore(&cc->write_thread_lock, flags); 2066 } 2067 2068 static bool kcryptd_crypt_write_inline(struct crypt_config *cc, 2069 struct convert_context *ctx) 2070 2071 { 2072 if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags)) 2073 return false; 2074 2075 /* 2076 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering 2077 * constraints so they do not need to be issued inline by 2078 * kcryptd_crypt_write_convert(). 2079 */ 2080 switch (bio_op(ctx->bio_in)) { 2081 case REQ_OP_WRITE: 2082 case REQ_OP_WRITE_ZEROES: 2083 return true; 2084 default: 2085 return false; 2086 } 2087 } 2088 2089 static void kcryptd_crypt_write_continue(struct work_struct *work) 2090 { 2091 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 2092 struct crypt_config *cc = io->cc; 2093 struct convert_context *ctx = &io->ctx; 2094 int crypt_finished; 2095 sector_t sector = io->sector; 2096 blk_status_t r; 2097 2098 wait_for_completion(&ctx->restart); 2099 reinit_completion(&ctx->restart); 2100 2101 r = crypt_convert(cc, &io->ctx, true, false); 2102 if (r) 2103 io->error = r; 2104 crypt_finished = atomic_dec_and_test(&ctx->cc_pending); 2105 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) { 2106 /* Wait for completion signaled by kcryptd_async_done() */ 2107 wait_for_completion(&ctx->restart); 2108 crypt_finished = 1; 2109 } 2110 2111 /* Encryption was already finished, submit io now */ 2112 if (crypt_finished) { 2113 kcryptd_crypt_write_io_submit(io, 0); 2114 io->sector = sector; 2115 } 2116 2117 crypt_dec_pending(io); 2118 } 2119 2120 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io) 2121 { 2122 struct crypt_config *cc = io->cc; 2123 struct convert_context *ctx = &io->ctx; 2124 struct bio *clone; 2125 int crypt_finished; 2126 sector_t sector = io->sector; 2127 blk_status_t r; 2128 2129 /* 2130 * Prevent io from disappearing until this function completes. 2131 */ 2132 crypt_inc_pending(io); 2133 crypt_convert_init(cc, ctx, NULL, io->base_bio, sector); 2134 2135 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size); 2136 if (unlikely(!clone)) { 2137 io->error = BLK_STS_IOERR; 2138 goto dec; 2139 } 2140 2141 io->ctx.bio_out = clone; 2142 io->ctx.iter_out = clone->bi_iter; 2143 2144 if (crypt_integrity_aead(cc)) { 2145 bio_copy_data(clone, io->base_bio); 2146 io->ctx.bio_in = clone; 2147 io->ctx.iter_in = clone->bi_iter; 2148 } 2149 2150 sector += bio_sectors(clone); 2151 2152 crypt_inc_pending(io); 2153 r = crypt_convert(cc, ctx, 2154 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true); 2155 /* 2156 * Crypto API backlogged the request, because its queue was full 2157 * and we're in softirq context, so continue from a workqueue 2158 * (TODO: is it actually possible to be in softirq in the write path?) 2159 */ 2160 if (r == BLK_STS_DEV_RESOURCE) { 2161 INIT_WORK(&io->work, kcryptd_crypt_write_continue); 2162 queue_work(cc->crypt_queue, &io->work); 2163 return; 2164 } 2165 if (r) 2166 io->error = r; 2167 crypt_finished = atomic_dec_and_test(&ctx->cc_pending); 2168 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) { 2169 /* Wait for completion signaled by kcryptd_async_done() */ 2170 wait_for_completion(&ctx->restart); 2171 crypt_finished = 1; 2172 } 2173 2174 /* Encryption was already finished, submit io now */ 2175 if (crypt_finished) { 2176 kcryptd_crypt_write_io_submit(io, 0); 2177 io->sector = sector; 2178 } 2179 2180 dec: 2181 crypt_dec_pending(io); 2182 } 2183 2184 static void kcryptd_crypt_read_done(struct dm_crypt_io *io) 2185 { 2186 if (io->ctx.aead_recheck) { 2187 if (!io->error) { 2188 io->ctx.bio_in->bi_iter = io->saved_bi_iter; 2189 bio_copy_data(io->base_bio, io->ctx.bio_in); 2190 } 2191 crypt_free_buffer_pages(io->cc, io->ctx.bio_in); 2192 bio_put(io->ctx.bio_in); 2193 } 2194 crypt_dec_pending(io); 2195 } 2196 2197 static void kcryptd_crypt_read_continue(struct work_struct *work) 2198 { 2199 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 2200 struct crypt_config *cc = io->cc; 2201 blk_status_t r; 2202 2203 wait_for_completion(&io->ctx.restart); 2204 reinit_completion(&io->ctx.restart); 2205 2206 r = crypt_convert(cc, &io->ctx, true, false); 2207 if (r) 2208 io->error = r; 2209 2210 if (atomic_dec_and_test(&io->ctx.cc_pending)) 2211 kcryptd_crypt_read_done(io); 2212 2213 crypt_dec_pending(io); 2214 } 2215 2216 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io) 2217 { 2218 struct crypt_config *cc = io->cc; 2219 blk_status_t r; 2220 2221 crypt_inc_pending(io); 2222 2223 if (io->ctx.aead_recheck) { 2224 io->ctx.cc_sector = io->sector + cc->iv_offset; 2225 r = crypt_convert(cc, &io->ctx, 2226 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true); 2227 } else { 2228 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio, 2229 io->sector); 2230 2231 r = crypt_convert(cc, &io->ctx, 2232 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true); 2233 } 2234 /* 2235 * Crypto API backlogged the request, because its queue was full 2236 * and we're in softirq context, so continue from a workqueue 2237 */ 2238 if (r == BLK_STS_DEV_RESOURCE) { 2239 INIT_WORK(&io->work, kcryptd_crypt_read_continue); 2240 queue_work(cc->crypt_queue, &io->work); 2241 return; 2242 } 2243 if (r) 2244 io->error = r; 2245 2246 if (atomic_dec_and_test(&io->ctx.cc_pending)) 2247 kcryptd_crypt_read_done(io); 2248 2249 crypt_dec_pending(io); 2250 } 2251 2252 static void kcryptd_async_done(void *data, int error) 2253 { 2254 struct dm_crypt_request *dmreq = data; 2255 struct convert_context *ctx = dmreq->ctx; 2256 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); 2257 struct crypt_config *cc = io->cc; 2258 2259 /* 2260 * A request from crypto driver backlog is going to be processed now, 2261 * finish the completion and continue in crypt_convert(). 2262 * (Callback will be called for the second time for this request.) 2263 */ 2264 if (error == -EINPROGRESS) { 2265 complete(&ctx->restart); 2266 return; 2267 } 2268 2269 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post) 2270 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq); 2271 2272 if (error == -EBADMSG) { 2273 sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)); 2274 2275 ctx->aead_failed = true; 2276 if (ctx->aead_recheck) { 2277 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu", 2278 ctx->bio_in->bi_bdev, s); 2279 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead", 2280 ctx->bio_in, s, 0); 2281 } 2282 io->error = BLK_STS_PROTECTION; 2283 } else if (error < 0) 2284 io->error = BLK_STS_IOERR; 2285 2286 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio); 2287 2288 if (!atomic_dec_and_test(&ctx->cc_pending)) 2289 return; 2290 2291 /* 2292 * The request is fully completed: for inline writes, let 2293 * kcryptd_crypt_write_convert() do the IO submission. 2294 */ 2295 if (bio_data_dir(io->base_bio) == READ) { 2296 kcryptd_crypt_read_done(io); 2297 return; 2298 } 2299 2300 if (kcryptd_crypt_write_inline(cc, ctx)) { 2301 complete(&ctx->restart); 2302 return; 2303 } 2304 2305 kcryptd_crypt_write_io_submit(io, 1); 2306 } 2307 2308 static void kcryptd_crypt(struct work_struct *work) 2309 { 2310 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 2311 2312 if (bio_data_dir(io->base_bio) == READ) 2313 kcryptd_crypt_read_convert(io); 2314 else 2315 kcryptd_crypt_write_convert(io); 2316 } 2317 2318 static void kcryptd_queue_crypt(struct dm_crypt_io *io) 2319 { 2320 struct crypt_config *cc = io->cc; 2321 2322 if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) || 2323 (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) { 2324 /* 2325 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context. 2326 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but 2327 * it is being executed with irqs disabled. 2328 */ 2329 if (in_hardirq() || irqs_disabled()) { 2330 INIT_WORK(&io->work, kcryptd_crypt); 2331 queue_work(system_bh_wq, &io->work); 2332 return; 2333 } else { 2334 kcryptd_crypt(&io->work); 2335 return; 2336 } 2337 } 2338 2339 INIT_WORK(&io->work, kcryptd_crypt); 2340 queue_work(cc->crypt_queue, &io->work); 2341 } 2342 2343 static void crypt_free_tfms_aead(struct crypt_config *cc) 2344 { 2345 if (!cc->cipher_tfm.tfms_aead) 2346 return; 2347 2348 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) { 2349 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]); 2350 cc->cipher_tfm.tfms_aead[0] = NULL; 2351 } 2352 2353 kfree(cc->cipher_tfm.tfms_aead); 2354 cc->cipher_tfm.tfms_aead = NULL; 2355 } 2356 2357 static void crypt_free_tfms_skcipher(struct crypt_config *cc) 2358 { 2359 unsigned int i; 2360 2361 if (!cc->cipher_tfm.tfms) 2362 return; 2363 2364 for (i = 0; i < cc->tfms_count; i++) 2365 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) { 2366 crypto_free_skcipher(cc->cipher_tfm.tfms[i]); 2367 cc->cipher_tfm.tfms[i] = NULL; 2368 } 2369 2370 kfree(cc->cipher_tfm.tfms); 2371 cc->cipher_tfm.tfms = NULL; 2372 } 2373 2374 static void crypt_free_tfms(struct crypt_config *cc) 2375 { 2376 if (crypt_integrity_aead(cc)) 2377 crypt_free_tfms_aead(cc); 2378 else 2379 crypt_free_tfms_skcipher(cc); 2380 } 2381 2382 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode) 2383 { 2384 unsigned int i; 2385 int err; 2386 2387 cc->cipher_tfm.tfms = kcalloc(cc->tfms_count, 2388 sizeof(struct crypto_skcipher *), 2389 GFP_KERNEL); 2390 if (!cc->cipher_tfm.tfms) 2391 return -ENOMEM; 2392 2393 for (i = 0; i < cc->tfms_count; i++) { 2394 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 2395 CRYPTO_ALG_ALLOCATES_MEMORY); 2396 if (IS_ERR(cc->cipher_tfm.tfms[i])) { 2397 err = PTR_ERR(cc->cipher_tfm.tfms[i]); 2398 crypt_free_tfms(cc); 2399 return err; 2400 } 2401 } 2402 2403 /* 2404 * dm-crypt performance can vary greatly depending on which crypto 2405 * algorithm implementation is used. Help people debug performance 2406 * problems by logging the ->cra_driver_name. 2407 */ 2408 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode, 2409 crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name); 2410 return 0; 2411 } 2412 2413 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode) 2414 { 2415 int err; 2416 2417 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL); 2418 if (!cc->cipher_tfm.tfms) 2419 return -ENOMEM; 2420 2421 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 2422 CRYPTO_ALG_ALLOCATES_MEMORY); 2423 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) { 2424 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]); 2425 crypt_free_tfms(cc); 2426 return err; 2427 } 2428 2429 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode, 2430 crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name); 2431 return 0; 2432 } 2433 2434 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode) 2435 { 2436 if (crypt_integrity_aead(cc)) 2437 return crypt_alloc_tfms_aead(cc, ciphermode); 2438 else 2439 return crypt_alloc_tfms_skcipher(cc, ciphermode); 2440 } 2441 2442 static unsigned int crypt_subkey_size(struct crypt_config *cc) 2443 { 2444 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count); 2445 } 2446 2447 static unsigned int crypt_authenckey_size(struct crypt_config *cc) 2448 { 2449 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param)); 2450 } 2451 2452 /* 2453 * If AEAD is composed like authenc(hmac(sha256),xts(aes)), 2454 * the key must be for some reason in special format. 2455 * This funcion converts cc->key to this special format. 2456 */ 2457 static void crypt_copy_authenckey(char *p, const void *key, 2458 unsigned int enckeylen, unsigned int authkeylen) 2459 { 2460 struct crypto_authenc_key_param *param; 2461 struct rtattr *rta; 2462 2463 rta = (struct rtattr *)p; 2464 param = RTA_DATA(rta); 2465 param->enckeylen = cpu_to_be32(enckeylen); 2466 rta->rta_len = RTA_LENGTH(sizeof(*param)); 2467 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM; 2468 p += RTA_SPACE(sizeof(*param)); 2469 memcpy(p, key + enckeylen, authkeylen); 2470 p += authkeylen; 2471 memcpy(p, key, enckeylen); 2472 } 2473 2474 static int crypt_setkey(struct crypt_config *cc) 2475 { 2476 unsigned int subkey_size; 2477 int err = 0, i, r; 2478 2479 /* Ignore extra keys (which are used for IV etc) */ 2480 subkey_size = crypt_subkey_size(cc); 2481 2482 if (crypt_integrity_hmac(cc)) { 2483 if (subkey_size < cc->key_mac_size) 2484 return -EINVAL; 2485 2486 crypt_copy_authenckey(cc->authenc_key, cc->key, 2487 subkey_size - cc->key_mac_size, 2488 cc->key_mac_size); 2489 } 2490 2491 for (i = 0; i < cc->tfms_count; i++) { 2492 if (crypt_integrity_hmac(cc)) 2493 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i], 2494 cc->authenc_key, crypt_authenckey_size(cc)); 2495 else if (crypt_integrity_aead(cc)) 2496 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i], 2497 cc->key + (i * subkey_size), 2498 subkey_size); 2499 else 2500 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i], 2501 cc->key + (i * subkey_size), 2502 subkey_size); 2503 if (r) 2504 err = r; 2505 } 2506 2507 if (crypt_integrity_hmac(cc)) 2508 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc)); 2509 2510 return err; 2511 } 2512 2513 #ifdef CONFIG_KEYS 2514 2515 static bool contains_whitespace(const char *str) 2516 { 2517 while (*str) 2518 if (isspace(*str++)) 2519 return true; 2520 return false; 2521 } 2522 2523 static int set_key_user(struct crypt_config *cc, struct key *key) 2524 { 2525 const struct user_key_payload *ukp; 2526 2527 ukp = user_key_payload_locked(key); 2528 if (!ukp) 2529 return -EKEYREVOKED; 2530 2531 if (cc->key_size != ukp->datalen) 2532 return -EINVAL; 2533 2534 memcpy(cc->key, ukp->data, cc->key_size); 2535 2536 return 0; 2537 } 2538 2539 static int set_key_encrypted(struct crypt_config *cc, struct key *key) 2540 { 2541 const struct encrypted_key_payload *ekp; 2542 2543 ekp = key->payload.data[0]; 2544 if (!ekp) 2545 return -EKEYREVOKED; 2546 2547 if (cc->key_size != ekp->decrypted_datalen) 2548 return -EINVAL; 2549 2550 memcpy(cc->key, ekp->decrypted_data, cc->key_size); 2551 2552 return 0; 2553 } 2554 2555 static int set_key_trusted(struct crypt_config *cc, struct key *key) 2556 { 2557 const struct trusted_key_payload *tkp; 2558 2559 tkp = key->payload.data[0]; 2560 if (!tkp) 2561 return -EKEYREVOKED; 2562 2563 if (cc->key_size != tkp->key_len) 2564 return -EINVAL; 2565 2566 memcpy(cc->key, tkp->key, cc->key_size); 2567 2568 return 0; 2569 } 2570 2571 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) 2572 { 2573 char *new_key_string, *key_desc; 2574 int ret; 2575 struct key_type *type; 2576 struct key *key; 2577 int (*set_key)(struct crypt_config *cc, struct key *key); 2578 2579 /* 2580 * Reject key_string with whitespace. dm core currently lacks code for 2581 * proper whitespace escaping in arguments on DM_TABLE_STATUS path. 2582 */ 2583 if (contains_whitespace(key_string)) { 2584 DMERR("whitespace chars not allowed in key string"); 2585 return -EINVAL; 2586 } 2587 2588 /* look for next ':' separating key_type from key_description */ 2589 key_desc = strchr(key_string, ':'); 2590 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1)) 2591 return -EINVAL; 2592 2593 if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) { 2594 type = &key_type_logon; 2595 set_key = set_key_user; 2596 } else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) { 2597 type = &key_type_user; 2598 set_key = set_key_user; 2599 } else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) && 2600 !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) { 2601 type = &key_type_encrypted; 2602 set_key = set_key_encrypted; 2603 } else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) && 2604 !strncmp(key_string, "trusted:", key_desc - key_string + 1)) { 2605 type = &key_type_trusted; 2606 set_key = set_key_trusted; 2607 } else { 2608 return -EINVAL; 2609 } 2610 2611 new_key_string = kstrdup(key_string, GFP_KERNEL); 2612 if (!new_key_string) 2613 return -ENOMEM; 2614 2615 key = request_key(type, key_desc + 1, NULL); 2616 if (IS_ERR(key)) { 2617 ret = PTR_ERR(key); 2618 goto free_new_key_string; 2619 } 2620 2621 down_read(&key->sem); 2622 ret = set_key(cc, key); 2623 up_read(&key->sem); 2624 key_put(key); 2625 if (ret < 0) 2626 goto free_new_key_string; 2627 2628 /* clear the flag since following operations may invalidate previously valid key */ 2629 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2630 2631 ret = crypt_setkey(cc); 2632 if (ret) 2633 goto free_new_key_string; 2634 2635 set_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2636 kfree_sensitive(cc->key_string); 2637 cc->key_string = new_key_string; 2638 return 0; 2639 2640 free_new_key_string: 2641 kfree_sensitive(new_key_string); 2642 return ret; 2643 } 2644 2645 static int get_key_size(char **key_string) 2646 { 2647 char *colon, dummy; 2648 int ret; 2649 2650 if (*key_string[0] != ':') 2651 return strlen(*key_string) >> 1; 2652 2653 /* look for next ':' in key string */ 2654 colon = strpbrk(*key_string + 1, ":"); 2655 if (!colon) 2656 return -EINVAL; 2657 2658 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':') 2659 return -EINVAL; 2660 2661 *key_string = colon; 2662 2663 /* remaining key string should be :<logon|user>:<key_desc> */ 2664 2665 return ret; 2666 } 2667 2668 #else 2669 2670 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) 2671 { 2672 return -EINVAL; 2673 } 2674 2675 static int get_key_size(char **key_string) 2676 { 2677 return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1); 2678 } 2679 2680 #endif /* CONFIG_KEYS */ 2681 2682 static int crypt_set_key(struct crypt_config *cc, char *key) 2683 { 2684 int r = -EINVAL; 2685 int key_string_len = strlen(key); 2686 2687 /* Hyphen (which gives a key_size of zero) means there is no key. */ 2688 if (!cc->key_size && strcmp(key, "-")) 2689 goto out; 2690 2691 /* ':' means the key is in kernel keyring, short-circuit normal key processing */ 2692 if (key[0] == ':') { 2693 r = crypt_set_keyring_key(cc, key + 1); 2694 goto out; 2695 } 2696 2697 /* clear the flag since following operations may invalidate previously valid key */ 2698 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2699 2700 /* wipe references to any kernel keyring key */ 2701 kfree_sensitive(cc->key_string); 2702 cc->key_string = NULL; 2703 2704 /* Decode key from its hex representation. */ 2705 if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0) 2706 goto out; 2707 2708 r = crypt_setkey(cc); 2709 if (!r) 2710 set_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2711 2712 out: 2713 /* Hex key string not needed after here, so wipe it. */ 2714 memset(key, '0', key_string_len); 2715 2716 return r; 2717 } 2718 2719 static int crypt_wipe_key(struct crypt_config *cc) 2720 { 2721 int r; 2722 2723 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2724 get_random_bytes(&cc->key, cc->key_size); 2725 2726 /* Wipe IV private keys */ 2727 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) { 2728 r = cc->iv_gen_ops->wipe(cc); 2729 if (r) 2730 return r; 2731 } 2732 2733 kfree_sensitive(cc->key_string); 2734 cc->key_string = NULL; 2735 r = crypt_setkey(cc); 2736 memset(&cc->key, 0, cc->key_size * sizeof(u8)); 2737 2738 return r; 2739 } 2740 2741 static void crypt_calculate_pages_per_client(void) 2742 { 2743 unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100; 2744 2745 if (!dm_crypt_clients_n) 2746 return; 2747 2748 pages /= dm_crypt_clients_n; 2749 if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT) 2750 pages = DM_CRYPT_MIN_PAGES_PER_CLIENT; 2751 dm_crypt_pages_per_client = pages; 2752 } 2753 2754 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data) 2755 { 2756 struct crypt_config *cc = pool_data; 2757 struct page *page; 2758 2759 /* 2760 * Note, percpu_counter_read_positive() may over (and under) estimate 2761 * the current usage by at most (batch - 1) * num_online_cpus() pages, 2762 * but avoids potential spinlock contention of an exact result. 2763 */ 2764 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) && 2765 likely(gfp_mask & __GFP_NORETRY)) 2766 return NULL; 2767 2768 page = alloc_page(gfp_mask); 2769 if (likely(page != NULL)) 2770 percpu_counter_add(&cc->n_allocated_pages, 1); 2771 2772 return page; 2773 } 2774 2775 static void crypt_page_free(void *page, void *pool_data) 2776 { 2777 struct crypt_config *cc = pool_data; 2778 2779 __free_page(page); 2780 percpu_counter_sub(&cc->n_allocated_pages, 1); 2781 } 2782 2783 static void crypt_dtr(struct dm_target *ti) 2784 { 2785 struct crypt_config *cc = ti->private; 2786 2787 ti->private = NULL; 2788 2789 if (!cc) 2790 return; 2791 2792 if (cc->write_thread) 2793 kthread_stop(cc->write_thread); 2794 2795 if (cc->io_queue) 2796 destroy_workqueue(cc->io_queue); 2797 if (cc->crypt_queue) 2798 destroy_workqueue(cc->crypt_queue); 2799 2800 if (cc->workqueue_id) 2801 ida_free(&workqueue_ida, cc->workqueue_id); 2802 2803 crypt_free_tfms(cc); 2804 2805 bioset_exit(&cc->bs); 2806 2807 mempool_exit(&cc->page_pool); 2808 mempool_exit(&cc->req_pool); 2809 mempool_exit(&cc->tag_pool); 2810 2811 WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0); 2812 percpu_counter_destroy(&cc->n_allocated_pages); 2813 2814 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) 2815 cc->iv_gen_ops->dtr(cc); 2816 2817 if (cc->dev) 2818 dm_put_device(ti, cc->dev); 2819 2820 kfree_sensitive(cc->cipher_string); 2821 kfree_sensitive(cc->key_string); 2822 kfree_sensitive(cc->cipher_auth); 2823 kfree_sensitive(cc->authenc_key); 2824 2825 mutex_destroy(&cc->bio_alloc_lock); 2826 2827 /* Must zero key material before freeing */ 2828 kfree_sensitive(cc); 2829 2830 spin_lock(&dm_crypt_clients_lock); 2831 WARN_ON(!dm_crypt_clients_n); 2832 dm_crypt_clients_n--; 2833 crypt_calculate_pages_per_client(); 2834 spin_unlock(&dm_crypt_clients_lock); 2835 2836 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1); 2837 } 2838 2839 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode) 2840 { 2841 struct crypt_config *cc = ti->private; 2842 2843 if (crypt_integrity_aead(cc)) 2844 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc)); 2845 else 2846 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc)); 2847 2848 if (cc->iv_size) 2849 /* at least a 64 bit sector number should fit in our buffer */ 2850 cc->iv_size = max(cc->iv_size, 2851 (unsigned int)(sizeof(u64) / sizeof(u8))); 2852 else if (ivmode) { 2853 DMWARN("Selected cipher does not support IVs"); 2854 ivmode = NULL; 2855 } 2856 2857 /* Choose ivmode, see comments at iv code. */ 2858 if (ivmode == NULL) 2859 cc->iv_gen_ops = NULL; 2860 else if (strcmp(ivmode, "plain") == 0) 2861 cc->iv_gen_ops = &crypt_iv_plain_ops; 2862 else if (strcmp(ivmode, "plain64") == 0) 2863 cc->iv_gen_ops = &crypt_iv_plain64_ops; 2864 else if (strcmp(ivmode, "plain64be") == 0) 2865 cc->iv_gen_ops = &crypt_iv_plain64be_ops; 2866 else if (strcmp(ivmode, "essiv") == 0) 2867 cc->iv_gen_ops = &crypt_iv_essiv_ops; 2868 else if (strcmp(ivmode, "benbi") == 0) 2869 cc->iv_gen_ops = &crypt_iv_benbi_ops; 2870 else if (strcmp(ivmode, "null") == 0) 2871 cc->iv_gen_ops = &crypt_iv_null_ops; 2872 else if (strcmp(ivmode, "eboiv") == 0) 2873 cc->iv_gen_ops = &crypt_iv_eboiv_ops; 2874 else if (strcmp(ivmode, "elephant") == 0) { 2875 cc->iv_gen_ops = &crypt_iv_elephant_ops; 2876 cc->key_parts = 2; 2877 cc->key_extra_size = cc->key_size / 2; 2878 if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE) 2879 return -EINVAL; 2880 set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags); 2881 } else if (strcmp(ivmode, "lmk") == 0) { 2882 cc->iv_gen_ops = &crypt_iv_lmk_ops; 2883 /* 2884 * Version 2 and 3 is recognised according 2885 * to length of provided multi-key string. 2886 * If present (version 3), last key is used as IV seed. 2887 * All keys (including IV seed) are always the same size. 2888 */ 2889 if (cc->key_size % cc->key_parts) { 2890 cc->key_parts++; 2891 cc->key_extra_size = cc->key_size / cc->key_parts; 2892 } 2893 } else if (strcmp(ivmode, "tcw") == 0) { 2894 cc->iv_gen_ops = &crypt_iv_tcw_ops; 2895 cc->key_parts += 2; /* IV + whitening */ 2896 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE; 2897 } else if (strcmp(ivmode, "random") == 0) { 2898 cc->iv_gen_ops = &crypt_iv_random_ops; 2899 /* Need storage space in integrity fields. */ 2900 cc->integrity_iv_size = cc->iv_size; 2901 } else { 2902 ti->error = "Invalid IV mode"; 2903 return -EINVAL; 2904 } 2905 2906 return 0; 2907 } 2908 2909 /* 2910 * Workaround to parse HMAC algorithm from AEAD crypto API spec. 2911 * The HMAC is needed to calculate tag size (HMAC digest size). 2912 * This should be probably done by crypto-api calls (once available...) 2913 */ 2914 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api) 2915 { 2916 char *start, *end, *mac_alg = NULL; 2917 struct crypto_ahash *mac; 2918 2919 if (!strstarts(cipher_api, "authenc(")) 2920 return 0; 2921 2922 start = strchr(cipher_api, '('); 2923 end = strchr(cipher_api, ','); 2924 if (!start || !end || ++start > end) 2925 return -EINVAL; 2926 2927 mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL); 2928 if (!mac_alg) 2929 return -ENOMEM; 2930 2931 mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 2932 kfree(mac_alg); 2933 2934 if (IS_ERR(mac)) 2935 return PTR_ERR(mac); 2936 2937 if (!test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags)) 2938 cc->key_mac_size = crypto_ahash_digestsize(mac); 2939 crypto_free_ahash(mac); 2940 2941 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL); 2942 if (!cc->authenc_key) 2943 return -ENOMEM; 2944 2945 return 0; 2946 } 2947 2948 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key, 2949 char **ivmode, char **ivopts) 2950 { 2951 struct crypt_config *cc = ti->private; 2952 char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME]; 2953 int ret = -EINVAL; 2954 2955 cc->tfms_count = 1; 2956 2957 /* 2958 * New format (capi: prefix) 2959 * capi:cipher_api_spec-iv:ivopts 2960 */ 2961 tmp = &cipher_in[strlen("capi:")]; 2962 2963 /* Separate IV options if present, it can contain another '-' in hash name */ 2964 *ivopts = strrchr(tmp, ':'); 2965 if (*ivopts) { 2966 **ivopts = '\0'; 2967 (*ivopts)++; 2968 } 2969 /* Parse IV mode */ 2970 *ivmode = strrchr(tmp, '-'); 2971 if (*ivmode) { 2972 **ivmode = '\0'; 2973 (*ivmode)++; 2974 } 2975 /* The rest is crypto API spec */ 2976 cipher_api = tmp; 2977 2978 /* Alloc AEAD, can be used only in new format. */ 2979 if (crypt_integrity_aead(cc)) { 2980 ret = crypt_ctr_auth_cipher(cc, cipher_api); 2981 if (ret < 0) { 2982 ti->error = "Invalid AEAD cipher spec"; 2983 return ret; 2984 } 2985 } 2986 2987 if (*ivmode && !strcmp(*ivmode, "lmk")) 2988 cc->tfms_count = 64; 2989 2990 if (*ivmode && !strcmp(*ivmode, "essiv")) { 2991 if (!*ivopts) { 2992 ti->error = "Digest algorithm missing for ESSIV mode"; 2993 return -EINVAL; 2994 } 2995 ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)", 2996 cipher_api, *ivopts); 2997 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) { 2998 ti->error = "Cannot allocate cipher string"; 2999 return -ENOMEM; 3000 } 3001 cipher_api = buf; 3002 } 3003 3004 cc->key_parts = cc->tfms_count; 3005 3006 /* Allocate cipher */ 3007 ret = crypt_alloc_tfms(cc, cipher_api); 3008 if (ret < 0) { 3009 ti->error = "Error allocating crypto tfm"; 3010 return ret; 3011 } 3012 3013 if (crypt_integrity_aead(cc)) 3014 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc)); 3015 else 3016 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc)); 3017 3018 return 0; 3019 } 3020 3021 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key, 3022 char **ivmode, char **ivopts) 3023 { 3024 struct crypt_config *cc = ti->private; 3025 char *tmp, *cipher, *chainmode, *keycount; 3026 char *cipher_api = NULL; 3027 int ret = -EINVAL; 3028 char dummy; 3029 3030 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) { 3031 ti->error = "Bad cipher specification"; 3032 return -EINVAL; 3033 } 3034 3035 /* 3036 * Legacy dm-crypt cipher specification 3037 * cipher[:keycount]-mode-iv:ivopts 3038 */ 3039 tmp = cipher_in; 3040 keycount = strsep(&tmp, "-"); 3041 cipher = strsep(&keycount, ":"); 3042 3043 if (!keycount) 3044 cc->tfms_count = 1; 3045 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 || 3046 !is_power_of_2(cc->tfms_count)) { 3047 ti->error = "Bad cipher key count specification"; 3048 return -EINVAL; 3049 } 3050 cc->key_parts = cc->tfms_count; 3051 3052 chainmode = strsep(&tmp, "-"); 3053 *ivmode = strsep(&tmp, ":"); 3054 *ivopts = tmp; 3055 3056 /* 3057 * For compatibility with the original dm-crypt mapping format, if 3058 * only the cipher name is supplied, use cbc-plain. 3059 */ 3060 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) { 3061 chainmode = "cbc"; 3062 *ivmode = "plain"; 3063 } 3064 3065 if (strcmp(chainmode, "ecb") && !*ivmode) { 3066 ti->error = "IV mechanism required"; 3067 return -EINVAL; 3068 } 3069 3070 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL); 3071 if (!cipher_api) 3072 goto bad_mem; 3073 3074 if (*ivmode && !strcmp(*ivmode, "essiv")) { 3075 if (!*ivopts) { 3076 ti->error = "Digest algorithm missing for ESSIV mode"; 3077 kfree(cipher_api); 3078 return -EINVAL; 3079 } 3080 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME, 3081 "essiv(%s(%s),%s)", chainmode, cipher, *ivopts); 3082 } else { 3083 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME, 3084 "%s(%s)", chainmode, cipher); 3085 } 3086 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) { 3087 kfree(cipher_api); 3088 goto bad_mem; 3089 } 3090 3091 /* Allocate cipher */ 3092 ret = crypt_alloc_tfms(cc, cipher_api); 3093 if (ret < 0) { 3094 ti->error = "Error allocating crypto tfm"; 3095 kfree(cipher_api); 3096 return ret; 3097 } 3098 kfree(cipher_api); 3099 3100 return 0; 3101 bad_mem: 3102 ti->error = "Cannot allocate cipher strings"; 3103 return -ENOMEM; 3104 } 3105 3106 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key) 3107 { 3108 struct crypt_config *cc = ti->private; 3109 char *ivmode = NULL, *ivopts = NULL; 3110 int ret; 3111 3112 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL); 3113 if (!cc->cipher_string) { 3114 ti->error = "Cannot allocate cipher strings"; 3115 return -ENOMEM; 3116 } 3117 3118 if (strstarts(cipher_in, "capi:")) 3119 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts); 3120 else 3121 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts); 3122 if (ret) 3123 return ret; 3124 3125 /* Initialize IV */ 3126 ret = crypt_ctr_ivmode(ti, ivmode); 3127 if (ret < 0) 3128 return ret; 3129 3130 /* Initialize and set key */ 3131 ret = crypt_set_key(cc, key); 3132 if (ret < 0) { 3133 ti->error = "Error decoding and setting key"; 3134 return ret; 3135 } 3136 3137 /* Allocate IV */ 3138 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) { 3139 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts); 3140 if (ret < 0) { 3141 ti->error = "Error creating IV"; 3142 return ret; 3143 } 3144 } 3145 3146 /* Initialize IV (set keys for ESSIV etc) */ 3147 if (cc->iv_gen_ops && cc->iv_gen_ops->init) { 3148 ret = cc->iv_gen_ops->init(cc); 3149 if (ret < 0) { 3150 ti->error = "Error initialising IV"; 3151 return ret; 3152 } 3153 } 3154 3155 /* wipe the kernel key payload copy */ 3156 if (cc->key_string) 3157 memset(cc->key, 0, cc->key_size * sizeof(u8)); 3158 3159 return ret; 3160 } 3161 3162 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv) 3163 { 3164 struct crypt_config *cc = ti->private; 3165 struct dm_arg_set as; 3166 static const struct dm_arg _args[] = { 3167 {0, 9, "Invalid number of feature args"}, 3168 }; 3169 unsigned int opt_params, val; 3170 const char *opt_string, *sval; 3171 char dummy; 3172 int ret; 3173 3174 /* Optional parameters */ 3175 as.argc = argc; 3176 as.argv = argv; 3177 3178 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 3179 if (ret) 3180 return ret; 3181 3182 while (opt_params--) { 3183 opt_string = dm_shift_arg(&as); 3184 if (!opt_string) { 3185 ti->error = "Not enough feature arguments"; 3186 return -EINVAL; 3187 } 3188 3189 if (!strcasecmp(opt_string, "allow_discards")) 3190 ti->num_discard_bios = 1; 3191 3192 else if (!strcasecmp(opt_string, "same_cpu_crypt")) 3193 set_bit(DM_CRYPT_SAME_CPU, &cc->flags); 3194 else if (!strcasecmp(opt_string, "high_priority")) 3195 set_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags); 3196 3197 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus")) 3198 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); 3199 else if (!strcasecmp(opt_string, "no_read_workqueue")) 3200 set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags); 3201 else if (!strcasecmp(opt_string, "no_write_workqueue")) 3202 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); 3203 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) { 3204 if (val == 0 || val > MAX_TAG_SIZE) { 3205 ti->error = "Invalid integrity arguments"; 3206 return -EINVAL; 3207 } 3208 cc->used_tag_size = val; 3209 sval = strchr(opt_string + strlen("integrity:"), ':') + 1; 3210 if (!strcasecmp(sval, "aead")) { 3211 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags); 3212 } else if (strcasecmp(sval, "none")) { 3213 ti->error = "Unknown integrity profile"; 3214 return -EINVAL; 3215 } 3216 3217 cc->cipher_auth = kstrdup(sval, GFP_KERNEL); 3218 if (!cc->cipher_auth) 3219 return -ENOMEM; 3220 } else if (sscanf(opt_string, "integrity_key_size:%u%c", &val, &dummy) == 1) { 3221 if (!val) { 3222 ti->error = "Invalid integrity_key_size argument"; 3223 return -EINVAL; 3224 } 3225 cc->key_mac_size = val; 3226 set_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags); 3227 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) { 3228 if (cc->sector_size < (1 << SECTOR_SHIFT) || 3229 cc->sector_size > 4096 || 3230 (cc->sector_size & (cc->sector_size - 1))) { 3231 ti->error = "Invalid feature value for sector_size"; 3232 return -EINVAL; 3233 } 3234 if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) { 3235 ti->error = "Device size is not multiple of sector_size feature"; 3236 return -EINVAL; 3237 } 3238 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT; 3239 } else if (!strcasecmp(opt_string, "iv_large_sectors")) 3240 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags); 3241 else { 3242 ti->error = "Invalid feature arguments"; 3243 return -EINVAL; 3244 } 3245 } 3246 3247 return 0; 3248 } 3249 3250 #ifdef CONFIG_BLK_DEV_ZONED 3251 static int crypt_report_zones(struct dm_target *ti, 3252 struct dm_report_zones_args *args, unsigned int nr_zones) 3253 { 3254 struct crypt_config *cc = ti->private; 3255 3256 return dm_report_zones(cc->dev->bdev, cc->start, 3257 cc->start + dm_target_offset(ti, args->next_sector), 3258 args, nr_zones); 3259 } 3260 #else 3261 #define crypt_report_zones NULL 3262 #endif 3263 3264 /* 3265 * Construct an encryption mapping: 3266 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start> 3267 */ 3268 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) 3269 { 3270 struct crypt_config *cc; 3271 const char *devname = dm_table_device_name(ti->table); 3272 int key_size, wq_id; 3273 unsigned int align_mask; 3274 unsigned int common_wq_flags; 3275 unsigned long long tmpll; 3276 int ret; 3277 size_t iv_size_padding, additional_req_size; 3278 char dummy; 3279 3280 if (argc < 5) { 3281 ti->error = "Not enough arguments"; 3282 return -EINVAL; 3283 } 3284 3285 key_size = get_key_size(&argv[1]); 3286 if (key_size < 0) { 3287 ti->error = "Cannot parse key size"; 3288 return -EINVAL; 3289 } 3290 3291 cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL); 3292 if (!cc) { 3293 ti->error = "Cannot allocate encryption context"; 3294 return -ENOMEM; 3295 } 3296 cc->key_size = key_size; 3297 cc->sector_size = (1 << SECTOR_SHIFT); 3298 cc->sector_shift = 0; 3299 3300 ti->private = cc; 3301 3302 spin_lock(&dm_crypt_clients_lock); 3303 dm_crypt_clients_n++; 3304 crypt_calculate_pages_per_client(); 3305 spin_unlock(&dm_crypt_clients_lock); 3306 3307 ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL); 3308 if (ret < 0) 3309 goto bad; 3310 3311 /* Optional parameters need to be read before cipher constructor */ 3312 if (argc > 5) { 3313 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]); 3314 if (ret) 3315 goto bad; 3316 } 3317 3318 ret = crypt_ctr_cipher(ti, argv[0], argv[1]); 3319 if (ret < 0) 3320 goto bad; 3321 3322 if (crypt_integrity_aead(cc)) { 3323 cc->dmreq_start = sizeof(struct aead_request); 3324 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc)); 3325 align_mask = crypto_aead_alignmask(any_tfm_aead(cc)); 3326 } else { 3327 cc->dmreq_start = sizeof(struct skcipher_request); 3328 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc)); 3329 align_mask = crypto_skcipher_alignmask(any_tfm(cc)); 3330 } 3331 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request)); 3332 3333 if (align_mask < CRYPTO_MINALIGN) { 3334 /* Allocate the padding exactly */ 3335 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request)) 3336 & align_mask; 3337 } else { 3338 /* 3339 * If the cipher requires greater alignment than kmalloc 3340 * alignment, we don't know the exact position of the 3341 * initialization vector. We must assume worst case. 3342 */ 3343 iv_size_padding = align_mask; 3344 } 3345 3346 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */ 3347 additional_req_size = sizeof(struct dm_crypt_request) + 3348 iv_size_padding + cc->iv_size + 3349 cc->iv_size + 3350 sizeof(uint64_t) + 3351 sizeof(unsigned int); 3352 3353 ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size); 3354 if (ret) { 3355 ti->error = "Cannot allocate crypt request mempool"; 3356 goto bad; 3357 } 3358 3359 cc->per_bio_data_size = ti->per_io_data_size = 3360 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size, 3361 ARCH_DMA_MINALIGN); 3362 3363 ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc); 3364 if (ret) { 3365 ti->error = "Cannot allocate page mempool"; 3366 goto bad; 3367 } 3368 3369 ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS); 3370 if (ret) { 3371 ti->error = "Cannot allocate crypt bioset"; 3372 goto bad; 3373 } 3374 3375 mutex_init(&cc->bio_alloc_lock); 3376 3377 ret = -EINVAL; 3378 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) || 3379 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) { 3380 ti->error = "Invalid iv_offset sector"; 3381 goto bad; 3382 } 3383 cc->iv_offset = tmpll; 3384 3385 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev); 3386 if (ret) { 3387 ti->error = "Device lookup failed"; 3388 goto bad; 3389 } 3390 3391 ret = -EINVAL; 3392 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) { 3393 ti->error = "Invalid device sector"; 3394 goto bad; 3395 } 3396 cc->start = tmpll; 3397 3398 if (bdev_is_zoned(cc->dev->bdev)) { 3399 /* 3400 * For zoned block devices, we need to preserve the issuer write 3401 * ordering. To do so, disable write workqueues and force inline 3402 * encryption completion. 3403 */ 3404 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); 3405 set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags); 3406 3407 /* 3408 * All zone append writes to a zone of a zoned block device will 3409 * have the same BIO sector, the start of the zone. When the 3410 * cypher IV mode uses sector values, all data targeting a 3411 * zone will be encrypted using the first sector numbers of the 3412 * zone. This will not result in write errors but will 3413 * cause most reads to fail as reads will use the sector values 3414 * for the actual data locations, resulting in IV mismatch. 3415 * To avoid this problem, ask DM core to emulate zone append 3416 * operations with regular writes. 3417 */ 3418 DMDEBUG("Zone append operations will be emulated"); 3419 ti->emulate_zone_append = true; 3420 } 3421 3422 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) { 3423 ret = crypt_integrity_ctr(cc, ti); 3424 if (ret) 3425 goto bad; 3426 3427 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->tuple_size; 3428 if (!cc->tag_pool_max_sectors) 3429 cc->tag_pool_max_sectors = 1; 3430 3431 ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS, 3432 cc->tag_pool_max_sectors * cc->tuple_size); 3433 if (ret) { 3434 ti->error = "Cannot allocate integrity tags mempool"; 3435 goto bad; 3436 } 3437 3438 cc->tag_pool_max_sectors <<= cc->sector_shift; 3439 } 3440 3441 wq_id = ida_alloc_min(&workqueue_ida, 1, GFP_KERNEL); 3442 if (wq_id < 0) { 3443 ti->error = "Couldn't get workqueue id"; 3444 ret = wq_id; 3445 goto bad; 3446 } 3447 cc->workqueue_id = wq_id; 3448 3449 ret = -ENOMEM; 3450 common_wq_flags = WQ_MEM_RECLAIM | WQ_SYSFS; 3451 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) 3452 common_wq_flags |= WQ_HIGHPRI; 3453 3454 cc->io_queue = alloc_workqueue("kcryptd_io-%s-%d", common_wq_flags, 1, devname, wq_id); 3455 if (!cc->io_queue) { 3456 ti->error = "Couldn't create kcryptd io queue"; 3457 goto bad; 3458 } 3459 3460 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) { 3461 cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d", 3462 common_wq_flags | WQ_CPU_INTENSIVE, 3463 1, devname, wq_id); 3464 } else { 3465 /* 3466 * While crypt_queue is certainly CPU intensive, the use of 3467 * WQ_CPU_INTENSIVE is meaningless with WQ_UNBOUND. 3468 */ 3469 cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d", 3470 common_wq_flags | WQ_UNBOUND, 3471 num_online_cpus(), devname, wq_id); 3472 } 3473 if (!cc->crypt_queue) { 3474 ti->error = "Couldn't create kcryptd queue"; 3475 goto bad; 3476 } 3477 3478 spin_lock_init(&cc->write_thread_lock); 3479 cc->write_tree = RB_ROOT; 3480 3481 cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname); 3482 if (IS_ERR(cc->write_thread)) { 3483 ret = PTR_ERR(cc->write_thread); 3484 cc->write_thread = NULL; 3485 ti->error = "Couldn't spawn write thread"; 3486 goto bad; 3487 } 3488 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) 3489 set_user_nice(cc->write_thread, MIN_NICE); 3490 3491 ti->num_flush_bios = 1; 3492 ti->limit_swap_bios = true; 3493 ti->accounts_remapped_io = true; 3494 3495 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1); 3496 return 0; 3497 3498 bad: 3499 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0); 3500 crypt_dtr(ti); 3501 return ret; 3502 } 3503 3504 static int crypt_map(struct dm_target *ti, struct bio *bio) 3505 { 3506 struct dm_crypt_io *io; 3507 struct crypt_config *cc = ti->private; 3508 unsigned max_sectors; 3509 3510 /* 3511 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues. 3512 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight 3513 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters 3514 */ 3515 if (unlikely(bio->bi_opf & REQ_PREFLUSH || 3516 bio_op(bio) == REQ_OP_DISCARD)) { 3517 bio_set_dev(bio, cc->dev->bdev); 3518 if (bio_sectors(bio)) 3519 bio->bi_iter.bi_sector = cc->start + 3520 dm_target_offset(ti, bio->bi_iter.bi_sector); 3521 return DM_MAPIO_REMAPPED; 3522 } 3523 3524 /* 3525 * Check if bio is too large, split as needed. 3526 */ 3527 max_sectors = get_max_request_size(cc, bio_data_dir(bio) == WRITE); 3528 if (unlikely(bio_sectors(bio) > max_sectors)) 3529 dm_accept_partial_bio(bio, max_sectors); 3530 3531 /* 3532 * Ensure that bio is a multiple of internal sector encryption size 3533 * and is aligned to this size as defined in IO hints. 3534 */ 3535 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0)) 3536 return DM_MAPIO_KILL; 3537 3538 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1))) 3539 return DM_MAPIO_KILL; 3540 3541 io = dm_per_bio_data(bio, cc->per_bio_data_size); 3542 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector)); 3543 3544 if (cc->tuple_size) { 3545 unsigned int tag_len = cc->tuple_size * (bio_sectors(bio) >> cc->sector_shift); 3546 3547 if (unlikely(tag_len > KMALLOC_MAX_SIZE)) 3548 io->integrity_metadata = NULL; 3549 else 3550 io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3551 3552 if (unlikely(!io->integrity_metadata)) { 3553 if (bio_sectors(bio) > cc->tag_pool_max_sectors) 3554 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors); 3555 io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO); 3556 io->integrity_metadata_from_pool = true; 3557 } 3558 } 3559 3560 if (crypt_integrity_aead(cc)) 3561 io->ctx.r.req_aead = (struct aead_request *)(io + 1); 3562 else 3563 io->ctx.r.req = (struct skcipher_request *)(io + 1); 3564 3565 if (bio_data_dir(io->base_bio) == READ) { 3566 if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP)) 3567 kcryptd_queue_read(io); 3568 } else 3569 kcryptd_queue_crypt(io); 3570 3571 return DM_MAPIO_SUBMITTED; 3572 } 3573 3574 static char hex2asc(unsigned char c) 3575 { 3576 return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27); 3577 } 3578 3579 static void crypt_status(struct dm_target *ti, status_type_t type, 3580 unsigned int status_flags, char *result, unsigned int maxlen) 3581 { 3582 struct crypt_config *cc = ti->private; 3583 unsigned int i, sz = 0; 3584 int num_feature_args = 0; 3585 3586 switch (type) { 3587 case STATUSTYPE_INFO: 3588 result[0] = '\0'; 3589 break; 3590 3591 case STATUSTYPE_TABLE: 3592 DMEMIT("%s ", cc->cipher_string); 3593 3594 if (cc->key_size > 0) { 3595 if (cc->key_string) 3596 DMEMIT(":%u:%s", cc->key_size, cc->key_string); 3597 else { 3598 for (i = 0; i < cc->key_size; i++) { 3599 DMEMIT("%c%c", hex2asc(cc->key[i] >> 4), 3600 hex2asc(cc->key[i] & 0xf)); 3601 } 3602 } 3603 } else 3604 DMEMIT("-"); 3605 3606 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset, 3607 cc->dev->name, (unsigned long long)cc->start); 3608 3609 num_feature_args += !!ti->num_discard_bios; 3610 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags); 3611 num_feature_args += test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags); 3612 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); 3613 num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags); 3614 num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); 3615 num_feature_args += !!cc->used_tag_size; 3616 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT); 3617 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags); 3618 num_feature_args += test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags); 3619 if (num_feature_args) { 3620 DMEMIT(" %d", num_feature_args); 3621 if (ti->num_discard_bios) 3622 DMEMIT(" allow_discards"); 3623 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) 3624 DMEMIT(" same_cpu_crypt"); 3625 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) 3626 DMEMIT(" high_priority"); 3627 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) 3628 DMEMIT(" submit_from_crypt_cpus"); 3629 if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) 3630 DMEMIT(" no_read_workqueue"); 3631 if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) 3632 DMEMIT(" no_write_workqueue"); 3633 if (cc->used_tag_size) 3634 DMEMIT(" integrity:%u:%s", cc->used_tag_size, cc->cipher_auth); 3635 if (cc->sector_size != (1 << SECTOR_SHIFT)) 3636 DMEMIT(" sector_size:%d", cc->sector_size); 3637 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) 3638 DMEMIT(" iv_large_sectors"); 3639 if (test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags)) 3640 DMEMIT(" integrity_key_size:%u", cc->key_mac_size); 3641 } 3642 break; 3643 3644 case STATUSTYPE_IMA: 3645 DMEMIT_TARGET_NAME_VERSION(ti->type); 3646 DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n'); 3647 DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n'); 3648 DMEMIT(",high_priority=%c", test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags) ? 'y' : 'n'); 3649 DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ? 3650 'y' : 'n'); 3651 DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ? 3652 'y' : 'n'); 3653 DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ? 3654 'y' : 'n'); 3655 DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ? 3656 'y' : 'n'); 3657 3658 if (cc->used_tag_size) 3659 DMEMIT(",integrity_tag_size=%u,cipher_auth=%s", 3660 cc->used_tag_size, cc->cipher_auth); 3661 if (cc->sector_size != (1 << SECTOR_SHIFT)) 3662 DMEMIT(",sector_size=%d", cc->sector_size); 3663 if (cc->cipher_string) 3664 DMEMIT(",cipher_string=%s", cc->cipher_string); 3665 3666 DMEMIT(",key_size=%u", cc->key_size); 3667 DMEMIT(",key_parts=%u", cc->key_parts); 3668 DMEMIT(",key_extra_size=%u", cc->key_extra_size); 3669 DMEMIT(",key_mac_size=%u", cc->key_mac_size); 3670 DMEMIT(";"); 3671 break; 3672 } 3673 } 3674 3675 static void crypt_postsuspend(struct dm_target *ti) 3676 { 3677 struct crypt_config *cc = ti->private; 3678 3679 set_bit(DM_CRYPT_SUSPENDED, &cc->flags); 3680 } 3681 3682 static int crypt_preresume(struct dm_target *ti) 3683 { 3684 struct crypt_config *cc = ti->private; 3685 3686 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) { 3687 DMERR("aborting resume - crypt key is not set."); 3688 return -EAGAIN; 3689 } 3690 3691 return 0; 3692 } 3693 3694 static void crypt_resume(struct dm_target *ti) 3695 { 3696 struct crypt_config *cc = ti->private; 3697 3698 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags); 3699 } 3700 3701 /* Message interface 3702 * key set <key> 3703 * key wipe 3704 */ 3705 static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv, 3706 char *result, unsigned int maxlen) 3707 { 3708 struct crypt_config *cc = ti->private; 3709 int key_size, ret = -EINVAL; 3710 3711 if (argc < 2) 3712 goto error; 3713 3714 if (!strcasecmp(argv[0], "key")) { 3715 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) { 3716 DMWARN("not suspended during key manipulation."); 3717 return -EINVAL; 3718 } 3719 if (argc == 3 && !strcasecmp(argv[1], "set")) { 3720 /* The key size may not be changed. */ 3721 key_size = get_key_size(&argv[2]); 3722 if (key_size < 0 || cc->key_size != key_size) { 3723 memset(argv[2], '0', strlen(argv[2])); 3724 return -EINVAL; 3725 } 3726 3727 ret = crypt_set_key(cc, argv[2]); 3728 if (ret) 3729 return ret; 3730 if (cc->iv_gen_ops && cc->iv_gen_ops->init) 3731 ret = cc->iv_gen_ops->init(cc); 3732 /* wipe the kernel key payload copy */ 3733 if (cc->key_string) 3734 memset(cc->key, 0, cc->key_size * sizeof(u8)); 3735 return ret; 3736 } 3737 if (argc == 2 && !strcasecmp(argv[1], "wipe")) 3738 return crypt_wipe_key(cc); 3739 } 3740 3741 error: 3742 DMWARN("unrecognised message received."); 3743 return -EINVAL; 3744 } 3745 3746 static int crypt_iterate_devices(struct dm_target *ti, 3747 iterate_devices_callout_fn fn, void *data) 3748 { 3749 struct crypt_config *cc = ti->private; 3750 3751 return fn(ti, cc->dev, cc->start, ti->len, data); 3752 } 3753 3754 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits) 3755 { 3756 struct crypt_config *cc = ti->private; 3757 3758 limits->logical_block_size = 3759 max_t(unsigned int, limits->logical_block_size, cc->sector_size); 3760 limits->physical_block_size = 3761 max_t(unsigned int, limits->physical_block_size, cc->sector_size); 3762 limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size); 3763 limits->dma_alignment = limits->logical_block_size - 1; 3764 } 3765 3766 static struct target_type crypt_target = { 3767 .name = "crypt", 3768 .version = {1, 28, 0}, 3769 .module = THIS_MODULE, 3770 .ctr = crypt_ctr, 3771 .dtr = crypt_dtr, 3772 .features = DM_TARGET_ZONED_HM, 3773 .report_zones = crypt_report_zones, 3774 .map = crypt_map, 3775 .status = crypt_status, 3776 .postsuspend = crypt_postsuspend, 3777 .preresume = crypt_preresume, 3778 .resume = crypt_resume, 3779 .message = crypt_message, 3780 .iterate_devices = crypt_iterate_devices, 3781 .io_hints = crypt_io_hints, 3782 }; 3783 module_dm(crypt); 3784 3785 MODULE_AUTHOR("Jana Saout <jana@saout.de>"); 3786 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption"); 3787 MODULE_LICENSE("GPL"); 3788