xref: /linux/drivers/md/dm-crypt.c (revision 7cc9196675234d4de0e1e19b9da1a8b86ecfeedd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2003 Jana Saout <jana@saout.de>
4  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
5  * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
6  * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
7  *
8  * This file is released under the GPL.
9  */
10 
11 #include <linux/completion.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/key.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-integrity.h>
20 #include <linux/mempool.h>
21 #include <linux/slab.h>
22 #include <linux/crypto.h>
23 #include <linux/workqueue.h>
24 #include <linux/kthread.h>
25 #include <linux/backing-dev.h>
26 #include <linux/atomic.h>
27 #include <linux/scatterlist.h>
28 #include <linux/rbtree.h>
29 #include <linux/ctype.h>
30 #include <asm/page.h>
31 #include <asm/unaligned.h>
32 #include <crypto/hash.h>
33 #include <crypto/md5.h>
34 #include <crypto/skcipher.h>
35 #include <crypto/aead.h>
36 #include <crypto/authenc.h>
37 #include <crypto/utils.h>
38 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
39 #include <linux/key-type.h>
40 #include <keys/user-type.h>
41 #include <keys/encrypted-type.h>
42 #include <keys/trusted-type.h>
43 
44 #include <linux/device-mapper.h>
45 
46 #include "dm-audit.h"
47 
48 #define DM_MSG_PREFIX "crypt"
49 
50 /*
51  * context holding the current state of a multi-part conversion
52  */
53 struct convert_context {
54 	struct completion restart;
55 	struct bio *bio_in;
56 	struct bvec_iter iter_in;
57 	struct bio *bio_out;
58 	struct bvec_iter iter_out;
59 	atomic_t cc_pending;
60 	u64 cc_sector;
61 	union {
62 		struct skcipher_request *req;
63 		struct aead_request *req_aead;
64 	} r;
65 	bool aead_recheck;
66 	bool aead_failed;
67 
68 };
69 
70 /*
71  * per bio private data
72  */
73 struct dm_crypt_io {
74 	struct crypt_config *cc;
75 	struct bio *base_bio;
76 	u8 *integrity_metadata;
77 	bool integrity_metadata_from_pool:1;
78 
79 	struct work_struct work;
80 
81 	struct convert_context ctx;
82 
83 	atomic_t io_pending;
84 	blk_status_t error;
85 	sector_t sector;
86 
87 	struct bvec_iter saved_bi_iter;
88 
89 	struct rb_node rb_node;
90 } CRYPTO_MINALIGN_ATTR;
91 
92 struct dm_crypt_request {
93 	struct convert_context *ctx;
94 	struct scatterlist sg_in[4];
95 	struct scatterlist sg_out[4];
96 	u64 iv_sector;
97 };
98 
99 struct crypt_config;
100 
101 struct crypt_iv_operations {
102 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
103 		   const char *opts);
104 	void (*dtr)(struct crypt_config *cc);
105 	int (*init)(struct crypt_config *cc);
106 	int (*wipe)(struct crypt_config *cc);
107 	int (*generator)(struct crypt_config *cc, u8 *iv,
108 			 struct dm_crypt_request *dmreq);
109 	int (*post)(struct crypt_config *cc, u8 *iv,
110 		    struct dm_crypt_request *dmreq);
111 };
112 
113 struct iv_benbi_private {
114 	int shift;
115 };
116 
117 #define LMK_SEED_SIZE 64 /* hash + 0 */
118 struct iv_lmk_private {
119 	struct crypto_shash *hash_tfm;
120 	u8 *seed;
121 };
122 
123 #define TCW_WHITENING_SIZE 16
124 struct iv_tcw_private {
125 	struct crypto_shash *crc32_tfm;
126 	u8 *iv_seed;
127 	u8 *whitening;
128 };
129 
130 #define ELEPHANT_MAX_KEY_SIZE 32
131 struct iv_elephant_private {
132 	struct crypto_skcipher *tfm;
133 };
134 
135 /*
136  * Crypt: maps a linear range of a block device
137  * and encrypts / decrypts at the same time.
138  */
139 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
140 	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
141 	     DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
142 	     DM_CRYPT_WRITE_INLINE };
143 
144 enum cipher_flags {
145 	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cipher */
146 	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
147 	CRYPT_ENCRYPT_PREPROCESS,	/* Must preprocess data for encryption (elephant) */
148 };
149 
150 /*
151  * The fields in here must be read only after initialization.
152  */
153 struct crypt_config {
154 	struct dm_dev *dev;
155 	sector_t start;
156 
157 	struct percpu_counter n_allocated_pages;
158 
159 	struct workqueue_struct *io_queue;
160 	struct workqueue_struct *crypt_queue;
161 
162 	spinlock_t write_thread_lock;
163 	struct task_struct *write_thread;
164 	struct rb_root write_tree;
165 
166 	char *cipher_string;
167 	char *cipher_auth;
168 	char *key_string;
169 
170 	const struct crypt_iv_operations *iv_gen_ops;
171 	union {
172 		struct iv_benbi_private benbi;
173 		struct iv_lmk_private lmk;
174 		struct iv_tcw_private tcw;
175 		struct iv_elephant_private elephant;
176 	} iv_gen_private;
177 	u64 iv_offset;
178 	unsigned int iv_size;
179 	unsigned short sector_size;
180 	unsigned char sector_shift;
181 
182 	union {
183 		struct crypto_skcipher **tfms;
184 		struct crypto_aead **tfms_aead;
185 	} cipher_tfm;
186 	unsigned int tfms_count;
187 	unsigned long cipher_flags;
188 
189 	/*
190 	 * Layout of each crypto request:
191 	 *
192 	 *   struct skcipher_request
193 	 *      context
194 	 *      padding
195 	 *   struct dm_crypt_request
196 	 *      padding
197 	 *   IV
198 	 *
199 	 * The padding is added so that dm_crypt_request and the IV are
200 	 * correctly aligned.
201 	 */
202 	unsigned int dmreq_start;
203 
204 	unsigned int per_bio_data_size;
205 
206 	unsigned long flags;
207 	unsigned int key_size;
208 	unsigned int key_parts;      /* independent parts in key buffer */
209 	unsigned int key_extra_size; /* additional keys length */
210 	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
211 
212 	unsigned int integrity_tag_size;
213 	unsigned int integrity_iv_size;
214 	unsigned int on_disk_tag_size;
215 
216 	/*
217 	 * pool for per bio private data, crypto requests,
218 	 * encryption requeusts/buffer pages and integrity tags
219 	 */
220 	unsigned int tag_pool_max_sectors;
221 	mempool_t tag_pool;
222 	mempool_t req_pool;
223 	mempool_t page_pool;
224 
225 	struct bio_set bs;
226 	struct mutex bio_alloc_lock;
227 
228 	u8 *authenc_key; /* space for keys in authenc() format (if used) */
229 	u8 key[] __counted_by(key_size);
230 };
231 
232 #define MIN_IOS		64
233 #define MAX_TAG_SIZE	480
234 #define POOL_ENTRY_SIZE	512
235 
236 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
237 static unsigned int dm_crypt_clients_n;
238 static volatile unsigned long dm_crypt_pages_per_client;
239 #define DM_CRYPT_MEMORY_PERCENT			2
240 #define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_VECS * 16)
241 
242 static void crypt_endio(struct bio *clone);
243 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
244 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
245 					     struct scatterlist *sg);
246 
247 static bool crypt_integrity_aead(struct crypt_config *cc);
248 
249 /*
250  * Use this to access cipher attributes that are independent of the key.
251  */
252 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
253 {
254 	return cc->cipher_tfm.tfms[0];
255 }
256 
257 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
258 {
259 	return cc->cipher_tfm.tfms_aead[0];
260 }
261 
262 /*
263  * Different IV generation algorithms:
264  *
265  * plain: the initial vector is the 32-bit little-endian version of the sector
266  *        number, padded with zeros if necessary.
267  *
268  * plain64: the initial vector is the 64-bit little-endian version of the sector
269  *        number, padded with zeros if necessary.
270  *
271  * plain64be: the initial vector is the 64-bit big-endian version of the sector
272  *        number, padded with zeros if necessary.
273  *
274  * essiv: "encrypted sector|salt initial vector", the sector number is
275  *        encrypted with the bulk cipher using a salt as key. The salt
276  *        should be derived from the bulk cipher's key via hashing.
277  *
278  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
279  *        (needed for LRW-32-AES and possible other narrow block modes)
280  *
281  * null: the initial vector is always zero.  Provides compatibility with
282  *       obsolete loop_fish2 devices.  Do not use for new devices.
283  *
284  * lmk:  Compatible implementation of the block chaining mode used
285  *       by the Loop-AES block device encryption system
286  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
287  *       It operates on full 512 byte sectors and uses CBC
288  *       with an IV derived from the sector number, the data and
289  *       optionally extra IV seed.
290  *       This means that after decryption the first block
291  *       of sector must be tweaked according to decrypted data.
292  *       Loop-AES can use three encryption schemes:
293  *         version 1: is plain aes-cbc mode
294  *         version 2: uses 64 multikey scheme with lmk IV generator
295  *         version 3: the same as version 2 with additional IV seed
296  *                   (it uses 65 keys, last key is used as IV seed)
297  *
298  * tcw:  Compatible implementation of the block chaining mode used
299  *       by the TrueCrypt device encryption system (prior to version 4.1).
300  *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
301  *       It operates on full 512 byte sectors and uses CBC
302  *       with an IV derived from initial key and the sector number.
303  *       In addition, whitening value is applied on every sector, whitening
304  *       is calculated from initial key, sector number and mixed using CRC32.
305  *       Note that this encryption scheme is vulnerable to watermarking attacks
306  *       and should be used for old compatible containers access only.
307  *
308  * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
309  *        The IV is encrypted little-endian byte-offset (with the same key
310  *        and cipher as the volume).
311  *
312  * elephant: The extended version of eboiv with additional Elephant diffuser
313  *           used with Bitlocker CBC mode.
314  *           This mode was used in older Windows systems
315  *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
316  */
317 
318 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
319 			      struct dm_crypt_request *dmreq)
320 {
321 	memset(iv, 0, cc->iv_size);
322 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
323 
324 	return 0;
325 }
326 
327 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
328 				struct dm_crypt_request *dmreq)
329 {
330 	memset(iv, 0, cc->iv_size);
331 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
332 
333 	return 0;
334 }
335 
336 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
337 				  struct dm_crypt_request *dmreq)
338 {
339 	memset(iv, 0, cc->iv_size);
340 	/* iv_size is at least of size u64; usually it is 16 bytes */
341 	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
342 
343 	return 0;
344 }
345 
346 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
347 			      struct dm_crypt_request *dmreq)
348 {
349 	/*
350 	 * ESSIV encryption of the IV is now handled by the crypto API,
351 	 * so just pass the plain sector number here.
352 	 */
353 	memset(iv, 0, cc->iv_size);
354 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
355 
356 	return 0;
357 }
358 
359 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
360 			      const char *opts)
361 {
362 	unsigned int bs;
363 	int log;
364 
365 	if (crypt_integrity_aead(cc))
366 		bs = crypto_aead_blocksize(any_tfm_aead(cc));
367 	else
368 		bs = crypto_skcipher_blocksize(any_tfm(cc));
369 	log = ilog2(bs);
370 
371 	/*
372 	 * We need to calculate how far we must shift the sector count
373 	 * to get the cipher block count, we use this shift in _gen.
374 	 */
375 	if (1 << log != bs) {
376 		ti->error = "cypher blocksize is not a power of 2";
377 		return -EINVAL;
378 	}
379 
380 	if (log > 9) {
381 		ti->error = "cypher blocksize is > 512";
382 		return -EINVAL;
383 	}
384 
385 	cc->iv_gen_private.benbi.shift = 9 - log;
386 
387 	return 0;
388 }
389 
390 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
391 {
392 }
393 
394 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
395 			      struct dm_crypt_request *dmreq)
396 {
397 	__be64 val;
398 
399 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
400 
401 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
402 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
403 
404 	return 0;
405 }
406 
407 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
408 			     struct dm_crypt_request *dmreq)
409 {
410 	memset(iv, 0, cc->iv_size);
411 
412 	return 0;
413 }
414 
415 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
416 {
417 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
418 
419 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
420 		crypto_free_shash(lmk->hash_tfm);
421 	lmk->hash_tfm = NULL;
422 
423 	kfree_sensitive(lmk->seed);
424 	lmk->seed = NULL;
425 }
426 
427 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
428 			    const char *opts)
429 {
430 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
431 
432 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
433 		ti->error = "Unsupported sector size for LMK";
434 		return -EINVAL;
435 	}
436 
437 	lmk->hash_tfm = crypto_alloc_shash("md5", 0,
438 					   CRYPTO_ALG_ALLOCATES_MEMORY);
439 	if (IS_ERR(lmk->hash_tfm)) {
440 		ti->error = "Error initializing LMK hash";
441 		return PTR_ERR(lmk->hash_tfm);
442 	}
443 
444 	/* No seed in LMK version 2 */
445 	if (cc->key_parts == cc->tfms_count) {
446 		lmk->seed = NULL;
447 		return 0;
448 	}
449 
450 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
451 	if (!lmk->seed) {
452 		crypt_iv_lmk_dtr(cc);
453 		ti->error = "Error kmallocing seed storage in LMK";
454 		return -ENOMEM;
455 	}
456 
457 	return 0;
458 }
459 
460 static int crypt_iv_lmk_init(struct crypt_config *cc)
461 {
462 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
463 	int subkey_size = cc->key_size / cc->key_parts;
464 
465 	/* LMK seed is on the position of LMK_KEYS + 1 key */
466 	if (lmk->seed)
467 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
468 		       crypto_shash_digestsize(lmk->hash_tfm));
469 
470 	return 0;
471 }
472 
473 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
474 {
475 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
476 
477 	if (lmk->seed)
478 		memset(lmk->seed, 0, LMK_SEED_SIZE);
479 
480 	return 0;
481 }
482 
483 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
484 			    struct dm_crypt_request *dmreq,
485 			    u8 *data)
486 {
487 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
488 	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
489 	struct md5_state md5state;
490 	__le32 buf[4];
491 	int i, r;
492 
493 	desc->tfm = lmk->hash_tfm;
494 
495 	r = crypto_shash_init(desc);
496 	if (r)
497 		return r;
498 
499 	if (lmk->seed) {
500 		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
501 		if (r)
502 			return r;
503 	}
504 
505 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
506 	r = crypto_shash_update(desc, data + 16, 16 * 31);
507 	if (r)
508 		return r;
509 
510 	/* Sector is cropped to 56 bits here */
511 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
512 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
513 	buf[2] = cpu_to_le32(4024);
514 	buf[3] = 0;
515 	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
516 	if (r)
517 		return r;
518 
519 	/* No MD5 padding here */
520 	r = crypto_shash_export(desc, &md5state);
521 	if (r)
522 		return r;
523 
524 	for (i = 0; i < MD5_HASH_WORDS; i++)
525 		__cpu_to_le32s(&md5state.hash[i]);
526 	memcpy(iv, &md5state.hash, cc->iv_size);
527 
528 	return 0;
529 }
530 
531 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
532 			    struct dm_crypt_request *dmreq)
533 {
534 	struct scatterlist *sg;
535 	u8 *src;
536 	int r = 0;
537 
538 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
539 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
540 		src = kmap_local_page(sg_page(sg));
541 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
542 		kunmap_local(src);
543 	} else
544 		memset(iv, 0, cc->iv_size);
545 
546 	return r;
547 }
548 
549 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
550 			     struct dm_crypt_request *dmreq)
551 {
552 	struct scatterlist *sg;
553 	u8 *dst;
554 	int r;
555 
556 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
557 		return 0;
558 
559 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
560 	dst = kmap_local_page(sg_page(sg));
561 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
562 
563 	/* Tweak the first block of plaintext sector */
564 	if (!r)
565 		crypto_xor(dst + sg->offset, iv, cc->iv_size);
566 
567 	kunmap_local(dst);
568 	return r;
569 }
570 
571 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
572 {
573 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
574 
575 	kfree_sensitive(tcw->iv_seed);
576 	tcw->iv_seed = NULL;
577 	kfree_sensitive(tcw->whitening);
578 	tcw->whitening = NULL;
579 
580 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
581 		crypto_free_shash(tcw->crc32_tfm);
582 	tcw->crc32_tfm = NULL;
583 }
584 
585 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
586 			    const char *opts)
587 {
588 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
589 
590 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
591 		ti->error = "Unsupported sector size for TCW";
592 		return -EINVAL;
593 	}
594 
595 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
596 		ti->error = "Wrong key size for TCW";
597 		return -EINVAL;
598 	}
599 
600 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
601 					    CRYPTO_ALG_ALLOCATES_MEMORY);
602 	if (IS_ERR(tcw->crc32_tfm)) {
603 		ti->error = "Error initializing CRC32 in TCW";
604 		return PTR_ERR(tcw->crc32_tfm);
605 	}
606 
607 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
608 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
609 	if (!tcw->iv_seed || !tcw->whitening) {
610 		crypt_iv_tcw_dtr(cc);
611 		ti->error = "Error allocating seed storage in TCW";
612 		return -ENOMEM;
613 	}
614 
615 	return 0;
616 }
617 
618 static int crypt_iv_tcw_init(struct crypt_config *cc)
619 {
620 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
621 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
622 
623 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
624 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
625 	       TCW_WHITENING_SIZE);
626 
627 	return 0;
628 }
629 
630 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
631 {
632 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
633 
634 	memset(tcw->iv_seed, 0, cc->iv_size);
635 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
636 
637 	return 0;
638 }
639 
640 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
641 				  struct dm_crypt_request *dmreq,
642 				  u8 *data)
643 {
644 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
645 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
646 	u8 buf[TCW_WHITENING_SIZE];
647 	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
648 	int i, r;
649 
650 	/* xor whitening with sector number */
651 	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
652 	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
653 
654 	/* calculate crc32 for every 32bit part and xor it */
655 	desc->tfm = tcw->crc32_tfm;
656 	for (i = 0; i < 4; i++) {
657 		r = crypto_shash_digest(desc, &buf[i * 4], 4, &buf[i * 4]);
658 		if (r)
659 			goto out;
660 	}
661 	crypto_xor(&buf[0], &buf[12], 4);
662 	crypto_xor(&buf[4], &buf[8], 4);
663 
664 	/* apply whitening (8 bytes) to whole sector */
665 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
666 		crypto_xor(data + i * 8, buf, 8);
667 out:
668 	memzero_explicit(buf, sizeof(buf));
669 	return r;
670 }
671 
672 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
673 			    struct dm_crypt_request *dmreq)
674 {
675 	struct scatterlist *sg;
676 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
677 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
678 	u8 *src;
679 	int r = 0;
680 
681 	/* Remove whitening from ciphertext */
682 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
683 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
684 		src = kmap_local_page(sg_page(sg));
685 		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
686 		kunmap_local(src);
687 	}
688 
689 	/* Calculate IV */
690 	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
691 	if (cc->iv_size > 8)
692 		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
693 			       cc->iv_size - 8);
694 
695 	return r;
696 }
697 
698 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
699 			     struct dm_crypt_request *dmreq)
700 {
701 	struct scatterlist *sg;
702 	u8 *dst;
703 	int r;
704 
705 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
706 		return 0;
707 
708 	/* Apply whitening on ciphertext */
709 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
710 	dst = kmap_local_page(sg_page(sg));
711 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
712 	kunmap_local(dst);
713 
714 	return r;
715 }
716 
717 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
718 				struct dm_crypt_request *dmreq)
719 {
720 	/* Used only for writes, there must be an additional space to store IV */
721 	get_random_bytes(iv, cc->iv_size);
722 	return 0;
723 }
724 
725 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
726 			    const char *opts)
727 {
728 	if (crypt_integrity_aead(cc)) {
729 		ti->error = "AEAD transforms not supported for EBOIV";
730 		return -EINVAL;
731 	}
732 
733 	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
734 		ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
735 		return -EINVAL;
736 	}
737 
738 	return 0;
739 }
740 
741 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
742 			    struct dm_crypt_request *dmreq)
743 {
744 	struct crypto_skcipher *tfm = any_tfm(cc);
745 	struct skcipher_request *req;
746 	struct scatterlist src, dst;
747 	DECLARE_CRYPTO_WAIT(wait);
748 	unsigned int reqsize;
749 	int err;
750 	u8 *buf;
751 
752 	reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm);
753 	reqsize = ALIGN(reqsize, __alignof__(__le64));
754 
755 	req = kmalloc(reqsize + cc->iv_size, GFP_NOIO);
756 	if (!req)
757 		return -ENOMEM;
758 
759 	skcipher_request_set_tfm(req, tfm);
760 
761 	buf = (u8 *)req + reqsize;
762 	memset(buf, 0, cc->iv_size);
763 	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
764 
765 	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
766 	sg_init_one(&dst, iv, cc->iv_size);
767 	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
768 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
769 	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
770 	kfree_sensitive(req);
771 
772 	return err;
773 }
774 
775 static void crypt_iv_elephant_dtr(struct crypt_config *cc)
776 {
777 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
778 
779 	crypto_free_skcipher(elephant->tfm);
780 	elephant->tfm = NULL;
781 }
782 
783 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
784 			    const char *opts)
785 {
786 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
787 	int r;
788 
789 	elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
790 					      CRYPTO_ALG_ALLOCATES_MEMORY);
791 	if (IS_ERR(elephant->tfm)) {
792 		r = PTR_ERR(elephant->tfm);
793 		elephant->tfm = NULL;
794 		return r;
795 	}
796 
797 	r = crypt_iv_eboiv_ctr(cc, ti, NULL);
798 	if (r)
799 		crypt_iv_elephant_dtr(cc);
800 	return r;
801 }
802 
803 static void diffuser_disk_to_cpu(u32 *d, size_t n)
804 {
805 #ifndef __LITTLE_ENDIAN
806 	int i;
807 
808 	for (i = 0; i < n; i++)
809 		d[i] = le32_to_cpu((__le32)d[i]);
810 #endif
811 }
812 
813 static void diffuser_cpu_to_disk(__le32 *d, size_t n)
814 {
815 #ifndef __LITTLE_ENDIAN
816 	int i;
817 
818 	for (i = 0; i < n; i++)
819 		d[i] = cpu_to_le32((u32)d[i]);
820 #endif
821 }
822 
823 static void diffuser_a_decrypt(u32 *d, size_t n)
824 {
825 	int i, i1, i2, i3;
826 
827 	for (i = 0; i < 5; i++) {
828 		i1 = 0;
829 		i2 = n - 2;
830 		i3 = n - 5;
831 
832 		while (i1 < (n - 1)) {
833 			d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
834 			i1++; i2++; i3++;
835 
836 			if (i3 >= n)
837 				i3 -= n;
838 
839 			d[i1] += d[i2] ^ d[i3];
840 			i1++; i2++; i3++;
841 
842 			if (i2 >= n)
843 				i2 -= n;
844 
845 			d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
846 			i1++; i2++; i3++;
847 
848 			d[i1] += d[i2] ^ d[i3];
849 			i1++; i2++; i3++;
850 		}
851 	}
852 }
853 
854 static void diffuser_a_encrypt(u32 *d, size_t n)
855 {
856 	int i, i1, i2, i3;
857 
858 	for (i = 0; i < 5; i++) {
859 		i1 = n - 1;
860 		i2 = n - 2 - 1;
861 		i3 = n - 5 - 1;
862 
863 		while (i1 > 0) {
864 			d[i1] -= d[i2] ^ d[i3];
865 			i1--; i2--; i3--;
866 
867 			d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
868 			i1--; i2--; i3--;
869 
870 			if (i2 < 0)
871 				i2 += n;
872 
873 			d[i1] -= d[i2] ^ d[i3];
874 			i1--; i2--; i3--;
875 
876 			if (i3 < 0)
877 				i3 += n;
878 
879 			d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
880 			i1--; i2--; i3--;
881 		}
882 	}
883 }
884 
885 static void diffuser_b_decrypt(u32 *d, size_t n)
886 {
887 	int i, i1, i2, i3;
888 
889 	for (i = 0; i < 3; i++) {
890 		i1 = 0;
891 		i2 = 2;
892 		i3 = 5;
893 
894 		while (i1 < (n - 1)) {
895 			d[i1] += d[i2] ^ d[i3];
896 			i1++; i2++; i3++;
897 
898 			d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
899 			i1++; i2++; i3++;
900 
901 			if (i2 >= n)
902 				i2 -= n;
903 
904 			d[i1] += d[i2] ^ d[i3];
905 			i1++; i2++; i3++;
906 
907 			if (i3 >= n)
908 				i3 -= n;
909 
910 			d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
911 			i1++; i2++; i3++;
912 		}
913 	}
914 }
915 
916 static void diffuser_b_encrypt(u32 *d, size_t n)
917 {
918 	int i, i1, i2, i3;
919 
920 	for (i = 0; i < 3; i++) {
921 		i1 = n - 1;
922 		i2 = 2 - 1;
923 		i3 = 5 - 1;
924 
925 		while (i1 > 0) {
926 			d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
927 			i1--; i2--; i3--;
928 
929 			if (i3 < 0)
930 				i3 += n;
931 
932 			d[i1] -= d[i2] ^ d[i3];
933 			i1--; i2--; i3--;
934 
935 			if (i2 < 0)
936 				i2 += n;
937 
938 			d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
939 			i1--; i2--; i3--;
940 
941 			d[i1] -= d[i2] ^ d[i3];
942 			i1--; i2--; i3--;
943 		}
944 	}
945 }
946 
947 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
948 {
949 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
950 	u8 *es, *ks, *data, *data2, *data_offset;
951 	struct skcipher_request *req;
952 	struct scatterlist *sg, *sg2, src, dst;
953 	DECLARE_CRYPTO_WAIT(wait);
954 	int i, r;
955 
956 	req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
957 	es = kzalloc(16, GFP_NOIO); /* Key for AES */
958 	ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
959 
960 	if (!req || !es || !ks) {
961 		r = -ENOMEM;
962 		goto out;
963 	}
964 
965 	*(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
966 
967 	/* E(Ks, e(s)) */
968 	sg_init_one(&src, es, 16);
969 	sg_init_one(&dst, ks, 16);
970 	skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
971 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
972 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
973 	if (r)
974 		goto out;
975 
976 	/* E(Ks, e'(s)) */
977 	es[15] = 0x80;
978 	sg_init_one(&dst, &ks[16], 16);
979 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
980 	if (r)
981 		goto out;
982 
983 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
984 	data = kmap_local_page(sg_page(sg));
985 	data_offset = data + sg->offset;
986 
987 	/* Cannot modify original bio, copy to sg_out and apply Elephant to it */
988 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
989 		sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
990 		data2 = kmap_local_page(sg_page(sg2));
991 		memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
992 		kunmap_local(data2);
993 	}
994 
995 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
996 		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
997 		diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
998 		diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
999 		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1000 	}
1001 
1002 	for (i = 0; i < (cc->sector_size / 32); i++)
1003 		crypto_xor(data_offset + i * 32, ks, 32);
1004 
1005 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1006 		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1007 		diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1008 		diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1009 		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1010 	}
1011 
1012 	kunmap_local(data);
1013 out:
1014 	kfree_sensitive(ks);
1015 	kfree_sensitive(es);
1016 	skcipher_request_free(req);
1017 	return r;
1018 }
1019 
1020 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1021 			    struct dm_crypt_request *dmreq)
1022 {
1023 	int r;
1024 
1025 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1026 		r = crypt_iv_elephant(cc, dmreq);
1027 		if (r)
1028 			return r;
1029 	}
1030 
1031 	return crypt_iv_eboiv_gen(cc, iv, dmreq);
1032 }
1033 
1034 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1035 				  struct dm_crypt_request *dmreq)
1036 {
1037 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1038 		return crypt_iv_elephant(cc, dmreq);
1039 
1040 	return 0;
1041 }
1042 
1043 static int crypt_iv_elephant_init(struct crypt_config *cc)
1044 {
1045 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1046 	int key_offset = cc->key_size - cc->key_extra_size;
1047 
1048 	return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1049 }
1050 
1051 static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1052 {
1053 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1054 	u8 key[ELEPHANT_MAX_KEY_SIZE];
1055 
1056 	memset(key, 0, cc->key_extra_size);
1057 	return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1058 }
1059 
1060 static const struct crypt_iv_operations crypt_iv_plain_ops = {
1061 	.generator = crypt_iv_plain_gen
1062 };
1063 
1064 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1065 	.generator = crypt_iv_plain64_gen
1066 };
1067 
1068 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1069 	.generator = crypt_iv_plain64be_gen
1070 };
1071 
1072 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1073 	.generator = crypt_iv_essiv_gen
1074 };
1075 
1076 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1077 	.ctr	   = crypt_iv_benbi_ctr,
1078 	.dtr	   = crypt_iv_benbi_dtr,
1079 	.generator = crypt_iv_benbi_gen
1080 };
1081 
1082 static const struct crypt_iv_operations crypt_iv_null_ops = {
1083 	.generator = crypt_iv_null_gen
1084 };
1085 
1086 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1087 	.ctr	   = crypt_iv_lmk_ctr,
1088 	.dtr	   = crypt_iv_lmk_dtr,
1089 	.init	   = crypt_iv_lmk_init,
1090 	.wipe	   = crypt_iv_lmk_wipe,
1091 	.generator = crypt_iv_lmk_gen,
1092 	.post	   = crypt_iv_lmk_post
1093 };
1094 
1095 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1096 	.ctr	   = crypt_iv_tcw_ctr,
1097 	.dtr	   = crypt_iv_tcw_dtr,
1098 	.init	   = crypt_iv_tcw_init,
1099 	.wipe	   = crypt_iv_tcw_wipe,
1100 	.generator = crypt_iv_tcw_gen,
1101 	.post	   = crypt_iv_tcw_post
1102 };
1103 
1104 static const struct crypt_iv_operations crypt_iv_random_ops = {
1105 	.generator = crypt_iv_random_gen
1106 };
1107 
1108 static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1109 	.ctr	   = crypt_iv_eboiv_ctr,
1110 	.generator = crypt_iv_eboiv_gen
1111 };
1112 
1113 static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1114 	.ctr	   = crypt_iv_elephant_ctr,
1115 	.dtr	   = crypt_iv_elephant_dtr,
1116 	.init	   = crypt_iv_elephant_init,
1117 	.wipe	   = crypt_iv_elephant_wipe,
1118 	.generator = crypt_iv_elephant_gen,
1119 	.post	   = crypt_iv_elephant_post
1120 };
1121 
1122 /*
1123  * Integrity extensions
1124  */
1125 static bool crypt_integrity_aead(struct crypt_config *cc)
1126 {
1127 	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1128 }
1129 
1130 static bool crypt_integrity_hmac(struct crypt_config *cc)
1131 {
1132 	return crypt_integrity_aead(cc) && cc->key_mac_size;
1133 }
1134 
1135 /* Get sg containing data */
1136 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1137 					     struct scatterlist *sg)
1138 {
1139 	if (unlikely(crypt_integrity_aead(cc)))
1140 		return &sg[2];
1141 
1142 	return sg;
1143 }
1144 
1145 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1146 {
1147 	struct bio_integrity_payload *bip;
1148 	unsigned int tag_len;
1149 	int ret;
1150 
1151 	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1152 		return 0;
1153 
1154 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1155 	if (IS_ERR(bip))
1156 		return PTR_ERR(bip);
1157 
1158 	tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1159 
1160 	bip->bip_iter.bi_sector = io->cc->start + io->sector;
1161 
1162 	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1163 				     tag_len, offset_in_page(io->integrity_metadata));
1164 	if (unlikely(ret != tag_len))
1165 		return -ENOMEM;
1166 
1167 	return 0;
1168 }
1169 
1170 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1171 {
1172 #ifdef CONFIG_BLK_DEV_INTEGRITY
1173 	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1174 	struct mapped_device *md = dm_table_get_md(ti->table);
1175 
1176 	/* From now we require underlying device with our integrity profile */
1177 	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1178 		ti->error = "Integrity profile not supported.";
1179 		return -EINVAL;
1180 	}
1181 
1182 	if (bi->tag_size != cc->on_disk_tag_size ||
1183 	    bi->tuple_size != cc->on_disk_tag_size) {
1184 		ti->error = "Integrity profile tag size mismatch.";
1185 		return -EINVAL;
1186 	}
1187 	if (1 << bi->interval_exp != cc->sector_size) {
1188 		ti->error = "Integrity profile sector size mismatch.";
1189 		return -EINVAL;
1190 	}
1191 
1192 	if (crypt_integrity_aead(cc)) {
1193 		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1194 		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1195 		       cc->integrity_tag_size, cc->integrity_iv_size);
1196 
1197 		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1198 			ti->error = "Integrity AEAD auth tag size is not supported.";
1199 			return -EINVAL;
1200 		}
1201 	} else if (cc->integrity_iv_size)
1202 		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1203 		       cc->integrity_iv_size);
1204 
1205 	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1206 		ti->error = "Not enough space for integrity tag in the profile.";
1207 		return -EINVAL;
1208 	}
1209 
1210 	return 0;
1211 #else
1212 	ti->error = "Integrity profile not supported.";
1213 	return -EINVAL;
1214 #endif
1215 }
1216 
1217 static void crypt_convert_init(struct crypt_config *cc,
1218 			       struct convert_context *ctx,
1219 			       struct bio *bio_out, struct bio *bio_in,
1220 			       sector_t sector)
1221 {
1222 	ctx->bio_in = bio_in;
1223 	ctx->bio_out = bio_out;
1224 	if (bio_in)
1225 		ctx->iter_in = bio_in->bi_iter;
1226 	if (bio_out)
1227 		ctx->iter_out = bio_out->bi_iter;
1228 	ctx->cc_sector = sector + cc->iv_offset;
1229 	init_completion(&ctx->restart);
1230 }
1231 
1232 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1233 					     void *req)
1234 {
1235 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1236 }
1237 
1238 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1239 {
1240 	return (void *)((char *)dmreq - cc->dmreq_start);
1241 }
1242 
1243 static u8 *iv_of_dmreq(struct crypt_config *cc,
1244 		       struct dm_crypt_request *dmreq)
1245 {
1246 	if (crypt_integrity_aead(cc))
1247 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1248 			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1249 	else
1250 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1251 			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1252 }
1253 
1254 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1255 		       struct dm_crypt_request *dmreq)
1256 {
1257 	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1258 }
1259 
1260 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1261 		       struct dm_crypt_request *dmreq)
1262 {
1263 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1264 
1265 	return (__le64 *) ptr;
1266 }
1267 
1268 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1269 		       struct dm_crypt_request *dmreq)
1270 {
1271 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1272 		  cc->iv_size + sizeof(uint64_t);
1273 
1274 	return (unsigned int *)ptr;
1275 }
1276 
1277 static void *tag_from_dmreq(struct crypt_config *cc,
1278 				struct dm_crypt_request *dmreq)
1279 {
1280 	struct convert_context *ctx = dmreq->ctx;
1281 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1282 
1283 	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1284 		cc->on_disk_tag_size];
1285 }
1286 
1287 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1288 			       struct dm_crypt_request *dmreq)
1289 {
1290 	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1291 }
1292 
1293 static int crypt_convert_block_aead(struct crypt_config *cc,
1294 				     struct convert_context *ctx,
1295 				     struct aead_request *req,
1296 				     unsigned int tag_offset)
1297 {
1298 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1299 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1300 	struct dm_crypt_request *dmreq;
1301 	u8 *iv, *org_iv, *tag_iv, *tag;
1302 	__le64 *sector;
1303 	int r = 0;
1304 
1305 	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1306 
1307 	/* Reject unexpected unaligned bio. */
1308 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1309 		return -EIO;
1310 
1311 	dmreq = dmreq_of_req(cc, req);
1312 	dmreq->iv_sector = ctx->cc_sector;
1313 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1314 		dmreq->iv_sector >>= cc->sector_shift;
1315 	dmreq->ctx = ctx;
1316 
1317 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1318 
1319 	sector = org_sector_of_dmreq(cc, dmreq);
1320 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1321 
1322 	iv = iv_of_dmreq(cc, dmreq);
1323 	org_iv = org_iv_of_dmreq(cc, dmreq);
1324 	tag = tag_from_dmreq(cc, dmreq);
1325 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1326 
1327 	/* AEAD request:
1328 	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1329 	 *  | (authenticated) | (auth+encryption) |              |
1330 	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1331 	 */
1332 	sg_init_table(dmreq->sg_in, 4);
1333 	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1334 	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1335 	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1336 	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1337 
1338 	sg_init_table(dmreq->sg_out, 4);
1339 	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1340 	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1341 	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1342 	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1343 
1344 	if (cc->iv_gen_ops) {
1345 		/* For READs use IV stored in integrity metadata */
1346 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1347 			memcpy(org_iv, tag_iv, cc->iv_size);
1348 		} else {
1349 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1350 			if (r < 0)
1351 				return r;
1352 			/* Store generated IV in integrity metadata */
1353 			if (cc->integrity_iv_size)
1354 				memcpy(tag_iv, org_iv, cc->iv_size);
1355 		}
1356 		/* Working copy of IV, to be modified in crypto API */
1357 		memcpy(iv, org_iv, cc->iv_size);
1358 	}
1359 
1360 	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1361 	if (bio_data_dir(ctx->bio_in) == WRITE) {
1362 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1363 				       cc->sector_size, iv);
1364 		r = crypto_aead_encrypt(req);
1365 		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1366 			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1367 			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1368 	} else {
1369 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1370 				       cc->sector_size + cc->integrity_tag_size, iv);
1371 		r = crypto_aead_decrypt(req);
1372 	}
1373 
1374 	if (r == -EBADMSG) {
1375 		sector_t s = le64_to_cpu(*sector);
1376 
1377 		ctx->aead_failed = true;
1378 		if (ctx->aead_recheck) {
1379 			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1380 				    ctx->bio_in->bi_bdev, s);
1381 			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1382 					 ctx->bio_in, s, 0);
1383 		}
1384 	}
1385 
1386 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1387 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1388 
1389 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1390 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1391 
1392 	return r;
1393 }
1394 
1395 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1396 					struct convert_context *ctx,
1397 					struct skcipher_request *req,
1398 					unsigned int tag_offset)
1399 {
1400 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1401 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1402 	struct scatterlist *sg_in, *sg_out;
1403 	struct dm_crypt_request *dmreq;
1404 	u8 *iv, *org_iv, *tag_iv;
1405 	__le64 *sector;
1406 	int r = 0;
1407 
1408 	/* Reject unexpected unaligned bio. */
1409 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1410 		return -EIO;
1411 
1412 	dmreq = dmreq_of_req(cc, req);
1413 	dmreq->iv_sector = ctx->cc_sector;
1414 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1415 		dmreq->iv_sector >>= cc->sector_shift;
1416 	dmreq->ctx = ctx;
1417 
1418 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1419 
1420 	iv = iv_of_dmreq(cc, dmreq);
1421 	org_iv = org_iv_of_dmreq(cc, dmreq);
1422 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1423 
1424 	sector = org_sector_of_dmreq(cc, dmreq);
1425 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1426 
1427 	/* For skcipher we use only the first sg item */
1428 	sg_in  = &dmreq->sg_in[0];
1429 	sg_out = &dmreq->sg_out[0];
1430 
1431 	sg_init_table(sg_in, 1);
1432 	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1433 
1434 	sg_init_table(sg_out, 1);
1435 	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1436 
1437 	if (cc->iv_gen_ops) {
1438 		/* For READs use IV stored in integrity metadata */
1439 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1440 			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1441 		} else {
1442 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1443 			if (r < 0)
1444 				return r;
1445 			/* Data can be already preprocessed in generator */
1446 			if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1447 				sg_in = sg_out;
1448 			/* Store generated IV in integrity metadata */
1449 			if (cc->integrity_iv_size)
1450 				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1451 		}
1452 		/* Working copy of IV, to be modified in crypto API */
1453 		memcpy(iv, org_iv, cc->iv_size);
1454 	}
1455 
1456 	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1457 
1458 	if (bio_data_dir(ctx->bio_in) == WRITE)
1459 		r = crypto_skcipher_encrypt(req);
1460 	else
1461 		r = crypto_skcipher_decrypt(req);
1462 
1463 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1464 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1465 
1466 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1467 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1468 
1469 	return r;
1470 }
1471 
1472 static void kcryptd_async_done(void *async_req, int error);
1473 
1474 static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1475 				     struct convert_context *ctx)
1476 {
1477 	unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1478 
1479 	if (!ctx->r.req) {
1480 		ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1481 		if (!ctx->r.req)
1482 			return -ENOMEM;
1483 	}
1484 
1485 	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1486 
1487 	/*
1488 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1489 	 * requests if driver request queue is full.
1490 	 */
1491 	skcipher_request_set_callback(ctx->r.req,
1492 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1493 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1494 
1495 	return 0;
1496 }
1497 
1498 static int crypt_alloc_req_aead(struct crypt_config *cc,
1499 				 struct convert_context *ctx)
1500 {
1501 	if (!ctx->r.req_aead) {
1502 		ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1503 		if (!ctx->r.req_aead)
1504 			return -ENOMEM;
1505 	}
1506 
1507 	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1508 
1509 	/*
1510 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1511 	 * requests if driver request queue is full.
1512 	 */
1513 	aead_request_set_callback(ctx->r.req_aead,
1514 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1515 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1516 
1517 	return 0;
1518 }
1519 
1520 static int crypt_alloc_req(struct crypt_config *cc,
1521 			    struct convert_context *ctx)
1522 {
1523 	if (crypt_integrity_aead(cc))
1524 		return crypt_alloc_req_aead(cc, ctx);
1525 	else
1526 		return crypt_alloc_req_skcipher(cc, ctx);
1527 }
1528 
1529 static void crypt_free_req_skcipher(struct crypt_config *cc,
1530 				    struct skcipher_request *req, struct bio *base_bio)
1531 {
1532 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1533 
1534 	if ((struct skcipher_request *)(io + 1) != req)
1535 		mempool_free(req, &cc->req_pool);
1536 }
1537 
1538 static void crypt_free_req_aead(struct crypt_config *cc,
1539 				struct aead_request *req, struct bio *base_bio)
1540 {
1541 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1542 
1543 	if ((struct aead_request *)(io + 1) != req)
1544 		mempool_free(req, &cc->req_pool);
1545 }
1546 
1547 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1548 {
1549 	if (crypt_integrity_aead(cc))
1550 		crypt_free_req_aead(cc, req, base_bio);
1551 	else
1552 		crypt_free_req_skcipher(cc, req, base_bio);
1553 }
1554 
1555 /*
1556  * Encrypt / decrypt data from one bio to another one (can be the same one)
1557  */
1558 static blk_status_t crypt_convert(struct crypt_config *cc,
1559 			 struct convert_context *ctx, bool atomic, bool reset_pending)
1560 {
1561 	unsigned int tag_offset = 0;
1562 	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1563 	int r;
1564 
1565 	/*
1566 	 * if reset_pending is set we are dealing with the bio for the first time,
1567 	 * else we're continuing to work on the previous bio, so don't mess with
1568 	 * the cc_pending counter
1569 	 */
1570 	if (reset_pending)
1571 		atomic_set(&ctx->cc_pending, 1);
1572 
1573 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1574 
1575 		r = crypt_alloc_req(cc, ctx);
1576 		if (r) {
1577 			complete(&ctx->restart);
1578 			return BLK_STS_DEV_RESOURCE;
1579 		}
1580 
1581 		atomic_inc(&ctx->cc_pending);
1582 
1583 		if (crypt_integrity_aead(cc))
1584 			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1585 		else
1586 			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1587 
1588 		switch (r) {
1589 		/*
1590 		 * The request was queued by a crypto driver
1591 		 * but the driver request queue is full, let's wait.
1592 		 */
1593 		case -EBUSY:
1594 			if (in_interrupt()) {
1595 				if (try_wait_for_completion(&ctx->restart)) {
1596 					/*
1597 					 * we don't have to block to wait for completion,
1598 					 * so proceed
1599 					 */
1600 				} else {
1601 					/*
1602 					 * we can't wait for completion without blocking
1603 					 * exit and continue processing in a workqueue
1604 					 */
1605 					ctx->r.req = NULL;
1606 					ctx->cc_sector += sector_step;
1607 					tag_offset++;
1608 					return BLK_STS_DEV_RESOURCE;
1609 				}
1610 			} else {
1611 				wait_for_completion(&ctx->restart);
1612 			}
1613 			reinit_completion(&ctx->restart);
1614 			fallthrough;
1615 		/*
1616 		 * The request is queued and processed asynchronously,
1617 		 * completion function kcryptd_async_done() will be called.
1618 		 */
1619 		case -EINPROGRESS:
1620 			ctx->r.req = NULL;
1621 			ctx->cc_sector += sector_step;
1622 			tag_offset++;
1623 			continue;
1624 		/*
1625 		 * The request was already processed (synchronously).
1626 		 */
1627 		case 0:
1628 			atomic_dec(&ctx->cc_pending);
1629 			ctx->cc_sector += sector_step;
1630 			tag_offset++;
1631 			if (!atomic)
1632 				cond_resched();
1633 			continue;
1634 		/*
1635 		 * There was a data integrity error.
1636 		 */
1637 		case -EBADMSG:
1638 			atomic_dec(&ctx->cc_pending);
1639 			return BLK_STS_PROTECTION;
1640 		/*
1641 		 * There was an error while processing the request.
1642 		 */
1643 		default:
1644 			atomic_dec(&ctx->cc_pending);
1645 			return BLK_STS_IOERR;
1646 		}
1647 	}
1648 
1649 	return 0;
1650 }
1651 
1652 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1653 
1654 /*
1655  * Generate a new unfragmented bio with the given size
1656  * This should never violate the device limitations (but only because
1657  * max_segment_size is being constrained to PAGE_SIZE).
1658  *
1659  * This function may be called concurrently. If we allocate from the mempool
1660  * concurrently, there is a possibility of deadlock. For example, if we have
1661  * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1662  * the mempool concurrently, it may deadlock in a situation where both processes
1663  * have allocated 128 pages and the mempool is exhausted.
1664  *
1665  * In order to avoid this scenario we allocate the pages under a mutex.
1666  *
1667  * In order to not degrade performance with excessive locking, we try
1668  * non-blocking allocations without a mutex first but on failure we fallback
1669  * to blocking allocations with a mutex.
1670  *
1671  * In order to reduce allocation overhead, we try to allocate compound pages in
1672  * the first pass. If they are not available, we fall back to the mempool.
1673  */
1674 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
1675 {
1676 	struct crypt_config *cc = io->cc;
1677 	struct bio *clone;
1678 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1679 	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1680 	unsigned int remaining_size;
1681 	unsigned int order = MAX_PAGE_ORDER;
1682 
1683 retry:
1684 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1685 		mutex_lock(&cc->bio_alloc_lock);
1686 
1687 	clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1688 				 GFP_NOIO, &cc->bs);
1689 	clone->bi_private = io;
1690 	clone->bi_end_io = crypt_endio;
1691 
1692 	remaining_size = size;
1693 
1694 	while (remaining_size) {
1695 		struct page *pages;
1696 		unsigned size_to_add;
1697 		unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1698 		order = min(order, remaining_order);
1699 
1700 		while (order > 0) {
1701 			if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) +
1702 					(1 << order) > dm_crypt_pages_per_client))
1703 				goto decrease_order;
1704 			pages = alloc_pages(gfp_mask
1705 				| __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP,
1706 				order);
1707 			if (likely(pages != NULL)) {
1708 				percpu_counter_add(&cc->n_allocated_pages, 1 << order);
1709 				goto have_pages;
1710 			}
1711 decrease_order:
1712 			order--;
1713 		}
1714 
1715 		pages = mempool_alloc(&cc->page_pool, gfp_mask);
1716 		if (!pages) {
1717 			crypt_free_buffer_pages(cc, clone);
1718 			bio_put(clone);
1719 			gfp_mask |= __GFP_DIRECT_RECLAIM;
1720 			order = 0;
1721 			goto retry;
1722 		}
1723 
1724 have_pages:
1725 		size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size);
1726 		__bio_add_page(clone, pages, size_to_add, 0);
1727 		remaining_size -= size_to_add;
1728 	}
1729 
1730 	/* Allocate space for integrity tags */
1731 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1732 		crypt_free_buffer_pages(cc, clone);
1733 		bio_put(clone);
1734 		clone = NULL;
1735 	}
1736 
1737 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1738 		mutex_unlock(&cc->bio_alloc_lock);
1739 
1740 	return clone;
1741 }
1742 
1743 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1744 {
1745 	struct folio_iter fi;
1746 
1747 	if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */
1748 		bio_for_each_folio_all(fi, clone) {
1749 			if (folio_test_large(fi.folio)) {
1750 				percpu_counter_sub(&cc->n_allocated_pages,
1751 						1 << folio_order(fi.folio));
1752 				folio_put(fi.folio);
1753 			} else {
1754 				mempool_free(&fi.folio->page, &cc->page_pool);
1755 			}
1756 		}
1757 	}
1758 }
1759 
1760 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1761 			  struct bio *bio, sector_t sector)
1762 {
1763 	io->cc = cc;
1764 	io->base_bio = bio;
1765 	io->sector = sector;
1766 	io->error = 0;
1767 	io->ctx.aead_recheck = false;
1768 	io->ctx.aead_failed = false;
1769 	io->ctx.r.req = NULL;
1770 	io->integrity_metadata = NULL;
1771 	io->integrity_metadata_from_pool = false;
1772 	atomic_set(&io->io_pending, 0);
1773 }
1774 
1775 static void crypt_inc_pending(struct dm_crypt_io *io)
1776 {
1777 	atomic_inc(&io->io_pending);
1778 }
1779 
1780 static void kcryptd_queue_read(struct dm_crypt_io *io);
1781 
1782 /*
1783  * One of the bios was finished. Check for completion of
1784  * the whole request and correctly clean up the buffer.
1785  */
1786 static void crypt_dec_pending(struct dm_crypt_io *io)
1787 {
1788 	struct crypt_config *cc = io->cc;
1789 	struct bio *base_bio = io->base_bio;
1790 	blk_status_t error = io->error;
1791 
1792 	if (!atomic_dec_and_test(&io->io_pending))
1793 		return;
1794 
1795 	if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) &&
1796 	    cc->on_disk_tag_size && bio_data_dir(base_bio) == READ) {
1797 		io->ctx.aead_recheck = true;
1798 		io->ctx.aead_failed = false;
1799 		io->error = 0;
1800 		kcryptd_queue_read(io);
1801 		return;
1802 	}
1803 
1804 	if (io->ctx.r.req)
1805 		crypt_free_req(cc, io->ctx.r.req, base_bio);
1806 
1807 	if (unlikely(io->integrity_metadata_from_pool))
1808 		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1809 	else
1810 		kfree(io->integrity_metadata);
1811 
1812 	base_bio->bi_status = error;
1813 
1814 	bio_endio(base_bio);
1815 }
1816 
1817 /*
1818  * kcryptd/kcryptd_io:
1819  *
1820  * Needed because it would be very unwise to do decryption in an
1821  * interrupt context.
1822  *
1823  * kcryptd performs the actual encryption or decryption.
1824  *
1825  * kcryptd_io performs the IO submission.
1826  *
1827  * They must be separated as otherwise the final stages could be
1828  * starved by new requests which can block in the first stages due
1829  * to memory allocation.
1830  *
1831  * The work is done per CPU global for all dm-crypt instances.
1832  * They should not depend on each other and do not block.
1833  */
1834 static void crypt_endio(struct bio *clone)
1835 {
1836 	struct dm_crypt_io *io = clone->bi_private;
1837 	struct crypt_config *cc = io->cc;
1838 	unsigned int rw = bio_data_dir(clone);
1839 	blk_status_t error = clone->bi_status;
1840 
1841 	if (io->ctx.aead_recheck && !error) {
1842 		kcryptd_queue_crypt(io);
1843 		return;
1844 	}
1845 
1846 	/*
1847 	 * free the processed pages
1848 	 */
1849 	if (rw == WRITE || io->ctx.aead_recheck)
1850 		crypt_free_buffer_pages(cc, clone);
1851 
1852 	bio_put(clone);
1853 
1854 	if (rw == READ && !error) {
1855 		kcryptd_queue_crypt(io);
1856 		return;
1857 	}
1858 
1859 	if (unlikely(error))
1860 		io->error = error;
1861 
1862 	crypt_dec_pending(io);
1863 }
1864 
1865 #define CRYPT_MAP_READ_GFP GFP_NOWAIT
1866 
1867 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1868 {
1869 	struct crypt_config *cc = io->cc;
1870 	struct bio *clone;
1871 
1872 	if (io->ctx.aead_recheck) {
1873 		if (!(gfp & __GFP_DIRECT_RECLAIM))
1874 			return 1;
1875 		crypt_inc_pending(io);
1876 		clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1877 		if (unlikely(!clone)) {
1878 			crypt_dec_pending(io);
1879 			return 1;
1880 		}
1881 		clone->bi_iter.bi_sector = cc->start + io->sector;
1882 		crypt_convert_init(cc, &io->ctx, clone, clone, io->sector);
1883 		io->saved_bi_iter = clone->bi_iter;
1884 		dm_submit_bio_remap(io->base_bio, clone);
1885 		return 0;
1886 	}
1887 
1888 	/*
1889 	 * We need the original biovec array in order to decrypt the whole bio
1890 	 * data *afterwards* -- thanks to immutable biovecs we don't need to
1891 	 * worry about the block layer modifying the biovec array; so leverage
1892 	 * bio_alloc_clone().
1893 	 */
1894 	clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1895 	if (!clone)
1896 		return 1;
1897 	clone->bi_private = io;
1898 	clone->bi_end_io = crypt_endio;
1899 
1900 	crypt_inc_pending(io);
1901 
1902 	clone->bi_iter.bi_sector = cc->start + io->sector;
1903 
1904 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1905 		crypt_dec_pending(io);
1906 		bio_put(clone);
1907 		return 1;
1908 	}
1909 
1910 	dm_submit_bio_remap(io->base_bio, clone);
1911 	return 0;
1912 }
1913 
1914 static void kcryptd_io_read_work(struct work_struct *work)
1915 {
1916 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1917 
1918 	crypt_inc_pending(io);
1919 	if (kcryptd_io_read(io, GFP_NOIO))
1920 		io->error = BLK_STS_RESOURCE;
1921 	crypt_dec_pending(io);
1922 }
1923 
1924 static void kcryptd_queue_read(struct dm_crypt_io *io)
1925 {
1926 	struct crypt_config *cc = io->cc;
1927 
1928 	INIT_WORK(&io->work, kcryptd_io_read_work);
1929 	queue_work(cc->io_queue, &io->work);
1930 }
1931 
1932 static void kcryptd_io_write(struct dm_crypt_io *io)
1933 {
1934 	struct bio *clone = io->ctx.bio_out;
1935 
1936 	dm_submit_bio_remap(io->base_bio, clone);
1937 }
1938 
1939 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1940 
1941 static int dmcrypt_write(void *data)
1942 {
1943 	struct crypt_config *cc = data;
1944 	struct dm_crypt_io *io;
1945 
1946 	while (1) {
1947 		struct rb_root write_tree;
1948 		struct blk_plug plug;
1949 
1950 		spin_lock_irq(&cc->write_thread_lock);
1951 continue_locked:
1952 
1953 		if (!RB_EMPTY_ROOT(&cc->write_tree))
1954 			goto pop_from_list;
1955 
1956 		set_current_state(TASK_INTERRUPTIBLE);
1957 
1958 		spin_unlock_irq(&cc->write_thread_lock);
1959 
1960 		if (unlikely(kthread_should_stop())) {
1961 			set_current_state(TASK_RUNNING);
1962 			break;
1963 		}
1964 
1965 		schedule();
1966 
1967 		set_current_state(TASK_RUNNING);
1968 		spin_lock_irq(&cc->write_thread_lock);
1969 		goto continue_locked;
1970 
1971 pop_from_list:
1972 		write_tree = cc->write_tree;
1973 		cc->write_tree = RB_ROOT;
1974 		spin_unlock_irq(&cc->write_thread_lock);
1975 
1976 		BUG_ON(rb_parent(write_tree.rb_node));
1977 
1978 		/*
1979 		 * Note: we cannot walk the tree here with rb_next because
1980 		 * the structures may be freed when kcryptd_io_write is called.
1981 		 */
1982 		blk_start_plug(&plug);
1983 		do {
1984 			io = crypt_io_from_node(rb_first(&write_tree));
1985 			rb_erase(&io->rb_node, &write_tree);
1986 			kcryptd_io_write(io);
1987 			cond_resched();
1988 		} while (!RB_EMPTY_ROOT(&write_tree));
1989 		blk_finish_plug(&plug);
1990 	}
1991 	return 0;
1992 }
1993 
1994 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1995 {
1996 	struct bio *clone = io->ctx.bio_out;
1997 	struct crypt_config *cc = io->cc;
1998 	unsigned long flags;
1999 	sector_t sector;
2000 	struct rb_node **rbp, *parent;
2001 
2002 	if (unlikely(io->error)) {
2003 		crypt_free_buffer_pages(cc, clone);
2004 		bio_put(clone);
2005 		crypt_dec_pending(io);
2006 		return;
2007 	}
2008 
2009 	/* crypt_convert should have filled the clone bio */
2010 	BUG_ON(io->ctx.iter_out.bi_size);
2011 
2012 	clone->bi_iter.bi_sector = cc->start + io->sector;
2013 
2014 	if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
2015 	    test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
2016 		dm_submit_bio_remap(io->base_bio, clone);
2017 		return;
2018 	}
2019 
2020 	spin_lock_irqsave(&cc->write_thread_lock, flags);
2021 	if (RB_EMPTY_ROOT(&cc->write_tree))
2022 		wake_up_process(cc->write_thread);
2023 	rbp = &cc->write_tree.rb_node;
2024 	parent = NULL;
2025 	sector = io->sector;
2026 	while (*rbp) {
2027 		parent = *rbp;
2028 		if (sector < crypt_io_from_node(parent)->sector)
2029 			rbp = &(*rbp)->rb_left;
2030 		else
2031 			rbp = &(*rbp)->rb_right;
2032 	}
2033 	rb_link_node(&io->rb_node, parent, rbp);
2034 	rb_insert_color(&io->rb_node, &cc->write_tree);
2035 	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
2036 }
2037 
2038 static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
2039 				       struct convert_context *ctx)
2040 
2041 {
2042 	if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
2043 		return false;
2044 
2045 	/*
2046 	 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
2047 	 * constraints so they do not need to be issued inline by
2048 	 * kcryptd_crypt_write_convert().
2049 	 */
2050 	switch (bio_op(ctx->bio_in)) {
2051 	case REQ_OP_WRITE:
2052 	case REQ_OP_WRITE_ZEROES:
2053 		return true;
2054 	default:
2055 		return false;
2056 	}
2057 }
2058 
2059 static void kcryptd_crypt_write_continue(struct work_struct *work)
2060 {
2061 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2062 	struct crypt_config *cc = io->cc;
2063 	struct convert_context *ctx = &io->ctx;
2064 	int crypt_finished;
2065 	sector_t sector = io->sector;
2066 	blk_status_t r;
2067 
2068 	wait_for_completion(&ctx->restart);
2069 	reinit_completion(&ctx->restart);
2070 
2071 	r = crypt_convert(cc, &io->ctx, true, false);
2072 	if (r)
2073 		io->error = r;
2074 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2075 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2076 		/* Wait for completion signaled by kcryptd_async_done() */
2077 		wait_for_completion(&ctx->restart);
2078 		crypt_finished = 1;
2079 	}
2080 
2081 	/* Encryption was already finished, submit io now */
2082 	if (crypt_finished) {
2083 		kcryptd_crypt_write_io_submit(io, 0);
2084 		io->sector = sector;
2085 	}
2086 
2087 	crypt_dec_pending(io);
2088 }
2089 
2090 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2091 {
2092 	struct crypt_config *cc = io->cc;
2093 	struct convert_context *ctx = &io->ctx;
2094 	struct bio *clone;
2095 	int crypt_finished;
2096 	sector_t sector = io->sector;
2097 	blk_status_t r;
2098 
2099 	/*
2100 	 * Prevent io from disappearing until this function completes.
2101 	 */
2102 	crypt_inc_pending(io);
2103 	crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
2104 
2105 	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2106 	if (unlikely(!clone)) {
2107 		io->error = BLK_STS_IOERR;
2108 		goto dec;
2109 	}
2110 
2111 	io->ctx.bio_out = clone;
2112 	io->ctx.iter_out = clone->bi_iter;
2113 
2114 	if (crypt_integrity_aead(cc)) {
2115 		bio_copy_data(clone, io->base_bio);
2116 		io->ctx.bio_in = clone;
2117 		io->ctx.iter_in = clone->bi_iter;
2118 	}
2119 
2120 	sector += bio_sectors(clone);
2121 
2122 	crypt_inc_pending(io);
2123 	r = crypt_convert(cc, ctx,
2124 			  test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2125 	/*
2126 	 * Crypto API backlogged the request, because its queue was full
2127 	 * and we're in softirq context, so continue from a workqueue
2128 	 * (TODO: is it actually possible to be in softirq in the write path?)
2129 	 */
2130 	if (r == BLK_STS_DEV_RESOURCE) {
2131 		INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2132 		queue_work(cc->crypt_queue, &io->work);
2133 		return;
2134 	}
2135 	if (r)
2136 		io->error = r;
2137 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2138 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2139 		/* Wait for completion signaled by kcryptd_async_done() */
2140 		wait_for_completion(&ctx->restart);
2141 		crypt_finished = 1;
2142 	}
2143 
2144 	/* Encryption was already finished, submit io now */
2145 	if (crypt_finished) {
2146 		kcryptd_crypt_write_io_submit(io, 0);
2147 		io->sector = sector;
2148 	}
2149 
2150 dec:
2151 	crypt_dec_pending(io);
2152 }
2153 
2154 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2155 {
2156 	if (io->ctx.aead_recheck) {
2157 		if (!io->error) {
2158 			io->ctx.bio_in->bi_iter = io->saved_bi_iter;
2159 			bio_copy_data(io->base_bio, io->ctx.bio_in);
2160 		}
2161 		crypt_free_buffer_pages(io->cc, io->ctx.bio_in);
2162 		bio_put(io->ctx.bio_in);
2163 	}
2164 	crypt_dec_pending(io);
2165 }
2166 
2167 static void kcryptd_crypt_read_continue(struct work_struct *work)
2168 {
2169 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2170 	struct crypt_config *cc = io->cc;
2171 	blk_status_t r;
2172 
2173 	wait_for_completion(&io->ctx.restart);
2174 	reinit_completion(&io->ctx.restart);
2175 
2176 	r = crypt_convert(cc, &io->ctx, true, false);
2177 	if (r)
2178 		io->error = r;
2179 
2180 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2181 		kcryptd_crypt_read_done(io);
2182 
2183 	crypt_dec_pending(io);
2184 }
2185 
2186 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2187 {
2188 	struct crypt_config *cc = io->cc;
2189 	blk_status_t r;
2190 
2191 	crypt_inc_pending(io);
2192 
2193 	if (io->ctx.aead_recheck) {
2194 		io->ctx.cc_sector = io->sector + cc->iv_offset;
2195 		r = crypt_convert(cc, &io->ctx,
2196 				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2197 	} else {
2198 		crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2199 				   io->sector);
2200 
2201 		r = crypt_convert(cc, &io->ctx,
2202 				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2203 	}
2204 	/*
2205 	 * Crypto API backlogged the request, because its queue was full
2206 	 * and we're in softirq context, so continue from a workqueue
2207 	 */
2208 	if (r == BLK_STS_DEV_RESOURCE) {
2209 		INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2210 		queue_work(cc->crypt_queue, &io->work);
2211 		return;
2212 	}
2213 	if (r)
2214 		io->error = r;
2215 
2216 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2217 		kcryptd_crypt_read_done(io);
2218 
2219 	crypt_dec_pending(io);
2220 }
2221 
2222 static void kcryptd_async_done(void *data, int error)
2223 {
2224 	struct dm_crypt_request *dmreq = data;
2225 	struct convert_context *ctx = dmreq->ctx;
2226 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2227 	struct crypt_config *cc = io->cc;
2228 
2229 	/*
2230 	 * A request from crypto driver backlog is going to be processed now,
2231 	 * finish the completion and continue in crypt_convert().
2232 	 * (Callback will be called for the second time for this request.)
2233 	 */
2234 	if (error == -EINPROGRESS) {
2235 		complete(&ctx->restart);
2236 		return;
2237 	}
2238 
2239 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2240 		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2241 
2242 	if (error == -EBADMSG) {
2243 		sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2244 
2245 		ctx->aead_failed = true;
2246 		if (ctx->aead_recheck) {
2247 			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2248 				    ctx->bio_in->bi_bdev, s);
2249 			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2250 					 ctx->bio_in, s, 0);
2251 		}
2252 		io->error = BLK_STS_PROTECTION;
2253 	} else if (error < 0)
2254 		io->error = BLK_STS_IOERR;
2255 
2256 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2257 
2258 	if (!atomic_dec_and_test(&ctx->cc_pending))
2259 		return;
2260 
2261 	/*
2262 	 * The request is fully completed: for inline writes, let
2263 	 * kcryptd_crypt_write_convert() do the IO submission.
2264 	 */
2265 	if (bio_data_dir(io->base_bio) == READ) {
2266 		kcryptd_crypt_read_done(io);
2267 		return;
2268 	}
2269 
2270 	if (kcryptd_crypt_write_inline(cc, ctx)) {
2271 		complete(&ctx->restart);
2272 		return;
2273 	}
2274 
2275 	kcryptd_crypt_write_io_submit(io, 1);
2276 }
2277 
2278 static void kcryptd_crypt(struct work_struct *work)
2279 {
2280 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2281 
2282 	if (bio_data_dir(io->base_bio) == READ)
2283 		kcryptd_crypt_read_convert(io);
2284 	else
2285 		kcryptd_crypt_write_convert(io);
2286 }
2287 
2288 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2289 {
2290 	struct crypt_config *cc = io->cc;
2291 
2292 	if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2293 	    (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2294 		/*
2295 		 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2296 		 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2297 		 * it is being executed with irqs disabled.
2298 		 */
2299 		if (!(in_hardirq() || irqs_disabled())) {
2300 			kcryptd_crypt(&io->work);
2301 			return;
2302 		}
2303 	}
2304 
2305 	INIT_WORK(&io->work, kcryptd_crypt);
2306 	queue_work(cc->crypt_queue, &io->work);
2307 }
2308 
2309 static void crypt_free_tfms_aead(struct crypt_config *cc)
2310 {
2311 	if (!cc->cipher_tfm.tfms_aead)
2312 		return;
2313 
2314 	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2315 		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2316 		cc->cipher_tfm.tfms_aead[0] = NULL;
2317 	}
2318 
2319 	kfree(cc->cipher_tfm.tfms_aead);
2320 	cc->cipher_tfm.tfms_aead = NULL;
2321 }
2322 
2323 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2324 {
2325 	unsigned int i;
2326 
2327 	if (!cc->cipher_tfm.tfms)
2328 		return;
2329 
2330 	for (i = 0; i < cc->tfms_count; i++)
2331 		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2332 			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2333 			cc->cipher_tfm.tfms[i] = NULL;
2334 		}
2335 
2336 	kfree(cc->cipher_tfm.tfms);
2337 	cc->cipher_tfm.tfms = NULL;
2338 }
2339 
2340 static void crypt_free_tfms(struct crypt_config *cc)
2341 {
2342 	if (crypt_integrity_aead(cc))
2343 		crypt_free_tfms_aead(cc);
2344 	else
2345 		crypt_free_tfms_skcipher(cc);
2346 }
2347 
2348 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2349 {
2350 	unsigned int i;
2351 	int err;
2352 
2353 	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2354 				      sizeof(struct crypto_skcipher *),
2355 				      GFP_KERNEL);
2356 	if (!cc->cipher_tfm.tfms)
2357 		return -ENOMEM;
2358 
2359 	for (i = 0; i < cc->tfms_count; i++) {
2360 		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2361 						CRYPTO_ALG_ALLOCATES_MEMORY);
2362 		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2363 			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2364 			crypt_free_tfms(cc);
2365 			return err;
2366 		}
2367 	}
2368 
2369 	/*
2370 	 * dm-crypt performance can vary greatly depending on which crypto
2371 	 * algorithm implementation is used.  Help people debug performance
2372 	 * problems by logging the ->cra_driver_name.
2373 	 */
2374 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2375 	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2376 	return 0;
2377 }
2378 
2379 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2380 {
2381 	int err;
2382 
2383 	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2384 	if (!cc->cipher_tfm.tfms)
2385 		return -ENOMEM;
2386 
2387 	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2388 						CRYPTO_ALG_ALLOCATES_MEMORY);
2389 	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2390 		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2391 		crypt_free_tfms(cc);
2392 		return err;
2393 	}
2394 
2395 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2396 	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2397 	return 0;
2398 }
2399 
2400 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2401 {
2402 	if (crypt_integrity_aead(cc))
2403 		return crypt_alloc_tfms_aead(cc, ciphermode);
2404 	else
2405 		return crypt_alloc_tfms_skcipher(cc, ciphermode);
2406 }
2407 
2408 static unsigned int crypt_subkey_size(struct crypt_config *cc)
2409 {
2410 	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2411 }
2412 
2413 static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2414 {
2415 	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2416 }
2417 
2418 /*
2419  * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2420  * the key must be for some reason in special format.
2421  * This funcion converts cc->key to this special format.
2422  */
2423 static void crypt_copy_authenckey(char *p, const void *key,
2424 				  unsigned int enckeylen, unsigned int authkeylen)
2425 {
2426 	struct crypto_authenc_key_param *param;
2427 	struct rtattr *rta;
2428 
2429 	rta = (struct rtattr *)p;
2430 	param = RTA_DATA(rta);
2431 	param->enckeylen = cpu_to_be32(enckeylen);
2432 	rta->rta_len = RTA_LENGTH(sizeof(*param));
2433 	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2434 	p += RTA_SPACE(sizeof(*param));
2435 	memcpy(p, key + enckeylen, authkeylen);
2436 	p += authkeylen;
2437 	memcpy(p, key, enckeylen);
2438 }
2439 
2440 static int crypt_setkey(struct crypt_config *cc)
2441 {
2442 	unsigned int subkey_size;
2443 	int err = 0, i, r;
2444 
2445 	/* Ignore extra keys (which are used for IV etc) */
2446 	subkey_size = crypt_subkey_size(cc);
2447 
2448 	if (crypt_integrity_hmac(cc)) {
2449 		if (subkey_size < cc->key_mac_size)
2450 			return -EINVAL;
2451 
2452 		crypt_copy_authenckey(cc->authenc_key, cc->key,
2453 				      subkey_size - cc->key_mac_size,
2454 				      cc->key_mac_size);
2455 	}
2456 
2457 	for (i = 0; i < cc->tfms_count; i++) {
2458 		if (crypt_integrity_hmac(cc))
2459 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2460 				cc->authenc_key, crypt_authenckey_size(cc));
2461 		else if (crypt_integrity_aead(cc))
2462 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2463 					       cc->key + (i * subkey_size),
2464 					       subkey_size);
2465 		else
2466 			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2467 						   cc->key + (i * subkey_size),
2468 						   subkey_size);
2469 		if (r)
2470 			err = r;
2471 	}
2472 
2473 	if (crypt_integrity_hmac(cc))
2474 		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2475 
2476 	return err;
2477 }
2478 
2479 #ifdef CONFIG_KEYS
2480 
2481 static bool contains_whitespace(const char *str)
2482 {
2483 	while (*str)
2484 		if (isspace(*str++))
2485 			return true;
2486 	return false;
2487 }
2488 
2489 static int set_key_user(struct crypt_config *cc, struct key *key)
2490 {
2491 	const struct user_key_payload *ukp;
2492 
2493 	ukp = user_key_payload_locked(key);
2494 	if (!ukp)
2495 		return -EKEYREVOKED;
2496 
2497 	if (cc->key_size != ukp->datalen)
2498 		return -EINVAL;
2499 
2500 	memcpy(cc->key, ukp->data, cc->key_size);
2501 
2502 	return 0;
2503 }
2504 
2505 static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2506 {
2507 	const struct encrypted_key_payload *ekp;
2508 
2509 	ekp = key->payload.data[0];
2510 	if (!ekp)
2511 		return -EKEYREVOKED;
2512 
2513 	if (cc->key_size != ekp->decrypted_datalen)
2514 		return -EINVAL;
2515 
2516 	memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2517 
2518 	return 0;
2519 }
2520 
2521 static int set_key_trusted(struct crypt_config *cc, struct key *key)
2522 {
2523 	const struct trusted_key_payload *tkp;
2524 
2525 	tkp = key->payload.data[0];
2526 	if (!tkp)
2527 		return -EKEYREVOKED;
2528 
2529 	if (cc->key_size != tkp->key_len)
2530 		return -EINVAL;
2531 
2532 	memcpy(cc->key, tkp->key, cc->key_size);
2533 
2534 	return 0;
2535 }
2536 
2537 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2538 {
2539 	char *new_key_string, *key_desc;
2540 	int ret;
2541 	struct key_type *type;
2542 	struct key *key;
2543 	int (*set_key)(struct crypt_config *cc, struct key *key);
2544 
2545 	/*
2546 	 * Reject key_string with whitespace. dm core currently lacks code for
2547 	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2548 	 */
2549 	if (contains_whitespace(key_string)) {
2550 		DMERR("whitespace chars not allowed in key string");
2551 		return -EINVAL;
2552 	}
2553 
2554 	/* look for next ':' separating key_type from key_description */
2555 	key_desc = strchr(key_string, ':');
2556 	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2557 		return -EINVAL;
2558 
2559 	if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2560 		type = &key_type_logon;
2561 		set_key = set_key_user;
2562 	} else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2563 		type = &key_type_user;
2564 		set_key = set_key_user;
2565 	} else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2566 		   !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2567 		type = &key_type_encrypted;
2568 		set_key = set_key_encrypted;
2569 	} else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2570 		   !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2571 		type = &key_type_trusted;
2572 		set_key = set_key_trusted;
2573 	} else {
2574 		return -EINVAL;
2575 	}
2576 
2577 	new_key_string = kstrdup(key_string, GFP_KERNEL);
2578 	if (!new_key_string)
2579 		return -ENOMEM;
2580 
2581 	key = request_key(type, key_desc + 1, NULL);
2582 	if (IS_ERR(key)) {
2583 		kfree_sensitive(new_key_string);
2584 		return PTR_ERR(key);
2585 	}
2586 
2587 	down_read(&key->sem);
2588 
2589 	ret = set_key(cc, key);
2590 	if (ret < 0) {
2591 		up_read(&key->sem);
2592 		key_put(key);
2593 		kfree_sensitive(new_key_string);
2594 		return ret;
2595 	}
2596 
2597 	up_read(&key->sem);
2598 	key_put(key);
2599 
2600 	/* clear the flag since following operations may invalidate previously valid key */
2601 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2602 
2603 	ret = crypt_setkey(cc);
2604 
2605 	if (!ret) {
2606 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2607 		kfree_sensitive(cc->key_string);
2608 		cc->key_string = new_key_string;
2609 	} else
2610 		kfree_sensitive(new_key_string);
2611 
2612 	return ret;
2613 }
2614 
2615 static int get_key_size(char **key_string)
2616 {
2617 	char *colon, dummy;
2618 	int ret;
2619 
2620 	if (*key_string[0] != ':')
2621 		return strlen(*key_string) >> 1;
2622 
2623 	/* look for next ':' in key string */
2624 	colon = strpbrk(*key_string + 1, ":");
2625 	if (!colon)
2626 		return -EINVAL;
2627 
2628 	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2629 		return -EINVAL;
2630 
2631 	*key_string = colon;
2632 
2633 	/* remaining key string should be :<logon|user>:<key_desc> */
2634 
2635 	return ret;
2636 }
2637 
2638 #else
2639 
2640 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2641 {
2642 	return -EINVAL;
2643 }
2644 
2645 static int get_key_size(char **key_string)
2646 {
2647 	return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2648 }
2649 
2650 #endif /* CONFIG_KEYS */
2651 
2652 static int crypt_set_key(struct crypt_config *cc, char *key)
2653 {
2654 	int r = -EINVAL;
2655 	int key_string_len = strlen(key);
2656 
2657 	/* Hyphen (which gives a key_size of zero) means there is no key. */
2658 	if (!cc->key_size && strcmp(key, "-"))
2659 		goto out;
2660 
2661 	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2662 	if (key[0] == ':') {
2663 		r = crypt_set_keyring_key(cc, key + 1);
2664 		goto out;
2665 	}
2666 
2667 	/* clear the flag since following operations may invalidate previously valid key */
2668 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2669 
2670 	/* wipe references to any kernel keyring key */
2671 	kfree_sensitive(cc->key_string);
2672 	cc->key_string = NULL;
2673 
2674 	/* Decode key from its hex representation. */
2675 	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2676 		goto out;
2677 
2678 	r = crypt_setkey(cc);
2679 	if (!r)
2680 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2681 
2682 out:
2683 	/* Hex key string not needed after here, so wipe it. */
2684 	memset(key, '0', key_string_len);
2685 
2686 	return r;
2687 }
2688 
2689 static int crypt_wipe_key(struct crypt_config *cc)
2690 {
2691 	int r;
2692 
2693 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2694 	get_random_bytes(&cc->key, cc->key_size);
2695 
2696 	/* Wipe IV private keys */
2697 	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2698 		r = cc->iv_gen_ops->wipe(cc);
2699 		if (r)
2700 			return r;
2701 	}
2702 
2703 	kfree_sensitive(cc->key_string);
2704 	cc->key_string = NULL;
2705 	r = crypt_setkey(cc);
2706 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2707 
2708 	return r;
2709 }
2710 
2711 static void crypt_calculate_pages_per_client(void)
2712 {
2713 	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2714 
2715 	if (!dm_crypt_clients_n)
2716 		return;
2717 
2718 	pages /= dm_crypt_clients_n;
2719 	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2720 		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2721 	dm_crypt_pages_per_client = pages;
2722 }
2723 
2724 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2725 {
2726 	struct crypt_config *cc = pool_data;
2727 	struct page *page;
2728 
2729 	/*
2730 	 * Note, percpu_counter_read_positive() may over (and under) estimate
2731 	 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2732 	 * but avoids potential spinlock contention of an exact result.
2733 	 */
2734 	if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2735 	    likely(gfp_mask & __GFP_NORETRY))
2736 		return NULL;
2737 
2738 	page = alloc_page(gfp_mask);
2739 	if (likely(page != NULL))
2740 		percpu_counter_add(&cc->n_allocated_pages, 1);
2741 
2742 	return page;
2743 }
2744 
2745 static void crypt_page_free(void *page, void *pool_data)
2746 {
2747 	struct crypt_config *cc = pool_data;
2748 
2749 	__free_page(page);
2750 	percpu_counter_sub(&cc->n_allocated_pages, 1);
2751 }
2752 
2753 static void crypt_dtr(struct dm_target *ti)
2754 {
2755 	struct crypt_config *cc = ti->private;
2756 
2757 	ti->private = NULL;
2758 
2759 	if (!cc)
2760 		return;
2761 
2762 	if (cc->write_thread)
2763 		kthread_stop(cc->write_thread);
2764 
2765 	if (cc->io_queue)
2766 		destroy_workqueue(cc->io_queue);
2767 	if (cc->crypt_queue)
2768 		destroy_workqueue(cc->crypt_queue);
2769 
2770 	crypt_free_tfms(cc);
2771 
2772 	bioset_exit(&cc->bs);
2773 
2774 	mempool_exit(&cc->page_pool);
2775 	mempool_exit(&cc->req_pool);
2776 	mempool_exit(&cc->tag_pool);
2777 
2778 	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2779 	percpu_counter_destroy(&cc->n_allocated_pages);
2780 
2781 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2782 		cc->iv_gen_ops->dtr(cc);
2783 
2784 	if (cc->dev)
2785 		dm_put_device(ti, cc->dev);
2786 
2787 	kfree_sensitive(cc->cipher_string);
2788 	kfree_sensitive(cc->key_string);
2789 	kfree_sensitive(cc->cipher_auth);
2790 	kfree_sensitive(cc->authenc_key);
2791 
2792 	mutex_destroy(&cc->bio_alloc_lock);
2793 
2794 	/* Must zero key material before freeing */
2795 	kfree_sensitive(cc);
2796 
2797 	spin_lock(&dm_crypt_clients_lock);
2798 	WARN_ON(!dm_crypt_clients_n);
2799 	dm_crypt_clients_n--;
2800 	crypt_calculate_pages_per_client();
2801 	spin_unlock(&dm_crypt_clients_lock);
2802 
2803 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2804 }
2805 
2806 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2807 {
2808 	struct crypt_config *cc = ti->private;
2809 
2810 	if (crypt_integrity_aead(cc))
2811 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2812 	else
2813 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2814 
2815 	if (cc->iv_size)
2816 		/* at least a 64 bit sector number should fit in our buffer */
2817 		cc->iv_size = max(cc->iv_size,
2818 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2819 	else if (ivmode) {
2820 		DMWARN("Selected cipher does not support IVs");
2821 		ivmode = NULL;
2822 	}
2823 
2824 	/* Choose ivmode, see comments at iv code. */
2825 	if (ivmode == NULL)
2826 		cc->iv_gen_ops = NULL;
2827 	else if (strcmp(ivmode, "plain") == 0)
2828 		cc->iv_gen_ops = &crypt_iv_plain_ops;
2829 	else if (strcmp(ivmode, "plain64") == 0)
2830 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2831 	else if (strcmp(ivmode, "plain64be") == 0)
2832 		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2833 	else if (strcmp(ivmode, "essiv") == 0)
2834 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2835 	else if (strcmp(ivmode, "benbi") == 0)
2836 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2837 	else if (strcmp(ivmode, "null") == 0)
2838 		cc->iv_gen_ops = &crypt_iv_null_ops;
2839 	else if (strcmp(ivmode, "eboiv") == 0)
2840 		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2841 	else if (strcmp(ivmode, "elephant") == 0) {
2842 		cc->iv_gen_ops = &crypt_iv_elephant_ops;
2843 		cc->key_parts = 2;
2844 		cc->key_extra_size = cc->key_size / 2;
2845 		if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2846 			return -EINVAL;
2847 		set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2848 	} else if (strcmp(ivmode, "lmk") == 0) {
2849 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2850 		/*
2851 		 * Version 2 and 3 is recognised according
2852 		 * to length of provided multi-key string.
2853 		 * If present (version 3), last key is used as IV seed.
2854 		 * All keys (including IV seed) are always the same size.
2855 		 */
2856 		if (cc->key_size % cc->key_parts) {
2857 			cc->key_parts++;
2858 			cc->key_extra_size = cc->key_size / cc->key_parts;
2859 		}
2860 	} else if (strcmp(ivmode, "tcw") == 0) {
2861 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2862 		cc->key_parts += 2; /* IV + whitening */
2863 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2864 	} else if (strcmp(ivmode, "random") == 0) {
2865 		cc->iv_gen_ops = &crypt_iv_random_ops;
2866 		/* Need storage space in integrity fields. */
2867 		cc->integrity_iv_size = cc->iv_size;
2868 	} else {
2869 		ti->error = "Invalid IV mode";
2870 		return -EINVAL;
2871 	}
2872 
2873 	return 0;
2874 }
2875 
2876 /*
2877  * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2878  * The HMAC is needed to calculate tag size (HMAC digest size).
2879  * This should be probably done by crypto-api calls (once available...)
2880  */
2881 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2882 {
2883 	char *start, *end, *mac_alg = NULL;
2884 	struct crypto_ahash *mac;
2885 
2886 	if (!strstarts(cipher_api, "authenc("))
2887 		return 0;
2888 
2889 	start = strchr(cipher_api, '(');
2890 	end = strchr(cipher_api, ',');
2891 	if (!start || !end || ++start > end)
2892 		return -EINVAL;
2893 
2894 	mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL);
2895 	if (!mac_alg)
2896 		return -ENOMEM;
2897 
2898 	mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2899 	kfree(mac_alg);
2900 
2901 	if (IS_ERR(mac))
2902 		return PTR_ERR(mac);
2903 
2904 	cc->key_mac_size = crypto_ahash_digestsize(mac);
2905 	crypto_free_ahash(mac);
2906 
2907 	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2908 	if (!cc->authenc_key)
2909 		return -ENOMEM;
2910 
2911 	return 0;
2912 }
2913 
2914 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2915 				char **ivmode, char **ivopts)
2916 {
2917 	struct crypt_config *cc = ti->private;
2918 	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2919 	int ret = -EINVAL;
2920 
2921 	cc->tfms_count = 1;
2922 
2923 	/*
2924 	 * New format (capi: prefix)
2925 	 * capi:cipher_api_spec-iv:ivopts
2926 	 */
2927 	tmp = &cipher_in[strlen("capi:")];
2928 
2929 	/* Separate IV options if present, it can contain another '-' in hash name */
2930 	*ivopts = strrchr(tmp, ':');
2931 	if (*ivopts) {
2932 		**ivopts = '\0';
2933 		(*ivopts)++;
2934 	}
2935 	/* Parse IV mode */
2936 	*ivmode = strrchr(tmp, '-');
2937 	if (*ivmode) {
2938 		**ivmode = '\0';
2939 		(*ivmode)++;
2940 	}
2941 	/* The rest is crypto API spec */
2942 	cipher_api = tmp;
2943 
2944 	/* Alloc AEAD, can be used only in new format. */
2945 	if (crypt_integrity_aead(cc)) {
2946 		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2947 		if (ret < 0) {
2948 			ti->error = "Invalid AEAD cipher spec";
2949 			return ret;
2950 		}
2951 	}
2952 
2953 	if (*ivmode && !strcmp(*ivmode, "lmk"))
2954 		cc->tfms_count = 64;
2955 
2956 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2957 		if (!*ivopts) {
2958 			ti->error = "Digest algorithm missing for ESSIV mode";
2959 			return -EINVAL;
2960 		}
2961 		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2962 			       cipher_api, *ivopts);
2963 		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2964 			ti->error = "Cannot allocate cipher string";
2965 			return -ENOMEM;
2966 		}
2967 		cipher_api = buf;
2968 	}
2969 
2970 	cc->key_parts = cc->tfms_count;
2971 
2972 	/* Allocate cipher */
2973 	ret = crypt_alloc_tfms(cc, cipher_api);
2974 	if (ret < 0) {
2975 		ti->error = "Error allocating crypto tfm";
2976 		return ret;
2977 	}
2978 
2979 	if (crypt_integrity_aead(cc))
2980 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2981 	else
2982 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2983 
2984 	return 0;
2985 }
2986 
2987 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2988 				char **ivmode, char **ivopts)
2989 {
2990 	struct crypt_config *cc = ti->private;
2991 	char *tmp, *cipher, *chainmode, *keycount;
2992 	char *cipher_api = NULL;
2993 	int ret = -EINVAL;
2994 	char dummy;
2995 
2996 	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2997 		ti->error = "Bad cipher specification";
2998 		return -EINVAL;
2999 	}
3000 
3001 	/*
3002 	 * Legacy dm-crypt cipher specification
3003 	 * cipher[:keycount]-mode-iv:ivopts
3004 	 */
3005 	tmp = cipher_in;
3006 	keycount = strsep(&tmp, "-");
3007 	cipher = strsep(&keycount, ":");
3008 
3009 	if (!keycount)
3010 		cc->tfms_count = 1;
3011 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
3012 		 !is_power_of_2(cc->tfms_count)) {
3013 		ti->error = "Bad cipher key count specification";
3014 		return -EINVAL;
3015 	}
3016 	cc->key_parts = cc->tfms_count;
3017 
3018 	chainmode = strsep(&tmp, "-");
3019 	*ivmode = strsep(&tmp, ":");
3020 	*ivopts = tmp;
3021 
3022 	/*
3023 	 * For compatibility with the original dm-crypt mapping format, if
3024 	 * only the cipher name is supplied, use cbc-plain.
3025 	 */
3026 	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
3027 		chainmode = "cbc";
3028 		*ivmode = "plain";
3029 	}
3030 
3031 	if (strcmp(chainmode, "ecb") && !*ivmode) {
3032 		ti->error = "IV mechanism required";
3033 		return -EINVAL;
3034 	}
3035 
3036 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
3037 	if (!cipher_api)
3038 		goto bad_mem;
3039 
3040 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
3041 		if (!*ivopts) {
3042 			ti->error = "Digest algorithm missing for ESSIV mode";
3043 			kfree(cipher_api);
3044 			return -EINVAL;
3045 		}
3046 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3047 			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
3048 	} else {
3049 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3050 			       "%s(%s)", chainmode, cipher);
3051 	}
3052 	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
3053 		kfree(cipher_api);
3054 		goto bad_mem;
3055 	}
3056 
3057 	/* Allocate cipher */
3058 	ret = crypt_alloc_tfms(cc, cipher_api);
3059 	if (ret < 0) {
3060 		ti->error = "Error allocating crypto tfm";
3061 		kfree(cipher_api);
3062 		return ret;
3063 	}
3064 	kfree(cipher_api);
3065 
3066 	return 0;
3067 bad_mem:
3068 	ti->error = "Cannot allocate cipher strings";
3069 	return -ENOMEM;
3070 }
3071 
3072 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3073 {
3074 	struct crypt_config *cc = ti->private;
3075 	char *ivmode = NULL, *ivopts = NULL;
3076 	int ret;
3077 
3078 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3079 	if (!cc->cipher_string) {
3080 		ti->error = "Cannot allocate cipher strings";
3081 		return -ENOMEM;
3082 	}
3083 
3084 	if (strstarts(cipher_in, "capi:"))
3085 		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3086 	else
3087 		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3088 	if (ret)
3089 		return ret;
3090 
3091 	/* Initialize IV */
3092 	ret = crypt_ctr_ivmode(ti, ivmode);
3093 	if (ret < 0)
3094 		return ret;
3095 
3096 	/* Initialize and set key */
3097 	ret = crypt_set_key(cc, key);
3098 	if (ret < 0) {
3099 		ti->error = "Error decoding and setting key";
3100 		return ret;
3101 	}
3102 
3103 	/* Allocate IV */
3104 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3105 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3106 		if (ret < 0) {
3107 			ti->error = "Error creating IV";
3108 			return ret;
3109 		}
3110 	}
3111 
3112 	/* Initialize IV (set keys for ESSIV etc) */
3113 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3114 		ret = cc->iv_gen_ops->init(cc);
3115 		if (ret < 0) {
3116 			ti->error = "Error initialising IV";
3117 			return ret;
3118 		}
3119 	}
3120 
3121 	/* wipe the kernel key payload copy */
3122 	if (cc->key_string)
3123 		memset(cc->key, 0, cc->key_size * sizeof(u8));
3124 
3125 	return ret;
3126 }
3127 
3128 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3129 {
3130 	struct crypt_config *cc = ti->private;
3131 	struct dm_arg_set as;
3132 	static const struct dm_arg _args[] = {
3133 		{0, 8, "Invalid number of feature args"},
3134 	};
3135 	unsigned int opt_params, val;
3136 	const char *opt_string, *sval;
3137 	char dummy;
3138 	int ret;
3139 
3140 	/* Optional parameters */
3141 	as.argc = argc;
3142 	as.argv = argv;
3143 
3144 	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3145 	if (ret)
3146 		return ret;
3147 
3148 	while (opt_params--) {
3149 		opt_string = dm_shift_arg(&as);
3150 		if (!opt_string) {
3151 			ti->error = "Not enough feature arguments";
3152 			return -EINVAL;
3153 		}
3154 
3155 		if (!strcasecmp(opt_string, "allow_discards"))
3156 			ti->num_discard_bios = 1;
3157 
3158 		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3159 			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3160 
3161 		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3162 			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3163 		else if (!strcasecmp(opt_string, "no_read_workqueue"))
3164 			set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3165 		else if (!strcasecmp(opt_string, "no_write_workqueue"))
3166 			set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3167 		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3168 			if (val == 0 || val > MAX_TAG_SIZE) {
3169 				ti->error = "Invalid integrity arguments";
3170 				return -EINVAL;
3171 			}
3172 			cc->on_disk_tag_size = val;
3173 			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3174 			if (!strcasecmp(sval, "aead")) {
3175 				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3176 			} else if (strcasecmp(sval, "none")) {
3177 				ti->error = "Unknown integrity profile";
3178 				return -EINVAL;
3179 			}
3180 
3181 			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3182 			if (!cc->cipher_auth)
3183 				return -ENOMEM;
3184 		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3185 			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3186 			    cc->sector_size > 4096 ||
3187 			    (cc->sector_size & (cc->sector_size - 1))) {
3188 				ti->error = "Invalid feature value for sector_size";
3189 				return -EINVAL;
3190 			}
3191 			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3192 				ti->error = "Device size is not multiple of sector_size feature";
3193 				return -EINVAL;
3194 			}
3195 			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3196 		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
3197 			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3198 		else {
3199 			ti->error = "Invalid feature arguments";
3200 			return -EINVAL;
3201 		}
3202 	}
3203 
3204 	return 0;
3205 }
3206 
3207 #ifdef CONFIG_BLK_DEV_ZONED
3208 static int crypt_report_zones(struct dm_target *ti,
3209 		struct dm_report_zones_args *args, unsigned int nr_zones)
3210 {
3211 	struct crypt_config *cc = ti->private;
3212 
3213 	return dm_report_zones(cc->dev->bdev, cc->start,
3214 			cc->start + dm_target_offset(ti, args->next_sector),
3215 			args, nr_zones);
3216 }
3217 #else
3218 #define crypt_report_zones NULL
3219 #endif
3220 
3221 /*
3222  * Construct an encryption mapping:
3223  * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3224  */
3225 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3226 {
3227 	struct crypt_config *cc;
3228 	const char *devname = dm_table_device_name(ti->table);
3229 	int key_size;
3230 	unsigned int align_mask;
3231 	unsigned long long tmpll;
3232 	int ret;
3233 	size_t iv_size_padding, additional_req_size;
3234 	char dummy;
3235 
3236 	if (argc < 5) {
3237 		ti->error = "Not enough arguments";
3238 		return -EINVAL;
3239 	}
3240 
3241 	key_size = get_key_size(&argv[1]);
3242 	if (key_size < 0) {
3243 		ti->error = "Cannot parse key size";
3244 		return -EINVAL;
3245 	}
3246 
3247 	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3248 	if (!cc) {
3249 		ti->error = "Cannot allocate encryption context";
3250 		return -ENOMEM;
3251 	}
3252 	cc->key_size = key_size;
3253 	cc->sector_size = (1 << SECTOR_SHIFT);
3254 	cc->sector_shift = 0;
3255 
3256 	ti->private = cc;
3257 
3258 	spin_lock(&dm_crypt_clients_lock);
3259 	dm_crypt_clients_n++;
3260 	crypt_calculate_pages_per_client();
3261 	spin_unlock(&dm_crypt_clients_lock);
3262 
3263 	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3264 	if (ret < 0)
3265 		goto bad;
3266 
3267 	/* Optional parameters need to be read before cipher constructor */
3268 	if (argc > 5) {
3269 		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3270 		if (ret)
3271 			goto bad;
3272 	}
3273 
3274 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3275 	if (ret < 0)
3276 		goto bad;
3277 
3278 	if (crypt_integrity_aead(cc)) {
3279 		cc->dmreq_start = sizeof(struct aead_request);
3280 		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3281 		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3282 	} else {
3283 		cc->dmreq_start = sizeof(struct skcipher_request);
3284 		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3285 		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3286 	}
3287 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3288 
3289 	if (align_mask < CRYPTO_MINALIGN) {
3290 		/* Allocate the padding exactly */
3291 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3292 				& align_mask;
3293 	} else {
3294 		/*
3295 		 * If the cipher requires greater alignment than kmalloc
3296 		 * alignment, we don't know the exact position of the
3297 		 * initialization vector. We must assume worst case.
3298 		 */
3299 		iv_size_padding = align_mask;
3300 	}
3301 
3302 	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
3303 	additional_req_size = sizeof(struct dm_crypt_request) +
3304 		iv_size_padding + cc->iv_size +
3305 		cc->iv_size +
3306 		sizeof(uint64_t) +
3307 		sizeof(unsigned int);
3308 
3309 	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3310 	if (ret) {
3311 		ti->error = "Cannot allocate crypt request mempool";
3312 		goto bad;
3313 	}
3314 
3315 	cc->per_bio_data_size = ti->per_io_data_size =
3316 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3317 		      ARCH_DMA_MINALIGN);
3318 
3319 	ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3320 	if (ret) {
3321 		ti->error = "Cannot allocate page mempool";
3322 		goto bad;
3323 	}
3324 
3325 	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3326 	if (ret) {
3327 		ti->error = "Cannot allocate crypt bioset";
3328 		goto bad;
3329 	}
3330 
3331 	mutex_init(&cc->bio_alloc_lock);
3332 
3333 	ret = -EINVAL;
3334 	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3335 	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3336 		ti->error = "Invalid iv_offset sector";
3337 		goto bad;
3338 	}
3339 	cc->iv_offset = tmpll;
3340 
3341 	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3342 	if (ret) {
3343 		ti->error = "Device lookup failed";
3344 		goto bad;
3345 	}
3346 
3347 	ret = -EINVAL;
3348 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3349 		ti->error = "Invalid device sector";
3350 		goto bad;
3351 	}
3352 	cc->start = tmpll;
3353 
3354 	if (bdev_is_zoned(cc->dev->bdev)) {
3355 		/*
3356 		 * For zoned block devices, we need to preserve the issuer write
3357 		 * ordering. To do so, disable write workqueues and force inline
3358 		 * encryption completion.
3359 		 */
3360 		set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3361 		set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3362 
3363 		/*
3364 		 * All zone append writes to a zone of a zoned block device will
3365 		 * have the same BIO sector, the start of the zone. When the
3366 		 * cypher IV mode uses sector values, all data targeting a
3367 		 * zone will be encrypted using the first sector numbers of the
3368 		 * zone. This will not result in write errors but will
3369 		 * cause most reads to fail as reads will use the sector values
3370 		 * for the actual data locations, resulting in IV mismatch.
3371 		 * To avoid this problem, ask DM core to emulate zone append
3372 		 * operations with regular writes.
3373 		 */
3374 		DMDEBUG("Zone append operations will be emulated");
3375 		ti->emulate_zone_append = true;
3376 	}
3377 
3378 	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3379 		ret = crypt_integrity_ctr(cc, ti);
3380 		if (ret)
3381 			goto bad;
3382 
3383 		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3384 		if (!cc->tag_pool_max_sectors)
3385 			cc->tag_pool_max_sectors = 1;
3386 
3387 		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3388 			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3389 		if (ret) {
3390 			ti->error = "Cannot allocate integrity tags mempool";
3391 			goto bad;
3392 		}
3393 
3394 		cc->tag_pool_max_sectors <<= cc->sector_shift;
3395 	}
3396 
3397 	ret = -ENOMEM;
3398 	cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
3399 	if (!cc->io_queue) {
3400 		ti->error = "Couldn't create kcryptd io queue";
3401 		goto bad;
3402 	}
3403 
3404 	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3405 		cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3406 						  1, devname);
3407 	else
3408 		cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3409 						  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3410 						  num_online_cpus(), devname);
3411 	if (!cc->crypt_queue) {
3412 		ti->error = "Couldn't create kcryptd queue";
3413 		goto bad;
3414 	}
3415 
3416 	spin_lock_init(&cc->write_thread_lock);
3417 	cc->write_tree = RB_ROOT;
3418 
3419 	cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3420 	if (IS_ERR(cc->write_thread)) {
3421 		ret = PTR_ERR(cc->write_thread);
3422 		cc->write_thread = NULL;
3423 		ti->error = "Couldn't spawn write thread";
3424 		goto bad;
3425 	}
3426 
3427 	ti->num_flush_bios = 1;
3428 	ti->limit_swap_bios = true;
3429 	ti->accounts_remapped_io = true;
3430 
3431 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3432 	return 0;
3433 
3434 bad:
3435 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3436 	crypt_dtr(ti);
3437 	return ret;
3438 }
3439 
3440 static int crypt_map(struct dm_target *ti, struct bio *bio)
3441 {
3442 	struct dm_crypt_io *io;
3443 	struct crypt_config *cc = ti->private;
3444 
3445 	/*
3446 	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3447 	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3448 	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3449 	 */
3450 	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3451 	    bio_op(bio) == REQ_OP_DISCARD)) {
3452 		bio_set_dev(bio, cc->dev->bdev);
3453 		if (bio_sectors(bio))
3454 			bio->bi_iter.bi_sector = cc->start +
3455 				dm_target_offset(ti, bio->bi_iter.bi_sector);
3456 		return DM_MAPIO_REMAPPED;
3457 	}
3458 
3459 	/*
3460 	 * Check if bio is too large, split as needed.
3461 	 */
3462 	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
3463 	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3464 		dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
3465 
3466 	/*
3467 	 * Ensure that bio is a multiple of internal sector encryption size
3468 	 * and is aligned to this size as defined in IO hints.
3469 	 */
3470 	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3471 		return DM_MAPIO_KILL;
3472 
3473 	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3474 		return DM_MAPIO_KILL;
3475 
3476 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
3477 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3478 
3479 	if (cc->on_disk_tag_size) {
3480 		unsigned int tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3481 
3482 		if (unlikely(tag_len > KMALLOC_MAX_SIZE))
3483 			io->integrity_metadata = NULL;
3484 		else
3485 			io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3486 
3487 		if (unlikely(!io->integrity_metadata)) {
3488 			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3489 				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3490 			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3491 			io->integrity_metadata_from_pool = true;
3492 		}
3493 	}
3494 
3495 	if (crypt_integrity_aead(cc))
3496 		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3497 	else
3498 		io->ctx.r.req = (struct skcipher_request *)(io + 1);
3499 
3500 	if (bio_data_dir(io->base_bio) == READ) {
3501 		if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3502 			kcryptd_queue_read(io);
3503 	} else
3504 		kcryptd_queue_crypt(io);
3505 
3506 	return DM_MAPIO_SUBMITTED;
3507 }
3508 
3509 static char hex2asc(unsigned char c)
3510 {
3511 	return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3512 }
3513 
3514 static void crypt_status(struct dm_target *ti, status_type_t type,
3515 			 unsigned int status_flags, char *result, unsigned int maxlen)
3516 {
3517 	struct crypt_config *cc = ti->private;
3518 	unsigned int i, sz = 0;
3519 	int num_feature_args = 0;
3520 
3521 	switch (type) {
3522 	case STATUSTYPE_INFO:
3523 		result[0] = '\0';
3524 		break;
3525 
3526 	case STATUSTYPE_TABLE:
3527 		DMEMIT("%s ", cc->cipher_string);
3528 
3529 		if (cc->key_size > 0) {
3530 			if (cc->key_string)
3531 				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3532 			else {
3533 				for (i = 0; i < cc->key_size; i++) {
3534 					DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3535 					       hex2asc(cc->key[i] & 0xf));
3536 				}
3537 			}
3538 		} else
3539 			DMEMIT("-");
3540 
3541 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3542 				cc->dev->name, (unsigned long long)cc->start);
3543 
3544 		num_feature_args += !!ti->num_discard_bios;
3545 		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3546 		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3547 		num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3548 		num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3549 		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3550 		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3551 		if (cc->on_disk_tag_size)
3552 			num_feature_args++;
3553 		if (num_feature_args) {
3554 			DMEMIT(" %d", num_feature_args);
3555 			if (ti->num_discard_bios)
3556 				DMEMIT(" allow_discards");
3557 			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3558 				DMEMIT(" same_cpu_crypt");
3559 			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3560 				DMEMIT(" submit_from_crypt_cpus");
3561 			if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3562 				DMEMIT(" no_read_workqueue");
3563 			if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3564 				DMEMIT(" no_write_workqueue");
3565 			if (cc->on_disk_tag_size)
3566 				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3567 			if (cc->sector_size != (1 << SECTOR_SHIFT))
3568 				DMEMIT(" sector_size:%d", cc->sector_size);
3569 			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3570 				DMEMIT(" iv_large_sectors");
3571 		}
3572 		break;
3573 
3574 	case STATUSTYPE_IMA:
3575 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3576 		DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3577 		DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3578 		DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3579 		       'y' : 'n');
3580 		DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3581 		       'y' : 'n');
3582 		DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3583 		       'y' : 'n');
3584 		DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3585 		       'y' : 'n');
3586 
3587 		if (cc->on_disk_tag_size)
3588 			DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3589 			       cc->on_disk_tag_size, cc->cipher_auth);
3590 		if (cc->sector_size != (1 << SECTOR_SHIFT))
3591 			DMEMIT(",sector_size=%d", cc->sector_size);
3592 		if (cc->cipher_string)
3593 			DMEMIT(",cipher_string=%s", cc->cipher_string);
3594 
3595 		DMEMIT(",key_size=%u", cc->key_size);
3596 		DMEMIT(",key_parts=%u", cc->key_parts);
3597 		DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3598 		DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3599 		DMEMIT(";");
3600 		break;
3601 	}
3602 }
3603 
3604 static void crypt_postsuspend(struct dm_target *ti)
3605 {
3606 	struct crypt_config *cc = ti->private;
3607 
3608 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3609 }
3610 
3611 static int crypt_preresume(struct dm_target *ti)
3612 {
3613 	struct crypt_config *cc = ti->private;
3614 
3615 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3616 		DMERR("aborting resume - crypt key is not set.");
3617 		return -EAGAIN;
3618 	}
3619 
3620 	return 0;
3621 }
3622 
3623 static void crypt_resume(struct dm_target *ti)
3624 {
3625 	struct crypt_config *cc = ti->private;
3626 
3627 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3628 }
3629 
3630 /* Message interface
3631  *	key set <key>
3632  *	key wipe
3633  */
3634 static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3635 			 char *result, unsigned int maxlen)
3636 {
3637 	struct crypt_config *cc = ti->private;
3638 	int key_size, ret = -EINVAL;
3639 
3640 	if (argc < 2)
3641 		goto error;
3642 
3643 	if (!strcasecmp(argv[0], "key")) {
3644 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3645 			DMWARN("not suspended during key manipulation.");
3646 			return -EINVAL;
3647 		}
3648 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3649 			/* The key size may not be changed. */
3650 			key_size = get_key_size(&argv[2]);
3651 			if (key_size < 0 || cc->key_size != key_size) {
3652 				memset(argv[2], '0', strlen(argv[2]));
3653 				return -EINVAL;
3654 			}
3655 
3656 			ret = crypt_set_key(cc, argv[2]);
3657 			if (ret)
3658 				return ret;
3659 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3660 				ret = cc->iv_gen_ops->init(cc);
3661 			/* wipe the kernel key payload copy */
3662 			if (cc->key_string)
3663 				memset(cc->key, 0, cc->key_size * sizeof(u8));
3664 			return ret;
3665 		}
3666 		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3667 			return crypt_wipe_key(cc);
3668 	}
3669 
3670 error:
3671 	DMWARN("unrecognised message received.");
3672 	return -EINVAL;
3673 }
3674 
3675 static int crypt_iterate_devices(struct dm_target *ti,
3676 				 iterate_devices_callout_fn fn, void *data)
3677 {
3678 	struct crypt_config *cc = ti->private;
3679 
3680 	return fn(ti, cc->dev, cc->start, ti->len, data);
3681 }
3682 
3683 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3684 {
3685 	struct crypt_config *cc = ti->private;
3686 
3687 	/*
3688 	 * Unfortunate constraint that is required to avoid the potential
3689 	 * for exceeding underlying device's max_segments limits -- due to
3690 	 * crypt_alloc_buffer() possibly allocating pages for the encryption
3691 	 * bio that are not as physically contiguous as the original bio.
3692 	 */
3693 	limits->max_segment_size = PAGE_SIZE;
3694 
3695 	limits->logical_block_size =
3696 		max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3697 	limits->physical_block_size =
3698 		max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3699 	limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3700 	limits->dma_alignment = limits->logical_block_size - 1;
3701 }
3702 
3703 static struct target_type crypt_target = {
3704 	.name   = "crypt",
3705 	.version = {1, 25, 0},
3706 	.module = THIS_MODULE,
3707 	.ctr    = crypt_ctr,
3708 	.dtr    = crypt_dtr,
3709 	.features = DM_TARGET_ZONED_HM,
3710 	.report_zones = crypt_report_zones,
3711 	.map    = crypt_map,
3712 	.status = crypt_status,
3713 	.postsuspend = crypt_postsuspend,
3714 	.preresume = crypt_preresume,
3715 	.resume = crypt_resume,
3716 	.message = crypt_message,
3717 	.iterate_devices = crypt_iterate_devices,
3718 	.io_hints = crypt_io_hints,
3719 };
3720 module_dm(crypt);
3721 
3722 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3723 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3724 MODULE_LICENSE("GPL");
3725